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Abstract. It is shown that RgMax(R) is infinite for certain commutative rings, where RgMax(R)

denotes the set of all maximal subrings of a ring R. It is observed that whenever R is a ring and D is
a UFD subring of R, then |RgMax(R)| ≥ |Irr(D) ∩ U(R)|, where Irr(D) is the set of all non-associate

irreducible elements of D and U(R) is the set of all units of R. It is shown that every ring R is either

Hilbert or |RgMax(R)| ≥ ℵ0. It is proved that if R is a zero dimensional (or semilocal) ring with
|RgMax(R)| < ℵ0, then R has nonzero characteristic, say n, and R is integral over Zn. In particular, it

is shown that if R is an uncountable artinian ring, then |RgMax(R)| ≥ |R|. It is observed that if R is a

noetherian ring with |R| > 2ℵ0 , then |RgMax(R)| ≥ 2ℵ0 . We determine exactly when a direct product
of rings has only finitely many maximal subrings. In particular, it is proved that if a semisimple ring R

has only finitely many maximal subrings, then every descending chain · · · ⊂ R2 ⊂ R1 ⊂ R0 = R where

each Ri is a maximal subring of Ri−1, i ≥ 1, is finite and the last terms of all these chains (possibly
with different lengths) are isomorphic to a fixed ring, say S, which is unique (up to isomorphism) with

respect to the property that R is finitely generated as an S-module.

Introduction

All rings in this paper are commutative rings with 1 6= 0. All subrings, ring extensions, homomorphisms
and modules are unital. A proper subring S of a ring R is called a maximal subring if S is maxi-
mal with respect to inclusion in the set of all proper subrings of R. A ring with maximal subrings is
called a submaximal ring in [2], [4], and [7]. The main aim in [1-7] is to determine rings R (or find con-
ditions on R) such that RgMax(R) 6= ∅. In this paper, we study rings R for which RgMax(R) is infinite.

Now let us first review some results from the literature about finiteness conditions on the set of all sub-
rings of a ring. In [23], Rosenfeld proved that a (possibly noncommutative) ring with identity with only
finitely many subrings (not necessarily unital) is finite. Bell and Gilmer have given elementary proofs of
this result; see [8] and [14], respectively. Recently, Dobbs et. al, studied commutative unital rings with
only finitely many unital subrings. They characterized such rings first in [11] for singly generated unital
rings and later in [12] for general commutative rings. Korobkov characterized finite rings with exactly
two maximal subrings, see [19]. In [6], it is observed that if R =

∏
i∈I Ri, where I is infinite and each

Ri is a ring, then |RgMax(R)| ≥ 2|I|, and also if R is a noetherian integral domain with |R| > 2ℵ0 , then
|Max(R)| ≤ |RgMax(R)|. Finally in [3], fields with only finitely many maximal subrings are completely
characterized. In this article we are interested in showing that RgMax(R) is infinite for certain commu-
tative rings R. In [12], a ring is called to have the finite subring property (FSP ) if it has only finitely
many (unital) subrings. It is clear that when RgMax(R) is infinite for a ring R, then R dose not have
FSP . In this paper we also study some connections between the existence of maximal subrings of a ring
R (or the infinitude of RgMax(R)) and the existence of an infinite chain · · · ⊆ R2 ⊆ R1 ⊆ R0 = R, where
each Ri is a maximal subring of Ri−1, for i ≥ 1. In [3], it is shown that a field E has only finitely many
maximal subrings if and only if E has no infinite chains in the previous form. See also [10], [16], [17], [22]
and [3, Introduction] for more results about chain conditions on the set of subrings, intermediate rings
and overrings. We refer the reader to [4, Introduction], for the notable role that RgMax(E), for a field
E, plays in algebraic geometry.
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Next, let us recall some standard definitions and notation from commutative ring theory which will be
used throughout the paper (see [18]). An integral domain D is called G-domain if the quotient field of D
is finitely generated as a D-algebra. A prime ideal P of a ring R is called G-ideal if R/P is a G-domain.
A ring R is called Hilbert if every G-ideal of R is maximal. As usual, let Char(R), U(R), N(R), J(R),
Max(R), Spec(R) and Min(R), denote the characteristic, the set of all units, the nil radical ideal, the
Jacobson radical ideal, the set of all maximal ideals, the set of all prime ideals and the set of all minimal
prime ideals of a ring R, respectively. We also call a ring R, not necessarily noetherian, semilocal (resp.
local) if Max(R) is finite (resp. |Max(R)| = 1). For any ring R, let Z = Z · 1R = {n · 1R | n ∈ Z}, be
the prime subring of R. We denote the finite field with pn elements, where p is prime and n ∈ N, by
Fpn . If D is an integral domain, then we denote the set of all non-associate irreducible elements of D by
Irr(D). Also, we denote the set of all natural prime numbers by P. Suppose that D ⊆ R is an extension
of domains. By Zorn’s Lemma, there exists a maximal (with respect to inclusion) subset X of R which is
algebraically independent over D. By maximality, R is algebraic over D[X] (thus every integral domain
is algebraic over a UFD; this can be seen by taking D to be the prime subring of R). If E and F are
the quotient fields of D and R, respectively, then X can be shown to be a transcendence basis for F/E
(that is, X is maximal with respect to the property of being algebraically independent over E). The
transcendence degree of F over E is the cardinality of a transcendence basis for F/E (it can be shown
that any two transcendence bases have the same cardinality). We denote the transcendence degree of F
over E by tr.deg(F/E).

Now, let us sketch a brief outline of this paper. In Section 1, we prove that whenever R is a ring and D
is a UFD subring of R, then |RgMax(R)| ≥ |Irr(D) ∩ U(R)|. We show that if R is a ring and x ∈ J(R)
is not algebraic over the prime subring of R, then RgMax(R) is infinite. We observe that every ring
R is either Hilbert or RgMax(R) is infinite. In particular, we show that if R is a reduced ring with
J(R) 6= 0, then RgMax(R) is infinite. We prove that if R is an integral domain with |U(R)| ≥ 2ℵ0 , then
|RgMax(R)| ≥ |U(R)|. We show that if R is an uncountable Dedekind domain with |Max(R)| < |R|,
then |RgMax(R)| ≥ |R|. We observe that if R is a reduced ring with max{|R|, |Spec(R)|} > 2ℵ0 and
|Max(R)| ≤ ℵ0, then RgMax(R) is infinite. Finally in Section 1, we prove that the polynomials rings
always have infinitely many maximal subrings.

In Section 2, we study the infinitude of RgMax(R) for zero dimensional rings, semilocal rings, ar-
tinian rings and noetherian rings. We show that if a zero dimensional ring R has only finitely many
maximal subrings, then R has nonzero characteristic, say n, and R is integral over Zn. We show
that if R is a semilocal ring with |RgMax(R)| < ℵ0, then R is a zero dimensional ring. Moreover,
we observe that if R is an uncountable artinian ring, then |RgMax(R)| ≥ |R|. We show that if
R is noetherian ring with |R| > 2ℵ0 , then |RgMax(R)| ≥ 2ℵ0 . We prove that if R is a ring with
|Max(R)| > 2ℵ0 , then |Max(R)| ≤ |RgMax(R)|. Consequently, we show that if R is a ring with

|R/J(R)| > 22
ℵ0

or |R| > max{22ℵ0 , |U(R)|} (resp. |R| > max{22ℵ0 , |N(R)|}), then |RgMax(R)| ≥ 2ℵ0

(resp. |RgMax(R)| ≥ ℵ0). We show that if |Spec(R)| > 22
ℵ0

for a ring R, then |RgMax(R)| ≥ ℵ0. We

prove that if R is a reduced ring with |R| > 22
ℵ0

, then |RgMax(R)| ≥ ℵ0. Finally in Section 2, we show
that if R is a finite dimensional noetherian ring, then either |RgMax(R)| ≥ ℵ0 or |Spec(R)| ≤ 2ℵ0 .

In Section 3, we study the structure of maximal subrings of finite direct product of rings and the finiteness
of the set of all maximal subrings of direct products. We determine exactly the structure of maximal
subrings of K ×K, where K is a field. In fact we show that if R is a maximal subring of K ×K, then
either R = S×K or K×S, where S ∈ RgMax(K), or R = {(σ1(x), σ2(x)) | x ∈ K}, where σi ∈ Aut(K)
(the automorphism group of the field K) for i = 1, 2. In particular, |RgMax(K×K)| ≥ 2|RgMax(K)|+
|Aut(K)|. Moreover, we show that if K is a field, then K×K has only finitely many maximal subrings if
and only if K is a finite field. Consequently, we determine exactly when a direct product of rings has only
finitely many maximal subrings. In particular, we characterize semilocal reduced rings with only finitely
many maximal subrings. Moreover, we show that if E1, · · · , En are fields, n ∈ N, and R = E1 × · · · ×En
has only finitely many maximal subrings, then every descending chain · · · ⊂ R2 ⊂ R1 ⊂ R0 = R is finite,
where each Ri is a maximal subring of Ri−1 for every i > 0. The converse holds if for each i 6= j: If Ei
and Ej are infinite, then Ei � Ej . Finally, we observe that although the lengths of the descending chains
in the previous result for R need not be the same, the last terms in these chains are isomorphic to a fixed
ring, say S; furthermore, if R′ is a non submaximal subring of R such that R is finitely generated as an
R′-module, then R′ ∼= S (in other words, up to isomorphism, S is the unique non submaximal subring of
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R for which R is finitely generated as an S-module). Conversely, we prove that if R is a semilocal reduced
ring which contains a non submaximal subring S over which R is finitely generated as an S-module, then
R is a finite direct product of fields which have only finitely many maximal subrings.

1. Integral Domains with Infinitely Many Maximal Subrings

The main aim in this section is to prove that for any ring R, either R has infinitely many maximal
subrings or R is a Hilbert ring. We need some observations about transferring existence of maximal
subrings in the ring extensions. In [1, Theorem 2.5], it is proved that a ring R is submaximal if and only
if there exist a proper subring S of R and x ∈ R \ S such that S[x] = R; moreover in this case, in fact R
has a maximal subring T such that S ⊆ T and x /∈ T . The next result is in [5, Proposition 1.1] and for a
more general result, see [6, Proposition 2.1]. We give its proof for the sake of the reader.

