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The reals, of course, already have an axiom system. They are a complete, linearly
ordered field. This axiom system is even categorical, meaning that it completely char-
acterizes the reals. Up to isomorphism, the reals are the only complete, linearly ordered
field.

Another property of axiom systems, considered to be particularly elegant ever since
the birth of formal logic, is independence. In an independent axiom system no axiom
is redundant; that is, no axiom may be proved from the remaining axioms. An early
example of an independent axiom system is the set of axioms developed by David
Hilbert for Euclidean geometry. In chapter two of [7], Hilbert carefully proved each
of his axioms independent of the others by finding a model for the other axioms in
which each chosen axiom was false. Since then, independent axioms systems have
been found for such algebraic entities as fields [2] and vector spaces [9]. Hilbert’s
axioms for Euclidean geometry, incidentally, are categorical as well as independent.

The purpose of this paper is to describe an independent, categorical axiom system
for the reals.

A categorical axiom system has a maximum property. No new axiom can be con-
sistently added to such a system that is not already a consequence of the other axioms.
An independent axiom system has a minimum property. No axiom can be subtracted
from such a system and still be a consequence of the remaining axioms. Thus, an in-
dependent, categorical axiom system is a rather special mathematical object, a kind-of
max-min or min-max system.

Hilbert’s axiom system for Euclidean geometry is not often used. Its special qual-
ities make it unsuitable for teaching. Other systems—one developed by CUPM, for
example—have supplanted it, although it still appears in some geometry classes.

Likewise, it is unlikely that the axiom system presented here will supplant the con-
cept of a complete, linearly ordered field. The latter system has many convenient fea-
tures and is comparatively easy to teach. Still, it seems only fair that the real numbers,
the foundation of so much mathematics, including all of analysis, should be accorded
the same privilege as the (equally fundamental) theory of Euclidean geometry, and
thus be given an independent, categorical axiomatization.

The axioms
We begin by stating the standard axioms for the real numbers as given in most real
analysis texts.
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Definition 1. A complete ordered field is a 6-tuple (F, +, ·, 0, 1, <) where F is a
set, + and · operations on F , 0 and 1 elements of F , and < a binary relation on F
satisfying the following axioms:

(1) 1 �= 0,
(2) (Associative Law for Addition) a + (b + c) = (a + b) + c for all a, b, c ∈ F ,
(3) (Commutative Law for Addition) a + b = b + a for all a, b ∈ F ,
(4) (Additive Identity) a + 0 = a for all a ∈ F ,
(5) (Additive Inverses) For each a ∈ F there is an element b ∈ F such that

a + b = 0,
(6) (Associative Law for Multiplication) a · (b · c) = (a · b) · c for all a, b, c ∈ F ,
(7) (Commutative Law for Multiplication) a · b = b · a for all a, b ∈ F ,
(8) (Multiplicative Identity) a · 1 = a for all a ∈ F ,
(9) (Multiplicative Inverses) For each a ∈ F − {0} there is an element b ∈ F such

that a · b = 1,
(10) (Distributive Law) a · (b + c) = a · b + a · c for all a, b, c ∈ F ,
(11) < is a transitive relation on F ,
(12) < satisfies trichotomy on F ,
(13) x < y implies x + z < y + z for every x, y, z ∈ F ,
(14) x < y, z > 0 imply that x · z < y · z for every x, y, z ∈ F ,
(15) (Completeness) Every nonempty subset A of F that has an upper bound in F

has a least upper bound in F .

We now present an alternative list of axioms, equivalent to the usual axiomatization
of R, but minimal in the sense that none of the axioms may be proved from the remain-
ing ones. Preliminarily we call a model of the following axioms a complete ordered
algebra.

