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Abstract. Let L be a first-order language with equality and let U be an L-structure of
cardinality �. If @0 � � � �, then we say that U is elementarily �-homogeneous iff
any two substructures of cardinality � are elementarily equivalent, and �-homogeneous
iff any two substructures of cardinality � are isomorphic. In this note, we classify the
elementarily �-homogeneous structures .A; f / where f W A! A is a function and � is a
cardinal such that @0 � � � jAj. As a corollary, we obtain a complete description of the
Jónsson algebras .A; f /, where f W A! A.
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1 Preliminaries

We begin by defining the focal point of our study.

Definition 1.1. Let L be a first-order language with equality and let U be an
L-structure of cardinality �. If @0 � � � �, then we say that U is elementarily
�-homogeneous iff any two substructures of cardinality � are elementarily equiva-
lent, and �-homogeneous iff any two substructures of cardinality � are isomorphic.

Likely the first appearance of this idea is in [9]. In this paper, W. R. Scott
characterizes the infinite abelian groups G which are jGj-homogeneous. More
recently ([3]), Manfred Droste classifies the elementarily �-homogeneous binary
relational structures .A;R/. We recall one of his main results.

Proposition 1.2 ([3, Theorem 1.1]). Let A be an infinite set of cardinality �, R
a binary relation on A, and � an infinite cardinal with � � �. Then .A;R/ is
elementarily �-homogeneous iff � D � and .A;R/ is isomorphic to one of the
following structures:

(i) .�;¿/,
(ii) .�;D/,

(iii) .�;¤/,
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792 G. Oman

(iv) .�; � � �/,
(v) .�;2/ (strict or inclusive),

(vi) .�;3/ (strict or inclusive).

Droste notes that this result shows that the structure .A;R/ is elementarily
�-homogeneous iff .A;R/ is �-homogeneous.

Most recently, the author studied this concept within the context of commutative
algebra. Let M be an infinite unitary module over the commutative ring R with
identity. We call M congruent iff N Š M for any submodule N of M with
jN j D jM j (in other words,M is jM j-homogeneous). Many results were obtained
in [8] and [7], including a complete characterization of the torsion-free congruent
modules as well as some statements which were shown to be independent of ZFC.

There is other literature related to this subject. Neumann ([6]) shows that ifG is
a permutation group on a set of infinite cardinality � and there is a cardinal � such
that either G is transitive on the collection of �-subsets of X (where � < �) or is
transitive on the set of �-subsets with complement of size � (where � D �), then
G is k-transitive for all finite k. Thus there is no non-trivial G-invariant relational
structure on X . In [5], strong structural results are obtained for a relational struc-
ture M such that, for some infinite cardinal � < jM j, there are just finitely many
non-isomorphic substructures of M of size �. There is also some model-theoretic
literature on structures in a language with just a single unary relation symbol; see
[10] for example.

In this paper, we study structures .X; f / where X is infinite and f W X ! X .
For every cardinal pair .�; �/ with @0 � � � �, we classify the structures .X; f /
of cardinality � which are elementarily �-homogeneous. We note several differ-
ences between the unary function and the binary relation environments. In partic-
ular, for each uncountable �, there are elementarily �-homogeneous unary struc-
tures of size � which are not �-homogeneous.

The outline of the paper is as follows. In Section 2, we characterize the count-
ably infinite structures .X; f / which are elementarily @0-homogeneous. In Sec-
tion 3, we characterize the uncountable structures .X; f / which are elementarily
jX j-homogeneous. In the final section, we state our main result (Corollary 4.1)
and apply the results of the paper to completely characterize the Jónsson algebras
.X; f /, where f W X ! X .

2 The countable case

Let X be a countably infinite set and f W X ! X be a function. In this section,
we determine precisely when .X; f / is elementarily @0-homogeneous. To begin,
we recall the following definition.
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On elementarily �-homogeneous unary structures 793

Definition 2.1. Let X be a set and f W X ! X a function. For x 2 X , we define
the orbit of x by O.x/ WD ¹f n.x/ W n 2 Nº (where f 0.x/ WD x). An orbit O.x/

is called a cycle iff f n.x/ D x for some n > 0.

