
PROBABILISTIC ASPECTS OF r–STIRLING NUMBERS

GREGORY J. MORROW

Abstract. Let k ≥ 2 and 1 ≤ ` ≤ k. Consider an infinite sequence of independent trials
such that at each trial one of the cells of [k] is selected at random and a new ball is placed in
the cell. Define the random variable T` as the first trial on which each cell of [`] contains at
least one ball. Some identities for r–Stirling numbers of the second kind, and some relations
with p–Stirling numbers of the first kind, are obtained by developing the distribution of T` in
terms of r–Stirling numbers of the second kind. We introduce a subcollection (indexed by q)
of partitions of [β+σ] into β blocks, with r distinguished blocks. The size of this subcollection

is shown to be S(β + σ, β; r, q) =

′q∑
α0+···+αβ−r=σ

rα0(r + 1)α1 · · ·βαβ−r , where αi ≥ 0 and ′q

denotes that exactly q of the αi satisfy αi ≥ 1. We express this sum in terms of r–Stirling
numbers of both the first and second kinds.

1. Introduction

We are inspired by the following problem, posed by Engbers and Hammett [8]; cf. [14,
(9.26)].
Problem: “Let k and n be positive integers, and let m = min{k, n}. Prove that for 1 ≤ ` ≤ m,
we have

m∑
x=`

{
n
x

}
(x)` (k − `)x−` =

∑̀
i=0

(
`
i

)
(−1)i(k − i)n. (1.1)

Here, for a ∈ R and b ∈ Z+, we have (a)b := a(a − 1) · · · (a − b + 1), and (a)0 := 1, and{
n

x

}
is the Stirling number of the second kind, i.e. the number of ways to partition the set

[n] := {1, 2, . . . , n} into x nonempty blocks.”
The number of partitions of a finite set S of n elements has many combinatorial interpreta-

tions, including the number of equivalence relations on S; these numbers (εn) are often called
the exponential numbers or Bell numbers [1, p. 417], [15]. Here a partition of S is a collection
of disjoint nonempty subsets of S, or blocks, whose union is S. For any 1 ≤ k ≤ n, the number

of partitions of S into exactly k blocks is denoted
{
n

k

}
, and is called a Stirling number of the

second kind. By definition
{
n

k

}
= 0, if k ≤ 0 or k > n, except

{
0

0

}
= 1 (for the empty partition

consisting of no blocks). For example
{
4

2

}
= 7, as can be checked by taking 3 different parti-

tions of S = {a, b, c, d} consisting of two blocks each of size 2, and 4 partitions of two blocks
such that one block is a singleton set and the other block is the remaining 3 elements of S. In
general we have {

n+ 1
k

}
= k

{
n
k

}
+

{
n

k − 1

}
.

Indeed, for the purpose of establishing this recurrence, we may write S = [n] = {1, 2, . . . , n}.
On the right hand side, either {n+1} is a singleton block and we have k−1 blocks in a partition
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of [n], or we have that the element n+ 1 is thrown into one of the blocks of a partition of [n]
into k blocks, and for each such partition there are k ways to do this.

The original definition of Stirling, [12, p. 67], [3, p. 255] determines these numbers as
the coefficients of the falling factorial powers (x)k = x(x − 1) · · · (x − k + 1) that recover the

ordinary powers: xn =
n∑
k=1

{
n
k

}
(x)k. Via the 2–term recurrence, the partition definition and

Stirling’s definition of
{
n

k

}
are equivalent. Define the exponential or Touchard polynomials,

[2], [16], by ϕn(x) =
n∑
k=0

{
n

k

}
xk. Then, as in [2, (3.4)], we have

(
x d
dx

)n
eax = ϕn(ax)eax, and in

this same reference [2] further properties of these polynomials are discussed with applications.
See [13] for applications of Stirling numbers of both first and second kinds, where Definition
5.2 covers Stirling numbers of the first kind.

Our main interest will be in a certain generalization of
{
n

k

}
, as follows.

Definition 1.1. Define the r–Stirling number of the second kind
{
n

m

}
r
, r, m, n ≥ 0, as the

number of partitions of the set {1, 2, . . . , n} into m nonempty disjoint subsets (or blocks) such
that each of 1, 2, . . . , r appears in a different block. The ordinary Stirling number of the second

kind, namely the case r = 1, is denoted without subscript. By convention,
{
n
m

}
0

=
{
n
m

}
.

Further
{
n

m

}
r

= 0, if n < r or m < r, while
{
r

m

}
r

= δm,r, for r ≥ 0, and
{
n

0

}
r

= 0, for n > r.

Suppose now that we have k boxes or cells, labeled by [k] = {1, 2, . . . , k}. We consider a
sequence of independent trials wherein at each trial a new ball is placed in one of the cells

uniformly at random. Let 1 ≤ ` ≤ k be given, and define A
(n)
` as the event that each box labeled

with 1, 2, . . . , ` contains at least one ball after n trials. In Section 2 we show how to solve the

Problem by writing out two different approaches to the calculation of P (A
(n)
` ). One approach is

by the inclusion–exclusion principle to find the right hand side of (1.1). For another approach,
define the random variable Ln as the number of cells from [k] that contain at least one ball

after n trials. One calculates the probability of the event {Ln = x} ∩ A(n)
` to find the left

side of (1.1) and thus the solution, since by disjoint events P (A
(n)
` ) =

k∑
x=`

P ({Ln = x}∩A(n)
` ).

Still our goal is to find another representation of P (A
(n)
` ) that leads to r–Stirling numbers, for

r := k−`. To arrive naturally at r–Stirling numbers in the present context, define the random
waiting time T` as the number of trials at which, for the first time, each cell of [`] contains
at least one ball. We find the probability function of T` in terms of r–Stirling numbers by
Lemma 2.3. But we also have

n∑
τ=`

P (T` = τ) = P (A
(n)
` ), (1.2)

and therefore we have an r–Stirling numbers approach to the representation of P (A
(n)
` ). We

introduce a sequential coding (many to one mapping of members of [k]× · · ·× [k] to words) in

Lemma 2.4 to write yet another representation P (A
(n)
` ), again in terms of r–Stirling numbers,

and so obtain Theorem 2.5. The paper then uses the waiting time construct as a jumping off
point. For instance we discuss in Section 3 the distribution of the random variable T`,t defined
as the number of trials at which, for the first time, exactly `− t cells of [`] contain at least one
ball. This leads to the identity of Theorem 3.2.
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The main applications of this paper are some new identities that arise from counting events
in different ways. These identities are mainly for the r–Stirling numbers of the second kind,
but we also find in Propositions 5.4 and 5.6 identities involving r–Stirling numbers of the
second kind and p–Stirling numbers of the first kind, the latter introduced by Definition 5.2.
Our aim is first to find relations between the r–Stirling numbers whose proofs are ultimately
based on bijective arguments. In Section 5 we will also apply generating function arguments.
While our goal is not to develop probability distributions involving the Stirling numbers, the
reader may wish to consult [10].

In Section 4 we find a combinatorial proof of the probability function of T`. In Sections 5
and 5.1 we elaborate on the sequential coding device for decomposing events, and show its
applications via the generating function method. In Section 5.2 we introduce by Definition
5.9 a subcollection, indexed by nonnegative integers q, of the set of partitions of [β + σ] into
β blocks with r distinguished blocks. We give a combinatorial proof of Corollary 5.10 for the
size of this subcollection in terms of the sums S(β + σ, β; r, q) of Definition 5.7. These sums
are calculated by a formula involving r–Stirling numbers of both first and second kinds in
Corolllary 5.8.

