On elementarily *k*-homogeneous unary structures

Greg Oman

Communicated by Manfred Droste

Abstract. Let *L* be a first-order language with equality and let \mathfrak{U} be an *L*-structure of cardinality κ . If $\aleph_0 \leq \lambda \leq \kappa$, then we say that \mathfrak{U} is elementarily λ -homogeneous iff any two substructures of cardinality λ are elementarily equivalent, and λ -homogeneous iff any two substructures of cardinality λ are isomorphic. In this note, we classify the elementarily λ -homogeneous structures (A, f) where $f : A \to A$ is a function and λ is a cardinal such that $\aleph_0 \leq \lambda \leq |A|$. As a corollary, we obtain a complete description of the Jónsson algebras (A, f), where $f : A \to A$.

Keywords. Connected component, cofinality, elementarily equivalent, Jónsson algebra.

2000 Mathematics Subject Classification. Primary 03C50, 03C05; secondary 03E99.

1 Preliminaries

We begin by defining the focal point of our study.

Definition 1.1. Let *L* be a first-order language with equality and let \mathfrak{U} be an *L*-structure of cardinality κ . If $\aleph_0 \leq \lambda \leq \kappa$, then we say that \mathfrak{U} is *elementarily* λ -homogeneous iff any two substructures of cardinality λ are elementarily equivalent, and λ -homogeneous iff any two substructures of cardinality λ are isomorphic.

Likely the first appearance of this idea is in [9]. In this paper, W. R. Scott characterizes the infinite abelian groups G which are |G|-homogeneous. More recently ([3]), Manfred Droste classifies the elementarily κ -homogeneous binary relational structures (A, R). We recall one of his main results.

Proposition 1.2 ([3, Theorem 1.1]). Let A be an infinite set of cardinality κ , R a binary relation on A, and λ an infinite cardinal with $\lambda \leq \kappa$. Then (A, R) is elementarily λ -homogeneous iff $\lambda = \kappa$ and (A, R) is isomorphic to one of the following structures:

- (i) (κ, \emptyset) ,
- (ii) $(\kappa, =)$,
- (iii) (κ, \neq) ,

(iv) $(\kappa, \kappa \times \kappa)$,

(v) (κ, \in) (strict or inclusive),

(vi) (κ, \ni) (strict or inclusive).

Droste notes that this result shows that the structure (A, R) is elementarily λ -homogeneous iff (A, R) is λ -homogeneous.

Most recently, the author studied this concept within the context of commutative algebra. Let M be an infinite unitary module over the commutative ring R with identity. We call M congruent iff $N \cong M$ for any submodule N of M with |N| = |M| (in other words, M is |M|-homogeneous). Many results were obtained in [8] and [7], including a complete characterization of the torsion-free congruent modules as well as some statements which were shown to be independent of ZFC.

There is other literature related to this subject. Neumann ([6]) shows that if *G* is a permutation group on a set of infinite cardinality κ and there is a cardinal λ such that either *G* is transitive on the collection of λ -subsets of *X* (where $\lambda < \kappa$) or is transitive on the set of λ -subsets with complement of size λ (where $\lambda = \kappa$), then *G* is *k*-transitive for all finite *k*. Thus there is no non-trivial *G*-invariant relational structure on *X*. In [5], strong structural results are obtained for a relational structure *M* such that, for some infinite cardinal $\mu < |M|$, there are just finitely many non-isomorphic substructures of *M* of size μ . There is also some model-theoretic literature on structures in a language with just a single unary relation symbol; see [10] for example.

In this paper, we study structures (X, f) where X is infinite and $f : X \to X$. For every cardinal pair (λ, κ) with $\aleph_0 \le \lambda \le \kappa$, we classify the structures (X, f) of cardinality κ which are elementarily λ -homogeneous. We note several differences between the unary function and the binary relation environments. In particular, for each uncountable κ , there are elementarily κ -homogeneous unary structures of size κ which are not κ -homogeneous.

The outline of the paper is as follows. In Section 2, we characterize the countably infinite structures (X, f) which are elementarily \aleph_0 -homogeneous. In Section 3, we characterize the uncountable structures (X, f) which are elementarily |X|-homogeneous. In the final section, we state our main result (Corollary 4.1) and apply the results of the paper to completely characterize the Jónsson algebras (X, f), where $f : X \to X$.