Recall that a unary structure .X; f / is connected provided for every x; y 2 X ,
there exist natural numbers m and n such that f m.x/ D f n.y/. We will need the
following standard result (the easy proof is left to the reader).

Lemma 2.2. Let .X; f / be a unary structure. Define a relation � on X by x � y
iff f m.x/ D f n.y/ for some natural numbersm and n. Then� is an equivalence
relation. Further, each equivalence class is closed under f .

For x 2 X , the equivalence class Œx� of x is called a connected component.
These components will play a vital role in our classification results. We also intro-
duce some terminology which will be useful shortly.

Definition 2.3. Let f W X ! X , and suppose x 2 X . If y 2 X and f n.y/ D x

for some n 2 N, then we say that y lies above x, or that x lies below y.

Before disposing of the countable case, we state a final lemma. The result is
well known and the proof is easy, so we omit it.

Lemma 2.4. Let X be a set and f W X ! X a function. Then:

(1) Every finite orbit contains a cycle.

(2) Any two cycles are either equal or disjoint.

We now classify the countable elementarily @0-homogeneous unary structures
.X; f /.

Theorem 2.5. Let X be a countably infinite set and f W X ! X a function.
Then the structure .X; f / is elementarily @0-homogeneous iff one of the following
holds:

(i) .X; f / Š .N; S/ where S is the successor function on N.

(ii) .X; f / Š .N; P / where P.n/ D n � 1 for all n > 0 and P.0/ takes any
value in N.

(iii) X is the union of cycles, each of the same cardinality.

(iv) There exists some finite orbit O.x/ such that for each y … O.x/, f .y/ D x.

Proof. We first show that the structures in families (i)–(iv) are elementarily
@0-homogeneous. Toward this end, it clearly suffices to show that for any such
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structure, any two infinite substructures are isomorphic. We begin with (i). Con-
sider an arbitrary substructure Y of N. Let m be the least element of Y . Then
the mapping n 7! m C n is clearly an isomorphism between .N; S/ and .Y; S/.
Now for (ii). Let Y be a substructure of .N; P / where P.n/ D n � 1 for all
n > 0 (P.0/ is irrelevant). Clearly if m 2 Y , then also n 2 Y for every natural
number n � m. Hence if Y is infinite, then Y must coincide with N. Thus triv-
ially .Y; P / Š .N; P /. As for (iii), if X is the countably infinite union of cycles
each of the same cardinality, then clearly so is any infinite substructure Y of X .
It is now clear that Y and X must be isomorphic. Lastly, we examine (iv). Any
infinite substructure Y of X must clearly contain infinitely many points y with
f .y/ D x. Thus Y also contains O.x/. It is clear from these facts that X and Y
are isomorphic.

Now we consider an arbitrary countably infinite .X; f / that is elementarily
@0-homogeneous, and show that .X; f / belongs to one of the families (i)–(iv).

Suppose first that X contains an infinite orbit O.z/. Then the following must
be true in any infinite substructure Y of X since each is expressible in first-order
logic and is true in O.z/:

(a) There exists a unique element y0 with no preimage.

(b) For all y and all n 2 N, y; f .y/; f 2.y/; : : : ; f n.y/ are all distinct (requires
infinitely many sentences).

In particular, (a) and (b) are true of the entire space X . Let x 2 X be the unique
element with no preimage. We claim that X D O.x/. Suppose this is not the
case. Then there is some y 2 X that does not belong to O.x/. Consider the
structure X 0 WD O.x/ [ O.y/. Since x has no preimage in X , clearly x has no
preimage in X 0. But since y … O.x/ and (b) holds in X 0, it follows that y has
no preimage in X 0 either. Thus X 0 has two distinct elements with no preimage,
contradicting (a). Thus X D O.x/, and it follows that .X; f / Š .N; S/.

We now assume that every orbit of X is finite, and we consider the number of
connected components of X .