Proposition 1.1. Let F ⊆ K be an algebraic field extension and S be a maximal subring of F which is
not a field. Then for any non-unit x ∈ S \ {0}, there exists a maximal subring Rx of K such that x is
not a unit in Rx, Rx ∩F = S, Rx[x−1] = K, and Rx is not a field, but it contains the integral closure of
S in K.

Proof. First note that S[x−1] = F , since S is a maximal subring of F and x−1 ∈ F \ S. Let R be
the integral closure of S in K. We claim x−1 /∈ R and R[x−1] = K. Since S is not a field and is a
maximal subring of F we infer that S is integrally closed in F and therefore x−1 /∈ R (note, x−1 ∈ F and
S[x−1] = F ). It remains to show that R[x−1] = K. Clearly R[x−1] ⊆ K; on the other hand assume that
u ∈ K. Since K is algebraic over F , it follows that there exist a natural number n and a0, a1, . . . , an−1
in F such that un + an−1u

n−1 + · · · + a1u + a0 = 0. Since F = S[x−1] and x ∈ S, we conclude that
there exists a non-negative integer m such that ai = x−msi (0 ≤ i ≤ n − 1), for some si ∈ S. Hence
un + x−msn−1u

n−1 + · · ·+ x−ms1u+ x−ms0 = 0. Multiplying the latter equation by xmn, we obtain:

(xmu)n + sn−1(xmu)n−1 + · · ·+ s1x
m(n−2)(xmu) + s0x

m(n−1) = 0.

Thus xmu is integral over S. Hence xmu ∈ R, and therefore u ∈ R[x−1]. Thus by the comments from
the first paragraph of this section, we infer that K has a maximal subring Rx which contains R but not
x−1. Finally note that S ⊆ Rx ∩ F ( F , since x−1 ∈ F \Rx. Therefore S = Rx ∩ F , by the maximality
of S. �

The following result which is the converse of [6, Proposition 2.1] is needed.

Proposition 1.2. [7, Theorem 2.19]. Let R ⊆ T be rings. If there exists a maximal subring V of T such
that V is integrally closed in T and U(R) * V , then R is submaximal.

Proof. We first claim:

(1) If x ∈ U(R) \ V, then x−1 ∈ V.

To prove this, assume x ∈ U(R) \ V . Then

(2) x−1 ∈ R ⊆ V [x] (since V is a maximal subring of T and x ∈ T \ V ).

Thus x−1 = v0 + v1x+ · · ·+ vnx
n for some v0, v1, . . . , vn ∈ V . Multiplying the previous equation by x−n,

we see that x−1 is integral over V . But since x−1 ∈ T and V is integrally closed in T , we conclude that
x−1 ∈ V , and (1) above is established. We now complete the proof.
Since U(R) * V , clearly also R * V , whence R ∩ V is a proper subring of R. Choose any x ∈ U(R) \ V .
We will prove that R = (R ∩ V )[x]. The comments from the first paragraph of this section then yield
that R is submaximal. Since x ∈ R, clearly (R ∩ V )[x] ⊆ R. Let r ∈ R be arbitrary. We will prove that
r ∈ (R ∩ V )[x]. Recall from (2) above that R ⊆ T = V [x]. Hence r = b0 + b1x + · · · + bmx

m for some
b0, b1, . . . , bm ∈ V . Multiplying this equation through by x−m, we get rx−m = b0x

−m + b1x
1−m + · · · +

bm−1x
−1 + bm. Since r ∈ R and x−1 ∈ R, clearly rx−m ∈ R. Recall from (1) above that x−1 ∈ V . This

fact along with the previous equation implies that rx−m ∈ V . But then rx−m ∈ R ∩ V , and we deduce
that r ∈ (R ∩ V )[x], as required. �

Next, we prove the following main result which is also needed in the sequel.

Theorem 1.3. Let R be a ring and D be a subring of R which is a UFD. Then |RgMax(R)| ≥ |Irr(D)∩
U(R)|.
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Proof. Let D ⊆ R be an extension of rings with D a UFD. First, we claim that we can assume R is a
domain without loss of generality. Indeed, suppose we have proven the theorem for domains. We will
show that the theorem holds for R. Toward this end, let I denote the collection of ideals of R which
intersect D trivially. Then I has maximal elements by Zorn’s Lemma, and it is easy to show that any
such maximal element is a prime ideal of R; let Q be such a prime ideal. Since D ∩Q = {0}, D embeds
naturally into R/Q, whence R/Q contains a copy of D. Thus

|RgMax(R)| ≥ |RgMax(R/Q)| ≥ |Irr(D) ∩ U(R/Q)| ≥ |Irr(D) ∩ U(R)|.
The final inequality holds because every unit of R remains a unit module Q (and recall that D∩Q = {0}).
Thus we may assume that R is an integral domain. Next we claim that we may suppose that R is algebraic
over D. For otherwise, let X be a transcendence basis for R over D. Then R is algebraic over D[X].
Now note that D[X] is a UFD and clearly Irr(D) ⊆ Irr(D[X]). Thus we can replace D by D[X] in
this case. Hence assume that R is an integral domain which is algebraic over D. Now suppose that K
and E are the quotient fields of D and R, respectively. Thus E/K is an algebraic extension, since R
is algebraic over D. Now, note that for any p ∈ Irr(D) ∩ U(R), the field K has a maximal subring Vp
such that 1

p /∈ Vp and Irr(D) ∩ U(Vp) = Irr(D) \ {p} (note that D(p) is a local principal ideal domain,

whence a DVR. It is well-known that the only proper overring of a DVR is its quotient field. Thus we
can put Vp = D(p)). Hence E has a maximal subring Wp such that Wp ∩K = Vp, by Proposition 1.1.

Therefore 1
p /∈ Wp. Thus we have U(R) * Wp which by the proof of the previous proposition implies

that (R∩Wp)[
1
p ] = R. Hence by the comment preceding Proposition 1.1, we infer that R has a maximal

subring Rp such that R ∩Wp ⊆ Rp and 1
p /∈ Rp. Since (Irr(D) ∩ U(R)) \ {p} ⊆ U(Rp) and p /∈ U(Rp),

we conclude that Rp 6= Rq for p 6= q in Irr(D) ∩ U(R). Hence we are done. �

Corollary 1.4. If R is a ring with zero characteristic, then |P ∩ U(R)| ≤ |RgMax(R)|. Moreover, if R
has only finitely many maximal subrings, then C := {Char( RM ) | M ∈Max(R) } ⊆ P and P \ C is finite.

Proof. Let R be a ring of characteristic 0. Then D := Z is (up to isomorphism) the prime subring of R,
and we may take Irr(D) to be the set P of prime numbers. It now follows immediately from the previous
theorem that (∗) |P ∩ U(R)| ≤ |RgMax(R)|.
Suppose now that R has but finitely many maximal subrings. We claim that 0 /∈ C. Indeed, suppose
by way of contradiction that R/M has characteristic 0 for some M ∈ Max(R). Since R has but finitely
many maximal subrings, clearly this property is inherited by R/M . But then by (∗) we conclude that
|P ∩ U(R/M)| is finite. Since R/M is a field of characteristic 0, this is clearly impossible, and we have
reached a contradiction. Lastly, we will show that P \ C is finite. Since R has but finitely many maximal
subrings, it follows from (∗) that P ∩ U(R) is finite. Thus it suffices to show that P \ C ⊆ P ∩ U(R). Let
p ∈ P \ C, and let M ∈ Max(R) be arbitrary. Since p 6= Char(R/M), it follows that p /∈ M . Since M
was arbitrary, we see that p is a unit of R, and the proof is complete. �

The next result shows that most fields have infinitely many maximal subrings.

Corollary 1.5. Let K ⊆ E be a field extension and F be the prime subfield of E. Then the following
statements hold:

(1) If E has zero characteristic, then RgMax(E) is infinite.
(2) |RgMax(E)| ≥ tr.deg(E/K). In particular, if E is uncountable, then |RgMax(E)| ≥ |E|.
(3) If tr.deg(E/F ) 6= 0, then RgMax(E) is infinite.

In particular, if RgMax(E) is finite, then E is algebraic over Fp, for some prime number p.

Proof. Clearly (1) holds by the previous corollary. For item (2), let X be a transcendence basis for E/K.
Clearly K[X] is a UFD and therefore by Theorem 1.3, we have |X| ≤ |RgMax(E)|. Hence the first part
of (2) is true. For the final part of (2), note that tr.deg(E/F ) = |E|. To prove (3), let x ∈ E is not
algebraic over F . Clearly F [x] is a UFD and Irr(F [x]) is an infinite subset of E. Hence we are done by
Theorem 1.3. The final assertion is now evident by (1) and (3). �

We remind the reader that the structure of absolutely algebraic fields with only finitely many maximal
subrings is completely determined in [3]. Now we have the following result.

Proposition 1.6. Let R be a ring, and suppose that x ∈ J(R) is not algebraic over the prime subring Z
of R. Then RgMax(R) is infinite.
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Proof. We prove the proposition in two cases. First assume that the characteristic of R is zero or a
prime number p. Hence clearly Z[x] is a UFD subring of R. Now, we have 1− xZ[x] ⊆ U(R) and since
1 − xZ[x] contains infinity many non-associate irreducible elements of Z[x] (note, if Char(R) = p, it is
clear that 1 − xZp[x] contains infinitely many non-associate irreducible elements; if Char(R) = 0, then
note that for each prime number p, the polynomial 1 + x + · · · + xp−1 ∈ 1 − xZ[x] is irreducible), we
infer that RgMax(R) is infinite, by Theorem 1.3. Hence we are done in this case. Now assume that the
characteristic of R is nonzero, say n, which is not prime. Thus Z = Zn is (up to isomorphism) the prime

subring of R. Suppose now that p is a prime divisor of n. Hence P = pZ
nZ [x] is a minimal prime ideal of

Zn[x] (note, dimZn[x] = 1 and P is a non maximal prime ideal of Zn[x]). Hence by [18, Ex.1, P. 41], we
conclude that there exists a (minimal) prime ideal Q of R such that Q ∩ Zn[x] = P . Thus

(3) Zp[x] ∼=
Zn[x]

P
∼=
Zn[x] +Q

Q
⊆ R

Q
,

hence R/Q is an integral domain which satisfies the assumption of the proposition and therefore by the
first part of the proof we infer that RgMax(R/Q) is infinite. Hence RgMax(R) is infinite, as required. �

We need the following lemma for the next observations.

