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Abstract. Some time ago, Laszlo Fuchs asked the following question: which
abelian groups can be realized as the multiplicative group of (nonzero elements
of) a field? The purpose of this note is to answer his query within the class of
divisible abelian groups.

1. Introduction

In [7] (Problem 69), Laszlo Fuchs asks which abelian groups can be realized as
the multiplicative group of (nonzero elements of) a field. Many decades later, this
question is largely unsolved, though quite a few partial results have been obtained.
We refer the reader to [1], [4]–[6], [8]–[12], [15]–[17], and [20]–[23] for a sampling of
what is known on this question (and related results). As stated in the abstract, it
is the purpose of this paper to solve Fuchs’ problem for the class of divisible abelian
groups.

We begin by recalling some definitions and results from the theory of divisible
abelian groups to which we shall refer throughout the paper.

Definition 1. An abelian group G (written additively) is divisible provided for every
g ∈ G and every positive integer n, there exists h ∈ G with nh = g.

The most natural nontrivial example of a divisible abelian group is the additive
group Q of rational numbers. Another example is the direct limit of the cyclic
groups Z/〈pn〉 (p a prime). This group is the so-called quasi-cyclic group of type p∞,
denoted C(p∞). Divisible abelian groups play a fundamental role in group theory. In
particular, they are precisely the injective objects in the category of abelian groups.
Moreover, their structure is well-understood:

Structure Theorem for Divisible Abelian Groups. Let G be an abelian
group. Then G is divisible if and only if G is a direct sum of copies of Q and C(p∞)
for various primes p.
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Despite the relatively simple structure of divisible abelian groups, many questions
involving them are quite difficult. For example, the subgroups of Q have been clas-
sified, yet the problem of classifying the subgroups of Q×Q is notoriously difficult.
Even now, the subgroup structure of Q×Q is not well-understood.

To begin our investigation, we note that many partial results on the problem of
classifying the divisible abelian groups realizable as the multiplicative group of a field
are known. One of the earliest results in the direction appears in [7]. We remark that
below and throughout this paper, K× denotes the multiplicative group of (nonzero
elements of) a field K.

Lemma 1 ([7], Theorem 77.1). Let K be an algebraically closed field. Then either

(1) K× ∼= (
⊕∞

i=1C(p∞i ))⊕ (
⊕

κQ), or
(2) K× ∼= (

⊕∞
pi 6=pC(p∞i ))⊕ (

⊕
κQ),

where (pi : i < ω) is an enumeration of the primes. Moreover, (1) holds if K has
characteristic 0, and (2) holds if K has characteristic p. Further, κ is a cardinal
which is equal to |K| except in (2) when K is algebraic over its prime subfield. In
this case, κ = 0. Conversely, for any group G of the form (1) or (2), there exists an
algebraically closed field K such that K× ∼= G.

Notice that none of the groups appearing in Lemma 1 is torsion-free. Thus, a
natural question is

Question 1. Which nontrivial torsion-free divisible abelian groups can be realized as
the multiplicative group of a field?

Adler obtained a partial result in this direction some time ago. In particular, he
shows in [1] that a countably infinite direct sum of copies of Q is isomorphic to the
multiplicative group of some field. A complete answer to Question 1 was given by
Contessa, Mott, and Nichols in [5]1:

Lemma 2 ([5], Theorem 5.5). A nontrivial torsion-free divisible abelian group G can
be realized as the multiplicative group of a field if and only if G has infinite rank.

The purpose of this article is to extend the above classification to the class of divis-
ible abelian groups. We refer the reader to the popular texts [3], [7], and [13]–[14] for
standard results in model theory, abelian group theory, and field/Galois/elementary
number theory, respectively (many of which shall be invoked throughout the paper).

