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Abstract. Let G be a nontrivial group, and assume that G ∼= H for every nontrivial subgroup H
of G. It is a simple matter to prove that G ∼= Z or G ∼= Z/〈p〉 for some prime p. In this note, we
address the analogous (though harder) question for rings; that is, we find all nontrivial rings R for
which R ∼= S for every nontrivial subring S of R.

1. Introduction

The notion of “same structure” is ubiquitous in mathematics. Indeed, the concept appears as
early as high school geometry where congruence of angles and similarity of triangles are studied.
One then learns the analogous concept for groups in a first course on modern algebra, where two
groups G and H have the same structure if there is a bijection f : G → H with the property that
f(xy) = f(x)f(y) for all x, y ∈ G. Such an f is called an isomorphism from G to H; if such an
f exists, then we say that G and H are isomorphic, and write G ∼= H. There exist many groups
which are isomorphic to a proper subgroup. For example, the group (Z,+) is isomorphic to (E,+),
where E is the subgroup of Z consisting of the even integers. More generally, since every nontrivial
subgroup of an infinite cyclic group is also infinite cyclic, and since every infinite cyclic group is
isomorphic to (Z,+), it follows that the group (Z,+) is inordinately homogeneous in the sense that
all nontrivial subgroups are isomorphic.

More generally, a mathematical structure M is called κ-homogeneous (κ an infinite cardinal of
size at most |M|) provided any two substructures of cardinality κ are isomorphic [3, 5, 6]. A related
mathematical object called a Jónsson group is an infinite group G such that every proper subgroup
of G has smaller cardinality than G; in this case, note that G is |G|-homogeneous. It is well-known
(see [7]) that the only abelian Jónsson groups are the quasi-cyclic groups Z(p∞), p a prime, which
is isomorphic to the subgroup of the factor group Q/Z consisting of those elements whose order
is a power of p. If one does not assume G to be abelian, then the situation becomes much more
complicated. Saharon Shelah was the first to construct an example of a Kurosh monster, which
is a group of size ℵ1 in which all proper subgroups are countable. It is still an open problem to
determine whether a Jónsson group of size ℵω can be shown to exist in Zermelo-Fraenkel Set Theory
with Choice (ZFC); we refer the reader to the excellent survey [2] for more details.

Laffey characterized the countably infinite rings R for which every proper subring of R is finite
[4]. An infinite ring R with the property that every proper subring of R has smaller cardinality
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than R is called a Jónsson ring. It is known that any uncountable Jónsson ring is necessarily a
noncommutative division ring. The existence of such a ring has yet to be established [2]. It is
apparently a very difficult problem to classify all rings R for which R ∼= S for every subring S of
size |R|, since doing so would automatically classify the Jónsson rings. In view of these results, we
take a more modest approach in this paper and consider the problem of classifying those nontrivial
rings R for which R ∼= S for every nontrivial subring S of R.

2. Results

We begin by fixing terminology. First, all rings will assumed to be associative, but not necessarily
commutative or unital. Indeed, commutativity of the rings studied in this paper can be deduced
rather quickly (so it need not be assumed), and many important and well-studied classes of rings
do not contain an identity. For example, Leavitt path algebras on graphs with infinitely many
vertices never contain an identity (see [1], Lemma 1.2.12(iv)). If R is a ring, then a subring of R
is a nonempty subset S of R which is closed under addition, multiplication, and negatives. It is
important to note that in this article, we do not require a subring of a unital ring to contain an
identity. For the purposes of this note, say that a ring R (respectively, group G) is homogeneous
if R is nontrivial and R ∼= S for all nontrivial subrings S of R (respectively, if G is nontrivial and
G ∼= H for every nontrivial subgroups H of G).

We begin our investigation by first classifying the homogeneous groups.

Lemma 1. Let G be a group. Then G is homogeneous if and only if G ∼= Z/〈p〉 for some prime p
or G ∼= Z.