Lemma 1.7. Let R be a ring with zero characteristic. If Char(R/J(R)) 6= 0, then |RgMax(R)| ≥ ℵ0.

Proof. Assume that n = Char(R/J(R)). Hence 1−nZ ⊆ U(R). Thus we are done by Corollary 1.4. �

The next proposition will get us closer to our main result that we promised in the beginning of this
section.

Proposition 1.8. Let R be an integral domain with J(R) 6= {0} (that is, R is not Jacobson semisimple).
Then RgMax(R) is infinite.

Proof. If R has nonzero characteristic or Char(R/J(R)) = 0, then one can easily see that every nonzero
element of J(R) is not algebraic over the prime subring of R (note, if 0 6= x ∈ J(R) and anx

n + · · · +
a1x + a0 = 0, where n ∈ N, ai ∈ Z and a0 6= 0, then we infer that a0 ∈ J(R) which is absurd). Hence
we are done by Proposition 1.6. Thus assume that Char(R) = 0 but Char(R/J(R)) 6= 0. Hence we are
done by Lemma 1.7. �

We now establish several corollaries.

Corollary 1.9. Let R be a ring. Then either R is a Hilbert ring or RgMax(R) is infinite.

Proof. If R is not Hilbert, then by [18, (c) of Ex. 9, P. 20], there exists a prime ideal P of R which
is not an intersection of maximal ideals of R, that is J(R/P ) 6= 0. Hence by the previous proposition
RgMax(R/P ) and therefore RgMax(R) is infinite. �

Corollary 1.10. Let R be a reduced ring with J(R) 6= 0. Then RgMax(R) is infinite.

Proof. If RgMax(R) is finite, then by the previous corollary we infer that R must be a Hilbert ring. Thus
by [18, (c) of Ex. 9, P. 20], we conclude that every prime ideal of R is an intersection of maximal ideals.
Therefore N(R) is an intersection of maximal ideals, which immediately implies that J(R) = N(R) = 0,
which is absurd. Hence RgMax(R) is infinite, and the proof is complete. �

For the next corollary we need some observations. First note that one can easily see that by [18, Ex. 9,
P. 20], the quotient ring of a Hilbert ring is Hilbert too. Also, by [18, Theorem 31], a ring R is Hilbert
if and only if the polynomial ring R[x] is a Hilbert ring. Thus we conclude that any finitely generated
algebra over a Hilbert ring is Hilbert. In particular, if R is a Hilbert ring and R is a maximal subring
of a ring T , then T is Hilbert (note, T = R[t] for each t ∈ T \ R. Also we refer the reader to see [4,
Proposition 2.18] for more results).

Corollary 1.11. Let R be a non Hilbert ring. Then there exists an infinite chain · · · ⊂ R2 ⊂ R1 ⊂ R0 =
R, where each Ri is a maximal subring of Ri−1.

Proof. Since R is not Hilbert, we infer that R has a maximal subring R1, by Corollary 1.9. Now note
that since R is not Hilbert, we conclude by the preceding comments that R1 is not Hilbert too. Hence
by induction we are done. �

Corollary 1.12. Let E be a field which either is not algebraic over its prime subfield or has zero char-
acteristic. Then there exists an infinite chain · · · ⊂ R2 ⊂ R1 ⊂ R0 = E, where each Ri is a non-field
G-domain maximal subring of Ri−1 for every i > 0.
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Proof. Note that by Proposition 1.1 or the proof of Theorem 1.3, one can easily see that E has a maximal
subring R1 which is not a field, see also [5, Corollaries 1.2 and 1.3]. Now since there are no rings properly
between R1 and E, and E is the quotient field of R1, we infer that R1 is a rank-one valuation domain
(see [18, Ex. 29, P. 43]), whence R1 is certainly not Hilbert. Thus by the previous corollary the infinite
saturated chain exists. Finally, note that by [4, Remark 2.17], for each i ∈ N, Ri is a non-field G-domain.
Hence we are done. �

The next proposition is need for subsequent observations.

Proposition 1.13. Let R be an integral domain with quotient field K and F be the prime subfield of K.
Then |RgMax(R)| ≥ tr.deg(F (U(R))/F ). In particular,

(1) If R is an integral domain with |U(R)| > ℵ0, then |RgMax(R)| ≥ |U(R)|.
(2) If R is an uncountable integral domain with J(R) 6= 0, then |RgMax(R)| ≥ |R|.

Proof. Let α = tr.deg(F (U(R))/F ). Note that U(R) contains a transcendence basis X for F (U(R))/F
with |X| = α. Thus by Theorem 1.3, we have |X| ≤ |Irr(Z[X])∩U(R)| ≤ |RgMax(R)|. Next, we prove
items (1) and (2). For (1), note that since |U(R)| is uncountable we infer that tr.deg(F (U(R))/F ) =
|U(R)| (note, F is countable), hence we are done by the previous part. For (2), note that |R| = |J(R)| ≤
|U(R)|, and therefore we are done by part (1). �

Corollary 1.14. Let R be an uncountable Dedekind domain. Suppose further that |Max(R)| < |R|.
Then |RgMax(R)| ≥ |R|.
Proof. First note that if R is a field then we are done by (1) of the previous proposition or (2) of
Corollary 1.5. Hence assume that R is an uncountable Dedekind domain which is not a field and that
|Max(R)| < |R|. We first claim that |U(R)| = |R|. Suppose by way of contradiction that |U(R)| < |R|.
Let P = {(xi) : i < κ} be an enumeration of the nonzero principal ideals of R. We claim that κ = |R|.
Suppose not, and set X := {αxi : α ∈ U(R), i < κ }. Then clearly |X| ≤ |U(R)| × κ < |R|. Choose
any nonzero r ∈ R \X. Then (r) 6= (xi) for any i, and this is a contradiction since, of course, (r) ∈ P.
Thus |R| = κ (that is, there are |R|-many nonzero principal ideals of R). But since R is Dedekind, every
proper nonzero ideal of R is a finite product of maximal ideals. As |Max(R)| < |R| and R is uncountable,
we deduce that R has fewer than |R| ideals, and this is a contradiction. We conclude that |U(R)| = |R|.
The result now follows from (1) of Proposition 1.13. �

Proposition 1.15. Let R be a reduced ring with |Max(R)| ≤ ℵ0. If max{|R|, |Spec(R)|} > 2ℵ0 , then
|RgMax(R)| ≥ ℵ0.

Proof. Assume thatR has only finitely many maximal subrings and seek a contradiction. SinceRgMax(R)
is finite, then we infer that J(R) = 0 by Corollary 1.10. We also note that for each maximal ideal M of R,
the field R

M is countable by Corollary 1.5. But we have the natural ring embedding R ↪→
∏
M∈Max(R)

R
M ,

hence |R| ≤ 2ℵ0 . Therefore by our assumption we have |Spec(R)| > 2ℵ0 . Since R has only finitely
many maximal subrings, we deduce that R is a Hilbert ring by Corollary 1.9. Hence every prime ideal
is an intersection of maximal ideals. In particular |Spec(R)| ≤ 2ℵ0 , which is a contradiction and we are
done. �

Finally, we conclude this section with the following result.

Theorem 1.16. Let K be a field. Then |RgMax(K[x])| ≥ ℵ0|K|. In particular, for any ring R, the ring
R[x] has infinitely many maximal subrings.

Proof. We have two cases, either K is finite or not.

(1) Assume that K is a finite field. Hence for each natural number n ≥ 2, it is well-known that there
exists an irreducible polynomial qn(x) ∈ K[x] of degree n. Since K[x]/(qn(x)) is a vector space
over K of dimension n ≥ 2, we infer that the ring K[x]/(qn(x)) has a maximal subring. Thus K[x]
has a maximal subring Sn which contains (qn(x)). Next note that since (qn(x))+(qm(x)) = K[x]
for n 6= m, we conclude that Sn 6= Sm. This proves that |RgMax(K[x])| ≥ ℵ0.

(2) Now assume that K is infinite. Now note that for each a ∈ K, the ring K[x]
((x−a)2) is a vector space

over K of dimension 2. Hence we infer that K[x]
((x−a)2) has a maximal subring (note, K[x]

((x−a)2) as

a K-algebra is finitely generated and therefore by the comment from the first paragraph of this

section we conclude that K[x]
((x−a)2) is submaximal). That is, K[x] has a maximal subring Sa which

contains ((x − a)2). Now note that, whenever a, b ∈ K and a 6= b, then we have Sa 6= Sb, since
((x− a)2) + ((x− b)2) = K[x]. Hence |RgMax(K[x])| ≥ |K| and we are done.
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The final part is evident. �

2. More Rings with Infinitely Many Maximal Subrings

In this section we investigate the infinitude of the set of maximal subrings for various classes of rings
including zero dimensional rings, semilocal rings, artinian rings and noetherian rings. First we have the
following result which generalizes Corollaries 1.5 and 1.12.

Proposition 2.1. Let R be a zero dimensional ring which satisfies at least one of the following conditions:

(1) R has zero characteristic.
(2) R has nonzero characteristic and is not integral over its prime subring.

Then |RgMax(R)| ≥ ℵ0. Moreover, there exists an infinite chain · · · ⊂ R2 ⊂ R1 ⊂ R0 = R, where each
Ri is a non-zero dimensional maximal subring of Ri−1, i ≥ 1.

Proof. Assume that (1) holds. Then there exists a prime (maximal) ideal M of R such that M ∩ Z = 0.
HenceR/M is a field with zero characteristic and therefore we are done by Corollary 1.5. Next assume that
(2) holds. Then we recall that by [15, Theorem 1.3], R must have a prime (maximal) ideal M , such that
R
M is not algebraic over its prime subfield, hence |RgMax(R)| ≥ ℵ0, by Corollary 1.5. For the final part
note that by Corollary 1.12 for the field R/M , there exists an infinite chain · · ·R2/M ⊂ R1/M ⊂ R0/M ,
such that each Ri/M is a non-field maximal subring of Ri−1/M , for i ≥ 1. Thus we conclude that each Ri
is a non-zero dimensional maximal subring of Ri−1 (note, clearly M is a prime ideal of Ri), for i ≥ 1. �

Corollary 2.2. Let R be a semilocal ring. Then either |RgMax(R)| ≥ ℵ0 or R is a zero dimensional
ring with nonzero characteristic which is integral over its prime subring. In particular, every semilocal
ring with zero characteristic has infinitely many maximal subrings.