2. The Characteristic Zero Case

In this section, we characterize the divisible abelian groups which are isomorphic
to the multiplicative group of a field of characteristic zero. Toward this end, we shall

1Their result can be derived in a couple lines from Adler’s paper; we conclude Section 3 with an
elaboration.
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make use of the following result of Contessa, Mott, and Nichols. We present a simple,
self-contained proof using basic principles.

Lemma 3 ([5], Corollary 2.4). Let G be an abelian group with finite, nonzero torsion-
free rank. Then G is not isomorphic to the multiplicative group of any field.

Proof. Let F be a field for which there exists x ∈ F× of infinite order. If F has
characteristic 0, then F contains the infinite set P of prime numbers, and this set is
(multiplicatively) linearly independent over Z. Suppose now that F has characteristic
p. Since x has infinite multiplicative order, it follows that x is transcendental over Fp.
Now pick an infinite set S of non-associate irreducible polynomials in Fp[x]. Again,
S is linearly independent over Z, and the proof is complete. �

Theorem 1. Let G be a divisible abelian group. Then G is the multiplicative group
of a field of characteristic 0 if and only if G ∼= (

⊕∞
i=1C(p∞i )) ⊕ (

⊕
κQ), where

(pi : i < ω) is an enumeration of the primes and κ is an infinite cardinal.

Proof. Suppose first that G ∼= (
⊕∞

i=1C(p∞i ))⊕(
⊕

κQ) and κ is infinite. Then Lemma
1 implies that G ∼= F×, where F is an algebraically closed field of characteristic 0
and cardinality κ. Conversely, assume that G ∼= F× for some field F of characteristic
0. Since G is divisible, G = T (G)⊕H where T (G) is the (divisible) torsion subgroup
of G and H is a Q-vector space. Since F has characteristic 0, it follows that there
are elements of G of infinite multiplicative order. We deduce from Lemma 3 that H
has infinite rank. Now, T (G) is a direct sum of copies of C(p∞) for various primes
p. Since T (F×) is locally cyclic, no C(p∞) summand is repeated. To conclude the
proof, it suffices to show that for every prime p, F possesses a primitive pth root
of unity. Suppose not, and let p be least such that F has no primitive pth root of
unity. Then of course p > 2. Fix an algebraic closure F a of F , and let ζp ∈ F a be
a primitive pth root of unity. Then F (ζp)/F is a cyclic Galois extension of degree
d|p−1. Now let q|d be a prime, and let F ⊆ K ⊆ F (ζp) be an intermediate field such
that [K : F ] = q. Then K/F is a cyclic Galois extension of degree q. By minimality
of p, F contains a primitive qth root of unity ζq. Thus K is a splitting field over F of
a polynomial of the form xq − b ∈ F [x], and K = F (u) for any root u of xq − b (see
Theorem 7.11 of [13]). Let u ∈ F a be such a root. Then uq = b ∈ F . Recall that F×

is divisible. Thus some qth root of uq lies in F . However, F also contains a primitive
qth root of unity. Therefore, all qth roots of uq lie in F . In particular, u ∈ F . But
since K = F (u), it follows that K = F , contradicting that [K : F ] = q. �

We now present two corollaries of the previous theorem.

Corollary 1. Let F and K be fields of characteristic zero of the same cardinality.
Suppose further that F× is divisible and K is algebraically closed. Then F× ∼= K×.

Proof. Immediate from Theorem 1. �
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Corollary 2. Let Qa be an algebraic closure of Q. There exists a field F satisfying
Q ⊆ F ⊆ Qa (that is, F is absolutely algebraic of characteristic 0) such that F+ ∼=
(Qa)+ and F× ∼= (Qa)×, yet F is not algebraically closed.

Proof. Let Qr be a root closure of Q and let Qa be an algebraic closure. Then note
that (Qr)+ ∼= (Qa)+ ∼=

⊕
ℵ0 Q. Further, the previous corollary implies that (Qr)× ∼=

(Qa)×. To finish the proof, let f(x) ∈ Q[x] be a polynomial that is not solvable
by radicals. Then not all roots of f(x) lie in Qr, and thus Qr is not algebraically
closed. �

3. The Characteristic p Case

We begin this section with a determination of the divisible abelian groups G which
can be realized as the multiplicative group of an absolutely algebraic field of charac-
teristic p. To do this, we introduce some new terminology.

