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Abstract. Let R be a commutative unital ring, and let Spec(R) := P(R) be the collection of
prime ideals of R. Further, let NP(R) denote the collection of proper nonprime ideals of R and
set NP(R)1 := NP(R)∪ {R}. In this note, we investigate some closure properties relative to these
collections of ideals with respect to ideal addition and multiplication. Among the main objects
of our study are rings R for which P(R) + NP(R) ⊆ P(R), NP(R)1 + NP(R)1 ⊆ NP(R)1, or
P(R) · P(R) ⊆ P(R). Directions for further research are indicated.

1. Introduction

Let R be a commutative unital ring. As stated in the abstract, the purpose of this note is to study
various arithmetic closure properties relative to the set Spec(R) of prime ideals and its complement
(within the set of all ideals of R). We begin with two very simple examples of the sort of questions
addressed in this paper.

Proposition 1. Let R be a commutative ring with identity.

(1) The sum of distinct prime ideals of R is nonprime (possibly R itself) if and only if R is
zero-dimensional (that is, every prime ideal of R is maximal).

(2) The sum of a prime ideal of R and a nonprime ideal of R is a nonprime ideal of R if and
only if R is a field.

Proof. Suppose R is a commutative ring with 1.

(1) If R is zero-dimensional, then distinct prime ideals P and Q of R are distinct maximal ideals
of R. Thus P + Q = R, and P + Q is not prime. Conversely, suppose R is not zero-dimensional.
Then there are prime ideals P and Q of R such that P ( Q. But P +Q = Q and hence P +Q is
prime, a contradiction.

(2) If R is a field, then {0} is the only prime ideal of R and R is the only nonprime ideal of R.
Moreover, {0} + R = R, which is not a prime ideal. Conversely, suppose that the sum of a prime
ideal and a nonprime ideal is nonprime. We claim that {0} is a prime ideal of R. If not, then let
P be any prime ideal of R. Then P + {0} = P , which is prime. This contradicts our assumption,
and hence R is a domain. Suppose R is not a field, and let P be a nonzero prime ideal of R. Pick
p ∈ P\{0}. Then 〈p2〉 is not a prime ideal, yet 〈p2〉 + P = P , which is prime; this contradiction
concludes the proof. �
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We pause to introduce some notation to which we shall refer throughout the paper for the sake of
brevity. Let R be a commuttive unital ring. Define NP(R) to be the collection of proper nonprime
ideals of R and set NP(R)1 := NP(R) ∪ {R}. Now suppose that A, B, and C are sets of ideals of
R. Write A+ B ⊆ C (respectively, A · B ⊆ C) if the sum of an ideal in A and an ideal in B results
in an ideal in C (respectively, if the product of an ideal in A and an ideal in B results in an ideal
in C). If the sum (product) of distinct ideals of A and B results in an ideal of C, then we denote
this by A+d B ⊆ C (respectively, A ·d B ⊆ C).

The paper is organized as follows. In the next section, we prove some results on rings R with var-
ious additive closure assumptions on P(R) and NP(R) (NP(R)1), similar in spirit to Proposition
1 above (yet less trivial). The third section is devoted to studying rings R for which P(R) is closed
under ideal multiplication. Finally, we close the article with some open questions and directions for
further research. Throughout this paper, “ring” will always denote a commutative ring
with identity 1 6= 0. We list [3] and [4] as references for fundamental results in commutative ring
theory.

2. Some questions involving additive closure

2.1. Rings R for which NP(R) +d NP(R) ⊆ P(R). Continuing in the spirit of Proposition 1,
we consider a more difficult question. Before presenting the first result of this subsection, we recall
that a ring V is a discrete valuation ring if V is a principal ideal domain with a unique nonzero
prime ideal m. We now present our next proposition (compare to Proposition 1).

Proposition 2. Let R be a ring. Then NP(R) +d NP(R) ⊆ P(R) if and only if R is a field, R
is the product of two fields, or R ∼= V/〈m2〉 for some discrete valuation ring (V,m).

Proof. It is straightforward to check that the above rings satisfy the given condition. Conversely, let
R be a ring and suppose that NP(R) +d NP(R) ⊆ P(R) (that is, the sum of two distinct, proper
nonprime ideals of R is a prime ideal). For brevity, let us say that such a ring R has property (†).
We consider two cases.