2. Probabilistic Approach to the Problem

We take a probabilistic point of view for (1.1) that leads naturally to the context of r–Stirling
numbers of the second kind. Let there be k ≥ 2 cells that we fill on successive independent
trials with n balls, placing each ball in a randomly chosen cell. It is convenient to name the cells
by the digits 1, 2, . . . , k. We say a cell is filled if it contains at least one ball. For each n, denote
the collection of sequences of n digits Ωn = {(ω1, ω2, . . . , ωn) : ω1, . . . , ωn ∈ [k]}. The set Ωn

is an elementary probability space in which each point ω := (ω1, ω2, . . . , ωn) has probability
k−n. Let 1 ≤ ` ≤ k determine a fixed subset [`] ⊂ [k] of cells identified by their digits. Assume

n ≥ `. Define the event A` = A
(n)
` ⊂ Ωn by “each cell of [`] is filled after n trials”. In terms of

sample points, we have that (ω1, . . . , ωn) ∈ A` if and only if for each digit ω ∈ [`], there exists
a trial i ≤ n such that ωi = ω. In words, A` consists of n–long sequences of digits such that
each digit of [`] appears somewhere in the sequence. The identity (1.1) counts the number of
sample points of A` in two different ways. To begin, the right side of the identity represents

a counting via the inclusion–exclusion law, applied as P (A`) = 1 − P (A′`), for A` =
⋂̀
j=1

Fj ,

with Fj := { cell j contains at least one ball }. Here A′ denotes the complement of A, and it
is easy to calculate knP (F ′j1 ∩ F

′
j2
∩ · · · ∩ F ′ji) = (k − i)n, by independence.

To understand the left side of the identity, one may count according to how many different
digits appear in the sample points of A`. That is we decompose the event according to the
values x of the random variable L = Ln(ω), defined as the number of cells of [k] that have
any balls in them after n placements. If x ≥ `, the number of sample points in the event

{ω : L(ω) = x} ∩ A` is
{
n
x

}
(x)` (k − `)x−`; this may be proved directly by a combinatorial

argument. A sequential coding for this enumeration is mentioned at the start of Section 5,
just before Definition 5.1. In the sequel we suppress the dependence on ω and instead write
for example {Ln = x} for the event that exactly x cells are filled after n trials. Thus, because

by disjoint events, P (A
(n)
` ) =

k∑
x=`

P ({L = x} ∩A`), (1.1) has in principle been solved. Yet our

interest lies in further developing this probabilistic approach due to yet other representations

of P (A
(n)
` ) that we introduce next.
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2.1. The random waiting time T`. Recall the Definition 1.1 of r-Stirling numbers of the

second kind. By [4, Theorem 2] these numbers satisfy:
{
n+ 1

m

}
r

= m
{
n

m

}
r

+
{

n

m− 1

}
r
. Exten-

sion to higher r follows by Broder [4, Theorem 4]:
{
n
m

}
r+1

=
{
n
m

}
r
− r
{
n− 1

m

}
r
. Triangular

tables of r–Stirling numbers are displayed in [4, Table 1] for r = 1, 2, 3. We shall often apply
the following arithmetical identity, [4, Theorem 8]:

Lemma 2.1. Let 0 ≤ r ≤ k and m ≥ 0. Then, with the following sum equal to 1 if m = 0,{
k +m
k

}
r

=
∑

r≤i1≤i2≤···≤im≤k
i1i2 · · · im. (2.1)

For example, if r = 2, k = 4, and m = 2,
{
6

4

}
2

= 22 + 2 · 3 + 2 · 4 + 32 + 3 · 4 + 42 = 55.

Definition 2.2. Define T` as “the first trial n such that each cell of [`] is filled”.

We call T` a stopping time since each event {T` = n} may be regarded as an event in Ωn.
This event is the collection of points ω = (ω1, . . . , ωn) such that ωn ∈ [`], yet ωn 6= ωi for all

1 ≤ i < n, and ω ∈ A(n)
` ; that is every element of [`] appears at least once in the sequence of

digits ω. We note that, by disjoint events, (1.2) holds. This provides us motivation to find a
simple expression for P (T` = τ). Technically T` is defined on the infinite product probability
space [k] × [k] × · · · , though decomposition arguments come down to counting subsets of Ωτ

for some finite τ .
To calculate the distribution of T`, we introduce independent geometric random variables

G1, . . . , G` with respective success parameters `/k, (` − 1)/k, . . . , 1/k. Here a geometric ran-
dom variable G with success parameter p is the number of independent tosses of a coin with
probability p for heads that are required to first obtain a heads; thus P (G = t) = (1− p)t−1p,
t = 1, 2, . . . . It is easy to see that, in distribution, T` = G1 + · · ·+G`. Indeed, in ascertaining
T`, first one of the levels of [`] must be filled, and this event has probability `/k. Next, if ` ≥ 2,
one of the remaining levels, of which there are now ` − 1, must be filled, and the probability
of success is now (` − 1)/k, etc. By this representation, the r-Stirling numbers of the second
kind come into play as follows.

Lemma 2.3. Put r = k − `. Then for any τ ≥ `,

P (T` = τ) =
`!

kτ

{
r + τ − 1
r + `− 1

}
r

.

Proof. Write T` = G1 + · · · + G`, where the G1, . . . , G` are independent geometric random
variables such that Gj has success parameter pj = `−j+1

k . Therefore, by direct computation,
we have that P (T` = τ) is given by:∏̀
j=1

pj
∑

α1+···+α`=τ−`

∏̀
j=1

(1−pj)αj =
`!

kτ

∑
α1+···+α`=τ−`

(k−`)α1(k− (`−1))α2 · · · (k−1)α` , (2.2)

where the αj are nonnegative integers in the sum. Thus, taking into account the fact that
αj = 0 is possible for some j, the last sum is simply rewritten∑

k−`≤i1≤i2≤···≤iτ−`≤k−1
i1i2 · · · iτ−` =

{
k − 1 + τ − `

k − 1

}
k−`

=

{
r + τ − 1
r + `− 1

}
r

,

by Lemma 2.1 and the definition of r. The proof is complete upon substituting this r–Stirling
number on the right side of (2.2). �
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For the remainder of this section, we first develop a sequential coding scheme for calculating

P (A
(n)
` ) in the proof of Lemma 2.4 that is different from the decomposition (1.2). This leads

to the identity for r–Stirling numbers of Theorem 2.5. Afterwards, by Remark 2.7 we mention
an alternative proof of this lemma, which is stated as follows.

Lemma 2.4. Suppose n ≥ `, and denote r = k − `. Then

knP
(
A

(n)
`

)
= `!

{
r + n
r + `

}
r

.

Proof. In order to fill the cells of [`] we must place a ball in a new cell from [`], that is a cell
whose digit hasn’t appeared before in sequence, each of precisely ` times. Denote by the letter
N the occurrence of a new digit for the particular sequence of cells, whenever the new cell is
from [`]. Here J denotes either an element of [k]\ [`], or an old N . For example, if ` = 2, k ≥ 4,
and n = 6, the sequence (3, 1, 1, 4, 2, 3) falls under the event JNJJNJ , while (4, 2, 3, 2, 1, 1)

also falls under this event. Hence A
(n)
` is written as a disjoint union of events consisting of

words of length n from the alphabet {N, J} with precisely ` many N ’s in the word. The total
number of J ’s is therefore n − `. Call a maximum length sequence of consecutive J ’s of at
least one J in a finite word on the alphabet {N, J} a string of J ’s. The length of the string
is simply the number of consecutive J ’s. By convention we allow an empty string of length 0
to mean there is not at least one J at a particular position in the word. For each 1 ≤ i ≤ `,
and for the ith N , we account for a string of J ’s of length αi ≥ 0 after the N . We also allow
a string of length α0 ≥ 0 J ’s before the initial N . We therefore account for (possibly empty)
strings of J ’s in the ` + 1 spaces around the skeletal word N N · · · N , that consists of `
many N ’s. The total number of sample points in the union of all the elementary events on
the alphabet {N, J} is thus

`!
∑

α0+α1+α2+···+α`=n−`
rα0(r + 1)α1 · · · kα` ,

where `! is the number of ways of choosing the digits for the N ’s in any given word, and again
r := k−`. By Lemma 2.1, this counting yields the statement of the lemma by the definition of
r. Indeed, for each 0 ≤ i ≤ `, αi ≥ 0 is the number of times the integer r+ i is repeated in the

product of m = n− ` integers of the arithmetic formula (2.1) for
{
r + `+m

r + `

}
r

=
{
r + n

r + `

}
r
. �

By combining the different ways of calculating P (A`) according to r–Stirling numbers, we
obtain the following extension to r ≥ 2 of a well known identity, [9, (6.20)] or [4, (35)], for the
ordinary Stirling numbers (the case r = 1) of the second kind.

