
I’M THINKING OF A NUMBER...

ADAM HAMMETT AND GREG OMAN

Abstract. Consider the following game: Player A chooses an integer α between 1 and n for
some integer n ≥ 1, but does not reveal α to Player B. Player B then asks Player A a yes/no
question about which number Player A chose, after which Player A responds truthfully with
either “yes” or “no.” After a predetermined number m of questions have been asked (m ≥ 1),
Player B must attempt to guess the number chosen by Player A. Player B wins if she guesses α.
The purpose of this note is to find, for every m ≥ 1, all canonical m-question algorithms which
maximize the probability of Player B winning the game (the notion of “canonical algorithm”
will be made precise in Section 3).

1. Introduction

I’m thinking of a number between 1 and 1000. I will allow you one guess, but prior to
guessing you get to ask me a preliminary “yes/no” question about which number I chose, and
I will answer truthfully. Clearly, you don’t want to ask, “Is the number you picked between 1
and 1000?” as you already know that the answer is “yes.” Similarly, you wouldn’t ask, “Did
you pick the numbers 3 and 298?” since (unless I choose not to abide by the rules of the game)
you know the answer to this query is “no.” So at the very least, you should ask me a question
to which you do not already know the answer. Two such questions are listed below. Which
of the following do you believe will yield a higher probability of guessing the number I chose
(assuming you guess rationally after I give you my answer)?

Q1: “Did you choose number 1?”, or
Q2: “Is the number you chose between 1 and 500?”

You’re thinking Q2 is the more prudent choice, right? After all, the answer to Q1 is almost
certainly “no,” and (if it is indeed “no”) then you’ll have to choose from 999 numbers. But if you
ask Q2, you can immediately eliminate 500 numbers. Would you be surprised to discover that
it doesn’t matter which question you choose? Whether you ask me Q1 or Q2, the probability
of correctly guessing my number is the same!
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Let us briefly explain why this is the case. If you ask me Q1, and I answer “yes,” then you
will guess number 1 and win. On the other hand, if you ask Q1 and I answer “no,” then you
will just guess some integer between 2 and 1000. This means the probability of winning if you
elect to ask Q1 equals

1

1000
· 1 + 999

1000
· 1

999
=

2

1000
.

Notice that if you had guessed randomly with no preliminary question, then the probability
of winning is clearly 1

1000
; thus asking Q1 results in doubling the probability of finding my

number. Now, similar reasoning reveals that electing to ask Q2 instead delivers a probability
of winning equal to

500

1000
· 1

500
+

500

1000
· 1

500
=

2

1000
,

and that’s the same as before!
Now, let’s change the rules a bit. Let’s keep the same basic setup, but this time I will allow

you a sequence of two preliminary questions. Specifically, I will permit you an initial yes/no
question about my chosen number, and then a second yes/no question after I answer your first
query. Following my answer to your second question, you will attempt to guess the number I
picked. Which of the following two algorithms yields a higher probability that you will guess
my number?

(A1) First question: “Did you choose number 1 or number 2?"
↪→ If I say “yes,” ask second question “Did you choose number 2?"
↪→ If I say “no,” ask second question “Did you choose number 3?", or

(A2) First question: “Did you choose a number between 1 and 500?"
↪→ If I say “yes,” ask second question “Did you choose a number between 1 and 250?"
↪→ If I say “no,” ask second question “Did you choose a number between 501 and 750?"

Perhaps unexpectedly, both algorithms yield the same probability (namely, 4
1000

) of guessing
my number. However, the following related algorithm yields only a 3

1000
probability of guessing

correctly:

(A3) First question: “Did you choose number 1?"
↪→ If I say “yes,” then you know my number and don’t need a second question.
↪→ If I say “no,” ask second question “Did you choose number 2 or number 3?”

The purpose of this note is to generalize these surprising facts. In particular, after some
formal preliminaries in the next section, we shall describe all “natural” m-question algorithms
which deliver the maximum probability of Player B guessing correctly (the notion of “natural”
will be formalized in Section 3).

2



I’m thinking of a number... A. Hammett & G. Oman

2. Setting the Stage

We begin with an informal description of the game at hand (as stated in the abstract).
To facilitate our proofs, we will present a slightly more general version. Throughout, Z+ will
denote the set {1, 2, 3, . . .} of positive integers. For n ∈ Z+, we shall denote the set {1, 2, . . . , n}
simply by [n].

Let n ∈ Z+ and let X ⊆ Z+ have cardinality n. The set X is presented to Player A and
Player B. Player A chooses an integer α ∈ X uniformly at random, but does not reveal α to
Player B. However, Player B knows that Player A has chosen such an α. Player B is permitted
a total of m ≥ 1 yes/no questions in sequence (m is revealed to Player B before the game
commences), after which Player B must guess which number was chosen by Player A. Player
B wins if she guesses α. In the sequel, we shall denote this game by G(m,X); we agree to
use the notation G(m,n) in case X = [n]. Our goal is to determine all possible m-question
algorithms (from a canonical set of algorithms; more on this shortly) that will deliver the
maximum probability of Player B winning G(m,X).

Our first task is to make further assumptions in order to force the game to terminate in a
winner. To kick things off, we consider an example of a yes/no question that is, in some sense,
very bad.

