1 Persistent Gambler's Ruin

Proof (Proposition 1.3.6). By Definition 1.3.5 (I)(1) and by Lemma 1.3.4 we have that statements 4-5 of the proposition hold. Next fix $\ell \geq 2$ and notice that the case j = 0 in 1 is similar to the case of statement 2, the difference being $x(a,b) \neq x_b$. We will first verify 2. Thus we write, using the Definition 1.3.5 and (1.46), that $[\overline{w}]_{f-\ell,f}$ is given by:

$$w_{\ell}^{*}(a)\left\{\frac{1-b}{1-a}w_{\ell}^{*}(a) + \frac{b-a}{1-a}w_{\ell-1}^{*}(a)\right\} - \left\{\frac{1-b}{1-a}w_{\ell+1}^{*}(a) + \frac{b-a}{1-a}w_{\ell}^{*}(a)\right\}w_{\ell-1}^{*}(a). \tag{1.47}$$

The $w_{\ell}^*(a)w_{\ell-1}^*(a)$ terms cancel in (1.47). Thus we obtain by (1.47) and Lemma 1.3.4 that

Lemma 1.3.4 that
$$[\overline{w}]_{f-\ell,f} = \frac{1-b}{1-a} \left(w_{\ell}^*(a)^2 - w_{\ell+1}^*(a) w_{\ell-1}^*(a) \right) = a^2 (1-a)(1-b)r^2 z^4 x_a^{\ell-2}$$
. Thus statement 2 is proved.

We now turn to statement 1. Fix $\ell \geq 2$ and let $j \geq 0$. Denote $[a, b]_0 = (a, b)$ and $[a,b]_j = (b,b)$ for $j \ge 1$. Thus, by Definition 1.3.5(I)(3)–(4) and (1.46),

$$[\overline{w}]_{f-\ell,f+j+1} = \overline{w}_{f-\ell,f+j+1} \left\{ \beta[a,b]_j \overline{w}_{f-\ell+1,f+j+1} - x[a,b]_j \overline{w}_{f-\ell+1,f+j} \right\}$$

$$-\{\beta[a,b]_{j}\overline{w}_{f-\ell,f+j+1} - x[a,b]_{j}\overline{w}_{f-\ell,f+j}\}\overline{w}_{f-\ell+1,f+j+1}.$$
(1.48)

Now the terms of (1.48) involving $\beta[a,b]_i$ cancel and we obtain from (1.48) and (1.46) that

$$[\overline{w}]_{f-\ell,f+j+1} = x[a,b]_j[\overline{w}]_{f-\ell,f+j}. \tag{1.49}$$

17

Now put j = 0 in (1.49) and conclude by 2 and (1.49) that statement 1 holds for the initial case j=1 for the given fixed $\ell \geq 2$. Now for the same fixed index ℓ , take statement 1 as an induction hypothesis for induction on $j \geq 1$. We have just established this induction hypothesis for j = 1. Thus verify by (1.49) again that the induction step holds since $x[a,b]_j = x(b,b) = x_b$ for all $j \geq 1$. Thus statement 1 is proved.

Finally we turn to statement 3. We note that (1.48)–(1.49) continues to hold by Definition 1.3.5 (I)(3) with $\ell = 1$ as long as $j \geq 1$. Now we compute by (1.44)–(1.45), Definition 1.3.5 (I)(3), and the interlacing bracket definition (1.46) that, since by (1.44), $\overline{w}_{f-1,f+1} = \omega(a,b)$, while by Definition 1.3.5, $\overline{w}_{f,f+2} = w_2^*(b) = \omega(b,b),$

$$[\overline{w}]_{f-1,f+1} = \omega(a,b)\omega(b,b) - \{\beta(a,b)\omega(a,b) - x(a,b) \cdot 1\} \cdot 1$$