Definition 2. A complete ordered algebra is a 5-tuple (A, +, ·, 0, <) consisting of
a set A, operations + and · on A, an element 0 ∈ A, and a relation < on A which
satisfies the following axioms:

(S1) A contains an element x besides 0,
(A1) + is associative,
(A2) a + 0 = a for all a ∈ A,
(A3) For all a ∈ A there exists b ∈ A with a + b = 0,
(D) For all a, b, c ∈ A: a · (b + c) = a · b + a · c and (b + c) · a = b · a + c · a,

(O1) < is a transitive relation on A,
(O2) < satisfies trichotomy on A,
(O3) If a < b, then a + c < b + c and c + a < c + b for all a, b, c ∈ A,
(O4) If a < b and c > 0, then a · c < b · c and c · a < c · b for all a, b, c, ∈ A,
(O5) For all x > 0 there is a y such that 0 < y < x ,

(C) Every nonempty subset of A that has an upper bound in A has a least upper
bound in A.

Compared with the axioms for a complete ordered field, the axioms for a complete
ordered algebra favor order over algebra. For example, the new system does not assume
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commutativity of addition. Nor does it assume commutativity, or even associativity of
multiplication, or the existence of a multiplicative identity, or multiplicative inverses.
Remarkably, these multiplicative field axioms can, in the context of a complete ordered
algebra, all be deduced as theorems. To balance the omission of so much algebra, two
forms of ‘completeness’ are assumed, order completeness (C) and the Archimedean
property (O5).

The axioms are categorical
We will prove that the complete ordered field of real numbers is the unique model of a
complete ordered algebra up to isomorphism. We begin with two lemmas which will
be useful later. The first is a well-known group-theoretic result. We include the easy
proof.

Lemma 1. Suppose (S, +, 0) is a structure satisfying (A1), (A2), and (A3). Then S
is a group.

Proof. Let x ∈ S be arbitrary. By (A3), there is a y ∈ S with x + y = 0. Add y
on the left to obtain y + x + y = y + 0. By (A2), we see that y + 0 = y. Thus y +
x + y = y. By (A3), there exists some z ∈ S with y + z = 0. Adding z on the right
to both sides of the equation y + x + y = y, we obtain y + x + y + z = y + z. Using
the fact that y + z = 0, the equation reduces to y + x + 0 = 0. By (A2), this reduces
to y + x = 0. We have shown that every element of S has a two-sided inverse with
respect to 0. It remains to show that 0 is a two-sided identity. Let x ∈ S. We must
show that 0 + x = x . Let y ∈ S be such that x + y = y + x = 0. Now simply note
that 0 + x = (x + y) + x = x + (y + x) = x + 0 = x . This completes the proof.

Our next lemma is a special case of a slightly more general result known as Hion’s
Theorem. We sketch the main ideas of the proof, and refer the reader to [1, p. 147] for
further details.

Lemma 2. Let f : R → R be an additive homomorphism. Suppose further that
whenever x < y, then f (x) < f (y) ( f is increasing). Then there exists some real
number c ∈ R such that f (x) = cx for all x ∈ R.

Sketch of Proof. Trivially f (1) = f (1) · 1 and f (0) = f (1) · 0. It follows by in-
duction that f (n) = f (1) · n for all positive integers n. If n ∈ Z and n < 0, then
f (n) = − f (−n) = − f (1)(−n) = f (1) · n. It is straightforward to extend this re-
sult to Q; that is, f (q) = f (1) · q for all q ∈ Q. Since f is increasing and 0 < 1,
f (0) = 0 < f (1). It follows that { f (1) · q : q ∈ Q} is dense in R. Using this fact
along with the fact that f is increasing, it follows that f (x) = f (1) · x for all x ∈ R.

The following corollary is a simple consequence of the previous lemma.

Corollary 1. Let f : R → R be an additive homomorphism. Suppose that whenever
x < y, then f (x) > f (y) ( f is decreasing). Then there exists some real number c ∈ R

such that f (x) = cx for all x ∈ R.

We now prove two propositions which are the meat of our classification result. The
proof of the first proposition follows closely the proof of Theorem 25.4 of [1, p. 149].
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Proposition 1. Let ◦ be an operation on R which satisfies (D) (with respect to the
usual addition on R) and (O4) (with respect to the standard order on R). Then the
structures (R, +, ·, <) and (R, +, ◦, <) are isomorphic.

