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Abstract

There is no shortage of papers and books which address the topic of
mathematical problem-solving. The primary objective of this note is to
model, via an explicit example, the activity of mathematical problem-
creating.

1 Introduction

George Polya’s classical text How to Solve It ([7]) is one of many excellent
resources which gives the reader strategies for mathematical problem-solving.
Indeed, there are many books, papers, and websites which address this topic;
for a sampling, see [1]–[6] and [8]. Certainly the activity of problem-solving
is ubiquitous both in the classroom and in the world of research mathematics.
One could also argue that the process of problem-creating plays an equally
fundamental role in the development of new mathematics (more on this below).
Allow me to begin by giving some context in which to interpret the title of this
paper. Several questions may come to your mind. Is this a paper about how to
come up with recreational problems to pose in The Monthly? Will it give me a
blueprint for devising undergraduate thesis topics? In part, the answer is “yes”
to both questions.

Now, you might ask

1. “How will reading this paper benefit me?”, or

2. “What useful things do you have to relate to me that haven’t already been
communicated in the literature?”

To answer question (1), let me start by stating that the intended audience of
this note includes both students and faculty. For students with little to no
research experience, my desire is that this paper will serve as a microcosm for
how more advanced mathematical research is done. For students and faculty
alike, I hope this note will encourage engagement in the very rewarding activity
of problem-posing.

∗University of Colorado, Colorado Springs
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I will now comment on query (2). As stated in the abstract, there is no
dearth of articles and websites which contain problem-solving and research ad-
vice. However, to my knowledge, there does not exist a book or paper which
illustrates the process of creating and solving a mathematical problem. Now, it
is true that mathematicians (as a whole) consistently solve open problems in the
literature. However, much of the mathematical landscape is developed laterally
instead of vertically; to develop it as such, one needs to be adept at the skill of
inventing problems, not just solving them. Moreover, an important question I
hear quite regularly from my advisees, from undergraduates to Ph.D. students,
upon giving them problems on which to work is this: how did you come up with
that problem? Though it may be difficult or impossible to give a fully satisfac-
tory answer, the question is significant enough that it merits being addressed.
The main objective of this article is to bring to light the informal self-talk in
which one often engages when in search of that elusive “flash of insight”. We
will do this by modeling, via an explicit example, the process of coming up with
and solving a mathematical problem.

Before digging in, kindly let me make one last point: just as musical talent
is not imparted by merely watching a musician compose a symphony, so too
is it unrealistic to expect that reading this note will immediately result in a
newfound problem-posing ability. The goal of this paper is not so much to teach
one how to problem-pose (if this is even possible), but to inspire one to try. So
now, without further ado, let’s roll up our sleeves and get to work!

2 Blood and Guts

Our first task is to choose a field in which to work. I would prefer to avoid
analysis, combinatorics, geometry, and number theory. Of course, there are
many beautiful problems in these areas, but they are already well-represented
on The Putnam Exam as well as in the problem sections of various mathematical
periodicals. I also would like to pick a field outside of my research specialty to
show you that it is actually possible to discover new mathematical gems in an
area you know little about. Moreover, it is possible to accomplish this while still
an undergraduate. In fact, I devised a problem during my junior year of college
which ultimately appeared in Math Horizons. It took me awhile to submit it
for publication simply because I had no idea that my problem was publishable.

Group theory seems as good as any to fit the bill, so let’s run with it and
see what we can do. Let me assuage any concerns that the mathematics will be
overly technical: if you know the definition of “group” and “homomorphism,”
then you are sufficiently equipped to digest the content of this paper.

Now that we have our area, we need to find a problem. If you are not a group
theorist, possibly this seems like a fool’s errand. It is actually quite a bit simpler
than you may think! We will let the mantra “think deeply of simple things” be
our guide (this quote, originally attributed to Gauss, was reinvigorated in the
20th century by Arnold Ross. He made it the motto of his famous Ross Program
in Mathematics for Gifted High Schoolers).
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How simple, you ask? Well, what is the objective of group theory? To study
groups, of course. We may as well start with the very definition of a group. We
recall that a group is a triple (G, ∗, e) consisting of a set G, an operation ∗ on G,
and an element e in G for which ∗ is associative, e is a two-sided identity with
respect to ∗, and every member of G has a two-sided inverse with respect to e.
Now what? As Hersh poetically states in [3], “Generalization is a much-traveled
high road to publication.” Let’s venture down this road and see where it leads.
In what ways might we generalize the definition of a group? Let’s remove the
inverse axiom. Do we have something new? Sadly, no. We have a monoid. What
if we remove the identity axiom as well? We now have a semigroup. Since there
are journals devoted solely to the theory of semigroups, we probably won’t find
anything new here. What if we remove only the associativity axiom? In this
case, we get a loop. Even if you are not familiar with all these terms, a Google
search will lead you to conclude rather quickly that we have reached a dead end.
But remember that on the quest to uncover fruitful questions, eliminating dead
ends is often part of the job. So let’s not lose all hope just yet; we’ve only just
begun...

