
MODULES WHOSE SUBMODULE LATTICE IS LOWER FINITE

LUKE HARMON AND GREG OMAN

Abstract. A bounded poset P := (P, 0, 1,≤) is said to be lower finite if P is infinite and for all
1 6= x ∈ P , there are but finitely many y ∈ P such that y ≤ x. In this paper, we classify the
modules M over a commutative ring R with identity with the property that the lattice LR(M) of
R-submodules M (under set-theoretic containment) is lower finite. Our results are summarized in
Theorem 1 at the end of this note.

1. Introduction

If A := (A,F) is an algebra1, then the collection of subuniverses of A (recall that A is called
the universe of A) forms a partially ordered set with respect to set inclusion. For instance, if R is
a ring, then the collection of subrings of R is a poset (again, with respect to set inclusion). The
following question is quite natural and has been explored in a variety of mathematical contexts:

Problem 1. Given a class C of algebras, find necessary and sufficient conditions on a poset P for
which there is a member of C whose poset of subalgebras (subuniverses) is order-isomorphic to P.

A classical result in discrete mathematics in this direction is the following: let L be a finite
lattice2. Then L is the lattice of flats of a matroid if and only if L is geometric (for a proof
and further reading, we refer the reader to [15]). Transitioning to ring theory, Irving Kaplansky
considered the question of which partially ordered sets can be realized as the poset of prime ideals of
a commutative unital ring ([9]); this is the so-called “Kaplansky problem” and is still not completely
resolved. More recently, the same question was investigated in the context of Leavitt path algebras
([1]).

Another approach to relating the poset of subalgebras of an algebra A to the structure of A is
to fix some poset property P , and study the algebras A in some class C of algebras whose poset of
subalgebras satisfies property P . For example, if G is an infinite group whose poset of subgroups is
totally ordered by ⊆, then G is isomorphic to a Prüfer p-group C(p∞) for some prime p (this result
can be found, for example, in the classic text [4]). Several well-studied properties of a module M
over a commutative ring R are (can be) phrased in terms of the lattice LR(M) of R-submodules
of M , ordered by set inclusion. For instance, M is called uniserial if LR(M) is totally ordered.
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To state two more examples, M is Artinian if every nonempty subset of LR(M) has a minimal
element; M is Noetherian if every nonempty subset of LR(M) has a maximal element.

Recall that a poset P := (P,≤) is bounded provided there are (necessarily unique) elements
0, 1 ∈ P such that 0 ≤ p ≤ 1 for all p ∈ P . We pause to give a relevant example.

Example 1. Let R be a ring and let M be a left R-module. Then in the submodule poset LR(M),
we have 0 = {0} and 1 = M .

An infinite bounded poset P := (P, 0, 1,≤) is called lower finite provided that for every x 6= 1 in
P , there are but finitely members y of P such that y ≤ x. Again, we pause to illustrate with a
simple example.

Example 2. Let X be an infinite set, and let S := {A ⊆ X : A = X or A is finite}. Then with
respect to set inclusion, S is a bounded lattice which is lower finite.

The purpose of this note is to classify the modules M over a commutative ring R with identity
such that LR(M) is lower finite. This work extends earlier results of Hirano and Mogami ([7]) as
well as the second author’s work on countable Jónsson modules ([12]). Theorem 1 gives a summary
of our results. We then close the paper with directions for further research.

2. Preliminaries

We begin this section by giving a terse treatment of some fundamental definitions. Recall that a
(non-strict) partial order on a set P is a binary relation ≤ on P which is reflexive, antisymmetric,
and transitive. If P is a set and ≤ is a partial order on P , then we call the structure P := (P,≤)
a partially ordered set or poset. Next, suppose that (P,≤) is a poset, and let x, y ∈ P. Then an
element z ∈ P is called a supremum or sup of x and y provided x ≤ z, y ≤ z, and if p ∈ P satisfies
x ≤ p and y ≤ p, then z ≤ p. Similarly, z ∈ P is called an infimum or inf of x and y provided
z ≤ x, z ≤ y, and if p ∈ P satisfies p ≤ x and p ≤ y, then p ≤ z. It is easy to see from the definition
of partial order that if an inf or sup of x and y exists, then it is unique. We denote this unique
element, when it exists, by inf(x, y) and sup(x, y), respectively. A poset (P,≤) is called a lattice
provided that both inf(x, y) and sup(x, y) exist for all x, y ∈ P. A lattice (P,≤) is bounded if it is
bounded as a poset, that is (as above) there are elements 0, 1 ∈ P (necessarily unique) such that
0 ≤ x ≤ 1 for all x ∈ P. Finally, if P1 := (P1,≤1) and P2 := (P2,≤2) are posets and f : P1 → P2 is
a function, then we say that f is an isomorphism between P1 and P2 provided f is bijective and
for all x, y ∈ P1: x ≤1 y if and only if f(x) ≤2 f(y). If such an f exists, then we say that P1 and
P2 are (order-) isomorphic.