Proof. To be clear, we will denote the standard multiplication on R by juxtaposi-
tion. Let a ∈ R be arbitrary. Note that a ◦ 0 = a ◦ (0 + 0) = (a ◦ 0) + (a ◦ 0). Hence
a ◦ 0 = 0. Now define a function fa : R → R by fa(x) := a ◦ x . We claim that there
is some real number ra such that fa(x) = rax . If a = 0, then from what was shown
above, we can take ra = 0. Suppose now that a > 0. Since ◦ satisfies (D) and (O4),
it is easy to see that fa is an increasing homomorphism on R. The existence of ra

now follows from Lemma 2. In case a < 0, the existence of ra follows from Corol-
lary 1. Note that fa(1) = ra1 = ra , and thus each ra is uniquely determined. We now
define f : R → R by f (a) := ra . We claim that f is an increasing additive homo-
morphism on R. We first show that f is increasing. For suppose that a < b. We must
show that ra < rb. Since ◦ satisfies (O4), we have a ◦ 1 < b ◦ 1. But then by definition,
fa(1) < fb(1), and we get ra < rb. We now claim that fa+b = fa + fb for all real num-
bers a and b. To see this, simply note that fa+b(x) = (a + b) ◦ x = a ◦ x + b ◦ x =
fa(x) + fb(x). We can now show that f is a homomorphism as follows:

f (a + b) = ra+b = fa+b(1) = fa(1) + fb(1) = ra + rb = f (a) + f (b).

It follows again from Lemma 2 that there is some real number c > 0 such that f (a) =
ca for all a ∈ R. It is now immediate that f is a bijection from R onto R. We have
seen above that f is an order-preserving additive homomorphism. Thus to show that
the structures (R, +, ·, <) and (R, +, ◦, <) are isomorphic, it suffices to show that
f (a ◦ b) = f (a) f (b) for all a, b ∈ R. Note from above that a ◦ b = fa(b) = rab =
f (a)b = cab. Thus we have: f (a ◦ b) = f (cab) = c(cab) = c2ab = (ca)(cb) =
f (a) f (b), and hence f is an isomorphism.

Our second proposition is a special case of Hölder’s Theorem. We outline a proof
and refer the reader to [1, p. 144] for further details.

Proposition 2. Let G be a group, and suppose that (G, +, <) satisfies (S1), (O1)–
(O3), (O5), and (C). Then (G, +, <) is isomorphic to (R, +, <).

Sketch of Proof. Fix an arbitrary a > 0 in G. For any b ≥ 0 in G, let

b∗ :=
{m

n
∈ Q : ma ≤ nb, m ≥ 0, n > 0

}
.

Note that 0 ∈ b∗ and so b∗ is not empty. The completeness of < (in G) implies that
b ≤ ka for some positive integer k (the proof is analogous to showing that the natural
numbers are not bounded above in R). It follows from this fact that b∗ is bounded
above in R, and so sup(b∗) exists. We now let G+ := {g ∈ G : g ≥ 0}, and define
f : G+ → R by f (b) = sup(b∗). Now extend f to all of G by defining f (−g) :=
− f (g) for g > 0. Then f is an isomorphism between (G, +, <) and a substructure
(H, +, <) of the real numbers. Since (G, +, <) satisfies (S1), H is nontrivial. Since
(O5) is satisfied, H is not cyclic. It follows that H is dense in R. Since H is complete
with the induced order, H = R. This completes the proof. Note that both completeness
assumptions were used.

Finally, we are in position to prove that the reals are the unique model of the axioms
for a complete ordered algebra.
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Theorem 1. Every complete ordered algebra is isomorphic to the complete ordered
field of real numbers.