Theorem 2.5. Let n ≥ ` and denote r = k − `. Then
n∑
τ=`

(r + `)n−τ
{
r + τ − 1
r + `− 1

}
r

=

{
r + n
r + `

}
r

.

Proof. By (1.2) and Lemma 2.3 we have that knP (A
(n)
` ) =

n∑
τ=`

kn−τ `!
{
r + τ − 1
r + `− 1

}
r
. On the other

hand we have the statement of Lemma 2.4. Hence the theorem follows by canceling the factors
of `! on the two sides and by rewriting kn−τ = (r + `)n−τ . �

There is yet another way to calculate P (A`), but in terms of ordinary Stirling numbers that
we mention now for completeness. Define the random variable X` as the total number of balls
that fall into the cells of [`] after n trials. By decomposing the event A` according to the values
of X`, we obtain the following.
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Lemma 2.6. For all 1 ≤ ` ≤ k, and ` ≤ n, we have (with 00 = 1),

knP
(
A

(n)
`

)
= `!

n∑
x=`

(
n
x

){
x
`

}
(k − `)n−x.

Proof. The event {X` = x} ∩A` is written

“after n trials the cells of [`] contain exactly x balls that also fill each cell of [`]”.

We count this event by choosing x trials, and partitioning these trials into ` nonempty blocks.
Fix for the moment a particular choice of x trials in time. Given any particular ordering of
the blocks from the `! orderings of partitions into ` blocks of these trials, place the balls from
the ith block into the ith cell, i = 1, . . . , `. Also for each choice of x trials or balls in time,
the remaining n − x balls must each fall into the cells of [k] \ [`]. Hence for each choice of x

trials, there are `!
{
x

`

}
(k − `)n−x points ω of the event {X` = x} ∩A` in which the coordinate

digits of ω fall into and fill [`] precisely on the times of these x trials. Since there are
(
n
x

)
many choices of the x trials, we have knP ({X` = x} ∩ A`) = `!

{
x

`

}
(k − `)n−x

(
n

x

)
. Since

P (A`) =
n∑
x=`

P ({X` = x} ∩A`), the proof is complete. �

By [4, (32)], we have the following relationship between ordinary Stirling numbers and
r–Stirling numbers of the second kind.

n∑
x=`

(
n
x

){
x
`

}
rn−x =

{
n+ r
r + `

}
r

. (2.3)

Remark 2.7. By (2.3) and Lemma 2.6, we obtain an alternative proof of Lemma 2.4.

The r–Stirling number of the second kind was introduced by Carlitz [6, (3.1)–(3.6)] in the

form R(n, k, λ) =
{
λ+ n

λ+ k

}
λ
; compare [4, Corollary 10] and [6, (3.10)]. An alternative proof of

Carlitz’s [6, (3.8)] follows. This result was rediscovered in disguised form as [11, Theorem 4.5].

Remark 2.8. For ` ≤ n and r ≥ 0,{
r + n
r + `

}
r

=
1

`!

∑̀
i=0

(−1)i
(
`
i

)
(r + `− i)n.

Proof. By the inclusion–exclusion calculation, knP (A`) is a representation the right side of
(1.1) with k = r + `. So both sides of the identity are equal to kn

`! P (A`) by Lemma 2.6
together with (2.3) for the left side. The identity also follows from (1.1) and Lemma 2.4. �

3. The random time T`,t

We generalize our approach to the event A` as follows. For each 0 ≤ t ≤ ` − 1, define the

event A`,t = A
(n)
`,t by the condition that “exactly `− t cells of [`] are filled by trial n”. We have

A` = A`,0. Define also B`,t = B
(n)
`,t as the event that “at least `− t cells of [`] are filled by trial

n”. By the same proof as given by Lemma 2.4, only with (`)`−t in place of `! for the number
of choices for assigning distinct digits from [`] to a skeleton word consisting of (`− t) N ’s, we
have

knP
(
A

(n)
`,t

)
= (`)`−t

{
r + n

r + `− t

}
r

. (3.1)
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Definition 3.1. Let 0 ≤ t ≤ `− 1. Define T`,t as “the first trial on which `− t cells of [`] are
filled”.

By the proof of Lemma 2.3 with just the sum of the first `− t geometric random variables
Gj representing T`,t, or by the proof of Lemma 2.4, in which the words on N ’s and J ’s are
constructed from exactly (` − t) many N ’s and terminate in an N , so there are only ` − t
possible spaces preceding N ’s where a string of J ’s may appear, we have:

kxP (T`,t = x) = (`)`−t

{
r + x− 1

r + `− t− 1

}
r

. (3.2)

Theorem 3.2. Let 0 ≤ t ≤ `− 1, assume n ≥ `, and put r = k − `. Then

(`)`−t

n∑
x=`−t

kn−x
{

r + x− 1
r + `− t− 1

}
r

=
∑̀

m=`−t
(`)m

{
r + n
r +m

}
r

.

Proof. Since the event B
(n)
`,t may be written:

B
(n)
`,t = “`− t cells of [`] are filled for the first time at a time τ ≤ n”,

we have B
(n)
`,t = {T`,t ≤ n}. Since the events {T`,t = x} are disjoint in x, we therefore have

P (B`,t) =

n∑
x=`−t

P (T`,t = x). (3.3)

Furthermore since the events A
(n)
`,t are disjoint in t, we have

P (B`,t) =
t∑

j=0

P (A`,j). (3.4)

Therefore by equating the two expressions for P (B`,t) coming from (3.3)–(3.4), and sub-
stituting (3.1)–(3.2) to write r–Stirling expressions for enumerations of the events A`,t and
{T`,t = x}, we obtain the desired statement. Here the summation index j of (3.4) is replaced
by m = `− j for the right side of the statement of the theorem. �

For illustration of Theorem 3.2, let ` = 4, k = 6, t = 2, and n = 5, so that r = 2 and `−t = 2.

We have 4 · 3
(

63 + 62
{
4

3

}
2

+ 6
{
5

3

}
2

+
{
6

3

}
2

)
= 4 · 3 (216 + 36 · 5 + 6 · 19 + 65), while on the

other hand 4 · 3
{
7

4

}
2

+ 4 · 3 · 2
{
7

5

}
2

+ 4!
{
7

6

}
2

= 12 · 285 + 24 · 125 + 24 · 20; both expressions

evaluate to 12 · 575.

4. Combinatorial Proof of Lemma 2.3

In the sequel, we continue to write r := k−` ≥ 0. Recall by Lemma 2.3 that knP (T` = τ) =

`!
{
r + τ − 1
r + `− 1

}
r
. We give a direct combinatorial proof of this enumeration as follows. Similar to

the proof of Lemma 2.4, we have a many to one mapping (sequential coding) of any ω =
(ω1, . . . , ωτ ) ∈ {T` = τ} to a τ–letter word on the alphabet {N, J} by the rule that ωi is coded
by N if the digit ωi ∈ [`] has the property that this digit has not appeared as ωj for all j < i.
Else, the digit ωi is coded by J . Note however that in this construction for the event {T` = τ},
automatically ωτ is coded by N .
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Definition 4.1. Let λ be a permutation of of [`]. Define the subevent E = Eλ,τ of {T` = τ} by
the property that for any ω ∈ E, we have that the sequence of new digits, ωi(1), ωi(2), . . . , ωi(`),
each coded by N , is equal to λ(1), λ(2) . . . λ(`); in particular ωi(`) = ωτ = λ(`).