Example 3. We have seen that if M is a module over a ring R, then LR(M) is a bounded poset
with respect to ⊆ with 0 = {0} and 1 = M . Indeed, LR(M) is also a lattice: if L and K are
R-submodules of M , then sup(L,K) := L+K (the R-submodule of M generated by L and K) and
inf(L,K) := L ∩K.

We now review some basic module-theoretic terminology to which we shall refer in the next
section. First, we mention that throughout this paper, all rings are assumed to be commutative
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with 1 6= 0, and all modules are assumed to be left and unitary. Throughout, if R is a ring and M
is an R-module, then we denote by Rm the cyclic R-submodule of M generated by m ∈M. Next,
recall the following fundamental definition:

Definition 1. Let R and S be rings, and suppose that M is simultaneously an R-module and an
S-module. Then we say that the R-module structure of M and the S-module structure of M are
essentially the same provided Rm = Sm for every m ∈M.

To mitigate any confusion, if M and N are simultaneously R-modules and S-modules, and M and
N are isomorphic as (say) R-modules, then we shall write M ∼=R N. We pause to make an easy
observation:

Observation 1. If R and S are rings and M is simultaneously an R-module and an S-module
such that the respective module structures are essentially the same, then every R-submodule of M
is an S-submodule of M and vice-versa.

To see why this is true, let us suppose that N is an R-submodule of M. To show that N is an
S-submodule of M , it suffices to show that if n ∈ N and s ∈ S, then sn ∈ N. So let n ∈ N and let
s ∈ S be arbitrary. Since Rn = Sn and sn ∈ Sn, it follows that sn ∈ Rn; hence sn = rn for some
r ∈ R. Because N is an R-submodule of M , we have sn = rn ∈ N , as required.

Next, let us suppose that M is an R-module. Recall that the annihilator of M in R, denoted
AnnR(M), is defined by AnnR(M) := {r ∈ R : rM = {0}}. It is straightforward to to check that
AnnR(M) is an ideal of R and that, moreover, M becomes an R/AnnR(M)-module via the scalar
multiplication r·m := rm. Moreover, it is clear that the structure of M as an R-module is essentially
the same as the structure of M as an R/AnnR(M)-module. Finally, note that M is faithful over
R/AnnR(M): if r ∈ R/AnnR(M) satisfies rM = {0}, then r = 0.

Moving on, let R be a ring and M be an R-module. Further, let J be a maximal ideal of R.
Then M is said to be J-primary provided that for every m ∈M , there is a positive integer n such
that Jnm = {0}. We now pause to establish the following (well-known classical) result.

Lemma 1. Let R be a ring, J be a maximal ideal of R, and suppose that M is J-primary. Then
M has a natural module structure over the local ring RJ . Moreover, the structure of M as an
R-module is essentially the same as the structure of M as an RJ-module.

Proof. Let R, J , and M be as stated. First, we claim that for every m ∈M and s ∈ R\J , there is
a unique m′ ∈M such that m = sm′. So let m ∈M and let s ∈ R\J . By assumption, Jnm = {0}
for some positive integer n. The maximality of J implies that (Jn, s) = R. Thus there exists j ∈ Jn

and x ∈ R such that j + xs = 1. Multiplying through by m, jm + (xs)m = m. Since j ∈ Jn, we
have jm = 0. Thus (xs)m = m, and so m = s(xm), completing the existence proof.

Now suppose that m = sm′ = sm′′ for some m′,m′′ ∈ M . Then s(m′ − m′′) = 0. Now,
Jk(m′ −m′′) = 0 for some positive integer k. Also, s(m′ −m′′) = 0 with s ∈ R\J . Thus s /∈ Jk.
It follows from the maximality of J that (Jk, s)(m′ −m′′) = R(m′ −m′′) = {0}. This shows that
1(m′ −m′′) = 0, and so m′ = m′′.

Finally, we may define a scalar multiplication on M over the ring RJ by r
s
· m := the unique

m ∈ M such that rm = sm′. This yields a module structure for M as an RJ -module. It remains
3
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to check that the structure of M as an R-module is essentially the same as the structure of M as
an RJ -module. To see this, let m ∈ M . We must check that Rm = RJm. Let r ∈ R be arbitrary.
Then by definition, rm = r

1
m, and so Rm ⊆ RJm. Conversely, consider r

s
m, where r ∈ R and

s ∈ R\J . By definition, r
s
m is the unique m′ ∈ M such that rm = sm′. By the first paragraph of

the proof above, there is x ∈ R such that rm = s(xrm). Hence r
s
m = xrm ∈ Rm, and the proof is

complete. �

Next, recall that an R-module M is Artinian provided every infinite, decreasing sequence of
R-modules stabilizes. We shall make essential use of the following classical structure theorem for
Artinian modules. First, observe that if J is a maximal ideal of a ring R and M is an R-module,
then M [J ] := {m ∈ M : Jnm = {0} for some positive integer n} is an R-submodule of M , called
the J-primary component of M.