2 The countable case

Let X be a countably infinite set and $f : X \to X$ be a function. In this section, we determine precisely when (X, f) is elementarily \aleph_0 -homogeneous. To begin, we recall the following definition.

Definition 2.1. Let X be a set and $f : X \to X$ a function. For $x \in X$, we define the *orbit of* x by $\mathcal{O}(x) := \{f^n(x) : n \in \mathbb{N}\}$ (where $f^0(x) := x$). An orbit $\mathcal{O}(x)$ is called *a cycle* iff $f^n(x) = x$ for some n > 0.

Recall that a unary structure (X, f) is *connected* provided for every $x, y \in X$, there exist natural numbers *m* and *n* such that $f^m(x) = f^n(y)$. We will need the following standard result (the easy proof is left to the reader).

Lemma 2.2. Let (X, f) be a unary structure. Define a relation \sim on X by $x \sim y$ iff $f^m(x) = f^n(y)$ for some natural numbers m and n. Then \sim is an equivalence relation. Further, each equivalence class is closed under f.

For $x \in X$, the equivalence class [x] of x is called a *connected component*. These components will play a vital role in our classification results. We also introduce some terminology which will be useful shortly.

Definition 2.3. Let $f : X \to X$, and suppose $x \in X$. If $y \in X$ and $f^n(y) = x$ for some $n \in \mathbb{N}$, then we say that *y* lies above *x*, or that *x* lies below *y*.

Before disposing of the countable case, we state a final lemma. The result is well known and the proof is easy, so we omit it.

Lemma 2.4. Let X be a set and $f : X \to X$ a function. Then:

- (1) Every finite orbit contains a cycle.
- (2) Any two cycles are either equal or disjoint.

We now classify the countable elementarily \aleph_0 -homogeneous unary structures (X, f).

Theorem 2.5. Let X be a countably infinite set and $f : X \to X$ a function. Then the structure (X, f) is elementarily \aleph_0 -homogeneous iff one of the following holds:

- (i) $(X, f) \cong (\mathbb{N}, S)$ where S is the successor function on \mathbb{N} .
- (ii) $(X, f) \cong (\mathbb{N}, P)$ where P(n) = n 1 for all n > 0 and P(0) takes any value in \mathbb{N} .
- (iii) X is the union of cycles, each of the same cardinality.
- (iv) There exists some finite orbit $\mathcal{O}(x)$ such that for each $y \notin \mathcal{O}(x)$, f(y) = x.

Proof. We first show that the structures in families (i)–(iv) are elementarily \aleph_0 -homogeneous. Toward this end, it clearly suffices to show that for any such

G. Oman

structure, any two infinite substructures are isomorphic. We begin with (i). Consider an arbitrary substructure Y of N. Let m be the least element of Y. Then the mapping $n \mapsto m + n$ is clearly an isomorphism between (\mathbb{N}, S) and (Y, S). Now for (ii). Let Y be a substructure of (\mathbb{N}, P) where P(n) = n - 1 for all n > 0 (P(0) is irrelevant). Clearly if $m \in Y$, then also $n \in Y$ for every natural number $n \leq m$. Hence if Y is infinite, then Y must coincide with N. Thus trivially $(Y, P) \cong (\mathbb{N}, P)$. As for (iii), if X is the countably infinite union of cycles each of the same cardinality, then clearly so is any infinite substructure Y of X. It is now clear that Y and X must be isomorphic. Lastly, we examine (iv). Any infinite substructure Y of X must clearly contain infinitely many points y with f(y) = x. Thus Y also contains $\mathcal{O}(x)$. It is clear from these facts that X and Y are isomorphic.

Now we consider an arbitrary countably infinite (X, f) that is elementarily \aleph_0 -homogeneous, and show that (X, f) belongs to one of the families (i)–(iv).

Suppose first that X contains an infinite orbit $\mathcal{O}(z)$. Then the following must be true in any infinite substructure Y of X since each is expressible in first-order logic and is true in $\mathcal{O}(z)$:

- (a) There exists a unique element y_0 with no preimage.
- (b) For all y and all n ∈ N, y, f(y), f²(y),..., fⁿ(y) are all distinct (requires infinitely many sentences).