Aside from groups, what other objects assume a central role in group theory?
Special maps between groups called homomorphisms is a most reasonable answer
to this question. Recall that if G and H are groups, and f : G→ H is a function,
then f is a homomorphism from G to H if f(xy) = f(x)f(y) for all x, y ∈ G.
Consider the formalization in first-order logic below:

∀x∀y f(xy) = f(x)f(y).

How might we generalize this definition? Possibly the most obvious way is to
replace the universal quantifiers with existential quantifiers to get

∃x∃y f(xy) = f(x)f(y). (1)

But one soon realizes that this generalization is actually much too broad to be
of any interest. Indeed, any function f : G→ H which satisfies f(e) = e satisfies
(1) (choose x := y := e). Moreover, if x and y are any distinct non-identity
elements of G, then we may define f(x) and f(y) to be arbitrary elements of
H and then set f(xy) := f(x)f(y). Now extend f to G arbitrarily. Again, (1)
holds. So it seems we’ve generalized so much that we have nothing interesting
to say.

OK, so now let’s try splitting the difference by only changing one of the
universal quantifiers. But which quantifier do we change? We may as well just
pick one and see what happens:

∀x∃y f(xy) = f(x)f(y). (2)

But again, we see that this condition is too general to be of interest. I leave
it to you to verify that a function f : G → H satisfies (2) above if and only if
f(e) = e. Darn. Let’s try the other option:

∃x∀y f(xy) = f(x)f(y).
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Let us say that such an f is homomorphic at x. Have we finally uncovered
something interesting? Before attempting to answer this, let’s try to “feel out”
this new definition. A natural starting point is to consider functions f : G→ H
which are homomorphic at e. Note that f is homomorphic at e if and only if
f(ey) = f(y) = f(e)f(y) for all y ∈ G if and only if f(e) = e. Let’s pause to
record this observation.

f is homomorphic at e if and only if f(e) = e. (3)

On one hand, it is mildly amusing that every function f which is homomorphic at
e satisfies the familiar equation f(e) = e (which holds for any homomorphism).
On the other, any function f : G→ H which satisfies f(e) = e is homomorphic
at e, so we haven’t uncovered anything interesting just yet.

What do we do now? The canonical next step is to analyze functions which
are homomorphic elsewhere. Thus, suppose that G and H are groups and
f : G → H is a function which is homomorphic at g for some g ∈ G. The
following (somewhat vague) open-ended question is now staring us directly in
the face: what can we say about f?

We have now arrived at a make-or-break step in our investigation. You may
ask, “What sorts of questions should we be asking about f?” I cannot overstate
my response: simple ones! We already have a starting point. Recall from (3)
that if f is homomorphic at e, then f(e) = e. Do we get the same conclusion
if f is homomorphic at g for arbitrary g ∈ G? Let us check. If the answer is
yes, then we are probably going to need to use e in our proof somewhere as
well as the fact that f is homomorphic at g. So somewhere in our proof, we
will probably need to see both “e” and “f(g · something).” Therefore, what
is the natural choice for “something”? You guessed it... e! Now observe that
f(g) = f(ge) = f(g)f(e). So canceling f(g), we see that f(e) = e. Combining
this result with (3) above, we have the following:

if f is homomorphic at some g ∈ G, then f is homomorphic at e. (4)