Case 1. R is an integral domain. We claim that R is a field in this case. Suppose not. Then
there is some nonzero, nonunit d ∈ R. Observe that the ideals 〈d2〉 and 〈d3〉 are proper, distinct,
nonprime ideals of R. Moreover, 〈d2〉+ 〈d3〉 = 〈d2〉, which is not prime. This contradicts property
(†), and we are done with this case.

Case 2. R is not an integral domain. We claim that

(2.1) every proper, nonzero ideal of R is prime.

Suppose not, and let I be a proper, nonzero ideal of R which is nonprime. Since R is not a
domain, {0} is a (proper) nonprime ideal of R. Since R has property (†), {0} + I = I is prime, a
contradiction. This proves (2.1).

Next, let I be an arbitrary proper, nonzero ideal of R. Then I is prime, and thus R/I is an
integral domain. It is clear that R/I inherits property (†) from R. By our work in Case 1 above,
R/I is a field. But then I is a maximal ideal of R. We have shown that
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(2.2) every proper, nonzero ideal of R is maximal.

Such an ideal I cannot properly contain a nonzero ideal J of R, since this would contradict the
maximality of J . It follows that every proper, nonzero ideal of R contains only the zero ideal as a
proper subideal. Therefore R is an Artinian ring. Thus

(2.3) R =
n∏
i=1

Ri for some Artinian local rings R1, . . . , Rn.

We claim that n ≤ 2. Suppose that n ≥ 3. Then I := {0} × {0} × R3 × · · · × Rn is a proper,
nonzero ideal of R which is not prime. This contradicts (2.1) above, and hence n ≤ 2, as desired.
We now treat the cases n = 1 and n = 2.

Suppose first that n = 1. Then R = R1, and hence R is an Artinian local ring. It follows
from (2.1) that P is the only proper nonzero ideal of R. But then R is a local Artinian principal
ideal ring, thus the homomorphic image of a discrete valuation ring (V,m) (this is a consequence
of Cohen’s structure theorems for complete local rings; see [5], Theorem 3.3). Because R has but
three ideals, it follows that R ∼= V/〈m2〉.

Now suppose that n = 2. Then R = R1 × R2. We will show that R1 and R2 are fields. Let’s
suppose that R1 is not a field. Note that R is not an integral domain, and thus the zero ideal {0} of
R is nonprime and proper. Also, the ideal I := {0}×R2 is nonzero and proper, and since R/I ∼= R1

is not a domain (since R1 is Artinian and not a field), I is not a prime ideal of R, and we have a
contradiction to (2.1). Since R has property (†), {0}+ I = I is prime, and we have a contradiction.
A symmetric argument shows that R2 is also a field, and this completes the proof. �

2.2. Rings R for which NP(R) + P(R) ⊆ P(R). It turns out that this class properly contains
the class studied in the previous subsection. As such, it may not be a surprise that the proof of
our next proposition is a bit more intricate.

Proposition 3. Let R be a ring. Then NP(R) + P(R) ⊆ P(R) if and only if R is a zero-
dimensional local ring or R is a product of two fields.

Proof. For brevity, let us say that a ring satisfying the above containment has property (◦). It is
easy to see that a zero-dimensional local ring and the product of two fields both have property (◦).

To prove the converse, we establish two preliminary results.

(2.4) If S is a domain in which every proper ideal of S is prime, then S is a field.

Suppose that S is not a field. Then there is some nonzero, nonunit d ∈ S. Therefore, 〈d2〉 is a
proper ideal of S, hence is prime. Thus d ∈ 〈d2〉, and because S is a domain, d is a unit. This
contradiction verifies (2.4).

(2.5) If every proper, nonzero ideal of a ring T is prime, then T has at most two prime ideals.
3
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To see this, suppose that I is a proper, nonzero ideal of T . Then by assumption, I is prime. Thus
T/I is a domain with the property that every proper ideal of T/I is prime. By (2.4), T/I is a field.
But then I is a maximal ideal of T . This shows that every proper, nonzero ideal of T is maximal,
and hence (2.2) holds for T . We may invoke the proof of Proposition 2 to conclude that either T is
an Artinian local ring or T ∼= T1 × T2 for some Artinian local rings T1 and T2. In any case, T has
at most two prime ideals.

