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Abstract. Let R be a ring. A nonempty subset S of R is a subring of R if S is closed under
negatives, addition, and multiplication. In this paper, we determine the rings R for which every
subring S of R has a multiplicative identity (which need not be the identity of R).

1. Introduction

Let R be a ring (assumed only to be associative, not necessarily commutative or with 1). Recall
that a nonempty subset S of R is a subring of R if S is closed under negatives, addition, and
multiplication.1 Suppose now that R has a 1. It is easy to see that a subring S of R need not have
an identity. For instance, the subring 2Z of Z consisting of the even integers has no multiplicative
identity. In fact, it is easy to see that the only subrings of Z which have an identity are {0} and Z.

On the other extreme, consider the seemingly uninteresting ring Z/6Z. The subrings of Z/6Z
are as follows:

(1) S1 := {0},
(2) S2 := {0, 3},
(3) S3 := {0, 2, 4}, and
(4) S4 := Z/6Z.

One easily verifies that 0 is the identity of S1, 3 is the identity of S2, 4 is the identity of S3, and 1
is the identity of S4. Hence every subring of Z/6Z has an identity.

The purpose of this note is to classify the rings with the above property enjoyed by Z/6Z. That
is, we shall find all rings R up to isomorphism with the property that every subring of R has an
identity. This work is related to results in the literature. For example, in [2], the authors study
commutative rings with identity with the property that every proper unital subring is Artinian;
they show that such rings are precisely the Artinian rings for which every unital subring is Artinian.
Now suppose that X is an infinite set and R is a binary relation on X. For 2 ≤ κ ≤ |X|, say that
(X,R) is κ-homogeneous if any two subsets of size κ are isomorphic (with the order induced by R).
Such structures were classified by Droste in [1]. The first author has conducted related research in
universal and commutative algebra; see [5] - [8].
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1Some authors define a subring S of a ring R with identity 1R to be unital if 1R ∈ S. In fact, it is commonplace

for many authors to consider only rings with identity and only subrings which are unital.
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2. Results

To streamline terminology, let us agree to call a nonzero ring R with the property that every
subring of R has an identity strongly unital. As the example in the introduction shows, the identities
of the subrings need not all be the same, in stark contrast to the fact that the additive identity of
a subring coincides with the additive identity of the ambient ring.

We begin by recalling that an element α of a ring R is nilpotent if there is a positive integer n
such that αn = 0. If R has no nonzero nilpotent elements, then R is said to be reduced.

Proposition 1. Every strongly unital ring is reduced.

Proof. Suppose that R be a strongly unital ring and let α ∈ R. As is well-known, it suffices to
prove that if α2 = 0, then α = 0. Thus suppose α2 = 0 and set S := {nα : n ∈ Z}. One checks
at once that S is a subring of R with trivial multiplication. But S has an identity, and therefore
S = {0}. We deduce that α = 0, as desired. �

Recall next that if R is a ring with identity, then the so-called prime subring P (R) of R is the
subring of R generated by 1R. Since P (R) is a homomorphic image of Z, it is clear that P (R) ∼= Z
or P (R) ∼= Z/nZ for some positive integer n. We now record a trivial but useful observation and
then prove several lemmas.

Observation 1. Suppose that a ring R is strongly unital. Then so is every nontrivial subring of
R.

Lemma 1. Let R be a strongly unital ring. Then P (R) ∼= Z/mZ for some square-free integer
m > 1.

Proof. Let R be strongly unital. Now, P (R) ∼= Z/mZ for some integer m ≥ 0. Since 2Z is a
nonunital subring of Z, we see that m 6= 0. As R is a nontrivial ring, m 6= 1. This shows that
m > 1. Invoking Proposition 1, we deduce that P (R) is reduced, and hence m is square-free. �

The following lemma is a well-known result in elementary field theory, but since its proof is short,
we include it.

Lemma 2. Let F be a finite field and let f(X) ∈ F [X] be a nonzero polynomial. Then F [X]/〈f(X)〉
is finite.

Proof. Suppose that F is a finite field, and fix some nonzero polynomial f(X) ∈ F [X] of degree
n ≥ 0. As is well-known, the polynomial ring F [X] is a Euclidean domain. Thus via the Division
Algorithm, every member of the quotient ring F [X]/〈f(X)〉 can be expressed in the form 〈f(X)〉+
r(X), where r(X) ∈ F [X] is zero or of degree less than n. It follows that |F [X]/〈f(X)〉| ≤ |F |n,
and therefore F [X]/〈f(X)〉 is finite. �

Lemma 3. Suppose that R is a ring with identity. The polynomial ring R[X] is not strongly unital.

