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Gambler’s ruin with random stopping
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ABSTRACT
Let {Xj , j ≥ 0} denote a Markov process on [−N − 1, N + 1] ∪ {c}.
Suppose P(Xj+1 = m + 1|Xj = m) = ph, P(Xj+1 = m −
1|Xj = m) = (1 − p)h, all j ≥ 1 and |m| ≤ N, where p =
1
2 + b

N and h = 1 − cN for cN = 1
2 a2/N2. Define P(Xj+1 =

c|Xj = m) = cN , j ≥ 0, |m| ≤ N. {Xj} terminates at the first
j such that Xj ∈ {−N − 1, N + 1, c}. Let L = max{j ≥ 0 :
Xj = 0}. On �◦ = {Xj terminates at c}, denote by R◦ and L◦,
respectively, as the numbers of runs and steps from L until termi-

nation. Denote �◦ = L◦ − 2R◦. Then limN→∞ E{e
it
N �◦ | �◦} =

Ca,b

√
c2+t2

(
cosh

√
c2+t2−cosh(2b)

)
(a2+t2) sinh

√
c2+t2 , where c2 = a2 + 4b2.
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1. Introduction

We introduce a model of gambler’s ruin as follows. Let {Xj, j ≥ 0} denote a
Markov process on fortunesZ∩[−N−1, N+1] together with an abstract stopping
statec, started from X0 = 0. Suppose that P(Xj+1 = m + 1|Xj = m) = ph and
P(Xj+1 = m − 1|Xj = m) = (1 − p)h, all j ≥ 1 and all |m| ≤ N, where
0 < p < 1. We define P(Xj+1 = c|Xj = m) = cN , independent of j ≥ 0
and |m| ≤ N, where h = hN = 1 − cN for cN = 1

2 a2/N2, with a stopping
parametera > 0. Thus at each epochj, the Markov chain either steps up one unit
with probability ph, steps down one unit with probability (1−p)h, or transitions
to c with small probability cN . The process {Xj} terminates at the first epoch j
such that Xj ∈ {−N − 1, N + 1, c}.

The value Xj is a model of a bettor’s fortune at epoch j in gambling with one
unit bets per play such that, at any play for which the fortune is in [−N, N],
there is a random stoppage of play at discrete rate 1

2 a2/N2. In case a = 0 so
that h = 1, we have a classical gambler’s ruin model with no random stopping
and boundaries±(N + 1). We define the parameter ξ = p(1 − p)h2 which
in the classical case h = 1 is simply the variance of the step variable taking
values ±1.

In the symmetric case p = 1
2 , it is natural to identify c with fortune m = 0

in case the process comes to c before one of the boundaries ±(N + 1), and
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2 G. J. MORROW

thereby continue the process until one of these boundaries is reached. With
this modification, the extended process {(j, X̃j)} produces a lattice path up to
a random termination epoch, though not of nearest neighbor type. Indeed we
are inspired by the work[1] that treats nonnegative lattice paths, with no height
restriction and on a fixed time scale, for which transition to the stopping state c
corresponds there to a catastrophe, namely a return of the lattice path to the j–
axis in one unit of time. The catastrophe is itself motivated by several contexts in
Banderier and Wallner[1], including a discrete time queuing model, which allows
for the queue to reset to zero length on events with small constant probability.
The study of catastrophes in Markov chains has a long history stemming from
mathematical population biology; see Brockwell[4] and the references therein,
and also Ben-Ari et al.[2] and their references. These references study in particu-
lar a classical birth and death process for a population in the nonnegative integers
with catastrophic deaths modeled by a transition at population i according to a
binomial distribution with values in [0, i], conditional on death; Ben-Ari et al.[2]

(Section 1.1). Obviously our model considers the catastrophe only as a complete
collapse with subsequent transition to a cemetery state. In the symmetric case,
by considering the absolute value process {|X̃j|} as a model for queuing, with |X̃j|
being the length of the queue at epoch j, we have a nonnegative Markov chain
with reflection at the j–axis. This model is easily handled by the Markov property
and our Theorem 1.1. Note that our model in general allows a transition to the
state c at the very first step, but this occurs with a negligible probability (order
O(1/N2)), and it turns out we can safely ignore this possibility.

To further state our motivations, we need some definitions. A nearest neighbor
lattice path is a sequence of vertices {(j, xj), j = 0, . . . , k} in Z

2 such that |xj+1 −
xj| = 1, j = 0, . . . , k−1, for some k ≥ 1. We call xj the level of the path at epoch j.
An excursion path satisfies the additional requirements that x0 = xk = 0 (so k is
even), and xj �= 0, for all 0 < j < k. A nonnegative excursion is an excursion that
lies above the j-axis save for its endpoints. A run of a nearest neighbor lattice path
is either an ascending incline or a descending incline of maximal length along
the linearly interpolated path. Thus, the number of runs of a nearest neighbor
lattice path is one more than the number of turns of the path, where a turn simply
corresponds to a change in direction: ascent to descent or vice versa. The number
of steps of a lattice path is simply the length of the discrete time interval, or k, in
the above nearest neighbor description. In Figure 1, the lattice path shown has
24 steps and 13 runs.

An earlier work for gambler’s ruin with boundaries, Hunter et al.[10] calculates
the probability of ruin on a infinite time scale with both catastrophes and
windfalls, and with constant probabilities of each of these events besides constant
win and loss probabilities on each play, by utilizing a difference equation. Our
main aim is to handle random stopping as well as the runs statistic of the
gambler’s ruin path that so far has not been handled by the difference equation
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Figure 1. Last visit L and meander for {|Xj|}; N = 3.

method. Even without random stopping, our results involving the runs statistic
have so far relied on generalized Fibonacci recurrences to compute probability
generating functions for them[11, 12]. We shall see that the random stopping gives
rise to Fibonacci recurrences with an extra (driving) term that is not observed
for the nearest neighbor only models; see Lemmas 3.4 and 3.8. A nice feature
of our approach is that joint probability generating functions of runs and steps
take on explicit closed forms, and limit distributions follow as the parameter N
tends to infinity. While we will develop explicit generating function formulae for
general p, in our application to Theorem 1.1 we will consider the asymptotically
symmetric case p = 1

2 + b
N , for a constant b. Relative to the symmetric case, for

certain problems such as Theorem 1.1(b), the presence of b produces a nonlinear
effect on a limit law, while in other problems the parameter b simply increases
the effective size of a. The nonlinear effect comes about for statistics along paths
that are interrupted by random stopping.

The analog of our model in continuous time is a Brownian motion with both
drift and exponential killing, cf. Ettinger et al.[7]. For our Markov chain, there is
a geometric stopping time with mean 2N2

a2 , and an exit boundary with order N
scaling. So with time scaled by N2 in the asymptotically symmetric case we have
in the limit a Brownian process in R started from x = 0 with drift parameter
μ = 2b, exponential killing mean 2

a2 , and termination after the killing time or
exit from [−1, 1], whichever comes first. We comment further on the Brownian
motion limit with drift in Remark 1.5.

We introduce some definitions. Denote by L = LN the epoch of last visit to
the fortune m = 0, namely

L = max{j ≥ 0 : Xj = 0}. (1.1)

In Figure 1 the last visit is depicted relative to the absolute value process {|Xj|}
and for the case when this process terminates at the boundary N + 1 = 4. We
define the meander as the part of the absolute value path from the epoch of last
visit until the process terminates, where we may call |c| = c. Define also

L = inf
{

j ≥ 1 : Xj = 0 or Xj ∈ {−(N + 1), N + 1, c} }
. (1.2)

Thus L is either the first time until a return to fortune m = 0, namely an
excursion time, or the termination time, whichever is smallest. Define E0 =
{XL = 0}; on E0 the process {Xj} makes an excursion from m = 0 back to
m = 0 for a first time without terminating. Thus on E0 we have that L is the
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number of steps in the excursion. Also on E0, define R as the number of runs in
the excursion of the absolute value process path {(j, |Xj|), j = 0, 1, . . . , L)}.

Define the event Ec = {XL = c}; on Ec the stopping state c is reached on
the first attempt at excursion. On Ec we say we have a stopped excursion that
reaches c before ever returning to m = 0 or to a boundary. Finally, denote EN
as the event that on the first attempt at excursion the chain terminates at one
of the boundaries ±(N + 1). Thus E0, Ec, and EN are mutually disjoint and
exhaustive.

On E0, define H = max{|Xj|, j = 0, 1, . . . , L}, while on Ec, define H =
max{|Xj|, j = 0, 1, . . . , L − 1}. So H denotes the height of an excursion on E0,
while on Ec it represents the maximum level of that portion of the absolute value
process up until one step before reaching c. On EN , define H = N + 1.

Note that EN and Ec are both unusual events, each with probability of
order O(1/N), as we shall see. That is because it is difficult to exit the large
region [−N, N] ∩ Z before coming back to m = 0, or else to make a long
stopped excursion (of order O(N2) steps) to the stopping state c. Define now
�◦ as the event that the process {Xj} terminates at state c. Define �′ as the
complement of �◦, that is the event that the process {Xj} terminates at one of the
boundaries.

Denote by M = MN the number of consecutive bona fide excursions of the
absolute value process {|Xj|}, each of height at most N, until the last visit L. Let
Rν be the number of runs in the νth excursion of the absolute value process path

{(j, |Xj|)}. Define RN =
M∑
ν=1

Rν . Here, if MN = 0, then the empty sum is taken

as zero. Equivalently RN is the total number of runs of the last visit portion of
the absolute value path.

On the event �◦ that the process terminates at state c, denote by R◦
N and L◦

N
as the numbers of runs and steps of the absolute value process {(j, |Xj|)} starting
from epoch L to the stopping state. For convenience, we shall count a new run
on a final step to c if the step just before this final transition is away from the j–
axis. Thus, we may think of the final transition to c as in the direction of m = 0,
but with a single long step, which we count as a single step. So, if the final nearest
neighbor lattice path step, just before the actual final step to state c, is toward the
j-axis, then the actual final step may be regarded as a run continuation toward
the j–axis, and therefore we count exactly one run on this continued incline
toward the j–axis. On the complementary event �′, denote by R′

N and L′
N as the

numbers of runs and steps of the absolute value process {(j, |Xj|)} from epoch L
until termination at the boundary.

We define an integer valued statistic for the last visit portion of gambler’s ruin
by �N = LN − 2RN + MN . We also define �◦

N = L◦
N − 2R◦

N , and �′
N =

L′
N −2R′

N . Define the overall process statistic �N = �N +�◦
N ·1�◦ +�′

N ·1�′ .
If a = 0, we take �◦

N · 1�◦ = 0 and there is no content to Theorem 1.1(b). In
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the asymptotically symmetric case, we obtain limit laws after normalizing the
various �–statistics by N, as follows.

Theorem 1.1. Let p = 1
2 + b

N for some constant b. Denote c2 = a2 + 4b2. Let
t ∈ R. Then we have the following limiting characteristic functions:

(a) lim
N→∞E{e

it
N �N } = c

tanh(c)
tanh

√
c2 + t2

√
c2 + t2

(1.3)

(b) lim
N→∞E{e

it
N �◦

N | �◦} = Ca,b

√
c2 + t2

(
cosh

√
c2 + t2 − cosh(2b)

)
(
a2 + t2

)
sinh

√
c2 + t2

(c) lim
N→∞E{e

it
N �′

N | �′} = sinh(c)
c

√
c2 + t2

sinh
√

c2 + t2

(d) lim
N→∞E{e

it
N �N } = a2 cosh

√
c2 + t2 + t2 cosh(2b)

(a2 + t2) cosh
√

c2 + t2

where Ca,b = a2 sinh(c)
c(cosh(c)−cosh(2b))

.