We are now ready to classify those rings which satisfy property (◦), that is, we determine the
rings R satisfying NP(R) + P(R) ⊆ P(R). Let R be such a ring. We first claim that

(2.6) every prime ideal of R is maximal.

To see this, let J be a prime ideal of R. Then note that R/J := D also has property (◦). Now,
{0} is a prime ideal of D. Because D has property (◦), it follows that D does not possess a proper,
nonprime ideal. In other words, every proper ideal of D is prime. By (2.4), D is a field. It follows
that J is maximal, completing the proof of (2.6).

Next, let rad(R) denote the Jacobson radical of R. Our next claim is that

(2.7) every proper, nonprime ideal of R is contained in rad(R).

Indeed, let I be a proper, nonprime ideal of R and suppose by way of contradiction that I * rad(R).
Then there is some x ∈ I and maximal ideal M of R such that x /∈M . It follows that M + I = R.
However, since M is maximal, M is also prime. Further, I is proper and nonprime. As R has
property (◦), M + I is prime, contradicting that M + I = R, and (2.7) is established.

Now, let S := R/rad(R). Then it follows immediately from (2.7) that every proper, nonzero
ideal of S is prime. Invoking (2.5), we conclude that S has at most two prime ideals. Observe that
by (2.6), rad(R) coincides with nil(R), the nilradical of R. But then for every prime ideal P of R,
rad(R) ⊆ P . We deduce that since S has at most two prime ideals, also

(2.8) R has at most two prime ideals.

If R has but one prime ideal, then R is a zero-dimensional local ring, and we are done. Thus
suppose that R has two prime ideals P1 and P2. We claim that

(2.9) P1 and P2 are principal.

It suffices to prove that P1 is principal. By (2.6), P1 and P2 are maximal, so P1 * P2. Let x ∈ P1\P2.
We claim that 〈x〉 is a prime ideal of R. Suppose not. Because R has property (◦), P2 + 〈x〉 is
a prime ideal of R, thus either P2 + 〈x〉 = P2 or P2 + 〈x〉 = P1. The former is impossible, lest
x ∈ P2, and the latter is impossible since then P2 ( P1, contradicting the maximality of P2. We
have shown that 〈x〉 is a prime ideal of R. Thus 〈x〉 = P1 or 〈x〉 = P2. Since x /∈ P2, we deduce
that 〈x〉 = P1, and P1 is principal, as claimed.

Applying Cohen’s Theorem, we deduce that R is a principal ideal ring, thus Noetherian. By
(2.6), R is zero-dimensional, and thus R is Artinian. Because R has exactly two prime ideals, it
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follows from the structure theorem for Artinian rings that R = R1 × R2 for some Artinian local
rings R1 and R2. We will be done if we can show that R1 and R2 are fields. By symmetry, it suffices
to prove that R1 is a field. Suppose not. Let M2 be the maximal (prime) ideal of R2 and M1 be
the maximal (prime) ideal of R1. Observe that R1 + M2 is a maximal, thus prime, ideal of R and
{0}+R2 is a nonprime ideal of R since R/({0}+R2) ∼= R1 is not a field, hence also not a domain
(since R1 is Artinian). However, R has property (◦), and thus (R1 + M2) + ({0} + R2) = R is a
prime ideal of R, which is absurd. This concludes the proof. �

2.3. Rings R for which NP(R)1 +NP(R)1 ⊆ NP(R)1. We conclude this section by studying
rings R for which the sum of two nonprime ideals is again nonprime (we remind the reader that
R is included in the collection NP(R)1). This class of rings is quite broad. Indeed, this class
contains all valuation domains and, more generally, all chained rings. We do not have a complete
characterization of this class of rings, but we describe them completely within the class of Noetherian
domains. First, recall that an integral domain D is a unique factorization domain (UFD) if every
nonzero nonunit of D can be written uniquely (up to order and associates) as a finite product of
prime elements of D (recall that an element p ∈ D is prime if p is a nonzero nonunit and whenever
x, y ∈ D with p|xy, then either p|x or p|y).

Proposition 4. Let D be a Noetherian domain which is not a field. Then D is a discrete valuation
ring (DVR) if and only if NP(D)1 +NP(D)1 ⊆ NP(D)1.