Proof. Let (A, +, 
, 0, 1, <) be a complete ordered algebra. It follows from
Lemma 1 that (A, +, 0) is a group. It now follows from Proposition 2 that (A, +, <) is
isomorphic to (R, +, <). Let f : A → R be an isomorphism. We define an operation
◦ on R via this isomorphism by x ◦ y := f ( f −1(x) 
 f −1(y)). It is straightfor-
ward to verify that (A, +, 
, <) is isomorphic to (R, +, ◦, <). It now follows from
Proposition 1 that the structures (R, +, ·, <) and (R, +, ◦, <) are isomorphic. Thus,
finally, we see that the structures (A, +, 
, <) and (R, +, ·, <) are isomorphic. This
completes the proof.

The axioms are independent
In the previous section, we showed that one can “throw away” many of the standard
axioms for the real numbers. We now show that we cannot throw away any more
axioms from our system. The standard method for doing this is, for each axiom ϕ, to
create a model in which all the axioms of a complete ordered algebra hold except ϕ.
Within the following models, 0 will denote the real number zero, 1 will denote the real
number one, + and · will denote the usual operations of addition and multiplication on
R, and < will denote the usual ordering on R (unless otherwise stated).

Proposition 3. (S1) is independent.

Proof. Let (F, +, ·, 0, <) := ({0}, +, ·, 0, ∅). That every axiom holds but (S1) is
easy to check.

Proposition 4. (A1) is independent.

Proof. Let (F, +, ·, 0, <) := (R, ⊕, ·, 0, <) where ⊕ is defined by a ⊕ b =
2(a + b) if a and b are either both positive or both negative, and a ⊕ b = a + b
otherwise. Clearly (S1), (O1), (O2), (O4), (O5), and (C) hold in this structure.

Note that (A1) fails here as follows: 1 ⊕ (2 ⊕ 3) = 1 ⊕ 10 = 22, but (1 ⊕ 2) ⊕ 3 =
6 ⊕ 3 = 18, so ⊕ is not associative.

(A2) holds. To see this, note that for any real number x , it is not the case that
both x and 0 are positive, nor is it the case that both x and 0 are negative. Hence
x ⊕ 0 = x + 0 = x .

(A3) holds. Consider any real number x . Then as above, it is not the case that
both x and −x are positive nor is it the case that both x and −x are negative. Hence
x ⊕ −x = x + −x = 0.

(D) holds. First note that as · is commutative, we only need to check the first of
the two equations. Hence consider arbitrary a, b, c ∈ R. We will show a(b ⊕ c) =
ab ⊕ ac.

Suppose first that a = 0. Simply note that 0b ⊕ 0c = 0 ⊕ 0 = 0 = 0(b ⊕ c). Thus
we now assume that a �= 0 and consider two cases:

Case 1. b and c are either both positive or both negative. Then note that a(b ⊕ c) =
a(2(b + c)) = 2ab + 2ac = 2(ab + ac) = ab ⊕ ac (recall that since a �= 0, ab and
ac are also either both positive or both negative).
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Case 2. b and c are not both positive and not both negative. Then note that a(b ⊕
c) = a(b + c) = ab + ac = ab ⊕ ac (note again that if b and c are not both positive
and not both negative, then the same is true of ab and ac since a �= 0).

(O3) holds. Suppose that a < b and consider an arbitrary element c ∈ R. Since
⊕ is commutative, we must only check that a ⊕ c < b ⊕ c. If a ⊕ c = a + c and
b ⊕ c = b + c or if a ⊕ c = 2(a + c) and b ⊕ c = 2(b + c), we are clearly done.
Hence we have two cases to consider:

Case 1. a ⊕ c = 2(a + c) and b ⊕ c = b + c. Thus a and c are either both positive
or both negative, but this is not true of b and c. Now, a and c cannot both be positive.
If so, then as a < b, then b and c would both be positive, contradicting our assumption
that b ⊕ c = b + c. Hence a and c are both negative now follows from our assumption
about b and c. It follows that b ≥ 0. But since a and c are both negative, it follows that
2a + c < 0 ≤ b. Hence 2a + c < b. Adding c to both sides yields 2(a + c) < b + c,
which is a ⊕ c < b ⊕ c, as required.