Proof. If RgMax(R) is finite, then by Corollary 1.9, we infer that R is Hilbert. Hence R must be zero
dimensional, since R is semilocal. Thus we are done by the previous proposition. �

In the next proposition we study the infinitude of the set of all maximal subrings in localizations.

Proposition 2.3. Let R be a ring. Then the following statements hold:

(1) If R is an integral domain with quotient field E 6= R. Then |RgMax(E)| ≥ ℵ0.
(2) If P is a non-maximal prime ideal of R, then |RgMax(RP )| ≥ ℵ0.
(3) If P is a prime ideal of R, then either |RgMax(RP )| ≥ ℵ0 or P ∈Min(R) ∩Max(R).

Proof. For item (1), note that if R has zero characteristic, then E has zero characteristic and therefore
we are done by item (1) of Corollary 1.5. Next, assume that R has nonzero characteristic. Since R is
not a field, we infer that E is not algebraic over its prime subfield. Hence we are done by item (3) of
Corollary 1.5. For (2), first note that by [18, Ex.1, P. 24], we infer that RP

PP

∼= K, as a ring, where K is

the quotient field of the non-field integral domain R
P . Hence by item (1) we infer that RP

PP
and therefore

RP has infinitely many maximal subrings. Finally for item (3), note that if RP has only finitely many
maximal subrings, then by item (2), P is a maximal ideal of R. Now, by Corollary 2.2, we infer that RP
is a zero dimensional ring. Hence P is a minimal prime ideal and hence we are done. �

The proof of the following useful lemma can be found in [5, the proofs of Propositions 1.4 and 2.4]. We
give its proof for completeness sake.

Lemma 2.4. Let R be an uncountable artinian ring. Then R has a maximal ideal M such that |R/M | =
|R|.

Proof. First we prove the lemma for local artinian rings. Hence assume that (R,M) is an uncountable
local artinian ring and K = R/M . We claim that |K| = |R|. Since R is artinian we have Mn = 0, for
some integer n. Now by considering the chain (0) = Mn ⊆ Mn−1 ⊆ · · · ⊆ M2 ⊆ M , and the fact that

each Vi = Mi−1

Mi (1 ≤ i ≤ n) is a finite dimensional vector space over the field K, we infer that for each i,
|Vi| ≤ ℵ0 × |K|. Thus we conclude that |R| ≤ |K| ≤ |R|, whence |K| = |R|.
Finally, assume that R is an arbitrary uncountable artinian ring. Thus R ∼=

∏n
i=1Ri, where each Ri is a

local artinian ring with a maximal ideal Mi. Since R is infinite we conclude that there exist j, 1 ≤ j ≤ n,
such that |Rj | = |R|. Therefore by the first part of the proof we have |Rj/Mj | = |Rj | = |R|. Note that
M = R1× · · · ×Rj−1×Mj ×Rj+1× · · · ×Rn is a maximal ideal of R and |R/M | = |Rj/Mj | = |R|. This
concludes the proof. �

Now we are ready to determine properties of artinian rings with only finitely many maximal subrings.
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Theorem 2.5. Let R be an artinian ring. Then the following statements hold:

(1) If R is uncountable, then |RgMax(R)| ≥ |R|. Further, there exists an infinite chain · · · ⊂ R2 ⊂
R1 ⊂ R0 = R, where each Ri is a non-zero dimensional (and hence non-artinian) maximal
subring of Ri−1, i ≥ 1.

(2) If RgMax(R) is finite, then R is countable with nonzero characteristic and R is integral over its
prime subring.

Proof. For (1), first note that by Lemma 2.4, R has a maximal ideal M such that | RM | = |R|. Hence by
Corollary 1.5, we have |RgMax(R)| ≥ |RgMax(R/M)| ≥ |R/M | = |R|. Next, by Corollary 1.12, we infer
that there exists an infinite chain · · · ⊂ R2/M ⊂ R1/M ⊂ R0/M = R/M where each Ri/M is a maximal
subring of Ri−1/M and each Ri/M is a non-field G-domain, for i ≥ 1. Thus · · · ⊂ R2 ⊂ R1 ⊂ R0 = R is
an infinite chain in which each Ri is a non-zero dimensional maximal subring of Ri−1, for i ≥ 1. Hence
we are done. Item (2) is now clear by the first part and Corollary 2.2. �

By combining the previous theorem and Corollary 2.2, the following is immediate.

Corollary 2.6. Let R be a semilocal noetherian ring. Then either |RgMax(R)| ≥ ℵ0 or R is countable
artinian ring.

Next we are ready to present our first result about the infinitude of RgMax(R) for a noetherian ring R.

Theorem 2.7. Let R be a noetherian ring with |R| > 2ℵ0 . Then |RgMax(R)| ≥ 2ℵ0 .

Proof. We give the proof in four steps. Step 1: First assume that R is local with unique maximal ideal
M . Now by Krull’s Intersection Theorem we have

⋂∞
n=1M

n = 0. Hence R is a subdirect product of the

family { R
Mn }∞n=1. Thus there exists a natural number n such that R

Mn is uncountable, since |R| > 2ℵ0 .

Therefore we are done by (1) of Theorem 2.5, for the ring R
Mn . Step 2: Next assume that R is an integral

domain. We show that in this case we have |RgMax(R)| ≥ 2ℵ0 |Max(R)|. For proof, note that for any
maximal ideal M of R, we have

⋂∞
n=1M

n = 0, by Krull’s Intersection Theorem. Hence we infer that R is

a subdirect product of the family { R
Mn }∞n=1. Thus there exists a natural number n such that | RMn | > 2ℵ0 .

Thus by the previous step, R
Mn has at least 2ℵ0 maximal subrings. Hence R has at least 2ℵ0 maximal

subrings which contain Mn. Since for distinct maximal ideals M and N of R we have Mr + Ns = R
(r, s ∈ N), we infer that if a maximal subring of R contains Mr for some r, then it can not contain Ns,
for each natural number s. Hence |RgMax(R)| ≥ 2ℵ0 |Max(R)|. Step 3: Next, assume that R is reduced
and Min(R) = {P1, . . . , Pn} (note, R is noetherian hence Min(R) is finite). Since R is reduced we infer
that R is a subdirect product of integral domains { RPi

}ni=1. Thus there exists k, 1 ≤ k ≤ n, such that

| RPk
| = |R|. Hence by the previous step we infer that |RgMax(R)| ≥ |RgMax(R/Pk)| ≥ 2ℵ0 . Step 4:

Finally, one can easily see that | R
N(R) | > 2ℵ0 , see also [6, Lemma 2.8 ]. Therefore we are done by the

previous step. �

We remind the reader that if F is the set of all fields, up to isomorphism, which are not submaximal,
then |F| = 2ℵ0 , see [4, Corollary 1.15]. Also, in [1, Theorem 2.2], it is proved that for every ring R, the
ring R×R is submaximal. In the following result we see that there are natural connections between the
cardinality of RgMax(R) and cardinalities of certain sets which are related to R.

Proposition 2.8. Let R be a ring, then the following statements hold:

(1) If |Max(R)| > 2ℵ0 , then |Max(R)| ≤ |RgMax(R)|.
(2) Either |RgMax(R)| ≥ ℵ0 or |Spec(R)| ≤ 22

ℵ0
.

(3) If | R
J(R) | > 22

ℵ0
, then |RgMax(R)| ≥ 2ℵ0 .

(4) If |R| > max{22ℵ0 , |U(R)|}, then |RgMax(R)| ≥ 2ℵ0 .

(5) If |R| > max{22ℵ0 , |N(R)|}, then |RgMax(R)| ≥ ℵ0.

Proof. (1) Let X = Max(R) and P = {Xi}i∈I be a partition of X with |I| = |Xi| = |X| (i ∈ I). Now for
each i ∈ I, we have |Xi| > |F| = 2ℵ0 . Hence by the paragraph preceding Proposition 2.8, we infer that
there exists Mi ∈ Xi such that R

Mi
is submaximal or there exist two distinct maximal ideals Mi and Ni in

Xi such that R
Mi

∼= R
Ni

. Therefore by the paragraph preceding Proposition 2.8, R has a maximal subring
which contains Mi ∩Ni. Now for each i ∈ I, let Si be a maximal subring of R which either contains Mi

or Mi ∩Ni. Since for i 6= j in I, Mi (or Mi ∩Nj) and Mj (or Mj ∩Nj) are comaximal ideals, we infer
that Si 6= Sj . Thus |RgMax(R)| ≥ |I| and hence we are done.
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(2) If RgMax(R) is finite, then by Corollary 1.9, we infer that R is Hilbert ring. Thus every prime ideal
of R is an intersection of maximal ideals (see the proof of Corollary 1.10). Hence |Spec(R)| ≤ 2|Max(R)|.
Next, note that by part (1), we have |Max(R)| ≤ 2ℵ0 and hence we are done.

(3) If R has a maximal ideal M such that | RM | ≥ 2ℵ0 , then we are done by Corollary 1.5. Thus assume

that | RM | < 2ℵ0 for every M ∈ Max(R). If |Max(R)| > 2ℵ0 , then we are done by (1). Thus we may

assume that |Max(R)| ≤ 2ℵ0 . Now, R
J(R) embeds canonically into

∏
M∈Max(R)R/M . Thus∣∣∣∣ R

J(R)

∣∣∣∣ ≤ ∣∣∣∣ ∏
M∈Max(R)

R

M

∣∣∣∣ ≤ (2ℵ0)2
ℵ0

= 22
ℵ0
,

contradicting our assumption.

(4) By the previous part we may assume that | R
J(R) | ≤ 22

ℵ0
. Thus |R| = |J(R)| and therefore |R| = |U(R)|

(note, for each x ∈ J(R) we have 1− x ∈ U(R)), which is a contradiction.