Proof. Let D be an arbitrary Noetherian domain which is not a field. If D is a valuation ring,
the result is clear since the sum of any two ideals in a chained ring is simply the max of the two
(relative to set-theoretic containment). Suppose now that the collection of nonprime ideals of D
is closed under addition. We shall prove that D is a DVR. Let P be a nonzero prime ideal of D
(such a P exists since D is not a field). Since D is Noetherian, (as is well-known) D satisfies the
descending chain condition on prime ideals (that is, if S is a nonempty set of prime ideals of D,
then there is some Q ∈ S such that there is no M ∈ S such that M ( S). Therefore, there exists a
nonzero prime ideal Q ⊆ P such that there is no prime ideal Q′ such that {0} ( Q′ ( Q. Since D is
Noetherian, Q is finitely generated. Let n be the least positive integer such that Q can be generated
by n elements. We claim that n = 1. Suppose by way of contradiction that n > 1, and let q1, . . . , qn
generate Q. By minimality of Q and n, it follows that Q = 〈q1〉+ 〈q2, . . . , qn〉, yet neither 〈q1〉 nor
〈q2, . . . , qn〉 are prime ideals, and this contradicts the assumption on D. We conclude that Q = 〈q〉
for some q ∈ D. Since Q is a prime ideal, we deduce that q is a prime element of D. Since P was
an arbitrary nonzero prime ideal of D, it follows that every nonzero prime ideal of D contains a
prime element of D. As is well-known, this implies that D is a unique factorization domain (this is
an exercise in many algebra texts; it can be found, for example, in Robert Gilmer’s Multiplicative
Ideal Theory ([3])). In particular,

(2.10) every nonzero nonunit of D can be written as a finite product of prime elements of D.

Next, we claim that
5
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(2.11) D has a unique maximal ideal.

Suppose not, and let J1 and J2 be distinct maximal ideals of D. Then J1 + J2 = D, and thus

(2.12) j1 + j2 = 1 for some j1 ∈ J1 and j2 ∈ J2.

Since J1 and J2 are proper ideals, it follows that both j1 and j2 are nonzero nonunits. Now let 〈p〉
be a minimal nonzero prime ideal of D (such exists by our work above). Then observe from (2.12)
that 〈p〉 = 〈j1p〉+〈j2p〉. But then 〈j1p〉 and 〈j2p〉 are proper, nonzero subideals of 〈p〉; by minimality
of 〈p〉, we deduce that 〈j1p〉 and 〈j2p〉 are not prime ideals, and again, we have a contradiction to
our hypothesis.

Now let J be the unique maximal ideal of D. We claim that

(2.13) J is a principal ideal.

Suppose not. By our work above, J contains a prime element p of D. Then 〈p〉 is a prime ideal of
D which is not maximal (since J is assumed to be nonprincipal). Thus D/〈p〉 is an integral domain
which is not a field, and also inherits the same property as D, that is, the sum of two nonprime
ideals of D/〈p〉 is again nonprime. By our work above, D/〈p〉 possesses a minimal principal nonzero
prime ideal. It follows that there is some q ∈ D, q /∈ 〈p〉 such that 〈p, q〉 is a prime ideal of D.
Observe that 〈p, q〉 = 〈p2, q〉+ 〈q2, p〉. We will have a contradiction if we can show that 〈p2, q〉 and
〈q2, p〉 are nonprime ideals. By symmetry, it suffices to show that 〈p2, q〉 is not prime. Suppose by
way of contradiction that 〈p2, q〉 is prime. Then p ∈ 〈p2, q〉. Thus

(2.14) p = p2x+ qy for some x, y ∈ D.

But then clearly p|qy. Because q /∈ 〈p〉, p - q. As p is prime, p | y. Thus y = pz for some z ∈ D.
Therefore, (2.14) becomes p = p2x + pqz. Since D is a domain and p 6= 0, we may cancel p to get
1 = px+qz. But 〈p〉 and 〈q〉 are proper ideals of D, and thus they are both contained in the unique
maximal ideal J. But then 1 ∈ J , and this is a contradiction. We have now verified (2.13).