Let’s keep digging, using (4) as our guide. We have shown that if f is
homomorphic at some g ∈ G, then f is homomorphic at e. Said another way,
setting K := {g ∈ G : f is homomorphic at g}: if K is nonempty, then e ∈ K.
It is not hard to see that K may be empty. Indeed, if f : G→ H and f(e) 6= e,
then by (3) and (4), f is not homomorphic at any g ∈ G. But we have shown
that if K is nonempty, then e ∈ K. What well-studied subsets of G have this
property? Well, subgroups certainly do. So maybe if K is nonempty, then K is a
subgroup of G. Let’s see if this is true. Assume that f is homomorphic at a and
at b. Then for any g ∈ G, f((ab)g) = f(a(bg)) = f(a)f(bg) = f(a)(f(b)f(g)) =
(f(a)f(b))f(g) = f(ab)f(g), and hence f is homomorphic at ab. It remains to
check if f is homomorphic at a−1. We want to see if f(a−1g) = f(a−1)f(g)
for all g ∈ G. If this is true, we will probably need to use the fact that f is
homomorphic at a. In this case, we expect to need to use f , a, a−1, and g
in our argument. As above, we may just string them together (strategically)
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and then see where we end up: f(g) = f(aa−1g) = f(a)f(a−1g). Therefore,
f(a−1g) = (f(a))−1f(g). What we would like now is for (f(a))−1 = f(a−1).
This is clearly equivalent to f(a)f(a−1) = e. Since f is homomorphic at a, this
reduces to f(aa−1) = f(e) = e. The final equation is true by (3) and (4). So
we have shown that

if K is nonempty, then K is a subgroup of G. (5)

OK, so now we have a result that is slightly less trivial than our previous
observations. What can we use it for? Can we specialize this result to a “simple”
(no pun intended) class of groups to obtain something interesting? Where do
we start? Well, since every group is the union of its cyclic subgroups, there is
a sense in which the cyclic groups form the building blocks of the class of all
groups. Can you think of a nifty way to apply (5) to a cyclic group G := 〈g〉?
Suppose that f : G → H is homomorphic at g. Then the set of all elements
x of G for which f is homomorphic at x is a subgroup of G which contains g.
Therefore,

if f : 〈g〉 → H is homomorphic at g, then f is a homomorphism. (6)

Where are we now? We seem to have uncovered an interesting property in (6)
above. Let’s translate (6) into a less formal statement: every cyclic group G
has an element g ∈ G (namely, a generator) for which every function f : G→ H
which is “locally homomorphic” at g is “globally homomorphic.” Keeping with
this theme, can you think of a canonical direction in which to continue our
investigation? How about this:

Question. Which groups G possess the following property (P): there exists
g ∈ G such that every f : G→ G which is homomorphic at g is a group homo-
morphism?

Note that we are now considering only functions f for which the domain and
codomain coincide. The reason for this is that the question has a simpler logical
structure than if we consider functions f : G → H, and since we are exploring
uncharted territory, we may as well make life easy on ourselves (are you keeping
track of how many times I have used the word “simple”?).

We have shown that cyclic groups have property (P). Are these the only
ones? Space restrictions preclude me from going into details, but let me say
that you are going to get stuck if you try to prove that the answer is “yes” (you
may want to try proving it now and see what difficulties you encounter). So let’s
look for noncyclic groups with property (P). We may as well start by checking
the smallest non-cyclic group H := Z/〈2〉 × Z/〈2〉 (we now switch to additive
notation). Let a ∈ H\{0} be arbitrary, and suppose f : H → H is homomorphic
at a. We will verify that f is a homomorphism. First, choose any nonzero b 6= a.
Now let x, y ∈ H be arbitrary. We will prove that f(x + y) = f(x) + f(y). If
x = y, then f(x + y) = f(x + x) = f(0) = (by (3) and (4)) 0 = f(x) + f(x) =
f(x) + f(y). Assume now that x 6= y. If x = 0 or y = 0, then we are done since
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f(0) = 0. If x = a or y = a, then we are also done since f is homomorphic at a
(and because the group operation is commutative). Finally, we may assume that
x and y are distinct, nonzero, and different from a. The only pair of elements of
H with this property are a + b and b. Thus we may assume that x = a + b and
y = b. Then f(x+y) = f(a) = f(a)+f(b)+f(b) = f(a+b)+f(b) = f(x)+f(y).

The plot has now thickened a bit. What would be really interesting is if
Z/〈2〉×Z/〈2〉 turned out to be the only non-cyclic group with property (P). Of
course, we hardly have enough data to confidently make such a conjecture. So
let’s take a moment to analyze the proof given above that Z/〈2〉 × Z/〈2〉 has
property (P). There are two properties of Z/〈2〉 × Z/〈2〉 which played essential
roles in our argument, namely,

(i) Z/〈2〉 × Z/〈2〉 has 4 elements, and

(ii) every non-identity element of Z/〈2〉 × Z/〈2〉 has order two.