(5) If RgMax(R) is finite, then by Corollary 1.9, we infer that R is Hilbert ring. Hence similar to the
proof of Corollary 1.10 we conclude that J(R) = N(R), which is impossible by part (3). �

Corollary 2.9. Let R be a reduced ring with |R| > 22
ℵ0

. Then |RgMax(R)| ≥ ℵ0. Moreover, there
exists an infinite chain · · · ⊂ R2 ⊂ R1 ⊂ R0 = R, where each Ri is a maximal subring of Ri−1.

Proof. The first part is an immediate consequence of (5) of the previous proposition. Now note that if

S is a maximal subring of R, then clearly S is reduced and |S| = |R| > 22
ℵ0

. Hence the infinite chain
exists by using induction and the first part of the corollary. �

Corollary 2.10. Let R be an integral domain with |R| > 22
ℵ0

. Then |RgMax(R)| ≥ 2ℵ0 .

Proof. If |R| > max{22ℵ0 , |U(R)|}, then we are done by (4) of Proposition 2.8. Hence assume that
|R| = |U(R)|, therefore we are done by (1) of Proposition 1.13. �

Let R be a ring, then we denote by Htn(R) (resp. CoHtn(R)) the set of all prime ideals of R of height
(resp. coheight) n.

Lemma 2.11. Let R be a noetherian Hilbert ring. Then any prime ideal in CoHtn(R), n ≥ 0, is a
countable intersection of maximal ideals.

Proof. First note that if R is a noetherian integral domain, then for any infinite set {Pi}∞i=1 ⊆ Ht1(R),
we have I =

⋂∞
i=1 Pi = 0. For proof note that, if I 6= 0, then Min(I) is infinite which is impossible, since

R is noetherian. Now we prove the theorem by induction on n ≥ 1. Hence assume that P ∈ CoHt1(R).
Since R/P is an integral domain, we infer that P is a countable intersection of maximal ideals, by
the first comment of the proof. Now suppose that the theorem holds for each P ∈ CoHtk(R), where
k ≤ n − 1. Assume that P ∈ CoHtn(R). Since R/P is an integral domain, by the first comment of
the proof we infer that there exists a countable set {Qi}∞i=1 of prime ideals of R such that P =

⋂∞
i=1Qi

and htR/P (Qi/P ) = 1 (note, J(R/P ) = 0), see also [18, Theorem 147]. Thus for each i ≥ 1 we have
Qi ∈ CoHtki(R), for some ki ≤ n − 1 (note, P ∈ CoHtn(R)). Now by induction hypothesis each Qi
is a countable intersection of maximal ideals. Thus P is a countable intersection of maximal ideals too.
Hence we are done. �

Corollary 2.12. Let R be a finite dimensional noetherian ring. Then either RgMax(R) is infinite or
|Spec(R)| ≤ 2ℵ0 .

Proof. Assume that RgMax(R) is finite. Hence by (1) of Proposition 2.8, we infer that |Max(R)| ≤ 2ℵ0 .
Next, note that by Corollary 1.9, R must be a Hilbert ring. Thus by the previous lemma, we infer that
|Spec(R)| ≤ 2ℵ0 and hence we are done. �

We conclude this section with the following remark.

Remark 2.13. We remind the reader that most results in Sections 1 and 2 can be generalized as follows.
In fact in most of them the conclusions are valid for any R-algebra. To see this we prove for example
Corollary 1.10 for any R-algebra. Hence assume that R is a reduced ring with J(R) 6= 0 and T be an
R-algebra. We claim that |RgMax(T )| ≥ ℵ0. To see this first note that T/N(T ) contains a copy of R,
thus we may assume that T is a reduced ring. Now if J(T ) 6= 0, then we are done by Corollary 1.10.
Hence assume that J(T ) = 0, we show that in this case there exists a maximal ideal M of T such T/M is
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not an absolutely algebraic field and therefore we are done by Corollary 1.5. For otherwise, we infer that
R∩M is a maximal ideal of R for each maximal ideal M of T (note, R/(R∩M) ∼= (R+M)/M ⊆ T/M).
Hence J(R) ⊆ J(T ) ∩R = 0, which is absurd.

3. Direct Products and Semilocal Reduced Rings

Finally in this section we determine exactly when a direct product of rings has only finitely many maxi-
mal subrings. We first have a closer look to the structure of maximal subrings of a finite direct product
of rings. In particular, the structure of maximal subrings of K1 × K2, where K1 and K2 are fields,
are completely determined by Isom(K1,K2) (i.e., the set of all field isomorphisms from K1 into K2),
RgMax(Ki) and Aut(Ki), i = 1, 2. Finally, the structure of semilocal reduced rings with only finitely
many maximal subrings are characterized.

We need the following result, whose proof could be found in [13], [21] and [9, Theorems 2.3 and 2.4]. We
give its proof for the sake of completeness. Before presenting it, let us recall some observations. Let S be
a subring of a ring R. Then (S : R) := {x ∈ R | Rx ⊆ S} is the largest ideal of R which is contained in
S. Also one can easily prove that if I is a common ideal between S and R, then the extension S ⊆ R is
integral if and only if S/I ⊆ R/I is integral. Further, if S is a maximal subring of R, then one can easily
see that either R is integral over S or S is integrally closed in R. Finally, note that if S is a maximal
subring of R, then R is algebraic over S (note, if x ∈ R \ S then either x2 ∈ S or x ∈ S[x2]).

Theorem 3.1. Let S be a maximal subring of a ring R. Then the following statements are true,

(1) (S : R) ∈ Spec(S).
(2) (S : R) ∈Max(S) if and only if R is integral over S.
(3) If S is integrally closed in R, then (S : R) ∈ Spec(R).

Proof. First note that (1) is an immediate consequence of (2) and (3), but we give a direct proof for it.
Let ab ∈ P := (S : R), where a, b ∈ S, but a /∈ P . Then Ra+S = R, by the maximality of S. Multiplying
the latter equality by b, we have Rab + Sb = Rb. Since Rab ⊆ P ⊆ S, we infer that Rb ⊆ S, i.e., b ∈ P
and we are done.
Next we prove (2). First assume that R is integral over S. We claim that P = (S : R) is a maximal
ideal of S. Indeed, suppose by way of contradiction that I be a proper ideal in S with P ( I, Now by
the maximality of S we have either S = S + IR or R = S + IR. But the former equality implies I ⊆ P
which is absurd, hence R = S + IR. The latter equality immediately implies that I(R/S) = R/S as an
S-module. Since for each u ∈ R \ S we have R = S[u] and u is integral over S, we infer that R is finitely
generated as an S-module. Now by the so-called determinant trick (see [18, Theorem 76]) there exists
an element a ∈ I with (1 + a)(R/S) = 0, whence (1 + a)R ⊆ S, which means 1 + b ∈ P ⊂ I, and hence
1 ∈ I, a contradiction. Thus P is a maximal ideal of S. Conversely, assume that P is a maximal ideal
of S. Hence the field S/P is a maximal subring of R/P , which by the preceding comments, immediately
implies that R is integral over S.
Finally for (3), assume that S is a maximal subring of R which is integrally closed in R. We claim that
P is a prime ideal of R. To see this, assume that a, b ∈ R and ab ∈ P but a /∈ P . We prove that b ∈ R,
that is Rb ⊆ S. Suppose that b′ ∈ Rb, clearly ab′ ∈ P . Since a /∈ P , we infer that R = S + Ra, by the
maximality of S. Thus b′ = s+ r′a for some s ∈ S and r′ ∈ R. By multiplying the latter equation by b′,
we get b′2 = sb′ + r′ab′. Now since r′ab′ ∈ P ⊆ S, we conclude that b′ is a root of the monic polynomial
x2 − sx − r′ab′ ∈ S[x], that is b′ is integral over S and since S is integrally closed in R, we infer that
b′ ∈ S. Thus Rb ⊆ S, i.e., b ∈ P , as required. �

In the following proposition which is a generalization of [5, Lemma 2.2, Corollary 2.3], we determine the
structure of maximal subrings of a finite direct product of rings.

Proposition 3.2. Let R1, . . . , Rn be rings and n ≥ 2 and S be a maximal subring of R =
∏n
i=1Ri. Then

S satisfies at least one of the following conditions:

(1) S = R1 × · · · ×Ri−1 × Si ×Ri+1 × · · · ×Rn, where Si ∈ RgMax(Ri).
(2) There exist 1 ≤ i < j ≤ n and Mk ∈Max(Rk) (k = i, j) such that P = R1 × · · · ×Ri−1 ×Mi ×

Ri+1 × · · · ×Rj−1 ×Mj ×Rj+1 × · · · ×Rn ⊆ S and Ri

Mi

∼= Rj

Mj

∼= S
P .

Moreover, if condition (2) holds, then R is integral over S, P = (S : R) is a maximal ideal of S (also note
that P = M ∩N , for some M,N ∈Max(R)) and S ∼= S′ ×

∏
k 6=i,j Rk, where S′ ∈ RgMax(Ri ×Rj).
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Proof. We prove the proposition by induction on n. It is clear that it suffices to prove the proposition
only for n = 2 (then one can easily complete the proof). Hence assume that n = 2, J1 = R1 × {0} and
J2 = {0}×R2. Now, if S is a maximal subring of R which contains either J1 or J2, then clearly (1) holds.
Hence assume that S does not contain J1 or J2. Thus J ′1 = J1∩S = S1×{0} and J ′2 = J2∩S = {0}×S2,
where Si ( Ri. Now we claim that J ′1 + J ′2 = S1 × S2 is a proper ideal of S. For otherwise, we have
S = S1 × S2 ( S1 ×R2 6= R, which is absurd, since S is a maximal subring of R. Hence (1, 0), (0, 1) /∈ S
and therefore we infer that R is integral over S, since (1, 0)2 = (1, 0). Hence by the previous theorem
P = (S : R) = M1×M2 is a maximal ideal of S, where each Mi is a proper ideal of Ri, for i = 1, 2 (note,
Si 6= Ri). Therefore the field K = S

P is a maximal subring of R
P = R1×R2

M1×M2

∼= R1

M1
× R2

M2
. Now by [13,

Lemma 1.2], we conclude that Ri

Mi

∼= K, for i = 1, 2. Hence (2) and the final assertions of the proposition
hold and we are done. �

Remark 3.3. Let R1, . . . , Rn be rings, n ≥ 2 and R =
∏n
i=1Ri. It is clear that if S is a subring of R

which satisfies condition (1) of the previous proposition, then S is a maximal subring of R. But, if a
subring S of R satisfies in condition (2) of the previous proposition, then it can not be a maximal subring
of R. To see this, let K be any field and x be an indeterminate over K. Now, put R = K(x)×K(x) and
S = {(t, t) | t ∈ K(x2)}. Then one can easily see that S satisfies condition (2) of the previous proposition,
but S is not a maximal subring of R, since S is properly contained in T = {(t, t) | t ∈ K(x)} which is a
proper subring of R.