Proposition 1 ([16], Lemma 1.7). Let R be a ring and let M be an Artinian R-module. Then
there is a finite, nonempty collection {J1, . . . , Jn} of n (distinct) maximal ideals of R such that
M = M [J1]⊕ · · · ⊕M [Jn].

3. Results

3.1. Introduction of the problem. Let us consider a ring R and an R-module M. Next, let
LR(M) denote the collection of R-submodules of M. Then as we have seen, (LR(M),⊆) is a
bounded lattice. Our goal, as stated in the Introduction, is to classify the R-modules M such that
LR(M) is lower finite (recall that this means that for every N ∈ LR(M)\{M}, there are but finitely
many K ∈ LR(M) such that K ≤ N). Phrased completely in module-theoretic terminology, we
study the following problem:

Problem 2. Let R be a ring. Classify all R-modules M with the property that M has infinitely
many R-submodules, but for every proper R-submodule N of M , N has but finitely many R-
submodules.

For the sake of brevity, let us call an R-module M as described in Problem 2 lower finite. We pause
to present two examples.

Recall that if p is a prime number, then the direct limit limn→∞ Z/(pn) of the cyclic groups
Z/(pn), n ∈ N, is an infinite group called the quasicyclic p-group or the Prüfer p-group, denoted
by C(p∞). This group can be realized more concretely as the subgroup of Q/Z consisting of those
elements with additive order a power of p. It is well-known (and easy to prove) that C(p∞) is
infinite, yet every proper subgroup of C(p∞) is isomorphic to Z/(pn) for some n ∈ N. Moreover,
C(p∞) contains an isomorphic copy of Z/(pn) for every n ∈ N. It follows that C(p∞) has infinitely
many subgroups, yet every proper subgroup of C(p∞), being finite, has but finitely many subgroups.
Therefore,

Example 4. C(p∞) is a lower finite Z-module for every prime number p.

Next, consider R2 as a vector space over R. Clearly there exist infinitely many lines through the
origin, and every line through the origin is a subspace of R2. Therefore, R2 has infinitely many
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subspaces. Now, if V is any proper subspace of R2, then V is either a line through the origin or
trivial. We conclude that V has but two subspaces or one subspace, respectively. Thus,

Example 5. R2 is a lower finite R-module.

3.2. Preliminary results. We now equip ourselves to determine the structure of lower finite
modules over an arbitrary ring. We start with a simple lemma. The techniques used and most
of the results established in the course of proving Lemma 2 below are standard in the theory of
Artinian modules. Since the argument required is short, we include it for completeness.

Lemma 2. Let R be a ring and let M be an Artinian R-module. Further, suppose M =
⊕n

i=1M [Ji]
is a primary decomposition of M as in Proposition 1. If each M [Ji] has but finitely many R-
submodules, then M has but finitely many R-submodules.

Proof. We suppose that R, M , and the Ji are as stated. Let N be an arbitrary R-submodule of M.
Since M is Artinian, so is N. Thus we may decompose N as follows:

(3.1) N = N [Q1]⊕ · · · ⊕N [Qm] for some distinct maximal ideals Q1, . . . , Qm of R.

We assume of course that each N [Qj] is nontrivial. Our first claim is that

(3.2) each Qj is equal to some Jl.

To see this, let n ∈ N [Qj] be nonzero. Then AnnR(n) is a proper ideal of R, and so AnnR(n) ⊆ I
for some maximal ideal I of R. Because n ∈ N [Qj], Q

k
jn = {0} for some positive integer k. We

conclude that Qk
j ⊆ AnnR(n) ⊆ I. As I is maximal, I is also a prime ideal. The primeness of I and

the fact that Qk
j ⊆ I imply that Qj ⊆ I. As Qj is maximal, we deduce that Qj = I. On the other

hand, n ∈ M. It follows from the Ji-primary decomposition of M above that there exist positive
integers k1, . . . , kn such that (Jk1

1 ∩· · ·∩Jkn
n )n = {0}. We conclude as above that Jk1

1 ∩· · ·∩Jkn
n ⊆ I.

The primeness of I implies that Jkl
l ⊆ I for some l with 1 ≤ l ≤ n. Then as above, Jl ⊆ I and

Jl = I. We now have Qj = I = Jl, establishing (3.2). Without loss of generality, Qi = Ji for
1 ≤ i ≤ m. It is immediate from the definition of primary components that

(3.3) N [Qi] ⊆M [Qi = Ji] for 1 ≤ i ≤ m.

It is now clear from (3.1) and (3.3) that

(3.4) N = M1 ⊕ · · · ⊕Mm for some M1, . . . ,Mm ≤M such that Mi ⊆M [Ji] for 1 ≤ i ≤ m.

