
THE AXIOMATIZABILITY OF THE CLASS OF ROOT CLOSED
MONOIDS

K. ALAN LOPER, GREG OMAN*, AND NICHOLAS J. WERNER

Abstract. We prove that the theory of root closed monoids is axiomatizable, but
not finitely axiomatizable. Some directions for further research are presented.

All monoids in this paper are assumed cancellative and commutative.

1. Main theorem

We begin this note by recalling that an (commutative) integral domain D is inte-
grally closed provided every member α of the quotient field K of D which is a root of
some monic f(x) ∈ D[x] is actually in D. Integrally closed domains are ubiquitous
in commutative ring theory. Indeed, most of the domains studied in multiplicative
ideal theory are integrally closed. This massive class properly contains the classes of
Prüfer domains and GCD domains, for example.

The notion of “integrally closed” has a natural analog in the realm of cancellative,
commutative monoids. To wit, let S and T be monoids with S ⊆ T . Then the root
closure of S in T is the monoid Sr ⊆ T defined by Sr := {t ∈ T : tn ∈ S for some
n > 0}. Say that S is root closed in T if and only if Sr = S. Now suppose that
T = Q(S), the group of fractions of S defined by Q(S) := {x

y
: x, y ∈ S} (with the

canonical multiplication inherited from S). Then the root closure S of S is the root
closure of S in Q(S). We say that S is root closed provided S = S.

Examples of root closed monoids abound in semigroup theory as well. Recall that
a monoid M is a valuation monoid if for any x, y ∈ M , either x|y or y|x. It is a
simple matter to check that every valuation monoid is root closed. More generally,
a monoid M is a GCD monoid provided the intersection of any two principal ideals
of M is again principal (this is equivalent to every pair of elements of M , not both
zero, having a GCD in the usual ring-theoretic sense). It is an exercise to check that
every GCD monoid is root closed (see pp. 76–77 of [2]).

We now turn our attention toward answering the following question:

Question 1. Is the theory of root closed monoids finitely axiomatizable?
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Toward this end, we shall require additional terminology. Let M be a monoid and
p be a prime number. Say that M is p-root closed provided for all g ∈ Q(M): if
gp ∈M , then g ∈M . It is easy to see that

(1.1) M is root closed if and only if M is p-root closed for every prime p.

We will need the following lemma in the proof of our main result.

Lemma 1. Let p be a prime. There exists a monoid M which is q-root closed for all
primes q 6= p, but M is not p-root closed.

Proof. We define an additive monoid M by M := (N∗ × N) ∪ N(0, p). Observe that
{(1, 0), (1, 1)} ⊆ M . Therefore, {(1, 0), (0, 1)} ⊆ Q(M), and Q(M) = Z× Z follows.
To see that M is not p-root closed, note that p(0, 1) = (0, p) ∈M , yet (0, 1) /∈M . It
is a triviality to prove that M is q-root closed for all primes q 6= p. �

We are now ready to answer Question 1 in the negative.

Theorem 1. The theory of root closed monoids is axiomatizable, but not finitely
axiomatizable1.

Proof. Let ϕM be the conjunction of the cancellative, commutative monoid axioms.
Now let {pi : i ∈ N} be an enumeration of the primes. For each i ∈ N, we set
ϕi := ∀x∀y(∃z1(xpi = z1y

pi) ⇒ ∃z2(x = z2y)). Then the theory T of root closed
monoids is axiomatized by

∑
:= {ϕM}∪{ϕi : i ∈ N}. We claim that T is not finitely

axiomatizable. If so, then by The Compactness Theorem, there exists a finite
∑

0 ⊆∑
such that T = Cn(

∑
0).