For illustration in the following argument let r = 2 and let ω ∈ E. Define an extended
sequence of digits as ω+ := (a, b;ω1, ω2, . . . , ωτ ), where a and b are distinct abstract digits
and not equal to any digit from [k]. For illustration again, say τ = 6 and ` = 3. Define the
coordinate positions of each of the digits of ω+ respectively as 1, 2; 3, . . . , 8. Here we have
r+ τ = 8 coordinate positions. Note that digits are denoted 1, 2, 3, . . . , 5 (since k = `+ r = 5),
while coordinate positions are denoted 1, 2, 3, . . . . For illustration we take λ to be the identity
permutation, λ = id, on [3]. Let three example points ω, or 6–tuples, for our event E be:

(1, 2, 4, 4, 2, 3)
(1, 2, 2, 2, 2, 3)
(5, 1, 1, 1, 2, 3)

In each example case, the digit 1 appears before digit 2, and digit 3 only appears at the last
place. Now extend these 6–tuples to 8–tuples as follows:

(a, b; 1, 2, 4, 4, 2, 3)
(a, b; 1, 2, 2, 2, 2, 3)
(a, b; 5, 1, 1, 1, 2, 3)

We now partition the coordinate positions {1, 2, . . . , 7}, where we have omitted the last coor-
dinate position 8, into r+`−1 = 4 nonempty blocks according to the following rule: the block
Ba contains 1 and in addition any coordinate positions (if they so exist) of the digit `+ 1 = 4;
the block Bb contains 2 and in addition any coordinate positions of the digit ` + 2 = 5. The
remaining ` − 1 = 2 blocks B1, B2 are defined by: B1 consists of the coordinate positions of
the digit 1, and B2 consists of the coordinate positions of the digit 2. Since digits 1 and 2
must appear, all blocks are nonempty and they exhaust all coordinate positions {1, 2, . . . , 7},
since digit 3 only appears in coordinate position 8 of the extended sequence. Therefore we
have the following correspondences in our example:

{ {1, 5, 6 }, {2}, {3}, {4, 7} } ↔ (a, b; 1, 2, 4, 4, 2, 3);

{ {1}, {2}, {3}, {4, 5, 6, 7} } ↔ (a, b; 1, 2, 2, 2, 2, 3);

{ {1}, {2, 3}, {4, 5, 6}, {7} } ↔ (a, b; 5, 1, 1, 1, 2, 3).

For illustration let R denote all partitions of the coordinate positions {1, 2, . . . , 7}, into r+`−
1 = 4 blocks such that, for r = 2, coordinate positions 1 and 2 belong to different blocks. We
mean that there are r+ τ −1 coordinate positions to be partitioned, and the first r coordinate
positions each belong to a different block, and we have β := r+`−1 blocks in general. We claim
that for the given rule of constructing blocks, we have a bijection between R and all extended
(r+ τ)–tuples constructed from E, which is trivially bijective to E. Indeed, obviously we have
a map ϕ from E to R defined by the construction of blocks. Suppose we would have two image
partitions the same from two members ω, ω′ ∈ E under ϕ. Then the coordinate positions of all
digits appearing in ω except the digit id(`) = ` would have been determined precisely by the
common partition. For example, if there is a digit `+1 = 4 in ω, then the coordinate positions
of all occurrences of this digit are determined by the partition block Ba. Since ϕ(ω) = ϕ(ω′),
Ba also determines the same coordinate positions of digit `+ 1 = 4 for ω′, by definition of Ba.
Clearly by going through all blocks of the common partition, and since there is only one place
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for digit id(`) to go, we have ω = ω′. Therefore the mapping ϕ is one to one. To see that it
is onto, simply let ρ ∈ R be a partition of the type described. Let µ(B) = minB, that is the
minimum of coordinate positions in B, for any block B of ρ. By definition of R, for r = 2 we
must have a block Ba whose minimum coordinate position is 1 and another block Bb whose
minimum coordinate position is 2. If block Ba has any coordinate positions other than 1 in it,
then place digit `+ 1 = 4 in each of these other coordinate positions of an extended (r + τ)–
tuple. Similarly, if Bb has any coordinate positions other than 2 in it, then place digit `+2 = 5
in each of these other coordinate positions of the same extended (r + τ)–tuple; there can be
no overlap of coordinate positions by disjoint blocks. Now we have ` − 1 blocks remaining.
Order these blocks B by the order of their minima, µ(B), from least to largest. Accordingly
we define blocks B1, . . . , B`−1 as the remaining blocks of ρ. Place digit 1 in the coordinate
positions of B1, and in general digit i in the coordinate positions of Bi, i = 1, . . . , `−1. Finally
place digit ` in the last place of the extended (r + τ)–tuple. By construction, digit 1 appears
for the first time at coordinate position µ(B1), and in general digit i appears for the first time
at coordinate position µ(Bi), i = 1, . . . , ` − 1, and µ(B1) < µ(B2) < · · · < µ(B`−1) < r + τ.
Therefore the extended (r + τ)–tuple we have constructed comes from extending an element
of E. Thus the claim is established: we have a bijection between E and R.

In conclusion, by symmetry we have that for any permutation λ of [`], the cardinality of
Eλ,τ is the same as Eid,τ . We showed that the cardinality of E equals the cardinality of R,

which by Definition 1.1 is precisely
{
r + τ − 1
r + `− 1

}
r
. Therefore by disjoint and exhaustive events

Eλ,τ , as λ varies over all `! permutations of [`], we have that indeed the cardinality of {T` = τ}
is `!

{
r + τ − 1

r + `− 1

}
r
.

Remark 4.2. By combining the above direct combinatorial proof of Lemma 2.3 with our
original proof of this lemma, we obtain a proof of [4, Theorem 8], that is Lemma 2.1.

4.1. Application of the Combinatorial Proof. Here and in the sequel, assume r ≥ 1 and
let π denote an integer such that 0 ≤ π ≤ r.

Definition 4.3. Define the statistic Wπ,` as “the number of cells that have been filled among
all cells of [k − π] by time T`”.

The random variable W0,` is the number among all cells [k] that are filled at time T`. The
random variable Wr,` ≡ ` is trivial; we consider the case π = r only in Section 5.1. So let
now 0 ≤ π < r. By definition ` ≤ Wπ,` ≤ k − π. Our goal in this section is to establish the
joint distribution of Wπ,` and T` in Proposition 4.5. This has an immediate application in
Corollary 4.6. We derive this joint distribution in the present section by taking advantage of
the bijection of Section 4. In Section 5 we will observe another proof based on an extension
of the sequential coding device.

Let D ⊂ [k− π] \ [`] be a specific subset (allowing the empty set) of size d, so that 0 ≤ d ≤
r − π. We define a certain event B

(τ)
`,D ⊂ {T` = τ} as follows. For each subset C ⊂ [`] of size

|C| = `− 1, denote by AC the subevent of {T` = τ} defined by

AC := “the cells of [k−π] filled at time τ−1 equals D∪C, the cell [`]\C is filled at time τ”.

The events AC , as C varies, are obviously disjoint. Define

B
(τ)
`,D :=

⋃
C⊂[`], |C|=`−1

AC . (4.1)
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This union is clearly the subset of {T` = τ} such that at time τ − 1, D has been filled, but no
cells of [k − π] \ [`] that lie outside of D have been filled, while cells of [k] \ [k − π] may have
been filled.