= $\omega(a,b)[\omega(b,b) - \beta(a,b)] + x(a,b) = b^2(1-a)(1-b)r^2z^4,$ (1.50)

where at the last step we make a direct calculation based on the definitions in (1.18) and (1.45). Now take statement 3 as an induction hypothesis for induction on $j \geq 1$. By (1.50) have established this induction hypothesis for j=1. Thus verify by (1.49) with $\ell=1$ and $j\geq 1$ that the induction step holds since $x[a,b]_j = x(b,b) = x_b$ for all $j \geq 1$. So, statement 3 is proved. \square **** Check last step of (1.50)

Factor[Simplify[omega[a, b, r, y, z] (omega[b, b, r, y, z] - betaab[a, b, r, y, z]) + $xab[a, b, r, y, z] - b^2 (1-a) (1-b) r^2 z^4]$

0

We turn to the task of obtaining a closed formula for $\overline{w}_{m,n}$. By Definition 1.3.5 (I)(4), given $m = f - \ell < f$, $\overline{w}_{m,f+1}$ and $\overline{w}_{m,f+2}$ form the initial conditions for a recurrence $\overline{w}_{m,f+j+1} := \beta_b \overline{w}_{m,f+j} - x_b \overline{w}_{m,f+j-1}, j \geq 2$. Put

18 Gregory J. Morrow

 $m=f-\ell$ for some $\ell\geq 1$. We denote the vector of these upward initial conditions across the stratum threshold by the 2×1 vector $\mathbf{W}(\ell)$. Then we define a 2×2 matrix Q(b), and for each $\ell < f$, a 2×1 vector $\mathbf{d} = \mathbf{d}(\ell)$ by

$$Q(b) := \begin{bmatrix} q_1^*(b) & w_1^*(b) \\ q_2^*(b) & w_2^*(b) \end{bmatrix}, \quad \mathbf{W}(\ell) := \begin{bmatrix} \overline{w}_{f-\ell,f+1} \\ \overline{w}_{f-\ell,f+2} \end{bmatrix} = Q(b)\mathbf{d}; \quad \mathbf{d} := \begin{bmatrix} d_1(\ell) \\ d_2(\ell) \end{bmatrix}.$$

$$(1.51)$$

By Definition 1.3.5 (I)(1)–(3), we can write each term of the right side of the recurrence of (I)(3) using (I)(1)–(2) in terms of $w_{\ell}^*(a)$ and $w_{\ell+1}^*(a)$ as follows: $\overline{w}_{f-\ell,f+1} = \frac{1-b}{1-a} w_{\ell+1}^*(a) + \frac{b-a}{1-a} w_{\ell}^*(a)$ and $\overline{w}_{f-\ell,f} = w_{\ell}^*(a)$, so $\overline{w}_{f-\ell,f+2} =$ $\beta(a,b)\left(\frac{1-b}{1-a}w_{\ell+1}^*(a)+\frac{b-a}{1-a}w_{\ell}^*(a)\right)-x(a,b)w_{\ell}^*(a)$. We combine terms with the notation $\kappa(a,b) := \left(\frac{b-a}{1-a}\right)\beta(a,b) - x(a,b)$. Thus

$$\mathbf{W}(\ell) = B \begin{bmatrix} w_{\ell}^*(a) \\ w_{\ell+1}^*(a) \end{bmatrix}; \quad B = \begin{bmatrix} \frac{b-a}{1-a} & \frac{1-b}{1-a} \\ \kappa(a,b) & \frac{1-b}{1-a}\beta(a,b) \end{bmatrix}. \tag{1.52}$$

By equating the two expressions for the vector $\mathbf{W}(\ell)$ in (1.51) and (1.52), we recover

$$\mathbf{d}(\ell) = \begin{bmatrix} d_1(\ell) \\ d_2(\ell) \end{bmatrix} = M \begin{bmatrix} w_{\ell}^*(a) \\ w_{\ell+1}^*(a) \end{bmatrix}; \quad M := Q(b)^{-1}B. \tag{1.53}$$

Here it is clear that the entries of the matrix $M = (\mu_{i,j})$, with $\mu_{i,j} = \mu_{i,j}(a,b)$ $1 \leq i, j \leq 2$, do not depend on ℓ . We note by direct calculation from (1.51) that $\det(Q(b)) = -b^2z^2$, so we have a straightforward formula for M via (1.51) and (1.53).