Let J = 〈p〉, and let q be an arbitrary prime element of D. Then q ∈ J , and so q = pd for some
d ∈ D. Thus q divides pd and since q is prime, either q|p or q|d. The latter is impossible since p is
not a unit, and so q|p. Thus p = qt for some t ∈ D. Because q = pd, we deduce that d is a unit. We
have shown that the only prime elements of D are of the form up for some unit u ∈ D. Because
D is a UFD, we conclude that every nonzero nonunit of D has the form upn for some unit u of D
and some positive integer n. It is now clear that D is a principal ideal domain with unique nonzero
prime ideal J , hence a DVR. �

Remark 1. Note that the definition we gave of “prime element” preceding Proposition 4 can be
applied in the more general setting of commutative rings. Moreover, if one assumes in Proposition 4
only that D is a Noetherian ring for which every prime element is regular (that is, not a zero divisor),

6



Rings with arithmetical closure properties Oman

then the same conclusion goes through. However, since every chained ring1 has the property that
the sum of two nonprime ideals is nonprime, and because such rings (Noetherian, even) exist which
are not domains, we cannot completely dispense with the assumption that every prime element is
regular.

3. When is Spec(R) multiplicatively closed?

There are several analogous questions one can study relative to multiplicative closure properties
of P(R) and NP(R). Yet again, some are very easy to settle. We present two such examples below.

Example 1. Let R be a ring. Then (NP(R) · NP(R)) ∩ P(R) is empty.2

Proof. Suppose by way of contradiction that there exists a ring R and proper nonprime ideals I
and J of R such that IJ is prime. Then either I ⊆ IJ or J ⊆ IJ . Because IJ ⊆ I ∩ J , it follows
that IJ = I or IJ = J . But then either I or J is prime, a contradiction. �

Example 2. Let R be a ring. Then NP(R) · P(R) ⊆ P(R) iff R is a field.

Proof. If R is a field, then R has no proper nonprime ideals, and so the containment vacuously
holds. Conversely, suppose that R is a ring which satisfies the above containment. We claim that
every proper ideal of R is prime. Suppose not, and let I be a proper nonprime ideal of R. Further,
let J be a maximal ideal of R. Then J is prime, and thus so is IJ . It follows that either I ⊆ IJ
or J ⊆ IJ . If the former holds, then I ⊆ IJ ⊆ I, and IJ = I. But IJ is prime yet I isn’t, and
we have a contradiction. It follows that J ⊆ IJ ⊆ J , and thus IJ = J . Hence J = IJ ⊆ I, and
so J ⊆ I. The maximality of J implies I = J . But then again, I is prime, a contradiction. Thus
every proper ideal of R is prime. Since {0} is prime, R is a domain. To show that R is a field, it
suffices to argue that R has no nonzero nonunits. Suppose r ∈ R is such an element. Then 〈r2〉 is
a proper ideal of R which is not prime, a contradiction. The proof is complete. �

In this section, we study the question of when P(R) · P(R) ⊆ P(R), that is, of when the prime
spectrum of a ring R is closed under ideal multiplication. For brevity, let us agree to call a ring for
which Spec(R) is closed under multiplication a PC ring. First, we present two examples.

Example 3. Let F be a field. Then Spec(R) consists solely of the zero ideal. Since the product of
the zero ideal with itself is the zero ideal, we see that Spec(R) is closed under multiplication, and
so R is a PC ring.

Example 4. Let F be a field, and consider the monoid ring D := F [Xr : r ∈ [0,∞)] over the real
interval [0,∞) with coefficients in F (the reader unfamiliar with monoid rings may view elements
of D as polynomials with coefficients in F except with positive integer powers of X replaced by
positive real powers of X). With this notation, the ideal J of D defined by J := 〈Xr : r > 0〉 is a
maximal ideal of D. It is not hard to check that the local ring DJ has a unique nonzero prime ideal
(namely, JJ) and that, as a result of the Archimedean property of the usual order < on R, JJ is
idempotent. It follows that DJ is a PC domain.

1That is, the set of ideals of R is linearly order by set inclusion.
2Here, NP(R) · NP(R) denotes the set {IJ : I, J ∈ NP(R)}.
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We now delve into the elementary theory of PC rings. We begin with a lemma.