Example 1. Suppose that Player B asks, “Is the number you chose equal to the cardinality of
the set of Fermat primes?” in the game G(m,n), where n > 4. It is known only that there are
at least 5 Fermat primes; it is not known if there are any more. So if Player A’s chosen number
is 5, then Player A simply (at present) does not know the answer to Player B’s question, and
the game ends in a stalemate.

In light of this example, we temporarily idealize Player A as follows (we shall later be able to
dispense with this assumption):

Assumption 1. Player A has perfect knowledge, that is, Player A knows the truth value of P
for every proposition P .

Now, notice that any yes/no question asked by Player B can be phrased in the form, “Is it
the case that P?” for some proposition P . This leads to an equivalent formulation of the game
which is a bit more convenient for our purposes:

Assumption 2. All “questions” asked by Player B are merely propositions. Player A returns
“true” if the proposition is true and “false” otherwise.

We now set up notation which will be heavily utilized throughout the remainder of this
section.

Definition 1. Let P be a proposition presented by Player B in the game G(m,X). Then set
(1) P 0 := {i ∈ X : Player A returns “false” if he picked number i}, and
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(2) P 1 := {j ∈ X : Player A returns “true” if he picked number j}.
To help the reader intuit this definition, we present two examples.
Example 2. Suppose Player B presents P := “Denver is the capital of Colorado” in the game
G(m,X). Then P 0 = ∅ and P 1 = X.
Example 3. Assume Player B presents P := “The number you chose is prime” in the game
G(m, 10). Then P 0 = {1, 4, 6, 8, 9, 10} and P 1 = {2, 3, 5, 7}.

We now transition to a probabilistic paradigm. Recall that the game G(m,X) begins with
Player A choosing, uniformly at random, an integer α ∈ X. The game concludes with Player
B making a guess β based upon the information she receives from Player A, and B wins the
game if and only if α = β. Throughout the remainder of this section, we shall denote Player
A’s choice by α and Player B’s guess by β. In this setting, we regard X as a probability space
endowed with the uniform distribution

(2.1) P (x) =
1

|X|
for all x ∈ X.

Note that if Player B presents proposition P to Player A, then (as both P 0 and P 1 are subsets
of X) P 0 and P 1 are events on the probability space X. Namely, P 0 is the event “Player
A returns ‘false’ after receiving P ,” and P 1 the event “Player A returns ‘true’ after receiving
P .” Importantly, we do not assume that Player B knows precisely which elements P 0 and P 1

contain. We elaborate below.
Suppose Player B is playing G(1, 10), and let P be “The number you chose is prime” as in

Example 3. Let S := P i, where i = 0 if Player A’s response to P was “false,” and i = 1
otherwise. Then all Player B knows for sure is that Player A’s choice α ∈ [10] was uniformly
random, and that in fact α ∈ S = P i. What is the probability that Player B will now
successfully guess α? This really depends upon Player B’s knowledge, given A’s response S.
Suppose that T is a nonempty subset of [10] from which Player B will guess uniformly at
random, given that α ∈ S. Let’s refer to T as Player B’s “guessing set.” If Player B has
absolutely no knowledge about which numbers between 1 and 10 are prime, then she will have
no idea which elements belong to S. So B may as well use guessing set T = [10], and the
probability she will win equals 1

10
< 1
|S| . However, if B knows that {2, 3, 5} are primes and

{1, 4} are not (and nothing more about the integers in [10]), then things change. Indeed, if
S = P 0 (i.e. Player A answered “false”) then Player B knows {1, 4} ⊆ S. So it is reasonable
that B use guessing set T = {1, 4}, and the probability she will win equals 1

6
= 1
|S| . On the

other hand, if S = P 1, then B knows {2, 3, 5} ⊆ S, so B should use guessing set T = {2, 3, 5}.
In this case, the probability she will win equals 1

4
= 1
|S| . Finally, if B knows precisely which

numbers between 1 and 10 are prime, then she may use guessing set T = S and B’s probability
of winning equals 1

|S| . Note that in each of these cases, Player B’s probability of winning is at
most 1

|S| . We generalize our observations above with a final assumption.
4
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Assumption 3. After presenting all m propositions to Player A and receiving A’s responses
in the game G(m,X), Player B selects a nonempty subset T ⊆ X (a “guessing set”) from which
she selects β uniformly at random.

We are now ready to determine an upper bound on the probability of Player B winning
G(m,X) (with Assumptions 1–3 above).

Theorem 1. The probability that Player B wins the game G(m,X) is at most min(|X|,2m)
|X| .

Proof. Player B will win G(m,X) with probability at most 1 = |X|
|X| . Thus it suffices only

to prove that the probability of winning is at most 2m

|X| . Let’s assume that Player A has
chosen α ∈ X uniformly at random, and fix an arbitrary set {P1, . . . , Pm} of propositions
to be presented by Player B. Let W denote the event, “Player B’s guess β is equal to α.”
For 1 ≤ i ≤ m, recall that P 0

i ⊆ X denotes the event “Player A says ‘false’ after receiving
Pi.” Similarly, P 1

i is the event “Player A says ‘true’ after receiving Pi.” Then W occurs if
and only if P i1

1 ∩ P i2
2 ∩ · · · ∩ P im

m ∩ W occurs for some (i1, i2, . . . , im) ∈ {0, 1}m. Since for
(i1, . . . , im) 6= (j1, . . . , jm), the events P i1

1 ∩· · ·∩P im
m ∩W and P j1

1 ∩· · ·∩P jm
m ∩W are mutually

exclusive, it follows that

P(W) =
∑

(i1,...,im)∈{0,1}m
P(i1, . . . , im,W),

where (i1, . . . , im,W) is the vector naming the event P i1
1 ∩· · ·∩P im

m ∩W . Since there are 2m such
vectors, it suffices to show that P(v) ≤ 1

|X| for any such vector v. Thus let v := (i1, . . . , im,W)

be arbitrary. Observe that

(2.2) v occurs if and only if α ∈ S := P i1
1 ∩ . . . ∩ P im

m and Player B’s guess β equals α.

