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Abstract

We begin with a review of some standard facts on the irrationality of
certain roots of positive integers. We then give a gentle and self-contained
introduction to Prüfer domains. Finally, we interpret the notion of irra-
tionality in this more general algebraic environment and show how to
translate the standard facts on irrationality to this setting.

1 Introduction

The irrationality of
√

2 is a staple of classical mathematics. Indeed, it was
known to the Pythagoreans thousands of years ago. Even today, one would be
hard-pressed to find an undergraduate ‘Discrete Structures’ or ‘Transition to
Advanced Mathematics’ course which does not delight (torture?) students with
a demonstration of this fact. Aside from the standard textbook arguments, there
are a staggering number of published proofs in the literature, some of which are
relatively recent. Indeed, they range from analytic to number-theoretic to order-
theoretic to geometric. We refer the reader to Bloom [3], Ferreno [4], Gauntt
[7], Kalman [11], and Miller [12] for a sampling of some nifty arguments.

More generally, one learns (possibly in an undergraduate course on elemen-
tary number theory) that if k is a positive integer which is not a perfect square,
then

√
k is irrational (see Flanders [5], Ungar [14], and Waterhouse [15] for a

variety of proofs of this assertion). Even more generally, if k is positive in-
teger which is not an nth power (n ≥ 1 an integer), then n

√
k is irrational.

The standard proof of this fact uses unique factorization properties of the in-
tegers. However, several authors have presented alternative proofs which are
not number-theoretic in nature (see Beigel [2] and Schielack [13], for example).
All of these facts follow immediately from the so-called Integral Root Theo-
rem which states that if a rational number r is a root of a monic polynomial
f(X) ∈ Z[X],1 then r ∈ Z. A quick proof of the irrationality of n

√
k, k not
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1Z[X] denote the ring of polynomials with coefficients in Z.
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an nth power, proceeds as follows. Note first that n
√
k is a root of the monic

polynomial Xn − k ∈ Z[X]. If n
√
k were rational, then n

√
k ∈ Z by the Integral

Root Theorem. This contradicts our assumption that k is not an nth power.
The standard proof of the Integral Root Theorem again uses unique factoriza-
tion properties of the integers, and again, there exist slick alternative arguments
(see Gilat [8], for instance).

The purpose of this note is to investigate the Integral Root Theorem and
irrationality in a more general algebraic environment. In particular, we study
these concepts relative to Prüfer domains (we relegate the definition to the next
section), the class of which properly includes the class of principal ideal domains
along with many domains which do not possess nice factorization properties (this
will be made more explicit shortly).

2 Main Results

We begin by recalling a definition which will play a fundamental role throughout
this note.

Definition 1 Let D be a commutative integral domain (that is, a commutative
ring with identity without zero divisors). Let K be the set of all formal symbols
x
y where x, y ∈ D and y 6= 0. Define x1

y1
= x2

y2
if and only if x1y2 = x2y1.2

Further, we define the following addition and multiplication on K:

x1
y1

+
x2
y2

:=
x1y2 + x2y1

y1y2
, and (1)

x1
y1
· x2
y2

:=
x1x2
y1y2

. (2)

Then K is a field, called the fraction field (or quotient field or field of fractions)
of D.

It is routine to verify that the above operations yield a field structure on
K. The additive identity of K is 0

1 , the multiplicative identity is 1
1 , and the

multiplicative inverse of a
b is b

a for a 6= 0 (these assertions are all trivial to
check). Moreover,

the map d 7→ d

1
is a ring isomorphism of D into K. (3)

We identify D and its image in K (and hence view D as a subring of K).
The impetus for this construction is to obtain a field K which is, in some
sense, smallest with respect to containing D. In fact, K is characterized up
to isomorphism by the following so-called universal property: if F is any field
containing D and f : D → F is an injective ring homomorphism, then f may be

2More formally, the relation ∼ defined by x1
y1
∼ x2

y2
iff x1y2 = x2y1 is an equivalence

relation on K.
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uniquely extended to a homomorphism of K into F . The reader may not find
surprising the fact that the fraction field of Z is isomorphic to Q; see Hungerford
[10], pp. 142–144 for further details.