Because each M [Ji] has but finitely many R-submodules, it follows from (3.4) and the fact that
N ≤M was arbitrary that M itself has but finitely many R-submodules, as claimed. �

Now let R be a ring, M be an R-module, and J be a maximal ideal of R. If every element of M
is annihilated by some power of J , then we say that M is J-primary. We are ready to prove our
first result on lower finite modules.
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Proposition 2. Let R be a ring, and suppose that M is a lower finite R-module. Then the following
hold:

(1) M is Artinian, and
(2) M is J-primary for some maximal ideal J of R.

Proof. We suppose that M is a lower finite R-module. Since every proper R-submodule of M has
but finitely many R-submodules, it is clear that any strictly decreasing sequence of R-submodules
of M is finite. Therefore, M is Artinian. As for (2), since M is Artinian, M has a primary
decomposition, say M =

⊕n
i=1Mi[Ji] for some maximal ideals J1, . . . , Jn of R. If each M [Ji] has

finitely many R-submodules, then by Lemma 2, M itself has but finitely many R-submodules, a
contradiction. Thus M [Ji] has infinitely many R-submodules for some j, 1 ≤ j ≤ n. Because M is
lower finite, we deduce that M = M [Ji], and hence M is Ji-primary. �

Our first corollary shows that no ring is lower finite as a module over itself, and thus lower-
finiteness is strictly a module-theoretic property.

Corollary 1. Let R be a ring. Then R is not a lower finite R-module.

Proof. Suppose by way of contradiction that there exists a ring R which is lower finite as a module
over itself. Then by (1) of Proposition 2, R is an Artinian ring, and therefore has but finitely
many maximal ideals: let M1, . . . ,Mk be the maximal ideals of R. By definition of lower finite, R
has infinitely many ideals, thus infinitely many proper ideals. As every proper ideal is contained
in a maximal ideal and because R has but finitely many maximal ideals, we conclude that some
Mi contains infinitely many ideals. But Mi is a proper ideal, and this contradicts the definition of
lower finite. �

Remark 1. Suppose that M is lower finite module over a ring R. Then by Proposition 2, M
is J-primary for some maximal ideal J of R. By Lemma 1, M is naturally an RJ -module with
essentially the same module structure as M as an R-module. Thus without loss of generality, we
may assume that lower finite modules are modules over local rings. Now, let M be a lower finite
module over the local ring (R, J). Recall from earlier that M has essentially the same structure
over R as over R/AnnR(M), and R/AnnR(M) remains local. Hence without loss of generality, we
may consider only faithful lower finite modules over local rings.

We conclude this subsection with a straightforward lemma and a final proposition of which we
shall make heavy use throughout the remainder of the paper.

Lemma 3. Let F be an infinite field. Then the F -vector space F 2 has infinitely many subspaces.

Proof. Suppose that F is an infinite field. For each a ∈ F , let va := (1, a). Now set `a := {tva : t ∈
F}. Then of course, each `a is an F -subspace of F 2. It suffices to prove that `a 6= `b for a 6= b.
Indeed, suppose that a 6= b. Then it is clear that (1, a) ∈ `a\`b, and the proof is complete. �

Proposition 3. Suppose that (R, J) is a local ring and M is a faithful lower finite R-module.
Assume further that the residue field R/J is infinite. Then either M ∼=R R⊕R and R is a field or
there is a simple R-submodule N of M which is essential in M .
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Proof. Let R/J and M be as stated, and suppose that R/J is infinite. We consider two cases.

Case 1. There exist nonzero R-submodules N1 and N2 of M such that N1 ∩N2 = {0}. Because
M is Artinian, both N1 and N2 are also Artinian. It follows that there exist simple R-modules M1

and M2 contained in N1 and N2, respectively. Because N1 ∩ N2 = {0}, also M1 ∩M2 = {0}. Let
M1 := Rm1 and M2 := Rm2. Because Rm1 is simple, it follows that AnnR(m1) is a maximal ideal
of R, and thus AnnR(m1) = J . Similarly AnnR(m2) = J . We deduce that Rm1

∼= Rm2
∼= R/J .

Thus M contains an isomorphic copy of R/J ⊕ R/J . Observe that the structure of R/J ⊕ R/J
as an R-module is essentially the same as the structure of R/J ⊕ R/J as an R/J-vector space.
Invoking Lemma 3, R/J ⊕ R/J has infinitely many R/J-subspaces, and therefore infinitely many
R-subspaces. Because M is lower finite, we deduce that M ∼=R R/J ⊕ R/J . Recall that M is also
faithful, and hence J = {0}. It follows that R is a field, and M ∼=R R⊕R.

