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A characterization of the cyclic
groups by subgroup indexes

LetG be a group. ThenG is cyclic if there exists some g ∈ G such thatG = 〈g〉 :=
{gm : m ∈ Z}. For every positive integer n, Z/〈n〉 (the additive group of integers
modulo n) is the unique cyclic group on n elements, and Z is the unique infinite cyclic
group (up to isomorphism). The cyclic groups play a nontrivial role in abelian group
theory. For instance, The Fundamental Theorem of Finitely Generated Abelian Groups
states that every finitely generated abelian group is a finite direct sum of cyclic groups
(see Hungerford [7], Theorem 2.1). Further, every abelian group G for which there is
a finite bound on the orders of the elements of G is a (possibly infinite) direct sum of
cyclic groups (cf. Fuchs [6], Theorem 11.2).

Given the fundamental role the cyclic groups play in group theory, it is hardly a
surprise that many characterizations of these groups have appeared in the literature
over the years; see the bibliography for a sample of such papers. The purpose of this
note is to present a new characterization via subgroup indexes. Recall that if G is a
group and H < G (that is, H is a subgroup of G), then the index (G : H) of H
in G is simply the cardinality of the set of right cosets of H in G; more compactly,
(G : H) = |{Hg : g ∈ G}| (equivalently, (G : H) is the cardinality of the set of left
cosets of H in G).

It is not hard to show that distinct subgroups of a finite cyclic group have distinct
cardinalities (we will shortly present a proof of this assertion). It then follows im-
mediately that distinct subgroups of a finite cyclic group G have distinct indexes in
G. The same property is enjoyed by the infinite cyclic group Z of integers. To wit,
every subgroup of Z is of the form 〈m〉 for some integer m ≥ 0. Note that if m
and n are distinct positive integers, then m = (Z : 〈m〉) 6= n = (Z : 〈n〉). Further,
(Z : {0}) = ℵ0. Hence distinct subgroups of Z have distinct indexes in Z.

In this paper, we show that the previous property enjoyed by the cyclic groups
completely distinguishes them within the class of all groups. That is, we prove that an
arbitrary group G is cyclic if and only if distinct subgroups of G have distinct indexes
in G.

The finite case
LetG be a finite group. We begin with an easy lemma showing that distinct subgroups
of G have distinct indexes in G if and only if distinct subgroups of G have distinct
cardinalities.

Lemma 1. Let G be a finite group, and let H and K be subgroups of G. Then
(G : H) 6= (G : K) if and only if |H| 6= |K|.

Proof. Assume that G is a finite group and that H and K are subgroups of G. Then
simply note that (G : H) = (G : K) if and only if |G|/|H| = |G|/|K| if and only if
1/|H| = 1/|K| if and only if |H| = |K|. The result follows.

Remark 1. The previous lemma can fail badly if G is infinite. To see this, let m and
n be distinct positive integers. Then (Z : 〈m〉) 6= (Z : 〈n〉), yet |〈m〉| = |〈n〉| = ℵ0.
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It is well-known that if G is a finite cyclic group, then distinct subgroups of G have
distinct cardinalities (cf. [7], Exercise 6 of Section 1.3 or Lang [10], p. 24). We sketch
a short proof of this fact below.

Proposition 1. Let G be a finite cyclic group. Then distinct subgroups of G have
distinct indexes in G.

Proof. Let G := 〈g〉 be a finite cyclic group of order m. By Lemma 1, it suffices to
show that distinct subgroups of G have distinct cardinalities. Let H be a subgroup
of G. Then H is cyclic, whence H = 〈gk〉 for some k with 1 ≤ k ≤ m. Now let
d :=gcd(k,m). We claim that 〈gk〉 = 〈gd〉. Since d|k, the inclusion 〈gk〉 ⊆ 〈gd〉 is
clear. To prove the reverse implication, recall that αk + βm = d for some integers α
and β. Hence m|(d− αk). We conclude that gd = gαk = (gk)α, and hence 〈gd〉 ⊆
〈gk〉.

To finish the proof, we suppose that H1 and H2 are subgroups of G of the same
cardinality. We will show that H1 = H2. By our work above, it follows that H1 =
〈gd1〉 and H2 = 〈gd2〉 for some positive integers d1 and d2 which divide m. Thus
|H1| = |〈gd1〉| = m

d1
= |H2| = m

d2
. We deduce that d1 = d2, and therefore H1 =

H2.