Suppose first that there are infinitely many connected components. Label them
C0; C1; : : : . Since every orbit is finite, it follows from Lemma 2.4 that every
connected component must contain a cycle. Choose a cycle cn � Cn for every n.
We first claim that there are infinitely many cycles ci which all have the same
length. For suppose this is not the case. Then in particular, only finitely many
cycles have the same length as c0. Let Y be the substructure of X generated by
the cycles cn as n ranges over N and let Y 0 be the substructure of X generated
by all cycles of different length than c0. Then as Y and Y 0 are infinite, Y � Y 0.
However, Y possesses an element of order jc0j whereas Y 0 does not. Since this
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On elementarily �-homogeneous unary structures 795

can be expressed in first-order logic, we obtain a contradiction. Thus there exists
an infinite collection of cycles, say ¹dn W n 2 Nº each of the same length l . Let
Y WD

S
n2N dn. Note that Y satisfies the sentence: “For every y, f l.y/ D y and

f j .y/ ¤ y for 1 � j < l .” Since X � Y , it follows that X satisfies this sentence
as well, and thus X is the union of cycles, each of the same cardinality.

We now assume that every orbit in X is finite, and that there are but finitely
many connected components. Thus some componentC must be infinite. It follows
from Lemma 2.4 that C contains a unique cycle c. Moreover, since every orbit is
finite, it follows again from Lemma 2.4 that c � O.x/ for every x 2 C . For
x 2 C , define the entrance number of x, E.x/, to be the least natural number n
for which f n.x/ 2 c. For each natural number n, we let Ln denote the collection
of all elements of C with entrance number n. Note that for n > 0:

If x 2 Ln; then f .x/ 2 Ln�1: (2.1)

Case 1: Some Li is infinite. Let n be least such that Ln is infinite. Then n > 0.
Since Ln�1 is finite, it follows from (2.1) that some x 2 Ln�1 has infinitely many
elements of Ln lying above it. Label these elements y0; y1; y2; : : : . Let Y be
the substructure of X generated by the yi s and let j WD jO.x/j. Note that the
following sentence can be expressed in first-order logic and is true in Y :

“There exists x such that O.x/ has order j and for all y … O.x/, f .y/ D x.”

Since X � Y , it follows that this sentence is also true in X and thus X belongs to
family (iv).

Case 2: Each Li is finite. Since C is infinite, it follows from .2:1/ that ev-
ery Li is nonempty. By König’s Lemma, we may pick a sequence of elements
x1; x2; x3; : : : such that each xi 2 Li and f .xiC1/ D xi . Let Y be the substruc-
ture of X generated by the xi . We claim that Y D X . Suppose by way of contra-
diction that there is some z 2 X � Y and consider the structure Y 0 WD Y [ O.z/.
Since Y � Y 0 and every member of Y has a preimage in Y , it follows that every
member of Y 0 has a preimage in Y 0. In particular, z has a preimage in Y 0. Since
z … Y , it follows that z is contained in a cycle. But then Y 0 contains two distinct
cycles, whereas Y does not, and this contradicts Y � Y 0. Hence X D Y . It is
now clear that .X; f / belongs to family (ii) and the proof is complete.

The previous proof yields the following immediate corollary.

Corollary 2.6. Let .X; f / be a countably infinite structure. Then .X; f / is ele-
mentarily @0-homogeneous iff .X; f / is @0-homogeneous.
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3 The uncountable case

In this section, we classify the uncountable structures .X; f / which are elemen-
tarily jX j-homogeneous. Though there are many similarities to the countable
case, there are also some differences. In particular, for every uncountable �,
there are elementarily �-homogeneous unary structures of size � which are not
�-homogeneous. We begin by defining a new theory T . This theory will be instru-
mental in proving the classification theorem of this section.

Definition 3.1. Let L be the language with equality containing a single unary func-
tion symbol S . Define the theory IST (infinitary successor theory) to be the set of
consequences of the following axioms:

(S1) S is one-to-one.

(S2) (schema) For each positive integer n: 8x W x; S.x/; S.S.x//; : : : ; Sn.x/ are
distinct.

(S3) (schema) For each positive integer n, there exist n distinct elements which
are not in the range of S .

We now define some terminology which will allow us to describe the models
of IST.

Definition 3.2. Consider a unary structure .X; f /. We call .X; f / an N-chain iff
.X; f / Š .N; S/ and a Z-chain iff .X; f / Š .Z; S/ where S is the successor
function on N and Z, respectively.

