2063. Proposed by Ovidiu Furdui and Alina Sîntămărian, Technical University of Cluj-Napoca, Cluj-Napoca, Romania.

Evaluate

$$\sum_{n=0}^{\infty} \sum_{k=1}^{\infty} \frac{(-1)^{n+k-1}}{(n+k)^2}.$$

2064. Proposed by Ioan Băetu, Botoșani, Romania.

Characterize those integers $n \ge 2$ such that the ring \mathbb{Z}_n of integers modulo n has a subset F that is a field under the operations of addition and multiplication induced from \mathbb{Z}_n . [Note that the unity i of such a field F need not be the unity 1 of \mathbb{Z}_n .]

2065. Proposed by Su Pernu Mero, Valenciana GTO, Mexico.

Let Q be a cube centered at the origin of \mathbb{R}^3 . Choose a unit vector (a, b, c) uniformly at random on the surface of the unit sphere $a^2 + b^2 + c^2 = 1$, and let Π be the plane ax + by + cz = 0 through the origin and normal to (a, b, c). What is the probability that the intersection of Π with Q is a hexagon?

Quickies

1087. Proposed by Michel Bataille, Rouen, France.

Let $H_0 = 0$ and $H_n = \sum_{k=1}^n k^{-1}$ for $n \in \mathbb{N}$. Given positive integers m, n, prove that

$$\sum_{k=1}^{n} k(H_{m+k} - H_{k-1}) + \sum_{k=1}^{m} k(H_{n+k} - H_{k-1}) = mn + m + n.$$

1088. Proposed by Luke Harmon and Greg Oman, University of Colorado, Colorado Springs, CO.

A binary operation * on a set S is *injective* if, for all $a, b, c, d \in S$, the equality a * b = c * d implies a = c and b = d. Is there an infinite set with an associative and injective binary operation?

Solutions

Nonarchimedean convexity and an integral inequality

February 2018

2036. Proposed by Dan Stefan Marinescu, Hunedoara City and Leonard Giugiuc, Drobeta Turnu-Severin, Romania.

Let a and b be real numbers with a < b. Let $f : [a, b] \to \mathbb{R}$ be a continuous function such that $f(tx + (1 - t)y) \le \max\{f(x), f(y)\}$ for all $x, y \in [a, b]$ and $t \in [0, 1]$. Prove that if f(a) = 0 and $\int_a^b f(x) dx = 0$ then $\int_a^b f(x)g(x) dx \ge 0$ for all increasing functions $g : [a, b] \to \mathbb{R}$.

Solution by Tom Jager, Calvin College, Grand Rapids, MI.

Let $L = \sup\{x \in [a, b] : f(x) \le 0\}$. (Since f(a) = 0, the supremum above does exist.) We have $f(L) \le 0$ by continuity of f; thus, for $x \in [a, L]$ we have f(x)