Remark 1.2. In the symmetric case b = 0 and a �= 0, the limiting joint
characteristic function in Theorem 1.1(b) reduces to 1

2 Ca,0
tanh 1

2
√

a2+t2√
a2+t2 due to

the half angle identity cosh(ϕ)−1
sinh ϕ

= tanh ϕ
2 . By (4.36) the events �◦ and �′ are

macrosopic, with lim
N→∞P(�′) = cosh(2b)

cosh(c) .

Remark 1.3. The probability density of the measure determined by the limiting
conditional characteristic function given �◦ for Theorem 1.1(b) may be found
via the Mittag–Leffler partial fraction expansions of tanh(u)

u and u
sinh(u)

. This
is shown in Example 4.2. The inversion of the limiting characteristic function
in the same context for part (a) is included in this example. The densities of
Example 4.2 for parts (a)–(b) are not bounded, as illustrated in Figure 4.
This method for inverting a limiting characteristic function via partial fraction
expansion and term–wise inversion is not tractable for the corresponding cases
of Theorem 1.1(c)–(d). Instead, we may apply the residue theorem directly to
implement Fourier inversion and obtain a bounded density for each of (c) and
(d) since in these cases the limiting characteristic function is integrable.

By the proof of Theorem 1.1 we obtain explicit limiting univariate Laplace
transforms for the statistics involving runs alone or steps alone after scaling by
N2 as follows. Corollary 1.4 extends (Morrow[11], Cor. 1), which handles the
classical fair gambler’s ruin model c = 0.
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Corollary 1.4. Let p = 1
2 + b

N and denote c2 = a2 +4b2. For all λ ≥ 0 there hold:

(a) lim
N→∞E{e−λRN/N2} = c

tanh(c)
tanh(

√
c2 + λ)√

c2 + λ
, (1.4)

(b) lim
N→∞E{e−λR◦

N/N2 | �◦} = Ca,b

√
c2 + λ

(
cosh

√
c2 + λ − cosh(2b)

)
(a2 + λ) sinh

√
c2 + λ

(c) lim
N→∞E{e−λR′

N/N2 | �′} = sinh(c)
c

√
c2 + λ

sinh(
√

c2 + λ)
,

(d) lim
N→∞E{e−λ(RN+R◦

N ·1�◦+R′
N ·1�′)/N2} = a2 cosh

√
c2 + λ + λ cosh(2b)

(a2 + λ) cosh
√

c2 + λ
.

Moreover the same transforms hold in parts (a)–(d) with 1
2LN, 1

2L◦
N, and 1

2L′
N,

respectively, in place of RN, R◦
N, and R′

N.

Remark 1.5. In the context of Corollary 1.4, if there is no random stopping (a =
0), we haveR◦1�◦ = L◦1�◦ = 0, and part (b) has no content. In this case, if μ =
2b is the drift parameter, then the limiting Laplace transform of part (d), that is

cosh μ

cosh
√

μ2+λ
, is established for the time until Brownian motion with drift started

from x = 0 exits the interval [−1, 1] in Darling and Siegert[6] (Example (c), pp.
631–633). The Laplace transform of Corollary 1.4(d) with geometric stopping
included (a �= 0) should correspond to the Laplace transform of the distribution
of the termination time of an exponentially killed Brownian motion with drift,
where termination occurs when either the process exits the interval [−1, 1] or is
killed, whichever comes first.

Some of the key results of the article have not been stated in this introduction
due to several definitions that must be given. So, we now outline the structure
of the proofs. In section 2, we introduce the Fibonacci recurrences (2.7) which
are employed from subsection 2.2 onward under the parameters (2.17) that
carry the generating function variables r and z in various definitions, including
the upward first passage joint generating function gn of definition (2.3). Our
development of the Fibonacci method for the last visit portion of Theorem 1.1(a)
culminates in Proposition 2.6, which generalizes Morrow[11] (Theorem 1), after
the generating function definitions (2.1). The subsection 2.1 recovers the first
step of the method used to prove Proposition 2.6 by employing a lattice path
reformulation of the original approach of Morrow[11] to establish the recurrence
for gn of Lemma 2.2. Starting from subsection 2.2, the outline of the remaining
steps leading to Proposition 2.6 is used as a guide to construct a trail of proof
for section 3. To see that already in section 2 the stopping parameter comes into
play, consider the probabilities (2.4) for upward and downward first passages that
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are derived by induction based on the recurrence (2.20) in Lemma 2.5. Even in
the symmetric case b = 0, these would be classical gambler’s ruin probabilities,
conditioned by the event Ln < ∞ as defined by (2.2), are written in terms of
the reciprocals of the Fibonacci polynomials wn(ξ , 1) = wn[1] after (2.7), with
parameter ξ = h2

4 �= 1
4 , as long as a �= 0; the classical gambler’s ruin probabilities

are recovered in the case a = b = 0.
In section 3, we show that the fundamental approach of section 2 can be

extended for the definitions (3.1) of G◦
n and K◦

N that are analogs for Gn and KN of
(2.1), while still maintaining explicit generating function formulae. Specifically,
we develop extended Fibonacci recurrences each with a driving term to com-
pute the joint probability generating function of runs and steps over stopped
excursions first for the analog g◦

n of gn defined by (3.6), in a parallel construction
to (2.24), as follows. To establish the building block g◦

n,k of g◦
n defined by (3.2)–

(3.3), we prove Lemma 3.1 wherein we make use of the Markov property. Then
via Lemma 3.4 we prove the formula for g◦

n of Proposition 3.5 in terms of the
Fibonacci sequence un of (3.17). Finally, the Lemma 3.8 shows a companion
formula (3.27) involving un and the Fibonacci sequence vn of Definition 3.7. This
companion relation plays the same role as the original companion formula (2.30)
motivated by the theory of continued fractions, and (3.27) is used to establish the
key Proposition 3.10. Lemma 3.9 allows us to make Proposition 3.10 explicit as
a closed formula via the closed solutions (2.9).

In section 4, we prove Theorem 1.1 and Corollary 1.4 by using the explicit
formula provided by Propositions 2.6 and 3.10 after (2.9) and Lemma 3.9. The
method is to use the substitution (4.4) which leads via trigonometric manipula-
tions including Lemma 4.1, together with asymptotic analysis, to trigonometric
formulae for the characteristic functions of Theorem 1.1 and the Laplace trans-
forms of Corollary 1.4.

2. Method of Proof for Proposition 2.6

Our goal in this section is to prove Proposition 2.6, that is a formula for the
generating function KN of 2.1. Our basic strategy for the proofs is to decompose
generating functions according to the events {H = n}, 1 ≤ n ≤ N. Our
method is based on calculation of the following two joint probability generating
functions in turn. Define

Gn = Gn(r, z) = E
(
rRzL | E0 ∩ {H = n}) , 1 ≤ n ≤ N; (2.1)

KN = KN(r, z) = E
(
rRzL |E0 ∩ {1 ≤ H ≤ N}) .

At first we focus on the calculation of Gn by means of a nonnegative first
passage joint generating function gn defined by (2.3). The method we follow was
first established in Morrow[11]. A key feature of the method even without the
presence of random stopping is to find an explicit formula for the generating
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function gn. The formula we seek for gn is given by Proposition 2.3. The
condition that the process exits via the boundaries ±(N+1) during an attempted
excursion, and thus the proof of Theorem 1.1(c), is straightforward to handle via
Proposition 2.3.

For 1 ≤ n ≤ N, on {H ≥ n}, define the first passage number of steps Ln along
the absolute value process {|Xj|, j ≥ 0} to reach level n by:

Ln = inf{j ≥ 1 : |Xj| = n}. (2.2)
We define this first passage number Ln = +∞ on the event {H < n}; thus
{Ln < ∞} = {H ≥ n}. On E0, denote by Rn the number of runs along
the absolute value path {(j, |Xj|), j = 0, 1, . . . , Ln}. Define gn as the following
upward conditional joint probability generating function for Rn and Ln given
the following condition: the path is a first passage path that starts at 0 and stays
at or above level m = 0 until it first reaches level n. Thus for all n ≥ 1 we define

gn = E{rRnzLn |Ln < ∞; X0 = 0; Xj ≥ 0, j = 0, . . . , Ln}. (2.3)
Since any nonnegative nearest neighbor lattice path that starts at level m = 0
and ends when it first reaches level n may be reflected to give a nonpositive path
starting from m = 0 and reaching level −n for a first time, and since there is a
constant conversion factor ((1 − p)/p)n to find the probability of the reflected
path from the probability of the original nonnegative path, if we condition
instead on a nonpositive path in (2.3) then we obtain the same generating
function gn, that we may refer to as a downward first passage generating function.

We introduce a terminology. Let m ≤ n − 2. Call a path that starts at level m
that stays at levels in [m, n] until level n is reached for a first time as an upward
first passage path from level m to level n. For brevity, we also refer to such paths
as making an upward transition. Similarly, call a path that starts at level n that
stays at levels in [m, n] until level m is reached for a first time as a downward first
passage path from level n to level m, or downward transition. See Figure 2 for one
such downward first passage path from n = 5 to m = 0.

For all n ≥ 1 we define
ρn = P(Ln < ∞; X0 = 0; Xj ≥ 0, j = 1, . . . , Ln); (2.4)
ρ−n = P(Ln < ∞; X0 = 0; Xj ≤ 0, j = 1, . . . , Ln).

Define also ρ0 = 1. In case a = 0, so that h = 1 and transition to c cannot occur,
and if further we have the symmetric case p = 1

2 , then ρn is determined by the

Figure 2. Downward first passage from Level 5 to Level 0: Future maxima M1 = 5, M2 = 5, M3 = 4,
M4 = 3.
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classical solution for a fair gambler’s ruin started from m = 0 to come to the
boundary of the interval [−1, n] at state n, namely ρn = 1/(n + 1). For h < 1,
even in the symmetric case, we no longer have the reciprocal of a linear term in n
as we shall find in Lemma 2.5. That lemma gives for example ρ2 = (ph)2/(1−ξ),
ρ3 = (ph)3/(1 − 2ξ), and ρ4 = (ph)4/(1 − 3ξ + ξ 2). Here we derive

ρ2 = (ph)2
∞∑

k=0

(
p(1 − p)h2)k = (ph)2/(1 − ξ). (2.5)

Since the probability of a single nonnegative path for the event defining ρn is
simply multiplied by the conversion factor ((1−p)/p)n to obtain the probability
of the reflected nonpositive path for the event under ρ−n, we have that

ρ−n = ((1 − p)/p)nρn. (2.6)
The calculation of gn is fundamental to our method. Our proofs of this step

feature bivariate generalized Fibonacci polynomials {qn(x, β)} and {wn(x, β)},
defined as follows.

Definition 2.1. Let β , x ∈ C. Define sequences qn(x, β) and wn(x, β) generated
by the following recurrence relations, valid for all n ≥ 1.

qn+1 = βqn − xqn−1, q0 = 0, q1 = 1; wn+1 = βwn − xwn−1,
w0 = 1, w1 = 1. (2.7)

The polynomials qn(x, β) generalize the univariate Fibonacci polynomials
qn(x, 1), Flagolet and Sedgewick[9] (p. 327); also for the special case β = 1 we
have wn(x, 1) = qn+1(x, 1). We have {wn(x, 1)} = {1, 1, 1 − x, 1 − 2x, 1 − 3x +
x2, . . . }; the numerical Fibonacci sequence arises with x = −1. We write an
interlacing property of any two term recurrence vn+1 = βvn − xvn−1, n ≥ 1,
with coefficients β and x independent of n:

vn+1vn−1 − v2
n = β−1xn−1(v3v0 − v2v1), β �= 0; (2.8)

see Morrow[11], (2.7)–(2.8). By standard generating function techniques, the
fundamental sequences (2.7) have closed formulae given by (2.9); see Swamy[13],
(2.1) and (2.3), or Morrow[11], (2.11)–(2.12). Define α = √

β2 − 4x. Then for
all n ≥ 1 we have

qn(x, β) = 2−n

α
((β + α)n − (β − α)n) ; wn(x, β) = qn(x, β) − xqn−1(x, β).