Definition 2. Let S be a nonempty subset of the positive integers, and let p be a
prime. Let us call S a p-divisible system if and only if S satisfies the following
conditions:

(i) If α ∈ S, x > 0, and x|α, then x ∈ S.
(ii) If α, β ∈ S, then lcm(α, β) ∈ S.
(iii) If α ∈ S and q is a prime such that pα ≡ 1(mod q), then qi ∈ S for every positive
integer i.

We now present some illustrative examples.

Example 1. {1} is a 2-divisible system.

Example 2. Let k be a fixed positive integer, and let Sk := {n ∈ Z+ : every prime
divisor of n is at least k}. Then S is a 2-divisible system2.

Example 3. The set S := {n ∈ Z+ : (n, p) = 1} is a p-divisible system.

More generally,

Example 4. For any non-negative integer k, the set Sk := {mpi : m ∈ Z+, (m, p) =
1, and 0 ≤ i ≤ k} is a p-divisible system.

Note that (ii) of Definition 2 implies that the product of relatively prime members of
a p-divisible system S is also a member of S. On the other hand, a p-divisible system
need not be closed under multiplication, as Example 4 demonstrates. However, we
do have the following:

2This general construction does not work for odd primes. Indeed, if p is an odd prime and S is
a p-divisible system, then p ≡ 1(mod 2), whence 2 ∈ S.
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Lemma 4. Let S be a p-divisible system. Then

(1) qn ∈ S for every prime q < p and positive integer n, and
(2) S = Z+ if and only if pn ∈ S for arbitrarily large n.

Proof. We prove only (1), as the proof of (2) is similar. Suppose that q∗ < p is a
prime and that qi ∈ S for every prime q < q∗ and positive integer i. We will show
that (q∗)i ∈ S for every positive integer i. It suffices by (iii) to prove the existence
of α ∈ S such that pα ≡ 1(mod q∗). If q∗ = 2, then p is an odd prime and we may
take α := 1. Thus we assume that q∗ > 2. Let q∗ − 1 = qn1

1 · · · q
nk
k be the prime

factorization of q∗ − 1. By assumption, qnii ∈ S for 1 ≤ i ≤ k. We deduce from (ii)
that q∗ − 1 ∈ S. Fermat’s Little Theorem implies that pq

∗−1 ≡ 1(mod q∗), and the
proof is complete. �

We now relate the notion of a p-divisible system to the problem of determining
the structure of F× for an absolutely algebraic field F of positive characteristic with
divisible multiplicative group.

Proposition 1. Let p be a prime. Then the following hold:

(1) If S is a p-divisible system, then F :=
⋃
α∈S Fpα (each Fpα is taken relative to a

fixed algebraic closure of Fp) has a divisible multiplicative group.
(2) Conversely, if F is an absolutely algebraic field of prime characteristic p such
that F× is divisible, then the set S := {α > 0 : Fpα ⊆ F} is a p-divisible system and
F =

⋃
α∈S Fpα.

Proof. Let p be a prime number.

(1) Suppose that S is a p-divisible system, and consider F :=
⋃
α∈S Fpα . We first

show that F is a well-defined field. Clearly it suffices to show that for every α, β ∈ S,
there exists γ ∈ S such that Fpα ∪ Fpβ ⊆ Fpγ . By (ii) of Definition 2, we may take
γ = lcm(α, β). It remains to show that the multiplicative group of F is divisible. We
let q be an arbitrary prime, and show that F× is q-divisible. We consider two cases.

Case 1: there exists some α ∈ S such that pα ≡ 1(mod q). Clearly

(3.1) q 6= p and qi ∈ S for every positive i by (iii) of Definition 2.