Thus if S = ∅, then v cannot occur, and P(v) = 0 < 1
|X| . Assume now that S 6= ∅. Then

P(v) = P (α ∈ S) · P
(
β = α | α ∈ S

)
=
|S|
|X|
· |S ∩ T |
|S| · |T |

=
|S ∩ T |
|T |

· 1

|X|
≤ 1

|X|
;

(2.3)

here, P
(
β = α | α ∈ S

)
denotes the conditional probability that β = α given that α ∈ S. To

conclude the proof, we justify why P
(
β = α | α ∈ S

)
= |S∩T |
|S|·|T | . Since Player A’s selection lies

in S, there are a total of |S| · |T | equally likely pairs (α, β) of possible choices by players A
and B, respectively. Player B will win provided the pair (α, β) satisfies α = β, and there are
|S ∩ T | such pairs. The proof is now complete. �
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The perceptive reader may have noticed the power of two appearing in the bound on P(W)
above, and wondered if there is a relation between our work thus far and the binary search
algorithm of computer science. Indeed there is. Without taking the reader too far afield, we
mention simply that the binary search algorithm finds a specified key value in an array by
repeatedly bisecting the array and making comparisons. For instance, suppose you want (your
computer) to find the number 10 in the array 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. Begin by taking the
midpoint, 5, and comparing it with the desired value. Ten is bigger. Now repeat the process
on the array 6, 7, 8, 9, 10. The midpoint, 8, is less than 10. Repeat on the array 9, 10. Whether
9 or 10 is chosen as the next midpoint, the algorithm will, at worst, terminate with 10 on the
fourth comparison. Indeed, it is not hard to show that any member of the original array can
be found with at most 4 comparisons (this is the so-called worst case of the algorithm). Part of
the purpose of the following section is to show that even with much less stringent assumptions
(recall that Player B is free to ask Player A any question (proposition); the question need not
even obviously relate to the game being played), Player B still cannot do any better than she
can by adopting a natural set of additional rules for game play. We shall shortly introduce
such a set of rules, and then find all strategies which maximize B’s probability of winning in
this modified probabilistic setting.

We conclude this section with some simple applications of Theorem 1. Consider first the
game G(1, 2). Player B can assure a win by presenting the proposition, “The number you chose
is 2” to Player A. If Player A returns “true,” then Player B knows A’s number is 2. If he
returns “false,” then Player B knows that A’s number is 1. Things change a bit if we consider
G(1, 3) instead. Theorem 1 tells us that the probability that Player B wins this game is at
most min(3,21)

3
= 2

3
. Thus there does not exist a proposition P that, regardless of the number

chosen by Player A, will (after receiving Player A’s response) allow Player B to deduce which
number Player A chose. In fact, one need not resort to probabilistic methods in order to
establish this; one needs only basic propositional logic. Suppose by way of contradiction that
there exists such a proposition P . Let ϕ be the statement, “Player A will choose a uniformly
random number α ∈ [3] (observe that Player B knows ϕ).” Then ϕ ∧ P |= “Player A chose i”
and ϕ ∧ ¬P |= “Player A chose j” for some i, j ∈ [3]. Therefore (ϕ ∧ P ) ∨ (ϕ ∧ ¬P ) |= “Player
A chose either i or j.” But (ϕ ∧ P ) ∨ (ϕ ∧ ¬P ) is true. We deduce that Player A chose either
i or j. But of course, |[3]| = 3, so this need not be so. We refer the interested reader to the
bibliography for further reading on probability, logic, and algorithms.

3. Main Results

Now that we have Theorem 1 in our pocket, we are ready to give a canonical version of
the game alluded to in the abstract. Throughout the remainder of this note, we shall
assume G(m,X) to be as defined in Definition 2 below unless stated otherwise.
Definition 2 (The game G(m,X), canonical version). A finite, nonempty set X ⊆ Z+ is
presented to Players A and B. Player A randomly chooses a number α ∈ X, but does not
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reveal α to Player B. Further, Player B is given a positive integer m. For each i ∈ [m], Player
B is to select some subset Bi ⊆ X and presents it to Player A (this is equivalent to Player B
asking Player A if the number he chose is in Bi). After receiving Bi from Player B, Player A
returns Ai := Bi if α ∈ Bi (this corresponds to an answer of “yes”) and Ai := Bc

i (relative to
X) if α /∈ Bi (which corresponds to an answer of “no”)1. After Player B has presented all m
sets to Player A (and received all m responses from Player A), Player B attempts to guess the
number Player A picked. Now set A0 := X, and for 1 ≤ i ≤ m + 1, let Ai :=

⋂
0≤j<iAj. We

further impose the following on Player B:2

(1) Bi ⊆ Ai for all i ∈ [m], and
(2) Player B’s guess is a member of Am+1 (that is, Am+1 is Player B’s guessing set).