(2.9)
The second identity holds by the fact that q1−xq0 = 1 = w1, q2−xq1 = β−x =
w2, and qn and wn satisfy the same two term recurrence, (2.7). Moreover, the
following identities hold for all n ≥ 1.

(i) wn+1wn−1 − w2
n = xn−1(β − x − 1); (2.10)

(ii) qn+1qn−1 − q2
n = −xn−1; (iii) qnwn+1 − wnqn+1 = −xn.



10 G. J. MORROW

Indeed, (2.10)(i)–(ii) follow directly from (2.7) and (2.8). By wn = qn − xqn−1,
n ≥ 1, we obtain qnwn+1 − wnqn+1 = x(qn+1qn−1 − q2

n), so (2.10)(iii) follows
from (ii); see Morrow[11], Lemma 4.

Let γ be a nearest neighbor lattice path. Denote by μ(γ ) the product of
the probabilities ph for a step up and (1 − p)h for a step down all along
the lattice path. Let R(γ ) and L(γ ) denote, respectively, the number of runs
and steps along γ . For any unnormalized generating function of path statistics
f = ∑

μ(γ )rR(γ )zL(γ ) over some collection of paths γ , we may refer to
a (conditional) probability generating function by normalizing the sum f by∑

μ(γ ). For this purpose, we denote 1 = (1, 1) and evaluation of any expression
f (r, z) at (r, z) = 1 by f [1]. Then we form a probability generating function by
normalization to the form f /f [1].

2.1. Recurrence for gn

In this subsection, we prove Lemma 2.2, that is a recurrence relation for gn
defined by (2.3). Here and in the sequel, const. denotes a generic constant that
may depend on n but is independent of the generating function variables.

Lemma 2.2. Define for any j ≥ 2 the factor

λj = 1
1 − ρjρ−jg2

j
. (2.11)

Then for all n ≥ 2 we have

gn+1 = const. g2
nλn/gn−1. (2.12)

Proof. It is convenient to focus on a downward path decomposition for gn with
some n ≥ 3. We introduce the following notation. Let U or D stand for one
step up or down, respectively, in a lattice path, and let (UD)k be shorthand for
UDUD · · · with k repetitions of the pattern UD for some k ≥ 0. Since any
downward lattice path from n to 0 must first reach the level m = 1, we have
an initial factor gn−1 in a product formula for gn. Still assuming n ≥ 3, any
section of a downward lattice path from level n to m = 1 for gn−1 must end in
DD. Following this, we have either a sequence of steps of the form (UD)kUU,
for some k ≥ 0, or a terminal sequence (UD)kD, for some k ≥ 0. See Figure
2 where we have a transition (UD)1UU at the first point where level m = 1 is
reached. Define a turning point of a lattice path as step up to step down or vice
versa. When two lattice paths are concatenated at a common point that is the
terminal point of the first path and the initial point of the second path, such that
the joining point is a turning point for the whole path, then the runs statistics
add along the two paths. To calculate g2 we introduce:

ω = 1 − ξr2z2; κ = (1 − ξ)/ω. (2.13)
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By (2.13), κ[1] = 1. We may easily see that κ is the probability generating
function for all paths of the form (UD)k, for some k ≥ 0, and also for all paths
of the form (DU)k, for some k ≥ 0. Thus, because any upward path for g2 can
be decomposed into a preamble (UD)k for some k ≥ 0 followed by the path UU,
we have

g2 = κrz2 (2.14)
where κ is defined by (2.13). Similarly, the probability generating function of
all terminal sequences (UD)kD, k ≥ 0, for downward first passage paths is as
follows:

const. z(1 + ξr2z2 + ξ 2r4z4 + · · · ) = const. z/ω = κz. (2.15)
By symmetry in ξ after interchanging the roles of ph and (1 − p)h, we have that
κz is also the probability generating function of all terminal sequences (DU)kU,
k ≥ 0, for upward first passage paths from −n to 0.

Suppose still n ≥ 3, and that the continuation of a path in a downward
representation of gn after the first downward passage to level m = 1 is not yet
passing into a terminal sequence. Then the path makes an upward first passage
from level m = 1 to level n again (or not), and the pattern “upward transition
from level m = 1 to level n followed by downward transition to level m = 1”
repeats for an indefinite number of times, � ≥ 0. After the path would no longer
reach level n again from the starting level m = 1, and if n − 1 ≥ 2, then we
would similarly take account of up and down transitions between levels m = 1
and n−1, and so forth. Since for any j ≥ 2, we have that ρj is the total probability
of paths making an upward first passage from level m = 1 to level j + 1, and ρ−j
is the total probability of paths making a downward first passage from level j + 1
to level m = 1, and since runs statistics add for the concatenation of paths that
connect at a turning point, we have that ρjρ−jg2

j is the unnormalized generating
factor for an upward transition from level m = 1 to level j + 1 followed by a
downward transition to level m = 1. Accordingly, for each j ≥ 2, it follows

that λj = 1
1−ρjρ−jg2

j
=

∞∑
�=0

(
ρjρ−jg2

j

)�

as defined by (2.11) has the property

that the factor λj/λj[1] is a probability generating function for a class of paths,
including the empty path, starting and ending at the same level 1, where each
path besides the empty path makes a positive number of consecutive up and
down first passage transitions between levels m = 1 and j + 1.

Define M1 = n as the starting level for a downward transition from n to
m = 0. The path must reach the level m = 1 for a first time. Define M2 as
the maximum possible level in the remainder of the downward lattice path after
the first passage down to level m = 1, as long as M2 ≥ 3. Here the successive
maximum levels n = M1 ≥ M2 ≥ · · · ≥ Mr over the whole future of the
path, determined in turn from the points of each of its returns to level m = 1
from the previous such maximum, and determined at the first opportunity under
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this condition, are the future maxima (cf. Morrow[11]) of a downward path from
level n ≥ 3 to level m = 0. See Figure 2, in which we have M1 = 5, M2 = 5,
M3 = 4, M4 = 3; there is no second future maximum of level 4, for example,
because there is no return to level 1 between the two successive peaks at level 4.
By definition here, we have Mr ≥ 3, and the downward path goes into a terminal
sequence after a return to level 1 from Mr. Eventually the path will never rise to
level n again but only to lower future maxima at levels 3 ≤ m ≤ n − 1; thus the
product λn−1λn−2 . . . λ2. Therefore, since by (2.15) the factor κz corresponds to
the terminal sequence, we have

gn = const. κz · gn−1

n−1∏
j=2

λj, for all n ≥ 3. (2.16)

for a normalization constant such that gn[1] = 1. By (2.16) we simply have
gn+1/gn = const. gnλn/gn−1, so (2.12) follows for n ≥ 3. By (2.16), g3 =
const. κz · g2λ2 = const. κrz2 · g2λ2/g1 since g1 = rz. Therefore by (2.14) the
recurrence (2.12) holds also for n = 2.

2.2. Closed form for gn

In this section, we first solve the recurrence (2.12) for gn in Proposition 2.3 by
employing the Fibonacci recurrences (2.7) for certain parameters x and β of
(2.17) that carry the generating function variables. Once we have the formula
for gn in hand, we go on to prove Proposition 2.6.

We define
x = x(r, z) = ξz2; β = β(r, z) = 1 + ξz2 (

1 − r2) = ω + x. (2.17)
Using the parameters (2.17), we then define the recurrence

wn+1 = βwn − xwn−1, n ≥ 1, with w0 = 1, w1 = 1. (2.18)
This recurrence is simply (2.7) with the specified values of x and β of (2.17). The
companion recurrence for {qn} is likewise defined by (2.7) under the definition
(2.17). It follows from (2.17)–(2.18) that w2 = ω for ω defined by (2.13).
The recurrence (2.18) is the same as in Morrow[11] ((1.10)) except here for the
definition (2.17) of the coefficients x and β we have ξ = p(1 − p)h2 with h < 1
for the stopping parameter a �= 0, whereas Morrow[11] only treats a = 0, that is
h = 1.

Proposition 2.3. We have that the following formula is valid for all n ≥ 1.
gn = Cn rzn/wn, with Cn = wn[1].

In this statement, Cn = wn[1] is the Fibonacci polynomial in the variable ξ

defined by (2.7) with β = 1 and x = ξ . In concert with this statement, we define
g0 = r by convention. To prove the proposition, we need two lemmas to follow.
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Lemma 2.4. Let wn be defined as the solution to (2.18). Then for all n ≥ 1 we
have:

(wn)
2 − wn+1wn−1 = r2xn.

Proof. Since the definition (2.18) conforms to (2.7), by (2.10)(i) and (2.17) we
have:

(wn)
2 − wn+1wn−1 = −xn−1(β − x − 1) = r2xn (2.19)

since β − x − 1 = −r2x

Lemma 2.5. Let n ≥ 0. Then we have the following formula:

ρn = (ph)n

wn[1] .

Proof. By the same argument as used for (2.16),

ρn+1 = (1 − p)h
1 − ξ

· ρn ·
n∏

j=2

1
1 − ρjρ−j

; for all n ≥ 2, (2.20)

where the factor (1−p)h/(1−ξ) corresponds to the terminal sequence; compare
(2.15) and Figure 2. Since by (2.6) we have ρjρ−j = ((1 − p)/p)nρ2

j , then

ρn+1 = ρ2
n

ρn−1

1
1 − ((1 − p)/p)nρ2

n
; ρ1 = ph, for all n ≥ 2. (2.21)

Obviously ρ0 = 1 and ρ1 satisfy the statement of the lemma by w0 = w1 = 1. By
(2.5) and w2[1] = ω[1] = 1 − ξ , we have that also ρ2 = (ph)2/w2[1]. Assume
by induction that the statement of the proposition holds for all 1 ≤ m ≤ n for
some n ≥ 2. Then by (2.21) we have

ρn+1 =
(

(ph)n

wn[1]
)2 (

wn−1[1]
(ph)n−1

)
wn[1]2

wn[1]2 − ξn . (2.22)

But by Lemma 2.4 we have wn[1]2 − ξn = wn+1[1]wn−1[1]. Therefore, after
this substitution and subsequent cancellations in (2.22), the induction step is
complete.

Proof of Proposition 2.3. The proof is similar to that of Morrow[11] (Proposition
2), except here we apply Lemma 2.5 in place of Morrow[11] (Lemma 1). The case
n = 1 is trivial with g1 = rz by the definition (2.3). Next, since we have w2 = ω,
the given formula for g2 evaluates to C2 rz2/ω = κrz2, as long as we take C2 =
1 − ξ . But this C2 is simply ω[1] as desired. Thus by (2.14) the case n = 2 is
verified.

We assume by induction that the statement of the proposition holds with m in
place of n for all 1 ≤ m ≤ n, where n ≥ 2. We first compute λn. By Lemma 2.5
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and (2.6) we have ρnρ−n = ξn/wn[1]2. Therefore, by the induction hypothesis,
we have from the definition (2.11) that 1 − 1/λn is given by

1 − 1
λn

= ρnρ−ng2
n = ξnC2

nr2z2n

wn[1]2(wn)2 .

By the induction hypothesis, we have C2
n/w∗

n[1]2 = 1. We also write that
ξnr2z2n = r2xn. Hence we have

λn = (wn)2

(wn)2 − r2xn .

By Lemma 2.4 the denominator of this last expression for λn is simply wn+1wn−1.
Therefore λn = (wn)2

wn+1wn−1
. By (2.12) we then have

gn+1 = const.
r2z2nwn−1
rzn−1(wn)2

(wn)2

wn+1wn−1
= const.

rzn+1

wn+1
. (2.23)

Since the normalizing constant must make gn+1[1] = 1, the proof is complete.

