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Let 𝑅 be a commutative ring with identity and let 𝑀 be an infinite unitary 𝑅-module. (Unless indicated otherwise, all rings are
commutative with identity 1 ̸= 0 and all modules are unitary.)Then𝑀 is called a Jónsson module provided every proper submodule
of 𝑀 has smaller cardinality than 𝑀. Dually, 𝑀 is said to be homomorphically smaller (HS for short) if |𝑀/𝑁| < |𝑀| for every
nonzero submodule 𝑁 of 𝑀. In this survey paper, we bring the reader up to speed on current research on these structures by
presenting the principal results on Jónsson and HS modules. We conclude the paper with several open problems.

1. Introduction

From a universal perspective, an algebra A is simply a set 𝐴
along with a collection F of operations on 𝐴, each of finite
arity. (If 𝑓 ∈ F has arity 𝑛, then 𝑓 is a function with domain
𝐴
𝑛 and image contained in𝐴. By convention,𝐴0 = {0}. Hence

the functions in F of arity 0 are called constants and are
naturally identified with members of 𝐴.) The ground set 𝐴
is called the universe of A. A subuniverse of an algebra A is a
set 𝐵 ⊆ 𝐴 which is closed under the functions inF. In 1962,
Bjarni Jónsson posed the following problem, which is now
known by the moniker “Jónsson’s Problem.”

Problem 1 (Jósson’s problem). For which infinite cardinals 𝜅
does there exist an algebra A of size 𝜅 (i.e., the ground set 𝐴
has size 𝜅) with but finitely many operations (i.e.,F is finite)
for which every proper subuniverse𝐵 of A has cardinality less
than 𝜅?

Infinite algebras A with finitely many operations for
which every proper subuniverse of A has smaller cardinality
than 𝐴 are known as Jónsson algebras. Several early but
important results on these algebras were pioneered by Erdős,
Rowbottom, and Silver (see [1, 2], and [3], resp.), among
others.

In the modern era, the theory of Jónsson algebras has
proved to be a useful tool in the investigation of large
cardinals. We will not present any set-theoretic theorems on

general Jónsson algebras in this paper, as that would take us
too far afield. Instead, we refer the reader to Jech [4] for such
results and to Coleman [5] for a less technical exposition of
Jónsson algebras (which gives a treatment of Jónsson groups
and rings, in particular).

We now present two natural examples of Jónsson algebras
to initiate the reader.

Example 2. Let A := (N, {𝑃}), where N is the set of natural
numbers (we assume that 0 ∈ N) and 𝑃 is the predecessor
function on N defined as follows:

𝑃 (𝑛) := {
𝑛 − 1, if 𝑛 > 0,

0, if 𝑛 = 0.
(1)

Then A is a Jónsson algebra.

To see why this is true, observe that if𝐵 is any subuniverse
of A and 𝑛 ∈ 𝐵; then since 𝐵 is closed under 𝑃, we conclude
that {0, 1, . . . , 𝑛} ⊆ 𝐵. From this observation, it follows easily
that the only infinite subuniverse of A is N. Hence every
proper subuniverse of A is finite.

Example 3. Let𝑝 be a prime, and letZ(𝑝
∞

) be the quasicyclic
group (Z(𝑝

∞

) is the subgroup ofQ/Z consisting of the ratio-
nal numbers with denominator a power of 𝑝 (modulo Z)) of
type 𝑝

∞. Then the group Z(𝑝
∞

) is a Jónsson group (more
formally, (Z(𝑝

∞

), {+, −, 0}) is a Jónsson algebra, where—is
the unary (additive) inverse operation on Z(𝑝

∞

)).
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We will not reproduce a proof of this assertion as it is well
known that every proper subgroup of Z(𝑝

∞

) has cardinality
𝑝
𝑛 for some nonnegative integer 𝑛 (see pages 15-16 of Fuchs

[6], e.g.). More interestingly, it can be shown that the qua-
sicyclic groups are the only Abelian Jónsson groups; we will
present a short proof of this fact (which originally appears in
Scott [7]) in Section 2.

The following question now follows naturally: are there
any non-Abelian Jónsson groups? O. J. Smidt posed the
problem of whether there exists a countably infinite non-
Abelian Jónsson group. This problem was open for roughly
50 years until, in 1980, A. Ju. Olsanskii gave such an example
(Olšanskǐı [8]). What can be said of the existence of uncount-
able Jónsson groups (in ZFC)? At present, the answer is “not
much.” Shelah proved the existence of a Jónsson group of size
ℵ
1
in [9]; for cardinals 𝜅 > ℵ

1
, it appears to be an open

question whether one can prove the existence of a Jónsson
group of size 𝜅 in ZFC. (Assuming the generalized continuum
hypothesis, Shelah established the existence of a Jónsson
group of size ℵ

𝑎+1
for every ordinal 𝑎.)

Shelah’s work was predated by related work done by
McKenzie, Laffey, and Kostinsky. McKenzie proved in [10]
that the only commutative Jónsson semigroups (i.e., infinite
semigroups whose proper subsemigroups are all of smaller
cardinality) are the quasicyclic groups Z(𝑝

∞

). He also
showed, assuming the generalized continuum hypothesis
(GCH), that every Jónsson semigroup is a group whence also
a Jónsson group. A few years later, Laffey characterized the
infinite rings𝑅 (not assumed to be commutative or to contain
an identity) for which every proper subring of𝑅 is finite ([11]).
It is known that every uncountable Jónsson ring is a noncom-
mutative division ring (see Kostinsky [12]); however, it is still
not known whether such rings exist.

In the early 1980s, the Jónsson property caught the
attention of commutative algebraists Gilmer and Heinzer,
who initiated the study of a module-theoretic analog in [13].
To wit, they define an infinite module 𝑀 over a ring 𝑅 to be
a Jónsson module provided |𝑁| < |𝑀| for every proper 𝑅-
submodule 𝑁 of 𝑀 (note that this notion is trivial if applied
to a finite 𝑅-module 𝑀 since any such 𝑀 has the property
that all proper 𝑅-submodules of 𝑀 have smaller cardinality
than 𝑀). They both applied and extended their results to
other algebraic structures in several subsequent papers [14–
18]. Various mathematicians have also contributed to the
theory of Jónsson modules over the years (either by proving
explicit theorems on Jónssonmodules or by provingmodule-
theoretic results which can be easily applied to yield such
theorems) including Burns et al. [19], Ecker [20], Heinzer
and Lantz [21], Lawrence [22], Weakley [23], and the author
of [24–26]. In Sections 2–6 of this paper, we present the
principal results on Jónsson modules from their inception in
the early 1980s to the present day. Our goal is to bring the
reader to the forefront of research on these structures.

Sections 7–9 are devoted to the survey of a sort of dual to
the class of Jónsson modules; its roots lie in a problem posed
by Irving Kaplansky. To wit, in his classic text Infinite Abelian
Groups, Kaplansky poses the problemof showing thatZ is the
unique infinite Abelian group 𝐺 with the property that 𝐺/𝐻

is finite for every nonzero subgroup 𝐻 of 𝐺 (this appears as

an exercise in [27]). Jensen and Miller translate this question
to the realm of commutative semigroups in [28], defining
an infinite commutative semigroup 𝑆 to be homomorphically
finite (HF for short) if and only if every proper homomorphic
image of 𝑆 is finite. They then proceed to classify all HF
commutative semigroups. More generally (a priori), Ralph
Tucci considers infinite commutative semigroups 𝑆 with the
property that every proper homomorphic image of 𝑆 has
smaller cardinality than 𝑆, calling such semigroups𝐻-smaller
(short for homomorphically smaller). He then shows that the
class of 𝐻-smaller semigroups actually coincides with the
class of HF semigroups in [29].

Several other mathematicians have considered the HF
property in the context of associative rings and modules. For
instance, Chew and Lawn define a ring𝑅with 1 (not assumed
commutative) to be residually finite provided every proper
homomorphic image of 𝑅 is finite.They prove various results
about such rings in [30]. In [31], Levitz andMott extend their
results to rings without identity. In related work, Kearnes and
the author of [32] as well as Shah [33] study the possible cardi-
nalities of residue fields of Noetherian integral domains. (The
work [32] correctsmany of the results in [33]which are flawed
due to an error in cardinal arithmetic (namely, that 𝜅ℵ0 = 𝜅

whenever 𝜅 is a cardinal of size at least 2ℵ0 , which is false).)
Other variants of residual finiteness also appear in the liter-
ature. For example, Orzech and Ribes define an associative
ring 𝑅 to be residually finite if and only if for every nonzero
𝑥 ∈ 𝑅, there is a two-sided ideal 𝐴 of 𝑅 such that 𝑥 ∉ 𝐴

and 𝑅/𝐴 is finite (see [34]). Varadarajan [35] generalizes this
definition and calles an 𝑅-module 𝑀 residually finite if and
only if for any 𝑚 ̸= 0 ∈ 𝑀, there exists a submodule 𝑁 of 𝑀
(depending on𝑚) such that𝑚 ∉ 𝑁 and𝑀/𝑁 is finite.

Following Tucci’s terminology, Salminen and the author
define an infinite module 𝑀 over a ring 𝑅 to be 𝐻-smaller
(HS for short) provided |𝑀/𝑁| < |𝑀| for every nonzero
submodule𝑁 of𝑀. Some structural results on thesemodules
were obtained in Oman and Salminen [36] and Oman [37].
We exposit the theory of HS modules in Sections 7–9. In
Section 10, we present some statements on Jónsson and HS
modules which are independent of ZFC. Section 11 is devoted
to listing several open problems for further research. We
conclude the introduction by informing the reader that the
vast majority of the ring-theoretic terminology used in this
survey can be found in the text Multiplicative Ideal Theory
by Robert Gilmer [38].

2. Fundamental Results on Jónsson Modules

As stated in Section 1, an infinite unitary module 𝑀 over a
ring 𝑅 is said to be a Jónsson module provided all proper
submodules of 𝑀 are of smaller cardinality than 𝑀. We
have already mentioned that for any prime 𝑝, the quasicyclic
group Z(𝑝

∞

) is a Jónsson Abelian group, whence a Jónsson
module over the ringZ of integers.We now present twomore
examples, the first of which is trivial and the second of which
is a bit more exotic.