Note that at the ith stage of the game (that is, the stage where Player B is about to select
a set Bi to present to Player A), Player B knows the elements of Ai and that α ∈ Ai. Thus
she need not include any members of A c

i in her set Bi (ergo (1)). Similarly, after Player B
has given all m sets to Player A, she knows both the elements of Am+1 and that α ∈ Am+1.
Thus it makes no sense to guess outside of this set (hence (2)). Finally, observe that the game
defined in Definition 2 above is a specific example of the game defined in the previous section,
and therefore Theorem 1 applies in this context.

Recall from Theorem 1 that the probability of winning G(m,X) is at most min(|X|,2m)
|X| . We

shall prove that this value can actually be achieved via the “canonical version” of the game
just described. We leave the abstraction for a moment to present a concrete example.

Example 4. Consider the game G(2, 6). To begin, Player A chooses some α ∈ [6]; say α = 4.
Now Player B is allotted two “questions” before guessing. Player B presents the set {1, 2, 3} to
Player A, who then returns {4, 5, 6}. Player B now presents {4, 5} to Player A, who returns
{4, 5}. Player B guesses 4, and wins the game.

We now turn our attention to determining Player B’s strategy for achieving the maximum
probability min(|X|,2m)

|X| of winning G(m,X). We begin with a definition and another example.

Definition 3. Let X be a finite, nonempty subset of Z+, and let m ≥ 1 be an integer. For
each i, 1 ≤ i ≤ m, suppose Bi ⊆ X. Lastly, let x0 ∈ X. Then we call the sequence g :=
(B1, . . . , Bm, x0) a game vector of the game G(m,X). Further, we say that g is allowable
in the game G(m,X) provided every Bi satisfies (1) of Definition 2 and x0 satisfies (2) of
Definition 2. Lastly, g is winning if g is allowable and x0 is the number chosen by Player A.

Example 5. Consider the game G(3, 9) (that is, Player A chooses some α ∈ [9] and Player
B is allotted 3 subsets of [9] before guessing), and suppose that Player A chooses the number

1Player B presents Bi to Player A after she has received Ai−1 from Player A.
2Player B loses if she does not follow (1) and (2) above.
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1. Set B1 := {2, 4, 8}, B2 := {1, 3, 5, 9}, B′2 := {1, 2, 5, 9}, and B3 := {1, 5}. Then the game
vector g := (B1, B2, B3, 5) is allowable and g′ := (B1, B2, B3, 1) is winning. However, the game
vector g′′ := (B1, B2, B3, 6) is not allowable, since 6 /∈ A4. Finally, g′′′ := (B1, B

′
2, B3, 1) is

not allowable either, since B′2 is not a subset of B1 or Bc
1 (hence B′2 * A2).

We now establish a proposition which will be heavily utilized throughout the remainder of
the paper. In what follows, the notation Gα(m,X) will denote the game with m questions on
the finite, nonempty set X ⊆ Z+ in which Player A chooses α.

Proposition 1. Let X ⊆ Z+ be finite and nonempty and let m > 1 be an integer. Further,
suppose that B1, . . . , Bm are subsets of X and that x0 ∈ X. Then the following hold:

(a) Let A1 be Player A’s response to B1 in the game Gα(m,X). Then A1 is a finite subset
of Z+ containing α. Thus the game Gα(m− 1, A1) is well-defined.

(b) (B1, . . . , Bm, x0) is an allowable game vector of the game Gα(m,X) if and only if
(B2, . . . , Bm, x0) is an allowable game vector of the game Gα(m− 1, A1).

(c) (B1, . . . , Bm, x0) is a winning game vector of the game Gα(m,X) if and only if
(B2, . . . , Bm, x0) is a winning game vector of the game Gα(m− 1, A1).

Proof. Assume that X ⊆ Z+ is finite and nonempty and that m > 1. Assume in addition that
Bi ⊆ X for 1 ≤ i ≤ m and that x0 ∈ X.

(a) By definition, Player A returns A1 := B1 if α ∈ B1 and A1 := X\B1 otherwise. Since X
is finite, it follows in either case that A1 is a finite subset of Z+. Moreover, α ∈ A1. Therefore,
the game Gα(m− 1, A1) is well-defined.

(b) Assume first that (B1, . . . , Bm, x0) is an allowable game vector of Gα(m,X) and let
2 ≤ i ≤ m be arbitrary. Then by definition of “allowable,” it follows that

Bi ⊆ Ai =
⋂

0≤j<i

Aj ⊆ A1 and x0 ∈ Am+1 =
⋂

0≤j≤m

Aj ⊆ A1.

Therefore, B2 ∪ B3 ∪ . . . ∪ Bm ∪ {x0} ⊆ A1. We conclude that (B2, B3, . . . , Bm, x0) is a game
vector of the game Gα(m− 1, A1). Now set A′1 := A1 (this is the analog of A0 in Definition 2),
and for 2 ≤ i ≤ m, let A′i be Player A’s response to Bi in the game Gα(m− 1, A1). Lastly, for
2 ≤ i ≤ m+ 1, set Ai :=

⋂
1≤j<iA

′
j.

It follows immediately by definition of Gα(m− 1, A1) that for 2 ≤ i ≤ m,

(3.1) A′i =

{
Bi = Ai if α ∈ Bi,

A1\Bi if α /∈ Bi.

We shall prove that

(3.2) Ai ⊆ A ′
i for all i, 2 ≤ i ≤ m+ 1.