Lemma 1. Let R be a ring, and suppose that Spec(R) is closed under multiplication. Then for any
prime ideals P and Q of R, either PQ = P or PQ = Q.

Proof. Let P and Q be arbitrary prime ideals of the PC ring R. Then PQ is prime. Trivially
PQ ⊆ PQ, and since PQ is prime, we deduce that either P ⊆ PQ or Q ⊆ PQ. In the former case,
we have P ⊆ PQ ⊆ P , and thus P = PQ. The latter case is analogous. �

We now establish the following proposition, which gives a collection of further necessary condi-
tions on a ring R in order for R to be PC.

Proposition 5. Let R be a ring for which Spec(R) is closed under multiplication. Then the
following hold:

(1) Spec(R) is linearly ordered by ⊆,
(2) if P and Q are prime ideals of R such that P ⊆ Q, then PQ = P ,
(3) R is a local ring, and
(4) all nonzero prime ideals of R are infinitely generated.

Proof. Suppose that R is a ring for which Spec(R) is closed under multiplication.

(1) Let P,Q ∈ Spec(R) be arbitrary. We may assume by Lemma 1 that PQ = P. But then
P = PQ ⊆ Q, and P ⊆ Q.

(2) Assume P,Q ∈ Spec(R) and P ⊆ Q. Assume by way of contradiction that PQ 6= P. Applying
Lemma 1, PQ = Q. But now we have PQ ⊆ P ( Q. We deduce that PQ ( Q, contradicting
PQ = Q.

(3) Let J1 and J2 be maximal ideals of R. Then both J1 and J2 are prime. By (1), we may
suppose that J1 ⊆ J2. By maximality of J1, we conclude that J1 = J2.

(4) Let J = J(R) be the unique maximal ideal of R, and suppose by way of contradiction that
P is a nonzero, finitely generated prime ideal of R. By (2), JP = P. Nakayama’s Lemma implies
that P = {0}, a contradiction. �

A natural question is whether one can give a list of necessary and sufficient conditions in order
for Spec(R) to be closed under multiplication. Indeed, this is not difficult to do and is a simple
corollary of Proposition 5.

Corollary 1. Let R be a ring. Then Spec(R) is closed under multiplication if and only if Spec(R)
is linearly ordered by set inclusion and every prime ideal of R is idempotent.

Proof. If Spec(R) is closed under multiplication, then it is immediate from (1) and (2) of Proposition
5 that Spec(R) is linearly ordered and every prime ideal is idempotent. Conversely, suppose that
Spec(R) is linearly ordered by inclusion and every prime ideal of R is idempotent. Let P and Q
be arbitrary prime ideals of R. We may suppose without loss of generality that P ⊆ Q. Of course,
PQ ⊆ P. Conversely, since P is idempotent and P ⊆ Q, we see that P = P 2 ⊆ PQ. Thus PQ = P ,
and thus PQ is a prime ideal. �
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Remark 2. Let R be an arbitrary PC ring. Then observe that Spec(R)1 := Spec(R) ∪ {R} is
a commutative monoid via ideal multiplication. Recall that Green’s relation ≤ is defined on a
commutative monoid M by x ≤ y if and only if y|x. It follows from our work above that the
subset relation on Spec(R)1 is the same as Green’s relation on Spec(R)1. Thus Green’s relation on
Spec(R)1 is a total order and, moreover, completely determines the monoid multiplication: for any
P,Q ∈ Spec(R)1, PQ = min(P,Q).

We shall soon present another corollary of Proposition 5. First, we recall that a domain D is
an almost Dedekind domain if the localization DJ is either a field or a discrete valuation ring, for
every maximal ideal J of D. It is well-known that there exist UFDs and almost Dedekind domains
which are not Noetherian.

Our next result gives some equivalent conditions for a PC ring to be a field.

Corollary 2. Suppose that R is a PC ring. Then the following are equivalent:

(1) R is a field,
(2) R is Noetherian,
(3) R is a unique factorization domain, and
(4) R is an almost Dedekind domain.