Case 2. M is uniform. Because M is a nontrivial Artinian module, as above, M contains a
simple R-submodule N . It is clear that N is essential in M . �

3.3. A classification of the infinitely generated lower finite R-modules. We begin this
subsection with a brief review of the fundamentals of discrete valuation rings (DVRs), as they will
play a significant role in what follows. If D is a domain, then K := {a

b
: a ∈ D, b ∈ D\{0}} (with

addition and multiplication carried out formally) is a field, called the quotient field of D. The map
d 7→ d

1
is an embedding of D into K, and we identify D with its image in K. Next, we recall that

an integral domain V is a valuation domain if the ideals of V are linearly ordered by set inclusion.
A discrete valuation ring (DVR) is a principal ideal domain (PID) V with a unique nonzero prime
ideal m := (m). Since V is a PID, V is also a unique factorization domain (UFD). As V has a
unique prime element m (up to units), it follows that every nonzero, nonunit of V has the form
umk for some unit u ∈ V and some positive integer k. From this fact, it is immediate that the
ideals of V are linearly ordered (that is, V is in fact a valuation domain). We now collect some
well-known facts about the V -module K/V , where K is the quotient field of the discrete valuation
ring V.

Lemma 4. Let V be a DVR with maximal ideal m := (m) and quotient field K. Further, for k ∈ Z+,
we define the following V -submodule of K/V : Mk := {V + v

mk : v ∈ V }. Then the following hold:

(1) the V -submodules Mk as defined above strictly ascend,
(2) the V -submodules Mk are exactly the proper, nontrivial V -submodules of K/V ,
(3) K/V is not finitely generated over V , and
(4) K/V is faithful over V .

Sketch of Proof. We let V , m := (m), and K be as stated.

(1) First, it is clear that Mk ⊆Mk+1 for every positive integer k. We claim that V + 1
mk+1 /∈Mk.

If so, then V + 1
mk+1 = V + v

mk for some v ∈ V. Therefore, 1
mk+1 − v

mk ∈ V. Multiplying through by

mk (a member of V ), we have 1
m
− v ∈ V. Since v ∈ V , we deduce that 1

m
∈ V. This contradicts the

fact that m is not a unit of V .

(2) Well-known; see [14], Lemma 4.
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(3) First, observe that any nonzero element of K/V has the form V + u
mk for some unit u ∈ V

and positive integer k, hence is a member of Mk. Hence by (1), it is clear that K/V is not finitely
generated.

(4) Suppose by way of contradiction that there is some nonzero v ∈ V such that v(K/V ) = {0}.
Then clearly v is not a unit, and so v = umk for some unit u of V and some positive integer k.

Since v(K/V ) = {0}, we have vK ⊆ V . But then umk

mk+1 ∈ V . This implies that m is a unit of V , a
contradiction as above. �

We are almost ready to analyze the lower finite J-primary R-modules M in case the residue field
R/J is infinite and M is infinitely generated over R (by infinitely generated, we mean not finitely
generated). We first recall the following results of Hirano and Mogami:

Lemma 5 ([7], Theorems 8 and 10). Let R be a ring and let M be an R-module. Suppose further
that LR(M) is isomorphic to the ordinal ω + 1.3 Let S := EndR(M) be the endomorphism ring of
M over R. Then the structure of M as an S-module is essentially the same as the structure of M
as an R-module. Moreover, S is a DVR, and if K is the quotient field of S, then M ∼=S K/S.

Proposition 4. Let (R, J) be a local ring with infinite residue field, and suppose that M is an
infinitely generated faithful lower finite R-module. Set S := EndR(M). Then S is a discrete
valuation ring, the structure of M as an S-module is essentially the same as the structure of M as
an R-module, and M ∼=S K/S, where K is the quotient field of S.

Proof. Assume that (R, J) is a ring with infinite residue field and M is an infinitely generated
faithful lower finite R-module. By Lemma 5, it suffices to prove that LR(M) is isomorphic to ω+1.
Applying Proposition 3, either M ∼=R R⊕R and R is a field or there is a simple R-submodule N of
M which is essential in M . The former is impossible because M is infinitely generated; let N1 be a
simple essential R-submodule of M . Then note that N1 ⊆ N for every nontrivial R-submodule N
of M . Because every proper R-submodule of M has but finitely many R-submodules, clearly the
same is true of M/N1. As M is lower finite, M has infinitely many R-submodules, hence certainly
has infinitely many nontrivial R-submodules. As N1 is contained in every nontrivial R-submodule
of M , we deduce that M/N1 has infinitely many R-submodules. Because M is infinitely generated
and N1 is finitely generated, M/N1 is infinitely generated over R. We have established that M/N1

is an infinitely generated lower finite R-module. By what we proved above4, there is a finitely
generated R-submodule N2 of M strictly containing N1 with the property that every R-submodule
of M which strictly contains N1 contains N2. Proceeding recursively, we obtain a strictly increasing
sequence N0 := {0} ( N1 ( N2 ( · · · of submodules of M with the property that

(3.5) for all i ∈ N : if K is an R-submodule of M such that Ni ( K, then Ni+1 ⊆ K.