Case 2. a ⊕ c = a + c and b ⊕ c = 2(b + c). The proof in this case proceeds ex-
actly as in Case 1 and is omitted. This completes the proof of the independence of
(A1).

Proposition 5. (A2) is independent.

Proof. Let (F, +, ·, 0, <) := (R, +, ·, 1, <). One checks immediately that all ax-
ioms are satisfied except (A2).

Proposition 6. (A3) is independent.

Proof. Let (F, +, ·, 0, <) := ({x ∈ R : x ≥ 0}, +, ·, 0, <). One checks immedi-
ately that all axioms are satisfied except (A3).

Proposition 7. (D) is independent.

Proof. Let (F, +, ·, 0, <) := (R, +, +, 0, <). It follows easily that all axioms are
satisfied except for (D).

Proposition 8. (O1) is independent.

Proof. Let F7 denote the field with seven elements and define P by P := {1, 2, 4}.
Note that P enjoys the following properties:

(i) P is closed under multiplication
(ii) P, {0}, −P forms a partition of F7

Now define a relation < on F7 as follows:

x < y ⇔ y − x ∈ P (1)

and let (F, +, ·, 0, <) := (F7, +, ·, 0, <) (where, of course, + and · are the field addi-
tion and multiplication on F7). We will show that this structure satisfies all the axioms
but transitivity of <.

It is clear that (S1), (A1)–(A3), and (D) hold.
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(O1) does not hold. Using the definition (1), we see that 1 < 2 and 2 < 4, but 1 ≮ 4,
so < is not transitive.

(O2) holds. Consider any two elements x and y in F7. Then since P, {0}, −P forms
a partition of F7, we see that exactly one of y < x , y = x , x < y holds. Thus (O2)
holds in this structure.

(O3) holds. Suppose that a < b. We must show that a + c < b + c for an arbitrary
c ∈ F7. (We only need verify this inequality since + is commutative) Simply observe
that by definition, a + c < b + c iff (b + c) − (a + c) ∈ P iff b − a ∈ P iff a < b.

(O4) holds. Suppose that a < b and that c > 0. We must show that ac < bc (and
only this inequality since · is commutative). We have by definition of < that b − a ∈ P
and c ∈ P . Since P is closed under multiplication, (b − a)c ∈ P . But then this shows
that bc − ac ∈ P . By definition, this means ac < bc.

(O5) holds. Simply note that the only positive elements are, by definition, 1, 2, and
4. Also note that from the definition, 4 < 1, 1 < 2, and 2 < 4.

(C) holds. To see this, we first make a definition. For a ∈ F7, we let Ua := {x ∈
F7 : x ≤ a}. Hence Ua is the set of elements that a bounds above. A straightforward
calculation reveals the following:

U0 = {0, 3, 5, 6},
U1 = {0, 1, 4, 6},
U2 = {0, 1, 2, 5},
U3 = {1, 2, 3, 6},
U4 = {0, 2, 3, 4},
U5 = {1, 3, 4, 5},
U6 = {2, 4, 5, 6}.

Suppose now that S ⊆ F7 is any nonempty set bounded above. We must show that S
has a least upper bound. (Note that this does not follow immediately from the finiteness
of S. There are examples of finite non-transitively ordered sets which are bounded
above with no least upper bound.) Since S is bounded above, it follows that S ⊆ Ux

for some x ∈ F7. Thus S has at most 4 elements. Suppose S is a singleton {y}. Then
by trichotomy y is trivially a least upper bound for S. Suppose that S has exactly two
elements a and b. Then we may assume a < b. But then b is a least upper bound for S
by trichotomy again. If S has 3 or 4 elements, then it is easy to see from the previous
list that x is the only upper bound of S, hence trivially must be the least upper bound.
This proves that (C) holds and completes the proof of the proposition.

Proposition 9. (O2) is independent.

Proof. Simply let (F, +, ·, 0, <) := (R, +, ·, 0, ∅).

Proposition 10. (O3) is independent.

