Semigroup Forum Vol. 74 (2007) 155–158 © 2006 Springer DOI: 10.1007/s00233-006-0643-0

SHORT NOTE

A Note on the *n*-Generator Property for Commutative Monoids

Greg Oman

Communicated by Michael W. Mislove

Abstract

Let M be a cancellative, commutative monoid with integral closure \overline{M} . Borrowing from ring theory, we say that M has the *n*-generator property iff every finitely generated ideal of M can be generated by n elements, and we say M has rank n iff every ideal of M can be generated by n elements. We investigate the integral closure of such monoids. We show, in particular, that if M has the *n*-generator property, then \overline{M} is a valuation monoid, and if M has rank n, then \overline{M} is a principal ideal monoid.

In this note, all monoids are assumed to be cancellative and commutative.

We first recall some basic definitions. Let M be a monoid. A nonempty subset $I \subseteq M$ is called an *ideal* of M iff $I + M \subseteq I$. It is easy to see that if S is a nonempty subset of a monoid M, then the set $S+M := \{s+m : s \in S, m \in M\}$ is an ideal of M. Further, any ideal of M containing S must clearly contain S + M. We call S + M the ideal of M generated by S. If I is an ideal of M and $X \subseteq M$, then X is called a *generating set* for I iff I = X + M. An ideal I of M is said to be *n*-generated iff there exists a generating set for I with at most n elements. M is said to have the *n*-generator property iff every finitely generated ideal is n-generated, and to have rank n iff every ideal can be generated by at most n elements. M is said to be a valuation monoid iff for any two ideals I and J of M, either $I \subseteq J$ or $J \subseteq I$. It is easy to see that M is a valuation monoid iff for any elements $a, b \in M$, either $a - b \in M$ or $b-a \in M$ (a-b and b-a are elements of the quotient group G of M). If $M \subseteq N$ are monoids, then $x \in N$ is said to be *integral over* M iff $nx \in M$ for some positive integer n. The least such n is the degree of x over M. N is an integral extension of M iff every element of N is integral over M. The integral closure of M is defined to be the collection of all elements in the quotient group G of M which are integral over M. An overmonoid of M is a monoid between M and G.

Oman

We begin with two trivial but useful lemmas:

Lemma 1. Let I be an n-generated ideal of the monoid M. If X is any generating set for I, then there exist $x_1, \ldots, x_n \in X$ such that $I = \{x_1, \ldots, x_n\} + M$.

Proof. Suppose that I can be n-generated, and let X be any generating set for I. Let i_1, \ldots, i_n be a set of generators for I. Then since X generates I, we have that for each $k : 1 \le k \le n$, there exist $x_k \in X$ and $m_k \in M$ with $i_k = x_k + m_k$. We claim that $I = \{x_1, \ldots, x_n\} + M$. To see this, let $y \in I$ be arbitrary. Then since i_1, \ldots, i_n generate I, we have that $y = i_k + m$ for some k and for some $m \in M$. But we have that $i_k = x_k + m_k$, and so we get $y = x_k + (m_k + m)$. Hence $y \in \{x_1, \ldots, x_n\} + M$ and the proof is complete.

Lemma 2. Let M be a monoid. Then M has the n-generator property iff for every collection $\{m_1, \ldots, m_{n+1}\}$ of elements of M, there exist $i \neq j$ such that $m_i - m_j \in M$.

Proof. Suppose first that the monoid M has the *n*-generator property. Consider elements m_1, \ldots, m_{n+1} of M. Let I be the ideal of M generated by these elements. Then since M has the *n*-generator property, it follows from Lemma 1 that there exist n elements from $\{m_1, \ldots, m_{n+1}\}$ that generate I. We may suppose (relabelling if necessary) that these elements are m_1, \ldots, m_n . Then in particular, we have that $m_{n+1} \in \{m_1, \ldots, m_n\} + M$. Thus $m_{n+1} - m_i \in M$ for some i.

The converse follows easily from the condition on M.

Theorem 1. Let M be a monoid with the *n*-generator property with integral closure \overline{M} . Then:

- (1) Every overmonoid of M has the n-generator property.
- (2) If $a, b \in M$, then there exists a positive integer $k \leq n$ such that either $k(a-b) \in M$ or $k(b-a) \in M$.
- (3) Every element of \overline{M} has degree $\leq n$ over M.
- (4) \overline{M} is a valuation monoid.
- (5) M is a bounded integral extension of a valuation monoid.