Proposition 2.6. Let wN and qN be defined by (2.7) with x and β defined by (2.17).
Then the generating function KN of (2.1) has the following formula:

KN = kNr2z2 qN
wN

, for all N ≥ 1; with kN = 2ξ/P (E0 ∩ {1 ≤ H ≤ N}) .

Proof. The idea of the proof parallels the construction of convergents to a
continued fraction, Chihara[5] (Chp. III). The proof follows the same lines as
the proof of Morrow[11] (Theorem 1). First, the probability generating function
Gn of (2.1) may be written for all n ≥ 2 as follows.

Gn = zgn−1gn, if n ≥ 2, (2.24)

and trivially G1 = r2z2.
Now the generating function KN of (2.1) is written

KN =
N∑

n=1
Gn P(E0 ∩ {H = n})/P(E0 ∩ {1 ≤ H ≤ N}). (2.25)

Furthermore, by Lemma 2.5,

P(E0 ∩ {H = n}) = phρn−1ρ−n + (1 − p)hρ−n+1ρn = 2ξn

wn−1[1]wn[1] , (2.26)

where we wrote (ph)(ph)n−1((1 − p)h)n + ((1 − p)h)((1 − p)h)n−1(ph)n = 2ξn.
By Proposition 2.3 and (2.24)–(2.26), we have that P(E0 ∩ {1 ≤ H ≤ N})KN is
written for all N ≥ 2 as

2ξr2z2 +
N∑

n=2
Cn−1Cn

2ξn

wn−1[1]wn[1]
r2z2n

wn−1wn
, (2.27)
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Since by Proposition 2.3 we have Cn−1Cn
wn−1[1]wn[1] = 1, we are left with the problem

of evaluating
N∑

n=2

2ξnr2z2n

wn−1wn
= 2ξr2z2

N∑
n=2

xn−1

wn−1wn
(2.28)

as the main term of (2.27). Notice that the n = 1 term of (2.27) also conforms to
satisfy 2ξ 2r2z2 = 2ξr2z2 x0

w0w1
. Thus by (2.27)–(2.28) we have

P(E0 ∩ {1 ≤ H ≤ N})KN = 2ξr2z2
N∑

n=1

xn−1

wn−1wn
. (2.29)

Next we collapse the summation in (2.29). Indeed, we claim that for all N ≥ 1
we have

N∑
n=1

xn−1

wn−1wn
= qN

wN
. (2.30)

The claim (2.30) follows by induction as in Morrow[11] ((2.19)) by applying
(2.10)(iii). Therefore by (2.29)–(2.30) the proof is complete.

Remark 2.7. If a = 0, so h = 1, and if also p = 1
2 , then the statement of

Proposition 2.6 becomes KN = 1
2 P (1 ≤ H ≤ N)−1 r2z2 qN

wN
= N+1

2N r2z2 qN
wN

, as
shown by Morrow[11] (Theorem 1).

3. Joint generating function over a stopped excursion

The method of section 2 applies to bona fide excursion statistics. In this section,
we extend the method by working instead over an excursion attempt that is
interrupted by stopping. On the event Ec = Ec∩{H ≤ N} that the first excursion
attempt is stopped, define R◦ = R◦

N and L◦ = L◦
N as the number of runs and

steps, respectively, on this stopped excursion. We apply the same convention as
described in the second paragraph before the statement of Theorem 1.1; that
is, for the definition of R◦ we shall count a new run on a final step to c in the
transition from epoch L − 1 to L if the step just before this final transition is
away from the j–axis. We now define

G◦
n = E

{
rR◦

zL◦ |Ec ∩ {H = n}; X0 = 0; Xj > 0, j = 1, 2, . . . L − 1
}

, (3.1)

K◦
N = E

{
rR◦

zL◦ | Ec ∩ {1 ≤ H ≤ N}
}

;

where G◦
n is defined for all 1 ≤ n ≤ N. In words we have that G◦

n is the joint
probability generating function of runs and steps along all nonnegative stopped
excursions of height n.

Our main result of this section is the culminating formula for K◦
N given by

Proposition 3.10 in subsection 3.2. Our first step is to compute G◦
n that we find by
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computing g◦
n of definition (3.6) together with the formula for g◦

n of Proposition
3.5 derived in subsection 3.1.

We now focus on G◦
n for n ≥ 2. On Ec the stopped excursion path comes to a

jump–off point (L−1, XL−1) before exiting to state c. For any finite nonnegative
stopped nearest neighbor lattice path γ started from level m = 0, denote
R◦(γ ) and L◦(γ ), respectively, as the number of runs and steps along γ . Since
the generating function G◦

n is a normalized infinite sum
∑

μ(γ )rR◦(γ )zL◦(γ )

such that G◦
n[1] = 1, where the sum runs over all stopped excursions γ of

maximum level n, we may break up the sum in this expression by decomposing
the collection of paths γ into those paths that have a jump–off point at level
k. This can be formalized in terms of generating functions as follows. For any
1 ≤ k ≤ n and 1 ≤ n ≤ N define

G◦
n,k = E

{
rR◦

zL◦ | Ec ∩ {H = n}; X0 = 0; Xj > 0,

j = 1, 2, . . . , L − 1; XL−1 = k
}

. (3.2)

Then define the probability generating function g◦
n,k implicitly by

G◦
n,k = zgn−1g◦

n,k for all 1 ≤ k ≤ n and n ≥ 2. (3.3)

If n = k = 1, we define g◦
1,1 = rz. Because the paths that contribute to G◦

n,k
must stay above the j–axis save for the starting point m = 0 and reach the level
n for a first time, then for all n ≥ 2 we have a factor zgn−1 corresponding to this
upward first passage. Thus g◦

n,k is the probability generating factor corresponding
to the remaining portion of the paths after the maximum level n has been first
achieved, with the condition that this remaining portion achieves levels only in
[1, n] until a jump-off point at level k.

Lemma 3.1. Let n ≥ 1. Then for all 1 ≤ k ≤ n, we have

g◦
n,k = r

gn
gk−1

,

where by convention g0 = r.

Proof. First fix 2 ≤ k ≤ n. Consider a stopped nonnegative excursion with
maximum level n and jump–off point at level k. Denote by γ ◦

n,k the part of the
stopped excursion path starting when the maximum level n is first achieved
until the jump–off epoch L − 1. We may extend the stopped excursion to a full
excursion by appending a path γk,0, starting at the jump–off point, such that γk,0
goes from level k to k−1 at the first step, its level thereafter stays in [0, k−1], and
γk,0 ends by reaching level 0 for a first time. We can denote then the downward
first passage from level n to m = 0 of the full excursion, starting when the
maximum level n is first achieved until the excursion ends, as the concatenation
γn = γ ◦

n,kγk,0. In Figure 3 we have γ5 = γ ◦
5,3γ3,0.
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Figure 3. Excursion height n = 5; transition to c at k = 3.

To compute g◦
n,k of (3.3), we have that there is a one–to–one correspondence

between all downward first passage paths γn from level n to 0 (that stay at levels
of [1, n] until a final step) and all possible concatenations γ ◦

n,kγk,0, where γ ◦
n,k

stays at levels in [1, n] until level k is achieved. That is because any such γn
must attain level k for a last time. Assume that 2 ≤ k ≤ n. Define gk,0 =
const.

∑
μ(γk,0)rR(γk,0)zL(γk,0), where R(γk,0) and L(γk,0) denote the number of

runs and steps along γk,0 and the constant is determined to make gk,0[1] = 1. It
is obvious then that

gk,0 = zgk−1, for all k ≥ 2. (3.4)

Hence, up to reckoning the number of runs and steps accounted for in γ ◦
n,k

concatenated with the one–step transition to c and γk,0 separately, versus the
number of runs and steps in the concatenation γn = γ ◦

n,kγk,0, by (3.4) and the
Markov property we have

g◦
n,k · zgk−1 = rzgn, for all 2 ≤ k ≤ n. (3.5)

Our reckoning of the factor r on the right side in (3.5) is as follows. (1) Suppose
the step of γ ◦

n,k that comes to the jump–off point at level k is in the direction of
the j–axis. Then there is a run accounted for in the descent of γ ◦

n,k to this point,
while the factor zgk−1 also accounts for a run along the same descent continued
from the jump–off point into a path γk,0. Thus we have counted an extra run for
this continued descent on the left side of (3.5), so we compensate by adding a
factor of r on the right side. (2) Suppose instead that the step of γ ◦

n,k that comes
to the jump–off point is in the opposite direction of the j–axis. Then the descent
at the beginning of γk,0 from the jump–off point is a fresh descent, so no run is
added by the product on the left side of (3.5), but in this case we agreed to add
a run for γ ◦

n,k for the transition to the stopping state c. Thus the extra factor of
r again in this situation for the right side of (3.5). Our reckoning for the factor
of z on the right side of (3.5) is that there is a step counted in all cases for the
transition to c, so we add a factor of z on the right side for this step; the factor of
z on the left side is already from (3.4).

For k = 1, the approach to the jump–off point in γ ◦
n,k must be toward the j–

axis. Therefore γ1,0 is simply one step down, and there in no added run for the
exit to c, so g◦

n,1 = gn = rgn/g0.
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Once more, in concert with (3.3), define g◦
n implicitly by

G◦
n = zgn−1g◦

n for all n ≥ 1. (3.6)

In parallel with (3.3), define ρ◦
n,k for all 1 ≤ k ≤ n and 1 ≤ n ≤ N by

phcN · ρn−1ρ
◦
n,k = P

(
Ec ∩ {H = n}; X0 = 0; Xj > 0,

j = 1, 2, . . . , L − 1; XL−1 = k
)

. (3.7)

In words, ρ◦
n,k is the total probability of all nearest neighbor lattice paths among

paths starting from level n that stay in levels of [1, n] and and stop at level k.
The factor cN on the left accounts for the fact that there is a factor cN implicit
for the transition to c on the right side of (3.7). We define ρ◦

−n,−k analogously
by reflection of the paths for ρn,k: ρ◦

−n,−k is the total probability of all nearest
neighbor lattice paths among paths starting from level −n that stay in levels of
[−n, −1] and and stop at level −k. By the same argument given for (2.6), where
now paths representing ρn,k have n − k more down steps than up steps, we have

ρ◦
−n,−k = (

p/(1 − p)
)n−k

ρ◦
n,k, for all 1 ≤ k ≤ n. (3.8)

By the proof of Lemma 3.1 and definition (2.4), we simply have

ρ◦
n,k(1 − p)hρ−k+1 = ρ−n, for all 1 ≤ k ≤ n. (3.9)

3.1. Formula for g◦
n

Our main novelty in this subsection is to obtain Proposition 3.5, that is a formula
for g◦

n as defined by (3.6) and rewritten by (3.10). This formula involves an
extension un of the Fibonacci recurrence (2.7) by a certain forcing term as shown
in (3.17). Let n ≥ 2. By (3.1)–(3.3), (3.6), and (3.7), we have, for a normalizing
constant C◦

n, that

g◦
n = C◦

n

n∑
k=1

ρ◦
n,kg◦

n,k. (3.10)

The identity (3.10) arises simply because g◦
n,k is a normalized sum along lattice

paths discussed just after (3.3) such that g◦
n,k[1] = 1, so we must multiply g◦

n,k
by its normalizing factor, which is ρ◦

n,k, and then sum on 1 ≤ k ≤ n to cover

all possible paths for g◦
n . Thus it follows that C◦

n equals 1/
n∑

k=1
ρ◦

n,k by (3.10) and

g◦
n[1] = 1. By (2.6), (3.9), and Lemma 2.5 we have for all 1 ≤ k ≤ n that

ρ◦
n,k =

(
(1 − p)/p

)n
ρn

(1 − p)h
(
(1 − p)/p

)k−1
ρk−1

= (
(1 − p)h

)n−k wk−1[1]
wn[1] . (3.11)

Lemma 3.2. Let n ≥ 2. Then we have

ρ◦
n,kg◦

n,k = (
(1 − p)h

)n−k rzn−k+1 wk−1
wn

for all 1 ≤ k ≤ n.
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Proof. By Proposition 2.3, Lemma 3.1, and (3.11), for all 1 ≤ k ≤ n we have

ρ◦
n,kg◦

n,k = (
(1 − p)h

)n−k wk−1[1]
wn[1] · r

Cnrzn

Ck−1rzk−1
wk−1
wn

= (
(1 − p)h

)n−k rzn−k+1 wk−1
wn

, (3.12)

since by Proposition 2.3 we have wk−1[1]
wn[1]

Cn
Ck−1

= 1.