^{*****}Define \kappa(a,b) and the matrix B of (1.52).

```
kappa[a_, b_, r_, y_, z_] := ((b-a) / (1-a)) betaab[a, b, r, y, z] - xab[a, b, r, y, z];
b11[a_, b_, r_, y_, z_] := (b-a) / (1-a);
b12[a_, b_, r_, y_, z_] := (1-b) / (1-a);
b21[a_, b_, r_, y_, z_] := kappa[a, b, r, y, z];
b22[a_, b_, r_, y_, z_] := ((1-b) / (1-a)) betaab[a, b, r, y, z];
```

**** Determinant of \$ Q(b) \$.

```
Factor[Simplify[
  q1stara[b, r, y, z] \times w2stara[b, r, y, z] - q2stara[b, r, y, z] \times w1stara[b, r, y, z]]]
```

```
-b^2z^2
```

**** Define entries of \$ M := $Q(b)^{-1} B$ \$.

```
m11[a_, b_, r_, y_, z_] := (1/(b^2z^2))
    (-w2stara[b, r, y, z] \times b11[a, b, r, y, z] + w1stara[b, r, y, z] \times b21[a, b, r, y, z]);
m12[a_, b_, r_, y_, z_] := (1/(b^2z^2))
    (-w2stara[b, r, y, z] \times b12[a, b, r, y, z] + w1stara[b, r, y, z] \times b22[a, b, r, y, z]);
\texttt{m21[a\_, b\_, r\_, y\_, z\_]} := (1 \, / \, (b^2 \, z^2))
    (q2stara[b, r, y, z] \times b11[a, b, r, y, z] - q1stara[b, r, y, z] \times b21[a, b, r, y, z]);
m22[a_, b_, r_, y_, z_] := (1/(b^2z^2))
    (q2stara[b, r, y, z] \times b12[a, b, r, y, z] - q1stara[b, r, y, z] \times b22[a, b, r, y, z]);
```

Proposition 1.3.7. Let $d_1(\ell)$ and $d_2(\ell)$ be defined by (1.51)–(1.53). Then

$$\overline{w}_{f-\ell,f+j} = d_1(\ell)q_j^*(b) + d_2(\ell)w_j^*(b), \ \ell \ge 1, \ j \ge 1.$$
 (1.54)

Proof (Proposition 1.3.7). Fix $\ell \geq 1$. By Definition 1.3.5 (I)(4), we have: $\overline{w}_{f-\ell,f+j+1} = \beta_b \overline{w}_{f-\ell,f+j} - x_b \overline{w}_{f-\ell,f+j-1}, j \geq 2$. But if we denote the right side of (1.54) by v_j , then also $v_{j+1} = \beta_b v_j - x_b v_{j-1}$, $j \geq 2$, because by construction each of $\{q_i^*(b)\}\$ and $\{w_i^*(b)\}\$ satisfy the same two term recurrence, and the coefficients $d_1(\ell)$ and $d_2(\ell)$ are independent of j. Also by definition (1.51), for any given $\ell \geq 1$, (1.54) holds for j=1 and j=2, that is, $v_j = \overline{w}_{f-\ell,f+j}, j = 1,2$. Hence we have $v_j = \overline{w}_{f-\ell,f+j}$ for all $j \geq 1$. Since ℓ was arbitrary the proof is complete.

Lemma 1.3.8. For all $1 \le m < n$, there holds: $\overline{w}_{m,n} = \overline{w}_{n-1,m-1}$.