By definition of F , we have Fpα ⊆ F . Since F×pα has order pα − 1 and q|pα − 1, it
follows that there exists an element ζq ∈ F×pα of multiplicative order q (i.e. ζq is a
primitive qth root of unity). Let a ∈ F× be arbitrary. We claim that a has a qth
root in F . Choose β ∈ S such that ζq, a ∈ Fpβ , and let γ be any root of xq− a. Then
Fpβ(γ) is cyclic Galois over Fpβ of degree d for some d|q. If d = 1, then γ ∈ Fpβ ⊆ F
and we are done. Thus assume d = q. Then Fpβ(γ) = Fpβq . Recall that β, q ∈ S.
To finish this case, it suffices to show that βq ∈ S. Write β = qiλ, where (λ, q) = 1.
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Since β ∈ S, (i) of Definition 2 implies that λ ∈ S. It follows from (3.1) above that
qi+1 ∈ S. We now conclude from (ii) of Definition 2 that qi+1λ = βq ∈ S.

Case 2: q - pα − 1 for any α ∈ S. We let a ∈ F× be arbitrary. By definition of
F , we have a ∈ Fpβ for some β ∈ S. Consider the function f : F×

pβ
→ F×

pβ
defined by

f(x) := xq. We claim f is one-to-one. For suppose xq = yq. If x 6= y, then x
y

has

multiplicative order q in Fpβ . Lagrange’s Theorem gives q|pβ−1. But this contradicts
our assumption. Hence f is one-to-one, thus onto. Therefore, a has a qth root in F
and thus F× is q-divisible in this case as well.

(2) Conversely, suppose that F is an absolutely algebraic field of prime character-
istic p such that F× is divisible, and set S := {α > 0 : Fpα ⊆ F}. It is clear that
F =

⋃
α∈S Fpα . We will show that S satisfies (i)–(iii).

(i). Suppose α ∈ S. Then by definition, Fpα ⊆ F . If x > 0 and x|α, then
Fpx ⊆ Fpα . Thus x ∈ S.

(ii). Patent since the compositum of Fpα and Fpβ is Fpγ , where γ = lcm(α, β).
(iii). We suppose that q|pα1 − 1 for some α1 with Fpα1 ⊆ F , and we show that

qi ∈ S for every positive integer i. There exists x1 ∈ F×pα1 of multiplicative order q.
Since the multiplicative group of F is divisible, there exists xi ∈ F× of multiplicative
order qi for all i > 0 (recursively take qth roots of x1). For each i, let αi be such
that xi ∈ Fpαi ⊆ F (note that by definition, αi ∈ S). By Lagrange’s Theorem,
pαi ≡ 1(mod qi). We let O(p)(mod qi) denote the multiplicative order of p modulo
qi. Since pαi ≡ 1(mod qi),

(3.2) O(p)(mod qi) divides αi.

But by Lagrange’s Theorem, O(p)(mod qi) divides |Z/(qi)×| = ϕ(qi) = qi−1(q − 1).
We record this below.

(3.3) O(p)(mod qi) divides qi−1(q − 1).

As i → ∞, clearly O(p)(mod qi) → ∞. This fact, along with (3.2) and (3.3) above,
implies that there exist arbitrarily large i such that qi|αi. It now follows from (i)
(established previously) that qi ∈ S for every i. The proof is now complete. �

We are almost ready to classify the divisible abelian groups realizable as the mul-
tiplicative group of an absolutely algebraic field of positive characteristic. First, we
present a final definition.

Definition 3. Let p be a prime, and let S be a p-divisible system. Define the prime
spectrum of S, P (S), by P (S) := {q : q is prime and O(p)(mod q) ∈ S}.
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Proposition 2. Let G be a divisible abelian group. Then G can be realized as the
multiplicative group of an absolutely algebraic field of characteristic p if and only if
G ∼=

⊕
q∈P (S)C(q∞) for some p-divisible system S.

