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Abstract. In this note, we investigate ideal and factorization-theoretic properties
of some root closed cancellative commutative monoids of rank at most two.

1. Introduction

Factorization theory of commutative integral domains has a long, rich history.
In recent years, there has been increasing interest in “porting over” ring-theoretic
theorems whose statements are purely multiplicative in nature (that is, the statements
make no reference to the additive structure of a ring) to the setting of cancellative
commutative monoids, often with zero (the multiplicative monoid of a commutative
domain, not coincidentally, has these properties). It is not our purpose to give a
comprehensive account of such results in this paper; we refer the reader instead to
[2]–[8], [10]–[16], and [18]–[28] for a partial list of relevant literature.

Before motivating this note, we require some preliminary definitions. If M is a
submonoid of a commutative monoid N , then the root closure of M in N is the
monoid {x ∈ N : xn ∈ M for some n ∈ Z+}. A commutative monoid M is cancella-
tive provided whenever a, b, c ∈ M with ab = ac, then b = c. Every cancellative
commutative monoid M embeds naturally into its group of fractions Q(M) defined
by Q(M) := {a

b
: a, b ∈ M} (with the canonical multiplication inherited from M).

We naturally identify M with its image in Q(M). Say that a cancellative commu-
tative monoid M is root closed (or normal) provided the root closure M of M in
Q(M) coincides with M . Note that this can be expressed internally as follows: for
all a, b ∈ M : if an ∈ bnM , then a ∈ bM . Note that we have used multiplicative
notation in the previous definitions. When we use a different operation, we shall use
appropriate notation without further explanation. Thus, for example, if we denote
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the operation on a monoid M additively (by +), then Q(M) is the group of differ-
ences of M . For additional background in commutative semigroup fundamentals, we
refer the reader to [17], [20], and [21].

Recall that the rank of an abelian group G is the cardinal number (which may
be infinite) of indecomposable divisible summands of the injective hull E(G) of G.
The rank of a cancellative commutative monoid M is simply the rank of its group
of fractions Q(M). Note that groups of small rank can be immensely complicated.
For example, the subgroups of Q have all been determined. However, classifying the
subgroups of Q × Q is notoriously difficult. Even now, the subgroup structure of
Q×Q is not well-understood ([9], [29]).

The impetus for writing this article is to initiate a factorization-theoretic study of
root closed monoids of finite rank from a geometric viewpoint. The purpose of adding
the root closed condition is two-fold. For one, the root closed monoids form a very
broad and well-studied subclass of the class M of all monoids (this class properly
includes the classes of GCD monoids and Krull monoids, for example). Further, cer-
tain structural complications are somewhat mitigated by this additional property. In
this note, we present a catalog of ideal and factorization-theoretic properties of some
root closed monoids of rank at most two. Space limitations preclude us from doing
an exhaustive study (even in the rank two case). Our motivation is simply to provide
evidence that the class of root closed finite rank monoids is fertile ground for har-
vesting interesting factorization-theoretic results. Our hope is that this paper spurs
additional investigations of the class of root closed monoids of finite rank, ultimately
culminating not only in new theorems, but new examples and counterexamples (of
both semigroups and possibly rings as well via the semigroup ring construction).

We conclude the introduction by mentioning that throughout the paper, all monoids
are assumed cancellative and commutative.1

2. Preliminaries

In this terse section, we present definitions and results to which we shall refer
throughout the paper. We remark that space limitations limit our study to a proper
subset of ideal and factorization-theoretic properties. The reader is encouraged to
augment our results by considering additional notions not studied in this paper (such
as almost Schreier monoids, elasticity, finite factorization monoids, etc.).

Let M be a monoid. Recall that M is Noetherian provided every congruence on
M is finitely generated (see Section 5 of [17]). A nonempty subset I ⊆M is an ideal
of M provided x ∈ I and m ∈ M imply that mx ∈ I. A proper ideal P of M is
a prime ideal if for all x, y ∈ M : whenever xy ∈ P , then either x ∈ P or y ∈ P .

1A nontrivial cancellative monoid cannot possess a zero element. However, the results of this
article can easily be reformulated for monoids with 0. For brevity’s sake, we leave this task to the
interested reader.
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The radical of an ideal I is the ideal
√
I := {x ∈ M : xn ∈ I for some n > 0}.

We call M a principal ideal monoid if every ideal of M is of the form Mx for some
x ∈ M . More generally, M satisfies the ascending chain condition on ideals (acc) if
every ideal of M is finitely generated (equivalently, every ascending chain of ideals
stabilizes). A monoid M is a valuation monoid if the ideals of M are linearly ordered
by set inclusion. Finally, M is coherent provided the intersection of any two principal
ideals of M is finitely generated (as an ideal).

Let M be a monoid. As usual, we denote the group of units of M by M×, and
we let Mred := M/M× be the associated reduced monoid. An element a ∈M\M× is
said to be an atom provided whenever a = bc, either b ∈M× or c ∈M×. The monoid
M is called atomic provided every m ∈M\M× is a finite product of atoms. We say
that M is half-factorial provided M is atomic, and whenever a1, . . . , ar and b1, . . . , bs
are atoms with a1 · · · ar = b1 · · · bs, then r = s. A monoid M is factorial provided M
is half-factorial and given m = a1 · · · ar = b1 · · · br with each ai, bj atoms, then (after
reordering the index set, if necessary) for each i, there is a unit u such that ai = ubi
(in other words, ai and bi are associates). We now recall that M is a GCD monoid
provided for all x, y ∈ M , there exists z ∈ M such that Mx ∩My = Mz. Before
stating the final definition of this paragraph, we recall that if x, y ∈ M , then “x|y”
means there exists z ∈M such that xz = y. Lastly, M is a Schreier monoid if for all
a, b, c ∈M : whenever a|bc, then a = rs for some r|b and s|c.