Proof. Let R be a PC ring. It is clear that (1) implies (2)–(4); we show that each of (2)–(4) implies
(1). Suppose that R is Noetherian, and let J be (by (3) of Proposition 5) the maximal ideal of
R. Then J is a prime ideal. Invoking (4) of Proposition 5, it follows that J = {0}. Thus R is a
field, as claimed. Next, assume that R is a UFD. To show that R is a field, it suffices to prove
that R has no prime elements. Suppose by way of contradiction that p ∈ R is prime. Then 〈p〉 is
a nonzero finitely generated prime ideal, which contradicts (4) of Proposition 5. Finally, suppose
that R is an almost Dedekind domain. Because R is local, we conclude that RJ = R, and thus R
is a discrete valuation ring. Hence R is Noetherian, and by our work above, R is a field. The proof
is complete. �

Next, recall that a domain D is a Prüfer domain if every nonzero, finitely generated ideal I of D
is invertible (that is, there is some ideal J of D such that IJ is a nonzero principal ideal). There are
some 40 well-known characterizations of these rings, which gives testament to their status in the
field of multiplicative ideal theory (see [3] for further details). Equivalently, D is a Prüfer domain
if D is locally a valuation ring (domain), that is, a domain D for which the ideals of DJ are linearly
ordered by set inclusion for every maximal ideal J of D. As every PC ring is local, it follows that
a Prüfer PC domain is a valuation ring. Given this fact along with Example 4, it is reasonable
to study PC rings in the context of valuation rings to get a foothold on their structure. We will
soon prove that there exist PC valuation rings of arbitrary Krull dimension. First, we recall some
standard results in the theory of ordered groups for the convenience of the reader; these results will
play an important role shortly.

Let (G,+,≤) be a totally ordered abelian group. The nonnegative cone of G, which we denote
by G+, is defined by G+ := {g ∈ G : g ≥ 0}. A nonempty subset F ⊆ G+ is called a filter provided
0 /∈ F and F is closed upwards, that is, if x ∈ F and x ≤ y, then y ∈ F. If in addition, G+\F is

9
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closed under addition, then F is called a prime filter. Next, a subgroup C of G is called convex
provided that whenever c1 ≤ c2 are members of C and g ∈ G satisfies c1 ≤ g ≤ c2, then also g ∈ C.
It is well-known that the map C 7→ G+\C+ gives a one-to-one correspondence between the proper
convex subgroups of G and the prime filters of G (see the discussion on pp. 196–198 of [3]). Now,
let κ be a cardinal number and for each i < κ, suppose that (Gi,≤i) is a totally ordered abelian
group. Then the group G :=

⊕
i<κGi is also totally ordered as follows: for a nonzero (gi) ∈ G, let

j be least such that gj 6= 0. We say that (gi) is positive provided gj >j 0.3 Letting P be the set
of positive elements of G, one checks easily that P is closed under addition and that {P, {0},−P}
partitions G. Thus the order ≤ on G defined by f ≤ g if and only if f = g or g − f ∈ P gives a
translation-invariant total order on G, called the lexicographic order (relative to the orders on each
Gi) on G. Finally, the rank of a totally ordered abelian group is the order type of the collection
of proper convex subgroups, which is totally ordered by set inclusion. We shall make use of the
following elementary result (whose proof is straightforward).

Lemma 2 ([3], p. 221, Exercise 6). Suppose that κ > 0 is a cardinal and that for each i < κ,
(Gi,≤i) is a rank one totally ordered abelian group (in other words, each Gi is a nontrivial subgroup
of (Q,+), up to isomorphism). Next, set G :=

⊕
i<κGi and equip G with the lexicographic order

defined above. Set C0 := {0} and for 0 < i < κ, set Ci := {f ∈ G : f(j) = 0 for all j < i}. Then
the Cis are exactly the proper convex subgroups of G.

We are now equipped to construct PC rings of arbitrary (classical) Krull dimension. Rudimentary
knowledge of Krull dimension and valuation theory is assumed.

Proposition 6. For every cardinal number κ, there exists a PC valuation ring V of Krull dimension
κ.

