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Let R be a ring with identity, and let M be a unitary (left) R-module. Then M is
said to be torsion provided that for every m ∈ M , there is a nonzero r ∈ R such that
rm = 0. In this article, we study the question of the existence (and nonexistence) of
faithful torsion modules over both commutative and noncommutative rings.
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1. INTRODUCTION

In this article, all rings are assumed to have an identity and all modules are left
unitary modules unless stated otherwise. Further, ‘ideal’ means ‘two-sided ideal.’

The main question we explore in this article is that of which rings admit
faithful torsion modules. This is a natural question since these modules are, in a
sense, ‘locally annihilated’ but not ‘globally annihilated.’ As is customary, we will
say that a left module M over a ring R is faithful if ann�M� �= �r ∈ R � rM = 0� =
�0�. However, it is clear that individual elements of a faithful module may be killed
independently. In fact, we are interested in faithful left modules where every element
can be so killed nontrivially. Various notions in the literature refer to this property
and the word ‘torsion’ has been used to denote several degrees of this phenomenon,
typically in reference to the annihilator, ann�m�, of an element m ∈ M . Let m ∈
M be arbitrary. Some authors simply require ann�m� to be nonzero (Atiyah [1],
Hungerford [4]), while others require ann�m� to contain a regular element of R
(Lam [9], Goodearl [7]). Still others require ann�m� to be an essential left ideal of R
(Faith [3]).

Here we settle for the most general of the conditions, and we say that a module
M is torsion if and only if for every m ∈ M there exists a nonzero r ∈ R such that
rm = 0. We caution the reader that our definition of torsion does not associate with
a corresponding torsion theory. In particular, our class of torsion modules is not
closed under direct sums (see Golan [6] for an introduction to torsion theories). We
remark that the primary focal point of this article is local annihilation of modules
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RINGS WHICH ADMIT FAITHFUL TORSION MODULES 2185

which is not global, and the least restrictive definition of torsion is best-suited to
our purposes.

The outline of the article is as follows. After developing some preliminary
results, we introduce the concept of faithful torsion (FT) rank of a ring R. Recall
that if M is an R-module and X ⊆ M , then X is a generating set for M provided
�X� = M ; that is, if the submodule of M generated by X is M itself. The FT rank
of R is then defined by:

FT�R� �= min��X� � X is a generating set for some faithful torsion R-module��

and FT�R� �= 0 by convention if R does not admit a faithful torsion module. Our
main objective in the article is to study this rank function. Among other results,
we prove that if R is (left or right) Artinian, then R has finite FT rank, and if
R is commutative Noetherian, then R has countable FT rank. We also completely
determine the rank function for several classes of rings, and we show that for any
regular cardinal �, there exists a ring of FT rank �. We close the article with some
open questions.

2. PRELIMINARIES

As stated in the introduction, we will be interested in determining which rings
do and do not admit faithful torsion modules. Before pursuing this question in
general, we answer the following (much easier) subquestions.

Question 1. Which rings admit a faithful module?

The solution is easy: Every ring admits a faithful module. Indeed, if R is any
ring, then R is faithful as a module over itself since R has an identity.

Now we ask a harder question.

Question 2. Which rings admit a nonzero torsion module?

Our solution requires several lemmas. The proofs are straightforward; as such,
we omit them.

Lemma 1. Let R be a ring, M an R-module, N a submodule of M , and I a proper
nonzero two-sided ideal of R. Then:

(a) R/I is a torsion R-module;
(b) If N is an essential submodule of M , then M/N is a torsion R-module.

Lemma 2. Let M be an R-module, and let N be a submodule of M . If N is not a
direct summand of M , then N is contained in a proper essential submodule of M .

We will need one more lemma before answering Question 2 in general. We first
recall that a nonzero element x in a ring R is said to be a right zero divisor if and
only if ax = 0 for some nonzero a ∈ R. Motivated by commutative terminology (and
avoiding a conflict with the noncommutative definition of a regular ideal), we define
a left ideal I of R to be r-regular if and only if I contains some element which is not
a right zero divisor.
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2186 OMAN AND SCHWIEBERT

Lemma 3. Let R be a ring, and let I be a left ideal of R. Then R/I is torsion if and
only if I intersects every r-regular left ideal of R nontrivially.

We now dispose of Question 2.

Theorem 1. A ring R admits a nonzero torsion module if and only if R is not a
division ring. Moreover, if R is not a division ring, then R admits a nonzero cyclic
torsion module.