Example 4. Let 𝐹 be an infinite field. Then the only submod-
ules of 𝐹 (as a vector space over itself) are {0} and 𝐹. Thus
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𝐹 is a Jónsson module over itself. More generally, if 𝑅 is a
commutative ring and 𝑀 is a maximal ideal of 𝑅 of infinite
residue, then 𝑅/𝑀 is a Jónsson module over 𝑅.

Example 5 (see [13, Example 4.2]). Assume that 𝐷 is an
integral domainwith quotient field𝐾, where (𝑉,𝑀) is a rank-
one discrete valuation domain on𝐾 containing𝐷 (here,𝑀 is
the maximal ideal of 𝑉) and 𝑉/𝑀 ≅ 𝐷/𝑃 is a finite field,
where 𝑃 is the center of𝑉 on𝐷 (i.e., 𝑃 := 𝑀∩𝐷).Then𝐾/𝑉

is a Jónsson module over𝐷.

Finally, we are ready to discuss the theory of Jónsson
modules over a commutative ring. We begin with the follow-
ing simple lemma.

Lemma 6. Every Jónsson module is indecomposable.

Proof. Suppose that 𝑀 is a Jónsson module over the ring 𝑅

and that 𝑀 = 𝐴 ⊕ 𝐵 for some 𝑅-submodules 𝐴 and 𝐵 of 𝑀.
Since 𝑀 is infinite, it follows from basic cardinal arithmetic
that |𝐴| = |𝑀| or |𝐵| = |𝑀|. Since𝑀 is Jónsson, we conclude
that either 𝐴 = 𝑀 or 𝐵 = 𝑀, and the proof is complete.

Remark 7. Example 4 and Lemma 6 imply that if 𝐹 is a field
and 𝑉 is an 𝐹-vector space, then 𝑉 is a Jónsson module over
𝐹 if and only if 𝐹 is infinite and 𝑉≅

𝐹
𝐹.

We now establish a fundamental result due to Gilmer and
Heinzer.

Proposition 8 (see [13, Proposition 2.5]). Let𝑀 be a Jónsson
module over the ring 𝑅.

(1) For all 𝑟 ∈ 𝑅, either 𝑟𝑀 = 𝑀 or 𝑟𝑀 = {0}.

(2) Ann
𝑅
(𝑀) := {𝑟 ∈ 𝑅 : 𝑟𝑀 = {0}} is a prime ideal of 𝑅.

Proof. Assume that𝑀 is a Jónsson module over the ring 𝑅.

(1) Let 𝑟 ∈ 𝑅 be arbitrary. If |𝑟𝑀| = |𝑀|, then since 𝑀 is
Jónsson; we deduce that 𝑟𝑀 = 𝑀, and we are done.
Thus assume that |𝑟𝑀| < |𝑀|. Let 𝜑 : 𝑀 → 𝑟𝑀

be the natural map, and let 𝐾 be its kernel. Then
𝑀/𝐾≅

𝑅
𝑟𝑀. Thus |𝑀/𝐾| = |𝑟𝑀| < |𝑀|. Since |𝑀| =

|𝑀/𝐾| ⋅ |𝐾| and since |𝑀/𝐾| < |𝑀|, it follows from
basic cardinal arithmetic that |𝐾| = |𝑀|. Again, since
𝑀 is Jónsson, we see that𝐾 = 𝑀. But this implies that
𝑟𝑀 = {0}, and the proof of (1) is complete.

(2) Suppose that 𝑟, 𝑠 ∈ 𝑅 − Ann
𝑅
(𝑀). Then by (1), 𝑟𝑀 =

𝑀 and 𝑠𝑀 = 𝑀. Hence 𝑟𝑠𝑀 = 𝑟𝑀 = 𝑀, and 𝑟𝑠 ∉

Ann
𝑅
(𝑀). This concludes the proof.

By (2) of Proposition 8 (modding out the annihilator),
there is no loss of generality in restricting our study of Jónsson
modules to faithfulmodules over a domain. Remark 7 implies
that we may restrict even further to faithful modules over
domains which are not fields. The following corollaries now
follow easily.

Corollary 9 (see [13, Proposition 2.2]). Let 𝑅 be an infinite
ring. Then 𝑅 is a field if and only if 𝑅 is Jónsson as a module
over itself.

Proof. Wesaw in Example 4 that every infinite field is Jónsson
as amodule over itself. Conversely, assume that𝑅 is an infinite
ring which is Jónsson as a module over itself. We will show
that 𝑅 is a field. Since 𝑅 has an identity, it is clear that
Ann
𝑅
(𝑅) = {0}. But now (1) of Proposition 8 implies that

𝑟𝑅 = 𝑅 for every nonzero 𝑟 ∈ 𝑅, whence 𝑅 is a field.

Corollary 10 (see [26, Corollary 1]). There are no Jónsson
modules over a finite ring.

Proof. Let𝑅 be a finite ring, and suppose by way of contradic-
tion that 𝑀 is a Jónsson 𝑅-module. By (2) of Proposition 8,
𝑃 := Ann

𝑅
(𝑀) is a prime ideal of 𝑅. But since 𝑅 is finite, 𝑅/𝑃

is a field. Thus𝑀 is naturally a Jónsson vector space over the
finite field 𝑅/𝑃. But since𝑀 is infinite,𝑀 is an infinite direct
sum of copies of 𝑅/𝑃, contradicting Lemma 6.

As promised in the introduction, we now present a simple
proof of Scott’s result that the quasicyclic groups are the only
Abelian Jónsson groups.

Proposition 11 (see [7, Remark 1, page 196]). TheonlyAbelian
Jónsson groups are the quasicyclic groups Z(𝑝

∞

), 𝑝 a prime.

Proof. As noted in Example 3, every quasicyclic groupZ(𝑝
∞

)

is a Jónsson Abelian group. Conversely, suppose that 𝐺 is a
Jónsson Abelian group. We will prove that 𝐺 ≅ Z(𝑝

∞

) for
some prime 𝑝. By (2) of Proposition 8, we have that AnnZ(𝐺)

is a prime ideal of Z. Thus AnnZ(𝐺) = Z𝑝 for some prime
𝑝 or AnnZ(𝐺) = {0}. Corollary 10 precludes the former case
from being a possibility, whence𝐺 is a faithfulZ-module. But
now (1) of Proposition 8 implies that 𝐺 is a divisible Abelian
group. The structure theorem for divisible Abelian groups
yields that 𝐺 is isomorphic to a direct sum of copies ofQ and
Z(𝑝
∞

) for various primes𝑝.We invoke Lemma 6 to conclude
that 𝐺 ≅ Q or 𝐺 ≅ Z(𝑝

∞

) for some prime 𝑝. Since Q is
clearly not a Jónsson group (Z is a proper infinite subgroup),
we deduce that𝐺 ≅ Z(𝑝

∞

) for some prime 𝑝, completing the
proof.

The previous proposition raises several natural questions,
and we will deal with them systematically in the next few
sections. We conclude the section by answering one such
query. As noted after the proof of Proposition 8, we may
restrict our study of Jónssonmodules to faithfulmodules over
a domain 𝐷 which is not a field. The previous proposition
shows thatZ admits a faithful Jónssonmodule. Hence we ask
the following.

Question 1. Does every domain 𝐷 which is not a field admit
a faithful Jónsson module?

The answer is “no.” More specifically, consider the follow-
ing.
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Proposition 12 (see [24, Theorems 7–9]). The following
domains do not admit faithful Jónsson modules:

(1) the polynomial ring 𝐹[𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
], where 𝐹 is an

infinite field,
(2) the power series ring 𝐹[[𝑡

1
, 𝑡
2
, . . . , 𝑡

𝑛
]], where 𝐹 is a

field and either 𝐹 is infinite or 𝑛 > 1,
(3) valuation domains of positive (finite) Krull dimension.

3. Countable Jónsson Modules

Recall from Proposition 11 that the only Jónsson Z-modules
are the (countable) quasicyclic groups Z(𝑝

∞

), where 𝑝 is a
prime number. Thus the following question arises naturally.

Question 2. Is it possible to characterize the countable
Jónsson modules over an arbitrary ring?

We will show that the answer to this question is “yes.”The
solution follows from essentially “gluing together” results of
Gilmer, Heinzer, Lantz, and Weakley. We begin with a result
of Gilmer and Heinzer.

Lemma 13 (see [38, (2) of Theorem 3.1]). Suppose that 𝑀 is
a countable faithful Jónsson module over a domain𝐷 which is
not a field. Then 𝐷 possesses a maximal ideal J of finite index
in𝐷.

We now introduce some terminology of which we will
shortly make use. Heinzer and Lantz [21] and Weakley [23]
call a module 𝑀 over a ring 𝑅 almost finitely generated if 𝑀
is not finitely generated, but all proper submodules of 𝑀 are
finitely generated. A domain 𝐷 is said to be an almost DVR
provided the integral closure 𝐷 of 𝐷 (in the quotient field 𝐾

of 𝐷) is a DVR which is finitely generated as a 𝐷-module.
Finally,𝑅-modules𝑀 and𝑁 are said to be quotient equivalent
(denoted𝑀∼

𝑒
𝑁) if each module is a homomorphic image of

the other (this terminology is due to Eben Matlis).
We recall the following results of Heinzer, Lantz, and

Weakley, and then we characterize the countable Jónsson
modules.

Lemma 14 (see [21, Proposition 2.2]). Let 𝐷 be a domain
with quotient field𝐾 and suppose that (𝑆, 𝐽) is an almost DVR
between𝐷 and𝐾 (here 𝐽 is the maximal ideal of 𝑆). Then𝐾/𝑆

is an almost finitely generated 𝐷-module if 𝑆/𝐽 is a 𝐷-module
of finite length.