Proof. If κ = 0, simply take V to be any field. Now suppose that κ > 0, and consider the direct
sum G :=

⊕
κQ of κ many copies of Q equipped with the lexicographic order. As (Q,+,≤) (here

≤ denotes the usual order on Q) is Archimedean, it is clear that {0} is the only proper convex
subgroup of Q, and therefore (Q,+,≤) has rank one. By Lemma 2 and the paragraph preceding
it, we conclude that the prime filters of G are precisely

(3.1) F0 := G+\{0} and for 0 < i < κ, Fi := {f ∈ G+ : f(j) 6= 0 for some j < i}.
Next, by the Jaffard-Ohm-Kaplansky Theorem, there is a field K and a valuation v on K with
value group G; let V be the associated valuation ring. As is well-known, the nonzero prime ideals of
V are in one-to-one correspondence with the prime filters of G via the map P 7→ v(P\{0}). Recall
above that there are exactly κ prime filters of G, thus also exactly κ many nonzero prime ideals
of V. Because the prime ideals of V are linearly ordered by inclusion, it follows that V has Krull
dimension κ. It remains to show that V is PC. Toward this end, by Corollary 1, it suffices to prove
that every prime ideal of V is idempotent. This is immediate if P is the zero ideal, so suppose that
P is a nonzero prime ideal of V. We simply must prove that P ⊆ P 2 as the reverse containment is

3Formally, a sequence (gi) ∈ G is a function f with domain κ such that f(i) ∈ Gi for all i < κ.
10
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obvious. Let x ∈ P be arbitrary. If x = 0, then x ∈ P 2 and we are done. Thus suppose that x 6= 0.
It follows from our comments above that v(P\{0}) = Fi for some i < κ. Hence v(x) ∈ Fi. Since G
is torsion-free divisible, it is clear that each Fi is also divisible (that is, if f ∈ Fi and n is a positive

integer, then f
n
∈ Fi). Therefore, v(x)

2
∈ Fi. We deduce that there is some y ∈ P\{0} such that

v(y) = v(x)
2

. But then v(x) = 2v(y) = v(y2); thus x and y2 are associates in V . Because y ∈ P , of
course y2 ∈ P 2. As x and y2 are associates, x ∈ P 2, as claimed. �

In light of Example 4 and Proposition 6, another canonical question arises: is every PC ring a
valuation ring? We conclude this section with an example showing that the answer is “no”.

Example 5. There exists a PC integral domain which is not a valuation ring.

Proof. Let K be a field, and let F := K(Y ) be the field of rational functions in Y with coefficients
in K. As in Example 4, consider the monoid ring T := F [Xr : r ∈ [0,∞)] and let J := 〈Xr : r > 0〉.
Then J is an idempotent maximal ideal of T . As stated in Example 4, TJ is a local ring with unique
nonzero prime ideal JJ ; it follows that TJ has Krull dimension one. We now obtain the pullback
R := K + J defined by the following conductor square:

R := K + J T

K F

i

i

We may now localize this square at J to obtain the conductor square

RJ = K + JJ TJ

K F.

i

i

Since F is not an overring of K, the pullback RJ is not a valuation ring (see Theorem 4.7 of
[1]). Because TJ is one-dimensional, it follows from [2], Section 2, Corollary 2 that dim(RJ) =
dim(K) + dim(TJ) = 0 + 1 = 1. As J is a height-one idempotent maximal ideal of T , JJ is the
unique nonzero prime ideal of RJ , and JJ is idempotent. We deduce that RJ is PC but not a
valuation ring. �

4. Open questions

We conclude this note with the following questions which we feel are interesting:

Question 1. Investigate more deeply the structure of PC rings. In light of Proposition 6 and
Example 5, how “close” is a PC domain to being a valuation domain?

Question 2. If D is a domain for which the set of nonprime ideals of D is closed under addition,
is D necessarily a valuation ring? More generally, is a ring R for which the set of nonprime ideals
of R is closed under addition necessarily chained?

11
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Finally, we remark that given the results presented in this paper, yet another natural problem is
to study the rings R for which Spec(R) is closed under addition. Recall that if R is a PC ring, then
the prime ideals of R are linearly ordered by inclusion. Therefore, Spec(R) is closed under addition.
On the other hand, if V is a DVR, then Spec(V ) is closed under addition but not multiplication.
Thus the class of rings R for which Spec(R) is closed under addition properly contains the class of
rings R for which Spec(R) is closed under multiplication. Our final question is the following:

Question 3. What is the structure of rings R for which Spec(R) is closed under addition?

Acknowledgment. The author is grateful to the referee for Example 5 above, along with its proof.
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