8



I’m thinking of a number... A. Hammett & G. Oman

Toward this end, choose i with 2 ≤ i ≤ m + 1 and let x ∈ Ai be arbitrary. We prove that
x ∈ A ′

i . Pick j with 1 ≤ j < i. We must show that x ∈ A′j. If j = 1, the result is clear since
A′1 = A1 and Ai ⊆ A1. Now assume that 2 ≤ j < i. As x ∈ Ai, we have x ∈ Aj. Suppose
first that α ∈ Bj. Then (3.1) implies that Aj = A′j, hence x ∈ A′j. Assume now that α /∈ Bj.
Then Aj = X\Bj and A′j = A1\Bj. Since x ∈ Aj, we conclude that x /∈ Bj. Thus to prove
that x ∈ A′j, it suffices to show that x ∈ A1. Recall that 2 ≤ i ≤ m + 1 and that x ∈ Ai.
Thus x ∈ A1 by definition of Ai. This concludes the proof of (3.2). It is now easy to see that
(B2, . . . , Bm, x0) is allowable: we simply need to check that Bi ⊆ A ′

i for 2 ≤ i ≤ m and that
x0 ∈ A ′

m+1. But this follows immediately from (3.2) and the assumption that (B1, . . . , Bm, x0)
is allowable.

Now suppose that (B2, . . . , Bm, x0) is allowable in the game Gα(m− 1, A1). By assumption,

(3.3) B1 ⊆ X = A1.

It follows from (3.1) that

(3.4) A′i ⊆ Ai for 1 ≤ i ≤ m (that A′1 ⊆ A1 is by definition).

Analogous to (3.2) above, we now prove that

(3.5) A ′
i ⊆ Ai for all i, 2 ≤ i ≤ m+ 1.

Let 2 ≤ i ≤ m+ 1 be arbitrary. Then

A ′
i =

⋂
1≤j<i

A′j ⊆
⋂

1≤j<i

Aj = X ∩
( ⋂

1≤j<i

Aj

)
=
⋂

0≤j<i

Aj = Ai;

the containment is immediate from (3.4) above. We conclude from (3.3), (3.5), and the as-
sumption that (B2, . . . , Bm, x0) is allowable that (B1, . . . , Bm, x0) is an allowable game vector
of G(m,X).

(c) This follows immediately from (b). �

At long last, we are ready to establish the main result of this note via induction. In particular,
we now have the machinery required to characterize all optimal strategies for Player B. Since
the base case of the induction may be of independent interest, we single it out and prove it
separately. First, we remind the reader that by Theorem 1, the probability that Player B wins
game G(m,X) cannot exceed min(|X|,2m)

|X| .

Proposition 2. Let X be a finite, nonempty subset of Z+, and let α ∈ X be random. Now let
g := (B1, x0) be an arbitrary allowable game vector of the game Gα(1, X). Finally, let Wg be
the event, “g is a winning vector of the game Gα(1, X).” Then

9
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(a) P(Wg) =
min(|X|,2)
|X| if and only if

(b) min(1, |X| − 1) ≤ |B1| ≤ max(1, |X| − 1).

Proof. Suppose first that |X| = 1. Then (b) automatically holds, and the equivalence of (a)
and (b) reduces to the assertion that g is a winning vector. Regardless of whether B1 = ∅
or B1 = X, Player A will return X. Since g is a game vector, it follows by definition that
x0 ∈ X. Hence x0 = α, and g is winning.

We now assume that |X| > 1 and that Player B has presented B1 to Player A. Let B1 be
the event, “Player A returns B1,” and let Bc1 be the event, “Player A returns Bc

1.” Since either
B1 or Bc1 must occur and since these events are mutually exclusive, we deduce that

(3.6) P(Wg) = P(Wg ∩ (B1 ∪ Bc1)) = P(Wg ∩ B1) + P(Wg ∩ Bc1).

Suppose now that (b) above fails. We shall prove that (a) fails too. It is easy to see that
(b) fails if and only if B1 = ∅ or B1 = X. Suppose that B1 = ∅. Then B1 does not occur,
and we deduce from (3.6) above that

(3.7) P(Wg) = P(Wg ∩ Bc1) = P(Bc1) · P(Wg | Bc1) = 1 · 1

|X|
<

min(|X|, 2)
|X|

,

and we have shown that (a) fails. An analogous argument applies in case B1 = X.
Conversely, assume (b) holds. Then both B1 and Bc

1 are nonempty. In this case, (3.6)
becomes

P(Wg) = P(Wg ∩ B1) + P(Wg ∩ Bc1)
= P(B1) · P(Wg | B1) + P(Bc1) · P(Wg | Bc1)

=
|B1|
|X|
· 1

|B1|
+
|Bc

1|
|X|
· 1

|Bc
1|

=
2

|X|
=

min(|X|, 2)
|X|

,

(3.8)

as required. �

Now is a good time to reflect upon our results to this point in light of the examples given
in the introduction. Let n > 1 be arbitrary. Then in the game G(1, n) (as introduced in the
introduction, with Player B asking a yes/no question to Player A), Player B can maximize
her probability of winning by asking the following (seemingly naive) simple question: “Is the
number you picked equal to 1?” We find this fact quite surprising. In fact, we can say a bit
more: Player B maximizes her probability of winning G(1, n) with question Q if she knows a
number x ∈ [n] for which Player A answers “no” to Q if he picked x and a value y ∈ [n] for
which Player A responds with “yes” to Q if he picked y. We now present the main result of
this paper.