We now study a method of constructing rings which are “sandwiched” be-
tween a domain D and its quotient field K. This is done by means of a multi-
plicatively closed set, defined as follows.

Definition 2 Let D be a domain and suppose S ⊆ D. Then S is multiplicatively
closed provided 0 /∈ S, 1 ∈ S, and for any x, y ∈ S, also xy ∈ S.

We are now ready to present the construction. Let D be a domain with
quotient field K and suppose S ⊆ D is multiplicatively closed. Then one checks
at once that DS := {ds : d ∈ D, s ∈ S} is a subring of K which contains D. We
call DS the quotient ring of D with respect to S. We pause to illustrate this
concept with several examples.

Example 1 Let D be a domain, and let S := {1}. Then S is multiplicatively
closed, and DS

∼= D.

Example 2 Suppose D is a domain, and set S := D\{0}. Then (since D is a
domain) S is multiplicatively closed, and DS

∼= K.

Example 3 S = {2n : n ≥ 0} is a multiplicatively closed subset of the ring Z
of integers, and ZS is the ring of dyadic rational numbers.

Example 4 Let D be a domain and let P be a prime ideal of D. Then S :=
D\P is multiplicatively closed, and the ring DS (commonly denoted by DP ) is
called the localization of D with respect to P .

We are almost ready to define Prüfer domains. First, we need one more
definition.

Definition 3 ([10], p. 409) Let D be an integral domain with quotient field
K. Then D is a valuation domain if and only if for every nonzero x ∈ K, either
x ∈ D or x−1 ∈ D (recall from (3) that we identify D with its canonical image
in K).

It is also possible to define valuation domains internally as follows: a domain
D is a valuation domain if and only if for any a, b ∈ D: either a|b or b|a (here,
a|b means that there is x ∈ D such that ax = b). To help the reader intuit this
definition, we present two more examples.

Example 5 Every field is a valuation domain.

To see why this is true, suppose F is a field and let a, b ∈ F be arbitrary. If
a = b = 0, clearly a|b. Suppose now that a 6= 0. Then a(a−1b) = b, and again
a|b.
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Example 6 Let p be a prime number. Then the ring Z〈p〉 is a valuation do-
main.3

Proof: Consider arbitrary nonzero elements x, y ∈ Z〈p〉 (in case x = 0 or
y = 0, it is obvious that one divides the other). We may write x = a

b and y = c
d ,

where

p divides neither b nor d. (4)

Write a = pm1k1 and c = pm2k2, where m1,m2 ≥ 0 and k1, k2 are integers such
that

p divides neither k1 nor k2. (5)

We may assume without loss of generality that m1 ≤ m2. Then

y

x
=

c
d
a
b

=
cb

ad
=
pm2k2b

pm1k1d
=
pm2−m1k2b

k1d
:= z. (6)

It follows from (4) and (5) that z ∈ Z〈p〉. Therefore, x|y in Z〈p〉, and we have
shown that Z〈p〉 is a valuation domain. QED

Finally, we are ready to introduce Prüfer domains.

Definition 4 ([10], p. 409) Let D be an integral domain. Then D is a Prüfer
domain if and only if DJ is a valuation domain for every maximal ideal J of
D.4

The class of Prüfer domains is a vast and important class of domains which
properly contains the class of principal ideal domains and, more generally, the
class of Dedekind domains (domains for which every proper nonzero ideal is
uniquely a finite product of prime ideals). Indeed, some 40 equivalent definitions
of Prüfer domains appear in the literature. It is not our purpose to recount them
here; we refer the reader instead to Fontana [6] and to Chapter 4 of Gilmer [9]
for a sampling.