Proof. Suppose first that R is a division ring. Then as every R-module is torsion-
free, clearly R does not admit a nonzero torsion module. Suppose now that R is not
a division ring. We will show that R admits a nonzero cyclic torsion module. We
consider two cases.

Case 1: R possesses a left ideal I which is not a direct summand of R. Lemma
2 implies that I ⊆ I ′ for some proper essential left ideal I ′ of R. It now follows from
Lemma 1 that R/I ′ is a torsion R-module.

Case 2: Every left ideal I of R is a direct summand of R. Then R is a semisimple
Artinian ring. The Wedderburn–Artin Theorem implies that R � �n1

�D1�× · · · ×
�nr

�Dr� for some division ringsD1� � � � � Dr and positive integers n1� � � � � nr . Since R is
not a division ring, it follows that either r > 1 or n1 > 1. In either case, R possesses a
nonzero right zero divisor. Moreover, every element of R is either a right zero divisor
or a unit. This implies that every r-regular left ideal of R contains a unit and thus
coincides with R. Let x ∈ R be a nonzero right zero divisor. Then Rx is a proper left
ideal of Rwhich intersects every r-regular left ideal of R nontrivially. Lemma 3 implies
that R/Rx is torsion, and the proof is complete. �

For the remainder of the article, we focus our attention on the much harder
‘intersection’ of Questions 1 and 2.

Question 3. Which rings admit a faithful torsion module, and which rings do not?

It is this question which we pursue for the remainder of the article. To simplify
terminology, let us agree to call a ring R which admits a faithful torsion module an
FT ring. If R does not admit a faithful torsion module, we will call R a non-FT ring.

3. FUNDAMENTAL RESULTS

We begin with several examples to initiate the reader.

Example 1. If D is a division ring, then D is non-FT.

Proof. Immediate from Theorem 1. �

Example 2. Let R be the ring of continuous functions f � � → �. Then R is FT.

Proof. Let R be the ring (under pointwise addition and multiplication) of
real-valued continuous functions defined on �. For every positive integer n, let
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RINGS WHICH ADMIT FAITHFUL TORSION MODULES 2187

fn � � → � be a continuous function with zero set 	−n� n
. Now define gn �=
f1f2 · · · fn, and let � �= ��gn� � n ∈ �+� (thus � is the collection of the principal
ideals generated by the gn). It is easily checked that

⊕
n>0 R/�gn� is a faithful torsion

module over R. �

Example 3. Suppose D is a commutative domain which is not a field, and let K
be the quotient field of D. Then K/D is a faithful torsion D-module. Thus D is an
FT ring.

Proof. Let D be a commutative domain which is not a field with quotient field K.
It is clear that K/D is torsion. Suppose by way of contradiction that d ∈ D − �0�
and d annihilates K/D. Then in particular, d · 1

d2
∈ D, and hence d is a unit of D.

But as d annihilates K/D and d is a unit of D, we see that K ⊆ d−1D ⊆ D ⊆ K.
Hence D = K, and D is a field, a contradiction. �

We will shortly describe a large class of FT rings. First, we establish a lemma.

Lemma 4. Let R be a ring, and let �Mi � i ∈ I� be a collection of R-modules. Suppose
that for each i, Ni ≤e Mi. Then

⊕
i∈I Mi/Ni is a torsion R-module.

Proof. Assume that R is a ring, �Mi � i ∈ I� is a collection of R-modules, and
that for each i, Ni ≤e Mi. Then

⊕
i∈I Ni ≤e

⊕
i∈I Mi (see p. 76 of [9], for example).

It now follows from Lemma 1 that �
⊕

i∈I Mi�/�
⊕

i∈I Ni� is torsion. Noting that
�
⊕

i∈I Mi�/�
⊕

i∈I Ni� �
⊕

i∈I �Mi/Ni�, we obtain the desired result. �

Our next result incorporates the following terminology. Say that a family � �=
�Ij � j ∈ X� of ideals of a ring R has the finite intersection property (FIP) if and only
if every finite intersection of ideals of � is nonzero.

Theorem 2. Let � �= �Ij � j ∈ X� be a family of nonzero proper left ideals of the ring
R such that the following hold:

(1) Either all the Ij are two-sided ideals and � has the finite intersection property, or
all the Ij are essential left ideals;

(2)
⋂

j∈X Ij = �0�.

Then M �= ⊕
j∈X R/Ij is a faithful torsion R-module (note further that conditions

(1) and (2) imply that � is infinite).

Proof. Assume that � �= �Ij � j ∈ X� is a family of nonzero proper left ideals of
the ring R which satisfy (1) and (2) above.