Lemma 15 (see [23, Proposition 2.2]). Let 𝑀 be an Artinian
almost finitely generated module over the ring 𝑅, and let 𝑞 :=

Ann
𝑅
(𝑀) (𝑞 must be a prime ideal of 𝑅). Then there is a dis-

crete valuation ring 𝑉 between 𝑅/𝑞 and 𝑄(𝑅/𝑞) (the quotient
field of 𝑅/𝑞) such that 𝑀∼

𝑒
𝑄(𝑅/𝑞)/𝑉.

Theorem 16 (see [25, Theorem 2]). Let 𝐷 be an infinite
domain with quotient field 𝐾, and suppose that 𝑀 is a
countably infinite 𝐷-module. Then 𝑀 is a faithful Jónsson
module if and only if one of the following holds.

(1) 𝐷 is a field and𝑀≅
𝐷
𝐷.

(2) There is a discrete valuation overring𝑉 of𝐷with finite
residue field such that 𝑀≅

𝐷
𝐾/𝑁, where 𝑁 is a proper

𝐷-submodule of 𝐾 containing 𝑉.

Proof. Assume that𝐷 is an infinite domainwith quotient field
𝐾 and that𝑀 is a countably infinite𝐷-module. If𝐷 is a field
and𝑀≅

𝐷
𝐷, then𝑀 is trivially a faithful Jónsson𝐷-module.

Suppose now that𝑉 is a discrete valuation overring of𝐷with
a finite residue field and that𝑀≅

𝐷
𝐾/𝑁, where𝑁 is a proper

𝐷-submodule of 𝐾 containing 𝑉. Let (V) be the maximal
ideal of 𝑉. It is easy to show that every cyclic 𝑉-submodule
of 𝐾/𝑉 is finite. It now follows trivially that every cyclic
𝐷-submodule of 𝐾/𝑉 is finite. Since 𝑉/(V) is finite, clearly
𝑉/(V) has finite length as a 𝐷-module. Lemma 14 implies
that 𝐾/𝑉 is an almost finitely generated 𝐷-module. This fact
along with the fact that every cyclic 𝐷-submodule of 𝐾/𝑉

is finite implies that 𝐾/𝑉 is a (faithful) Jónsson 𝐷-module.
Recall that𝑀≅

𝐷
𝐾/𝑁≅

𝐷
(𝐾/𝑉)/(𝑁/𝑉), whence𝑀 is a homo-

morphic image of the countable Jónsson 𝐷-module 𝐾/𝑉. It
follows that𝑀 is a faithful Jónsson𝐷-module as well.

Now assume that 𝑀 is an arbitrary countable faithful
Jónsson module over 𝐷. If 𝑀 is finitely generated, then
Corollary 2.3 of [13] shows that𝐷 is a field and𝑀≅

𝐷
𝐷.Thus

we suppose that 𝑀 is infinitely generated over 𝐷. Since 𝑀 is
Jónsson and countably infinite, every proper𝐷-submodule of
𝑀 is finite. Hence𝑀 is an almost finitely generated Artinian
𝐷-module. Lemma 15 applies, and we deduce that there is a
discrete valuation overring𝑉 of𝐷 such that𝑀∼

𝑒
𝐾/𝑉. Hence

𝑀≅
𝐷
𝐾/𝑁 for some proper𝐷-submodule𝑁 of𝐾 containing

𝑉. Further, 𝐾/𝑉 is a homomorphic image of 𝑀, whence is a
Jónsson 𝐷-module. Thus 𝐾/𝑉 is also a Jónsson 𝑉-module.
Lemma 13 implies that 𝑉 has a finite residue field, and the
proof is complete.

Having classified the countable Jónsson modules, it is
natural to investigate the following query.

Question 3. For which domains 𝐷 (which are not fields) is
every faithful Jónsson𝐷-module countable?

Recall from Proposition 11 that the ring Z of integers
possesses the above property. More generally, we have the
following.

Proposition 17 (see [25, Theorem 3]). Suppose that 𝐷 is
a one-dimensional Noetherian domain. Then every faithful
Jónsson 𝐷-module is countable.

Before stating our next result, we remind the reader that
the generalized continuum hypothesis (GCH) is that statement
that for every infinite cardinal number 𝜅, there are no
cardinals strictly between 𝜅 and 2

𝜅. It is well known that GCH
can neither be proved nor refuted from the axioms of ZFC
(assuming ZFC is consistent); these results are due to Kurt
Gödel and Paul Cohen.

What can be said of the cardinality of faithful Jónsson
modules over a general Noetherian domain 𝐷 (which is not
a field)? Here is a partial answer.
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Proposition 18 (see [25, Theorem 4]). Assume that GCH
holds.Then if𝐷 is a Noetherian domainwhich is not a field and
𝑀 is a faithful Jónsson module over𝐷, then𝑀 is countable.

Thus one cannot prove the existence of uncountable faith-
ful Jónsson modules over a Noetherian domain 𝐷 (which is
not a field) in ZFC unless ZFC is inconsistent. (If one could
do so, then one would have a proof in ZFC that GCH fails. By
Gödel’s work [39], this is only possible if ZFC is inconsistent.)
It remains open whether the nonexistence of uncount-
able faithful Jónsson modules over a Noetherian domain
𝐷 (which is not a field) can be proved in ZFC.

4. Uncountable Jónsson Modules

Having characterized the countable Jónsson modules in the
previous section, we consider the following question.

Question 4. Is it possible to classify the uncountable Jónsson
modules over an arbitrary ring?

At present, answeringQuestion 4 seems untenable. Recall
from Section 1 that it is not even known if one can prove the
existence of a Jónsson group of cardinalityℵ

2
in ZFC.Though

we cannot answer Question 4 at this time, we sketch a proof
that for every uncountable cardinal 𝜅, there exists a domain
𝐷 which is not a field and a faithful Jónsson𝐷-module𝑀 of
cardinality 𝜅.

Proposition 19 (see [36, Corollary 5.4]). Let 𝜅 be an uncount-
able cardinal. There exists a domain𝐷 which is not a field and
a faithful Jónsson 𝐷-module of cardinality 𝜅.

Proof. Let 𝜅 be an uncountable cardinal, and consider the
additive group 𝐺 defined by 𝐺 := ⨁

𝜅
Z (thus 𝐺 is simply the

direct sum of 𝜅 copies of Z). Now equip 𝐺 with the reverse
lexicographic order (the details follow). A nonzero element
(𝑔
𝑖
) ∈ 𝐺 has but finitely many nonzero entries. Let 𝑗 be

greatest such that 𝑔
𝑗

̸= 0. If 𝑔
𝑗
> 0, then we say that (𝑔

𝑖
) is

positive. Now let 𝑃 be the set of positive elements of 𝐺 (i.e.,
the positive cone of the order). Then one checks easily that 𝑃
is closed under addition and that {𝑃, {0}, −𝑃} forms a partition
of 𝐺. Hence the order < defined on 𝐺 by 𝑥 < 𝑦 if and only if
𝑦 − 𝑥 ∈ 𝑃 is a translation-invariant total order. It is easy to
show that for every 𝑔 > 0, the interval [0, 𝑔] := {𝑥 ∈ 𝐺 : 0 ≤

𝑥 ≤ 𝑔} has cardinality strictly less than 𝜅.
Now let 𝑆 denote the submonoid of 𝐺 consisting of the

nonnegative elements of 𝐺, and let 𝐷 := F
2
[𝑆] denote the

semigroup ring of 𝑆 over the field F
2
of two elements. Every

nonzero element of𝐷may be written uniquely in the form

𝑥
𝑔1 + 𝑥

𝑔2 + ⋅ ⋅ ⋅ + 𝑥
𝑔𝑛 , (2)

where 𝑔
1

< 𝑔
2

< ⋅ ⋅ ⋅ < 𝑔
𝑛
. Now define a map V : 𝐷 →

𝐺∪{∞} by V(𝑥𝑔1 +𝑥
𝑔2 +⋅ ⋅ ⋅+𝑥

𝑔𝑛) := 𝑔
1
, and V(0) := ∞ (recall

that 𝑔 + ∞ = ∞ + 𝑔 = ∞ + ∞ = ∞ and 𝑔 < ∞ for every
𝑔 ∈ 𝐺). It follows (from Proposition 18.1 of [38], e.g.) that V
may be extended to a valuation on the quotient field 𝐾 of 𝐷
by defining V(𝑎/𝑏) := V(𝑎) − V(𝑏). Let 𝑉 be the valuation ring

of V. Then one proves that 𝑉 is not a field, |𝑉| = |𝐾/𝑉| = 𝜅,
and𝐾/𝑉 is a faithful Jónsson module over 𝑉.

5. Large Jónsson Modules

Having considered both small (countable) and large (of arbi-
trary uncountable cardinality) Jónsson modules, we change
gears and study a sort of “relative largeness.” Let us say that an
infinite 𝑅-module 𝑀 is large if its cardinality exceeds that of
𝑅, that is, if |𝑀| > |𝑅|. Note that from Proposition 11, Z does
not admit any large Jónsson modules. This observation leads
to the following question.

Question 5. Does there exist a ring 𝑅 and Jónsson 𝑅-module
𝑀 such that |𝑀| > |𝑅|?

This question is open in general, though there are partial
answers in the literature which we will exposit shortly. We
begin with a lemma and then recall some definitions from
basic set theory.

Lemma 20 (see [26, Theorem 2.1]). Let 𝑅 be a ring, and sup-
pose that𝑀 is a Jónsson module over 𝑅. Then either 𝑅 is a field
and 𝑀≅

𝑅
𝑅, or 𝑀 is a torsion module (i.e., for every 𝑚 ∈ 𝑀,

there exists some nonzero 𝑟 ∈ 𝑅 such that 𝑟𝑚 = 0).

Now let 𝜅 be an infinite cardinal. The cofinality of 𝜅,
denoted 𝑐𝑓(𝜅), is the least cardinal 𝜆 such that 𝜅 is the sum
of 𝜆 many cardinals, each smaller than 𝜅. The cardinal 𝜅

is called regular if 𝑐𝑓(𝜅) = 𝜅 and singular if 𝑐𝑓(𝜅) < 𝜅.
The regular cardinals include ℵ

0
as well as every successor

cardinal (Often, a successor cardinal is denoted by 𝜆
+, which

is simply the smallest cardinal larger than the cardinal 𝜆.),
that is, every cardinal of the form ℵ

𝑎+1
for some ordinal 𝑎.

