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SHORT NOTE
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Abstract

Let M be a cancellative, commutative monoid with integral closure M .
Borrowing from ring theory, we say that M has the n -generator property iff
every finitely generated ideal of M can be generated by n elements, and we
say M has rank n iff every ideal of M can be generated by n elements. We
investigate the integral closure of such monoids. We show, in particular, that if
M has the n -generator property, then M is a valuation monoid, and if M has
rank n , then M is a principal ideal monoid.

In this note, all monoids are assumed to be cancellative and commutative.

We first recall some basic definitions. Let M be a monoid. A nonempty
subset I ⊆M is called an ideal of M iff I+M ⊆ I . It is easy to see that if S is a
nonempty subset of a monoid M , then the set S+M := {s+m : s ∈ S,m ∈M}
is an ideal of M . Further, any ideal of M containing S must clearly contain
S +M . We call S +M the ideal of M generated by S . If I is an ideal of
M and X ⊆ M , then X is called a generating set for I iff I = X +M . An
ideal I of M is said to be n-generated iff there exists a generating set for I
with at most n elements. M is said to have the n-generator property iff every
finitely generated ideal is n -generated, and to have rank n iff every ideal can
be generated by at most n elements. M is said to be a valuation monoid iff for
any two ideals I and J of M , either I ⊆ J or J ⊆ I . It is easy to see that
M is a valuation monoid iff for any elements a, b ∈ M , either a − b ∈ M or
b − a ∈ M (a − b and b − a are elements of the quotient group G of M ). If
M ⊆ N are monoids, then x ∈ N is said to be integral over M iff nx ∈M for
some positive integer n . The least such n is the degree of x over M . N is an
integral extension of M iff every element of N is integral over M . The integral
closure of M is defined to be the collection of all elements in the quotient group
G of M which are integral over M . An overmonoid of M is a monoid between
M and G .
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We begin with two trivial but useful lemmas:

Lemma 1. Let I be an n-generated ideal of the monoid M . If X is
any generating set for I , then there exist x1, . . . , xn ∈ X such that I =
{x1, . . . , xn}+M .

Proof. Suppose that I can be n -generated, and let X be any generating
set for I . Let i1, . . . , in be a set of generators for I . Then since X generates
I , we have that for each k : 1 ≤ k ≤ n , there exist xk ∈ X and mk ∈ M
with ik = xk + mk . We claim that I = {x1, . . . , xn} +M . To see this, let
y ∈ I be arbitrary. Then since i1, . . . , in generate I , we have that y = ik +m
for some k and for some m ∈ M . But we have that ik = xk + mk , and so
we get y = xk + (mk + m). Hence y ∈ {x1, . . . , xn} + M and the proof is
complete.

Lemma 2. Let M be a monoid. Then M has the n-generator property iff
for every collection {m1, . . . ,mn+1} of elements of M , there exist i �= j such
that mi −mj ∈M .

Proof. Suppose first that the monoid M has the n -generator property.
Consider elements m1, . . . ,mn+1 of M . Let I be the ideal of M generated
by these elements. Then since M has the n -generator property, it follows from
Lemma 1 that there exist n elements from {m1, . . . ,mn+1} that generate I .
We may suppose (relabelling if necessary) that these elements are m1, . . . ,mn .
Then in particular, we have that mn+1 ∈ {m1, . . . ,mn}+M . Thus mn+1−mi ∈
M for some i .

The converse follows easily from the condition on M .

Theorem 1. Let M be a monoid with the n-generator property with integral
closure M . Then:

(1) Every overmonoid of M has the n-generator property.

(2) If a, b ∈M , then there exists a positive integer k ≤ n such that either

k(a− b) ∈M or k(b− a) ∈M .

(3) Every element of M has degree ≤ n over M .

(4) M is a valuation monoid.

(5) M is a bounded integral extension of a valuation monoid.

Proof. (1) Let S be an overmonoid of M . Consider elements a1 − b1, . . . ,
an+1 − bn+1 ∈ S , where each ai, bi ∈ M . Let x := b1 + · · ·+ bn+1 . Then note
trivially that for each i , ai−bi+x ∈M . Since M has the n -generator property,
it follows from Lemma 2 that there exist i �= j with (ai−bi+x)−(aj−bj+x) ∈
M . But then (ai−bi)−(aj−bj) ∈M ⊆ S . By Lemma 2, S has the n -generator
property.
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(2) Let a and b be arbitrary elements of M . Consider the set {ia+(n−
i)b : 0 ≤ i ≤ n} . Then by Lemma 2, there exist i �= j with (ia+(n−i)b)−(ja+
(n− j)b) ∈M . Simplifying this expression yields that (i− j)a+ (j − i)b ∈M .
If i > j , then (i− j)(a− b) ∈ M , and if j > i , then (j − i)(b− a) ∈ M . This
completes the proof of (2).

(3) Consider an element a− b of the integral closure of M , say of degree
r . By (2), there exists a positive integer k ≤ n such that either k(a−b) ∈M or
k(b−a) ∈M . Now if k(a−b) ∈M then clearly a−b has degree ≤ n . Otherwise
k(b− a) ∈M . Suppose by way of contradiction that r > n . Then we have that
r(a− b) ∈M and k(b−a) ∈M . But this implies that (r−k)(a− b) ∈M . This
contradicts that a− b is of degree r over M and completes the proof of (3).

(4) By (1), M has the n -generator property. Let a, b ∈M . By (2), there
exists a positive integer k such that either k(a− b) ∈M or k(b− a) ∈M . As
M is integrally closed, we get that a− b ∈ M or b− a ∈ M , and thus M is a
valuation monoid.

(5) By (3), we have that n!M ⊆M . As n!M ∼=M , we see from (4) that
n!M is a valuation monoid. It is trivial that every element of M is of degree
≤ n! over n!M .

Next we prove a similar theorem for rank n monoids:

Theorem 2. Let M be a rank n monoid. Then the integral closure M of
M is a principal ideal monoid.

Proof. Let I be any ideal of M . We show that I is n -generated. As M
has the n -generator property, it follows from (3) of Theorem 1 that n!I ⊆ M .
Let I ′ be the ideal of M generated by n!I . Then as M has rank n , it follows
that I ′ can be generated by n elements. By Lemma 1, we see that I ′ =
{n!i1, . . . , n!in}+M for some i1, . . . , in ∈ I . We claim that I = {i1, . . . , in}+M .
To see this, let i ∈ I . Then n!i ∈ I ′ . Hence we see that n!i = n!ik +m for
some k and some m ∈M . But then n!(i− ik) ∈M ⊆M . As M is integrally
closed, it follows that i − ik ∈ M , and so i = ik + x for some x ∈ M . This
shows that I is n -generated.

We’ve shown that M has rank n . But by (4) of Theorem 1, we have that
M is a valuation monoid. It is easy to see that every finitely generated ideal of
a valuation monoid is principal (it suffices by induction to show that every ideal
generated by two elements is principal, and this verification is trivial). As every
ideal of M is finitely generated, it follows that M is a principal ideal monoid.
This completes the proof.

There is a fairly extensive literature on the ideal theory of commutative
monoids. The interested reader is encouraged to consult the bibliography of [1]
or [2] for a long list of references on this topic.
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