10
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Theorem 2. Let X be a finite, nonempty subset of Z+, and let α ∈ X be random. Now let
g := (B1, . . . , Bm, x0) be an arbitrary allowable game vector of the game Gα(m,X). We remind
the reader that A0 := X and for each i ∈ [m], Ai denotes Player A’s response to the set Bi

presented by Player B. Finally, Ai :=
⋂

0≤j<iAj for i ∈ [m+1]. Now let Wg(Gα(m,X)) be the
event, “g is a winning vector of the game Gα(m,X).” Then

(a) P(Wg(Gα(m,X))) = min(|X|,2m)
|X| if and only if

(b) min(2m−i, |Ai| − 2m−i) ≤ |Bi| ≤ max(2m−i, |Ai| − 2m−i) for all i, 1 ≤ i ≤ m.

Proof. We proceed by induction on m. Thus suppose the theorem is true for all k < m. If
m = 1, then we are done by Proposition 2. Therefore, we may suppose that

(3.9) m > 1.

Now set

(3.10) g′ := (B2, . . . , Bm, x0).

As in the proof of Proposition 2, we let B1 denote the event, “Player A returns B1 after being
presented with B1,” and Bc1 name the event, “Player A returns Bc

1 after being presented with
B1.” We now consider two cases.

Case 1: B1 = ∅ or B1 = X. Then P(Bc1) = 1 or P(B1) = 1, respectively, and we have

(3.11) P(Wg(Gα(m,X))) =

{
P(Wg(Gα(m,X)) ∩ Bc1) = P(Wg(Gα(m,X)) | Bc1) if B1 = ∅,
P(Wg(Gα(m,X)) ∩ B1) = P(Wg(Gα(m,X)) | B1) if B1 = X.

If B1 = ∅, then Proposition 1 implies that P(Wg(Gα(m,X) | Bc1)) = P(Wg′(Gα(m − 1, X))).
Similarly, if B1 = X, then P(Wg(Gα(m,X) | B1)) = P(Wg′(Gα(m − 1, X))). In either case,
(3.11) reduces to

(3.12) P(Wg(Gα(m,X))) = P(Wg′(Gα(m− 1, X))).

We are ready to establish the equivalence of (a) and (b). Suppose first that

(3.13) P(Wg(Gα(m,X))) =
min(|X|, 2m)
|X|

.

For all i, 1 ≤ i ≤ m, we must prove that

(3.14) min(2m−i, |Ai| − 2m−i) ≤ |Bi| ≤ max(2m−i, |Ai| − 2m−i).
11
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We deduce from (3.12) and (3.13) that

(3.15) P(Wg′(Gα(m− 1, X))) =
min(|X|, 2m)
|X|

.

Recall from Theorem 1 that P(Wg′(Gα(m− 1, X))) ≤ min(|X|,2m−1)
|X| . This fact along with (3.15)

implies

(3.16) P(Wg′(Gα(m− 1, X))) =
min(|X|, 2m)
|X|

=
min(|X|, 2m−1)

|X|
.

It is patent from (3.16) that

(3.17) |X| ≤ 2m−1.

We now prove that (3.14) holds for all i, 1 ≤ i ≤ m. When i = 1, (3.14) follows immediately
from (3.17) above. Set A′1 := X and for each i with 2 ≤ i ≤ m, let A′i be Player A’s response
to Bi in the game Gα(m − 1, X). Then we deduce from (3.16) and the inductive hypothesis
that

(3.18) min(2m−i, |A ′
i | − 2m−i) ≤ |Bi| ≤ max(2m−i, |A ′

i | − 2m−i) for 2 ≤ i ≤ m,

where A ′
i is defined as in the proof of Proposition 1. Since B1 = ∅ or B1 = X, it follows that

A1 = X. Hence

(3.19) A′i = Ai for each i, 1 ≤ i ≤ m. Thus also A ′
i = Ai for each i, 2 ≤ i ≤ m.

Combining (3.18) and (3.19), we see thatmin(2m−i, |Ai|−2m−i) ≤ |Bi| ≤ max(2m−i, |Ai|−2m−i)
for 2 ≤ i ≤ m, and (3.14) has been established for all i.

Conversely, assume that (3.14) holds for 1 ≤ i ≤ m. We shall prove that P(Wg(Gα(m,X))) =
min(|X|,2m)

|X| . It follows immediately from (3.14), (3.19), and the inductive hypothesis that

(3.20) P(Wg′(Gα(m− 1, X))) =
min(|X|, 2m−1)

|X|
.

We deduce from (3.12) that

(3.21) P(Wg(Gα(m,X))) =
min(|X|, 2m−1)

|X|
.

To conclude the Case 1 proof, it suffices to show that |X| ≤ 2m−1. Again, we remind the
reader that our Case 1 assumption is that B1 = ∅ or B1 = X. If B1 = ∅, then |X| ≤ 2m−1

12
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follows immediately from the first inequality in (3.14) above (with i = 1). In case B1 = X, we
deduce |X| ≤ 2m−1 from the second inequality in (3.14). This concludes the proof in Case 1.