Now let D be a domain and let a, b ∈ D\{0}. Then a gcd of a and b is
an element c ∈ D such that c|a, c|b, and whenever x ∈ D divides both a and
b, then x|c. Not every Prüfer domain has the property that any two nonzero
elements of D have a GCD (that is, not every Prüfer domain is a GCD domain).
A simple example is the following:

Example 7 Z[
√

10] := {a+ b
√

10: a, b ∈ Z} is a Prüfer domain for which not
every pair of nonzero elements has a gcd.5

3Recall from Example 4 that Z〈p〉 = {a
b

: a ∈ Z, b ∈ Z\〈p〉}.
4If J is a maximal ideal of a commutative ring R, then R/J is a field, hence also an integral

domain. It follows that J is a prime ideal of R; hence DJ is well-defined.
5A self-contained verification of this fact would take us too far afield, but we sketch details

for the interested reader. This domain Z[
√

10] is a classical example of a Dedekind domain
which is not a principal ideal domain (p. 407 of [10]). As every Dedekind domain is Prüfer,
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We pause to recall the Integral Root Theorem and sketch the standard proof.

Theorem 1 (Integral Root Theorem for Z) If r ∈ Q is a root of a monic
polynomial f(X) ∈ Z[X], then r ∈ Z.

Proof: Let f(X) = a0 + a1X + · · ·+ an−1X
n−1 +Xn, where each ai ∈ Z

and suppose that f(r) = 0. Without loss of generality, we may assume that

r =
p

q
, where p and q are relatively prime integers. (7)

Multiplying both sides of f(r) = 0 by qn and rearranging algebra shows that

q|pn; since p and q are relatively prime, q|p. (8)

But then q = ±1, and we see that r ∈ Z. QED

Recall that the usual proofs of (7) and (8) above employ the fact that every
pair of nonzero integers has a gcd. Because of Example 7, the above proof of the
Integral Root Theorem for Z cannot be translated mutatis mutandis to Prüfer
domains. Perhaps surprisingly, it is possible to prove the more general result
for Prüfer domains in a way that avoids number theory.

We now work toward establishing the following theorem (cf. [9], Theorem
23.4):

Theorem 2 (Integral Root Theorem for Prüfer Domains) Let D be a
Prüfer domain with quotient field K. If α ∈ K is a root of a monic polynomial
f(X) ∈ D[X], then α ∈ D.

Translated to ideal-theoretic terms, Theorem 2 says that a Prüfer domain is
integrally closed. To prove this theorem, we will need two lemmas. The lemmas
are well-known, but we present short, self-contained proofs.

Lemma 1 ([9], Theorem 17.5) Every valuation domain is integrally closed.

Proof: Let V be a valuation domain with quotient field K. Suppose further
that x ∈ K and

v0 + v1x+ v2x
2 + · · ·+ vn−1x

n−1 + xn = 0 (9)

for some v0, v1, . . . , vn−1 ∈ V . We will show that x ∈ V . Clearly we may
assume that x 6= 0 and thus n > 1. Since V is a valuation domain, it follows by
definition that either x ∈ V or 1

x ∈ V . If x ∈ V , we have what we need. Thus
suppose that 1

x ∈ V . Multiplying both sides of (9) by 1
xn−1 , we get

Z[
√

10] is Prüfer. It is known (see p. 85 of Ali [1], for example) that a Prüfer domain is
a GCD domain if and only if it is a Bezout domain, that is, every finitely generated ideal
is principal. Now, if Z[

√
10] were a GCD domain, then Z[

√
10] would be a Bezout domain.

However, since Z[
√

10] is Noetherian, this would imply that Z[
√

10] is a principal ideal domain,
a contradiction.
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v0
xn−1

+
v1
xn−2

+ · · ·+ vn−1 + x = 0. (10)

Recall that 1
x ∈ V . As V is a ring and v0, . . . , vn−1 ∈ V , also v0

xn−1 ,
v1

xn−2 , . . . , vn−1
belong to V . Solving (10) for x, we see that x ∈ V . QED

The proof of our next lemma requires the following definition.