Proof (Lemma 1.3.8). Notice that the lemma holds in the initial cases n-m=1, 2 by (1.44). Also, if $f \leq m < n$ or $1 \leq m < n \leq f$ then the statement holds by Definition 1.3.5 (I)(1) and (II)(1). So consider now $\overline{w}_{f-\ell,f+j}$ for $1 \leq \ell < f$ and $j \geq 1$. Our method is to prove the statement:

```
\overline{w}_{f-\ell,f+j} = \overline{w}_{f+j-1,f-\ell-1},
(H)_{\ell,i}:
holds for both the initial cases \ell = 1 and \ell = 2, and all j \geq 1.
```

19

1 Persistent Gambler's Ruin

We first establish $(H)_{\ell,j}$ for $\ell=1$ and all $j\geq 1$. On the one hand, write $\overline{w}_{f-1,f+j}$ by (1.54) with $\ell=1$, and on the other hand, write $\overline{w}_{f+j-1,f-2}$ by Definition 1.3.5 (II)(2), as follows.

$$\overline{w}_{f-1,f+j} = d_1(1)q_j^*(b) + d_2(1)w_j^*(b);
\overline{w}_{f+j-1,f-2} = \frac{1-a}{1-b}w_{j+1}^*(b) + \frac{a-b}{1-b}w_j^*(b).$$
(1.55)

By (1.51), (1.53) and direct calculation, we have that $d_1(1) = \mu_{1,1} w_1^*(a) +$ $\mu_{1,2} w_2^*(a) = -(1-a)(1-b)r^2 z^2$, and $d_2(1) = \mu_{2,1} w_1^*(a) + \mu_{2,2} w_2^*(a) = 1$. Therefore, by substitution into (1.55), we find that the two expressions in (1.55) are equal if and only if (*) $-(1-b)^2r^2z^2q_j^*(b) = w_{j+1}^*(b) - w_j^*(b)$. By direct computation we check that (*) is true at both j = 1 and j = 2. Thus since $\{q_i^*(b)\}$ and $\{w_i^*(b)\}$ each satisfy the same Fibonacci recurrence, (*) holds for all $j \geq 1$.

****VERIFY FORULAE for \$ d_1(1) \$ and \$ d_2(1) \$.

```
d1one[a , b , r , y , z ] :=
  m11[a, b, r, y, z] \times w1stara[a, r, y, z] + m12[a, b, r, y, z] \times w2stara[a, r, y, z];
d1two[a_, b_, r_, y_, z_] := m21[a, b, r, y, z] \times w1stara[a, r, y, z] +
   m22[a, b, r, y, z] \times w2stara[a, r, y, z];
```

```
Factor[Simplify[d1one[a, b, r, y, z] - (-(1-a)(1-b)r^2z^2)]
```

0

Factor[Simplify[d1two[a, b, r, y, z] - (1)]]

0

**** VERIFY (*) for \$ j=1 \$.

```
Factor[Simplify[
  (-(1-b)^2r^2z^2) q1stara[b, r, y, z] - (w2stara[b, r, y, z] - w1stara[b, r, y, z])]]
```

**** VERIFY (*) for \$ j= 2 \$.

```
Factor[Simplify[
  (-(1-b)^2 r^2 z^2) q2stara[b, r, y, z] - (w3stara[b, r, y, z] - w2stara[b, r, y, z])]]
```

Next we establish that $(H)_{\ell,j}$ holds with $\ell=2$ and all $j\geq 1$. Write $\overline{w}_{f-2,f+j}$ by (1.54) with $\ell=2$, and write $\overline{w}_{f+j-1,f-3}$ by Definition 1.3.5 (II)(3), as follows.

```
(i) \overline{w}_{f-2,f+j} = d_1(2)q_i^*(b) + d_2(2)w_i^*(b);
(ii) \overline{w}_{f+j-1,f-3} = \beta(b,a)\overline{w}_{f+j-1,f-2} - x(b,a)\overline{w}_{f+j-1,f-1}, with \overline{w}_{f+j-1,f-2} = \frac{1-a}{1-b}w_{j+1}^*(b) + \frac{a-b}{1-b}w_{j}^*(b); \ \overline{w}_{f+j-1,f-1} = w_{j}^*(b).
                                                                                                                                                                                   (1.56)
```