Though Question 5 is open, we can show that if 𝑀 is
a Jónsson module over a ring 𝑅, then the cofinality of |𝑀|

cannot exceed |R|.

Proposition 21 (see [26, Proposition 3]). Let 𝑅 be a ring and
𝑀 be a Jónsson 𝑅-module. Then 𝑐𝑓(|𝑀|) ≤ |𝑅|.

Proof. Suppose by way of contradiction that 𝑅 is a ring and
𝑀 is a Jónsson 𝑅-module such that |𝑅| < 𝑐𝑓(|𝑀|). Let 𝑃 :=

Ann
𝑅
(𝑀). Then |𝑅/𝑃| ≤ |𝑅| < 𝑐𝑓(|𝑀|) ≤ |𝑀|, whence

|𝑅/𝑃| < |𝑀|. Lemma 20 implies that𝑀 is a (faithful) torsion
module over the domain 𝐷 := 𝑅/𝑃. Since 𝑀 is a faithful
Jónsson 𝐷-module, it follows that for every 𝑑 ∈ 𝐷 − {0}, the
module 𝑀[𝑑] := {𝑚 ∈ 𝑀 : 𝑑𝑚 = 0} has smaller cardinality
than𝑀. However, as𝑀 is torsion, we have

𝑀 = ⋃

𝑑∈𝐷−{0}

𝑀[𝑑] . (3)

But now we have expressed 𝑀 as the union of at most |𝐷|-
many subsets, each of smaller cardinality than |𝑀|. Hence
𝑐𝑓(|𝑀|) ≤ |𝐷| ≤ |𝑅|, a contradiction.

Corollary 22 (see [26, Corollary 3]). Let 𝑅 be a ring. Then 𝑅

does not admit a large Jónsson module of regular cardinality.
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Proof. If𝑀 is a Jónsson module over 𝑅 of regular cardinality,
then, by the previous proposition, |𝑀| = 𝑐𝑓(𝑀) ≤ |𝑅|.

We now pause to showcase the utility of the previous
corollary with an application. We first remind the reader
that a module 𝑀 over a ring 𝑅 is uniserial provided the 𝑅-
submodules of𝑀 form a chain with respect to set inclusion.

Proposition 23. Let 𝑅 be a ring. Then 𝑅 admits neither a
large Artinian module (The nonexistence of a large Artinian
module follows fromamore general result due toDanAnderson
[40]: Artinian modules over commutative rings are countably
generated.) nor a large uniserial module.

Proof. Let 𝑅 be a ring. We first show that 𝑅 does not admit
a large Artinian 𝑅-module. Suppose by way of contradiction
that 𝑀 is a large Artinian module over 𝑅. Assume first that
𝑅 is finite. Since 𝑀 is Artinian, there exists an 𝑅-submodule
𝑁 of 𝑀 which is minimal with respect to being countably
infinite. But then𝑁 is a Jónssonmodule over the finite ring𝑅,
contradictingCorollary 10.Thus𝑅 is infinite. Now let𝑁 be an
𝑅-submodule of 𝑀 which is minimal with respect to having
cardinality |𝑅|

+. But then 𝑁 is a large Jónsson 𝑅-module of
regular cardinality, contradicting Corollary 22.

We now show that 𝑅 does not admit a large uniserial 𝑅-
module. Suppose by way of contradiction that 𝑀 is a large
uniserial 𝑅-module. Let𝑁 be an arbitrary proper submodule
of𝑀, and let𝑚 ∈ 𝑀−𝑁. Then since𝑀 is uniserial, we have
𝑁 ⊆ 𝑅𝑚. Hence |𝑁| ≤ |𝑅|. Since𝑀 is large, it follows that𝑀
is a Jónsson module over 𝑅. Corollary 10 applies again, and
we conclude that 𝑅 is infinite. But now choose an arbitrary
submodule 𝑁 of 𝑀 of cardinality |𝑅|

+. Then 𝑁 is uniserial,
and bywhatwe just proved,𝑁 is Jónsson over𝑅. But then𝑁 is
a large Jónsson𝑅-module of regular cardinality, contradicting
Corollary 22.

We conclude this section by showing that one cannot
prove the existence of large Jónsson modules in ZFC; it
remains open whether one can disprove the existence of large
Jónsson modules in ZFC. We first recall the following
definition.

Definition 24. Let 𝑅 be a ring and 𝑀 an 𝑅-module, and
suppose that 𝐼 ⊆ 𝑀. Then 𝐼 is independent provided 𝐼

generates a direct sum in𝑀, that is, if

⟨𝐼⟩ = ⨁

𝑚∈𝐼

𝑅𝑚. (4)

We will utilize the following result of Andreas Ecker
which gives some relationships between |𝑅|, |𝑀|, and |𝐼|.

Lemma 25 (see [20]). Suppose that 𝑅 is an infinite ring and
that 𝐼 is a maximal independent set in an 𝑅-module𝑀 (which
exists by Zorn’s Lemma). Then the following hold.

(1) If 𝐼 = 0, then𝑀 = {0}.

(2) If |𝐼| = 1, then |𝑀| ≤ 2
|𝑅|.

(3) If |𝐼| > 1, then |𝑀| ≤ |𝐼|
|𝑅|.

Proposition 26 (see [26, Corollary 4]). Assume that GCH
holds. Then large Jónsson modules do not exist.

Proof. Suppose GCH holds and assume by way of contradic-
tion that 𝑅 is a ring and 𝑀 is a Jónsson 𝑅-module such that
|𝑀| > |𝑅|. Further, let 𝐼 be a maximal independent set in𝑀.
Corollary 50 implies that 𝑅 is infinite. Part (1) of Lemma 25
yields that 𝐼 ̸= 0. If 𝐼 is a singleton, then we deduce from (2)
of Lemma 25 and GCH that |𝑀| = |𝑅|

+. But then 𝑀 is a
large Jónsson 𝑅-module of regular cardinality, contradicting
Corollary 22.Thus we conclude that |𝐼| > 1. One now applies
(3) of Lemma 25 and GCH to prove that |𝐼| = |𝑀|. But then

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⨁

𝑚∈𝐼

𝑅𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= |𝑀| . (5)

Since 𝑀 is a Jónsson module, it follows that ⨁
𝑚∈𝐼

𝑅𝑚 = 𝑀,
contradicting that𝑀 is indecomposable (Lemma 6).

Remark 27. The nonexistence of large Jónsson modules
over Noetherian rings can be proved in ZFC. This follows
immediately from the following well-known result (which
can be found in [19, 22], e.g.): let 𝑅 be a Noetherian ring, and
suppose that 𝑀 is a large 𝑅-module. Then 𝑀 possesses an
independent set 𝐼 of the same cardinality as𝑀.

6. Strongly Jónsson Modules

Note that if 𝑀 is a Jónsson module over the ring 𝑅, then
|𝑁| ̸= |𝑀| for every proper 𝑅-module 𝑁 of 𝑀. We now
strengthen the definition of “Jónsson module” as follows.

Definition 28. Let 𝑅 be a ring and let 𝑀 be an 𝑅-module
(unlike the definition of “Jónsson module,” we allow𝑀 to be
finite). Then we call 𝑀 strongly Jónsson provided |𝐾| ̸= |𝑁|

for any two distinct 𝑅-submodules 𝐾 and𝑁 of𝑀.

The terminology is justified since an infinite strongly
Jónsson 𝑅-module 𝑀 is clearly also a Jónsson 𝑅-module. As
in Section 2, we classify the strongly Jónsson Abelian groups
as a jumping-off point.

Proposition 29. Let𝐺 be an Abelian group.Then𝐺 is strongly
Jónsson (i.e., 𝐺 is a strongly Jónsson Z-module) if and only if
𝐺 ≅ Z(𝑝

∞

) for some prime 𝑝 or 𝐺 ≅ Z/(𝑛) for some positive
integer 𝑛.

Proof. It is known that for any prime 𝑝, every proper
subgroup ofZ(𝑝

∞

) is finite of order 𝑝𝑛 for some nonnegative
integer 𝑛. Moreover, for every nonnegative integer 𝑛, Z(𝑝

∞

)

possesses a unique subgroup of cardinality 𝑝𝑛 (see Fuchs [41],
pages 23–25). It follows that distinct subgroups of Z(𝑝

∞

)

have distinct cardinalities. It is also well known that Z/(𝑛)

enjoys this property for every positive integer 𝑛 (see Hunger-
ford [42], page 37). Thus Z(𝑝

∞

) and Z/(𝑛) are strongly
Jónsson Abelian groups.

Conversely, suppose that 𝐺 is a strongly Jónsson Abelian
group. If 𝐺 is infinite, then 𝐺 is an Abelian Jónsson group,
whence𝐺 ≅ Z(𝑝

∞

) for some prime 𝑝 by Proposition 11. Now
assume that 𝐺 is finite. Then, by the fundamental theorem of
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finitely generated Abelian groups, 𝐺 is a finite direct sum of
cyclic groups of prime power order. Clearly, no two distinct
summands can have cardinality a power of the same prime 𝑝,
lest𝐺 possess two distinct subgroups of order 𝑝.We conclude
that 𝐺 ≅ Z/(𝑛) for some positive integer 𝑛.

Employing a classical theorem of Baer, we can show
that the conclusion of the previous proposition holds even
without assuming that 𝐺 is Abelian.

Proposition 30. Let 𝐺 be a group with the property that
distinct subgroups of 𝐺 have distinct cardinalities. Then 𝐺 is
Abelian.

Proof. Assume that distinct subgroups of𝐺 have distinct car-
dinalities, and suppose by way of contradiction that𝐺 is non-
Abelian. We first claim that every subgroup of 𝐺 is normal.
Indeed, let 𝐻 < 𝐺, and let 𝑔 ∈ 𝐺 be arbitrary. Then clearly
|𝐻| = |𝑔𝐻𝑔

−1

|, whence by the condition on 𝐺, 𝐻 = 𝑔𝐻𝑔
−1,

and 𝐻 is normal. Hence 𝐺 is a Hamiltonian group (i.e., 𝐺 is
non-Abelian and all subgroups of𝐺 are normal). An old result
of Baer (Baer [43]) yields that 𝐺 ≅ 𝑄

8
× 𝑃, for some torsion

Abelian group 𝑃 that has no elements of order 4 (𝑄
8
denotes

the quaternion group of order 8). But then we are forced to
conclude that𝑄

8
inherits the property that distinct subgroups

have distinct cardinalities. However, 𝑄
8
has three subgroups

of order 4, a contradiction.