3As an ordered set, ω + 1 is isomorphic to N ∪ {∞}, where we extend the usual order ≤ on N by defining a ≤ ∞
for all a ∈ N ∪ {∞}.

4M/N1 may not be faithful over R, but if M/N1 has no simple essential submodule, it is two-generated, a
contradiction.
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Now, set N :=
⋃

i∈NNi. Since the Ni strictly ascend, N is an R-submodule of M . Moreover, each
Ni is a submodule of N , and we deduce that N has infinitely many R-submodules. Because M is
lower finite, it follows that M = N . To finish the proof, it suffices to prove that {Ni : i ∈ N} is
the set of proper R-submodules of M . For any i ∈ N, Ni ( Ni+1, and so Ni is proper. Conversely,
let K be any proper R-submodule of M . We cannot have Ni ⊆ K for arbitrarily large i ∈ N, lest
M =

⋃
i∈NNi ⊆ K, and K not be proper. Choose the largest i such that Ni ⊆ K. We claim

that Ni = K. Otherwise, Ni ( K; by (3.5), Ni+1 ⊆ K, contradicting the maximality of i. This
concludes the proof. �

Next, we turn our attention to classifying the infinitely generated, lower finite, (R, J)-modules
in case the residue field R/J is finite. Toward this end, we shall invoke the theory of Jónsson
modules. We recall that a module M over a ring R is a Jónsson module provided M is infinite and
every proper R-submodule of M has smaller cardinality than M . It is well-known that the Jónsson
Z-modules are precisely the quasi-cyclic groups C(p∞), p a prime number (this result can be found
in the classic text [4], for example). We collect the following results to be utilized in the sequel.

Lemma 6. Let R be a ring and M be an R-module.

(1) ([5], Corollary 2.3) If M is a finitely generated Jónsson module, then M is cyclic.
(2) ([5], Proposition 2.5(2)) If M is a Jónsson R-module, then AnnR(M) is a prime ideal of R.
(3) ([13], Theorem 4.1 (partial)) If M is a faithful, infinitely generated Artinian Jónsson module,

then M is countable.
(4) ([12], Theorem 2 (partial)) If M is infinitely generated, countable, and faithful over R, then

M is a Jónsson R-module if and only if R is a domain (say with quotient field K) and
there exist both a DVR overring (V,m) of R with V/m finite and an R-module N such that
V ⊆ N ( K and M ∼=R K/N .

We now determine the infinitely generated faithful lower finite (R, J)-modules when R/J is finite.

Proposition 5. Suppose that R is a ring and M is an infinitely generated faithful lower finite
(R, J)-module, where R/J is finite. Then R is a domain; let K be the quotient field of R. Moreover,
there is a DVR overring (V,m) of R with V/m finite and an R-module N such that V ⊆ N ( K
and M ∼=R K/N .

Proof. We let (R, J) and M be as stated. Because M is lower finite, by definition, M has infinitely
many R-submodules. Hence M is infinite. Because M is Artinian, there is an R-submodule N of
M which is minimal with repect to being infinite. Hence by minimality, every proper R-submodule
of N is finite, and so N is a Jónsson module. We claim that

(3.6) M = N.

Suppose not. Because M is lower finite, it follows that N has but finitely many R-submodules,
and is thus Noetherian. By (1) of Lemma 6, N is cyclic. Invoking (2) of Lemma 6, Q := AnnR(N)
is a prime ideal of R. On the other hand, M is J-primary, and so JkN = {0} for some positive
integer k. Thus Jk ⊆ Q, and the primeness of Q along with the maximality of J implies that
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J = Q. But now N ∼=R R/J , and so N is finite, a contradiction. This establishes (3.6). As M is
faithful over R, it follows from (2) of Lemma 6 that R is a domain. Invoking (3) of Lemma 6, M
is countable. Finally, an immediate application of (4) of Lemma 6 completes the argument. �

3.4. A classification of the finitely generated lower finite R-modules. Finally, we consider
lower finite modules which are finitely generated. For the purposes of the remainder of the article,
we introduce some final terminology. Let M be an R-module and let K be an R-submodule of M .
Recall that K is called a waist of M provided that for every R-submodule N of M , either K ⊆ N
or N ⊆ K.5 Observe trivially that if M itself is uniserial, then every R-submodule of M is a waist.

Proposition 6. Suppose that (R, J) is a local ring and M is a finitely generated faithful lower
finite R-module. Then the following hold:

(1) R/J is infinite, and
(2) there exists a finitely generated, uniserial, Artinian waist N of M such that M/N ∼= R/J ⊕

R/J .

Proof. Assume that (R, J) is a ring and M is a finitely generated faithful lower finite R-module.