2 Let n ∈ N be such that
∑

0 ⊆ {ϕM} ∪ {ϕi : 0 ≤ i ≤ n}.
By Lemma 1, there exists a monoid M which is pi-root closed for all i, 0 ≤ i ≤ n,
but is not pn+1-root closed. However, such an M is a model of

∑
0, and hence also

of T . This is a contradiction, and the proof is complete. �

2. Directions for further research

In this final section, we present two open problems. Before stating the first problem,
we recall that a monoid M is n-generated provided M can be generated by a subset
of size at most n.

Problem 1. For every positive integer n, does there exist a sentence σn such that an
n-generated monoid M is root closed if and only if M |= σn?

We prove that such a σn exists for n ≤ 2, but leave the general problem open.
First, we prove a simple lemma.

1in the language L consisting of equality, a binary function symbol ·, and a constant symbol 1.
2Cn(

∑
0) is the set of all sentences logically implied by

∑
0.
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Lemma 2. Let M be a root closed monoid for which Q(M) is cyclic. Then M is a
valuation monoid.

Proof. If Q(M) is a finite cyclic group, then M is a group, and the conclusion is
patent. Thus assume that M is a nontrivial submonoid of the additive group Z
of integers. If M contains both positive and negative integers, then M is a group
([1], Theorem 2.6), and we are done as above. So assume that M ⊆ N. We have
Q(M) = 〈g〉 for some positive integer g. Now pick any m ∈M−{0}. Then mg ∈M .
Since M is root closed, g ∈ M . It is now clear that M ∼= N, and hence M is a
valuation monoid in this case as well. �

Corollary 1. We may take σ1 := ∀x∀y∃z(xz = y ∨ yz = x).

It is easy to see that σ1 defined above must be modified to characterize the 2-
generated root closed monoids. To wit, simply consider the additive monoid M :=
N×N. It is obvious that M is root closed, however, neither of (0, 1) and (1, 0) divides
the other in M . On the other hand,

Lemma 3. Every root closed 2-generated monoid is a GCD monoid.

Proof. Let M be 2-generated. If Q(M) is cyclic, then by Lemma 2, M is a valuation
monoid. Thus M is a GCD monoid as well. So assume that Q(M) is not cyclic. If
Q(M) is finite, then M is a group and we are clearly done. We have two remaining
cases to consider.

Case 1. Q(M) ∼= Z×Z. Then we may assume that M := Na+Nb is a submonoid
of Z × Z. Since M does not embed into Z, it follows that a and b are linearly
independent over Q. But then M ∼= N× N, and M is a GCD monoid.

Case 2. Q(M) ∼= Z×Z/〈m〉 for some positive integer m. Again, we assume M is a
submonoid of Z×Z/〈m〉, and let π1 : M → Z be projection onto the first coordinate.
It is easy to see that if π1(M) contains both positive and negative integers, then
M is a group, and we’re done. So assume that π1(M) ⊆ N. For any g ∈ Z/〈m〉,
m(0, g) = (0, 0) ∈M . Since M is root closed, we see that

(2.1) {0} × Z/〈m〉 ⊆M.

Now pick x ∈ π1(M)−{0} and let n > 0 and g ∈ Z/〈m〉 be arbitrary. Then (xn, α) ∈
M for some α ∈ Z/〈m〉. It follows at once from (2.1) that x(n, g) = (xn, xg) ∈ M .
Since M is root closed, (n, g) ∈M . We have shown that M = N×Z/〈m〉, and hence
M is a valuation monoid. We deduce that M is a GCD monoid, and the proof is
complete. �

Corollary 2. We may take σ2 to be the sentence which formalizes “M is a GCD
monoid.”
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We leave the general investigation of Problem 1 to the reader. However, we remark
that there exist root closed 3-generated monoids which are not GCD monoids. For
example, let M be the submonoid of Z × Z generated by a := (−1, 2), b := (0, 1),
and c := (1, 1). Then it is easy to see that M is root closed, but (M + a) ∩ (M + b)
is not principal.

Finally, we conclude the paper with the following related problem:

Problem 2. Does there exist a sentence σ such that for all finitely generated monoids
M : M is root closed if and only if M |= σ?
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