In particular, (a) and (b) are true of the entire space X. Let $x \in X$ be the unique element with no preimage. We claim that $X = \mathcal{O}(x)$. Suppose this is not the case. Then there is some $y \in X$ that does not belong to $\mathcal{O}(x)$. Consider the structure $X' := \mathcal{O}(x) \cup \mathcal{O}(y)$. Since x has no preimage in X, clearly x has no preimage in X'. But since $y \notin \mathcal{O}(x)$ and (b) holds in X', it follows that y has no preimage in X' either. Thus X' has two distinct elements with no preimage, contradicting (a). Thus $X = \mathcal{O}(x)$, and it follows that $(X, f) \cong (\mathbb{N}, S)$.

We now assume that every orbit of X is finite, and we consider the number of connected components of X.

Suppose first that there are infinitely many connected components. Label them C_0, C_1, \ldots . Since every orbit is finite, it follows from Lemma 2.4 that every connected component must contain a cycle. Choose a cycle $c_n \subseteq C_n$ for every n. We first claim that there are infinitely many cycles c_i which all have the same length. For suppose this is not the case. Then in particular, only finitely many cycles have the same length as c_0 . Let Y be the substructure of X generated by the cycles c_n as n ranges over \mathbb{N} and let Y' be the substructure of X generated by all cycles of different length than c_0 . Then as Y and Y' are infinite, $Y \equiv Y'$. However, Y possesses an element of order $|c_0|$ whereas Y' does not. Since this

can be expressed in first-order logic, we obtain a contradiction. Thus there exists an infinite collection of cycles, say $\{d_n : n \in \mathbb{N}\}$ each of the same length l. Let $Y := \bigcup_{n \in \mathbb{N}} d_n$. Note that Y satisfies the sentence: "For every y, $f^l(y) = y$ and $f^j(y) \neq y$ for $1 \leq j < l$." Since $X \equiv Y$, it follows that X satisfies this sentence as well, and thus X is the union of cycles, each of the same cardinality.

We now assume that every orbit in X is finite, and that there are but finitely many connected components. Thus some component C must be infinite. It follows from Lemma 2.4 that C contains a unique cycle c. Moreover, since every orbit is finite, it follows again from Lemma 2.4 that $c \subseteq O(x)$ for every $x \in C$. For $x \in C$, define the *entrance number* of x, E(x), to be the least natural number n for which $f^n(x) \in c$. For each natural number n, we let L_n denote the collection of all elements of C with entrance number n. Note that for n > 0:

If
$$x \in L_n$$
, then $f(x) \in L_{n-1}$. (2.1)

Case 1: Some L_i is infinite. Let *n* be least such that L_n is infinite. Then n > 0. Since L_{n-1} is finite, it follows from (2.1) that some $x \in L_{n-1}$ has infinitely many elements of L_n lying above it. Label these elements y_0, y_1, y_2, \ldots . Let *Y* be the substructure of *X* generated by the y_i s and let $j := |\mathcal{O}(x)|$. Note that the following sentence can be expressed in first-order logic and is true in *Y*:

"There exists x such that $\mathcal{O}(x)$ has order j and for all $y \notin \mathcal{O}(x)$, f(y) = x."

Since $X \equiv Y$, it follows that this sentence is also true in X and thus X belongs to family (iv).

Case 2: Each L_i is finite. Since *C* is infinite, it follows from (2.1) that every L_i is nonempty. By König's Lemma, we may pick a sequence of elements x_1, x_2, x_3, \ldots such that each $x_i \in L_i$ and $f(x_{i+1}) = x_i$. Let *Y* be the substructure of *X* generated by the x_i . We claim that Y = X. Suppose by way of contradiction that there is some $z \in X - Y$ and consider the structure $Y' := Y \cup O(z)$. Since $Y \equiv Y'$ and every member of *Y* has a preimage in *Y*, it follows that every member of *Y'* has a preimage in *Y'*. In particular, *z* has a preimage in *Y'*. Since $z \notin Y$, it follows that *z* is contained in a cycle. But then *Y'* contains two distinct cycles, whereas *Y* does not, and this contradicts $Y \equiv Y'$. Hence X = Y. It is now clear that (X, f) belongs to family (ii) and the proof is complete.

The previous proof yields the following immediate corollary.