A monoid homomorphism ϕ : M → N is called a divisor map provided for all
x, y ∈ M : if ϕ(x)|ϕ(y) in N , then x|y in M . A monoid M is called inside factorial
if there exists a factorial monoid D and divisor map ϕ : D → M such that for every
x ∈ M , there exists some n > 0 such that xn ∈ ϕ(D). Analogously, a monoid M is
outside factorial provided there is a factorial monoid D and divisor map ϕ : M → D
such that for every x ∈ D, there exists some n > 0 such that xn ∈ ϕ(M). Finally, M
is a Krull monoid if there exists a free monoid F and a divisor map ϕ : Mred → F .2

We conclude this section with a proposition which collects various containment
relations between the classes of monoids defined above. We caution the reader that
we do not attempt to find all such relations. Rather, we list only those needed to
prove the main results of this paper.

Proposition 1. Let M be a monoid. The following implications hold:

(1) If M is a principal ideal monoid, then M is a factorial valuation monoid.
(2) If M is a factorial monoid, then M is a GCD monoid.
(3) If M is an outside factorial monoid, then M is a Krull monoid.
(4) If M is a GCD monoid, then M is a root closed Schreier monoid.
(5) If M is a valuation monoid, then M is a GCD monoid.
(6) If M is Noetherian, then M satisfies acc on ideals.

2Equivalently, M is Krull if M is completely integrally closed and satisfies ACC on divisorial
ideals.
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(7) If M is Krull, then M is atomic and root closed.
(8) M is finitely generated if and only if M is Noetherian.

Sketch of Proof. Let M be a monoid.
(1) Suppose M is a principal ideal monoid. The proof that M is factorial follows

mutatis mutandis from the usual proof that a principal ideal domain is a unique
factorization domain. To show M is a valuation monoid, let a, b ∈ M be arbitrary.
Then Ma ∪ Mb = Mc for some c ∈ M . Without loss of generality, a and c are
associates. It now follows that a|b.

(2) The proof is straightforward.
(3) This assertion is Theorem 23.3 of [21].
(4) Assume that M is a GCD monoid, and suppose that bn|an. Since M a GCD

monoid, we may assume that a and b are relatively prime (that is, Ma∩Mb = Mab).
Since b|an and a and b are relatively prime, b|a follows, and M is root closed. To show
that M is Schreier, suppose a|bc. Set x := gcd(a, b) = ab

z
, where Ma ∩Mb = Mz.

Then xα = a for some α ∈M . One checks easily that x|b and α|c.
(5) The proof is trivial.
(6) This follows immediately from Theorem 5.1 of [17].
(7) Let M := NI be a free monoid3. For (xi) ∈ M , let

∑
xi be the sum of the

entries of (xi). One proves easily by induction on the cardinality of
∑
xi that every

submonoid of a free monoid is atomic. If M is Krull, then Mred is isomorphic to a
submonoid of a free monoid, and is thus atomic. It is easy to see that this forces
M to be atomic as well. Furthermore, it is well-known that Krull monoids are root
closed (see, for example, Corollary 4 of [7]).

(8) This is an amalgam of Theorems 5.10 and 7.8 of [17]. �

3. Root closed rank one monoids

We begin this section by commenting on notation. If M is an additive monoid,
then “a|b” (in M) means that there exists x ∈M such that a+x = b. We now prove
that the lattice of ideals of a root closed rank one monoid is totally ordered.

Proposition 2. Every root closed rank one monoid is a valuation monoid.

Proof. Let M be a root closed rank one monoid, and let E(Q(M)) be the injective
hull of Q(M). Since M is rank one, either E(Q(M)) = Z(p∞) for some prime p
or E(Q(M)) = Q. In the former case, for every a ∈ M , there exists some positive
integer n such that pna = 0. But then M is a group, and is thus trivially a valuation
monoid. Suppose now that M is a submonoid of the additive group Q of rational
numbers. If M contains both positive and negative members, then it is easy to see
(and is well-known; cf. [17], Theorem 2.9) that M is a group. Thus we may assume
that M is a nontrivial submonoid of the non-negative rational numbers. To show

3Throughout this note, we include 0 as a member of N.
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that M is a valuation monoid, it suffices to prove that Q(M)+ ⊆ M , where Q(M)+

is the positive cone of the group of differences of M . Let r, s ∈ M be arbitrary, and
suppose that r−s > 0. Clearly M contains some positive integer m. Moreover, there
exists a positive integer n such that n(r − s) ∈ N. It follows that nm(r − s) ∈ M .
But M is root closed, whence r − s ∈M . This concludes the proof. �

Corollary 1. Every root closed rank one monoid is a GCD monoid, hence coherent
and (by (4) of Proposition 1) Schreier.

Corollary 2. Every root closed rank one monoid is inside factorial.

Proof. Let M be a root closed rank one monoid. We may suppose that M is not a
group, and hence M is (up to isomorphism) a nontrivial additive submonoid of Q≥0.
Now choose any x ∈ M\{0}, and let ϕ : N→ M be defined by ϕ(n) := nx. Observe
that if ϕ(m)|ϕ(n) in M , then mx ≤ nx. We deduce that m ≤ n, and thus m|n (in
the semigroup (N,+)). Finally, let z ∈ M be arbitrary. We must show that there
exists n > 0 such that nz = mx for some m ∈ N. But clearly this is equivalent to
z
x
∈ Q≥0, which is true. This concludes the proof. �

Having recorded several positive corollaries (i.e. several statements of the form,
“every root closed rank one monoid is an X monoid”), we change gears and establish
some negative results. Before proceeding to our next corollary, we pause to state the
following lemma, whose easy proof we omit.

