PROBLEMS

EDUARDO DUEÑEZ, *Editor* Spelman College

EUGEN J. IONAȘCU, Proposals Editor Columbus State University

JOSÉ A. GÓMEZ, Facultad de Ciencias, UNAM, Mexico; CODY PATTERSON, University of Texas at San Antonio; MARÍA LUISA PÉREZ-SEGUÍ, Universidad Michoacana SNH, Mexico; RICARDO A. SÁENZ, Universidad de Colima, Mexico; ROGELIO VALDEZ, Centro de Investigación en Ciencias, UAEM, Mexico; Assistant Editors

Proposals

To be considered for publication, solutions should be received by September 1, 2018.

2041. Proposed by Vadim Mitrofanov, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine.

Let *ABCD* be a quadrilateral that circumscribes a circle of radius *r* and is also inscribed in a circle of radius *R*. Let *s* be the semiperimeter of *ABCD*. Prove the inequality $s^2 \le 6R^2 + 4r^2$.

2042. Proposed by Rick Mabry and Debbie Shepherd, Louisiana State University Shreveport, Shreveport, LA.

Recursively define random variables $X_0, X_1, \ldots, X_n, \ldots$ and $Y_0, Y_1, \ldots, Y_n, \ldots$ taking values in [0, 1] as follows:

- $X_0 = 0$ and $Y_0 = 1$ are constants;
- for $n = 0, 1, 2, ..., X_{n+1}$ and Y_{n+1} are chosen uniformly and independently in the closed interval with endpoints X_n, Y_n .

Prove that, with probability 1, the limits $\widetilde{X} = \lim_{n \to \infty} X_n$ and $\widetilde{Y} = \lim_{n \to \infty} Y_n$ both exist and are equal, and find their common distribution.

2043. Proposed by Greg Oman, University of Colorado, Colorado Springs and Adam Salminen, University of Evansville, Evansville, IN.

Find all commutative rings *R* with unity such that:

- (i) *R* contains some element *x* that is neither nilpotent nor a unit (i.e., $x^n \neq 0$ for all $n \ge 1$ and $xy \neq 1$ for all $y \in R$), and
- (ii) every proper nonzero ideal of R is maximal.

Proposals and solutions should be written in a style appropriate for this MAGAZINE.

Authors of proposals and solutions should send their contributions using the Magazine's submissions system hosted at http://mathematicsmagazine.submittable.com. More detailed instructions are available there. We encourage submissions in PDF format, ideally accompanied by LATEX source. General inquiries to the editors should be sent to mathmagproblems@maa.org.

Math. Mag. 91 (2018) 151-158. doi:10.1080/0025570X.2018.1429759 © Mathematical Association of America

We invite readers to submit original problems appealing to students and teachers of advanced undergraduate mathematics. Proposals must always be accompanied by a solution and any relevant bibliographical information that will assist the editors and referees. A problem submitted as a Quickie should have an unexpected, succinct solution. Submitted problems should not be under consideration for publication elsewhere.