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A SHORT PROOF OF THE BOLZANO-WEIERSTRASS THEOREM

Abstract. We present a short proof of the Bolzano-Weierstrass Theorem on the real line which
avoids monotonic subsequences, Cantor’s Intersection Theorem, and the Heine-Borel Theorem.

1. Introduction

A fundamental tool used in the analysis of the real line is the well-known Bolzano-Weierstrass
Theorem1:

Theorem 1 (Bolzano-Weierstrass Theorem, Version 1). Every bounded sequence of real numbers
has a convergent subsequence.

To mention but two applications, the theorem can be used to show that if [a, b] is a closed, bounded
interval and f : [a, b] → R is continous, then f is bounded. One may also invoke the result to
establish Cantor’s Intersection Theorem: if {Cn : n ∈ N} is a nested sequence of closed bounded
intervals, then there is a real number belonging to every Ci. One would be hard-pressed to find a
book on elementary real analysis which does not include the statement of Theorem 1 along with a
proof.

A sketch of one of the most popular proofs proceeds as follows: let (xn) be a bounded sequence
of real numbers. Call a member xn of the sequence a “peak” if xm ≤ xn for every m ≥ n. If (xn)
has but finitely many peaks, then one shows that (xn) has a monotone increasing subsequence.
Otherwise, it can be argued that (xn) has a monotone decreasing subsequence. In any case, there
exists a monotone subsequence (xnk

) of (xn). Then (xnk
) converges to its sup or inf according to

whether it is increasing or decreasing, respectively. Such an approach can be found in the books
Bartle [1], Pugh [7], and Ross [8], among many others.

Another well-known proof begins by noting that since (xn) is bounded, there exist a0, b0 ∈ R
such that {xn : n ∈ N} ⊆ [a0, b0]. Let c0 be the midpoint of a0 and b0. Then either there are
infinitely many n for which an ∈ [a0, c0] or there are infinitely many n for which an ∈ [c0, b0]; say
the former holds. Then take the midpoint c1 of [a0, c0] and repeat the above argument. Continuing
recursively, one obtains a nested sequence of closed bounded intervals whose lengths tend to 0. By
Cantor’s Intersection Theorem, there is a (unique) real number x∗ which lies in every interval. It
is then straightforward to obtain a subsequence (xnk

) of (xn) which converges to x∗. One can find
this proof in Hoffman & Marsden [5] and Morry & Protter [6], for example.

Still other texts state the Bolzano-Weierstrass Theorem in a slightly different form, namely:

Theorem 2 (Bolzano-Weierstrass Theorem, Version 2). Every bounded, infinite set of real numbers
has a limit point.

1This theorem was originally proved by Bolzano in 1817. It was reproved by Weierstrass in the latter half of the
19th century.
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2 A SHORT PROOF OF THE BOLZANO-WEIERSTRASS THEOREM

Multiple proofs of the second version also appear in the literature. Specifically, Brand ([3]),
Gaughan ([4]), and Watson ([9]) prove the result via the bisection method outlined above. On
p. 323 of Bartle & Sherbert [1], the authors present Theorem 2 as an exercise and instruct the
reader to use the Heine-Borel Theorem.

It is easy to deduce either form of the Bolzano-Weierstrass Theorem from the other. We give
an outline of an argument proving the first version from the second. Suppose (xn) is a bounded
sequence. If (xn) has but finitely many distinct terms, then (xn) has a constant subsequence, which
trivially converges. Otherwise, {xn : n ∈ N} is infinite; let L be a limit point. It is not difficult to
recursively construct a subsequence of (xn) converging to L.

2. Short proof

The purpose of this note is to give a short proof of the second version of the Bolzano-Weierstrass
Theorem. Our proof hinges upon a set-theoretic observation of the German mathematician Paul
Stäckel2 dating back to 1907. It was during this time that set theory was rapidly evolving into
what would ultimately become ZFC (as the reader may recall, Zermelo introduced his famous
list of axioms in 1908). One important question at the time was how to formulate a rigorous
mathematical definition of “finite set.” Many famous mathematicians contributed answers to this
question, including both Dedekind and Tarski (the so-called Dedekind-finite and Tarski-finite sets
now bear their names). Stäckel proposed to call a set S finite if there exists a linear order ≤ on S for
which every nonempty subset of S has both an ≤-least element and a ≤-greatest element; in other
words, both ≤ and ≥ are well-orders on S. A set with such a property is said to be Stäckel-finite
(Bohnet [2]). In modern set theory (namely, ZFC), one can prove that a Stäckel finite set is finite.

Lemma 1. Let S be a set, and let ≤ be a linear order on S. If for every nonempty X ⊆ S, both
inf(X) and sup(X) exist and belong to X, then S is finite.

Proof. (By contradiction) Suppose S is a set and ≤ is a linear order on S satisfying the above
property, yet S is infinite. For n ≥ 0, we recursively define xn := inf(S\{xi : i < n}), and set
X := {xn : n ≥ 0}. Then (xn) is a strictly increasing infinite sequence of members of S. Therefore,
sup(X) /∈ X, a contradiction. �

Finally, we present our proof of the Bolzano-Weierstrass Theorem.

Proof. (By contraposition) Let S be a bounded subset of R, and assume S has no limit point.
Suppose X ⊆ S is nonempty. Then inf(X) ∈ X, lest inf(X) be a limit point of X, hence also of S.
Analogously, sup(X) ∈ X. Lemma 1 implies that S is finite. �
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