Having classified the strongly Jónsson groups, we devote
the remainder of this section to classifying the strongly
Jónsson modules over an arbitrary ring. Describing the
infinite strongly Jónsson modules is fairly straightforward;
it is the classification of the finite strongly Jónsson modules
that requires some work. Let us agree to call a ring 𝑅 which
is strongly Jónsson as a module over itself a strongly Jónsson
ring (this is, of course, equivalent to the assertion that distinct
ideals of 𝑅 have distinct cardinalities). It follows immediately
from Proposition 29 that the direct sum of the groups Z/(𝑛)

and Z/(𝑚) is strongly Jónsson (as a Z-module) if and only
if 𝑚 and 𝑛 are relatively prime. A natural question is the
following: when is a direct product of finite strongly Jónsson
rings strongly Jónsson? It is possible for the direct product
of two strongly Jónsson rings to be strongly Jónsson even
if the rings are powers of the same prime, as the ring 𝑅 :=

F
𝑝
× F
𝑝
2 witnesses. On the other hand, 𝑆 := F

𝑝
× F
𝑝
2 × F
𝑝
3 has

two distinct ideals of cardinality 𝑝
3 whence is not strongly

Jónsson. We now work toward answering this question (and
toward a complete classification of the strongly Jónsson
modules, more generally). We begin with a definition.

Definition 31 (Gilmer [38], page 8). Let 𝑅 be a ring, and let
𝑀 be an Abelian group which is a left module over both the
rings 𝑅 and 𝑆. Say that the structure of 𝑀 as an 𝑅-module is
essentially the same as the structure of 𝑀 as an 𝑆-module if
and only if 𝑅𝑚 = 𝑆𝑚 for every𝑚 ∈ 𝑀.

It is easy to see that if the structure of 𝑀 as an 𝑅-module
is essentially the same as the structure of 𝑀 as an 𝑆-module,
then the set of 𝑅-submodules of 𝑀 is the same as the set of

𝑆-submodules of𝑀. We illustrate this concept with a natural
example.

Example 32. Let 𝑅 be a ring,𝑀 an 𝑅-module, and Ann
𝑅
(𝑀)

the annihilator of 𝑀 in 𝑅. Then the structure of 𝑀 as an 𝑅-
module is essentially the same as the structure of 𝑀 as an
𝑅/ Ann

𝑅
(𝑀)-module.

We now introduce two more definitions, a lemma, and
two examples before presenting our classification of the
strongly Jónsson modules.

Let 𝑆 be a commutative semigroup, and let 𝑆
1
, 𝑆
2
, . . . , 𝑆

𝑘

be subsets of 𝑆. Then the product set 𝑆
1
𝑆
2
⋅ ⋅ ⋅ 𝑆
𝑘
is defined by

𝑆
1
𝑆
2
⋅ ⋅ ⋅ 𝑆
𝑘

:= {𝑠
1
𝑠
2
⋅ ⋅ ⋅ 𝑠
𝑘

: 𝑠
𝑖
∈ 𝑆
𝑖
for 1 ≤ 𝑖 ≤ 𝑘}. Suppose

further that each 𝑆
𝑖
is a finite set. Let us say that the collection

{𝑆
1
, 𝑆
2
, . . . , 𝑆

𝑘
} is product-maximal provided 𝑆

1
𝑆
2
⋅ ⋅ ⋅ 𝑆
𝑘
is as

large as possible, that is, if |𝑆
1
𝑆
2
⋅ ⋅ ⋅ 𝑆
𝑘
| = |𝑆

1
× 𝑆
2
× ⋅ ⋅ ⋅ × 𝑆

𝑘
|.

The following simple lemma gives a useful characterization of
the product-maximal property.

Lemma 33 (see [37], Lemma 6). Let 𝑆 be a commutative
semigroup, and let 𝑆

1
, 𝑆
2
, . . . , 𝑆

𝑘
be finite subsets of 𝑆. Then

{𝑆
1
, 𝑆
2
. . . , 𝑆
𝑘
} is product-maximal if and only if the following

property holds.

(P) If 𝑥
1
𝑥
2
⋅ ⋅ ⋅ 𝑥
𝑘
= 𝑦
1
𝑦
2
⋅ ⋅ ⋅ 𝑦
𝑘
with each 𝑥

𝑖
, 𝑦
𝑖
∈ S
𝑖
, then

𝑥
𝑖
= 𝑦
𝑖
for all 𝑖, 1 ≤ 𝑖 ≤ 𝑘.

Proof. Assume that 𝑆 is a commutative semigroup and
that 𝑆

1
, 𝑆
2
. . . , 𝑆
𝑘
are finite subsets of 𝑆. Suppose first that

{𝑆
1
, 𝑆
2
. . . , 𝑆
𝑘
} is product-maximal. We will verify property

(P). Define 𝜑 : 𝑆
1

× 𝑆
2
⋅ ⋅ ⋅ × 𝑆

𝑘
→ 𝑆

1
𝑆
2
⋅ ⋅ ⋅ 𝑆
𝑘
by

𝜑(𝑠
1
, 𝑠
2
. . . , 𝑠
𝑘
) := 𝑠

1
𝑠
2
⋅ ⋅ ⋅ 𝑠
𝑘
. Clearly 𝜑 is onto. Since

{𝑆
1
, 𝑆
2
. . . , 𝑆
𝑘
} is product-maximal, it follows that 𝜑 is a sur-

jectivemap between twofinite sets of the same cardinality.We
conclude that 𝜑 is one-to-one. Property (P) now follows. We
omit the easy proof of the converse.

Our interest in the previous lemma will be in the context
of the semigroup (Z+, ⋅) of positive integers undermultiplica-
tion. In this setting, the reader may notice that our property
(P) above is somewhat related to the following well-studied
concept (due to Erdős) in additive number theory: a subset
𝑆 ⊆ Z+ is a multiplicative Sidon set if and only if 𝑎𝑏 = 𝑐𝑑

implies that {𝑎, 𝑏} = {𝑐, 𝑑} for all 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑆. We now give
two easy examples illustrating the product-maximal property.

Example 34. Let 𝑆
1
= {2, 3} and 𝑆

2
= {4, 6}. Then {𝑆

1
, 𝑆
2
} is

not product-maximal since |𝑆
1
𝑆
2
| = 3 ̸= 4 = |𝑆

1
× 𝑆
2
|.

Example 35. If 𝑆
1
, 𝑆
2
, . . . 𝑆
𝑘
are pairwise relatively prime finite

sets of positive integers (i.e., if 𝑖 ̸= 𝑗 and 𝑥 ∈ 𝑆
𝑖
, 𝑦 ∈ 𝑆

𝑗
, then

𝑥 and 𝑦 are relatively prime), then {𝑆
1
, 𝑆
2
, . . . , 𝑆

𝑘
} is product-

maximal.

We are almost ready to classify the strongly Jónsson
modules. For the purposes of the next theorem, we define the
following: if 𝑅 is a ring, then we letC(𝑅) := {|𝐼| : 𝐼 is an ideal
of 𝑅} (thusC(𝑅) is simply the set of cardinal numbers of the
ideals of 𝑅).
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Theorem 36 (see [37, Theorem 1]). Let 𝑅 be a ring, and let
𝑀 be a nonzero 𝑅-module. Then 𝑀 is a strongly Jónsson 𝑅-
module if and only if one of the following holds.

(I) There exist discrete valuation rings
(𝑉
1
, 𝑚
1
), (𝑉
2
, 𝑚
2
), . . . , (𝑉

𝑛
, 𝑚
𝑛
), each with finite

residue fields and positive integers 𝑘
1
, 𝑘
2
, . . . , 𝑘

𝑛
, such

that if the ring 𝑆 := 𝑉
1
/(𝑚
𝑘1

1
)×𝑉
2
/(𝑚
𝑘2

2
)×⋅ ⋅ ⋅×𝑉

𝑛
/(𝑚
𝑘𝑛

𝑛
),

then

(a) 𝑀≅
𝑅
𝑆. Moreover, the structure of 𝑆 as an 𝑅-

module is essentially the same as the structure of
𝑆 as an 𝑆-module,

(b) {C(𝑉
1
/(𝑚
𝑘1

1
)),C(𝑉

2
/(𝑚
𝑘2

2
)) . . . ,C(𝑉

𝑛
/(𝑚
𝑘𝑛

𝑛
))} is

product-maximal in the semigroup (Z+, ⋅).

(II) 𝐸𝑛𝑑
𝑅
(𝑀) (the endomorphism ring of 𝑀) := (𝑉,𝑚) is

a complete discrete valuation ring with a finite residue
field, and the structure of 𝑀 as an 𝑅-module is essen-
tially the same as the structure of 𝑀 as a 𝑉-module.
Moreover, if𝐾 is the quotient field of𝑉, then𝑀≅

𝑉
𝐾/𝑉.

(III) There exists a maximal ideal 𝐽 of 𝑅 such that𝑀≅
𝑅
𝑅/𝐽.

7. Fundamental Results on HS Modules

Having surveyed the important results on Jónsson modules,
we now change gears and investigate a sort of dual notion.
Recall from the Introduction that an infinite module 𝑀 over
a ring 𝑅 is called homomorphically smaller (HS for short)
provided |𝑀/𝑁| < |𝑀| for every nonzero submodule 𝑁 of
𝑀. As in Section 2, we begin with several examples.

Example 37. Let 𝐹 be a field and let𝑀 be an infinite 𝐹-vector
space. Then𝑀 is HS if and only if 𝐹 is infinite and𝑀≅

𝐹
𝐹.

In light of this example, we may restrict ourselves to the
study of HS modules over a ring 𝑅, that is, not a field without
loss of generality.