Now we are ready to determine exactly the structure of maximal subrings of K ×K, where K is a field.

Theorem 3.4. Let K be a field. Then R is a maximal subring of K ×K if and only if R satisfies at
least one of the following conditions:

(1) R = S ×K or R = K × S, for some S ∈ RgMax(K).
(2) R = {(σ1(x), σ2(x)) | x ∈ K}, where σi ∈ Aut(K) for i = 1, 2.

In particular, |RgMax(K ×K)| ≥ 2|RgMax(K)|+ |Aut(K)|.

Proof. First assume that R satisfies at least one of conditions (1) or (2), we claim that R is a maximal
subring of K×K. If R satisfies condition (1), then clearly R is a maximal subring of K×K. Hence assume
that R = {(σ1(x), σ2(x)) | x ∈ K}, where σi ∈ Aut(K). Clearly, R is a proper subring of K × K and
R ∼= K, i.e., R is a field. Thus for the maximality of R, it suffices to show that for each (x, y) ∈ (K×K)\R,
we have T := R[(x, y)] = K×K. Since σi ∈ Aut(K), we infer that there exist a, b ∈ K such that σ1(a) = x
and σ2(b) = y. Thus (x, σ2(a)), (σ1(b), y) ∈ R and therefore A := (0, y − σ2(a)), B := (x− σ1(b), 0) ∈ T .
Clearly, x0 := x− σ1(b) 6= 0 and y0 := y− σ2(a) 6= 0 (note, (x, y) /∈ R), hence there exist a0, b0 ∈ K such
that σ1(a0) = x0 and σ2(b0) = y0. Thus C := (x0, σ2(a0)), D := (σ1(b0), y0) ∈ R \ {0}, and since R is a
field we infer that C−1B = (1, 0) ∈ T and AD−1 = (1, 0) ∈ T . Now note that for each (s, t) ∈ K×K, there
exist s0, t0 ∈ K such that (s, σ2(s0)), (σ1(t0), t) ∈ R. Therefore (s, t) = (s, σ2(s0))(1, 0)+(σ1(t0), t)(0, 1) ∈
T , i.e., T = K ×K. Hence R is a maximal subring of K ×K.
Conversely, assume that R is a maximal subring of K×K which does not satisfy condition (1). We prove
that R satisfies condition (2). Since R does not satisfies condition (1), by the previous proposition we infer
that R ∼= K, and thus R is a field. Let σ : K → R be a ring isomorphism and πi : R→ K be the natural
projection maps (i = 1, 2). Now put σi = πiσ, for i = 1, 2. It is clear that R = {(σ1(x), σ2(x)) | x ∈ K}.
We claim that σi ∈ Aut(K), for i = 1, 2. The fact that R is a field implies that (1, 0), (0, 1) /∈ R, and
since R is a maximal subring of K × K, we conclude that K × K = R[(0, 1)] = R + R(0, 1) (note,
(0, 1)2 = (0, 1)). Now if y ∈ K, then (y, 0) ∈ R[(0, 1)] = R + R(0, 1), which immediately implies that
there exists x ∈ K such that σ1(x) = y. Hence σ1 ∈ Aut(K) (note, since R is a field σ1 is one-one) and
similarly σ2 ∈ Aut(K). For the final part note that for each σ ∈ Aut(K), Rσ := {(x, σ(x)) | x ∈ K} is
a maximal subring of K ×K, and clearly whenever σ 6= τ are in Aut(K), then Rσ 6= Rτ . Thus we are
done. �

The following result is now in order.

Corollary 3.5. Let K be a field. Then K ×K has only finitely many maximal subrings if and only if K
is a finite field.

Proof. It is clear that if K is a finite field, then K × K has only finitely many maximal subrings.
Conversely, assume that K × K has only finitely many maximal subrings. Indeed, suppose by way of
contradiction that K is infinite. Since K × K has only finitely many maximal subrings, we infer that
K has only finitely many maximal subrings and Aut(K) is finite, by the previous theorem. Therefore
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by Corollary 1.5, we conclude that K is an algebraic extension of Zp, for some prime number p. Let
σ : K → K be the Frobenius automorphism defined by σ(x) = xp for all x ∈ K. It is clear that

σ ∈ Aut(K) and σ has infinite order (note, If σ has order k, then f(x) := xp
k − x = 0 for all x ∈ K.

However, f has degree pk, whence can have at most pk roots in K, contradicting that K is infinite).
Thus Aut(K) is an infinite group which is impossible and we have reached a contradiction. Therefore K
is finite and the proof is complete. �

Now we have the following immediate corollaries.

Corollary 3.6. Let K1 and K2 be fields. Then R is a maximal subring of K1 × K2 if and only if R
satisfies exactly one of the following conditions:

(1) R = S1 ×K2, for some S1 ∈ RgMax(K1).
(2) R = K1 × S2, for some S2 ∈ RgMax(K2).
(3) R = {(σ1(x), τ(σ2(x))) | x ∈ K1}, where τ : K1 → K2 is a field isomorphism and σi ∈ Aut(K1),

for i = 1, 2.

Corollary 3.7. Let K1 and K2 be fields. Then K1×K2 has only finitely many maximal subrings if and
only if exactly one of the following conditions holds:

(1) K1 � K2 and each Ki has only finitely many maximal subrings, for i = 1, 2.
(2) K1

∼= K2 and K1 is finite.

Remark 3.8. The only maximal subring of R × R which is a field is {(x, x) | x ∈ R}. To see this, note
that it is well-known that Aut(R) = {i}, hence we are done by Theorem 3.4.

Now we are ready to determine exactly when a direct product of rings has only finitely many maximal
subrings.

Theorem 3.9. Let {Ri}i∈I be a family of rings and R :=
∏
i∈I Ri. Consider the following conditions:

(1) |I| <∞.
(2) Each Ri has only finitely many maximal subrings.
(3) For each i 6= j in I, if Mk is a maximal ideal of Rk, k = i, j, and Ri/Mi

∼= Rj/Mj, then Ri/Mi

is finite.
(3′) For any i ∈ I, if Mi and Ni are distinct maximal ideals of Ri and Ri/Mi

∼= Ri/Ni, then Ri/Mi

is finite.
(4) For each i 6= j in I, the set Cij := {(M,N) ∈Max(Ri)×Max(Rj)|Ri/M ∼= Rj/N} is finite.

(4′) For any i ∈ I, the set Ci := {(M,N) ∈Max(Ri)×Max(Ri)|Ri/M ∼= Ri/N,M 6= N} is finite.

If R has only finitely many maximal subrings, then all of the above conditions hold. Conversely, if
conditions (1), (2), (3), and (4) hold, then R has only finitely many maximal subrings.

Proof. Suppose first that R has only finitely many subrings. To prove (1), we suppose by way of contra-
diction that I is infinite. Then by [6, Remark 3.18], we infer that |RgMax(R)| ≥ 2|I|, which is absurd.
Hence I is finite and we may assume that I = {1, . . . , n}. As for (2), if some Ri has infinitely many
subrings, then by Remark 3.3, the same is true of R, and this is a contradiction. We now prove (3).
So suppose that i 6= j, Mi is a maximal ideal of Ri and Mj is a maximal ideal of Rj . Note first that
Ri/Mi ×Rj/Mj has only finitely maximal subrings, lest Ri ×Rj has infinitely many maximal subrings,
which would imply that R has infinitely many maximal subrings, a contradiction. The conclusion now
follows from Corollary 3.7. Condition (3′) is proved analogously via The Chinese Remainder Theorem.
Now for (4). Suppose by way of contradiction that there exist i 6= j such that Cij is infinite. We now
consider cases.

Case 1: There exists M such that (M,N) ∈ Cij for infinitely many N . Then we may assume
{(M,N1), (M,N2), (M,N3), . . .} ⊆ Cij , where Na 6= Nb for a 6= b. By definition, we see that Rj/N1

∼=
Rj/N2

∼= Rj/N3 · · · . For every positive integer n, let Tn := Rj/(N2n−1 ∩ N2n). Then note that Tn ∼=
Rj/N2n−1×Rj/N2n

∼= Rj/N1×Rj/N1. By [1, Theorem 2.2], it follows that Tn is submaximal. Thus for
every positive integer n, there exists a maximal subring Sn of Rj which contains N2n−1 ∩N2n. We claim
that for m 6= n, also Sm 6= Sn. If Sm = Sn, then Sm contains both N2n−1 ∩N2n and N2m−1 ∩N2m. But
since N2n−1, N2n, N2m−1, and N2m are distinct maximal ideals of Rj , it follows that N2n−1 ∩ N2n and
N2m−1 ∩N2m are coprime, whence Sm = Rj , a contradiction. But now Rj has infinitely many maximal
subrings, contradicting (2).
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Case 2: There exists N such that (M,N) ∈ Cij for infinitely many M . This case is analogous to Case 1
and the argument is omitted.

Case 3: For every M there are only finitely many N for which (M,N) ∈ Cij and for every N , there are
only finitely many M for which (M,N) ∈ Cij . Let (M1, N1) ∈ Cij be arbitrary. Let X := {(M,N) ∈
Cij |M = M1} and let Y := {(M,N) ∈ Cij |N = N1}. By our assumption, X and Y are finite, yet Cij is
infinite. Pick (M2, N2) ∈ Cij− (X ∪Y ). Thus M2 6= M1 and N2 6= N1. Continuing recursively, we obtain
members (M1, N1), (M2, N2), (M3, N3), . . . of Cij such that for a 6= b, we have Ma 6= Mb and Na 6= Nb.
Analogous to Case 1, for every positive integer n, there exists a maximal subring Sn of Ri × Rj which
contains Mn × Nn. For m 6= n, it is easy to see that Mm × Nm and Mn × Nn are coprime in Ri × Rj .
Thus Sm 6= Sn for m 6= n, and Ri × Rj has infinitely many maximal subrings, which is a contradiction.
The proof of (4′) proceeds analogously to the proof of (4) and is omitted.