It is easy to see that the models of IST are precisely the (disjoint) union of an
infinite collection of N-chains along with another (possibly empty) disjoint union
of Z-chains. We will ultimately need to know that this theory is complete in order
to classify the elementarily �-homogeneous unary structures for uncountable �.
As a detailed proof of the completeness of IST will take us too far afield, we
sketch an outline containing the main ideas and leave the details to the reader.

Proposition 3.3. The theory IST is complete.

Sketch of proof. By inspection of the models of IST, the theory has countably
many 1-types over the empty set. Hence, by Proposition 2 of [10], any completion
of IST is !-stable, so has a countable saturated model. Since any countable satu-
rated model of IST consists of the disjoint union of @0 Z-chains and @0 N-chains,
any two such models are isomorphic. The completeness of IST follows.
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On elementarily �-homogeneous unary structures 797

Next we define a structure which will be of paramount importance in proving
the classification theorem of this section.

Definition 3.4. Let .X; f / be an uncountable unary structure. Call .X; f / a rake
provided there exists some x 2 X such that for all y 2 X �O.x/, f .y/ D x.

Let us agree to call the point x in the above definition the central point of the
rake and the elements not in O.x/ the initial points of the rake. The notation R.x/
will denote a rake with central point x. We will make use of the following two
lemmas.

Lemma 3.5. Suppose that .X; f / is a unary structure of uncountable cardinal-
ity �. If .X; f / is elementarily �-homogeneous and if .X; f / possesses a rake
substructure of cardinality �, then .X; f / is itself a rake.

Proof. Suppose that .X; f / is elementarily �-homogeneous of uncountable cardi-
nality � and letR.x/ be a rake substructure ofX of size �. Clearly we may assume
that y 2 R.x/ for every y 2 X for which f .y/ D x and y … O.x/ (otherwise we
may extendR.x/ to a rakeR0.x/which contains all such y). In this case, we claim
that in fact R.x/ D X . Suppose by way of contradiction that this is not the case.
Let y 2 X � R.x/ and consider the structure X 0 WD R.x/ [ O.y/. Suppose first
that O.y/ is a cycle. Since R.x/ � X 0, it follows that R.x/ also contains a cycle.
But then X 0 contains two distinct cycles whereas R.x/ only contains one. Since
this is a first-order property and X 0 � R.x/, we have a contradiction. It follows
that O.y/ is not a cycle. But note that this implies that the following sentence is
true in X 0:

“9z with the property that 9Št such that both f .t/ D z and t has empty preimage.”

To see this, let z D f .y/ and note that t must be y. However, it is clear upon
reflection that this sentence is not true in R.x/ (note in particular that there are
multiple x0 for which f .x0/ D x and x0 has empty preimage), and this is a contra-
diction. Hence R.x/ D X and the proof is complete.

To simplify notation, let us agree to call a rake of cardinality � a �-rake.

Lemma 3.6. Suppose that .X; f / is connected of uncountable cardinality � and
suppose � is regular. Then X possesses a �-rake substructure.

Proof. We assume that .X; f / is connected of uncountable regular cardinality �.
Fix an arbitrary x 2 X . For every nonnegative integer n, let Xn denote the collec-
tion of all elements of X which lie above f n.x/. Since X is connected, X is the
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798 G. Oman

union of the Xns. Since � is uncountable and regular, some Xn has cardinality �.
We may assume without loss of generality that X0 has cardinality �. For each
nonnegative n, we define Yn by Yn WD ¹y 2 X W f n.y/ D xº. Note that X0 is the
union of the Yns as n ranges over the nonnegative integers. Again, by regularity it
follows that some Yn has cardinality �. Choose the least such n. Note that n > 0,
and thus Yn�1 has cardinality smaller than �. Trivially, f maps Yn into Yn�1. Yet
again, since � is regular, there exists some y 2 Yn�1 whose preimage in Yn has
cardinality �. Thus we obtain our �-rake by taking the substructure generated by
all elements in the preimage of y not lying in O.y/.

We prove one final result before presenting our classification theorem.

Proposition 3.7. Suppose that .X; f / is connected of uncountable cardinality �
and that .X; f / is elementarily �-homogeneous. Then .X; f / is a rake.