Proof. Let (F, +, ·, 0, <) := (R, +, ·, 0, P) where P is defined as follows:
For real numbers x and y, define x Py iff either:

(i) x ≤ 0 and x < y or
(ii) x > 0, y > 0, and y < x
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We have several axioms to check.
(O1) holds. To see this, suppose that x Py and y Pz. We must show that x Pz. Con-

ditions (i) and (ii) above yield 4 cases to consider.

Case 1. x ≤ 0, x < y, y ≤ 0, y < z: then x ≤ 0 and x < z. Thus by definition, we
have x Pz.

Case 2. x ≤ 0, x < y, y > 0, z > 0, z < y: we have x ≤ 0 and z > 0. Thus x < z.
But then x ≤ 0 and x < z, and so by definition we have x Pz.

Case 3. x > 0, y > 0, y < x , y ≤ 0, y < z: this is contradictory and not an actual
possibility.

Case 4. x > 0, y > 0, y < x , y > 0, z > 0, z < y: then observe that x > 0, z > 0,
and z < x . Hence by definition we again obtain x Pz.

(O2) holds. Consider two distinct real numbers x and y. Then we may assume that
x < y. If x ≤ 0, then we see by definition that x Py. Otherwise, x > 0. But then x > 0,
y > 0, and x < y. Thus by definition we have y Px . Hence any two real numbers are
equal or compare under P . It is clear that the relation P is irreflexive. Hence as P is
transitive, it follows that P satisfies trichotomy on R.

(O3) fails. Observe that by definition 0P1, but 1P2 does not hold.
(O4) holds. Suppose that a Pb and 0Pc. We must show acPbc. Note by definition

that 0Pc is equivalent to 0 < c. We now look at both possibilities for a Pb. Suppose
that a ≤ 0 and a < b. Then ac ≤ 0 and ac < bc. But then by definition, acPbc.
Suppose instead that a > 0, b > 0, and b < a. Then ac > 0, bc > 0, and bc < ac.
Hence again by definition we obtain acPbc. This proves that (O4) holds.

(O5) holds. Suppose 0Px . We must find a y with 0Py and y Px . Since 0Px , we see
that 0 < x . Simply pick any y with x < y. Then it follows that 0Py and y Px .

(C) holds. Let S be any nonempty subset of R bounded above with respect to the
ordering P . We distinguish two cases:

Case 1. S ⊆ (−∞, 0] (here (−∞, 0] is defined with respect to the usual order <

on R). Then the ordering P on S coincides with the usual order < on R. Thus the least
upper bound of S with respect to P is equal to the least upper bound of S with respect
to < and we are done.

Case 2. S contains strictly positive elements. Recall that positive with respect to
P coincides with positive with respect to <. By hypothesis, S is bounded above with
respect to P . Let u be an arbitrary upper bound. If s is any positive element of S, then
s Pu. But then by definition, s > 0, u > 0, and u < s. In particular, u is a lower bound
(with respect to <) of the collection of positive elements of S. Let u∗ be the greatest
lower bound (with respect to <) of the collection of positive elements of S. Then it
is easy to see that u∗ is a least upper bound of S with respect to the order P . This
completes the proof.

Proposition 11. (O4) is independent.

Proof. Define an ordering P on the reals by x Py iff y < x . Then note that under
this ordering 0P(−1). If (O4) held, then we could multiply through by −1 to obtain
0P1. But then by definition, this would mean that 1 < 0, which is absurd. Thus (O4)
does not hold. It is a triviality to check the remaining axioms.
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Proposition 12. (O5) is independent.

Proof. Simply consider the structure (F, +, ·, 0, <) := (Z, +, ·, 0, <).

Proposition 13. (C) is independent.

Proof. Let (F, +, ·, 0, <) := (Q, +, ·, 0, <).

We have now proved the following theorem.

Theorem 2. The axioms for a complete ordered algebra are independent.
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Proof Without Words: Powers of Two

1 + 1 + 2 + 22 + · · · + 2n−1 = 2n
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