Proof. Because (by Lagrange’s Theorem) Z/〈p〉 has no proper, nontrivial subgroups (that is, Z/〈p〉
is simple), we see that Z/〈p〉 is trivially homogeneous. As for the additive group Z of integers, if
H is a nontrivial subgroup of Z, then H is an infinite cyclic group, hence H ∼= Z. We deduce that
Z is a homogeneous group.

Conversely, suppose that G is a homogeneous group. Let g be a nonidentity element of G. Then
G ∼= 〈g〉, and thus G is cyclic. If G is infinite, then G ∼= Z. Thus suppose that G is finite. If H
is a proper subgroup of G, then |H| < |G|; thus H � G. As G is homogeneous, it follows that
G is simple. It is well-known that the only nontrivial simple abelian groups are the groups Z/〈p〉
where p is a prime. To keep the paper self-contained, we give the argument. We have already noted
above that for a prime p, the group Z/〈p〉 is simple. Conversely, suppose that G is simple, and let
g ∈ G\{e} be arbitrary. The simplicity of G implies that G = 〈g〉, and so G is cyclic. Because Z
has proper, nontrivial subgroups, we deduce that G is a finite cyclic group, say of order n > 1. It
remains to show that n is prime. If n = rs for some integers r and s with 1 < r, s < n, then 〈gr〉 is
a proper, nontrivial subgroup of G, contradicting that G is simple. This concludes the proof. �

We arrive at the main result of this note, which classifies the homogeneous rings. As the reader
will see, the argument we give to prove the ring version of Lemma 1 is more complicated than the
argument just given above.

Theorem 1. Let R be a ring. Then R is homogeneous if and only if one of the following holds:
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(i) R ∼= Fp, the field of p elements, where p is a prime number,
(ii) R ∼= Z/〈p〉 with trivial multiplication (that is, xy = 0 for all x and y), or

(iii) R ∼= Z with trivial multiplication.

Proof. Consider first the field Fp, where p is prime. If S is a nontrivial subring of Fp, then under
addition, S is a nontrivial subgroup of (Fp,+). By Lagrange’s Theorem, S = Fp, and thus S ∼= Fp

as rings. The same argument shows that Z/〈p〉 with trivial multiplication is homogeneous. As for
(iii), suppose that S is a nontrivial subring of Z (with trivial multiplication). Then additively, S
is a nontrivial subgroup of (Z,+). By Lemma 1, (S,+) ∼= (Z,+); let f : S → Z be an additive
isomorphism. Because the multiplication on Z is trivial, it follows that f is also a ring isomorphism.
We have verified that the rings in (i) - (iii) are homogeneous.

We now work toward establishing the converse. For m ∈ Z, let mZ be the subring of Z consisting
of all integer multiples of m. We claim that

(2.1) the ring mZ is not homogeneous for any m ∈ Z.
If m = 0, then mZ = {0}, thus is not homogeneous by definition. If |m| = 1, then observe that
mZ = Z � 2Z since the ring Z has an identity but the ring 2Z does not. Now suppose that |m| > 1.
Then mZ has a nonzero element α (namely m) such that α2 = mα, yet the subring m2Z does not
possess such an element. To see this, suppose that β ∈ m2Z\{0} is such that β2 = mβ. We have
β = m2n for some n ∈ Z\{0}. Thus m4n2 = β2 = mβ = m(m2n). But then mn = 1, and m is a
unit of Z, which is impossible because |m| > 1. We conclude that mZ � m2Z. This completes the
verification of (2.1).

Next, for a nonzero element r of a ring R, let rZ[r] := {m1r+m2r
2 + ·+mkr

k : k ∈ Z+,mi ∈ Z}
be the subring of R generated by r. If f : rZ[r]→ R is a ring isomorphism, then one can see that
R = f(r)Z[f(r)]. Hence

(2.2) if R is a homogeneous ring, then R = rZ[r] for some r ∈ R\{0}. Thus R is commutative.

Now let D be a commutative domain with identity 1 6= 0, and let D[X2, X3] be the ring generated
by D, X2, and X3, where X is an indeterminate which commutes with the members of D. Consider
the ideal 〈X2, X3〉 of D[X2, X3] generated by X2 and X3. We claim that

(2.3) 〈X2, X3〉 is not a principal ideal of D[X2, X3].