Case 2: ∅ ( B1 ( X. In this case, Theorem 1, Proposition 1, and the argument used in
the proof of Proposition 2 (see (3.6) and (3.8)) imply that

P(Wg(Gα(m,X))) = P(B1) · P(Wg(Gα(m,X)) | B1) + P(Bc1) · P(Wg(Gα(m,X)) | Bc1)
= P(B1) · P(Wg′(Gα(m− 1, B1))) + P(Bc1) · P(Wg′(Gα(m− 1, Bc

1)))

≤ |B1|
|X|
· min(|B1|, 2m−1)

|B1|
+
|Bc

1|
|X|
· min(|Bc

1|, 2m−1)
|Bc

1|

=
min(|B1|, 2m−1)

|X|
+

min(|Bc
1|, 2m−1)
|X|

≤ min(|X|, 2m)
|X|

.

(3.22)

Assume first that P(Wg(Gα(m,X))) = min(|X|,2m)
|X| . Then equality holds throughout (3.22).

It follows (regardless of whether A1 = B1 or A1 = Bc
1) that

(3.23) P(Wg′(Gα(m− 1, A1))) =
min(|A1|, 2m−1)

|A1|
.

For 2 ≤ i ≤ m, the inductive hypothesis yields

(3.24) min(2m−i, |A ′
i | − 2m−i) ≤ |Bi| ≤ max(2m−i, |A ′

i | − 2m−i),

Invoking (3.2) and (3.5) of the proof of Proposition 1, (3.24) becomes

(3.25) min(2m−i, |Ai| − 2m−i) ≤ |Bi| ≤ max(2m−i, |Ai| − 2m−i)

for 2 ≤ i ≤ m. To complete the implication (a) =⇒ (b), we need only show that (3.25) also
holds when i = 1. Suppose not. Then either (1) |B1| < 2m−1 and |B1| < |X| − 2m−1 or (2)
|B1| > 2m−1 and |B1| > |X| − 2m−1. In either case, (3.22) implies that P(Wg(Gα(m,X))) <
min(|X|,2m)

|X| , and we have a contradiction to our assumption.
Conversely, suppose that (3.25) holds for all i, 1 ≤ i ≤ m. Then by (3.2) and (3.5) of the

proof of Proposition 1, we obtain (3.24) for 2 ≤ i ≤ m. For the reader’s convenience, we
restate (3.22):

13
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P(Wg(Gα(m,X))) = P(B1) · P(Wg(Gα(m,X)) | B1) + P(Bc1) · P(Wg(Gα(m,X)) | Bc1)
= P(B1) · P(Wg′(Gα(m− 1, B1))) + P(Bc1) · P(Wg′(Gα(m− 1, Bc

1)))

≤ |B1|
|X|
· min(|B1|, 2m−1)

|B1|
+
|Bc

1|
|X|
· min(|Bc

1|, 2m−1)
|Bc

1|

=
min(|B1|, 2m−1)

|X|
+

min(|Bc
1|, 2m−1)
|X|

≤ min(|X|, 2m)
|X|

.

As (3.24) holds for 2 ≤ i ≤ m, the inductive hypothesis allows us to replace the first inequality
sign above with equality. We conclude from (3.25) above (with i = 1) that either (1) |B1| ≤
2m−1 and |Bc

1| ≤ 2m−1 or (2) 2m−1 ≤ |B1| and 2m−1 ≤ |Bc
1|. In either case, we can replace the

second inequality with equality, and the proof is complete. �

We have determined the sets Bi ⊆ X which maximize Player B’s probability of winning
Gα(m,X). It remains to verify that Player B can, in fact, effectively find an allowable game
vector (B1, . . . , Bm, x0) which satisfies (b) of Theorem 2.

Proposition 3. Consider the game Gα(m,X), where X ⊆ Z+ is finite and nonempty and
m ≥ 1. Then Player B can effectively choose3 subsets B1, . . . , Bm of X and x0 ∈ X such that

(a) (B1, . . . , Bm, x0) is an allowable game vector, and
(b) min(2m−i, |Ai| − 2m−i) ≤ |Bi| ≤ max(2m−i, |Ai| − 2m−i) for all i, 1 ≤ i ≤ m.

Proof. Fix k with 1 ≤ k ≤ m, and suppose that for each i < k, Player B has chosen Bi ⊆ Ai

satisfying (b) and Player A has returned Ai to her. Then of course, Player B knows precisely
which elements of X belong to Ak. We claim that Player B can effectively choose Bk ⊆ Ak

satisfying (b). We consider two cases.

Case 1: |Ak| − 2m−k < 0. Then Player B can take Bk := ∅.

Case 2: |Ak| − 2m−k ≥ 0. Then Player B can choose any subset of Ak of size |Ak| − 2m−k.

After choosing the sets B1, . . . , Bm as above, it remains to show that Player B can effectively
select x0 ∈ Am+1. Since α ∈ Am+1, we have Am+1 6= ∅. Thus Player B can simply select her
favorite element of Am+1 (as above, Player B knows exactly which elements of X are members
of Am+1), and the proof is complete. �

3That is, there exists an algorithm by which Player B can choose B1, . . . , Bm, x0 satisfying (a) and (b)
regardless of which α was chosen by Player A.

14
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4. Some Consequences

We conclude the paper with several consequences of the results of the previous section.

Corollary 1. Player B has a winning strategy in the game Gα(m,X) if and only if m ≥
log2 |X|.

Proof. Player B has a winning strategy in the game Gα(m,X) if and only if min(|X|,2m)
|X| = 1 if

and only if 2m ≥ |X| if and only if m ≥ log2 |X|. �

It is natural to ask if it is possible to eliminate “min” and “max” from the formulation of (b)
of Theorem 2. Indeed it is. We shall require the following simple lemma.