Lemma 4.4. Let τ ≥ `, and let D ⊂ [k − π] \ [`] be a fixed set of cardinality d. Then

kτP
(
B

(τ)
`,D

)
= `(d+ `− 1)!

{
π + τ − 1

π + d+ `− 1

}
π

.

Proof. The proof follows from the combinatorial proof of Lemma 2.3 given in Section 4. Indeed,
fix a subset C ⊂ [`] of size |C| = ` − 1. We calculate the cardinality of AC by replacing [`]

by [`] ∪ D in that proof. So take ˜̀ := ` + d to play the role of `. By definition we do not
allow any digits of [k − π] \ ([`] ∪D) to enter into the coordinates of a point ω ∈ AC , so we
really just ignore this fixed set of digits. Also we take the role of r in that proof to be played
by π, since the size of the set of digits allowed to be included in τ–tuples of AC , besides the
designated set of digits [`]∪D that must be represented, and besides the digits removed from
consideration, is simply k − (k − π) = π. Since C is given, there is only 1 way to fill the last
digit of a τ–tuple in AC , while there are (d+ `− 1)! ways to permute the elements of D ∪ C.

Therefore by the bijection of Section 4, we have that |AC |/(d + ` − 1)! =
{
π + τ − 1

π + ˜̀− 1

}
π
, where

|A| denotes the cardinality of a set A. Here we have used that |AC |/(d+ `− 1)! = |Eλ,τ | for a
specific permutation λ on [`]∪D, since the order of first appearance of the (`+d− 1) digits in

C ∪D is unspecified for AC . Now there are exactly ` subsets C of the type that define B
(τ)
`,D

in (4.1). Therefore by disjoint events and equal cardinalities of the various AC , the lemma is

proved upon substitution of ˜̀= `+ d in the formula for |AC |. �

Proposition 4.5. For any 0 ≤ π ≤ r, we have the following joint distribution of Wπ,` and T`:

kτP (Wπ,` = w, T` = τ) = `(w − 1)!

(
r − π
w − `

){
π + τ − 1
π + w − 1

}
π

, ` ≤ w ≤ k − π, τ ≥ w.

Proof. Let D ⊆ [k − π] \ [`] denote a set of d := w − ` elements. Since the joint event in
question means precisely that exactly w cells of [k − π] are filled at time τ , and [`] is not yet
filled by time τ − 1, but is completely filled at time τ , then, by disjoint events,

P (Wπ,` = w, T` = τ) =
∑
D

P
(
B

(τ)
`,D

)
,

where the event B
(τ)
`,D is defined by (4.1) and the sum runs over all d–element subsets D of

[k − π] \ [`]. Since there are
(
r − π
d

)
such subsets D, the result follows by Lemma 4.4 and the

definition of d. �

Corollary 4.6. For any τ ≥ `, we have

k−π∑
w=`

(w − 1)!

(
r − π
w − `

){
π + τ − 1
π + w − 1

}
π

= (`− 1)!

{
r + τ − 1
r + `− 1

}
r

.

Proof. The proof follows by writing

k∑
w=`

P (Wπ,` = w, T` = τ) = P (T` = τ).

Now apply Proposition 4.5 to the left side and Lemma 2.3 to the right side, and cancel a factor
of each of ` and kτ on both sides. �
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For illustration of Corollary 4.6, take ` = 3, k = 7, π = 2, and τ = 5. Thus r = 4 and we find:

2!
(
2

0

){
6

4

}
2

+ 3!
(
2

1

){
6

5

}
+ 4!

(
2

2

){
6

6

}
2

= 2 · 55 + 12 · 14 + 24 · 1 = 2 · 151 = 2!
{
8

6

}
4
. To remind

that π = 0 indicates an ordinary Stirling number on the left side of Corollary 4.6, let ` = 3, k =

5, π = 0, and τ = 7: 2!
(
2

0

){
6

2

}
+ 3!

(
2

1

){
6

3

}
+ 4!

(
2

2

){
6

4

}
= 2 · 31 + 12 · 90 + 24 · 65 = 2 · 1351.

It is easily checked that this is the same as: 2!
{
8
4

}
2
.

5. Joint Probability Generating Function

We vary the sequential approach to counting A` in the proof of Lemma 2.4 to uncover
a certain representation of the joint probability generating function of T` and Wπ,` defined
by Definitions 2.2 and 4.3. So assume again that 0 ≤ π ≤ r and consider again the event
{Wπ,` = w, T` = τ}, where r ≥ 1 and 0 ≤ π < r. We consider the case π = r in Section 5.1.
For convenience, since we may regard π as fixed, as are r and `, we now drop the subscripts
on the W and the T in what follows.

We first generalize the sequential coding scheme of the proof of Lemma 2.4 to handle the
joint event {W = w, T = τ}. Our subsequent plan is to introduce some strings in the new
coding, define a corresponding statistic Q = Qπ,` by Definition 5.1, and in turn determine the
joint probability generating function of T , Q and W .

As before, to fill the cells of [`] for the first time by trial τ we must place a ball in a new cell
from [`] each of precisely ` times. For the event {W = w, T = τ} we may also introduce new
digits in sequence that aren’t from [`], but are from [k − π] \ [`], as long as w > `. As in the
proof of Lemma 2.4, denote by the letter N the occurrence of a new digit along a particular
sequence, whenever the new digit is from [`]. Denote now by K a new digit that comes from
[k−π] \ [`]. Finally, if a digit in sequence is either from [k] \ [k−π], or is old, because its digit
matches a previous digit in sequence (from either an N or a K), denote this occurrence by O;
when π = 0, the set [k] \ [k − π] = ∅ and O represents only an old cell. Introduce elementary
events that partition {W = w, T = τ} by spelling τ–long words from the alphabet {N,K,O};
words may start in any letter if π ≥ 1, but must end at the τ th coordinate in the letter N . For
example, let ` = 2, k = 7 (so r = 5), π = 3, w = 4, and τ = 8. Both points (5, 4, 4, 7, 3, 3, 1, 2)
and (6, 3, 3, 5, 4, 4, 2, 1) belong to the event OKOOKONN . In this word there are ` = 2 N ’s,
w−` = 2 K’s, and τ−w = 4 O’s. There are π = 3 ways to choose the first O, r−π = 5−3 = 2
ways to choose the first K, π+1 = 4 ways to choose the second and third O’s, 1 way to choose
the second K, etc. Hence the cardinality of OKOOKONN is `!(r− π)w−` · π(π + 1)2(π + 2).

Before each occurrence of an N or a K, we may in general have zero or more O’s. Call any
maximal length sequence of consecutive O’s of at least one O from a word of finite length on
the alphabet {N,K,O} a string of O’s. In the example above there are 3 strings of O’s. Before
the final N of the example there is an empty string of O’s, whose length is 0. To enumerate the
event {W = w, T = τ}, first we count the number of ways of laying down a skeleton pattern

of ` many N ’s and (w − `) many K’s with the last letter N . There are precisely
(
w − 1

`− 1

)
such

words. For each such pattern the number of ways to fill in digits for the K’s is (r − π)w−`,
while there are `! ways to fill in digits for the N ’s. For any fixed skeleton word, we count the
number of ways to put in patterns of O’s and digits for the O’s as follows.∑

α0+α1+···+αw−1=τ−w
πα0(π + 1)α1 · · · (π + w − 1)α` . (5.1)

Here αi ≥ 0 is the length of the (possibly empty) string of O’s before the the (i+ 1)st letter of
type either N or K, i = 0, . . . , w−1. We may think of the αi, 0 ≤ i ≤ w−1 as a function of the
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word that represents a subevent of {W = w, T = τ}, and so in the example we have α0 = 1,
α1 = 2, α2 = 1, α3 = 0. In case π = 0 we take 00 = 1 in the expression (5.1), corresponding
to the condition that O can not appear as a first letter. If τ − w = 0, then the sum (5.1) is
taken to equal 1 since there are no positions for O’s to occupy. Indeed τ −w denotes the total
length of the strings of O’s on {W = w, T = τ}.