By (1.51) and (1.53) we directly verify that $d_1(2) = -(1-a)(1-b)r^2z^2\beta(b,a)$; $d_2(2) = \beta(b,a) - x(b,a)$. To verify that the expressions (i) and (ii) in (1.56) are equal, we substitute, $d_1(2)$ and $d_2(2)$ and obtain, after a little algebra in which $x(b,a)x_i^*(b)$ cancels on the two sides, the condition $(**) - (1-b)^2 r^2 z^2 \beta(b,a) q_i^*(b) = \beta(b,a) \left(w_{i+1}^*(b) - w_i^*(b) \right), \ \forall \ j \geq 1.$ But obviously (**) is equivalent to the condition (*) that was verified in the previous paragraph. Hence the two expressions in (1.56) are equal for all $j \geq 1$, so $(H)_{\ell,j}$ holds also at $\ell = 2$ for all $j \geq 1$.

****VERIFY FORULAE for \$ d_1(2) \$ and \$ d_2(2) \$.

```
d2one[a_, b_, r_, y_, z_] :=
  m11[a, b, r, y, z] \times w2stara[a, r, y, z] + m12[a, b, r, y, z] \times w3stara[a, r, y, z];
d2two[a_, b_, r_, y_, z_] := m21[a, b, r, y, z] \times w2stara[a, r, y, z] +
   m22[a, b, r, y, z] \times w3stara[a, r, y, z];
```

```
Factor[Simplify[d2one[a, b, r, y, z] - (- (1 - a) (1 - b) r^2 z^2 betaab[b, a, r, y, z])]]
```

```
Factor[Simplify[d2two[a, b, r, y, z] – (betaab[b, a, r, y, z] – xab[b, a, r, y, z])]]
```

0

Finally, fix any $j \geq 1$. We appeal to (1.53) and (1.54) and to Definition 1.3.5 (II)(4), to obtain, for any $\ell \geq 3$,

$$\overline{w}_{f-\ell,f+j} = (\mu_{1,1}w_{\ell}^{*}(a) + \mu_{1,2}w_{\ell+1}^{*}(a)) q_{j}^{*}(b) + (\mu_{2,1}w_{\ell}^{*}(a) + \mu_{2,2}w_{\ell+1}^{*}(a)) w_{j}^{*}(b); (1.57)
\overline{w}_{f+j-1,f-\ell-1} = \beta_{a}\overline{w}_{f+j-1,f-\ell} - x_{a}\overline{w}_{f+j-1,f-\ell+1}.$$

Write $u_{\ell} := \overline{w}_{f-\ell,f+j}$ for the first line of (1.57). Since with j fixed, u_{ℓ} is a linear combination of two successive terms of the sequence $\{w_{\ell}^*(a)\}$, it follows that, $\{u_{\ell}, \ \ell \geq 2\}$ itself satisfies the recursion $u_{\ell+1} = \beta_a u_{\ell} - x_a u_{\ell-1}$. But also $\{v_{\ell}:=\overline{w}_{f+j-1,f-\ell-1},\ell\geq 2\}$, in the second line of (1.57), satisfies the same recurrence in ℓ . Moreover, we proved that $(H)_{\ell,i}$ holds for $\ell=1$ and $\ell=2$, so for the given j, we have $u_1 = v_1$, and $u_2 = v_2$. Therefore we have $u_\ell = v_\ell$ for all $\ell \geq 1$. Thus by (1.57), $(H)_{\ell,j}$ is proved for all $\ell \geq 1$ with the given j. Since $j \geq 1$ was arbitrary, $(H)_{\ell,j}$ is true for all $\ell, j \geq 1$.

20 Gregory J. Morrow

Lemma 1.3.9. The following identities hold.