Corollary 2.6. Let (X, f) be a countably infinite structure. Then (X, f) is elementarily \aleph_0 -homogeneous iff (X, f) is \aleph_0 -homogeneous.

AUTHOR'S COPY | AUTORENEXEMPLAR

G. Oman

3 The uncountable case

In this section, we classify the uncountable structures (X, f) which are elementarily |X|-homogeneous. Though there are many similarities to the countable case, there are also some differences. In particular, for every uncountable κ , there are elementarily κ -homogeneous unary structures of size κ which are not κ -homogeneous. We begin by defining a new theory T. This theory will be instrumental in proving the classification theorem of this section.

Definition 3.1. Let \mathfrak{L} be the language with equality containing a single unary function symbol *S*. Define the theory *IST* (infinitary successor theory) to be the set of consequences of the following axioms:

- (S1) S is one-to-one.
- (S2) (schema) For each positive integer $n: \forall x : x, S(x), S(S(x)), \dots, S^n(x)$ are distinct.
- (S3) (schema) For each positive integer n, there exist n distinct elements which are not in the range of S.

We now define some terminology which will allow us to describe the models of IST.

Definition 3.2. Consider a unary structure (X, f). We call (X, f) an \mathbb{N} -*chain* iff $(X, f) \cong (\mathbb{N}, S)$ and a \mathbb{Z} -*chain* iff $(X, f) \cong (\mathbb{Z}, S)$ where S is the successor function on \mathbb{N} and \mathbb{Z} , respectively.

It is easy to see that the models of IST are precisely the (disjoint) union of an infinite collection of \mathbb{N} -chains along with another (possibly empty) disjoint union of \mathbb{Z} -chains. We will ultimately need to know that this theory is complete in order to classify the elementarily κ -homogeneous unary structures for uncountable κ . As a detailed proof of the completeness of IST will take us too far afield, we sketch an outline containing the main ideas and leave the details to the reader.

Proposition 3.3. The theory IST is complete.

Sketch of proof. By inspection of the models of IST, the theory has countably many 1-types over the empty set. Hence, by Proposition 2 of [10], any completion of IST is ω -stable, so has a countable saturated model. Since any countable saturated model of IST consists of the disjoint union of \aleph_0 Z-chains and \aleph_0 N-chains, any two such models are isomorphic. The completeness of IST follows.

796

Definition 3.4. Let (X, f) be an uncountable unary structure. Call (X, f) a *rake* provided there exists some $x \in X$ such that for all $y \in X - \mathcal{O}(x)$, f(y) = x.

Let us agree to call the point x in the above definition the *central point* of the rake and the elements not in $\mathcal{O}(x)$ the *initial points* of the rake. The notation R(x) will denote a rake with central point x. We will make use of the following two lemmas.

Lemma 3.5. Suppose that (X, f) is a unary structure of uncountable cardinality κ . If (X, f) is elementarily κ -homogeneous and if (X, f) possesses a rake substructure of cardinality κ , then (X, f) is itself a rake.

Proof. Suppose that (X, f) is elementarily κ -homogeneous of uncountable cardinality κ and let R(x) be a rake substructure of X of size κ . Clearly we may assume that $y \in R(x)$ for *every* $y \in X$ for which f(y) = x and $y \notin O(x)$ (otherwise we may extend R(x) to a rake R'(x) which contains all such y). In this case, we claim that in fact R(x) = X. Suppose by way of contradiction that this is not the case. Let $y \in X - R(x)$ and consider the structure $X' := R(x) \cup O(y)$. Suppose first that O(y) is a cycle. Since $R(x) \equiv X'$, it follows that R(x) also contains a cycle. But then X' contains two distinct cycles whereas R(x) only contains one. Since this is a first-order property and $X' \equiv R(x)$, we have a contradiction. It follows that O(y) is not a cycle. But note that this implies that the following sentence is true in X':

" $\exists z$ with the property that $\exists ! t$ such that both f(t) = z and t has empty preimage."

To see this, let z = f(y) and note that *t* must be *y*. However, it is clear upon reflection that this sentence is not true in R(x) (note in particular that there are *multiple* x' for which f(x') = x and x' has empty preimage), and this is a contradiction. Hence R(x) = X and the proof is complete.

To simplify notation, let us agree to call a rake of cardinality κ a κ -rake.