Remark 2. There are infinite groups G with the property that distinct subgroups of
G have distinct cardinalities, yet such groups are not even close to being cyclic (they
are not finitely generated). We remind the reader that the quasi-cyclic group Z(p∞),
p a prime, is the subgroup of Q/Z consisting of all fractions whose denominator is
a power of p (modulo Z). It turns out that an infinite group G has the property that
distinct subgroups of G have distinct cardinalities if and only if G is a quasi-cyclic
group. This was shown by W.R. Scott in Scott [17].

We now turn our attention to proving the converse of Proposition 1 within the class
of finite groups. Our next proposition is known (see Corollary 7.14 of Isaacs [8] and
Theorem 2.17 of Rotman [16]). We give two proofs: the first utilizes only undergrad-
uate group theory while the second invokes a less well-known result due to Baer. We
first state and prove a lemma.

Lemma 2. Let G be a group (not assumed to be finite) for which distinct subgroups
of G have distinct cardinalities. Then every subgroup of G is normal.

Proof. Let G be a group with the above property, and let H be an arbitrary subgroup
ofG. Further, let g ∈ G be arbitrary. Then the map h 7→ ghg−1 is a bijection between
H and gHg−1, whence H = gHg−1. Since g was arbitrary, we deduce that H is
normal in G.

Proposition 2. Let G be a finite group with the property that distinct subgroups of
G have distinct indexes in G. Then G is cyclic.

Proof 1. Assume thatG is a finite group such that distinct subgroups ofG have distinct
indexes in G. Then by Lemma 1, distinct subgroups of G have distinct cardinalities.
If G is trivial, then of course G is cyclic and we are done. Thus suppose that G is
nontrivial, and let |G| = pn11 p

n2
2 · · · p

nk
k be the prime factorization of |G|. Fix i with

1 ≤ i ≤ k, and let Gi be a Sylow pi-subgroup of G. Since distinct subgroups of
G have distinct cardinalities, we conclude that Gi is the unique (normal) Sylow pi-
subgroup of G. Thus G is the direct product of its Sylow subgroups (this is well-
known; see [7], p. 96, for example):
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G = G1 ×G2 × · · · ×Gk. (1)

We now prove that Gi is cyclic. Without loss of generality, we may assume that
i = 1. Recall from above that |G1| = pn11 ; for simplicity, we set p := p1 and n := n1.
Suppose by way of contradiction that G1 is not cyclic. As stated in the introduction,
every group is a union of its cyclic subgroups; let {H1, H2, . . . ,Hs} be the collection
of cyclic subgroups ofG1. Note that asG1 is not cyclic, eachHi has cardinality strictly
less than |G1| = pn. For each i satisfying 1 ≤ i ≤ s, it follows from Lagrange’s The-
orem that |Hi| = pj for some integer j with 0 ≤ j < n. As distinct subgroups of G
have distinct cardinalities, clearly G1 inherits this property as well. We conclude that
for each j with 0 ≤ j < n, at most one Hi has order pj . Hence

|G1| = |H1 ∪H2 ∪ · · · ∪Hs| ≤ 1 + p+ p2 + · · ·+ pn−1 =
pn − 1

p− 1
< pn = |G1|,

and we have reached a contradiction. Thus G1 is cyclic. We deduce that

G ∼= Z/〈pn11 〉 × Z/〈pn22 〉 × · · · × Z/〈pnkk 〉 ∼= Z/〈pn11 p
n2
2 · · · p

nk
k 〉, (2)

whence G is cyclic. This completes the first proof. �

Proof 2. We first show that G is abelian. Suppose not. Then by Lemma 2, G is a
non-abelian group all of whose subgroups are normal, i.e., G is a Hamiltonian group.
A result of Baer (see Baer [2]) implies that G ∼= Q8 × P for some abelian group
P which has no elements of order 4 and for which all elements of P have finite or-
der (recall that Q8 is the quaternion group on 8 elements given by the presentation
Q8 := 〈−1, i, j, k|(−1)2 = 1, i2 = j2 = k2 = ijk = −1〉). But then Q8 inherits
the property that distinct subgroups have distinct cardinalities, contradicting the fact
that Q8 has three subgroups of order 4. Thus G is abelian, and hence, by The Fun-
damental Theorem of Finitely Generated Abelian Groups, G is isomorphic to a finite
direct product of cyclic groups each of prime power order. No two distinct summands
can have orders that are powers of the same prime p, lestG have two distinct subgroups
of order p. We deduce as in the conclusion of Proof 1 that G is cyclic. �

Combining Proposition 1 and Proposition 2 yields

Theorem 1. LetG be a finite group. ThenG is cyclic if and only if distinct subgroups
of G have distinct indexes in G.