Lemma 1. Suppose that M is a root closed submonoid of Q≥0. Then M ∼= (N,+) if
and only if M possesses a least positive element.

Proposition 3. Let M be a root closed rank one monoid which is not a group. Then
the following are equivalent:

(1) M ∼= (N,+).
(2) M is atomic.
(3) M is half-factorial.
(4) M is factorial.
(5) M satisfies acc on ideals.
(6) M is finitely generated.
(7) M is Krull.
(8) M is outside factorial.
(9) M is a principal ideal monoid.

Proof. Clearly (1) implies (2)–(9). Moreover, Proposition 3 shows that each of (3),
(4), (7), (8), and (9) implies (2), and (6) implies (5). Thus it remains only to prove
that (2) implies (1) and (5) implies (1). We may assume that M is a nontrivial
valuation submonoid of Q≥0.

(2) ⇒ (1). Assume by way of contradiction that M is atomic but M � (N,+).
Then by Lemma 1, we see that M does not possess a least positive element. Now let
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a be an arbitrary nonzero element of M . There exists b ∈ M with 0 < b < a. Since
M is a valuation monoid, there exists c ∈ M , c > 0, such that b + c = a. But this
implies that a is not an atom, and therefore M does not possess any atoms. We now
obtain a contradiction to the assumption that M is atomic (and not a group).

(5) ⇒ (1). Now suppose that M satisfies acc on ideals. Then the maximal ideal
J := M\{0} is finitely generated. The least member of a generating set for J is easily
seen to be the least positive element of M , and we are done by Lemma 1. �

The following corollary is immediate.

Corollary 3. Let M be a rank one monoid which is not finitely generated. Then
M is Krull (hence by (7) of Proposition 1, root closed) if and only if M is a dense
subgroup of Q or M = C(p∞) for some prime number p.

4. Root closed rank two monoids I: the mixed case

We now begin our analysis of root closed rank two monoids. Let M be such a
monoid. If Q(M) is torsion, then M is a group, and this case is not interesting from
our point of view. Thus we assume that Q(M) is not torsion. In this section, we
treat the case where M is of rank two and Q(M) is mixed, that is, Q(M) contains
both elements of infinite order and nonzero elements of finite order.

Our first task is to determine the subgroups of Q×Z(p∞), where p is an arbitrary
prime. This is an exercise in elementary abelian group theory, but to keep the paper
self-contained, we sketch the details.

Lemma 2. Every mixed rank two abelian group is of the form G × H, where G is
a nontrivial subgroup of Q, and H is either a nontrivial cyclic group of prime power
order or H = C(p∞) for some prime p.

Sketch of Proof. Let K be rank two and mixed. Then we may assume that K <
Q × C(p∞) for some prime p. Now, let T (K) be the torsion subgroup of K. Then
T (K) is isomorphic to either Z/〈pn〉 for some positive integer n or to Z(p∞). In the
former case, T (K) is a cyclic pure subgroup of K of prime power order, and it follows
from Theorem 24.1 of [14] that T (K) is a direct summand of K. In the latter, T (K)
is divisible, whence also a direct summand of K by Theorem 18.1 of [14]. The result
follows. �

We now describe the root closed rank two monoids whose quotient groups are
mixed.

Proposition 4. Let M be a monoid which is not a group and is such that Q(M)
is mixed of rank two. Then M is root closed if and only if M ∼= V × H for some
nontrivial valuation monoid V ⊆ Q≥0 and group H which is either quasicyclic or
cyclic of prime power order.
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Proof. Let M be as stated. If M ∼= V × H (with properties listed above), then it
is easy to see that M is a valuation monoid, hence root closed. Conversely, suppose
that M is root closed. By Lemma 2, we may assume that Q(M) = G×H for some
nontrivial subgroup G of Q and group H which is either quasicyclic or cyclic of prime
power order.

We claim that

(4.1) {0} ×H ⊆M.

To see this, let h ∈ H be arbitrary. There exists a positive integer n such that nh = 0.
But then n(0, h) = (0, nh) = (0, 0) ∈M . Since M is root closed, (0, h) ∈M .

Now, let π1 : M → Q be projection onto the first coordinate. If π1(M) contains
both positive and negative rationals, then (as noted in the proof of Proposition 2)
π1(M) is a group. But then this fact along with (4.1) implies that M is a group, and
this is a contradiction. Thus we may assume that π1(M) ⊆ Q≥0. It follows easily
from (4.1) that M = π1(M) × H. We now deduce that π1(M) is root closed. An
application of Proposition 2 concludes the proof. �

The next corollary follows immediately from Corollary 1, Corollary 2, Proposition
3, and Proposition 4. As such, we omit the proof.

Corollary 4. Let M be a rank two monoid which is not a group and such that Q(M)
is mixed. Then M a GCD monoid, hence coherent and (by (4) of Proposition 1)
Schreier. Further, M is inside factorial. Moreover, the following are equivalent:

(1) M ∼= N×H for some group H which is either quasicyclic or cyclic of prime
power order.