Lemma 3.6. Suppose that (X, f) is connected of uncountable cardinality κ and suppose κ is regular. Then X possesses a κ -rake substructure.

Proof. We assume that (X, f) is connected of uncountable regular cardinality κ . Fix an arbitrary $x \in X$. For every nonnegative integer n, let X_n denote the collection of all elements of X which lie above $f^n(x)$. Since X is connected, X is the union of the X_n s. Since κ is uncountable and regular, some X_n has cardinality κ . We may assume without loss of generality that X_0 has cardinality κ . For each nonnegative n, we define Y_n by $Y_n := \{y \in X : f^n(y) = x\}$. Note that X_0 is the union of the Y_n s as n ranges over the nonnegative integers. Again, by regularity it follows that some Y_n has cardinality κ . Choose the least such n. Note that n > 0, and thus Y_{n-1} has cardinality smaller than κ . Trivially, f maps Y_n into Y_{n-1} . Yet again, since κ is regular, there exists some $y \in Y_{n-1}$ whose preimage in Y_n has cardinality κ . Thus we obtain our κ -rake by taking the substructure generated by all elements in the preimage of y not lying in $\mathcal{O}(y)$.

We prove one final result before presenting our classification theorem.

Proposition 3.7. Suppose that (X, f) is connected of uncountable cardinality κ and that (X, f) is elementarily κ -homogeneous. Then (X, f) is a rake.

Proof. Suppose by way of contradiction that (X, f) is connected of uncountable cardinality κ and elementarily κ -homogeneous, yet (X, f) is not a rake. It follows from Lemma 3.5 that X does not possess a κ -rake substructure. It now follows from Lemma 3.6 that κ is singular of cofinality $\lambda < \kappa$. Thus there is a strictly increasing sequence $(\lambda_i : i \in \lambda)$ of uncountable regular cardinals each larger than λ which is cofinal in κ . Applying Lemma 3.6 and transfinite recursion, we conclude that there exist λ_i -rake substructures $R_i(x_i)$ of X for each $i \in \lambda$ such that $x_i \neq x_j$ for $i \neq j$. This implies the following:

(i) The set of initial points of the rake R_j(x_j) is disjoint from the set of initial points of R₀(x₀) for j ≠ 0.

To see this, note that if y is an initial point of both $R_j(x_j)$ and $R_0(x_0)$, then $f(y) = x_j = x_0$. We claim:

(ii) For $j \neq 0$, the rake $R_j(x_j)$ contains *at most one* of the initial points of $R_0(x_0)$.

Indeed, suppose by way of contradiction that y and z are distinct initial points of $R_0(x_0)$ which belong to $R_j(x_j)$. It follows from (i) above that y and z are not initial points of $R_j(x_j)$, and hence y and z belong to $\mathcal{O}(x_j)$. Thus without loss of generality, $f^i(y) = z$ for some positive integer i. However, recall that y and z are initial points of $R_0(x_0)$, and so this is impossible.

Now recall that each λ_i is larger than λ . In particular, $\lambda_0 > \lambda$. It follows from (ii) that there are λ_0 initial points of the rake $R_0(x_0)$ with empty preimage in $Y := \bigcup_{i \in \lambda} R_i(x_i)$. Let Y' denote the substructure of Y obtained by deleting all but one of the initial points of the rake $R_0(x_0)$ which have empty preimage in Y. Note that $|Y| = |Y'| = \kappa$ and hence $Y \equiv Y'$. But as in the proof of Lemma 3.5,

it follows that Y' satisfies the sentence:

" $\exists z$ with the property that $\exists ! t$ such that both f(t) = z and t has empty preimage"

whereas Y does not satisfy it. This is a contradiction, and the proof is complete. \Box

We now present our classification result for uncountable X.

Theorem 3.8. Suppose that (X, f) is a unary structure and $|X| = \kappa$ is uncountable. Then (X, f) is elementarily κ -homogeneous iff one of the following holds:

- (i) (X, f) is a disjoint union of $\kappa \mathbb{N}$ -chains and $\lambda \mathbb{Z}$ -chains, and $\lambda < \kappa$.
- (ii) (X, f) is a union of cycles, each of the same cardinality.

(iii) (X, f) is a rake.