The infinite case
The goal of this section is to extend Theorem 1 to infinite groups. In particular, we will
show that for any infinite group G, distinct subgroups of G have distinct indexes in G
if and only if G ∼= Z. For brevity, let us say that an infinite group G with the property
that distinct subgroups of G have distinct indexes in G has property (D). We begin by
showing that all groups with property (D) are countable.

Lemma 3. Suppose G is a group with property (D). Then G is countable. Hence
every nontrivial subgroup of G has finite index in G.
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Proof. Suppose by way of contradiction that G is an uncountable group with property
(D), and let g ∈ G be arbitrary. Now set H := 〈g〉, and let {gi : i ∈ I} be complete
set of right coset representatives for H in G. Finally, set X := {Hgi : i ∈ I}. Define
ϕ : H ×X → G by ϕ((gm, Hgi)) := gmgi. One checks easily that ϕ is a bijection
betweenH ×X andG. Thus |G| = |〈g〉| · (G : 〈g〉). SinceG is uncountable and 〈g〉
is countable, it follows from basic cardinal arithmetic that |G| = (G : 〈g〉) (see Lang
[10], Corollary 3.8, Appendix 2). Now choose any x ∈ G− {e}. Then (G : {e}) =
|G| = (G : 〈x〉). AsG has property (D), we conclude that 〈x〉 = {e}, a contradiction.
HenceG is countable. IfH 6= {e} is any subgroup ofG, then (G : H) ≤ |G| = (G :
{e}) 6= (G : H). We deduce that (G : H) < |G| = ℵ0, and thus H has finite index
in G.

It has been known for some time (though not well-known) that Z is the unique
infinite group G with the property that every nontrivial subgroup of G has finite index
in G. Fedorov established this result in Fedorov [5]. More recently, Charles Lanski
gave a self-contained proof of this result using only undergraduate-level group theory.
It is not our purpose to give such a detailed proof in this paper; we refer the interested
reader instead to Lanski [11]. Assuming a theorem of Schur, we can still present an
elementary proof of Fedorov’s result. The details follow.

Let G be a group, and recall that an element g ∈ G is a commutator if g =
xyx−1y−1 for some x, y ∈ G. The derived subgroup G′ of G is the subgroup of
G generated by all commutators of G. It is easy to see that G is abelian if and
only if G′ = {e}. In some sense, if G is close to being abelian, we may expect G′

to be small. We now remind the reader that the center Z(G) of G is defined by
Z(G) := {x ∈ G : xg = gx for all g ∈ G}.

Suppose that Z(G) has finite index in an infinite group G. Then there is a sense
in which Z(G) is large. Thus we may conjecture that G is “close to” being abelian.
If this is correct, then (as noted above) we may expect the derived subgroup G′ of G
to be “small”. This conjecture (formalized appropriately) is correct, and is known as
Schur’s Theorem. We refer the reader to Theorem 2 of [11] for a self-contained proof.

Fact 1 (Schur’s Theorem). For any groupG, if (G : Z(G)) is finite, then so isG′.

We now prove a final lemma, then present the main theorem of this section.

Lemma 4. Let G be a group with property (D). Then G is finitely generated.

Proof. We assume thatG has property (D) and we let g0 6= e be an arbitrary element of
G. Now setH := 〈g0〉. By Lemma 3, (G : H) is finite; let {gi : 1 ≤ i ≤ n} be a com-
plete set of right coset representatives ofH inG. We claim thatG = 〈g0, g1, . . . , gn〉.
To see this, let g ∈ G be arbitrary. Then Hg = Hgi for some i, 1 ≤ i ≤ n. But then
gg−1i ∈ H = 〈g0〉. Thus there is an integerm such that gg−1i = gm0 . We conclude that
g ∈ 〈g0, gi〉 ⊆ 〈g0, g1, . . . , gn〉, and the proof is complete.

Theorem 2. LetG be an infinite group. ThenG is cyclic if and only ifG has property
(D).