(1) Suppose by way of contradiction that R/J is finite. Now, M is finitely generated and every
proper R-submodule N of M has but finitely many submodules, hence N is also finitely generated.
It follows that M is Noetherian. We claim that

(3.7) every maximal R-submodule of M contains the R-submodule JM.

Suppose instead that there is a maximal R-submodule K of M such that JM * K. Then by
maximality ofK, we have JM+K = M . But then by Nakayama’s Lemma, K = M , a contradiction.
This proves (3.7). Now, recall that R/J was assumed finite and M is finitely generated. Hence
M/JM is a finite dimensional vector space over the finite field R/J , and is thus finite. We deduce
that there are but finitely many R-submodules of M which contain JM . Invoking (3.7), it follows
that M has but finitely many maximal submodules. Because M is Noetherian, every proper
submodule of M is contained in a maximal submodule of M . But as M is lower finite, it follows
that some maximal submodule of M contains infinitely many submodules, contradicting lower
finiteness. This establishes (1).

(2) If M ∼=R R⊕R, and R is a field then we may take N := {0}, and we’re done. So suppose not.
By Proposition 3, there is a simple R-submodule N1 of M which is essential in M . Observe that
M/N1 is also a lower finite R-module. If M/N1

∼=R R/J⊕R/J , then we are done, as N1 is certainly a
finitely generated, uniserial, Artinian waist of M . Otherwise, there is a simple R-submodule N2/N1

of M/N1 which is essential in M/N1. If (M/N1)/(N2/N1) ∼=R R/J ⊕ R/J , then we have (by the
Isomorphism Theorems) M/N2

∼=R R/J ⊕ R/J . In this case, note that N2 is a finitely generated,
Artinian waist of M ; thus we are done. Continue this process recursively. Because M is finitely
generated, this algorithm must terminate after finitely many steps: otherwise, as M is lower finite,

5The term “waist” was introduced to Auslander, Green, and Reiten in [3]. We thank Gene Abrams for bringing
this to our attention.
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we would have N1 ( N2 ( N3 ( · · · and (because M is lower finite) M =
⋃

i∈Z+ Ni. But then M
is not finitely generated, a contradiction. �

Remark 2. Observe that we cannot dispense with the assumption that there is a finitely generated,
uniserial, Artinian waist N of M (that is, this doesn’t follow from our other assumptions). For
example, suppose that (R, J) is a local ring, N is a finitely generated, nontrivial, uniserial, Artinian
R-submodule of M and that M = N ⊕R/J ⊕R/J . Then M/N ∼= R/J ⊕R/J , and yet N is not a
waist of M .

3.5. Summary of Results. We conclude this section with our main result. Note that we sim-
ply must prove the converses of results already included in the paper to establish the “only if”
implications. We shall require the following lemmas from the literature.

Lemma 7 ([12], Lemma 2). Suppose that M is a faithful torsion module over the domain R and
N is a finitely generated submodule of M . Then M/N is also faithful over R.

Lemma 8 ([12], Lemma 3(1)). Let R be a ring and suppose that I is a finitely generated ideal of
R. If R/I is finite, then R/In is finite for every positive integer n.

Theorem 1. Let (R, J) be a local ring and let M be a faithful R-module. Then M is lower finite
if and only if one of the following holds:

(1) S := EndR(M) is a discrete valuation ring, the structure of M as an S-module is essentially
the same as the structure of M as an R-module, and M ∼=S K/S, where K is the quotient
field of S,

(2) R is a domain; let K be the quotient field of D. There is a DVR overring (V,m) of R with
V/m finite and an R-module N such that V ⊆ N ( K and M ∼=R K/N , or

(3) R/J is infinite and there exists a finitely generated, Artinian waist N of M such that
M/N ∼=R R/J ⊕R/J .

Proof. Assume R is a ring an M is an R-module.

(⇒) By Propositions 4 - 6.

(⇐) We must verify that the modules in classes (1) - (3) are lower finite. Toward this end, it is
immediate from (1), (2), and (4) of Lemma 4 that if S is a DVR with quotient field K, then K/S
is a faithful lower finite S-module. This disposes of the modules in class (1).

Now suppose that M belongs to class (2). We claim that M is infinitely generated over R.
Toward this end, recall from Lemma 4 that the proper, nontrivial V -submodules of K/V are the
modules Mk := {V + v

mk : v ∈ V }, where k ∈ Z+. Now, Mk
∼=V V/mk. Since V/m is finite, we

apply Lemma 8 to conclude that Mk is also finite. Because K/V is the strictly increasing union of
finite V -submodules, we conclude that K/V is countable. By (3) and (4) of Lemma 4, K/V is also
infinitely generated and faithful over V . Because R ⊆ V , we see that