Proof. We first show that the structures in the families (i)–(iii) are elementarily κ -homogeneous. Consider (i). Suppose that *Y* is a substructure of *X* of the same cardinality as *X*. It is not hard to see that *Y* and *X* are both models of the theory IST. It follows from Proposition 3.3 that $Y \equiv X$. Now suppose that *X* falls into family (ii) or (iii). It is easy to see that any substructure of *X* of the same cardinality as *X* is actually isomorphic to *X*, hence must be elementarily equivalent to *X*.

We now suppose that (X, f) is an arbitrary elementarily κ -homogeneous structure of uncountable cardinality κ and show that (X, f) belongs to one of the above three families. To do this, we consider the number of connected components of X.

Suppose first that X has κ connected components; say $\{C_i : i \in \kappa\}$ is the collection of connected components of X. Pick an element $x_i \in C_i$ for each i and let $S := \{x_i : i \in \kappa\}$. Let Y be the union of all infinite orbits $\mathcal{O}(x_i)$ for $x_i \in S$ and let Z be the union of all finite orbits $\mathcal{O}(x_i)$ for $x_i \in S$. Note that either Y or Z has cardinality κ . We suppose first that Y has size κ . Note that Y is a model of IST. Since $X \equiv Y$, it follows that X is also a model of IST. In particular, X is a disjoint union of \mathbb{N} -chains and \mathbb{Z} -chains. We claim that X has fewer \mathbb{Z} -chains than \mathbb{N} -chains. Suppose by way of contradiction that there are at least as many \mathbb{Z} -chains as \mathbb{N} -chains. Then there are $\kappa \mathbb{Z}$ -chains. Let X' be the union of all the \mathbb{Z} -chains and let T be a transversal of the set of \mathbb{Z} -chains. Now define $X'' := \{ \mathcal{O}(x) : x \in T \}$. Since both X' and X'' have size κ , it follows that $X' \equiv X''$. However, X'' has elements with empty preimage whereas X' does not. Since this is a first-order property, we have a contradiction. We have shown that (X, f) belongs to family (i) in this case. We now suppose that Z has cardinality κ . It follows from (1) of Lemma 2.4 that for each $x \in Z, \mathcal{O}(x)$ contains a cycle. Hence X is elementarily equivalent to a union of κ cycles. The proof that each cycle has the same cardinality proceeds just as in the countable case and is omitted. Hence (X, f) belongs to family (ii).

We now suppose that X has λ connected components and $\lambda < \kappa$. If any component has cardinality κ , then it follows from Lemma 3.5 and Proposition 3.7 that X is a rake and (X, f) belongs to family (iii). Hence we now assume that X has λ connected components, $\lambda < \kappa$, and each connected component C_i has cardinality less than κ . Thus κ is a singular cardinal. We now derive a contradiction to finish the proof. Let $\gamma := cf(\kappa)$ and let $(\gamma_i : i \in \gamma)$ be a strictly increasing sequence of regular uncountable cardinals cofinal in κ . For each $i \in \gamma$, choose a component C_i such that $\gamma_i \leq |C_i|$ and such that $C_i \neq C_j$ for $i \neq j$. Now choose a γ_i -rake substructure $R(x_i)$ of C_i for every $i \in \gamma$ (guaranteed by Lemma 3.6). Let X' be the substructure generated by the rakes $R(x_i)$. Now choose an arbitrary rake and delete all but one of its initial points. Call the new structure X''. Since X' and X'' have cardinality κ , it follows that $X' \equiv X''$. But as before, the sentence:

" $\exists z$ with the property that $\exists !t$ such that both f(t) = z and t has empty preimage"

is true in X'' but false in X'. This is a contradiction, and the theorem is proved. \Box

4 Some consequences

Using the results of the previous section, we establish our main result.

Corollary 4.1. Let (X, f) be a unary structure of cardinality κ , and suppose that $\aleph_0 \le \lambda \le \kappa$. Then the following hold:

- (1) If $\kappa = \aleph_0$, then (X, f) is elementarily λ -homogeneous iff (X, f) belongs to one of the families (i)–(iv) of Theorem 2.5.
- (2) If $\kappa > \aleph_0$ and $\lambda = \aleph_0$, then (X, f) is elementarily λ -homogeneous iff (X, f) is a disjoint union of \mathbb{N} -chains, a union of cycles each of the same cardinality, or a κ -rake whose central point has finite orbit.
- (3) If $\lambda > \aleph_0$, then (X, f) is elementarily λ -homogeneous iff (X, f) is the disjoint union of \mathbb{N} -chains and \mathbb{Z} -chains and the number of \mathbb{Z} -chains is strictly less than λ , a union of cycles each of the same cardinality, or a κ -rake.