We now wish to find a closed formula for g◦
n as given by (3.10) and Lemma

3.2. For this purpose, to simplify the notation we introduce the square root of
the ratio of down–step to up–step probabilities as follows

d = √
(1 − p)/p. (3.13)

In the symmetric case, we simply have d = 1. However, the parameter d comes
into the formula for ρ◦

n,kg◦
n,k of Lemma 3.2 as follows. We apply the reformulation

that, for all k ≥ 1,(
(1 − p)h

)n−k rzn−k+1 = rz
(
(1 − p)h

√
x/ξ

)n−k = rz
(
d
√

x
)n−k . (3.14)

Here, we keep one factor of z by itself because that corresponds to the step to the
state c. By (3.10), Lemma 3.2 and (3.14), we have for all n ≥ 2 that

g◦
n = C◦

n

n∑
k=1

ρ◦
n,kg◦

n,k = C◦
n rz

( n∑
k=1

(
d
√

x
)n−k wk−1

)
1

wn
. (3.15)

We now study the summation under the parentheses on the right side of (3.15).
It is convenient to make a change of index in this expression as follows.

Definition 3.3. Define the sequence un, n ≥ 1, by

un =
n−1∑
�=0

(
d
√

x
)n−1−� w�, for all n ≥ 1, (3.16)

with u0 = 0 and u1 = 1.

By (3.15) and Definition 3.3, we indeed have that g◦
n = C◦

n rzun/wn for all
n ≥ 2. We now find a recurrence for un via the following ansatz:

un+1 = βun − xun−1 + A
(
d
√

x
)n−1 , with u0 = 0 and u1 = 1. (3.17)

Lemma 3.4. We have that the sequence un, n ≥ 1, defined by (3.16) satisfies the
recurrence (3.17) with A = 1 + d

√
x − β.

Proof. We proceed by induction. Consider the basis n = 1 for (3.17) with A
defined by the statement of the lemma. By definition (3.16) we have u2 = 1 +(
d
√

x
)

w1 = 1 + d
√

x. On the other hand, we have that the right side of (3.17)
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at n = 1 is given by βu1 − xu0 + A = β + A = 1 + d
√

x. Thus the two sides of
(3.17) are equal at n = 1, so the basis of induction is verified.

Assume now that (3.17) holds for some n ≥ 1 with A given by the statement
of the lemma. Then by definition (3.16) we have

un+2 =
n+1∑
�=0

(
d
√

x
)n+1−� w� = wn+1 + d

√
x

n∑
�=0

(
d
√

x
)n−� w�

= wn+1 + (
d
√

x
)

un+1. (3.18)

Now by definition (2.18) write wn+1 = βwn − xwn−1 and by the induction
hypothesis write un+1 = βun − xun−1 + A

(
d
√

x
)n−1. Then by (3.18) we have

un+2 = β
(
wn + d

√
xun

) − x
(
wn−1 + d

√
xun−1

) + d
√

xA
(
d
√

x
)n−1 . (3.19)

Finally, apply definition (3.16) to rewrite un and un−1 in the right side of (3.19)
as sums, and apply the factor d

√
x on these terms so as to raise the powers of d

√
x

by 1 in each of these sums. Hence, by (3.19),

un+2 = β

(
wn +

n−1∑
�=0

(
d
√

x
)n−� w�

)
− x

(
wn−1 +

n−2∑
�=0

(
d
√

x
)n−1−� w�

)
+ A

(
d
√

x
)n . (3.20)

Here, if n = 1 there is an empty sum evaluating to zero in the second
parenthetical term. But obviously the two total sums in parentheses in (3.20) are
by the definition (3.16) simply un+1 and un, respectively, and the term A

(
d
√

x
)n

is of the correct form for the induction step.

We summarize the calculations of this section as follows.

Proposition 3.5. Let g◦
n be defined by (3.1) and (3.6). Let un, n ≥ 1, be given by

(3.17) with A defined by the statement of Lemma 3.4. Then, for all n ≥ 2 we have

g◦
n = C◦

n rz
un
wn

, where C◦
n = 1/

n∑
k=1

ρ◦
n,k.

Proof. The proposition followed by (3.15), Definition 3.3, and Lemma 3.4, where
we noted the evaluation of C◦

n after (3.10) with ρ◦
n,k defined by (3.7).

3.2. Calculation of K◦
N.

Our goal in this subsection is to obtain Proposition 3.10, that is a formula for
K◦

N of definition (3.1). In Proposition 3.5, we focussed on nonnegative stopped
excursions to calculate g◦

n . However, while the analogue for nonpositive stopped
excursions of the probability generating function gn,k defined by (3.2)–(3.3) will
still be the same as given by the formula of Lemma 3.1, the corresponding analog
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g◦−n of g◦
n itself will not be as given by Proposition 3.5. Indeed define the analogue

G◦−n of G◦
n for nonpositive stopped excursions as follows.

G◦−n = E

(
rR◦

zL◦ |Ec ∩ {H = n}; X0 = 0; Xj < 0, j = 1, 2, . . . L − 1
)

.
(3.21)

In parallel with (3.6), define g◦−n implicitly for all n ≥ 1 by
G◦−n = zgn−1g◦−n. (3.22)

Then just as in (3.10), we have

g◦−n = C◦−n

n∑
k=1

ρ◦
−n,−k · g◦

n,k, (3.23)

where ρ−n,−k is defined by (3.7)–(3.8). However since the relation (3.8) depends
on k in the asymmetric case p �= 1

2 , we have in this case that g◦−n �= g◦
n . Hence

the formula for K◦
N involves separate contributions from nonnegative and non-

positive stopped excursions as follows: P (Ec ∩ {1 ≤ H ≤ N}) K◦
N is written as:

N∑
n=1

G◦
n P

(
Ec ∩ {H = n} ∩ {X0 = 0; Xj > 0, j = 1, 2, . . . L − 1})

+
N∑

n=1
G◦−n P

(
Ec ∩ {H = n} ∩ {X0 = 0; Xj < 0, j = 1, 2, . . . L − 1})

=
N∑

n=1
σn +

N∑
n=1

σ̃n

(3.24)

We note that the case H = 0 occurs if and only if there is transition to c on
the first step, which occurs only with very small probability cN = O(1/N2).
Therefore, we may safely ignore this case. For the calculation of the probabilities
involved in the expression σn of (3.24) we have

P
(
Ec ∩ {H = n} ∩ {X0 = 0; Xj > 0, j = 1, 2, . . . L − 1})

= phcN · ρn−1

n∑
k=1

ρ◦
n,k. (3.25)

Due to the easy interchange of parameters p and 1−p to handle the contribu-
tions for nonpositive stopped excursions from the nonnegative ones, so that σ̃n
is determined by applying this interchange to a formula for σn, we focus on the

sum
N∑

n=1
σn in (3.24). We first summarize our calculations to this point to find a

nice expression for σn.

Lemma 3.6. Denote σn = G◦
n P

(
Ec ∩ {H = n} ∩ {X0 = 0; Xj > 0, j = 1, 2, . . .

L − 1}). Then for each n ≥ 1 we have

σn = phcNr2z2
(√

x/d
)n−1 un

wn−1wn
,

where un is defined by (3.16).
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Proof. By definition (3.6), Propositions 2.3, and 3.5, and (3.25), for all n ≥ 1 we
have that σn/(phcN) is written

zgn−1g◦
n · ρn−1

n∑
k=1

ρ◦
n,k = zρn−1Cn−1rzn−1 · rz

un
wn−1wn

C◦
n

n∑
k=1

ρ◦
n,k, (3.26)

where if n = 1 we have C0 = 1, g0 = r, and ρ0 = 1, consistent with σ1/(phcN) =
r2z2. Here, by the definition, C◦

n
n∑

k=1
ρ◦

n,k = 1. Also by Lemma 2.5 we have

ρn−1Cn−1 = (ph)n−1

wn−1[1]wn−1[1] = (ph)n−1.

Therefore by these cancellations in (3.26) we have

σn = phcNr2z2 · (ph)n−1zn−1 un
wn−1wn

.

Finally, as before, write z = √
x/ξ and thus find that (ph)n−1zn−1 = (√

x/d
)n−1,

so the proof is complete.

Let wn and un be defined respectively by (2.18) and Definition 3.16, where un
is determined as a recurrence by Lemma 3.4. We wish to find a recurrence for a
sequence vn, n ≥ 1, with v0 = 0 and v1 = 1 such that for all N ≥ 1 we have:

N∑
n=1

(√
x/d

)n−1 un

wn−1wn
= vN

wN
. (3.27)

The reason for this desired form is that by Lemma 3.6 the sum
N∑

n=1
σn takes the

form of the sum in (3.27) modulo some factors that are constant in n. The relation
(3.27) is true for N = 1 by u1 = v1 = w1 = 1. For N = 2, since u2 = 1 + d

√
x,

by (3.27) we therefore want 1 +
√

x
d

(
1 + d

√
x
)
/ω = v2/ω. So we take v2 =

ω +
√

x
d + x = β +

√
x

d . This term is of the form v2 = βv1 − xv0 + (√
x/d

)1 .
For our proofs we prefer the following definition of vn, leaving the problem to

show that (3.27) does indeed follow from it for all N ≥ 1.

Definition 3.7. Define a sequence vn, n ≥ 1, by
vn+1 = βvn − xvn−1 + (√

x/d
)n , for n ≥ 1; with v0 = 0, v1 = 1. (3.28)

Lemma 3.8. Let wn, un, and vn be defined, respectively, by (2.18), Definition 3.3,
and Definition 3.7, where un is determined as a recurrence by Lemma 3.4. Then
(3.27) holds for all N ≥ 1.

Before proving Lemma 3.8, we record solutions for un and vn in terms
of the fundamental sequence {qn, n ≥ 0} of (2.7) via generating function
manipulations.
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Lemma 3.9. Let un and vn be defined, respectively, by Definition 3.3, and Defini-
tion 3.7, where un is determined by Lemma 3.4. Also denote B = β−d

√
x−√

x/d.
Then, with qn defined by (2.7), we have for all n ≥ 1 that

un = qn + A
B

(
−(d

√
x)n−1 + qn −

√
x

d
qn−1

)
;

vn = qn + 1
B

(
−(

√
x/d)n +

√
x

d
qn − xqn−1

)
.

Proof. By a standard generating function manipulation, we have by (2.7) that

Q(s) =
∞∑

n=0
qnsn = s

1 − βs + xs2 , (3.29)

(Morrow[11], Lemma 2). Denote U = U(s) =
∞∑

n=0
unsn and V = V(s) =

∞∑
n=0

vnsn. By standard manipulations under (3.17) and (3.28) we have, by u0 =
v0 = 0 and u1 = v1 = 1 that

U = s + βsU − xs2U + As2

1 − d
√

xs
; V = s + βsV − xs2V + (

√
x/d)s2

1 − (
√

x/d)s
.

(3.30)

Therefore by algebraic manipulation of (3.30), in view of (3.29) we obtain

U = Q + As2

(1 − d
√

xs)(1 − βs + xs2)
; V = Q + (

√
x/d)s2

(1 − (
√

x/d)s)(1 − βs + xs2)
.