Our goal is to figure out if there are any other non-cyclic groups which possess
property (P). How might we proceed? Observe that if G is any other non-
cyclic group with property (P), then G has at least six elements, so G cannot
possess property (i). However, since property (ii) played an important role in
our argument above, it is natural to wonder if the converse also holds. In other
words, a canonical question is whether G non-cyclic with property (P) implies
that every nonidentity element of G has order 2. Supposing for the moment
that this is the case, how might we go about proving it?

Let G be a non-cyclic group with property (P) and let a ∈ G. We wish
to prove that a2 = e. Clearly, we may suppose that a 6= e. By definition of
property (P), there exists some g ∈ G such that every f : G → G which is
homomorphic at g is a homomorphism. If we can construct a map f : G → G
which is homomorphic at g and is such that f(G) = {e, a}, then since f is
a homomorphism, {e, a} would be a subgroup of G. But then a2 = e, as
desired. So now we turn our attention to constructing a map f : G→ G which
is homomorphic at g such that f(G) = {e, a}. We need f(gx) = f(g)f(x) for
all x ∈ G. To simplify matters (there’s that word again!), we might try to find
such an f with the property that f(g) = e. Then we need only check that

f(gx) = f(x) for all x ∈ G. (7)

If f is homomorphic at g and f(g) = e, then necessarily f(gm) = e for every
integer m. Since we also want a to be in the range of f , the most natural
definition to try is the following:

f(x) =

{
e if x ∈ 〈g〉,
a otherwise.

But does it work? Let x ∈ G be arbitrary. Then note that f(x) = e iff x ∈ 〈g〉
iff gx ∈ 〈g〉 iff f(gx) = e. Because the codomain of f contains exactly two
elements, it is clear that f(gx) = f(x) for all x ∈ G, and hence f satisfies (7).
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Since G is not cyclic, there is some x ∈ G\〈g〉. Thus f(G) = {e, a}, as required.
Again, let’s pause to take stock of what we have.

A non-cyclic group G with property (P) satisfies x2 = e for all x ∈ G. (8)

Recall that the task at hand is to figure out whether there are any non-cyclic
groups aside from Z/〈2〉 ×Z/〈2〉 which have property (P). Maybe at this stage,
you don’t know what the answer is; possibly you don’t even have a gut instinct
about what the answer is. So what to do? A strategy (not necessarily the
only reasonable strategy) is the following: simply pick “yes” or “no” and try
to prove it. If you are successful, then you’re done. If not, analyze what the
roadblock is and then reassess your assertion. Recall the properties (i) and (ii)
of Z/〈2〉×Z/〈2〉 which played an integral role in showing that Z/〈2〉×Z/〈2〉 has
property (P). Property (i) was that Z/〈2〉 × Z/〈2〉 has 4 elements. Since every
non-cyclic group not isomorphic to Z/〈2〉 × Z/〈2〉 has more than 4 elements,
one could argue that our best guess at this juncture is that Z/〈2〉×Z/〈2〉 is the
only non-cyclic group with property (P) (let me stress that this is still just a
guess based on almost no information). For now, let’s assume this is the case
and see what we can uncover.

So let us suppose that H is a non-cyclic group with property (P) not iso-
morphic to Z/〈2〉 × Z/〈2〉 and see if we can find a contradiction. By definition,
there is some h ∈ H such that every f : H → H which is homomorphic at h is a
homomorphism. Our proof of (8) entailed constructing a function with range of
size two. Can we modify this construction to obtain a contradiction? Note that
if we can show that there is function f : H → H, homomorphic at h with range
of size three, then we certainly could obtain a contradiction: the range would
be a subgroup of H of size three. But then the range would contain an element
of order three, contradicting (8). Following the strategy used in establishing
(7), let us see if we can find such an f with f(h) = 0 (again, we use additive
notation; by (8) above, H is abelian). Then as before, we need only check that
f(h + x) = f(x) for all x ∈ H.

To summarize, here is what we want to do:

Strategy. Find a function f : H → H which satisfies the following conditions:

1. f(h) = 0,

2. f(h + x) = f(x) for all x ∈ H, and

3. the range of f has cardinality three.