Proof. We assume that (X, f) is a unary structure of cardinality κ and that $\aleph_0 \le \lambda \le \kappa$.

(1) This is clear.

(2) Suppose that $\kappa > \aleph_0$ and $\lambda = \aleph_0$, and assume that (X, f) is elementarily λ -homogeneous. Note trivially that if Y is any substructure of size $\lambda = \aleph_0$, then Y is elementarily |Y|-homogeneous. It follows easily from Theorem 2.5 that there

exists a *unique* family \mathcal{F} from (i)–(iv) of Theorem 2.5 such that every countably infinite substructure of X belongs to \mathcal{F} . It is now easy to see that (X, f) is a disjoint union of \mathbb{N} -chains, a union of cycles each of the same cardinality, or a κ -rake whose central point has finite orbit. Conversely, each such structure is easily seen to be elementarily λ -homogeneous.

(3) The verification proceeds analogously to (2) and is omitted.

Our final result is an application to Jónsson algebras. We recall that an infinite algebra (X, \mathbf{F}) is said to be a *Jónsson algebra* provided \mathbf{F} is countable, every function $f \in \mathbf{F}$ has finite arity, and every proper subalgebra of X has smaller cardinality than X. Such algebras are of considerable interest to set theorists. A cardinal κ is said to be a *Jónsson cardinal* provided there is no Jónsson algebra of cardinality κ . We refer the reader to [2] for an excellent survey of Jónsson algebras.

It is not hard to see that the structure (\mathbb{N}, P) is a Jónsson algebra, where P(n) = n - 1 for n > 0 and P(0) = 0 (note that P(0) can be defined arbitrarily and still (\mathbb{N}, P) is a Jónsson algebra). Using the results of this paper, we can easily prove that this is the only Jónsson algebra with a single unary operation.

Corollary 4.2. Let X be an infinite set and let $f : X \to X$. The algebra (X, f) is a Jónsson algebra iff $(X, f) \cong (\mathbb{N}, P)$ where P(n) = n - 1 for all n > 0.

Proof. Let X be an infinite set and let $f : X \to X$ be a function. Suppose that (X, f) is a Jónsson algebra. Clearly this implies that (X, f) is elementarily |X|-homogeneous. Using Theorem 2.5 and Theorem 3.8, it is easy to check that $(X, f) \cong (\mathbb{N}, P)$, where P(n) = n - 1 for all n > 0.

Bibliography

- C. C. Chang and H. J. Keisler, *Model Theory*, North-Holland Publishing Company, Amsterdam, 1973.
- [2] E. Coleman, Jonsson groups, rings, and algebras, *Irish Math. Soc. Bull.* **36** (1996), 34–45.
- [3] M. Droste, *k*-homogeneous relations and tournaments, *Quart. J. of Mathematics* (*Oxford Second Series*) **40** (1989), 1–11.
- [4] H. Enderton, A Mathematical Introduction to Logic, Academic Press, New York, 1972.
- [5] P. Gibson, M. Pouzet and R. E. Woodrow, Relational structures having finitely many full-cardinality restrictions, *Discrete Math.* 291 (2005), 115–134.

G. Oman [6] P. M. Neumann, Homogeneity of infinite permutation groups, Bull. Lond. Math. Soc. 20 (1988), 305-312. [7] G. Oman, More results on congruent modules, J. Pure App. Alg. 213 (2009), no. 11, 2147-2155. [8] G. Oman, On modules M for which $N \cong M$ for every submodule N of size |M|, J. Comm. Alg. 1 (2009), no. 4, 679-699. [9] W. R. Scott, On infinite groups, Pacific J. Math. 5 (1955), 589-598. [10] C. Toffalori, Classification theory for a 1-ary function, Illinois J. Math. 35 (1991), 1–26. Received May 9, 2009; revised September 10, 2009.

Author information

Greg Oman, Department of Mathematics, Ohio University, Athens, OH 45701, USA. E-mail: ggoman@gmail.com