(2) M is atomic.
(3) M is half-factorial.
(4) M is factorial.
(5) M satisfies acc on ideals.
(6) M is Krull.
(7) M is outside factorial.
(8) M is a principal ideal monoid.

We close with an analog of Corollary 3.

Corollary 5. Let M be a rank two monoid which is not a group and whose group
of fractions is mixed. Suppose further that M is not finitely generated. Then M is
Krull if and only if M ∼= N× Z(p∞) for some prime number p.

5. Root closed rank two monoids II: the torsion-free discrete case

We begin by remarking that the following applies to all propositions P in this
section: if P asserts that M is an X monoid, where X is one of the monoids mentioned
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in Proposition 1, and if every X monoid is a Y monoid (again, by Proposition 1),
then for brevity we do not explicitly mention that M is a Y monoid in the statement
of P .

We now analyze root closed monoids M for which Q(M) is a free abelian group
on two generators. We first set up some notation (defining so-called pointed cones in
R2).

Definition 1. Let u and v be vectors in R2.

(1) (u,v) := {su + tv : s, t ∈ (0,∞)} ∪ {(0, 0)},
(2) [u,v) := {su + tv : s ∈ (0,∞), t ∈ [0,∞)} ∪ {(0, 0)}, and
(3) [u,v] := {su + tv : s, t ∈ [0,∞)}.

Let us agree to call cones defined by (1) open cones, the cones in (2) half open cones,
and the cones in (3) closed cones. By cone, we mean a subset of R2 which is either an
open, half open, or closed cone as defined above. The vectors u and v will be called
bounding vectors of the cone.

We begin our analysis with the following lemma. All three assertions are obvious
upon reflection; we therefore omit the easy proof.

Lemma 3. Let C be a cone bounded by u,v ∈ R2.

(1) C ∩ Z2 is a root closed submonoid of Z2.
(2) If u and v are linearly dependent over R, then Q(C ∩ Z2) has rank at most

one.
(3) If u and v are linearly independent over R, then Q(C∩Z2) = Z2 (set-theoretic

equality is what is meant here, not simply isomorphism).

Our next lemma collects some additional information about closed cones.

Lemma 4. The following hold:

(1) If u,v ∈ Z2, then [u,v] ∩ Z2 is a finitely generated submonoid of Z2.
(2) If M is a root closed submonoid of Z2 such that Q(M) = Z2, then for any

u,v ∈M , [u,v] ∩ Z2 ⊆M .

Proof. Assertion (1) is well-known and an immediate consequence of Gordon’s Lemma
(cf. p. 59 of [5]). As for (2), assume that M is a root closed submonoid of Z2 such
that Q(M) = Z2, and let u,v ∈ M be arbitrary. Now suppose that w := (w1, w2) ∈
[u,v] ∩ Z2. Then (w1, w2) = su + tv for some real numbers s, t ≥ 0. It follows
from elementary linear algebra that we may take s, t ∈ Q≥0. But then there exists
a positive integer n such that nw ∈ Nv + Nw ⊆ M . Since M is root closed, we
conclude that w ∈M , completing the proof. �

Finally, we shall make use of the following result.

Lemma 5 ([20], Theorem 8.7). Let M be a reduced submonoid of Zn such that
Q(M) = Zn. Then M is Krull if and only if M is finitely generated and root closed.
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We are now ready to study half-planes bounded by a line ` through the origin
(intersected with Z2). The terms “closed half-plane,” “open half-plane,” and “half
open half-plane” have obvious meanings analogous to (1), (2), and (3) of Definition
1. To streamline terminology in what follows, we refer to the intersection of a (closed,
open, or half open) half-plane with Z2 simply as an integral half-plane.

To begin, note that the map ϕ : R2 → R2 defined by ϕ((x, y)) := (y,−x) induces a
one-to-one isomorphic correspondence between the collection of integral half-planes
bounded by x = 0 and the collection of integral half-planes bounded by y = 0. Thus
we may restrict our study to integral half-planes bounded by a non-vertical line `
without loss of generality. We first consider the closed case where ` has rational
slope.

Proposition 5. Let M be a closed integral half-plane bounded by `(x) = rx for some
rational number r. Then M is a finitely generated principal ideal monoid.

Proof. Let M be as stated. It is clear that for any u ∈ Z2, either u ∈M or −u ∈M .
Therefore, M is a valuation monoid. Now pick nonzero opposite vectors u,v ∈M ∩`.
Further, choose w ∈ M\`. Setting M1 := [u,w] ∩ Z2 and M2 := [v,w] ∩ Z2, it is
clear that M = M1 ∪M2. By (1) of Lemma 4, we conclude that both M1 and M2

are finitely generated, and hence M too is finitely generated. We have shown that
M is a finitely generated valuation monoid. Invoking (6) and (8) of Proposition 1,
we deduce that M is a principal ideal monoid, and the proof is complete. �

We now analyze the half open integral half-planes bounded by a line with rational
slope.

Proposition 6. Let M be a half open integral half-plane bounded by `(x) = rx for
some rational number r. Then M is a reduced valuation monoid whose maximal ideal
is principal, yet M does not satisfy acc on ideals. Moreover, M is neither atomic nor
inside factorial.

Proof. Suppose that M is as defined above. It is clear that M is a reduced. As with
closed integral half-planes, for any u ∈ Z2, either u ∈ M or −u ∈ M . Thus M is a
valuation monoid. Now, the submonoid M` := M ∩ ` is cyclic; say M` = Na. One
checks easily that

(5.1) for any x ∈M\{0}, x− a ∈M.

From this observation, we deduce that M + a is the set of nonzero elements of M .
Therefore M + a is the (principal) maximal ideal of M .