(3.31)

Next, apply partial fractions to the last terms in the expansions for U and V , as
follows:

As2

(1 − d
√

xs)(1 − βs + xs2)
= A

B

(
− 1

d
√

x(1 − d
√

x)
+ 1

d
√

x
1 + (d

√
x − β)s

1 − βs + xs2

)
;

(3.32)
(
√

x/d)s2

(1 − (
√

x/d)s)(1 − βs + xs2)
= 1

B

(
− 1

1 − (
√

x/d)s
+ 1 + (

√
x/d − β)s)

1 − βs + xs2

)
.

Thus, by (3.31)–(3.32) we read off un and vn for all n ≥ 1 as follows.

un = qn + A
B

(
−(d

√
x)n−1 + 1

d
√

x
(
(d

√
x − β)qn + qn+1

))
(3.33)

vn = qn + 1
B

(−(
√

x/d)n + (√
x/d − β)qn + qn+1

))
.

Finally, rewrite (3.33) by applying the recurrence qn+1 = βqn − xqn−1, n ≥ 1.
This completes the proof.
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Proof of Lemma 3.8. We proceed by induction. We have already shown that the
lemma holds for N = 1, 2. As the induction step, it now suffices to show that for
any n ≥ 2 we have

vn+1
wn+1

− vn
wn

= (
√

x/d)nun+1
wnwn+1

⇐⇒ wnvn+1 − vnwn+1 = (
√

x/d)nun+1.

(3.34)

We will verify the last relation of (3.34) by direct calculation using Lemma 3.9,
and also wn = qn − xqn−1 from (2.9). We start with wnvn+1 − vnwn+1 = (qn −
xqn−1)vn+1 − vn(qn+1 − xqn) = (vn+1qn − vnqn+1) − x(vn+1qn−1 − vnqn) =
I + II. We reduce I and II separately; there is cancellation in each. For the term
I we substitute the expressions for vn+1 and vn from Lemma 3.9. It follows that
we have cancellation of the resulting qnqn+1 terms of I. There is another term
x
B

(−q2
n + qn+1qn−1

) = −xn

B by (2.10)(ii). The remaining terms thus give

I = 1
B

(
−xn + (√

x/d
)n qn+1 − (√

x/d
)n+1 qn

)
.

Next, in II, after again substituting for vn+1 and vn from Lemma 3.9, there is
cancellation of the qn−1qn terms. We also obtain a term −x

(
qn+1qn−1 − q2

n
)(

1 +
√

x
Bd

)
= β−d

√
x

B xn, where we again applied (2.10)(ii) and also applied
Bd + √

x = βd − d2√x for B defined in Lemma 3.9. Thus, after adding in
the remaining terms of II, we have

II = 1
B

(
(β − d

√
x)xn + x

((√
x/d

)n+1 qn−1 − (√
x/d

)n qn
))

.

Then, to match terms in I and II, rewrite I by substituting the basic recurrence
qn+1 = βqn − xqn−1. We then obtain

I + II = 1
B

(
−Axn + (√

x/d
)n (

β − √
x/d − x

)
qn

−x
(√

x/d
)n (

1 − √
x/d

)
qn−1

)
, (3.35)

where in the power term alone we used the fact that β − d
√

x − 1 = −A.
Now to verify (3.34) we substitute qn+1 = βqn − xqn−1 into the formula for

un+1 of Lemma 3.9. Thus obtain that the right side of the formula we want to
verify (with I + II as the left side) is, after a bit of algebra to combine qn terms
and qn−1 terms separately,(√

x/d
)n un+1 = −Axn

B
+ (√

x/d
)n

((
β + A

B
(β − √

x/d)

)
qn − x

(
1 + A

B

)
qn−1

)
. (3.36)

Now we may verify that this last expression is in fact equal to I + II of (3.35)
by matching coefficients of qn and qn−1 in (3.35) and (3.36). Indeed by the
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definitions of A = 1 + d
√

x − β and B = β − d
√

x − √
x/d we verify by

inspection that

(β − √
x/d − x) = β(β − d

√
x − √

x/d) + (1 + d
√

x − β)(β − √
x/d)

= Bβ + A(β − √
x/d).

Hence after dividing both sides of this last relation by B, we see that the
coefficients of qn match. Second, we see that −x(1 − √

x/d) = −x(A + B).
Hence after dividing both sides by B, we see that the coefficients of qn−1 match.
Therefore the induction step (3.34) is established, so the proof is complete.

We summarize the result of Lemma 3.8 as follows. Denote the solution to vn of
Lemma 3.9 by ṽn when d is replaced by 1/d, that is when the roles of p and 1 − p
are interchanged. Since x, β , and B = β − (d + 1/d)

√
x do not change under

this procedure, then it is a simple matter to transform the formula of Lemma 3.9
as follows:

ṽn = qn + 1
B

(−(d
√

x)n + d
√

xqn − xqn−1
)

. (3.37)

Proposition 3.10. Let vn and ṽn be given by Lemma 3.9 and (3.37), respectively.
Then, for all N ≥ 1, we have, with k◦

N = hcN/P (Ec ∩ {1 ≤ H ≤ N}), that

K◦
N = k◦

Nr2z2
(

pvN + (1 − p)̃vN
wN

)
.

Proof. The proof follows by the representation (3.24), Lemma 3.6, and
Lemma 3.8 after substituting the formula for σn and also by determining σ̃n
via the interchange of p and 1 − p in the formula for σn, including the trivial
cases σ1 = phcNr2z2 and σ̃1 = (1 − p)hcNr2z2.

4. Proofs of Theorem 1.1 and Corollary 1.4

In this section we first set up how we will attack the calculation of the limiting
Fourier transforms in the statements of Theorem 1.1. The indicated transforms
of this theorem, written as expectations or conditional expectations under a limit
as N → ∞, may be rewritten by applying certain substitutions r = r(t, N) and
z = z(t, N) in either KN of (2.1) or K◦

N of (3.1). We introduce these substitutions
as follows.

r(t, N) = e−2it/N ; z(t, N) = eit/N . (4.1)

For Theorem 1.1, case (b), by the Markov property we may calculate

E{e
it
N �◦

N |�◦} = E{e
it
N (L◦−2R◦)|Ec ∩ {1 ≤ H ≤ N}}, (4.2)

where R◦ and L◦ are defined in the first paragraph of section 3. Thus, for example,
after rewriting the right side of (4.2) in terms of K◦

N of (3.1), the meaning of the
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statement of Theorem 1.1(b) is that
lim

N→∞E{e
it
N �◦

N |�◦} = lim
N→∞ K◦

N (r(t, N), z(t, N)) . (4.3)

The expressions (4.1) will be applied for all cases of Theorem 1.1.
Our method to obtain the limiting joint characteristic functions of

Theorem 1.1 rests on a trigonometric substitution that goes back to Feller[8]

(p. 352). The motivation for this is that by Propositions 2.6 and 3.10 we will
ultimately apply the closed formula (2.9) for qN , which lends itself nicely to a
trigonometric formulation. Introduce θ by
β = √

4x cos θ , α =
√

β2 − 4x; β ± α = √
4x(cos θ ± i sin θ) = √

4xe±iθ .
(4.4)

We apply (2.17), (4.1), and (4.4), after composing x and β with (4.1), to find
cos(θ) as a function of t, and N. In the following we understand without
additional notation that the composition with (4.1) has been taken. We apply
direct computation to expand this composition for cos(θ), as follows. By
x = ξz2, ξ = p(1 − p)h2 = (1

4 − b2

N2 )(1 − a2

2N2 )
2, and β = 1 + x(1 − r2) = 1 +

ξe−2it/N(1−e4it/N), we calculate cos θ = 1√
4ξ

e−it/N (
1 + ξ(e2it/N − e−2it/N)

) =
1√
4ξ

(
e−it/N + (1

4 + O( 1
N2 ))(eit/N − e−3it/N)

)
. Therefore, since by standard

estimation 1√
4ξ

= 1 + c2

2N2 + O( 1
N4 ), for c2 = a2 + 4b2, we obtain cos θ =(

1 + c2

2N2

) (
e−it/N + 1

4(eit/N − e−3it/N)
) + O( 1

N3 ). Thus, because in the Taylor
expansions of the exponentials the term it/N + 1

4(it/N + 3it/N) vanishes,
and since the second order terms of the exponential contributions sum to

t2

2N2
(−1 + 1

4(−12 + 32)
) = t2

2N2 , we have the following:

cos θ = 1 + c2 + t2

2N2 + O(1/N3), as N → ∞. (4.5)

It follows that, by choosing a branch of θ so that |eiNθ | > 1 for large N, we have

θ = −i
√

c2 + t2

N
+ O(1/N2), as N → ∞. (4.6)

Lemma 4.1. Let x and β be defined by (2.17) and let qN = qN(x, β) as defined by
(2.7). Then

qN = 2i
α

(
√

x)N sin Nθ .

Proof. By (2.9) and (4.4), we have qN = 2−N

α
(
√

4x)N (
eiNθ − e−iNθ

)
, which

reduces to the stated form.

We start with the proof of statement (b) of Theorem 1.1 as it depends on
Proposition 3.10. The proofs of statements (a) and (c) that come afterward
depend only on the development of Section 2.
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Proof of Theorem 1.1(b). We must show that the limit on the right side of (4.3)
equals the limit asserted in statement (b) of the theorem. By Proposition 3.10
and (4.3), we want to calculate the unnormalized term r2z2 pvN+(1−p)̃vN

wN
, where

r and z are substituted by (4.1) and where p = 1
2 + b

N . It is easy to see that
under (4.1) the coefficient r2z2 = 1 + O( 1

N ). Therefore it suffices to establish
an asymptotic expression for

(
pvN + (1 − p)̃vN

)
/wN that is of order N. Our

method is to simply write the formulae for wN , vN , and ṽN from (2.18), Lemma
3.9, and (3.37) into expressions involving the terms qN and

√
xqN−1, with certain

coefficients that we will evaluate asymptotically by direct calculation. The reason
for the factor

√
x on qN−1 is that by Lemma 4.1 both qN and

√
xqN−1 have a

common factor (
√

x)N . By Lemma 3.9, the formula for vN is rewritten by taking
1/B in front of all terms as follows:

vN = 1
B

(−(
√

x/d)N + (
√

x/d + B)qN − √
x
(√

xqN−1
))

, (4.7)

where B = β − (d + 1/d)
√

x. The formula for ṽN is the expression (4.7) with
d replaced by 1/d. By Lemma 4.1 and (4.7), since by (2.9) we have wN = qN −√

x
(√

xqN−1
)
, there is a common factor of (

√
x)N in both the numerator and

denominator of each of vN/wN and ṽN/wN . To evaluate each of these fractions
asymptotically, we have, as N → ∞,

d = 1 − 2b
N

+ O
(

1
N2

)
; d + 1/d = 2 + 4b2

N2 + O
(

1
N3

)
;

√
x = 1

2
+ it

2N
+ O

(
1

N2

)
; (4.8)

√
x/d = 1

2
+ 2b + it

2N
+ O

(
1

N2

)
; d

√
x = 1

2
+ −2b + it

2N
+ O

(
1

N2

)
B = 1 + x(1 − r2) − (d + 1/d)

√
x = a2 + t2

2N2 + O
(

1
N3

)
;

√
x/d + B = √

x/d + O
(

1
N2

)
;

Of the above only the asymptotics of B requires much attention. From our
calculation of 1/

√
4ξ above it may be gleaned that

√
ξ = 1

2

(
1 − c2

2N2

)
+ O( 1

N3 )

and ξ = 1
4

(
1 − c2

N2

)
+ O( 1

N3 ). Therefore B = 1 + ξ(e2it/N − e−2it/N) − (d +
1/d)

√
ξ

(
(eit/N − 1) + 1

)
can be calculated by expanding 1

4(e2it/N − e−2it/N) −
(eit/N − 1) = t2

2N2 + O( 1
N3 ). The rest of the main term for B arises from

1 − (d + 1/d)
√

ξ = −2b2

N2 + c2

2N2 = a2

2N2 , to order 1
N2 .