Lemma 1. Let (B1, . . . , Bm, x0) be an allowable game vector of the game Gα(m,X) such that
min(2m−1, |X| − 2m−1) ≤ |B1| ≤ max(2m−1, |X| − 2m−1). Then 2m ≥ |X| if and only if
2m−1 ≥ |A1|.
Proof. Suppose first that 2m ≥ |X|. Then 2m−1 ≥ |X| − 2m−1, and hence |X| − 2m−1 ≤
|B1| ≤ 2m−1. If A1 = B1, then 2m−1 ≥ |B1| = |A1|, as required. Otherwise, A1 = Bc

1. Since
|X| − 2m−1 ≤ |B1|, we deduce that |A1| = |X| − |B1| ≤ 2m−1.

Now assume that 2m ≤ |X|. Then 2m−1 ≤ |X| − 2m−1, and thus 2m−1 ≤ |B1| ≤ |X| − 2m−1.
As above, if A1 = B1, then 2m−1 ≤ |A1|. Suppose A1 = Bc

1. Since |B1| ≤ |X| − 2m−1, we
obtain |A1| = |X| − |B1| ≥ 2m−1. This concludes the proof. �

Corollary 2. Let X ⊆ Z+ be finite and nonempty, m ∈ Z+, and g := (B1, . . . , Bm, x0) be an
allowable game vector of the game Gα(m,X). Then the following hold:

(a) If 2m ≥ |X|, then P(Wg(Gα(m,X))) = 1 if and only if |Ai| − 2m−i ≤ |Bi| ≤ 2m−i for
1 ≤ i ≤ m, and

(b) If 2m ≤ |X|, then P(Wg(Gα(m,X))) = 2m

|X| if and only if 2m−i ≤ |Bi| ≤ |Ai| − 2m−i for
1 ≤ i ≤ m.

Proof. Let X, m, and g be as stated. We proceed by induction on m. Thus, we assume that
the corollary holds for all k < m, and prove that it holds for m. If m = 1, then (a) and (b)
follow immediately from Theorem 2. Now suppose that m > 1. By Theorem 2, it suffices to
establish only the forward implications.

We prove only (a), as the proof of (b) is similar. Suppose 2m ≥ |X| and P(Wg(Gα(m,X))) =
1. Then |X|−2m−1 ≤ 2m−1. By Theorem 2, it follows that |X|−2m−1 ≤ |B1| ≤ 2m−1. Lemma
1 tells us that 2m−1 ≥ |A1|. Recall from (3.2) and (3.5) of the proof of Proposition 1 that
Ai = A ′

i for 2 ≤ i ≤ m + 1. This fact along with the inductive hypothesis yields that
|Ai| − 2m−i ≤ |Bi| ≤ 2m−i for 2 ≤ i ≤ m. The proof is now complete. �

It is immediate from Corollary 2 that in the game Gα(1, X), |X| > 1, Player B maximizes
her probability of winning if and only if she chooses B1 ⊆ X and x0 ∈ X such that (B1, x0) is
allowable and 1 ≤ |B1| ≤ |X| − 1. Thus (for large values of |X|) there are subsets B1 ⊆ X of
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many different cardinalities which maximize B’s probability of winning Gα(1, X). Moreover,
in general, Player B has some freedom in choosing the sizes of the sets Bi to present to Player
A, even in the case when m = dlog2 |X|e. For instance, consider the game Gα(5, 19). Then
(again, employing a winning strategy) Player B can begin by choosing any B1 ⊆ [19] with the
property that 3 ≤ |B1| ≤ 16.

We end this note by determining conditions under which Player B has no freedom in choos-
ing the cardinalities of the sets B1, . . . , Bm, where (B1, . . . , Bm, x0) is a game vector which
maximizes B’s probability of winning Gα(m,X).

Corollary 3. Let X be a finite, nonempty subset of Z+ and let g := (B1, . . . , Bm, x0) be a
game vector of the game Gα(m,X) which maximizes Player B’s probability of winning (that is,
P(Wg(Gα(m,X))) = min(|X|,2m)

|X| ). Then the cardinalities of the sets Bi are uniquely determined
if and only if |X| = 2m (in which case Player B has a winning strategy by Corollary 1).

Proof. Let g := (B1, . . . , Bm, x0) be an arbitrary game vector which maximizes the probability
of Player B winning Gα(m,X) (in particular, g is allowable). Assume first that the cardinalities
of the sets Bi are uniquely determined. Then Theorem 2 implies that min(2m−1, |X|−2m−1) ≤
|B1| ≤ max(2m−1, |X| − 2m−1). We claim that 2m−1 = |X| − 2m−1. Otherwise, it is easy to see
that there exist integers n1 6= n2 satisfying both

(4.1) 0 ≤ ni ≤ |X|, and

(4.2) min(2m−1, |X| − 2m−1) ≤ ni ≤ max(2m−1, |X| − 2m−1)

for i = 1, 2. But then both |B1| = n1 and |B1| = n2 are possible. This gives us a contradiction
to the uniqueness of |B1|. Thus 2m−1 = |X| − 2m−1, and |X| = 2m.

Conversely, suppose that |X| = 2m. Then it follows immediately from Corollary 2 that
|Bi| = 2m−i for 1 ≤ i ≤ m. �
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