By Lemma 2.1 the sum (5.1) is the π–Stirling number
{
π + w − 1 + (τ − w)

π + w − 1

}
π

=
{
π + τ − 1

π + w − 1

}
π
.

Noting that `!(r−π)w−`

(
w − 1
w − `

)
= `(w−1)!

(
r − π
w − `

)
, by the above discussion we have a sequential

coding proof of Proposition 4.5. One can count the event {Ln = x} ∩A(n)
` also by this device,

corresponding to the case π = 0, by removing the condition that the last digit is an N at trial
n. This leads to the summands on the left side of (1.1).

Definition 5.1. Define the statistic Qπ,` as “the number of strings of O’s until time T`.”

We now calculate the joint probability generating function E
{
sT tQuW

}
. For each w with

` ≤ w ≤ k − π, there are `!(r − π)w−`

(
w − 1

w − `

)
ways to choose digits for a skeletal sequence of

(w − `) many K’s and ` many N ’s. We must have τ ≥ w and q ≤ w. If τ − w = 0 we must
have q = 0, since there are no positions for O’s to occupy, and therefore the sum on q in the
following (5.2) is simply 1 · t0. We break up the sum (5.1) for the contribution of O’s according
to the value of q with the ′q notation. If τ − w ≥ 1, then q ≥ 1 and thus at q = 0 the ′q sum
in (5.2) must be zero, as an empty sum. Thus we have that E

{
sT tQuW

}
is written

k−π∑
w=`

(su)w
(r − π)w−`

kw

(
w − 1
w − `

) ∞∑
τ=w

`!

kτ−w
sτ−w

w∑
q=0

tq
′q∑

α0+···+αw−1=τ−w
πα0 · · · (π + w − 1)αw−1 ,

(5.2)
where the abbreviated notation ′q in the upper index of the inner sum of products indicates
that exactly q of the nonnegative integer exponents αi satisfy αi ≥ 1, and where k−τ accounts
for probability. For example if π = 2, w = 3, τ − w = 3, and q = 2, then the ′q sum is

′2∑
α0+α1+α2=3

2α0 · 3α1 · 4α2 = 21 · 32 + 22 · 31 + 21 · 42 + 22 · 41 + 31 · 42 + 32 · 41. Now fix w in

the outer sum of (5.2), and make the change of variables σ = τ −w and write the double sum
over τ and q in (5.2) by

∞∑
σ=0

`!

kσ
sσ

w∑
q=0

tq
′q∑

α0+···+αw−1=σ

πα0 · · · (π + w − 1)αw−1 = `!
w−1∏
i=0

(
1 + t

∞∑
α=1

(
π(i)s

k

)α)
, (5.3)

where π(i) := π + i, i = 0, 1, . . . , w − 1. Here again, if σ = 0 then we must have q = 0,
which corresponds to the constant term 1 in the product. This product form identity is a key
motivation for introducing the statistic Q. Rewrite the factor under the product on the right
side of (5.3) as

1 + t

∞∑
α=1

(
π(i)s

k

)α
=
k + (t− 1)π(i)s

k − π(i)s
. (5.4)

Therefore, by (5.2)–(5.4), we have

E
{
sT tQuW

}
=

k∑
w=`

(su)w
(r − π)w−`

kw

(
w − 1
w − `

)
`!

w−1∏
i=0

(
k + (t− 1)π(i)s

k − π(i)s

)
. (5.5)
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Now write
w−1∏
i=0

(
k + (t− 1)π(i)s

k − π(i)s

)
=

k−π−1∏
i=0

(
1

k − π(i)s

)w−1∏
i=0

(k + (t− 1)π(i)s)
k−π−1∏
i=w

(k − π(i)s) , (5.6)

and abbreviate these last three products respectively as Π1,Π2,Π3. To represent Π1, it is
straightforward to see by Lemma 2.1, because the maximal base factor in the product of
powers is π + k − π − 1 = k − 1, that

Π1 =

k−π−1∏
i=0

(
1

k − π(i)s

)
=

1

kk−π

k−π−1∏
i=0

( ∞∑
α=0

(
π(i)s

k

)α)
=

1

kk−π

∞∑
h=0

sh

kh

{
k − 1 + h
k − 1

}
π

.

(5.7)
To expand Π3, we introduce the definition of a p–Stirling number of the first kind.

Definition 5.2. Define
[
n

m

]
p

as the number of permutations of n into m cycles such that each

of 1, 2, . . . , p belong to distinct cycles. The ordinary Stirling number of the first kind is the

case p = 1 and is denoted
[
n
m

]
. Also by convention

[
n
m

]
0

=
[
n
m

]
and

[
0
0

]
= 1.

By [4, Theorem 7], we have the following arithmetic representation of the p–Stirling number
of the first kind.

Lemma 5.3. Let 0 ≤ p ≤ n−m ≤ n. Then, taking the following sum equal to 1 if m = 0,[
n

n−m

]
p

=
∑

p≤i1<i2<···<im<n
i1i2 · · · im.

By Lemma 5.3 we have, by π(w) = π + w and π(k − π − 1) + 1 = k, that

Π3 =

k−π−1∏
i=w

(k − π(i)s) =

k−π−w∑
ν=0

[
k

k − ν

]
π+w

(−1)νsνkk−π−w−ν . (5.8)

Therefore, by (5.5)–(5.8), we have that E
{
sT tQuW

}
is given by

k∑
w=`

(su)w
(r − π)w−`

kw

(
w − 1
w − `

)
`! ·Π2 ·

∞∑
h=0

sh

kh

{
k − 1 + h
k − 1

}
π

k−π−w∑
ν=0

[
k

k − ν

]
π+w

(−1)νsνk−w−ν ,

(5.9)
where we have canceled powers of kk−π in denominator from Π1 of (5.7) and numerator from
Π3 of (5.8). We now set t = 1, so that Π2 = kw by (5.6). As a consequence, we have by (5.9)
that, for fixed w ≤ τ , the sτuw term of E

{
sTuW

}
is

(r − π)w−`
kk−π

(
w − 1
w − `

)
`!(su)w

( ∑
h+ν=τ−w

sh+ν

kh

{
k − 1 + h
k − 1

}
π

[
k

k − ν

]
π+w

(−1)νkk−π−w−ν

)
.

(5.10)
Hence, by equating coefficients in the bivariate probability generating function of T and W ,
we obtain, after observing that, for fixed w and τ , the power of k in (5.10) is k−(w+h+ν) = k−τ ,

kτP (W = w, T = τ) = `!(r − π)w−`

(
w − 1
w − `

) ∑
h+ν=τ−w

{
k − 1 + h
k − 1

}
π

[
k

k − ν

]
π+w

(−1)ν .

(5.11)
Now plug in Proposition 4.5 to the left side of (5.11). Notice that the combinatorial coefficients
in front of the Stirling numbers on the resulting two sides are equal as noted in the alternative
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proof of Proposition 4.4 just before Definition 5.1. Therefore, by (5.11) and Proposition 4.5,
we obtain the following identity.

Proposition 5.4. Let 0 ≤ π < r, ` ≤ w ≤ k − π, and τ ≥ w. Then∑
ν

{
k − 1 + τ − w − ν

k − 1

}
π

[
k

k − ν

]
π+w

(−1)ν =

{
π + τ − 1
π + w − 1

}
π

.

For illustration of this result, take ` = 1, k = 6, w = 2, π = 2, and τ = 5; thus r = 5 > π. We

obtain
{
8

5

}
2

[
6

6

]
4
−
{
7

5

}
2

[
6

5

]
4

+
{
6

3

}
2

[
6

4

]
4

=
{
6

3

}
2
; that is, 910 ·1−125 ·9+14 ·20 = 65 =

{
6

3

}
2
.