Definition 5 Let I and J be ideals of a commutative ring R. Then the ideal
quotient of I by J , denoted [I : J ], is defined by [I : J ] := {r ∈ R : rJ ⊆ I} (that
is, r ∈ [I : J ] if and only if rj ∈ I for every j ∈ J).

One checks easily that for any ideals I and J of a commutative ring R,
[I : J ] is an ideal of R. We now show that the intersection of all localizations of
a domain D at its maximal ideals is equal to D.

Lemma 2 ([9], Theorem 4.10) Let D be a domain, and let {Ji : i ∈ I} be
the collection of maximal ideals of D. Then D =

⋂
i∈I DJi

.

Proof: For any d ∈ D and i ∈ I, we have d = d
1 ∈ DJi (as Ji is by

definition a proper ideal of D, 1 /∈ Ji). Therefore, D ⊆
⋂

i∈I DJi
. For the other

containment, let

a

b
∈

⋂
i∈I

DJi
. (11)

We will show that a
b ∈ D. First we claim that the ideal quotient [〈b〉 : 〈a〉] = D

(here 〈b〉 and 〈a〉 are the principal ideals generated by b and a, respectively).
Suppose by way of contradiction that [〈b〉 : 〈a〉] 6= D. Then [〈b〉 : 〈a〉] is a proper
ideal of D, whence [〈b〉 : 〈a〉] ⊆ Jk for some k ∈ I. By (11), a

b ∈ DJk
. Thus

a
b = d

s for some d ∈ D and s ∈ D\Jk, and we deduce that sa = bd. But
then by definition, s ∈ [〈b〉 : 〈a〉]. Recall that [〈b〉 : 〈a〉] ⊆ Jk, and therefore
s ∈ Jk, a contradiction. We conclude that [〈b〉 : 〈a〉] = D after all, and hence
1 ∈ [〈b〉 : 〈a〉]. But this implies that 1 · a = a ∈ 〈b〉; therefore there exists c ∈ D
such that a = cb. We conclude that a

b = c ∈ D, as required. QED

Finally, we are equipped to prove Theorem 2, which asserts that all Prüfer
domains are integrally closed.

Proof: Let D be a Prüfer domain with quotient field K, and suppose that
α ∈ K is a root of some monic polynomial f(X) ∈ D[X]. We will show that
α ∈ D. Toward this end, let J be an arbitrary maximal ideal of D. Then
note that as D ⊆ DJ ⊆ K, K is also the quotient field of DJ . Further (since
D ⊆ DJ), f(X) ∈ DJ [X]. Since DJ is a valuation domain, it follows from
Lemma 1 that DJ is integrally closed. Thus α ∈ DJ . As J was an arbitrary
maximal ideal of D, we conclude from Lemma 2 that α ∈ D. QED

Now that we have Theorem 2 under our belt, we return to our discussion of
irrationality. Recall the following well-known number-theoretic fact mentioned
in the Introduction:
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Fact 1 If k and n are positive integers and k is not an nth power, then n
√
k is

irrational.

We conclude the paper by generalizing this result to Prüfer domains. This
generalization is of interest because its proof (via the proof of the Integral Root
Theorem for Prüfer domains) does not invoke the gcd, nor any order-theoretic,
analytic, combinatorial, or geometric methods. Informally, the following theo-
rem says that if d is an element of a Prüfer domain D which is not an nth power
in D, then any nth root of d is “irrational.” 6

Theorem 3 Let D be a Prüfer domain with quotient field K. Further, let d ∈ D
and let n be a positive integer. If d is not an nth power in D, then there does
not exist α ∈ K such that αn = d.

Proof: We assume that D is a Prüfer domain with quotient field K, d ∈ D,
and that d is not an nth power in D. Suppose by way of contradiction that
there exists α ∈ K such that αn = d. Then α is a root of the monic polynomial
f(X) := Xn − d ∈ D[X]. Since D is integrally closed, α ∈ D. But then d is an
nth power in D, a contradiction. QED
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