Proof. If R is the trivial ring, then R[X] is also trivial, thus by definition is not strongly unital.
Now suppose that R is nontrivial. Then it is easy to see that the subring XR[X] (the subring of
polynomials with constant term 0) does not have an identity: if f(X) ∈ XR[X], then X · f(X) 6=
X. �
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We are almost equipped to prove our next proposition; first we comment on notation. Let R be
a ring with identity and let S be a subring of R contained in Z(R), the center of R. Further, let
a ∈ R. Then we define S[a] as follows:

(2.1) S[a] = {s0 + s1a+ · · ·+ sna
n : n ∈ N, si ∈ S} = {f(a) : f(X) ∈ S[X]}.

Observe that S[a] is a subring of R containing S but need not contain a. However, if R is unital
with identity 1R and 1R ∈ S, then S[a] contains a and, moreover, S[a] is the smallest subring of R
containing S and a.

Proposition 2. Suppose R is a strongly unital ring. Then for every α ∈ R, there exists a positive
integer n (depending on α) such that αn = α. Therefore, R is commutative.

Proof. Let R be a strongly unital ring and let α ∈ R be arbitrary. Recall from Lemma 1 that
P (R) ∼= Z/mZ for some integer m > 1 which is square-free; say m = p1 · · · pk, where the pis are
distinct primes. It follows that P (R) is the internal direct sum of rings S1, . . . , Sk, where each
Si
∼= Z/piZ. Clearly P (R) ⊆ Z(R), and hence each Si ⊆ Z(R). It is straightforward to check that

(2.2) P (R)[α] = (S1 + · · ·+ Sk)[α] = S1[α] + · · ·+ Sk[α].

Fix i with 1 ≤ i ≤ k. Recall that Si
∼= Z/piZ. Thus there are ring surjections f : Z/piZ[X]→ Si[X]

and (by 2.1) g : Si[X] → Si[α]. Letting K be the kernel of the composition, we have Si[α] ∼=
Z/piZ[X]/K. If K is trivial, then Si[α] ∼= Z/piZ[X]. But then by Observation 1, Z/piZ[X] is
strongly unital, contradicting Lemma 3. We conclude that K is nontrivial. Invoking Lemma 2
(and using the fact that Z/pZ[X] is a PID), Si[α] is finite. As 1 ≤ i ≤ k was arbitrary, it follows
from (2.2) above that

(2.3) P (R)[α] is a finite ring.

Note that Proposition 1 implies that P (R)[α] is reduced. Thus as is well-known (and an easy
consequence of the Chinese Remainder Theorem),

(2.4) P (R)[α] ∼= F1 × · · · × Fj for some finite fields F1, . . . , Fj.

Now, for any a ∈ F×i , 1 ≤ i ≤ j, we have a|Fi|−1 = 1. We deduce that for any β ∈ F1 × · · · × Fj,
β(|F1|−1)···(|Fj |−1)+1 = β. But then there is a positive integer n such that βn = β. Applying (2.4), we
see that there is a positive integer m such that αm = α. That R is commutative is now immediate
from Jacobson’s Theorem (see [3], p. 367). �

Remark 1. The fact that the integer m in the above proof is square-free is essential to our proof of
(2.3). Indeed, suppose that n > 1 is an integer which is not square-free, and let N be the nilradical of
Z/nZ. Then N is nontrivial and proper. Therefore, Z/nZ[X]/N [X] ∼= ((Z/nZ)/N)[X] is infinite.
Hence it is not the case that Z/nZ[X]/K is finite for every nonzero ideal K of Z/nZ[X].
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We pause now to recall more terminology. If R is a ring and I is an (two-sided) ideal of R, then
I is indecomposable if there do not exist nonzero ideals I1 and I2 of R such that I = I1 ⊕ I2. A
ring R is indecomposable if it is indecomposable as an ideal of itself. Our next lemma may be in
the literature, but we could not locate a source. Therefore, we present a self-contained proof.

Lemma 4. Let R be a ring, and suppose that R does not contain an ideal which is an infinite
internal direct sum of nonzero ideals of R. Then R = I1 ⊕ · · · ⊕ In for some indecomposable ideals
I1, . . . , In of R.

Proof. We proceed by contraposition. Thus let R be a ring, and suppose that R is not a finite direct
sum of indecomposable ideals. Then R is not indecomposable as an ideal, and hence R = I1⊕J1 for
some nonzero ideals I1 and J1. Since R is not a finite direct sum of indecomposable ideals, we may
assume without loss of generality that J1 is not indecomposable. Hence J1 = I2⊕J2 for some nonzero
ideals I2 and J2. Now, R = I1⊕I2⊕J2. Again, R is not a finite direct sum of indecomposable ideals,
and so we may assume without loss of generality that J2 is not indecomposable. Thus J2 = I3⊕ J3
for some nonzero ideals I3 and J3. Thus R = I1 ⊕ I2 ⊕ I3 ⊕ J3. Proceeding recursively, we see that
R contains an ideal which is an infinite internal direct sum of nonzero ideals of R, and the proof is
complete. �

We are almost ready to classify the strongly unital rings. First, we establish a final lemma and
recall a couple of definitions. The lemma is a special case of a more general result in the literature;
on p. 22 of [4], the author establishes that a left Artinian ring with no nonzero nilpotent left ideals
is a semisimple ring with identity. Our next lemma is an immediate consequence of this fact.