We now suppose that conditions (1), (2), (3), and (4) hold, and we show that R has only finitely many
maximal subrings. We may suppose that I = {1, . . . , n}. Suppose by way of contradiction that R has
infinitely many maximal subrings. Since for each i, 1 ≤ i ≤ n, Ri has only finitely many maximal
subrings, we infer that R has only finitely many maximal subrings of the form (1) of Proposition 3.2.
Thus R has infinitely many maximal subrings of the form (2) of Proposition 3.2. Thus there exist i 6= j
such that Ri ×Rj has infinitely many maximal subrings of the from (2) of Proposition 3.2. Since Cij is
finite, we conclude that there exist maximal ideals Mk of Ri and Nk of Rj such that Ri/Mk

∼= Rj/Nk,
Ri/Mk is finite, and Ri/Mk × Rj/Nk contains infinitely many maximal subrings; this is absurd since
Ri/Mk ×Rj/Nk is finite. This completes the proof. �

The following corollaries are immediate now.

Corollary 3.10. Let R be a ring. Then R × R has only finitely many maximal subrings if and only if
R is a semilocal ring with only finitely many maximal subrings and for each maximal ideal M of R, the
field R/M is finite.

Corollary 3.11. Let R1, . . . , Rn be rings such that for each i, Char(Ri) = ci > 0. If for each i 6= j:
(ci, cj) = 1, then R =

∏n
i=1Ri has only finitely many maximal subrings if and only if each Ri has only

finitely many maximal subrings.

Finally in this article we give some results about semilocal reduced rings with only finitely many maximal
subrings. In the next corollary we see that these rings are semisimple.

Corollary 3.12. Let R be a semilocal reduced ring. Then either RgMax(R) is infinite or R ∼= E1× . . .×
Em, where m ∈ N and each Ei is a field with only finitely many maximal subrings (hence is algebraic
over Fpi for some pi ∈ P, by Corollary 1.5) and for each i 6= j: If Ei and Ej are infinite, then Ei � Ej.
Consequently, if R is an uncountable semilocal reduced ring, then |RgMax(R)| ≥ ℵ0. In particular, a
semilocal domain R has only finitely many maximal subrings if and only if R is a field with only finitely
many maximal subrings.

Proof. Assume that R has only finitely many maximal subrings. Thus by Corollary 1.10, we infer that
J(R) = 0. Hence R is a finite direct product of fields. Now Theorem 3.9 completes the proof of the
first part of the theorem. Also note that if R is semilocal reduced ring with only finitely many maximal
subrings, then by the first part we infer that R is a finite direct product of countable fields. Hence R is
countable and therefore the second part of the corollary is proved. The final part is evident. �

Let R be a ring. The chain · · · ⊂ R2 ⊂ R1 ⊂ R0 = R of subrings of R is called a saturated descending
chain of subrings of R (or a saturated chain of maximal subrings in R) whenever each Ri is a maximal
subring of Ri−1, for each i ≥ 1. Moreover, if Rm ⊂ Rm−1 ⊂ · · · ⊂ R2 ⊂ R1 ⊂ R0 = R is a chain of
maximal subrings and Rm is not submaximal, then the integer m is called the length of the chain. We
cite the following result from [3].

Theorem 3.13. Let E be a field. Then the following conditions are equivalent:

(1) RgMax(E) is finite.
(2) E has a non submaximal subfield F such that E/F is a finite field extension.
(3) Every descending chain

· · · ⊂ R2 ⊂ R1 ⊂ R0 = E

is finite, where each Ri is a maximal subring of Ri−1 for i ≥ 1.
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Moreover, if one of the above equivalent conditions holds, then F is unique and contains all non submaxi-
mal subrings of E. Furthermore all saturated descending chains in (3) have the same length, m = [E : F ],
Rm = F , and E has only finitely many saturated descending chains of the form which is presented in (3).

Now we are ready to generalize the above characterization to semilocal reduced rings. In the next example
we show that condition (3) does not imply condition (1) for semisimple rings which are not fields.

Example 3.14. Let F be the algebraic closure of Fp. Then F ×F has infinitely many maximal subrings
by Corollary 3.5, but every descending chain

· · · ⊂ R2 ⊂ R1 ⊂ R0 = F × F

is finite, where each Ri is a maximal subring of Ri−1 for i ≥ 1. To see this first note that R1
∼= F , by

Proposition 3.2 or Theorem 3.4. Now by [4, Remark 1.13 or Remark 2.11], F and therefore R1 is not
submaximal. Hence the chain is finite and we are done.

We need the following useful proposition for the next observations.

Proposition 3.15. Let E1, . . . , En be absolutely algebraic fields of prime characteristic (the characteris-
tics are not assumed to all be equal), and let R := E1 × · · · × En. Then the following hold:

(1) If S is a maximal subring of R, then either there exists i such that S = E1 × · · · × Ei−1 × E′i ×
Ei+1× · · · ×En, where E′i is a maximal subring of Ei, or S ∼= E1× · · · ×Ei−1×Ei+1× · · · ×En.
In any case, S is a direct product of k fields, where n− 1 ≤ k ≤ n. Further, if each Ei has only
finitely many maximal subrings, then S is a product of k fields which each have only finitely many
maximal subrings.

(2) If Rm ( Rm−1 ( · · · ( R1 ( R is a descending chain of maximal subrings, then R is a finite
extension of Rm.

(3) If F is a field with F ⊆ R and if R is a finite-dimensional vector space over F , then each Ei
contains an isomorphic copy F ′ of F such that Ei is a finite field extension of F ′.

Proof. Let E1, . . . , En and R be as stated.

(1) Suppose that S is a maximal subring of R. If S has the form (1) of Proposition 3.2, then S has
the first form. In this case, we claim that E′i is a field. To see this, simply note that for some prime p,
Fp ⊆ E′i ⊆ Ei and Ei is algebraic over Fp. Thus E′i is a field. Otherwise (again, by Proposition 3.2) it
follows that S ∼= S′ ×

∏
k 6=i,j Ek where S′ ∈ RgMax(Ei ×Ej) (i 6= j) and S′ has form (2) of Proposition

3.2. But in this case, S′ ∼= Ei ∼= Ej . To complete the proof of (1), suppose that each Ei has only finitely
many maximal subrings. If S has the second form, then trivially S is a product of n − 1 fields which
each have only finitely many maximal subrings. If S has the first form, we simply must show that E′i has
only finitely many maximal subrings. If not, then by Theorem 3.13, E′i has an infinite descending chain
of maximal subrings, and thus the same is true of Ei. But then by Theorem 3.13 again, RgMax(Ei) is
infinite, a contradiction.

(2) It suffices to show that R is a finite extension of R1. Let Fi be the prime subfield of Ei and Z be the
prime subring of R. Now it is clear that Z ⊆ S := F1×· · ·×Fn is an integral extension (note, S is finite)
and also S ⊆ R is an integral extension. These immediately imply that S ⊆ R and therefore R1 ⊆ R is
an integral extension. Since R1 is a maximal subring of R, it follows that R is a finite extension of R1

and we are done.

(3) We prove (3) by induction on n. The claim is clearly true if n = 1. Now let n > 0 be arbitrary
and suppose that (3) holds for n. Now assume that E1, . . . , En+1 are absolutely algebraic fields of prime
characteristic p, and let R := E1 × · · · × En+1. Suppose further that F is a field and F ⊆ R with R a
finite-dimensional vector space over F . It follows that there exists a descending chain F = Rm ( Rm−1 (
Rm−2 · · · ( R1 ( R0 := R of maximal subrings of R (m ≥ 1). Now let k be greatest such that Rk is
a product of n + 1 fields. Then k < m and (by (1)) Rk+1 is a product of n fields, each of which is a
summand of Rk. Moreover, two summands of Rk are isomorphic (by Proposition 3.2). It follows by the
induction hypothesis that each summand of Rk is a finite extension of some isomorph of F . It follows
that each Ei also contains an isomorphic copy of F , and by (2), each such extension is finite. �

In the following result we show that for semisimple rings, condition (1) implies condition (3). We also
give a condition under which the converse is valid.
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Theorem 3.16. For all positive integers n: If E1, E2, . . . , En are fields each with only finitely many
maximal subrings, then every descending chain · · · ( R2 ( R1 ( R0 := E1 × · · · × En is finite, where
Ri is a maximal subring of Ri−1 for i ≥ 1. Conversely, suppose that E1, E2, . . . , En are fields and set
R := E1×· · ·×En. Suppose further that for i 6= j: if Ei ∼= Ej, then Ei is finite. Then if every descending
chain of maximal subrings in R is finite, then R has only finitely many maximal subrings.

Proof. Suppose the first assertion fails, and let n be least for which the claim is false. Proposition 3.15,
part (1) implies that each Ri is a direct product of k fields, k ≤ n, each of which has only finitely many
maximal subrings. It follows from the leastnes of n that each Ri is a direct product of n fields, each of
which has only finitely many maximal subrings. But then by repeated application of (1) of Proposition
3.15, we see that some Ei has an infinite descending chain of maximal subrings, contradicting Theorem
3.13. As for the second claim, it is clear that each Ei has the property that every descending chain of
maximal subrings of Ei is finite. Thus by Theorem 3.13, we see that Ei has only finitely many maximal
subrings. Theorem 3.9 now implies that R has only finitely many maximal subrings. �

Example 3.17. Let p and q be primes, n a positive integer, and set R := Fpqn × Fpqn . Then R has a
saturated chain of maximal subrings of length 2n+ 1 and a saturated chain of maximal subrings of length
n+ 1.

Although as we see in the previous example the lengths of the chains are not equal for the semisimple
rings with only finitely many maximal subrings, but as we see in the next result (which is our main result
in this article) the last terms in these chains are all isomorphic to a (non submaximal) ring, say S, where
S is unique (up to isomorphism) with respect to the property that R is finitely generated as an S-module.