Now let j ∈M\{0} be arbitrary. It follows from (5.1) and induction that j−na ∈
M for every positive integer n. Moreover, one checks at once that M + (j − a) (
M + (j− 2a) (M + (j− 3a) ( · · · and M does not satisfy acc on ideals.
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It is easy to see that M is not atomic. To wit, M is a reduced valuation monoid.
Thus M has at most one atom (in fact M does have one atom, namely a). Since M
has rank two, M cannot be atomic.

Finally, we show that M is not inside factorial. Suppose by way of contradiction
that there exists a factorial monoid F and divisor map ϕ : F → M such that for
every x ∈ M , there exists some positive integer n such that nx ∈ ϕ(F ). Since M is
reduced, ϕ(u) = 0 for all units u ∈ F . But then ϕ induces an embedding of Fred into
M defined by ϕ([x]) := ϕ(x). As F is factorial, Fred is free. Because Fred embeds into
M , we see that Fred has rank at most two. Therefore, there exist vectors u,v ∈ M
such that ϕ(F ) = ϕ(Fred) = Nu + Nv. However, it is easy to see that there exists
w ∈ M such that nw /∈ Nu + Nv for any positive integer n. This contradicts the
assumption that M is inside factorial, and the proof is concluded. �

We complete our analysis of integral half-planes bounded by lines with rational
slope by considering those which are open.

Proposition 7. Let M be an open integral half-plane bounded by `(x) = rx for
some rational number r. Then M is a reduced half-factorial monoid. However, M is
neither Schreier, coherent, Krull, nor inside factorial.

Proof. First, observe that either (0, 1) ∈M or (0,−1) ∈M ; we may assume without
loss of generality that (0, 1) ∈M . We now define a function D : Z2 → Q as follows:

(5.2) D((x, y)) := y − rx.
Since (0, 1) ∈M , it follows that

(5.3) M = {u ∈ Z2 : D(u) > 0} ∪ {0}.
Next, it is obvious that

(5.4) D is a group homomorphism.

Therefore, D(Z2) is a finitely generated subgroup of Q. We deduce that

(5.5) D(Z2) is cyclic; let g be the positive generator.

We now describe the atoms of M as follows:

(5.6) for all u ∈M,u is an atom if and only if D(u) = g.

To prove the forward implication, suppose that u ∈ M is an atom, and assume
by way of contradiction that D(u) 6= g. Then we deduce from (5.3) and (5.5) that
D(u) > g. Let x ∈M be such that D(x) = g. Observe that D(u) = D(x+(u−x)) =
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g + D(u− x). Therefore D(u− x) > 0, and by (5.3) above, u− x ∈ M . Since u is
an atom and M is clearly reduced, we conclude that u = x; hence D(u) = D(x) = g.
We now have a contradiction to our assumption that D(u) > g. Conversely, suppose
by way of contradiction that D(u) = g but u is not an atom. Then u = x + y for
some nonzero x,y ∈M . Thus g = D(u) = D(x) +D(y) ≥ g + g = 2g, and we have
another contradiction. This proves (5.6).

We now prove that M is half-factorial, and begin by showing that M is atomic.
To do this, it suffices by (5.3) and (5.5) to prove that for all n > 0: if u ∈ M
and D(u) = ng, then u is the sum of atoms. The base case of the induction is
immediate from (5.6) above. So assume that claim is true for some n > 0, and
suppose D(u) = ng + g. Let v ∈ M be such that D(v) = ng. Now observe that
ng + g = D(u) = D(v + (u − v)) = ng + D(u − v). Therefore, D(u − v) = g, and
we deduce from (5.3) and (5.6) that u − v is an atom of M . Since u = u − v + v,
we are done by the inductive hypothesis. Now suppose that u1 + u2 + · · · + ur =
v1+v2+· · ·+vs and each ui,vj is an atom. Applying D to both sides of the equation
and using (5.6), we see that rg = sg, whence r = s.

Our next task is to show that M is not Schreier. Toward this end, we note first
that M is clearly not finitely generated. Since M is atomic and reduced, it follows
that

(5.7) the set A of atoms is infinite.

Now, let u, v, and w be distinct atoms. Then D(v+w−u) = g. Therefore, u|v+w.
But since M is reduced and u,v,w are atoms, it is clear that u 6= x + y for any x|v
and y|w.

To prove that M is not coherent, begin by choosing distinct atoms u and v of M .
We shall prove that (M + u)∩ (M + v) is not finitely generated. Suppose by way of
contradiction that

(5.8) (M + u) ∩ (M + v) = (M + x1) ∪ (M + x2) · · · ∪ (M + xn)

for some x1, x2,. . . ,xn ∈M . It is patent upon reflection that

(5.9) (M + u) ∩ (M + v) = {y ∈M : D(y) ≥ 2g}.
Since A is infinite, so is 2A := {2a : a ∈ A}. Pick an atom a such that 2a /∈
{x1, . . . ,xn}. As D(2a) = 2g, it follows from (5.8) and (5.9) above that 2a ∈M + xi
for some i. But then D(2a) = D(xi) = 2g, and we see that D(2a−xi) = 0. Applying
observation (5.3), we conclude that 2a − xi = 0, but this contradicts how a was
chosen.

To conclude the proof, we must establish that M is neither Krull nor inside facto-
rial, but this is easy. Since M is not finitely generated, Lemma 5 implies that M is
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not Krull. The verification that M is not inside factorial is analogous to the proof
presented in Proposition 6; as such we omit it. �

Finally, we consider integral half-planes which are bounded by a line with irrational
slope.