Example 38. The ring Z of integers is HS as a module over
itself.

Example 39. If 𝐹 is a finite field, then both the polynomial
ring 𝐹[𝑥] and the power series ring 𝐹[[𝑡]] are HS as modules
over themselves.

Example 40 (see [36, Theorem 2.8]). The valuation ring 𝑉

constructed in Proposition 19 is HS as a module over itself.

We now commence the building of the theory of
HS modules with the following proposition (compare to
Proposition 8).

Proposition 41 (see [36, (iv) of Proposition 3.2]). Let 𝑅 be a
ring, and let𝑀 be an HS 𝑅-module.ThenAnn

𝑅
(𝑀) is a prime

ideal of 𝑅.

Proof. Assume that 𝑅 is a ring and that 𝑀 is an HS 𝑅-
module. Let 𝑟, 𝑠 ∈ 𝑅 and suppose that 𝑟 ∉ Ann

𝑅
(𝑀) and

𝑠 ∉ Ann
𝑅
(𝑀). We will prove that 𝑟𝑠 ∉ Ann

𝑅
(𝑀). Toward

this end, observe first that 𝑀/𝑠𝑀≅
𝑅
(𝑀/𝑟𝑠𝑀)/(𝑠𝑀/𝑟𝑠𝑀). It

follows that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑀

𝑠𝑀

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⋅

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑠𝑀

𝑟𝑠𝑀

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑀

𝑟𝑠𝑀

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
. (6)

Note that the map 𝜑 : 𝑀/𝑟𝑀 → 𝑠𝑀/𝑟𝑠𝑀 defined by 𝑟𝑀 +

𝑚 󳨃→ 𝑟𝑠𝑀 + 𝑠𝑚 is well-defined and onto. Thus |𝑠𝑀/𝑟𝑠𝑀| ≤

|𝑀/𝑟𝑀|. We conclude from (6) above that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑀

𝑟𝑠𝑀

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑀

𝑠𝑀

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⋅

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑠𝑀

𝑟𝑠𝑀

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑀

𝑠𝑀

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⋅

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑀

𝑟𝑀

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
. (7)

Since 𝑟 ∉ Ann
𝑅
(𝑀) and 𝑠 ∉ Ann

𝑅
(𝑀), we see that

𝑟𝑀 ̸= {0} ̸= 𝑠𝑀. As 𝑀 is HS, we deduce that |𝑀/𝑟𝑀| < |𝑀|

and |𝑀/𝑠𝑀| < |𝑀|.Thus by (7), we get |𝑀/𝑟𝑠𝑀| ≤ |𝑀/𝑠𝑀| ⋅

|𝑀/𝑟𝑀| < |𝑀|. Since |𝑀/𝑟𝑠𝑀| < |𝑀|, it is clear that 𝑟𝑠 ∉

Ann
𝑅
(𝑀), and the proof is complete.

Thus by Example 37 and Proposition 41, there is no loss of
generality in restricting our study of HS modules to faithful
modules over domains which are not fields.

We conclude this section with a structure theorem for HS
modules.

Theorem 42 (see [36, Theorem 3.3]). Let 𝐷 be a domain
(which is not a field) with quotient field 𝐾 and let 𝑀 be a
faithful module over𝐷. Consider the following conditions.

(a) 𝐷 is HS as a module over itself.
(b) 𝐷 ⊆ 𝑀 ⊆ 𝐾 (up to𝐷-module isomorphism).
(c) There is a generating set 𝑆 for𝑀 over𝐷 with |𝑆| < |𝐷|.
(d) |𝑀/𝐷| < |𝐷|.
If 𝑀 is an HS 𝐷-module, then conditions (a)–(d) hold.

Conversely, if conditions (a), (b), and (d) hold, then 𝑀 is an
HS𝐷-module.

Corollary 43. Suppose that 𝐷 is an uncountable principal
ideal domain with exactly 𝑛 maximal ideals 𝐽

1
, 𝐽
2
, . . . , 𝐽

𝑛
.

Suppose further that |𝐷/𝐽
𝑖
| < |𝐷| for 1 ≤ 𝑖 ≤ 𝑛 (such domains

exist byTheorem 2.3 of [33]). If𝐾 is the quotient field of𝐷, then
the HS modules over 𝐷 are precisely (up to 𝐷-module iso-
morphism) the𝐷-submodules of 𝐾 containing𝐷.

8. A Generalization of Kaplansky’s Problem

We begin this section by giving the canonical solution to a
well-known problem of Kaplansky [27].

Show that if 𝐺 is an infinite Abelian group with the
property that 𝐺/𝐻 is finite for all nonzero subgroups 𝐻 of
𝐺, then 𝐺 ≅ Z.

Solution 1. Assume that 𝐺 is as stated. Let 𝑔 ∈ 𝐺 be nonzero.
It is easy to see that 𝐺 = (𝑔,𝑋), where 𝑋 is a complete set of
coset representatives for𝐺modulo (𝑔). Since𝐺/(𝑔) is finite, it
follows that 𝐺 is finitely generated. Thus, by the fundamental
theorem of finitely generated Abelian groups, 𝐺 is a finite
direct sum of cyclic groups. Since 𝐺 is infinite, at least one
summand must be isomorphic to Z. There can be no other
summands; let Z be an infinite proper homomorphic image
of 𝐺. Thus 𝐺 ≅ Z, and the solution is complete.
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The purpose of this section is to generalize Kaplansky’s
problem to modules over an arbitrary commutative ring. To
do this, we will need the following two lemmas.

Lemma 44 (see [36, (iii) of Lemma 3.1]). Let 𝑅 be a ring,
and suppose that 𝑀 is an HS 𝑅-module. If 𝑁 is a nonzero
submodule of𝑀, then𝑁 is also an HS 𝑅-module.

Proof. We assume that 𝑅 is a ring,𝑀 is an HS 𝑅-module, and
that𝑁 is a nonzero submodule of𝑀. Since𝑀 is HS, |𝑀/𝑁| <

|𝑀|. However, we also have |𝑀/𝑁| ⋅ |𝑁| = |𝑀|. Since 𝑀 is
infinite, we deduce that |𝑁| = |𝑀|. Now let 𝐾 be a nonzero
submodule of 𝑁. We will prove that |𝑁/𝐾| < |𝑁|. Toward
this end, notice that𝐾 is a nonzero submodule of𝑀. As𝑀 is
HS, we conclude that |𝑀/𝐾| < |𝑀|. Lastly, note that 𝑁/𝐾 is
a submodule of 𝑀/𝐾, whence |𝑁/𝐾| ≤ |𝑀/𝐾| < |𝑀| = |𝑁|,
and the proof is complete.

Lemma 45 (see [30, Corollary 2.4]). Let 𝑅 be a commutative
ring. Then every nonzero ideal 𝐼 of 𝑅 is of finite index in 𝑅 if
and only if every nonzero prime ideal of 𝑅 is finitely generated
and of finite index in 𝑅.

Before stating our generalization, we remind the reader
that (as per our comments following Proposition 41) we may
restrict to faithful modules over a domain which is not a field
without loss of generality. We now generalize Kaplansky’s
problem to modules over an arbitrary commutative ring.

Theorem 46 (see [36, Theorem 4.2]). Let 𝐷 be a domain
(which is not a field) with quotient field 𝐾 and let 𝑀 be
an infinite, faithful 𝐷-module. Then 𝑀/𝑁 is finite for every
nonzero submodule 𝑁 of 𝑀 (i.e., 𝑀 is HF) if and only if the
following hold.

(a) 𝐷 is a one-dimensional Noetherian domain with all
residue fields finite.

(b) 𝐷 ⊆ 𝑀 ⊆ 𝐾 (up to𝐷-module isomorphism).
(c) 𝑀 is finitely generated over𝐷.

Proof. Let𝐷 be a domain (which is not a field) with quotient
field 𝐾 and let 𝑀 be an infinite, faithful module over 𝐷.
Assume first that𝑀 is HF.Theorem 42 implies that (b) holds.
The proof of Lemma 44 and (b) imply that 𝐷 is HF as a
module over itself. We now invoke Lemma 45 and Cohen’s
theorem to conclude that 𝐷 is Noetherian with all residue
fields finite. If 𝑃 is any nonzero prime ideal of𝐷, then as𝐷/𝑃

is finite; it follows that 𝐷/𝑃 is a field. Hence 𝑃 is a maximal
ideal.Thus𝐷 is one-dimensional and (a) holds.Wenowprove
that (c) holds as follows. Let𝑚 ∈ 𝑀 be nonzero.Then𝑀/(𝑚)

is finite. If 𝑆 is a complete set of coset representatives for 𝑀
modulo (𝑚), then𝑀 = (𝑆,𝑚). Hence𝑀 is finitely generated.

Conversely, suppose that conditions (a)–(c) hold. It fol-
lows from Lemma 45 that 𝐷 is HF as a module over itself.
Since 𝑀 is finitely generated and 𝐷 ⊆ 𝑀 ⊆ 𝐾, we deduce
that there exists some nonzero 𝑑 ∈ 𝐷 such that 𝑑𝑀 ⊆ 𝐷. But
note that𝑀≅

𝐷
𝑑𝑀, and thus𝑀 is isomorphic to a submodule

(ideal) of𝐷. It now follows fromLemma 44 that𝑀 is HF over
𝐷.

9. Strongly HS Modules

We begin this section by noting that if 𝑀 is an HS module
over the ring 𝑅, then |𝑀/𝑁| ̸= |𝑀| for every nonzero 𝑅-
submodule𝑁 of𝑀. We now strengthen the definition of “HS
module” as follows.

Definition 47. Let 𝑅 be a ring and let 𝑀 be an 𝑅-module
(unlike the definition of “HS module,” we allow 𝑀 to
be finite). Then we call 𝑀 strongly HS provided that
|𝑀/𝐾| ̸= |𝑀/𝑁| for any two distinct 𝑅-submodules𝐾 and𝑁

of𝑀.

The terminology is justified since an infinite strongly HS
𝑅-module 𝑀 is clearly also an HS 𝑅-module. As a precursor
to our work, we classify the strongly HS Abelian groups.