Proof. Suppose by way of contradiction that .X; f / is connected of uncountable
cardinality � and elementarily �-homogeneous, yet .X; f / is not a rake. It follows
from Lemma 3.5 that X does not possess a �-rake substructure. It now follows
from Lemma 3.6 that � is singular of cofinality � < �. Thus there is a strictly
increasing sequence .�i W i 2 �/ of uncountable regular cardinals each larger
than � which is cofinal in �. Applying Lemma 3.6 and transfinite recursion, we
conclude that there exist �i -rake substructures Ri .xi / of X for each i 2 � such
that xi ¤ xj for i ¤ j . This implies the following:

(i) The set of initial points of the rake Rj .xj / is disjoint from the set of initial
points of R0.x0/ for j ¤ 0.

To see this, note that if y is an initial point of both Rj .xj / and R0.x0/, then
f .y/ D xj D x0. We claim:

(ii) For j ¤ 0, the rake Rj .xj / contains at most one of the initial points of
R0.x0/.

Indeed, suppose by way of contradiction that y and z are distinct initial points of
R0.x0/ which belong to Rj .xj /. It follows from (i) above that y and z are not
initial points of Rj .xj /, and hence y and z belong to O.xj /. Thus without loss of
generality, f i .y/ D z for some positive integer i . However, recall that y and z
are initial points of R0.x0/, and so this is impossible.

Now recall that each �i is larger than �. In particular, �0 > �. It follows
from (ii) that there are �0 initial points of the rake R0.x0/ with empty preimage in
Y WD

S
i2�Ri .xi /. Let Y 0 denote the substructure of Y obtained by deleting all

but one of the initial points of the rake R0.x0/ which have empty preimage in Y .
Note that jY j D jY 0j D � and hence Y � Y 0. But as in the proof of Lemma 3.5,
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On elementarily �-homogeneous unary structures 799

it follows that Y 0 satisfies the sentence:

“9z with the property that 9Št such that both f .t/ D z and t has empty preimage”

whereas Y does not satisfy it. This is a contradiction, and the proof is complete.

We now present our classification result for uncountable X .

Theorem 3.8. Suppose that .X; f / is a unary structure and jX j D � is uncount-
able. Then .X; f / is elementarily �-homogeneous iff one of the following holds:

(i) .X; f / is a disjoint union of � N-chains and � Z-chains, and � < �.

(ii) .X; f / is a union of cycles, each of the same cardinality.

(iii) .X; f / is a rake.

Proof. We first show that the structures in the families (i)–(iii) are elementarily
�-homogeneous. Consider (i). Suppose that Y is a substructure of X of the same
cardinality as X . It is not hard to see that Y and X are both models of the theory
IST. It follows from Proposition 3.3 that Y � X . Now suppose that X falls into
family (ii) or (iii). It is easy to see that any substructure of X of the same car-
dinality as X is actually isomorphic to X , hence must be elementarily equivalent
to X .

We now suppose that .X; f / is an arbitrary elementarily �-homogeneous struc-
ture of uncountable cardinality � and show that .X; f / belongs to one of the above
three families. To do this, we consider the number of connected components ofX .

Suppose first that X has � connected components; say ¹Ci W i 2 �º is the
collection of connected components of X . Pick an element xi 2 Ci for each i
and let S WD ¹xi W i 2 �º. Let Y be the union of all infinite orbits O.xi / for
xi 2 S and let Z be the union of all finite orbits O.xj / for xj 2 S . Note that
either Y or Z has cardinality �. We suppose first that Y has size �. Note that
Y is a model of IST. Since X � Y , it follows that X is also a model of IST.
In particular, X is a disjoint union of N-chains and Z-chains. We claim that X
has fewer Z-chains than N-chains. Suppose by way of contradiction that there
are at least as many Z-chains as N-chains. Then there are � Z-chains. Let X 0

be the union of all the Z-chains and let T be a transversal of the set of Z-chains.
Now define X 00 WD ¹O.x/ W x 2 T º. Since both X 0 and X 00 have size �, it follows
that X 0 � X 00. However, X 00 has elements with empty preimage whereas X 0

does not. Since this is a first-order property, we have a contradiction. We have
shown that .X; f / belongs to family (i) in this case. We now suppose that Z has
cardinality �. It follows from (1) of Lemma 2.4 that for each x 2 Z, O.x/ contains
a cycle. Hence X is elementarily equivalent to a union of � cycles. The proof that
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800 G. Oman

each cycle has the same cardinality proceeds just as in the countable case and is
omitted. Hence .X; f / belongs to family (ii).