Proposition 8. Let M be an integral half-plane bounded by `(x) = αx, where α ∈ R
is irrational. Then M is a reduced valuation monoid whose maximal ideal is not
finitely generated. Moreover, M is neither atomic nor inside factorial.

Proof. Consider a line `(x) = αx, where α is an irrational number. We may assume
that ` bounds M from below. Analogous to the proof of Proposition 7, D : Z2 → R
defined by D((x, y)) := y − αx is a homomorphism. Since {1, α} ⊆ D(Z2) is linearly
independent over Q, we see that the image of Z2 under D is a non-cyclic subgroup
of R. Therefore,

(5.10) D(Z2) is dense in R.
As in the previous proposition, we have

(5.11) M = {u ∈ Z2 : D(u) > 0} ∪ {0}.
It is easy to see that M is a reduced valuation monoid. Thus to show that the

maximal ideal J = M\{0} is not finitely generated, it suffices to show that J is
not principal. Toward this end, let u ∈ J be arbitrary. Now pick v ∈ J such
that D(v) < D(u). Then v /∈ M + u, and J is not principal. A similar argument
(invoking (5.10)) shows that every nonzero member of M has infinitely many divisors.
Therefore, M has no atoms and is not atomic. The proof that M is not inside factorial
proceeds as in the proof of Proposition 6. �

Having completed our analysis of integral half-planes, we proceed to study monoids
of the form C ∩Z2, where C is a cone generated by two linearly independent vectors
in R2. We shall require the following simple lemma.

Lemma 6. Let M := C ∩ Z2, where C is a cone in R2 bounded by two linearly
independent vectors. If a1 and a2 are distinct atoms of M , then a1 and a2 are
linearly independent over R.

Proof. Suppose not. Then a1 and a2 both lie on a line ` through the origin. Note
further that since M is root closed, `∩Z2 = Zm for some m ∈M . But since a1 and
a2 are atoms and M is reduced, this forces a1 = a2 = m, a contradiction. �

Proposition 9. Suppose that u,v ∈ Z2 are linearly independent over R, and set
M := [u,v]∩Z2. Then M is a reduced finitely generated inside and outside factorial
Krull monoid. Moreover, the following are equivalent:

12
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(1) M is a free monoid on two generators.
(2) M is factorial.
(3) M is a GCD monoid.
(4) M is Schreier.

Lastly, M is half-factorial if and only if there is a line which contains all the atoms
of M .

Proof. Let M be as stated above. We may assume that

(5.12) u is a generator of the cyclic group Ru∩Z2 and v is a generator of Rv∩Z2.

It is clear that M is reduced, and Lemma 4 tells us that M is finitely generated. We
now apply Lemma 5 to conclude that M is a Krull monoid. Since M is reduced,
there exists a divisor map ϕ : M → N(I) for some index set I. But then it is easy to

see that ϕ : M → Q(I)
≥0 is also a divisor map. Proposition 2 of [7] yields that M is a

rational generalized Krull monoid (stating this definition would take us too far afield;
we refer the interested reader to [7] for details). We now prove that every minimal
prime ideal of M is the radical of a principal ideal. Toward this end, let P be a prime
ideal of M , and let p ∈ P be arbitrary (by definition, P is a proper ideal, and thus
p 6= 0). There exists a positive integer n such that np ∈ Nu +Nv. Since P is prime,
clearly this implies that u ∈ P or v ∈ P ; assume that u ∈ P . Now,

(5.13) for any x ∈M\Nv, there exists m ∈ Z+ such that mx ∈M + u.

But then x ∈ P , and we have shown that M\Nv ⊆ P . It is not hard to see that
M\Nv is a prime ideal of M . Thus M\Nu and M\Nv are the minimal prime ideals
of M . It follows from (5.13) above that every minimal prime ideal of M is the radical
of a principal ideal (namely, either M + u or M + v). By Corollary 1 and Theorem
1 of [7], we conclude that M is outside factorial. Invoking Theorem 3 of [7], M is
inside factorial as well.

We now prove the equivalence of (1)–(4). Clearly (1) implies (2), (2) implies (3),
and (3) implies (4). It remains to prove that (4) implies (1). So assume that M is
Schreier. Recall that M is Krull, and thus atomic by (7) of Proposition 1. It follows
from (5.12) that u and v are linearly independent atoms of M . It suffices to prove
that there are no other atoms. Suppose by way of contradiction that w is an atom
distinct from u and v. There are positive integers a, b, and c such that aw = bu+cv.
Therefore, w|bu + cv. Since w is an atom and M is reduced and Schreier, we deduce
that w|bu or w|cv. Continuing inductively, we see that w|u or w|v. But then w = u
or w = v, and this is a contradiction.

As for the final assertion, assume that M is half-factorial. We claim that all atoms
are on the line ` through u and v. Suppose that w is any atom distinct from u and
v. Then as we have seen, aw = bu + cv for some positive integers a,b, and c. Since
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M is half-factorial, we deduce that (b+ c)w = bu + cv. Thus w = (1− c
b+c

)u + c
b+c

v,
and the proof of the claim is complete. Conversely, suppose that

(5.14) all atoms are on a line `(t) := x + ty.