Proof. Consider a fixed prime p and a p-divisible system S. We show first that⊕
q∈P (S)C(q∞) can be realized as the (divisible) multiplicative group of an absolutely

algebraic field of characteristic p. To see this, let F :=
⋃
α∈S Fpα . Then Proposition

1 gives us that F is an absolutely algebraic field of characteristic p with divisible
multiplicative group. It suffices to show that for each prime q, F× has an element
of multiplicative order q if and only if q ∈ P (S). Thus let q be an arbitrary prime.
Suppose first that F has an element x of multiplicative order q. Then x ∈ Fpα for
some α ∈ S and xq = 1. It follows that pα ≡ 1(mod q). Hence O(p)(mod q) divides α.
By definition (i) of a p-divisible system, we deduce that O(p)(mod q) is an element of
S. It follows now by definition of P (S) that q ∈ P (S). Conversely, suppose q ∈ P (S).
Then by defnition, O(p)(mod q) := α ∈ S. Hence Fpα ⊆ F and pα ≡ 1(mod q). By
Cauchy’s Theorem, F×pα has an element of multiplicative order q, whence so does F×.

Finally, consider an absolutely algebraic field F of characteristic p such that F× is
divisible. From Proposition 1, S := {α > 0 : Fpα ⊆ F} is a p-divisible system and
F =

⋃
α∈S Fpα . It now follows from our work above that F× ∼=

⊕
q∈P (S)C(p∞). �

Now that the smoke has cleared, let us pause to present an example. Recall
from Example 3 that the set S of positive odd integers is a 2-divisible system. By
Proposition 1, F :=

⋃
n∈S F2n has a divisible multiplicative group. It now follows

from Proposition 2 that

F× ∼= C(7∞)⊕ C(23∞)⊕ C(31∞)⊕ C(47∞)⊕ · · · .

Remark 1. The previous example shows that Corollary 1 fails for absolutely al-
gebraic fields of positive characteristic. In particular, if F is the field in the above
example, then Lemma 1 implies that F× � K× for any algebraically closed field K.

We can also show that the characteristic p analog of Corollary 2 fails.

Proposition 3. Let Fap be an algebraic closure of Fp, and suppose that F is a field
such that Fp ⊆ F ⊆ Fap and F× ∼= (Fap)×. Then F ∼= Fap.
Proof. Let n be a positive integer, and note that Fap possesses exactly pn elements

(namely, the field Fpn) satisfying the equation xp
n

= x. But then via the isomorphism,
it is clear that the same property is enjoyed by F . Thus F contains the field Fpn .
Since n was arbitrary, we conclude that F ∼= Fap. �

As an application of Proposition 1 and Lemma 4, we have the following corollary.

Corollary 3. Let F be an absolutely algebraic field of characteristic p. Then F is
algebraically closed if and only if F× is divisible and Fppn ⊆ F for arbitrarily large n.
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Proof. We prove only the nontrivial direction. Assume that F× is divisible and
Fppn ⊆ F for arbitrarily large n. Then by Proposition 1, S := {n ∈ Z+ : Fpn ⊆ F} is a
p-divisible system. Lemma 4, part (2) implies that S = Z+, whence F is algebraically
closed. �

It remains to describe F× in case F is an arbitary field of positive characteristic
with divisible multiplicative group, but this is straightforward.

Theorem 2. Let G be a divisible abelian group. Then G is the multiplicative group
of a field of positive characteristic if and only if G = H ⊕ (

⊕
κQ) for some divisible

abelian group H realizable as the multiplicative group of an absolutely algebraic field
of positive characteristic, and either κ = 0 or κ is infinite.