To asymptotically evaluate the fraction
(
pvN + (1 − p)̃vN

)
/wN , we first focus

on vN/wN . It follows from Lemma 4.1, (4.7), and (2.18), after dividing both



28 G. J. MORROW

numerator and denominator of vN
wN

by 2i
α
(
√

x)N , that

vN
wN

= 1
B

− α
2i(1/d)N + (

√
x/d + B) sin Nθ − √

x sin(N − 1)θ

sin Nθ − √
x sin(N − 1)θ

= 1
B

νN
δN

, (4.9)

where νN = α
2i(

√
x)−NBvN and δN = α

2i(
√

x)−NwN . The factor 1/B is of order
N2. We examine the remaining fraction νN/δN in the product of (4.9). By (4.8)–
(4.9) we have that

νN
δN

=
− α

2i(
1
d )N +

(
1
2 + 2b+it

2N

)
sin Nθ − (1

2 + it
2N

)
sin(N − 1)θ + O( 1

N2 )

sin Nθ − (1
2 + it

2N
)

sin(N − 1)θ + O( 1
N2 )

(4.10)

where we use implicitly that sin Nθ and sin(N −1)θ are each O(1) as N → ∞ by
(4.6). We claim that this numerator νN is of order 1/N and the denominator δN
is of order 1. Since by the substitution (4.4) and (4.6) we have α

2i = √
x sin θ =

θ
2 + O( 1

N2 ) is of order 1/N, while (1/d)N ∼ e2b, we must show how the order
1 contributions in the remaining terms of the numerator νN in fact cancel.
We apply the angle addition formula for the sine to write sin(N − 1)θ =
(cos θ) sin Nθ − (sin θ) cos Nθ so that the sine terms in the numerator νN are
written(

1
2 + 2b+it

2N

)
sin Nθ − (1

2 + it
2N

)
sin(N − 1)θ

= b
N sin Nθ + (1

2 + it
2N

)
(1 − cos θ) sin Nθ + (1

2 + it
2N

)
(sin θ) cos Nθ .

(4.11)

Now sin Nθ and cos Nθ are each of order 1 and by (4.5) we have 1 − cos θ =
O( 1

N2 ), and finally, by (4.6), sin θ = θ +O(θ3) = − i
√

c2+t2
N +O( 1

N2 ), as N → ∞.
Therefore by (4.11) the numerator of (4.10) becomes

νN = θ

2

(
−e2b + cos Nθ

)
+ b

N
sin Nθ + O(1/N2). (4.12)

We also have, by replacing d by 1/d in our calculation of νN of (4.9)–(4.10), by
way of (4.8), that ν̃N = α

2i(
√

x)−NB̃vN takes the form

ν̃N = − α
2i d

N +
(

1
2 + −2b+it

2N

)
sin Nθ − (1

2 + it
2N

)
sin(N − 1)θ + O(1/N2).

(4.13)

Therefore, by comparing νN of (4.10) with ν̃N of (4.13), we find by a wholly
similar analysis upon replacing b by −b in (4.11)–(4.12) that

ν̃N = θ

2

(
−e−2b + cos Nθ

)
− b

N
sin Nθ + O(1/N2). (4.14)
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The denominator δN = sin Nθ − (1
2 + it

2N
)

sin(N − 1)θ + O(1/N2) is easily
treated by expanding sin(N − 1)θ as before so that

δN = (
1 − (1

2 + it
2N

)
cos θ

)
sin Nθ + (1

2 + it
2N

)
(sin θ) cos Nθ + O

(
1

N2

)
= (1

2 − it
2N

)
sin Nθ + 1

2(sin θ) cos Nθ + O
(

1
N2

)
,

(4.15)
where we used (4.5)–(4.6). Finally, we have by (4.12), (4.14), and (4.15) that

1
2 vN + 1

2 ṽN

wN
= 1

B

1
2νN + 1

2 ν̃N

δN
= 1

B

θ
2 (cos Nθ − cosh(2b)) + O( 1

N2 )

1
2 sin Nθ + O( 1

N )
, (4.16)

where we note that the sum of the terms 1
2B

b
N sin Nθ and − 1

2B
b
N sin Nθ cancel in

finding the last equality. Here the higher-order expansion of δN in (4.15) was not
applied; however, it will be used in the proof Theorem 1.1(a). Now put p = 1

2 + b
N

and compute

pvN(1 − p)̃vN
wN

= 1
B

pνN + (1 − p)̃νN
δN

= 1
B

1
2νN + 1

2 ν̃N

δN
+ O(1), (4.17)

where the O(1) error term comes about from 1
B

b
N (νN − ν̃N)/δN , since 1

B is of
order N2 so that by (4.12) and (4.14) each of νN/B and ν̃N/B are of order N2 1

N =
N. Here by (4.6) we asymptotically evaluate that δN ∼ 1

2 sin(−i
√

c2 + t2) =
− i

2 sinh
√

c2 + t2. Note that also cos Nθ ∼ cosh
√

c2 + t2, while θ is given by
(4.6) and B is given by (4.8), so that finally by (4.16)–(4.17) we have, as N → ∞

pvN + (1 − p)̃vN
wN

∼ 1
B

1
2νN + 1

2 ν̃N

δN
∼

2
√

c2 + t2
(

cosh
√

c2 + t2 − cosh(2b)
)

(a2 + t2) sinh
√

c2 + t2
N.

(4.18)
Therefore by Proposition 3.10 and (4.18) we have that K◦

N(r, z)/k◦
N is asymptotic

to the right side of (4.18). Hence by K◦
N[1] = 1 we have, after setting t = 0, that

the normalization constant k◦
N in Proposition 3.10 satisfies

1/k◦
N = P (Ec ∩ {1 ≤ H ≤ N})

hcN
∼ 2c (cosh(c) − cosh(2b))

a2 sinh(c)
N, as N → ∞.

(4.19)
It follows by (4.19) and the definitions of h and cN that

P (Ec ∩ {1 ≤ H ≤ N}) ∼ c (cosh(c) − cosh(2b))

sinh(c)
1
N

, as N → ∞. (4.20)

Furthermore, the limit of the right side of (4.3) is given as in the statement of
Theorem 1.1(b).

Proof of Theorem 1.1(a). We have that the number of excursions MN until the
last visit epoch LN is a geometric variable with distribution P(MN = �) =
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π�
0 (1−π0), � = 0, 1, . . . , where we denote π0 = P(E0∩{1 ≤ H ≤ N}). Therefore

by (2.1), we have that the joint probability generating function E
(
rRN zLN uMN

)
is given by

(1 − π0)
∞∑

�=0
(π0u)� E

{
rRN zLN |E0 ∩ {H ≤ N}

}� = 1 − π0
1 − π0uKN(r, z)

, (4.21)

since, by the Markov property, E{rRN zLN |MN = �} = E{rRzL|E0 ∩ {1 ≤ H ≤
N}}�. Now we substitute (4.1) into (4.21), and we also substitute

u = u(t, N) = eit/N . (4.22)

Thus by Proposition 2.6, since the normalization constant kN of KN satisfies
π0kN = 2ξ , we have

E{e
it
N �N } = 1 − π0

1 − π0u · KN(r, z)
= (1 − π0)wN

wN − 2ξur2z2qN
, (4.23)

where it is understood that in this last expression r, z, u, wN and qN are all
composed with (4.1) and (4.22). We evaluate the coefficient of qN for the term
2ξur2z2qN asymptotically as follows. We have, as N → ∞,

2ξur2z2 = 2ξe− it
N = 1

2 − it
2N + O( 1

N2 ). (4.24)

As in the proof of Theorem 1.1(b) write δN = α
2i(

√
x)−NwN , and introduce εN =

α
2i(

√
x)−NqN . We divide both the numerator and denominator of the last ratio

in (4.23) by 2i
α
(
√

x)N to write

E{e
it
N �N } = (1 − π0)δN

δN − 2ξur2z2εN
. (4.25)

Now by (4.24) and Lemma 4.1 we have that

2ξur2z2εN = (1
2 − it

2N
)

sin Nθ + O(1/N2). (4.26)

From the expressions (4.15) and (4.26), we find a cancellation of the
( 1

2 − it
2N

)
sin

Nθ terms such that

δN − 2ξur2z2εN = 1
2
(sin θ) cos Nθ + O(1/N2).

Therefore by (4.25) and the result of (4.15) for the numerator we have

E{e
it
N �N } = (1 − π0)

(1
2 sin Nθ + O( 1

N )
)

1
2(sin θ) cos Nθ + O(1 1

N2 )
. (4.27)

Now plug in (4.6) to (4.27) and multiply the top and bottom of the fraction by N
to find that

lim
N→∞E{e

it
N �N } = lim

N→∞
N(1 − π0) sinh

√
c2 + t2

√
c2 + t2 cosh

√
c2 + t2

. (4.28)
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By setting t = 0 we conclude by (4.28) that

lim
N→∞ N(1 − π0)

tanh(c)
c

= 1; that is, π0 ∼ 1 − c
N tanh(c)

, as N → ∞.

(4.29)
Therefore by (4.28)–(4.29) the proof of Theorem 1.1(a) is complete.

Discussion. Since P(E0) + P(Ec) + P(EN) = 1, we have by (4.20) and (4.29)
that

P(EN) ∼ 1
N

c · cosh(2b)

sinh(c)
, as N → ∞. (4.30)

Proof of Theorem 1.1(c). The event EN consists of paths that start from m = 0
and either stay strictly positive after the starting point until they reach level N+1
or else stay strictly negative after the starting point and reach level −(N +1). The
joint probability generating function of runs and steps for all paths that exit one
of the boundaries ±(N + 1) on the first excursion attempt is zgN . Therefore by
the Markov property, we have, under the substitution (4.1), that

E

{
e

it
N �′

N |�′} = zgN . (4.31)

Recall that by Proposition 2.3 we have gn = Cnrzn/wn, where Cn = wn[1].
Therefore, by z = √

x/ξ , we have

zgN = CN
rzN+1

wN
= rz

CN

(
√

ξ)N

(√
x
)N

wN
. (4.32)

Now apply (2.9) to find wN = qN − √
x(

√
xqN−1), where we have both the

coefficient
√

x = 1
2 +O(1/N) from (4.8), and also rz = 1+O(1/N), as N → ∞.

Therefore by Lemma 4.1 we have from (4.32), after dividing top and bottom of
the fraction by 2i

α
(
√

x)N , that

zgN = CN

(
√

ξ)N

α
2i

sin Nθ − 1
2 sin(N − 1)θ + O( 1

N )
. (4.33)

Therefore, since by (4.6) we have α
2i = 1

2 sin θ ∼ 1
2θ ∼ − i

√
c2+t2
2N , as N →

∞, and since by (4.15) we have sin Nθ − 1
2 sin(N − 1)θ ∼ 1

2 sin Nθ ∼
− i

2 sinh
√

c2 + t2, as N → ∞, we have by (4.31)–(4.33) that

lim
N→∞E

{
e

it
N �′

N |�′} = lim
N→∞

CN

N(
√

ξ)N

√
c2 + t2

sinh
√

c2 + t2
. (4.34)

By setting t = 0 in (4.34) we have

lim
N→∞

CN

N(
√

ξ)N = sinh(c)
c

. (4.35)

Therefore by (4.34)–(4.35) the proof of Theorem 1.1(c) is complete.
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Proof of Theorem 1.1(d). Write π ′ = P(EN) and recall that π0 = P(E0 ∩ {1 ≤
H ≤ N}) is asymptotically evaluated by (4.29). Thus calculate by (4.29) and
(4.30) that, as N → ∞,

P(�′) = π ′ + π0π
′ + π2

0 π ′ + · · · = π ′
1−π0

∼ c·cosh(2b)
sinh(c)

tanh(c)
c = cosh(2b)

cosh(c) ;
(4.36)

that is, lim
N→∞P(�′) = cosh(2b)

cosh(c) .
Now denote the limits of Theorem 1.1, parts (a)–(c), respectively as T(t), U(t),

and V(t). Then, by independence between �N and �◦
N ·1�◦ +�′

N ·1�′ , we have
by (4.36) and P(�◦) = 1 − P(�′) that lim

N→∞E{e
it
N �N } is written by

T(t) lim
N→∞

(
P(�◦)E{e

it
N �◦

N |�◦} + P(�′)E{e
it
N �′

N |�′}
)

= T(t)
(

cosh(c)−cosh(2b)
cosh(c) U(t) + cosh(2b)

cosh(c) V(t)
)

.
(4.37)

With a bit of algebra after substituting the expressions for T(t), U(t), and V(t)
from the statement of Theorem 1.1(a)–(c) into the right side of (4.37), we obtain
that the limit of part (d) is

(
a2(cosh

√
c2+t2−cosh(2b))

a2+t2 + cosh(2b)
)

/ cosh
√

c2 + t2

= a2 cosh
√

c2+t2+t2 cosh(2b)

(a2+t2) cosh
√

c2+t2 .