Is this an onerous task? Well, (1) is easy: we simply define f(h) = 0. As for (2),
suppose x ∈ H and we have defined f such that f(h+ x) = f(x). Now suppose
y ∈ H and we want to define f(y) and f(h + y) so that f(h + y) = f(y). The
issue is that if y (respectively, h+y) happens to be a member of {h+x, x}, then
f(y) (respectively, f(h + y)) is forced on us. This makes the task of defining f
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a bit more challenging. But observe that this issue goes away if {h + x, x} and
{h + y, y} are either equal or disjoint. Hence we ask: if x, y ∈ H are such that
{h + x, x} and {h + y, y} are not disjoint, then does {h + x, x} = {h + y, y}?
Note that if x = y or h + x = h + y, then it is easy to see that equality holds.
Therefore, we may assume without loss of generality that h + x = y. Adding
h to both sides and using the fact that h + h = 0, we obtain x = h + y. Then
again, the two sets coincide. Let us pause to record this fact.

P := {{h + x, x} : x ∈ H} is a partition of H. (9)

Next, observe that {0, h} is a member of the partition above. Now pick
partition sets {h + x, x} and {h + y, y} so that all three partition sets {0, h},
{h + x, x}, and {h + y, y} are distinct (observe that this is possible since H,
being noncyclic and not isomorphic to Z/〈2〉×Z/〈2〉, has at least six elements).
Finally, choose distinct nonzero elements a, b ∈ H. Map the set {0, h} to 0 (that
is, map 0 and h to 0), then map {h+x, x} to a and {h+y, y} to b. Lastly, extend
the map to the entire set of partitions arbitrarily, subject to the restriction that
each partition set be mapped to either 0, a, or b. We now have a map f which
satisfies items 1.–3. Success!

3 Now What?

Here is a synopsis of the mathematical results of the previous section: let G be
a group. Then there exists some g ∈ G such that every map f : G → G which
is (locally) homomorphic at g is a (global) homomorphism if and only if G is
cyclic or G ∼= Z/〈2〉 × Z/〈2〉. Where do we go from here? Clearly this result
does not qualify as a research paper, so that option is out. But there are two
directions in which we may proceed. The first is to pose the following problem
(with solution) and submit it for publication in a mathematical periodical with
a problem section (Math Magazine, The College Math Journal, The Monthly,
Pi Mu Epsilon, etc.). Here is one way to phrase the problem:

Problem. Let G be a group, and let g ∈ G. Say that a function f : G → G is
homomorphic at g provided f(gx) = f(g)f(x) for all x ∈ G. Find all groups G
with the following property: there exists some g ∈ G such that if f : G → G is
any function which is homomorphic at g, then f is a homomorphism.

As our work demonstrates, the problem is accessible in that it does not
require any deep theorems of group theory to solve. Second, it is enticing in
the following sense: it is fairly easy to make initial progress on the problem
as it is not too difficult to see that cyclic groups satisfy the above condition.
However, it is much less obvious that there is exactly one noncyclic group with
this property. Given the length of this paper, it may be difficult to assess how
much space a concise solution would take up. One can give it in less than a
page. Combining all of these attributes makes the problem a strong candidate
for publication.
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Now, one might be curious if the above problem is new. Given that there
are so many venues in which recreational problems appear (periodicals, journals,
textbooks, etc.), it is quite difficult to know for sure if a given problem proposal
is new. That said, I have published over 40 problems myself, and only once did
a referee find my proposed problem in the literature. So this may not be as big
of a barrier to publication as you might anticipate.

Next, you may wonder, “Why would I care to publish such a problem?” The
answer depends on your lot in life. If you are on the Princeton faculty, it is
not likely that a problem posed in The Monthly will count for much when you
come up for promotion (though it is interesting that John Conway lists one of
the problems he posed in The Monthly on his c.v.; this can be found online
at http : //web.math.princeton.edu/WebCV/ConwayBIB.pdf, item 138). On the
other hand, if you are an undergraduate applying to graduate schools, having
a published problem under your belt is evidence of mathematical imagination;
it may help you be more competitive when applying to graduate programs.
For faculty, there are many institutions in which such a publication counts as
scholarship; Kenyon College is such an example (I thank Associate Provost Brad
Hartlaub for confirming this assertion).

Last but not least, let me remark that the fun isn’t over yet! We haven’t
quite squeezed all the juice out of the problem presented in this paper. As a
sequel, I cordially invite you to try your hand at Problem #??? in this issue of
Pi Mu Epsilon Journal.
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