Proof. As noted in the introduction, Z has property (D). Conversely, suppose that G
has property (D). We first prove that G is abelian. By Lemmas 3 and 4, G is countable
and finitely generated; say G = 〈x1, x2, . . . , xn〉. We may assume that each xi is a
non-identity element of G. For each i, 1 ≤ i ≤ n, recall that the centralizer C(xi) of
xi is defined by C(xi) := {g ∈ G : gxi = xig}. Note that each C(xi) is a subgroup
ofG containing the non-identity element xi. Further, it is easy to see that for all g ∈ G,
g ∈ Z(G) if and only if g ∈ C(xi) for all i, 1 ≤ i ≤ n. We deduce from Lemma 3
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that each C(xi) has finite index in G. But then C(x1) ∩ C(x2) ∩ · · · ∩ C(xn) =
Z(G) is also of finite index in G (it is well-known that a finite intersection of finite
index subgroups also has finite index; see for example Proposition 4.9 of [7]). We
now invoke Schur’s Theorem to conclude that G′ is finite. But then observe that (G :
G′) = (G : {e}) = ℵ0. Since G has property (D), we see that G′ = {e}, and hence
G is abelian. By The Fundamental Theorem of Finitely Generated Abelian Groups,
it follows that G ∼= Z ×H for some group H which is a finite direct sum of cyclic
groups. It remains to show thatH is trivial. To see this, note that bothH and {e} have
index ℵ0 in the group Z×H . Since Z×H has property (D), we conclude that H is
trivial, and hence G ∼= Z.

Remark 3 Consider the following weaker property (D′): every nontrivial subgroup of
G has index less than |G|. It is not hard to prove that an infinite group G has property
(D′) if and only if G is cyclic (one first shows that G is countable and then invokes
Fedorov’s result). But note that this property is not strong enough to distinguish the
finite cyclic groups as every finite group has property (D′).

Conclusion
Combining Theorem 1 and Theorem 2 yields the main result of the paper:

Theorem 3. Let G be an arbitrary group. Then G is cyclic if and only if distinct
subgroups of G have distinct indexes in G.

Summary. In this note, we provide a new characterization of the cyclic groups. Recall that
if G is a group and H is a subgroup of G, then the index of H in G is the cardinality of the
set of right (left) cosets of H in G. We prove that an arbitrary group G is cyclic exactly when
distinct subgroups of G have distinct indexes in G.
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3. C. Bagiński and J. Krempa, On a characterization of infinite cyclic groups, Publ. Math. Debrecen (1-2) 63

(2003) 249–254.
4. M. Deaconescu and R. Khazal, A characterization of the finite cyclic groups, An. Univ. Timisoara Ser. Math.-

inform. (1) 32 (1994) 37–40.
5. Y. Fedorov, On infinite groups of which all nontrivial subgroups have a finite index, Uspekhi Mat. Nauk. 6

(1951) 187–189.
6. L. Fuchs, Abelian Groups, Publishing House of the Hungarian Academy of Sciences, Budapest, 1958.
7. T. Hungerford, Algebra. Reprint of the 1974 original., Graduate Texts in Mathematics, 73. Springer-Verlag,

New York-Berlin, 1980.
8. M. Isaacs, Algebra: a Graduate Course. Reprint of the 1994 original. Graduate Studies in Mathematics, 100.

American Mathematical Society, Providence, RI, 2009.
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Mexicana, México, 1999.

VOL. 45, NO. 1, JANUARY 2014 THE COLLEGE MATHEMATICS JOURNAL 5



Mathematical Assoc. of America College Mathematics Journal 45:1 June 25, 2015 7:45 p.m. ”CMJ-D-15-00018 (revised)”.tex page 6

14. N. Ramakrishna, T. Eswarlal, and Saibaba, G.S.V.S., A characterization of cyclic groups in terms of L-fuzzy
subgroups, Southeast Asian Bull. Math. (5) 33 (2009) 913–916.

15. N. Ramakrishna and T. Eswarlal, A characterization of cyclic groups in terms of L-fuzzy subgroups II,
Southeast Asian Bull. Math. (6) 33 (2009) 1171–1174.

16. J. Rotman, An Introduction to the Theory of Groups. Fourth edition., Graduate Texts in Mathematics, 148.
Springer-Verlag, New York, 1995.

17. W.R. Scott, Groups and cardinal numbers, Amer. J. Math. 74 (1952) 187–197.
18. F. Szász, On groups every cyclic subgroup of which is a power of the group, Acta Math. Acad. Sci. Hungar.

6 (1955) 475–477.
19. F. Szász, On groups of which all non-trivial powers are cyclic groups, Magyar Tud. Akad. Mat. Fiz. Oszt.
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