Theorem 3.18. For all positive integers n: suppose that E1, . . . , En are fields each have only finitely
many maximal subrings. For each i, 1 ≤ i ≤ n, let Fi be the largest non submaximal subfield of Ei such
that Ei/Fi is a finite field extension (whose existence is guaranteed by Theorem 3.13). If {K1, . . . ,Km}
is a maximal subset of non-isomorphic elements of {F1, . . . , Fn}, then the following hold:

(1) If Rl ( · · · ( R2 ( R1 ( R0 := E1 × · · · × En is a descending saturated chain of maximal
subrings, then Rl ∼= K1 × · · · ×Km. Moreover, R0 is finitely generated over Rl.

(2) If R′ is a subring of R0 which is not submaximal and R0 is finitely generated over R′, then
R′ ∼= K1 × · · · ×Km.

Proof. (1) First note that by Corollary 1.5 each Ei is an absolutely algebraic field of prime characteristic
which by (2) of Proposition 3.15 immediately implies that R0 is finitely generated over Rl. Hence it
remains to prove the first claim of (1). We show it by induction on the positive integers. The base case
of the induction follows immediately from Theorem 3.13. Now let n > 1 and suppose (1) holds for n− 1.
We will prove that (1) holds for n. Thus let E1, . . . , En and F1, . . . , Fn be as stated in the theorem.
Moreover, let Rl ( · · · ( R2 ( R1 ( R0 := E1 × · · · × En be a descending saturated chain of maximal
subrings. We consider two cases.

Case 1: Rl = L1 × · · · × Ln for some subfields L1, . . . , Ln of E1, . . . , En, respectively (see Proposition
3.15). Since Rl is non-submaximal, the same is true of each Li. But then each Li is the final term of a
saturated descending chain of maximal subrings of Ei. By Theorem 3.13, it follows that Li = Fi. Hence
Rl = F1× · · · ×Fn. If Fi ∼= Fj for some i < j, then Fi×Fj is submaximal by [1, Theorem 2.2]. But then
Rl is submaximal, a contradiction.

Case 2: Rl is the product of fewer than n fields. Let i ≥ 0 be greatest such that Ri is the product of
n fields, say Ri = L1 × · · · × Ln. Proposition 3.15 implies that each Li is a subfield of Ei. Moreover,
each Fi is the largest non submaximal subfield of Li such that Li/Fi is a finite field extension. It
follows from Proposition 3.2 and Proposition 3.15 that there exists i < j such that Li ∼= Lj . Without
loss of generality, we may assume that i = 1 and j = 2. Further, Ri+1

∼= L2 × · · · × Ln. The induction
hypothesis now yields thatRl ∼= K2×· · ·×Km, where {K2, . . . ,Km} is a maximal subset of non-isomorphic
elements of {F2, . . . , Fn}. We claim that {K2, . . . ,Km} is a maximal subset of non-isomorphic elements
of {F1, . . . , Fn}. To see this, simply recall that L1

∼= L2. Thus F1
∼= F2

∼= Ki for some i with 2 ≤ i ≤ m.

We now prove (2). Thus suppose that R′ is a subring of R0 which is not submaximal and assume that
R0 is finitely generated over R′. Since R0 is Noetherian, Eakin’s Theorem implies that R′ is Noetherian.
Also note that R0 is integral over R′, whence R0 and R′ have the same Krull dimension. R0 is Artinian,
whence has dimension 0. We conclude that R′ has dimension 0, and thus R′ is also Artinian. Since R′

is reduced, it follows that R′ = L1 × · · · × Lk for some fields L1, . . . , Lk. Thus R0 = S1 × · · · × Sk for
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some rings S1, . . . , Sk, where each Si is a ring extension of Li. Since R0 is finitely generated over R′, we
see that each Si is a finite-dimensional vector space over Li. Thus there exists a finite descending chain
of maximal subrings from Si to Li. An easy application of the first part of Remark 3.3 shows that there
exists a finite descending chain of maximal subrings from R0 to R′. We are now done by (1). �

The next example is in order now. In this example we see that the finitely generated condition in the
final part of the previous theorem can not be omitted.

Example 3.19. Let q1, q2, q3 and q4 be distinct prime numbers and p be any prime number. Now define
the following subfields of the algebraic closure of Fp:

F =

∞⋃
m=0

F
pq

m
1
,

F ⊂ F1 =

∞⋃
m,n=0

F
pq

m
1 qn2
⊂ E1 =

∞⋃
m,n=0
0≤k≤1

F
pq

m
1 qn2 qk4

,

and

F ⊂ F2 =

∞⋃
m,n=0

F
pq

m
1 qn3
⊂ E2 =

∞⋃
m,n=0
0≤k≤1

F
pq

m
1 qn3 qk4

.

Then Fi is the unique maximal subring of Ei, by [3, Theorem 2.6]. Therefore [Ei : Fi] is finite, and since
Fi is non submaximal, by [4, Theorem 1.8 and Proposition 1.11], we conclude that Fi is the largest non
submaximal subring of Ei, by Theorem 3.13. Now note that E1 × E2 has only finitely many maximal
subrings by Corollary 3.7. Now put R′ = {(x, x) | x ∈ F}. It is clear that R′ is a subring of E1×E2 and
since R′ ∼= F , we infer that R′ is not submaximal, by [4, Theorem 1.8 and Proposition 1.11]. But clearly
R′ is not isomorphic to F1 × F2.

We conclude this article by the next theorem and its corollary.

Theorem 3.20. Let R be a semilocal reduced ring. Assume that R has a subring S such that S is not
submaximal and R is finitely generated as an S-module. Then R ∼= E1 × · · · × En, where each Ei is a
field with only finitely many maximal subrings, for 1 ≤ i ≤ n.

Proof. First note that since R is reduced, we conclude that S is reduced too. Thus by Corollary 1.10,
we infer that J(S) = 0, since S is not submaximal. Now since R is finitely generated as an S-module,
we conclude that R is integral over S. Therefore S is semilocal too, since R is semilocal. Hence we may
assume that S = F1 × · · · × Fm, where each Fi is a non submaximal field (and by Corollary 1.5, each
field Fi is absolutely algebraic over Fpi for some prime pi) and R = R1 × · · · × Rm, where each Ri is a
ring which contains Fi. Since R is finitely generated as an S-module we conclude that each Ri is a finite
dimensional Fi-vector space. Thus each Ri is an artinian ring. Now since R is reduced, we infer that
each Ri is a reduced ring. Therefore each Ri is semisimple ring. Thus Ri ∼= Ei1 × · · · × Eini

, where Eij
is a field. Since Fi has characteristic pi and Fi ⊆ Ri, we conclude that Ri has characteristic pi. But then
each Eij also has characteristic pi. Since Ri is finite-dimensional over Fi, it follows that Ri is an integral
extension of Fi. Since Fi is algebraic over Fpi , we conclude that Ri is integral over Fpi . This implies
that each Eij is algebraic over Fpi , whence each Eij is absolutely algebraic of characteristic pi. Thus by
(3) of Proposition 3.15, we deduce that each Eij contains a copy of Fi and is finite-dimensional over Fi.
Now, Theorem 3.13, implies that each Eij is a field with only finitely many maximal subrings (and Fi is
the largest non submaximal subfield of Eij). Thus each Ri is a finite direct product of fields which have
only finitely many maximal subrings; and therefore R is a finite direct product of fields which have only
finitely many maximal subrings and we are done. �

Finally, in the next corollary we give a generalization of Theorem 3.13.

Corollary 3.21. Let R be a semilocal reduced ring. Then the following statements are equivalent:

(1) R ∼= E1 × · · · × En, where each Ei is a field with only finitely many maximal subrings.
(2) R is a semisimple ring and each descending chain · · · ⊂ R2 ⊂ R1 ⊂ R0 = R is finite, where each

Ri is a maximal subring of Ri−1 for every i > 0.
(3) There exists a non submaximal subring S of R such that R is finitely generated as an S-module.

Moreover, if one of the above equivalent conditions holds for R, then the following are true:
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(i) S is unique up to isomorphism; and the last terms of all chains in (2) are isomorphic to S.
(ii) R has only finitely many maximal subrings up to isomorphism.

Furthermore, if R′ is a subring of R such that R is a finitely generated as R′-module, then R satisfies
one of the above equivalent conditions if and only if R′ satisfies one of them.

Proof. (1) implies (2), by the first part of Theorem 3.16; and by the previous theorem (3) implies (1).
Now suppose (2) holds and let S := Rm ⊂ · · · ⊂ R2 ⊂ R1 ⊂ R0 = R be a saturated chain of maximal
subrings, then clearly S is not submaximal and by (2) of Proposition 3.15, R is finitely generated as an
S-module. Thus (3) holds. Now assume that one of the equivalent conditions (1)-(3) holds, then (i) holds
by Theorem 3.18. Also note that (ii) holds by (1) of Proposition 3.15. For the final claim, first assume
that R′ satisfies one of the conditions. Since R is integral over R′ and R is reduced, we infer that R′

is a semilocal reduced ring. Hence all conditions are equivalent for R′. Thus by condition (2), R′ has a
non submaximal subring S′ such that R′ is a finitely generated S′-module. It is now clear that R is a
finitely generated S′-module and therefore R satisfies condition (2). Conversely, assume that R satisfies
one of the equivalent conditions. We prove that that the same holds for R′. Similar to the previous proof,
since R is semilocal reduced ring and R is integral over R′, we infer that R′ is a semilocal reduced ring.
Hence by the first part of the theorem, it suffices to show that R′ satisfies at least one of the conditions.
Now, since R is a zero dimensional ring, we infer that R′ is zero dimensional too. Thus J(R′) = 0, and
therefore we may assume that R′ = F1 × · · · × Fn, where each Fi is a field and R = R1 × · · · × Rn,
where each Ri is a ring which contains Fi. Now since R is finitely generated as an R′-module, we infer
that each Ri is a finite dimensional Fi-vector space. Therefore there exists a finite descending chain of
maximal subrings from Ri to Fi. Therefore we infer that there exists a finite descending saturated chain
of maximal subrings from R to R′. Now since R satisfies condition (2), we conclude that R′ satisfies
condition (2), and hence we are done. �
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