Note first that

(2.4) X /∈ D[X2, X3],

lest X be a unit of D[X]. Suppose by way of contradiction that 〈X2, X3〉 = 〈f(X)〉 for some
f(X) ∈ D[X2, X3]. Then X2|f(X) and f(X)|X2 in the ring D[X]. We deduce that f(X) = uX2

for some unit u ∈ D. Because f(X)|X3 in the ring D[X2, X3], we have uX2g(X) = X3 for some
g(X) ∈ D[X2, X3]. But then X = u · g(X) ∈ D[X2, X3], contradicting (2.4). We have now
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established (2.3). Next, let XD[X] be the subring of D[X] consisting of all f(X) ∈ D[X] for which
f(0) = 0. We prove that

(2.5) XD[X] is not homogeneous.

Suppose otherwise, and let R be the subring of XD[X] generated by X2 and X3. Then R is also
homogeneous, and by (2.2), there is f(X) ∈ R such that R = f(X)Z[f(X)]. Next, let I be the
ideal of D[X2, X3] generated by R. Then it follows that I = 〈X2, X3〉 = 〈f(X)〉, and we have a
contradiction to (2.3) above.

Finally, we are ready to classify the homogeneous rings. Toward this end, let R be an arbitrary
homogeneous ring. We shall prove that one of (i)–(iii) holds. Suppose first that R possesses a
nonzero nilpotent element α. Let n > 1 be least such that αn = 0. Setting β := αn−1, we have
β 6= 0, yet β2 = 0. Let S := {mβ : m ∈ Z}. One checks at once that S is a nonzero subring of R
with trivial multiplication. Because R is homogeneous, R ∼= S; hence R is a nontrivial ring with
trivial multiplication. But then every subgroup of R is a subring of R. The homogeneity of R gives
H ∼= K for any nontrivial subgroups H and K of (R,+). Applying Lemma 1, we see that either
(ii) or (iii) holds.

Thus we assume that

(2.6) R is reduced, that is, R has no nonzero nilpotent elements.

Our next assertion is that

(2.7) R has no nonzero zero divisors.

Suppose by way of contradiction that r0 ∈ R\{0} is a zero divisor. Let T1 := r0Z[r0] and S1 := {r ∈
R : rT1 = {0}}. We have seen that T1 is a nonzero subring of R. As R is commutative (by (2.2))
and r0 is a zero divisor, S1 is a nonzero subring of R. Because R is reduced, it follows immediately
that

(2.8) S1 ∩ T1 = {0}, and xy = 0 for all x ∈ S1 and y ∈ T1.
As R is homogeneous, R ∼= S1. We conclude that there exist nonzero subrings S2 and T2 of S1

such that S2 ∩ T2 = {0} and xy = 0 for all x ∈ S2 and y ∈ T2. Continuing recursively and setting
S0 := T0 := R, we obtain sequences {Sn : n ≥ 0} and {Tn : n ≥ 0} of nonzero subrings of R such
that for every n ≥ 0, Sn+1 and Tn+1 are nonzero subrings of Sn such that Sn+1 ∩ Tn+1 = {0} and
xy = 0 for all x ∈ Sn+1 and y ∈ Tn+1. Next, we establish that for all positive integers k:

(2.9) if n1, . . . , nk > 0 are distinct, and t1 + · · ·+ tk = 0 with ti ∈ Tni
, then each ti = 0.

To prove this, we induct on k. Note that the base case of the induction is the assertion that if
t1 = 0 and t1 ∈ Tn1 , then t1 = 0, which is true. Suppose that the claim holds for some k > 0, and
let 0 < n1 < n2 < · · · < nk+1 and t1, . . . , tk+1 be such that t1 + · · · + tk+1 = 0 with ti ∈ Tni

for all
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1 ≤ i ≤ k. One checks that t2, . . . , tk+1 ∈ Sn1 ; set α := t2 + · · · + tk+1. Then t1 + α = 0, t1 ∈ Tn1 ,
and α ∈ Sn1 . Since Sn1 ∩ Tn1 = {0}, it follows that t1 = α = 0. Applying the inductive hypothesis,
we see that t2 = · · · = tk+1 = 0, and (2.9) is verified. We further claim that

(2.10) if 0 < n < m and x ∈ Tn, y ∈ Tm, then xy = 0.