Proof. Suppose first that G = H ⊕ (
⊕

κQ), where H and κ are as stated. We will
prove that G is the multiplicative group of a field of positive characteristic. Let F be
an absolutely algebraic field of positive characteristic such that F× ∼= H. If κ = 0,
then G ∼= F×, and we’re done. So assume κ is infinite. Suppose first that F× is
trivial. Then G =

⊕
κQ, and Lemma 2 implies that G is the multiplicative group of

some field K. It follows that K has characteristic 2 (lest −1 have order 2), and we
are done in this case as well. Now suppose that F× is nontrivial. Then since F× is
divisible, we see that that F is infinite. Suppose first that κ > ℵ0, and let K be a
field of size κ elementarily equivalent to F . Then G ∼= K×. Now assume that κ = ℵ0.
Choose a field K of size ℵ1 which is elementarily equivalent to F , and pick α ∈ K of
infinite multiplicative order. Now let K ′ be a countable elementary submodel of K
containing α. Lemma 3 implies that G ∼= K ′×, and this completes the proof of the
first implication.

As for the second implication, Suppose that G ∼= K× for some field K of charac-
teristic p. Recall that G = T (G)⊕H, where T (G) is the torsion subgroup of G and
H is a Q-vector space. Again, we invoke Lemma 3 to deduce that H is trivial or
of infinite rank. Now, simply observe that T (G) ∼= (F∗p)×, where F∗p is the algebraic
closure of Fp in K. Hence F∗p is absolutely algebraic of positive characteristic, and
the proof is complete. �

We conclude the section by sketching an elementary (model-theoretic) proof of
Contessa, Mott, and Nichols’ result that a torsion-free divisible abelian group of
infinite rank is the multiplicative group of some field (Theorem 5.5 of [5]). Adler had
essentially already established this result in 1978 when he showed that a torsion-free
divisible abelian group of countably infinite rank is the multiplicative group of some
field (now simply apply Upward Lowenheim-Skolem to obtain Theorem 5.5)). In fact,
we prove the stronger result that every torsion-free divisible abelian group of infinite
rank is the multiplicative group of a pseudo-finite field.
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To begin, let (pi : i < ω) be an enumeration of the primes, and consider the
collection

∏
consisting of the union of the following sentences in the language of

fields:

(0) the sentence ϕ asserting the existence of at least three objects,
(1) the schema S of axioms for the theory of finite fields (see [2]),
(2) for each positive integer i, the sentence Di := ∀x∃y(ypi = x), and
(3) for each positive integer i, the sentence TFi := ∀x(xpi = 1⇒ x = 1).

We claim that every finite subset of
∏

has a model. Indeed, let k > 0 be an integer,
and let Γ := {ϕ} ∪ S ∪ {Di : 1 ≤ i ≤ k} ∪ {TFi : 1 ≤ i ≤ k}. Now choose a prime
number p such that pi < p for all i, 1 ≤ i ≤ k. It is straighforward to check that F2p
is a model of Γ. By the Compactness Theorem, there exists a structure F which is a
model of

∏
. Since F models (0) and (1), F is a pseudo-finite field with more than two

elements. It follows from (2) that F× is divisible; thus by (0), F is infinite. Lastly,
(3) implies that F× is torsion-free. Hence F× is isomorphic to an infinite direct sum
of copies of Q (this follows from Lemma 3 and The Structure Theorem for Divisible
Abelian Groups). The Upward and Downward Lowenheim-Skolem Theorems apply,
and we deduce that an arbitrary infinite direct sum of copies of Q is the multiplicative
group of some pseudo-finite field.

We now obtain a short proof of the main theorem of [1] as a corollary.

Corollary 4 (Adler, 1978). There is no set
∑

of sentences in the language of group
theory with the property that for all groups G: G is a model of

∑
if and only if G is

the multiplicative group of some field.