We now suppose that X has � connected components and � < �. If any com-
ponent has cardinality �, then it follows from Lemma 3.5 and Proposition 3.7 that
X is a rake and .X; f / belongs to family (iii). Hence we now assume that X has �
connected components, � < �, and each connected component Ci has cardinality
less than �. Thus � is a singular cardinal. We now derive a contradiction to finish
the proof. Let  WDcf(�) and let .i W i 2 / be a strictly increasing sequence of
regular uncountable cardinals cofinal in �. For each i 2  , choose a component
Ci such that i � jCi j and such that Ci ¤ Cj for i ¤ j . Now choose a i -rake
substructure R.xi / of Ci for every i 2  (guaranteed by Lemma 3.6). Let X 0 be
the substructure generated by the rakes R.xi /. Now choose an arbitrary rake and
delete all but one of its initial points. Call the new structure X 00. Since X 0 and X 00

have cardinality �, it follows that X 0 � X 00. But as before, the sentence:

“9z with the property that 9Št such that both f .t/ D z and t has empty preimage”

is true inX 00 but false inX 0. This is a contradiction, and the theorem is proved.

4 Some consequences

Using the results of the previous section, we establish our main result.

Corollary 4.1. Let .X; f / be a unary structure of cardinality �, and suppose that
@0 � � � �. Then the following hold:

(1) If � D @0, then .X; f / is elementarily �-homogeneous iff .X; f / belongs to
one of the families (i)–(iv) of Theorem 2.5.

(2) If � > @0 and � D @0, then .X; f / is elementarily �-homogeneous iff .X; f /
is a disjoint union of N-chains, a union of cycles each of the same cardinality,
or a �-rake whose central point has finite orbit.

(3) If � > @0, then .X; f / is elementarily �-homogeneous iff .X; f / is the disjoint
union of N-chains and Z-chains and the number of Z-chains is strictly less
than �, a union of cycles each of the same cardinality, or a �-rake.

Proof. We assume that .X; f / is a unary structure of cardinality � and that @0 �
� � �.

(1) This is clear.
(2) Suppose that � > @0 and � D @0, and assume that .X; f / is elementarily

�-homogeneous. Note trivially that if Y is any substructure of size � D @0, then
Y is elementarily jY j-homogeneous. It follows easily from Theorem 2.5 that there
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exists a unique family F from (i)–(iv) of Theorem 2.5 such that every countably
infinite substructure of X belongs to F . It is now easy to see that .X; f / is a
disjoint union of N-chains, a union of cycles each of the same cardinality, or a
�-rake whose central point has finite orbit. Conversely, each such structure is
easily seen to be elementarily �-homogeneous.

(3) The verification proceeds analogously to (2) and is omitted.

Our final result is an application to Jónsson algebras. We recall that an infi-
nite algebra .X;F/ is said to be a Jónsson algebra provided F is countable, every
function f 2 F has finite arity, and every proper subalgebra of X has smaller
cardinality than X . Such algebras are of considerable interest to set theorists.
A cardinal � is said to be a Jónsson cardinal provided there is no Jónsson alge-
bra of cardinality �. We refer the reader to [2] for an excellent survey of Jónsson
algebras.

It is not hard to see that the structure .N; P / is a Jónsson algebra, whereP.n/ D
n � 1 for n > 0 and P.0/ D 0 (note that P.0/ can be defined arbitrarily and still
.N; P / is a Jónsson algebra). Using the results of this paper, we can easily prove
that this is the only Jónsson algebra with a single unary operation.

Corollary 4.2. Let X be an infinite set and let f W X ! X . The algebra .X; f / is
a Jónsson algebra iff .X; f / Š .N; P / where P.n/ D n � 1 for all n > 0.

Proof. Let X be an infinite set and let f W X ! X be a function. Suppose
that .X; f / is a Jónsson algebra. Clearly this implies that .X; f / is elementarily
jX j-homogeneous. Using Theorem 2.5 and Theorem 3.8, it is easy to check that
.X; f / Š .N; P /, where P.n/ D n � 1 for all n > 0.
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