As M has at least two atoms (namely, u and v), and since any two distinct atoms
are linearly independent over R (Lemma 6), it follows that x and y are linearly
independent over R as well. Recall above that M is Krull, hence atomic. Assume
that a1 + · · · + ar = b1 + · · · + bs and each ai,bj is an atom. Then we deduce
from (5.14) that there exist real numbers t1, . . . , tr+s such that x + t1y + · · · + x +
try = x + tr+1y + · · · + x + tr+sy. Rearranging the algebra, this equation becomes
(r − s)x = (tr+1 − t1 + · · ·+ tr+s − tr)y. Because {x,y} is linearly independent over
R, we deduce that r = s. Therefore, M is atomic, and the proof is concluded. �

We now present an example to show that there exist monoids M as in the statement
of Proposition 9 which are half-factorial but not factorial.

Example 1. Let M be the submonoid of Z2 generated by the atoms u := (−1, 1),
v := (1, 1), and w := (0, 1). Then M = [u,v] ∩ Z2. Moreover, it is clear that
u,v, and w are the only atoms of M . Since the atoms are collinear, the previous
proposition implies that M is half-factorial. However, 2w = u + v; therefore M is
not factorial.

We now collect several facts which will allow us to conclude our analysis of root
closed monoids M such that Q(M) is free on two generators.

Proposition 10. Let C be a cone bounded by two linearly independent vectors u,v ∈
R2 which is not closed, and set M := C ∩Z2. Then M is atomic, but neither finitely
generated, Krull, Schreier, nor inside factorial.

Proof. First, note that there exist x,y ∈ Z2 such thatM is a submonoid of the monoid
M ′ := [x,y]∩Z2. Proposition 9 implies that M ′ is Krull. But M ′ is reduced, whence
there is an embedding of M ′ into a free monoid, and hence there is an embedding of
M into a free monoid. Therefore, M is atomic.

Now, let x1,x2, . . . ,xn be arbitrary vectors in M . We shall prove that {x1, . . . ,xn}
does not generate M . Since C is not closed, we may assume that Rv ∩M = {0}.
For each x ∈M , we let θx be the angle between x and v. Now pick x ∈M such that
θx < min{θx1 , θx2 , . . . , θxn}. It is clear that

(5.15) rx /∈ Nx1 + Nx2 + · · ·+ Nxn for any positive integer r,

and this proves that M is not finitely generated (of course, we have proved something
even stronger; we will shortly make use of (5.15)). We apply Lemma 5 to conclude
that M is not Krull.

14
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We now show that M is not Schreier. Toward this end, suppose by way of con-
tradiction that M is Schreier. Recall that M is atomic but not finitely generated.
Thus M possesses infinitely many atoms. Choose distinct atoms a1, a2, and a3. By
Lemma 6, we see that the angles θa1 , θa2 , and θa3 are distinct; say θa1 < θa2 < θa3 .
It follows that there exist positive integers r, s, and t such that sa2 = ra1 + ta3. We
now obtain a contradiction as in the proof of Proposition 9.

Lastly, we verify that M is not inside factorial. Observe from (5.15) above that
for any x and y in M , there exists z ∈ M such that nz /∈ Nx + Ny for any positive
integer n. The remainder of the verification unfolds as in the proof of Proposition
6. �

It remains to study coherence and half-factoriality for monoids M as defined in the
previous proposition.

Proposition 11. Let C be a cone bounded by linearly independent vectors u and v,
and assume that Ru ∩ Z2 6= {0} and u /∈ C. Set M := C ∩ Z2. Then M is not
coherent. Moreover, M is half-factorial if and only if the following hold:

(1) Rv ∩M 6= {0}, and
(2) all atoms of M lie on the line `(t) := a + tu, where a is the unique atom of

M which lies on Rv.

Proof. By applying a rotation by π
2

if necessary, we may assume that u does not lie
on the y-axis. Then v lies in an open integral half-plane H bounded by the line Ru.
We may assume without loss of generality that (0, 1) ∈ H. Note trivially that M is
a submonoid of H. Further, recall that the function D defined in Proposition 7 has
the property that there exists g ∈ Q>0 such that for all h ∈ H:

(5.16) h is an atom of H if and only if D(h) = g.

Note that all atoms of H lie on a line parallel to Ru. Thus there are infinitely many
atoms of H which belong to M . Showing that M is not coherent proceeds exactly as
in the proof of Proposition 7.

Suppose now that (1) and (2) above hold. Recall from Proposition 10 that M is
atomic. Since u and v are linearly independent, clearly the same is true of u and a.
That M is half-factorial is now obvious (the proof is the same as the corresponding
proof of Proposition 9).

Conversely, assume that M is half-factorial. We first show that

(5.17) the atoms of M are collinear.

Toward this end, it suffices to show that every triple of atoms forms a collinear set.
Let a1, a2, and a3 be arbitrary (distinct) atoms, and assume that θa1 < θa2 < θa3 ,
where θai

is the angle between ai and u (note that all three angles are distinct by
15
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Lemma 6). One proves as in the proof of Proposition 9 that a2 is on the line through
a1 and a3. Now let ` be the line containing all the atoms of M . Then

(5.18) ` does not pass through the origin,

lest there exist two atoms of M which are linearly dependent, contradicting Lemma
6. We now claim that

(5.19) ` ∩ {tu : t > 0} = ∅.
Suppose by way of contradiction that ` ∩ {tu : t > 0} 6= ∅. Choose an atom a ∈ M
for which the angle θ between a and u is minimal (recall that u /∈ C, and therefore
θ > 0). Now pick m ∈ M\{0} such that the angle β between m and u is less than
θ. Then m is not a sum of atoms, and this contradicts the fact that M as atomic.
Finally, we deduce that

(5.20) ` ∩ {tv : t > 0} 6= ∅.
It follows by Lemma 6 and the argument just given that there is a unique atom
a ∈ ` ∩ {tv : t > 0} (lest M not be atomic). To finish the proof, it suffices to
show that ` is parallel to u. If not, then either there is an element of M (infinitely
many, actually) which is not the sum of atoms (contradicting that M is atomic), or
` ∩ {tu : t > 0} 6= ∅ (contradicting (5.19)). The proof is complete. �

We now present an example showing that there exist half-factorial monoids M as
considered in the previous proposition.