Proposition 48. Let𝐺 be an Abelian group.Then𝐺 is strongly
HS (i.e.,𝐺 is a strongly HSZ-module) if and only if𝐺 ≅ Z/(𝑛)

for some positive integer 𝑛 or 𝐺 ≅ Z.

Proof. Consider first the group Z/(𝑛), where 𝑛 is a positive
integer. Proposition 29 implies thatZ/(𝑛) is strongly Jónsson.
Hence distinct subgroups ofZ/(𝑛) have distinct cardinalities.
Since Z/(𝑛) is finite, we deduce that distinct factor groups
of Z/(𝑛) have distinct cardinalities, whence Z/(𝑛) is strongly
HS. It is clear that Z is a strongly HS Abelian group. Con-
versely, suppose that 𝐺 is an arbitrary strongly HS Abelian
group. If 𝐺 is finite, then 𝐺 is also strongly Jónsson, whence,
by Proposition 29, 𝐺 ≅ Z/(𝑛) for some positive integer 𝑛.
Now suppose that𝐺 is infinite.We claim that𝐺 is countable. If
𝐺 is uncountable, then simply choose an arbitrary countably
infinite subgroup 𝐻 of 𝐺. Then |𝐺/𝐻| = |𝐺| = |𝐺/{0}|,
contradicting that 𝐺 is strongly HS. Thus 𝐺 is countable. But
then 𝐺/𝐻 is finite for every nonzero subgroup 𝐻 of 𝐺. We
conclude via Kaplansky’s problem that 𝐺 ≅ Z, and the proof
is complete.

Analogous to Section 6,wenow turn our attention toward
describing the strongly HS modules over an arbitrary ring.
Note first that if 𝑅 is a ring and 𝑀 is a finite 𝑅-module, then
𝑀 is strongly HS if and only if 𝑀 is strongly Jónsson. Since
we have already characterized the finite strongly Jónsson 𝑅-
modules (Theorem 36), it suffices to consider only infinite
stronglyHSmodules. Since every infinite stronglyHSmodule
is HS, it suffices by the comments following Proposition 41 to
restrict our study even further to infinite, faithful strongly HS
modules over a domain𝐷which is not a field.Wenowpresent
a classification of the strongly HS modules.

Theorem 49 (see [37, Theorem 2]). Let𝐷 be a domain which
is not a field, and let𝑀 be an infinite faithful𝐷-module. Then
𝑀 is a strongly HS𝐷-module if and only if the following hold:

(a) 𝐷 is a Dedekind domain with all residue fields finite,

(b) If 𝑃 and 𝑄 are distinct maximal ideals of 𝐷, then 𝐷/𝑃

and 𝐷/𝑄 have distinct (nonzero) characteristics,

(c) 𝑀≅
𝐷
𝐼 for some nonzero ideal 𝐼 of𝐷.



10 International Journal of Mathematics and Mathematical Sciences

In view of the previous theorem, it suffices to restrict
our study of strongly HS modules to domains which are
strongly HS as modules over themselves. Let us agree to call
a domain 𝐷 a strongly HS domain if and only if 𝐷 is strongly
HS as a module over itself (i.e., if 𝐼 ̸= 𝐽 are ideals of 𝐷, then
|𝐷/𝐼| ̸= |𝐷/𝐽|).

Corollary 50 (see [37, Corollary 4]). Let𝐷 be a domainwhich
is not a field.

(a) Suppose that 𝐷 has prime characteristic 𝑝. Then 𝐷 is
a strongly HS domain if and only if 𝐷 is a DVR with a
finite residue field.

(b) Suppose that 𝐷 has characteristic 0 (and hence Z ⊆

𝐷). Then D is a strongly HS domain if and only if 𝐷
is a Dedekind domain with all residue fields finite and
with the additional property that the map 𝑃 󳨃→ 𝑃 ∩ Z

is an injection from Max(𝐷) into Max(Z).

(c) If𝐷 is a strongly HS domain, then |𝐷| ≤ 2
ℵ0 .

Proof. Let𝐷 be a domain which is not a field.

(a) Suppose first that𝐷 has characteristic𝑝. If𝐷 is a DVR
with a finite residue field, then it follows immediately
from the previous theorem that 𝐷 is a strongly HS
domain. Conversely, suppose that 𝐷 is a strongly HS
domain. Let 𝐽 be an arbitrary maximal ideal of 𝐷.
Since 𝐷 has characteristic 𝑝, clearly so does 𝐷/𝐽.
Theorem 49 implies that 𝐽 is the uniquemaximal ideal
of 𝐷. Thus 𝐷 is a local Dedekind domain, whence a
DVR. That 𝐷 has a finite residue field now follows
from (a) of Theorem 49.

(b) This follows easily from (b) of Theorem 49.
(c) Assume now that𝐷 is a strongly HS domain. Then𝐷

is Dedekind, whence Noetherian. Let 𝑃 be a maximal
ideal of 𝐷. Krull’s intersection theorem yields that
⋂
∞

𝑖=1
𝑃
𝑖

= {0}. It follows that 𝐷 maps injectively into
∏
∞

𝑖=1
𝐷/𝑃
𝑖. But since𝐷 is a residually finite Dedekind

domain, it is easy to see by induction that 𝐷/𝑃
𝑛

is finite for every positive integer 𝑛. Thus |𝐷| ≤

|∏
∞

𝑖=1
𝐷/𝑃
𝑖

| ≤ |∏
∞

𝑖=1
N| = ℵ

ℵ0

0
= 2
ℵ0 .

We now prove that for every prime number 𝑝 and every
cardinal number 𝜅 satisfyingℵ

0
≤ 𝜅 ≤ 2

ℵ0 , there is a strongly
HS domain of characteristic 𝑝 and cardinality 𝜅.

Example 51. Let 𝑝 be a prime and let 𝜅 be a cardinal number
satisfying ℵ

0
≤ 𝜅 ≤ 2

ℵ0 . There exists a strongly HS domain
(which is not a field) of characteristic 𝑝 and of cardinality 𝜅.

Proof. Let 𝐹 := F
𝑝
be the field of 𝑝 elements, let 𝐹[𝑡] be the

polynomial ring over 𝐹 in the variable 𝑡, and let 𝐹[[𝑡]] be
the ring of formal power series over 𝐹 in the variable 𝑡. The
underlying set of 𝐹[[𝑡]] is the set of all functions from N into
𝐹, whence |𝐹[[𝑡]]| = 2

ℵ0 . The quotient field of 𝐹[𝑡] is the field
𝐹(𝑡) of rational functions in 𝑡; the quotient field of𝐹[[𝑡]] is the

field 𝐹((𝑡)) of formal Laurent series in 𝑡. There is a field 𝐾 of
cardinality 𝜅 such that 𝐹(𝑡) ⊆ 𝐾 ⊆ 𝐹((𝑡)). Note that 𝐹[[𝑡]] is a
DVRon𝐹((𝑡)) (i.e.,𝐹[[𝑡]] is aDVRwith quotient field𝐹((𝑡))),
𝐾 ⊆ 𝐹((𝑡)), and𝐹[[𝑡]]∩𝐾 is not a field (since 𝑡 is not invertible
in 𝐹[[𝑡]]). It follows that 𝐹[[𝑡]] ∩ 𝐾 is a DVR on 𝐾 (whence
also has cardinality 𝜅) with maximal ideal 𝑀 := (𝑡) ∩ 𝐾.
It is obvious that 𝐹[[𝑡]] ∩ 𝐾 has characteristic 𝑝. It is also
easy to check that 𝐹maps injectively into (𝐹[[𝑡]] ∩𝐾)/𝑀 and
(𝐹[[𝑡]]∩𝐾)/𝑀maps injectively into 𝐹[[𝑡]]/(𝑡) ≅ 𝐹. It follows
that |(𝐹[[𝑡]]∩𝐾)/𝑀| = |𝐹| = 𝑝.We have shown that𝐹[[𝑡]]∩𝐾
is a DVR of characteristic 𝑝 and of cardinality 𝜅 and that
𝐹[[𝑡]] ∩ 𝐾 has residue field isomorphic to 𝐹, which is finite.
Part (a) of Corollary 50 yields that 𝐹[[𝑡]] ∩ 𝐾 is a strongly
HS domain, and the proof is complete.

Given the previous example, it is natural to enquire about
the characteristic 0 case. Before giving a more general result,
we remark that the ring 𝐽

𝑝
of 𝑝-adic integers is a DVR of

characteristic 0 (of cardinality 2
ℵ0) with residue field isomor-

phic to Z/(𝑝), whence 𝐽
𝑝
is a strongly HS domain by (b)

of Corollary 50.

Example 52. Let 𝜅 be a cardinal number satisfying ℵ
0

≤

𝜅 ≤ 2
ℵ0 . Further, let 𝑝

1
, 𝑝
2
, . . . , 𝑝

𝑛
be distinct primes and

let 𝑘
1
, 𝑘
2
, . . . , 𝑘

𝑛
be positive integers. There exists a principal

ideal domain𝐷 of cardinality 𝜅with exactly 𝑛maximal ideals
𝑀
1
,𝑀
2
, . . . ,𝑀

𝑛
with the property that 𝐷/𝑀

𝑖
≅ F
𝑝
𝑘𝑖

𝑖

for each
𝑖, 1 ≤ 𝑖 ≤ 𝑛. Hence𝐷 is a strongly HS domain.

Proof. The existence of such a 𝐷 with the above properties is
established in Theorem 2.6 of [32]. The construction is quite
technical, and we suppress the details here (we remark that
the ideas of the construction are due to C. Shah; seeTheorem
2.3 of [33]). We deduce immediately from (b) of Theorem 49
that𝐷 is a strongly HS domain.

We conclude this section with two propositions. The first
shows that the strongly HS property behaves badly with
respect to integral extensions; the second demonstrates that
the property behaves as nicely as possible with respect to
overrings.

Proposition 53 (see [37, Proposition 11]). Let𝐷 be a strongly
HS domain, and suppose that 𝑅 is a finite integral extension
of 𝐷 (i.e., 𝑅 is integral over 𝐷 and has a finite basis as a 𝐷-
module). Then 𝑅 need not be strongly HS.