5.1. Strings. In this section we eliminate the variable Wπ,` from the analysis and go back to
the construction in the proof of Lemma 2.4 involving words on the alphabet {N, J}. This may
be regarded as the case π = r for the three letter alphabet, so K no longer exists (the 3 letter
alphabet collapses), and the role of O is played now by J . As in the proof of Lemma 2.4, call
a consecutive sequence of J ’s of maximal length, consisting of at least one J in a finite word
from the alphabet {N, J} a string of J ’s in this word.

Definition 5.5. Define the statistic Q̃` as “the number of strings of J ’s until time T`.”

By (5.2)–(5.3), with u = 1 and π = r or k − π = `, and w ≡ `, we have by the left side of
(5.3) that

E
{
sT tQ̃

}
=
∞∑
τ=`

`!

kτ
sτ
∑̀
q=0

tq

 ′q∑
α0+α1+···+α`−1=τ−`

rα0(r + 1)α1 · · · (r + `− 1)α`−1

 , (5.12)

where again the notation ′q in the upper index of the inner sum of products indicates that
exactly q of the nonnegative integer exponents αi satisfy αi ≥ 1. The case q = 0 is only
possible if τ = `, in which case the ′q sum is taken as 1. Similar to (5.3), we find the product

form for (5.12) after introducing σ = τ − `, as follows. The generating function E
{
sT tQ̃

}
is

written

`!

k`
s`
∞∑
σ=0

sσ

kσ

∑̀
q=0

tq
′q∑

α0+···+α`−1=τ−`
rα0 · · · (r + `− 1)α`−1 =

`!

k`
s`
`−1∏
i=0

(
1 + t

∞∑
α=1

(
r(i)s

k

)α)
,

(5.13)
where r(i) = r+ i, i = 0, . . . `− 1; so r(i) ranges from r to r+ `− 1 = k− 1. By applying the
identity of (5.4), and by identity (5.7) with π = r, we have

`−1∏
i=0

(
1 + t

∞∑
α=1

(
r(i)s

k

)α)
=

`−1∏
i=0

k + (t− 1)r(i)s

k − r(i)s
;

`−1∏
i=0

1

k − r(i)s
= k−`

∞∑
h=0

sh

kh

{
k − 1 + h
k − 1

}
r

.

(5.14)
By Lemma 5.3 we write, for the equivalent of Π2 of (5.6) with w ≡ `,

`−1∏
i=0

(k + (t− 1)r(i)s) =
∑̀
ν=0

[
k

k − ν

]
r

sν(t− 1)νk`−ν . (5.15)

Now plug (5.14)–(5.15) into (5.13) to obtain

E
{
sT tQ̃

}
=
`!

k`
s`

(
k−`

∞∑
h=0

sh

kh

{
k − 1 + h
k − 1

}
r

)(∑̀
ν=0

[
k

k − ν

]
r

sν(t− 1)νk`−ν

)
. (5.16)
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Finally, rewrite the double sum by h+ ν = σ, and expand (t− 1)ν by the binomial theorem.
So, writing in general ` ∧ σ = min{`, σ},

E
{
sT tQ̃

}
=
`!

k`
s`
∞∑
σ=0

sσ

kσ

`∧σ∑
ν=0

{
k − 1 + σ − ν

k − 1

}
r

[
k

k − ν

]
r

ν∑
q=0

tq(−1)ν−q
(
ν
q

)
. (5.17)

Here σ represents τ − `. Now read off the sτ tq coefficient in (5.17) to obtain

P (Q̃` = q, T` = τ) =
`!

kτ

`∧(τ−`)∑
ν=0

{
k − 1 + τ − `− ν

k − 1

}
r

[
k

k − ν

]
r

(−1)ν−q
(
ν
q

)
. (5.18)

If τ = ` we must have ν = 0 in this sum and q = 0, and we simply recover the trivial fact

that P (T` = `) = `!
k`

= `!
k`

{
k − 1

k − 1

}
r

[
k

k

]
r
. If on the other hand τ > `, then we must have q ≥ 1.

Since
∑
q≥1

(−1)ν−q
(
ν
q

)
= (1− 1)ν − (−1)ν = (−1)ν−1, if ν ≥ 1, while this sum is zero if ν = 0,

we obtain by (5.18) that

P (T` = τ) =
`!

kτ

`∧(τ−`)∑
ν=1

{
k − 1 + τ − `− ν

k − 1

}
r

[
k

k − ν

]
r

(−1)ν−1, τ > `. (5.19)

Hence by (5.19) and Lemma 2.3 we obtain the following.

Proposition 5.6. If τ > `, then

`∧(τ−`)∑
ν=1

{
r + τ − 1− ν
r + `− 1

}
r

[
r + `

r + `− ν

]
r

(−1)ν−1 =

{
r + τ − 1
r + `− 1

}
r

.

Since the right side of this result can be incorporated as a ν = 0 term in the sum, Proposition
5.6 is called an orthogonality relation between r–Stirling numbers of the first and second kinds.
This result extends [4, Theorem 25 (54) case r = p] to non–matching rows and columns in the
triangular tables [4, Table 1] of r-Stirling numbers of the first and second kinds. For example,

if ` = 4, k = 6, and τ = 6, we obtain
{
6

5

}
2

[
6

5

]
2
−
{
5

5

}
2

[
6

4

]
2

= 14 · 14− 1 · 71 = 125 =
{
7

5

}
2
.

Definition 5.7. Let β ≥ r ≥ 1, σ ≥ 0, and q ≥ 0. Define

S(β + σ, β; r, q) =

′q∑
α0+α1+···+αβ−r=σ

rα0(r + 1)α1 · · ·βαβ−r ,

where αi ≥ 0 and ′q denotes that exactly q of the αi satisfy αi ≥ 1. If both σ = 0 and q = 0
define S(β, β; r, 0) = 1. Otherwise, if the sum is empty for σ ≥ 1, then S(β + σ, β; r, 0) = 0.

We observe, by Lemma 2.1, that
β−r∑
q=0

S(β + σ, β; r, q) =
{
β + σ
β

}
r
. By comparing (5.13) and

(5.18), we have the following.

Corollary 5.8. Let r ≥ 0, 1 ≤ ` ≤ τ , and 0 ≤ q ≤ ` ∧ σ, where we denote σ = τ − `. Then

S(r + `+ σ − 1, r + `− 1; r, q) =
`∧σ∑
ν=q

{
r + `− 1 + σ − ν

r + `− 1

}
r

[
r + `

r + `− ν

]
r

(−1)ν−q
(
ν
q

)
.
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For example, take ` = 3, r = 2, q = 2 and σ = 4 in Corollary 5.8. Then S(8, 4; 2, 2) =
′2∑

α0+α1+α2=4
2α03α14α2 = 2133 + 2232 + 2331 + 2143 + 2242 + 2341 + 3143 + 3242 + 3341 = 782,

while
{
6
4

}
2

[
5
3

]
2

(
2
2

)
−
{
5
4

}
2

[
5
2

]
2

(
3
2

)
= 55 · 26− 9 · 24 · 3 = 782.

5.2. Strings of a Partition of [β + σ] into β Blocks. We reconsider the combinatorial
proof of Lemma 2.3 at the beginning of Section 4. Our purpose is to extend the bijection of

that proof to a bijection of the subevent {Q̃ = q} ∩ Eλ,τ , where Eλ,τ is given by Definition

4.1 and Q̃ is given by Definition 5.5. In our first illustration of that proof, with r = 2, ` = 3,
and τ = 6, we took ω = (1, 2, 4, 4, 2, 3), of the form NNJJJN , where the sequence of new
digits (N) is the identity permutation id on [`] = [3]. The bijection associates ω ∈ Eid,τ in this
case with a partition into r+ `− 1 = 4 blocks of the (r+ τ − 1) coordinate positions 1, 2,. . . ,
7, as follows: { {1, 5, 6}, {2}, {3}, {4, 7} }. We aim to relate this partition to the number q
of strings of J ’s in the word on N ’s and J ’s that codes ω; so we want to determine this value
of q from the partition itself. It turns out that we should remove the minimum coordinate
position from each block, and take the union S of remaining positions and find the number of
strings of consecutive integers in the set S. For the present example we have S = {5, 6 }∪{7},
consistent with q = 1. Here, for any finite subset S of positive integers, define a string in S as
a sequence of consecutive integers in S that is of maximal length.