This is straightforward: as above, y ∈ Sn, and the result follows. We deduce from (2.9), (2.10),
and the homogeneity of R that R is isomorphic to the internal direct sum of the rings Tn, n > 0.
More compactly,

(2.11) R ∼=
⊕
n>0

Tn.

Thus
⊕

n>0 Tn is homogeneous. By (2.2), there is (rn) := r ∈
⊕

n>0 Tn such that
⊕

n>0 Tn = rZ[r].
Now, almost all ri = 0. Thus there is a k such that if ri 6= 0, then i ∈ {1, . . . , k}. But then for
every (αn) := α ∈ rZ[r]: if αi 6= 0, then i ∈ {1, . . . , k}. Since

⊕
n>0 Tn = rZ[r], we deduce that

the same is true of every member of
⊕

n>0 Tn. But of course, this is absurd: recall that each Ti is a
nonzero ring, so for every k ∈ Z+ there exists a sequence (tn : n ∈ N) ∈

⊕
n>0 Tn such that tk 6= 0.

Finally, we have proven (2.7).
We pause to take inventory of what we have established thus far. By (2.2) and (2.7), R is a

commutative domain, though we have not yet proven that R has a multiplicative identity. Let
K := {a

b
: a ∈ R, b ∈ R\{0}} be the quotient field of R. It is well-known that R embeds into K via

the map r 7→ rd
d

, where d ∈ R is some fixed nonzero element of R. We identity R with its image in
K. Now let D be the subring of K generated by 1. Fix some nonzero r ∈ R. One checks at once
that rD[r] is a nonzero subring of R, whence

(2.12) R ∼= rD[r].

The map ϕ : XD[X] → rD[r] defined by ϕ(Xg(X)) := rg(r) is a surjective ring map. We apply
(2.12) to conclude that rD[r] is homogeneous. Therefore, (2.5) implies that the kernel of ϕ is
nonzero. Choose a nonzero polynomial Xf(X) := d1X + d2X

2 + · · ·+ dnX
n ∈ XD[X] of minimal

degree n for which rf(r) = 0. We claim that

(2.13) d1 6= 0.

If n = 1, this follows since Xf(X) 6= 0. Suppose now that n > 1. If d1 = 0, then we have
d2r

2 + · · ·+ dnr
n = 0. Recalling that R is a domain and r 6= 0, this equation reduces to d2r+ · · ·+

dnr
n−1 = 0, and this contradicts the minimality of n. So we have

(2.14) d1r + d2r
2 + · · ·+ dnr

n = 0 and d1 6= 0.

Viewing the above equation in the quotient field K of R, we may divide through by r to get
d1 + d2r + · · ·+ dnr

n−1 = 0. Solving the equation for d1, we see that
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(2.15) d1 ∈ R.
Recall that d1 ∈ D, the ring generated by 1K (the multiplicative identity of K). Thus d1 = m · 1K

for some m ∈ Z. Because K is a field, either D ∼= Z or D ∼= Z/〈p〉 for some prime p. In the
former case, it follows from (2.13), (2.15), and the homogeneity of R that R ∼= mZ for some m ∈ Z.
However, this is precluded by (2.1). We deduce that D ∼= Fp for some prime p. But then by (2.15),
we see that (up to isomorphism) d1 ∈ (Fp\{0}) ∩ R. Applying homogeneity a final time, we see
that R is isomorphic to the ring generated by d1. Thus, as d1 6= 0, R ∼= Fp, and the proof is
complete. �

We conclude the paper with the following corollary, which characterizes the fields of order p.

Corollary 1. Let R be a ring with nontrivial multiplication. Then R is a field with p elements (p
a prime) if and only if any two nontrivial subrings of R are isomorphic.
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