4.1. Limiting univariate Laplace transforms with scaling by N2

Proof of Corollary 1.4. We focus first on statement (b) of the corollary. We start
with the runs statistic and then turn to the other two statistics. For all cases in
which we study a runs statistic alone we set r = r(λ, N) = e−λ/N2 , and z = 1.
Define β and x composed with these substitutions according to (2.17). We define
cos θ again by (4.4) so that cos θ is a function of λ ≥ 0 and N ≥ 1. By direct
computation we have

cos θ = 1 + c2 + λ

2N2 + O(1/N4), as N → ∞. (4.38)

We choose a branch of θ so that |eiNθ | > 1 for large N, so by (4.38) we have

θ = −i
√

c2 + λ

N
+ O(1/N3), as N → ∞. (4.39)

By direct computation we rewrite (4.8) in the current context as follows:

B = a2+λ
2N2 + O

(
1

N4

)
; d = 1 − 2b

N + O
(

1
N2

)
;

√
x = 1

2 + O
(

1
N2

)
;

√
x/d = 1

2 + b
N + O

(
1

N2

)
; d

√
x = 1

2 − b
N + O

(
1

N2

)
;

√
x/d + B

= √
x/d + O

(
1

N2

)
;

(4.40)

Recall the formula (4.7) for vN . By (2.9) we have wN = qN − √
x
(√

xqN−1
)
.

We now again compute an asymptotic expression for vN/wN = 1
B(νN/δN) of
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(4.9), this time under (4.38)–(4.40). We apply the angle addition formula for the
sine as in (4.11) and obtain again a cancellation of order 1 terms for the sine
terms (

√
x/d + B) sin Nθ − √

x sin(N − 1)θ of the numerator νN , now under
(4.40), as follows: (1

2 + b
N ) sin Nθ − 1

2 sin(N − 1)θ + O( 1
N2 ) = 1

2 sin θ cos Nθ +
b
N sin Nθ +O( 1

N2 ). Therefore, just as in the analysis that yields (4.12) and (4.14),
these equations continue to hold verbatim in the current context since θ of (4.39)
is still of order 1/N. Hence by (4.12) and (4.14) we have

pνN + (1 − p)̃νN = θ

2
(cos Nθ − cosh(2b)) + O(1/N2), (4.41)

where again the contributions of + b
N sin Nθ and − b

N sin Nθ cancel in the linear
combination pνN + (1 − p)̃νN to order 1/N2. The denominator δN = sin Nθ −√

x sin(N − 1)θ of (4.9) is simply given, again by the angle addition formula for
the sine and (4.40), by δN = (

1 − 1
2 cos θ

)
sin Nθ + 1

2(sin θ) cos Nθ + O( 1
N2 ), so

that by (4.38)–(4.39),

δN = 1
2

sin Nθ + 1
2
(sin θ) cos Nθ + O(1/N2). (4.42)

Therefore by Proposition 3.10, (4.41), this expression for δN , and the asymptoti-
cal expansions of θ and B in (4.39)–(4.40), we have that lim

N→∞E{e−λ 1
N2 R◦

N | �◦}
is given as

lim
N→∞ k◦

N
1
B

pνN + (1 − p)̃νN
δN

= Ca,b

√
c2 + λ

(
cosh

√
c2 + λ − cosh(2b)

)
(a2 + λ) sinh

√
c2 + λ

,

(4.43)
since by (4.19) we have lim

N→∞ Nk◦
N = Ca,b. Therefore the proof of part (b) of the

corollary is complete for the case of the runs statistic.
We now briefly discuss the case of the steps statistic L◦

N for part (b) of the
corollary. For this case we put r = 1 and z = e− 1

2 λ/N2 . Even though now β and x
composed with these values of r and z are no longer the same as for the case of the
runs statistic, it turns out that there is only a difference starting from the order
1/N2 term in the expansions of these quantities. Also the value of B matches the
case of the runs statistic through order 1/N2, and only differs starting from order
1/N4. In fact (4.40) continues to hold verbatim for the steps statistic. Moreover
we have that (4.38)–(4.39) hold. Therefore, by the same lines of proof as for the
case of runs, the proof of part (b) is complete.

We turn to the proof of statement (a). For the runs statistic, by the poof of part
(a) of Theorem 1.1, by rewriting (4.23) with u = 1 and wN and qN composed
with r = e−λ/N2 and z = 1 we have that lim

N→∞E{e−λR/N2} is computed as

lim
N→∞

1 − π0
1 − π0KN

= lim
N→∞

(1 − π0)wN
wN − 2ξr2z2qN

= lim
N→∞

(1 − π0)δN
δN − 2ξr2z2εN

, (4.44)
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with εN = α
2i(

√
x)−NqN . For either the runs or steps statistics of the corollary,

due to scaling by N2 and u = 1, instead of (4.24) we now have

2ξur2z2 = 1
2 + O(1/N2). (4.45)

Therefore by (4.42) and (4.45) we have that the denominator of the last limit in
(4.44), namely δN − 2ξr2z2εN , is given by

1
2 sin Nθ + 1

2(sin θ) cos Nθ − 1
2 sin Nθ + O( 1

N2 )

= 1
2(sin θ) cos Nθ + O(1/N2). (4.46)

Now plug in δN ∼ 1
2 sin Nθ in the numerator and δN − 2ξr2z2εN ∼

1
2 sin θ cos Nθ for the denominator of (4.44). Here, as shown in (4.29), (1 − π0)
has order 1/N to match the order 1/N of sin θ . Therefore by way of (4.39) and
(4.46) plugged into (4.44), the proof of part (a) is complete.

The proof of part (c) follows exactly as in Theorem 1.1(c) since we merely
take the limit as N → ∞ in (4.33), where the denominator of that display is by
(4.40) asymptotically 1

2 sin Nθ ∼ −i sinh
√

c2 + λ. The proof of part (d) follows
by algebra as in the proof of Theorem 1.1(d).

4.2. Example for Theorem 1.1

In this section we compute in Example 4.2 the limiting measures for the statistics
of Theorem 1.1 parts (a) and (b). Consider 1

N �◦
N given �◦. By Theorem 1.1(b),

after writing cosh(2b) = 1 − 1 + cosh(2b), and separating terms we have that

lim
N→∞E{e

it
N �◦

N | �◦} = Ca,b
√

c2+t2

a2+t2

(
tanh 1

2
√

c2 + t2 + (1−cosh(2b))

sinh
√

c2+t2

)
. (4.47)

Here we have applied the trigonometric identity for tanh ϕ
2 of Remark 1.2 and

Ca,b is defined in Theorem 1.1. By the uniqueness and continuity theorems,
Billingsley[3] (Section 26), there is a unique probability measure μa,b such that

its characteristic function μ̂a,b(t) =
∞∫

−∞
eitx μa,b(dx) is given by (4.47). Recall

the following well known Mittag–Leffler expansions:

tanh(u)

u
=

∞∑
n=0

8
(2n + 1)2π2 + 4u2 ;

u
sinh(u)

=
∞∑

n=−∞

(−1)nu2

n2π2 + u2 . (4.48)

Therefore by (4.47)–(4.48) we have that

μ̂a,b(t) = Ca,b
a2 + t2

( ∞∑
n=0

4(c2 + t2)

(2n + 1)2π2 + c2 + t2

+(1 − cosh(2b))

∞∑
n=−∞

(−1)n(c2 + t2)

n2π2 + c2 + t2

)
. (4.49)
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Now define

sk(x) =
4b2

a e−a|x| + k2π2√
c2+k2π2 e−|x|√c2+k2π2

4b2 + k2π2 , for all − ∞ < x < ∞, k ∈ Z.

(4.50)

Here sk(x) has been chosen such that, by direct calculation,

ŝk(t) =
∫ ∞

−∞
eitxsk(x) dx = 2(c2 + t2)

(a2 + t2)(k2π2 + c2 + t2)
. (4.51)

By the monotone convergence theorem and (4.51) with t = 0, we have that
∞∑

k=0
sk(x) is integrable on R. Hence

∞∫
−∞

eitx
∞∑

n=0
s2n+1(x) dx =

∞∑
n=0

ŝ2n+1(x) dx. By

the dominated convergence theorem we justify also the term by term calculation

of
∞∫

−∞
eitx

∞∑
n=−∞

(−1)nsn(x) dx.

Example 4.2. Let sk(x) be defined by (4.50). Define fa,b(x) as follows.

fa,b(x) = 2Ca,b

∞∑
n=0

s2n+1(x) + 1
2

Ca,b(1 − cosh(2b))

∞∑
n=−∞

(−1)nsn(x). (4.52)

By (4.50)–(4.51) and the discussion following these displays, we have shown that

indeed the characteristic function f̂a,b(t) =
∞∫

−∞
eitxfa,b(x) dx is given by the right

side of (4.49) and so by the form (4.47) of Theorem 1.1(b). Therefore the prob-
ability measure μa,b is absolutely continuous and satisfies μa,b(dx) = fa,b(x) dx.

In case b = 0, the formula (4.52) reduces to fa,0(x) = 2Ca,0
∞∑

n=0

e−|x|
√

a2+(2n+1)2π2√
a2+(2n+1)2π2

.

If in addition a = 0, then we simply obtain f0,0(x) = 4
π

∞∑
n=0

e−(2n+1)π |x|
2n+1 =

4
π

arctanh(e−π |x|). It is a curious fact that the density g(x) on the half–line defined
by g(x) = f0,0(x/2), x > 0, is its own inverse. Hence there is a logarithmic
singularity at x = 0 for the green curve f0,0 in Figure 4. Let μ be the probability
measure with the limiting characteristic function μ̂(t) = c

tanh(c)
tanh

√
c2+t2√

c2+t2 of

(1.3)(a). By direct calculation, we have that
∞∫

−∞
eitx · e− 1

2 |x|
√

(2n+1)2π2+4c2√
(2n+1)2π2+4c2

dx =
4

(2n+1)2π2+4(c2+t2)
. Therefore by the dominated convergence theorem and (4.48)

we have that
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Figure 4. The densities fa,b(x) of Example 4.2 such that the characteristic function f̂a,b(x) =∫ ∞
−∞ eitx fa,b(x) dx is given by (4.47), with c2 = a2 + 4b2. Green: f0,0(x) = 4

π
arctanh(e−π |x|); Gold:

f2,0(x); Blue: f2,3(x); Red: f√40,0(x).

μ̂(t) =
∫ ∞

−∞
eitx 1

2
f2c,0(x/2) dx; that is, μ(dx) = 1

2
f2c,0(x/2) dx.
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