Definition 5.9. Let β ≥ r ≥ 1, and σ ≥ 0, and let ρ be a partition of [β+σ] into β nonempty
disjoint blocks with r distinguished blocks, meaning each element of [r] belongs to a different
block. For each block B denote µ(B) = minB, the minimal element of B. Define the number
of strings of the partition ρ as the number of (maximal) strings of consecutive integers in
S =

⋃
B a block of ρ

(B \ {µ(B)}) . If S is empty, that is σ = 0 and we have only singletons in the

partition of [β], then the number of strings is defined to be zero.

To establish the equivalence of the two ways of counting strings, consider an illustration
with the same parameters r = 2 and ` = 3 as before, but now with τ = 9, and the exam-
ple sequence ω = (4, 1, 4, 5, 1, 2, 1, 1, 3), whose coded sequence is JNJJJNJJN , and whose
extended sequence is ω+ = (a, b; 4, 1, 4, 5, 1, 2, 1, 1, 3). The associated partition on coordinate
positions [10 ] (by r + τ − 1 = 10) is determined as: {{1, 3, 5 }, {2, 6}, {4, 7, 9, 10}, {8}}.
The integers 1 and 2 are coordinate positions of a and b, that will fall in different or dis-
tinguished blocks of the partition by definition. Recall that in our correspondence in Section
4, the r blocks B such that µ(B) ∈ {1, 2 . . . , r} are defined to include coordinate positions,
respectively, of digits `+ i, 1 ≤ i ≤ r, that exist in ω. Therefore the set of coordinate positions
of the extended sequence giving rise to J ’s in the coded sequence due to digits from [r+ `]\ [`]
appearing in ω equals:

⋃
µ(B)∈{1,2...,r}

(B \ {µ(B)}), that is the union of the distinguished blocks

after the respective extra coordinate positions 1, 2, . . . , r have been removed. In our example
these coordinate positions are {3, 5} ∪ {6}. There are also J ’s entering the coded sequence
due to digits i ∈ [`] being repeated in ω. By definition, the remaining blocks B1, B2,. . . ,B`−1
after the distinguished blocks are given by: Bi equals the set of coordinate positions of digit i
in the extended sequence. Therefore by removing the minimum from each of these blocks Bi
as well, and taking the union, we obtain all other extended coordinate positions corresponding
to J ’s, so at positions {7, 9, 10} of ω+. Hence, by combining the two sources of J ’s, we count
the number of strings of J ’s in the coded sequence by the number of strings of consecutive
integers in S = {3, 5, 6, 7, 9, 10}; we have q = 3 strings of consecutive integers in S.
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Given r ≥ 1 and 1 ≤ ` ≤ τ , we write β = r+`−1 and σ = τ−`, so that β+σ = r+τ−1. It

remains to establish a bijection between {Q̃ = q} ∩Eid,τ and the set of all partitions Rq such
that each ρ ∈ Rq is a partition of the coordinate positions {1, 2, . . . , β+σ} into β blocks, where
there are r distinguished blocks, and where also there are q strings of consecutive integers in

the set S :=
⋃

all blocks B of ρ

(B \ {µ(B)}). For this we simply recall by Definition 5.5 that Q̃ is

the number of strings of J ’s in the coded sequence for a given element ω ∈ {T = τ}. Since

we already established a bijection ϕ : Eid,τ → R in Section 4, where R =
σ⋃
q=0

Rq, it is only

a matter of showing that the restriction of ϕ to {Q̃ = q} ∩ Eid,τ maps onto Rq. But this is
now obvious by the construction at the end of the combinatorial proof of Section 4, together
with the above correspondence between strings of consecutive coordinate positions in S and
strings of J ’s in a coded sequence. That is, we let ρ ∈ Rq and find an element ω+ such that
ω ∈ Eid,τ and ϕ(ω) = ρ. Then by virtue of ρ ∈ Rq, the coded sequence of ω has q strings of

J ’s, and hence ω ∈ {Q̃ = q} ∩ Eid,τ , as required.
Finally, we want to compute the size of Rq by an arithmetic sum, in analogy with Lemma

2.1. Since the sums S(β + σ; r, q) of Definition 5.7 themselves have a sum over q equal to the

r–Stirling number
{
β + σ
β

}
r
, as noted just after this definition, it is natural to believe that

|Rq| = S(β + σ, β; r, q), (5.20)

where β + σ = r + τ − 1, β = r + ` − 1, and the left side is the cardinality of Rq. To prove
that indeed (5.20) is correct, we may use the generating function approach. By the bijection

above between {Q̃ = q} ∩Eid,τ and Rq, the number |Rq| is the same as the coefficient of sτ tq

in kτ

`! E(sT tQ̃). Therefore (5.20) holds by (5.12) and Definition 5.7. We also prove (5.20) by a

direct enumeration of {Q̃ = q} ∩ Eid,τ . Indeed, fix the permutation λ = id for the sequence
of new digits, and as before consider a possibly empty string of J ’s before each N of the
skeletal sequence of ` many N ’s in a coded sequence for ω; the lengths of these strings are

α0, . . . , α`−1, with αi ≥ 0. Then the number of sample points ω ∈ {Q̃ = q} ∩ Eid,τ such that
there are exactly q strings of J ’s in the coded sequence can be computed by accounting for all

patterns with
`−1∑
i=0

αi = q and using the fact that there are r + i possible values for each J in

the ith string of J ’s (empty or not). So we obtain |{Q̃ = q}∩Eid,τ | as the sum of the products
rα0(r + 1)α1 · · ·βαβ−r over the eligible patterns, consistent with Definition 5.7.

Corollary 5.10. Let β ≥ r ≥ 1 and σ ≥ 0. Then S(β+σ, β; r, q) is the number of partitions of
[β + σ] into β nonempty blocks, such that the distinguished elements [r] fall in distinct blocks,
and such that the number of strings of this partition is q.

For example, by Definition 5.7, we compute S(5, 3; 2, 2) = 2131 = 6. This can also be seen
directly by finding all partitions of {1, 2, 3, 4, 5} into 3 blocks, with digits 1 and 2 in distinct
blocks, and with the total number of strings equal to q = 2, as follows.

{1}, {2, 3}, {4, 5}; {1, 3}, {2}, {4, 5}; {1, 3}, {2, 5}, {4};

{1, 5}, {2, 3}, {4}; {1, 3, 5}, {2}, {4}; {1}, {2, 3, 5}, {4}.
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6. Discussion

The r–Stirling number of the second kind
{
β + σ
β

}
r

is defined for 1 ≤ r ≤ β and σ ≥ 0 as

the number of partitions of [β+ σ] into β blocks with r distinguished blocks. We enumerate a
subcollection of these partitions determined by the number of strings q in terms of r–Stirling
numbers of both first and second kinds via Corollaries 5.8 and 5.10.

An open–ended problem to handle further classes of partitions is motivated by the paper
[5, p. 136], which discusses the number e(n, k) of partitions of [n] into k blocks, but with no
singleton blocks. We have e(n + k, k) = H(n, n − k), where H(n, k), 0 ≤ k ≤ n, are called
the Ward numbers [7, p. 41]. In particular it is expected that there is a formula for e(n, k) in
terms of Stirling numbers akin to the formula of Corollary 5.8.
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