Proof. Let Z[𝑖] := {𝑎 + 𝑏𝑖 : 𝑎, 𝑏 ∈ Z} be the ring of Gaussian
integers.Then clearlyZ[𝑖] is integral overZ and {1, 𝑖} forms a
Z-basis forZ[𝑖]. Recall that the function𝑁 : Z[𝑖] → N given
by𝑁(𝑎 + 𝑏𝑖) := 𝑎

2

+ 𝑏
2 is a Euclidean norm (from which one

proves that Z[𝑖] is a Euclidean domain). Consider the ideals
(1 + 2𝑖) and (1 − 2𝑖) of Z[𝑖]. Since𝑁(1 + 2𝑖) = 𝑁(1 − 2𝑖) = 5,
which is prime, we conclude that 1+2𝑖 and 1−2𝑖 are Gaussian
primes. Thus (1 + 2𝑖) and (1 − 2𝑖) are maximal ideals of Z[𝑖].
The units ofZ[𝑖] are precisely the elements ofZ[𝑖]which have
norm 1. It follows (and is well known, of course) that the units
ofZ[𝑖] are exactly 1, −1, 𝑖, and−𝑖. From this fact, it is clear that
1+2𝑖 and 1−2𝑖 are not associates, whence (1+2𝑖) and (1−2𝑖)
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are distinct maximal ideals of Z[𝑖]. Note that 5 ∈ (1 + 2𝑖) ∩

(1−2𝑖), whence (1+2𝑖) ∩ Z = (1−2𝑖) ∩ Z = 5Z. Corollary 50
part (b) implies that Z[𝑖] is not a strongly HS domain.

Proposition 54 (see [37,Theorem 3]). Let𝐷 be a strongly HS
domain. Then every overring of 𝐷 is a strongly HS domain.

10. Independence

Given the set-theoretic nature of our results, it is natural to ask
the following question: are there “natural” statements about
Jónsson and HS modules which are independent of ZFC? In
other words, are there Jónsson and HS-theoretic statements
which can neither be proved nor refuted from the axioms of
ZFC (assuming ZFC is consistent)? The answer is “yes,” and
the purpose of this section is to give a sampling of two such
statements.

Before doing so, we will need some additional terminol-
ogy. Let 𝑅 be a ring, and let 𝑀 be an infinite 𝑅-module.
Following the literature, 𝑀 is said to be congruent provided
𝑁≅
𝑅
𝑀 for every submodule 𝑁 of 𝑀 of the same cardi-

nality as 𝑀. Note trivially that every Jónsson 𝑅-module is
congruent. We will make use of the following lemma.

Lemma 55 (see [44, Theorem 2]). Assume that GCH holds.
Now let𝐷 be an arbitrary uncountable Noetherian domain and
suppose that |𝐷| is not the successor of a cardinal of countable
cofinality. If 𝑀 is a faithful congruent module over 𝐷, then 𝑀

is free and𝐷 is a Dedekind domain.

We now present our first independence result.

Proposition 56. Let 𝑎 > 0 be an ordinal, and suppose that
the cardinal ℵ

𝑎
is not the successor of a cardinal of countable

cofinality. Then it is undecidable in ZFC whether there exists
a Noetherian domain 𝐷 of size ℵ

𝑎
which is not Dedekind and

which admits a faithful Jónsson module.

Proof. Let 𝑎 > 0 be an ordinal, and assume that ℵ
𝑎
is not the

successor of a cardinal of countable cofinality.
Assume first that GCH holds. Now suppose that 𝐷 is

a Noetherian domain of size ℵ
𝑎
which admits a faithful

Jónsson module. Then by Lemma 55, 𝐷 is Dedekind. Hence
ZFC + GCH proves that “there does not exist a Noetherian
domain𝐷 of sizeℵ

𝑎
which is notDedekind andwhich admits

a faithful Jónsson module.”
Now suppose that CH (the continuum hypothesis) fails.

It is known (see Chapter 7 of Kunen [45], e.g.) that it is
consistent with ZFC that CH can fail so badly as to haveℵ

𝑎
≤

2
ℵ0 . So suppose this is the case, and consider the quasicyclic
group Z(𝑝

∞

). It is well known that the endomorphism ring
ofZ(𝑝

∞

) (as aZ-module) is the DVR 𝐽
𝑝
of 𝑝-adic integers. It

is also well known that 𝐽
𝑝
has characteristic 0 and that |J

𝑝
| =

2
ℵ0 . Now, Z(𝑝

∞

) is naturally a faithful Jónsson module over
𝐽
𝑝
, whence (as Z(𝑝

∞

) is a Jónsson Abelian group) a faithful
Jónsson module over every subring 𝑅 of 𝐽

𝑝
. Let {𝑡

𝑖
: 𝑖 <

ℵ
𝑎
} ∪ {𝑥} ⊆ 𝐽

𝑝
be algebraically independent overZ ⊆ 𝐽

𝑝
, and

let 𝐾 be the quotient field of Z[𝑡
𝑖
: 𝑖 < ℵ

𝑎
]. Then 𝐷 :=

𝐾 ∩ 𝐽
𝑝
is a DVR on 𝐾 whence has cardinality ℵ

𝑎
. Observe

that 𝐷[𝑥] ⊆ 𝐽
𝑝
is Noetherian and two-dimensional, whence

not Dedekind, but has cardinality ℵ
𝑎
and admits the faithful

Jónsson module Z(𝑝
∞

). Hence ZFC + ℵ
𝑎
≤ 2
ℵ0 proves that

“there exists a Noetherian domain 𝐷 of size ℵ
𝑎
which is not

Dedekind and which admits a faithful Jónsson module.”

We now present a similar HS-theoretic independence
result. We begin with two lemmas and then conclude the
section with a proposition.

Lemma 57 (see [4, (c) of Theorem 5.15]). Suppose that GCH
holds, and let 𝜅 and 𝜆 be infinite cardinals. If 𝜆 < 𝑐𝑓(𝜅), then
𝜅
𝜆

= 𝜅.

Lemma 58 (see [32, Lemma 2.1]). Let 𝐷 be a Noetherian
domain, that is, not a finite field, and let 𝐼 be a proper ideal of
𝐷. If |𝐷| = 𝜌 and |𝐷/𝐼| = 𝜅, then 𝜅 + ℵ

0
≤ 𝜌 ≤ 𝜅

ℵ0 .

Proposition 59. Let 𝑎 > 0 be an ordinal, and suppose that
the cardinal ℵ

𝑎
is not the successor of a cardinal of countable

cofinality. Then it is undecidable in ZFC whether there exists a
Noetherian domain𝐷 of sizeℵ

𝑎
which is not a field and which

admits a faithful HS module.

Proof. Let 𝑎 > 0 be an ordinal, and suppose thatℵ
𝑎
is not the

successor of a cardinal of countable cofinality.
As above, we first assume that GCH holds. We will show

that there does not exist a Noetherian domain 𝐷 of size ℵ
𝑎

which is not a field and which admits a faithful HS module.
Suppose by way of contradiction that such a domain𝐷 exists.
Then byTheorem 42,𝐷 is HS as a module over itself. Since𝐷
is not a field, there exists a proper nonzero ideal 𝐼 of 𝐷. Let
|𝐷/𝐼| := 𝜅. Lemma 58 along with the fact that 𝐷 is HS over
itself yields

𝜅 < ℵ
𝑎
≤ 𝜅
ℵ0 . (8)

We first claim that 𝜅 is infinite. For if 𝜅 were finite, then (8)
along with the fact that 𝑎 > 0 yields that ℵ

1
≤ ℵ
𝑎
≤ 𝜅
ℵ0 =

2
ℵ0 = ℵ

1
, whence ℵ

𝑎
= ℵ
1
. However, ℵ

1
is the successor of

ℵ
0
, and ℵ

0
has countable cofinality. This contradicts the fact

thatℵ
𝑎
is not the successor of a cardinal of countable cofinal-

ity. Thus 𝜅 is infinite. We again use (8) to get 𝜅 < ℵ
𝑎
≤ 𝜅
ℵ0 ≤

𝜅
𝜅

= 2
𝜅

= 𝜅
+. We conclude that ℵ

𝑎
= 𝜅
+. Invoking (8) yet

again, we conclude that

ℵ
𝑎
= 𝜅
+

≤ 𝜅
ℵ0 . (9)

Since ℵ
𝑎
is not the successor of a cardinal of countable

cofinality, we conclude from (9) above that ℵ
0

< 𝑐𝑓(𝜅).
But then by Lemma 57, we deduce that 𝜅

ℵ0 = 𝜅, and this
contradicts (9). We have shown that ZFC + GCH proves that
“there does not exist a Noetherian domain𝐷 of sizeℵ

𝑎
which

is not a field and which admits a faithful HS module.”
As in the proof of Proposition 56, we now assume that

ℵ
𝑎

≤ 2
ℵ0 . In this case, Example 51 yields a Noetherian

strongly HS domain 𝐷 of size ℵa which is not a field. Thus
ZFC + ℵ

𝑎
≤ 2
ℵ0 proves that “there exists a Noetherian

domain 𝐷 of size ℵ
𝑎
which is not a field and which admits

a faithful HS module.”
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11. Open Problems

We conclude this survey with several open problems for
further research.

Open Problem 1. The countably infinite Jónsson modules
have been classified. Can one classify the uncountable
Jónsson modules over an arbitrary ring (or over some
restricted class of rings, such as valuation rings)?

Open Problem 2. ZFC + GCH proves the nonexistence of
large Jónssonmodules. Can the nonexistence of large Jónsson
modules be proved in ZFC alone?

Open Problem 3. Let 𝐷 be a Noetherian domain which is
not a field. ZFC + GCH proves that every faithful Jónsson
𝐷-module is countable. Is ZFC sufficient to prove that every
faithful Jónsson𝐷-module is countable?

Open Problem 4. Recall that a Jónsson ring is a ring for which
every proper subring has smaller cardinality. It is known
that every uncountable Jónsson ring is a noncommutative
division ring. Do such rings exist?
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