Proof. (1) Let S be an overmonoid of M. Consider elements $a_1 - b_1, \ldots, a_{n+1} - b_{n+1} \in S$, where each $a_i, b_i \in M$. Let $x := b_1 + \cdots + b_{n+1}$. Then note trivially that for each $i, a_i - b_i + x \in M$. Since M has the n-generator property, it follows from Lemma 2 that there exist $i \neq j$ with $(a_i - b_i + x) - (a_j - b_j + x) \in M$. But then $(a_i - b_i) - (a_j - b_j) \in M \subseteq S$. By Lemma 2, S has the n-generator property.

156

Oman

(2) Let a and b be arbitrary elements of M. Consider the set $\{ia + (n - i)b : 0 \le i \le n\}$. Then by Lemma 2, there exist $i \ne j$ with $(ia + (n - i)b) - (ja + (n - j)b) \in M$. Simplifying this expression yields that $(i - j)a + (j - i)b \in M$. If i > j, then $(i - j)(a - b) \in M$, and if j > i, then $(j - i)(b - a) \in M$. This completes the proof of (2).

(3) Consider an element a-b of the integral closure of M, say of degree r. By (2), there exists a positive integer $k \leq n$ such that either $k(a-b) \in M$ or $k(b-a) \in M$. Now if $k(a-b) \in M$ then clearly a-b has degree $\leq n$. Otherwise $k(b-a) \in M$. Suppose by way of contradiction that r > n. Then we have that $r(a-b) \in M$ and $k(b-a) \in M$. But this implies that $(r-k)(a-b) \in M$. This contradicts that a-b is of degree r over M and completes the proof of (3).

(4) By (1), \overline{M} has the *n*-generator property. Let $a, b \in \overline{M}$. By (2), there exists a positive integer k such that either $k(a-b) \in \overline{M}$ or $k(b-a) \in \overline{M}$. As \overline{M} is integrally closed, we get that $a-b \in \overline{M}$ or $b-a \in \overline{M}$, and thus \overline{M} is a valuation monoid.

(5) By (3), we have that $n!\overline{M} \subseteq M$. As $n!\overline{M} \cong \overline{M}$, we see from (4) that $n!\overline{M}$ is a valuation monoid. It is trivial that every element of M is of degree $\leq n!$ over $n!\overline{M}$.

Next we prove a similar theorem for rank n monoids:

Theorem 2. Let M be a rank n monoid. Then the integral closure \overline{M} of M is a principal ideal monoid.

Proof. Let I be any ideal of \overline{M} . We show that I is n-generated. As M has the n-generator property, it follows from (3) of Theorem 1 that $n!I \subseteq M$. Let I' be the ideal of M generated by n!I. Then as M has rank n, it follows that I' can be generated by n elements. By Lemma 1, we see that $I' = \{n!i_1, \ldots, n!i_n\} + M$ for some $i_1, \ldots, i_n \in I$. We claim that $I = \{i_1, \ldots, i_n\} + \overline{M}$. To see this, let $i \in I$. Then $n!i \in I'$. Hence we see that $n!i = n!i_k + m$ for some k and some $m \in M$. But then $n!(i - i_k) \in M \subseteq \overline{M}$. As \overline{M} is integrally closed, it follows that $i - i_k \in \overline{M}$, and so $i = i_k + x$ for some $x \in \overline{M}$. This shows that I is n-generated.

We've shown that \overline{M} has rank n. But by (4) of Theorem 1, we have that \overline{M} is a valuation monoid. It is easy to see that every finitely generated ideal of a valuation monoid is principal (it suffices by induction to show that every ideal generated by two elements is principal, and this verification is trivial). As every ideal of \overline{M} is finitely generated, it follows that \overline{M} is a principal ideal monoid. This completes the proof.

There is a fairly extensive literature on the ideal theory of commutative monoids. The interested reader is encouraged to consult the bibliography of [1] or [2] for a long list of references on this topic.

157

Oman

References

- Anderson, D. D. and E. W. Johnson, *Ideal theory in commutative semi*groups, Semigroup Forum **30** (1984), 127–158.
- [2] Halter-Koch, F., "Ideal Systems", Dekker, New York, 1998.
- [3] Gilmer, R., "Multiplicative Ideal Theory", Queen's Papers in Pure and Applied Mathematics, Kingston, 1992.

Department of Mathematics The Ohio State University 231 W. 18th Ave. Columbus, OH 43210 USA oman@math.ohio-state.edu

Received June 3, 2005 and in final form June 30, 2006 Online publication December 20, 2006

158