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PROBLEMS

11166. Proposed by Greg Oman, The Ohio State University, Columbus, OH. Let Rc
denote the ring of continuous functions /: IR + R, and let Rp denote the subring of
R. consisting of those elements of R6 that are differentiable on IR. Are the rings R6'

and Rp isomorphic?

11167 . Proposed by Vicenliu Rddulescu, University of Craiova, Craiova, Romania. Let
Q be the set of all complex numbers z satisfying 0 < lzl < 1. Fix a positive integer n,

and for arbitrary distinct elements 21, . . . , zn of Q, define

f (zr ,  - . .  ,  z,)  : ' lzr , l ' lz i  -  z, , l ' '
-  lz i lz)( t  -  lz t  l \ f  .

(a) For n :2 prove that the maximum of / is attained by a unique configuration (up

to a rotation) that consists of two points symmetric with respect to the origin.
(b) For n :3 prove that the maximal configuration for / is also unique (up to a
rotation) and consists of three points that are the vertices of an equilateral triangle
centered at the origin.

1,1L68. Proposed by Kent Holing, Trondheim, Norway. Let a, b, and c be the sides of a
Pythagorean triangle, with c the hypotenuse.
(a) Show that c - a and c * a cannot both be sides of a single Pythagorean triangle.
(b) Show that none of c2 * 4ab, c2 - 4ab, or c2 - 9az canbe square.

11169. Proposed by Mohammad Hossein Mehrabi, University of Science and Tech-
nology, Tehran, Iran. Let @ be the function on the positive real numbers given by

6@) - (e/x)"f (x), where f is the unique log convex function on the positive real

numbers satisfying f (n) - (n - I)l for positive integers n. Prove that Q is strictly

decreasing on (0, oo).
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