1.
$$\overline{w}_{f-\ell,f+j}[1] = a^{\ell}b^{j-1}\Pi_{f-\ell,f+j}, \ \forall \ \ell \geq 1, \ j \geq 1.$$

2.
$$\overline{w}_{f+j,f-\ell}[1] = a^{\ell-1}b^{j}\Pi_{f+j,f-\ell}, \ \forall \ \ell \geq 2, \ j \geq 0.$$

3.
$$q_{\ell}^*(a)[\mathbf{1}] = \ell a^{\ell-1}, \quad w_{\ell}^*(a)[\mathbf{1}] = a^{\ell-1}[\ell - (\ell-1)a]; \ \forall \ \ell \ge 1.$$

Proof. At (r, y, z) = 1 we have $\beta_a = 2a$ and $x_a = a^2$. Thus $\alpha = 0$ in (1.13). Therefore by (1.13), $q_{\ell}^*(a)[1] = \lim_{\alpha \to 0} \frac{2^{-\ell}}{\alpha} \{ (2a + \alpha)^{\ell} - (2a - \alpha)^{\ell} \} = \ell a^{\ell-1}$. Thus, by the second formula of (1.13), we obtain $w_{\ell}^*(a)[1]$ by $x_a[1] = a^2$, so 3 is proved. Now apply (1.54), also at (r, y, z) = 1. By (1.53) and direct calculation, $d_1(\ell)[1] = -(1-a)(1-b)\ell a^{\ell-1}$, and $d_2(\ell)[1] = a^{\ell-1}[\ell - (\ell-1)a]$. Now plug in $q_i^*(b)[1]$ and $w_i^*(b)[1]$ from 3, into (1.54) to obtain formula 1 from Proposition 1.3.7 after direct simplification. The proof of 2 follows from 1 and Lemma 1.3.8, in view of Definition 1.3.1.

```
alpha[x , \beta ] := Sqrt[\beta^2 - 4x];
q[x_{,\beta_{,n}]} := (2^{(-n)} / alpha[x, \beta]) ((\beta + alpha[x, \beta])^n - (\beta - alpha[x, \beta])^n);
w[x_{,\beta_{,n}]} := q[x,\beta_{,n}] - x * q[x,\beta_{,n-1}];
```

```
Factor [Simplify [\{q[x, \beta, 2], w[x, \beta, 2]\}]]
```

```
\{\beta, -x + \beta\}
```

^{****}DEFINE q_n(x,\beta) and w_n(x,\beta) via (1.13).

```
Simplify[xa[a, 1, 1, 1]]
a^2
```

 $\begin{tabular}{l} ****DEFINE q_{\ell}^{*}(a)[\mathbb{1}] \ , \ w_{\ell}^{*}(a)[\mathbb{1}] \ , \ d_1(\ell)[\mathbb{1}] \ , \ d_2(\ell)[\mathbb{1}] \ . \ \end{tabular}$

```
qstara111[a_{, \ell_{-}}] := \ell * a^{(\ell-1)};
wstara111[a_, \ell] := a^(\ell-1) (\ell-(\ell-1) a);
d1eval[a_, b_, \ell_] :=
  m11[a, b, 1, 1, 1] \times wstaral11[a, \ell] + m12[a, b, 1, 1, 1] \times wstaral11[a, \ell + 1];
d2eval[a_, b_, \ell_] := m21[a, b, 1, 1, 1] \times wstara111[a, \ell] +
    m22[a, b, 1, 1, 1] \times wstara111[a, \ell + 1];
```

****Check Foormula for d_1(\ell)[\mathbf{1}]:

```
Factor[Simplify[d1eval[a, b, /]]]
```

```
- \ (-\, 1 \, + \, a\,) \ a^{-1 + \ell} \ (\, -\, 1 \, + \, b\,) \ \ell
```

****Check Foormula for $d_2(\left| \right|)[\mathbb{1}]$:

```
Factor[Simplify[d2eval[a, b, \ell]]]
```

```
-a^{-1+\ell}(-a-\ell+a\ell)
```

****VERIFY Forrmula 1 in statement of Lemma 1.3.9:

```
Factor[Simplify[d1eval[a, b, \ell] × qstara111[b, j] +
   d2eval[a, b, \ell] \times wstara111[b, j] - (a^{(\ell-1)}b^{(j-1)}(ja+\ell b - (\ell+j-1)ab))]]
```

****VERIFY Forrmula 2 in statement of Lemma 1.3.9.

```
Factor[
               Simplify [dleval[a, b, \ell-1] \times qstarall1[b, j+1] + d2eval[a, b, \ell-1] \times wstarall1[b, j+1] - d2eval[a, b, \ell-1] \times wstarall1[b, b, \ell-1] - d2eval[a, b, 
                                                            (a^{(\ell-2)}b^{(j)}((j+1)a+(\ell-1)b-(\ell+j-1)ab))]]
```

0

0

1.3.4 Closed formula for $q_{m,n}$.

Proposition 1.3.10. We have the following formulae for $\{g_{m,n}\}$.