(3.8) K/V is a countable, infinitely generated, faithful R -module.
11
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By (4) of Lemma 6, K/V is a Jónsson R-module. Now, M ∼=R K/N ∼=R (K/V )/(N/V ). Be-
cause K/V is a countable Jónsson R-module and N/V is a proper R-submodule of K/V , we
deduce that N/V is finite. Since K/V is infinitely generated over R and N/V is finite, it fol-
lows that (K/V )/(N/V ) ∼=R M is also infinitely generated over R, as claimed. Because M is an
R-homomorphic image of the countable R-module K/V , we see that M is countable. So we have es-
tablished that M is infinitely generated and countable over R. Finally, observe that K/V is a torsion
V -module. Because V is a DVR overring of R, it follows from Lemma 7 that (K/V )/(N/V ) ∼=R M
is also faithful over R. Applying (4) of Lemma 6, M is a Jónsson R-module. Because M is infinitely
generated over R, M has infinitely many R-submodules. Moreover, every proper R-submodule of
M is finite, hence has but finitely many R-submodules. Thus M is a lower finite R-module.

Finally, suppose that M belongs to class (3). Because N is finitely generated Artinian, N is
also Noetherian. It follows that N has finite length as an R-module. Because N is also uniserial,
we deduce that the factors of the (necessarily unique) composition series of N are precisely the
R-submodules of N . Thus N has but finitely many R-submodules. Now, M/N ∼=R R/J ⊕ R/J .
Because J has infinite index in R, M/N has infinitely many R/J submodules (Lemma 3), and thus
infinitely many R-submodules. It follows that M has infinitely many R-submodules. Now let K
be a proper R-submodule of M . It remains to prove that K has but finitely many R-submodules.
Because N is a waist of M , either K ⊆ N or N ( K. In the first case, because N has but finitely
many R-submodules, also K has but finitely many R-submodules. Now assume that N ( K.
Then note that K/N is a one-dimensional R/J-subspace of M/N . It follows that there are no R-
submodules of M which strictly contain N and are strictly contained in K. Because N is a waist,
we deduce that if L is an R-submodule of K, then either L = K or L ≤ N . Since N has but finitely
many R-submodules, we conclude that K has but finitely many R-submodules, as desired. �

Remark 3. Observe that if M is a finitely generated lower finite (R, J)-module, then M is two
generated: we have M/N ∼=R R/J ⊕R/J for some maximal ideal J of R such that N is a waist of
M . Let m1 and m2 generate M modulo N . Since N is a waist, N ⊆ Rm1 and N ⊆ Rm2. Thus
M = Rm1 +Rm2.

4. Directions for further research

We close the article with two natural lines of investigation for further research. The first question
we leave completely open, though we have some comments on the latter.

Open Problem 1. Investigate lower finite modules over noncommutative rings.

A second question is the following “dual” of the question investigated in this article. We are
agnostic on whether to assume commutativity of the operator ring, so as to state in more generality.

Open Problem 2. Let R be a ring and let M be an R-module. Say that M is upper finite
provided M has infinitely many submodules, but for every nonzero R-submodule N of M , there
are but finitely many R-submodules of M which contain N . Study the upper finite R-modules.

We have a bit to say about this problem. First, it is not hard to see that the ring Z of integers is
upper finite as a module over itself; this follows more or less immediately from the fact that every
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nonzero integer has but finitely many divisors. In fact, more generally, if D is any Dedekind domain
(a domain for which every proper, nonzero ideal factors as a product of prime ideals), then D is
upper finite. A curious fact is that for “sufficiently large” commutative domains D, D is Dedekind
if and only if D is upper finite. This completely characterizes the Dedekind domains of size strictly
greater than 2ℵ0 . On the other hand, if κ is a cardinal such that ℵ0 ≤ κ ≤ 2ℵ0 , then it can be shown
(in ZFC) that there is an upper finite domain D of cardinality κ which is not Dedekind, and so
the strict lower bound of 2ℵ0 is sharp. These results can be found in [11]. These results show that
unlike the case for lower finite modules, being upper finite is not strictly a proper module-theoretic
property in the sense that there are rings which are upper finite as modules over themselves. We
conclude the paper with an upper-finite characterization of the abelian group (Z,+).

Proposition 7. Let G be an abelian group. Then G is infinite cyclic if and only if G is upper finite
as a Z-module.

Proof. We have already explained that Z is upper finite. Conversely, suppose that G is an upper
finite abelian group. Upper finiteness clearly implies that G is a Noetherian Z-module, and so G
is finitely generated. The fact that G is infinite along with the Fundamental Theorem of Finitely
Generated Abelian Groups implies that G ∼= H ⊕ F , where H is a finite abelian group and F is a
nontrivial free abelian group. Clearly F has rank one, lest a summand be contained in infinitely
many subgroups of G. Hence G ∼= H ⊕ Z. Now, H is a subgroup of H ⊕K for every subgroup K
of Z. It follows from upper finiteness that H must be trivial, whence G ∼= Z, as claimed. �
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