Proof. Suppose by way of contradiction that such a set
∑

exists. It is well-known
that the theory T of non-trivial torsion-free divisible abelian groups is complete (cf.
[18] and [22]). Therefore, Q and

⊕
ℵ0 Q are elementarily equivalent. By our work

above,
⊕
ℵ0 Q is isomorphic to the multiplicative group of a field, and therefore is a

model of
∑

. But then so is Q, and it follows that Q is the multiplicative group of a
field. However, this contradicts Lemma 3. �

4. An Open Question

We saw in Lemma 3 that if G is the multiplicative group of a field, then the torsion-
free rank of G is either 0 or infinite. This observation leads naturally to the following
question:

Problem 1. Let G be a divisible abelian group realizable as the multiplicative group
of a field. Is the torsion rank of G either 0 or infinite?

At present, we have nothing deep to say about the solution to this problem, but
we make some trivial observations. Let F be a field such that F× is divisible. Since
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T (F×) is countable, ℵ0 is an upper bound for r(T (F×)) (the rank of T (F×)). More-
over, r(T (F×)) cannot be 1 (in other words, for any prime p, C(p∞) is not the
multiplicative group of any field). This appears as Lemma 6 in [19]. Even the proof
of this lemma employs a nontrivial result, namely Mihăilescu’s Theorem (formerly
Catalan’s Conjecture). Recall that a Fermat prime is a prime number of the form
2m + 1 for some positive integer m. Let FP denote the set of Fermat primes. At
present, only 5 Fermat primes are known; it is still open whether FP is infinite
or not. In any case, we can use this set to obtain a somewhat crude lower bound
for r(T (F×)) as follows: suppose that p is an odd prime and that F is absolutely
algebraic of characteristic p with F× divisible. Then

(4.1) |FP | ≤ r(F×) + 1.

To see this, let S be the associated p-divisible system, and let q be a Fermat prime
distinct from p. Since p is odd, p ≡ 1(mod 2). Therefore 2i ∈ S for every positive
integer i by definition (iii) of a p-divisible system. Now, 2m + 1 = q for some positive
integer m. Thus q − 1 ∈ S. Since pq−1 ≡ 1(mod q), we see that O(p)(mod q)|q −
1. Since q − 1 ∈ S, we deduce from definition (i) of a p-divisisble system that
O(p)(mod q) ∈ S. Proposition 2 implies that C(q∞) is a summand of F×.

Corollary 5. Assume there are infinitely many Fermat primes. If F is any field not
of characteristic 2 such that F× is divisible, then r(T (F×)) is either 0 or ℵ0.

More generally, we conjecture that the answer to Problem 1 is “yes.” To see how
the theory of p-divisible systems is intimately connected to this problem, we close
with the following proposition.

Proposition 4. Let G be a divisible abelian group realizable as the multiplicative
group of a field. Suppose further that G has finite nonzero torsion rank. Then there
exists a prime number p and an infinite p-divisible system S such that the collection
of prime divisors of members of X := {pα − 1 : α ∈ S} is finite.

Proof. Suppose that F× is divisible and that T (F×) is nontrivial of finite rank. Then
Theorem 1 implies that F has characteristic p for some prime p. Moreover, T (F×) ∼=
(F∗p)×, where F∗p is the algebraic closure of Fp in F . The set S := {α > 0 : Fαp ⊆ F∗p}
is a p-divisible system. Moreover, Proposition 2 yields

(4.2) (F∗p)× ∼=
⊕
q∈P (S)

C(q∞).

We claim that S is infinite. First observe that S contains some α > 1. Otherwise
S = {1}. From this, it follows from definition (iii) of a p-divisible system that p = 2.
But then F∗p = F2, contradicting that T (F×) is nontrivial. Now pick any α > 1 in S,
and let q be a prime satisfying pα ≡ 1(mod q). Then by definition (iii) of a p-divisible
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system, qi ∈ S for every positive integer i; thus S is infinite. Finally, let α ∈ S, and
suppose that q is any prime divisor of pα − 1. Then the multiplicative order of p
modulo q divides α. By definition (i) of a p-divisible system, q ∈ P (S). But since
F∗p has finite rank, we conclude from (4.2) that the set of all such q (as α ranges over
P (S)) is finite. �
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