I. The formulae for upward between-strata cases, $j \geq 1$ and $\ell \geq 2$:

$$\begin{array}{l} 1. \ \ g_{f-\ell,f+j} = \frac{\omega(a,a)}{2-a} r z^{j+\ell} \tau(a,b) [a\tau(a,a)]^{\ell-2} [b\tau(b,b)]^{j-1} \left(a \Pi_{f-\ell,f+j}/\overline{w}_{f-\ell,f+j}\right), \\ 2. \ \ g_{f-1,f+j} = \frac{\omega(a,b)}{a+b-ab} r z^{j+1} [b\tau(b,b)]^{j-1} \left(a \Pi_{f-1,f+j}/\overline{w}_{f-1,f+j}\right); \end{array}$$

2.
$$g_{f-1,f+j} = \frac{\omega(a,b)}{a+b-ab} r z^{j+1} [b\tau(b,b)]^{j-1} (a\Pi_{f-1,f+j}/\overline{w}_{f-1,f+j})$$

II. The formulae for downward between-strata cases, $j \geq 1$ and $\ell \geq 2$:

1.
$$g_{f+j,f-\ell} = \frac{\omega(b,b)}{2-b} r z^{j+\ell} \tau(a,b) [a\tau(a,a)]^{\ell-2} [b\tau(b,b)]^{j-1} (a\Pi_{f+j,f-\ell}/\overline{w}_{f+j,f-\ell}),$$

2. $g_{f,f-\ell} = \frac{\omega(a,b)}{a+b-ab} r z^{\ell} [a\tau(a,a)]^{\ell-2} (a\Pi_{f,f-\ell}/\overline{w}_{f,f-\ell});$

2.
$$g_{f,f-\ell} = \frac{\omega(a,b)}{a+b-ab} r z^{\ell} [a\tau(a,a)]^{\ell-2} (a\Pi_{f,f-\ell}/\overline{w}_{f,f-\ell}),$$

III. The formulae for within stratum cases:

1.
$$g_{m,m+\ell} = g_{m+\ell,m} = \frac{\omega(a,a)}{2-a} r z^{\ell} [a\tau(a,a)]^{\ell-2} \left(\frac{a}{b} \Pi_{m,m+\ell} / w_{\ell}^*(a)\right), m < m+\ell \le f-1;$$

1.1
$$g_{f-\ell,f} = \frac{\omega(a,a)}{2-a} rz^{\ell} [a\tau(a,a)]^{\ell-2} \left(\frac{a}{b} \Pi_{f-\ell,f} / w_{\ell}^*(a)\right), \ \ell \geq 1;$$

2.
$$g_{m,m+j} = g_{m+j,m} = \frac{\omega(b,b)}{2-b} r z^j [b\tau(b,b)]^{j-2} (\Pi_{m,m+j}/w_j^*(b)),$$

 $f \leq m < m+j;$

2.1
$$g_{f+j,f-1} = \frac{\omega(b,b)}{2-b} r z^{j+1} [b\tau(b,b)]^{j-1} \left(\Pi_{f+j,f-1} / w_{j+1}^*(b) \right), \ j \geq 1.$$

Furthermore, the following identity holds for all $n \geq m+2$, where $\lambda_{m,n}$ is defined by (1.22).

$$\lambda_{m,n} = \frac{\overline{w}_{m,n} \overline{w}_{m+1,n+1}}{\overline{w}_{m,n+1} \overline{w}_{m+1,n}}.$$
(1.58)