Example 2. Let u := (0, 1) and v := (1, 0). Further, consider the monoid M :=
(u,v] ∩ Z2. Then the set A of atoms of M is given by A = {(1,m) : m ∈ N}.

Finally, we consider monoids for which a bounding ray has irrational slope. We
shall require a lemma.

Lemma 7. Consider the lines `1(x) := αx+b1 and `2(x) := αx+b2, where b1 < b2 are
real numbers and α ∈ R is irrational. Then for any r ∈ R, there exists (m,n) ∈ Z2

with r < m such that

(5.21) mα + b1 < n < mα + b2.

Moreover, there exists a pair (m,n) satisfying (5.21) above with m < r.

Proof. Assume that `1 and `2 are as defined above, and let r ∈ R be arbitrary. We
shall prove the existence of a pair (m,n) with r < m satisfying (5.21) (the existence
of such a pair with m < r follows by a similar argument). Clearly, we may assume
that 0 < b2 − b1 < 1 and r > 0. For a real number x, let fr(x) ∈ [0, 1) denote
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the fractional part of x. The group G := {n + mα : m,n ∈ Z} is non-cyclic, thus
dense in R. Therefore, the set {fr(mα) : m ∈ Z} is dense in (0, 1). Then of course
{fr(mα) : m ∈ Z+} is also dense in (0, 1). Since there are but finitely many positive
integers m satisfying m ≤ r, we deduce that {fr(mα) : m > r} is dense in (0, 1).
Choose m > r such that fr(mα) > 1− (b2 − b1). Then fr(mα) + (b2 − b1) > 1, and
we obtain n satisfying (5.21). This completes the proof. �

We arrive at the final proposition of this article.

Proposition 12. Let C be a cone bounded by linearly independent vectors u and v,
and assume that Ru∩Z2 = {0}. Set M := C ∩Z2. Then M is neither half-factorial
nor coherent.

Proof. Let M be as stated above. Since Ru ∩ Z2 = {0}, it follows that

(5.22) the line Ru has irrational slope.

Suppose by way of contradiction that M is half-factorial. Then one shows as in
the proof of Proposition 9 that all atoms of M lie on a line `. It follows from the
argument given in the proof of the previous proposition that ` is parallel to the line
Ru. But this is impossible since ` has rational slope (since it contains multiple lattice
points), yet (by (5.22)) Ru does not.

We now prove that M is not coherent. Toward this end, we shall require additional
notation. If x ∈ R2, then let ~x := {tx : t ≥ 0} denote the ray in the direction of x.
For y ∈ R2, set ~x + y := {tx + y : t ≥ 0}. Proposition 1 and Proposition 10 imply
that M is not a valuation monoid. Choose a,b ∈M such that a - b and b - a. Then
it is easy to see that there exists c ∈ R2 such that either (~u + a) ∩ (~v + b) = {c} or
(~u + b) ∩ (~v + a) = {c}. We assume without loss of generality that

(5.23) (~u + a) ∩ (~v + b) = {c}.
We will show that the ideal I := (M + a) ∩ (M + b) is not finitely generated. Note
first that

(5.24) I consists of those lattice points bounded by the rays ~u + c and ~v + c.

(whether the cone C is open or closed at v is irrelevant to the proof). Second, observe
that since b - a,

(5.25) a /∈ I.
Now, the line Ru+a contains a as its only lattice point, lest we have a contradiction
to (5.22). We conclude from (5.23) that Ru + c ⊆ Ru + a;
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(5.26) (Ru + c) ∩ Z2 = {a}

is now patent. Suppose by way of contradiction that I = (M + x1)∪ (M + x2)∪ · · ·∪
(M + xn) for some x1,x2, . . . ,xn ∈ I. It follows from (5.25) and (5.26) above that
xi /∈ Ru + c for all i. Now pick j such that the distance from Ru + xj to Ru + c is
minimal. Applying Lemma 7 and observation (5.24), we obtain a member of I which
is not in any M + xi, and the proof is complete. �

The previous proposition completes our analysis of root-closed monoids M such
that Q(M) is free on two generators. To see why this is so, let M be such a monoid.
We may assume without loss of generality that Q(M) = Z2. It is now clear from (2)
of Lemma 4 that M must be one of the following monoids:

(a) Z2,
(b) an integral half-plane, or
(c) C ∩ Z2 for some cone C bounded by linearly independent vectors u and v.

6. Directions for further research

We conclude the paper by outlining potential extensions of the work presented
in this note. As stated in the introduction, the purpose of this article is to present
evidence that a geometric analysis may yield nontrivial factorization-theoretic results
for root-closed monoids of finite rank. The canonical next step in this analysis is to
complete the study of root closed monoids of rank two by examining torsion-free rank
two monoids M such that Q(M) is not discrete, using the strategy of Section 5 as
a template. Moreover, it would be interesting to see how the results of this paper
generalize to higher dimensions. Finally (as stated in Section 2), the list of ideal and
factorization-theoretic properties considered in this note is far from exhaustive. We
invite the motivated reader to expand upon the topics treated herein.
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