Lemma 5. Every finite reduced commutative ring has an identity.

Before stating our main theorem, we remind the reader that if F is a field, then the prime subfield
of F is the subfield of F generated by 1. It is easy to see that if F has characteristic p, then the
prime subfield of F is isomorphic to Z/pZ; if F has characteristic 0, then the prime subfield of F
is isomorphic to Q. Finally, F is called absolutely algebraic if F is algebraic over its prime subfield.
Our main result and its proof conclude this note.

Theorem 1. Let R be a ring. Then R is strongly unital if and only if there is a positive integer n
such that R ∼= F1 × · · · × Fn, where each Fi is an absolutely algebraic field of prime characteristic.

Proof. Assume first that R is a ring which is strongly unital. We claim that

(2.5) there is no ideal of R which is an infinite internal direct sum of nonzero ideals of R.

Suppose not, and let X be an infinite index set and {Ix : x ∈ X} an enumeration of nonzero ideals
of R which generate a direct sum. Because X is infinite, it is clear that

⊕
x∈X Ix does not have

a multiplicative identity. However,
⊕

x∈X Ix is an ideal of R, hence also a subring of R. This
contradicts the assumption that R is strongly unital, and (2.5) is verified. It now follows from
Lemma 4 (and the fact that by definition, R is nontrivial) that there exist nonzero indecomposable
ideals I1, . . . , In of R such that R = I1⊕ · · · ⊕ In. Observe that the map (i1, . . . , in) 7→ i1 + · · ·+ in
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is a ring isomorphism between the external direct product I1 × · · · × In of the rings I1, . . . , In and
R. We record this below:

(2.6) R ∼= I1 × · · · × In (as rings).

To finish proving the first implication of the theorem, it remains only to show that

(2.7) Ik is an absolutely algebraic field of prime characteristic for every k, 1 ≤ k ≤ n.

Clearly it suffices to prove the assertion for I := I1. Toward this end, since I is a subring of R and
R is strongly unital, there is some 1I ∈ I which is a multiplicative identity for I. We claim that

(2.8) the only idempotents of I are 0 and 1I .

Indeed, if e 6= 0, 1I is an idempotent of I, then I decomposes as I = Ie ⊕ I(1I − e). Now observe
that both Ie and I(1I − e) are nonzero ideals of R, and we have contradicted the fact that I
is indecomposable. We now easily show that I is a field. Recall from Proposition 2 that R is
commutative. Next, let r ∈ I be nonzero. Then clearly Ir ⊆ I is a nonzero ideal of R, hence has an
identity element e∗. Because e∗ is idempotent, we deduce from (2.8) that e∗ = 0 or e∗ = 1I . e

∗ 6= 0,
lest Ir = {0}. We conclude that e∗ = 1I , and thus 1I ∈ Ir. But this means that r is invertible,
and I is a field, as claimed. Finally, Proposition 2 implies that I is absolutely algebraic of prime
characteristic.

Conversely, suppose that R ∼= F1 × · · · × Fn, where each Fk is an absolutely algebraic field of
prime characteristic, and let S be a subring of R. We shall prove that S has an identity. We may of
course assume that S is nontrivial. For 1 ≤ i ≤ n, let πi : R → Fi be the projection map onto the
ith coordinate. Further, set π(S) := {1 ≤ i ≤ n : πi(S) is nontrivial}. Without loss of generality,
we may suppose that π(S) = {1, 2, . . . , r} for some r with 1 ≤ r ≤ n. For 1 ≤ i ≤ r, let xi ∈ S be
such that

(2.9) πi(xi) 6= 0.

Now let S ′ be the subring of S generated by x1, . . . , xr. Further, for each i with 1 ≤ i ≤ n, let Ki

be the prime subfield of Fi. It is clear that up to isomorphism,

(2.10) S ′ is a subring of K1(π1(x1), π1(x2), . . . , π1(xr))× · · · ×Kn(πn(x1), πn(x2), . . . , πn(xr)).

Recall that each Ki is finite and each πi(xj) is algebraic over Ki. But then it follows that each
Ki(πi(x1), πi(x2), . . . , πi(xr)) is a finite field, and we conclude from (2.10) that S ′ is finite. Applying
Lemma 5, we see that S ′ has a multiplicative identity 1S′ := (e1, . . . , er, 0, . . . , 0). We claim that
1S′ is also an identity for S. Toward this end, it clearly suffices to prove that ei = 1 for 1 ≤ i ≤ r
(here, 1 is the multiplicative identity of Fi). To see this, simply note that 1S′ · xi = xi. Therefore,
πi(1S′) ·πi(xi) = πi(xi). Applying (2.9) and the fact that Fi is a field, we deduce that ei = πi(1S′) =
1, and the proof is complete. �
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