We first claim that M is faithful. For suppose that r ∈ R and rM = �0�. Let
j ∈ X be arbitrary. Then r · 1 = 0 (mod Ij), and hence r ∈ Ij . Since j was arbitrary,
we obtain r ∈ ⋂

j∈X Ij = �0�, and M is faithful.
We now show that M is torsion. Suppose first that the ideals are all two sided

and � has the finite intersection property. Consider an arbitrary nonzero element
m ∈ M . Let �j1� j2� � � � � jk� be the support of m. By assumption, Jj1 ∩ Jj2 · · · ∩ Jjk �=
�0�. It is readily checked that any element of this intersection kills m, and so M is
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2188 OMAN AND SCHWIEBERT

torsion in this case. Now suppose that the ideals are all left essential. We invoke
Lemma 4 to conclude that M is torsion, and the proof is complete. �

We will use the previous theorem to characterize the FT domains. Recall that
the left socle of a ring R is the sum of all minimal left ideals of R. We first prove a
lemma yielding a sufficient (though not necessary) condition for a ring R to be FT.

Lemma 5. Let R be a ring. If the left socle of R is trivial, then R is FT.

Proof. Let R be a ring, and suppose the left socle of R is trivial. Since soc�R� =
⋂
�I � I ≤e R� (see [9, p. 242]), it follows that the intersection of the essential left

ideals of R is trivial. Theorem 2 implies that R is FT. �

Proposition 1. Let D be a domain. Then D is FT if and only if D is not a division
ring.

Proof. We have already seen that a division ring is not FT. Conversely, suppose
that D is a domain which is not a division ring. By the previous lemma, it suffices to
show that the left socle of D is trivial. Suppose by way of contradiction that I is a
minimal left ideal of D. Let x ∈ I be nonzero. By minimality of I and the assumption
that D is a domain, it follows that Dx = Dx2 = I . Hence x = dx2 for some d ∈ D.
Since D is a domain, we obtain dx = 1. But then I = D, and D is a division ring, a
contradiction. �

We now introduce an important definition which will assume the central role
throughout the remainder of the article.

Definition 1. Let R be a ring. Define the FT rank of R, FT�R�, to be the least
cardinal number � such that R admits a faithful torsion module which can be
generated by � many elements. In case R is non-FT, we define FT�R� �= 0.

Remark 1. We caution the reader that when making statements such as ‘R has
finite FT rank’ or ‘R has countable FT rank,’ we do not preclude the possibility
that FT�R� = 0.

Using the notion of FT rank, we proceed to prove a sort of converse to
Theorem 2. Moreover, our next result gives an important relationship between the
FT rank of a ring R and the ideal structure of R (we remark that the notion of
cofinality of a cardinal appearing in the following theorem is defined more generally
in Section 6).

Theorem 3. Let R be a ring, and suppose that R has infinite FT rank �. Then the
following hold:

(a) R admits a faithful torsion module which is a direct sum of � cyclic modules.
Further, � is a regular cardinal.

(b) There exists a collection � �= �Ji � i ∈ �� of two-sided ideals of R indexed by � and
satisfying:
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RINGS WHICH ADMIT FAITHFUL TORSION MODULES 2189

(i) Jj � Ji for i < j;
(ii)

⋂
i∈� Ji = �0�.

(c) � ≤ �R�.

Proof. Let R be a ring, and assume that R has infinite FT rank �. Let M be a
faithful torsion module over R with generating set �mi � i < ��. For each j < �, let
Mj denote the submodule of M generated by �mi � i ≤ j�.

(a) Let � be the cofinality of �, and let ��i � i < �� be a strictly increasing
sequence of cardinals cofinal in �. Define �� �= �ann�M�i

� � i < ��. Note trivially
that �� is a chain of nonzero two-sided ideals of R. Since M is faithful and ��i �
i < �� is cofinal in �, it is easy to see that

⋂
�� = �0�. Theorem 2 implies that⊕

i<� R/ann�M�i
� is a faithful torsion module over R. This fact along with the

minimality of � implies that � = �. Hence � is a regular cardinal.

(b) Simply take � �= �ann�Mi� � i < ��. Note that it is possible for
ann�Mi� = ann�Mj� for i �= j. Upon enumerating this set (i.e., discarding
redundancies), an analogous argument to the proof of (a) shows that �� � = �. After
reindexing, the result follows.

(c) Let �Ji � i < �� be an (inclusion reversing) enumeration of � . For each
i < �, pick (by the axiom of choice) some element xi ∈ Ji − Ji+1. This defines an
injection from � into R. �

4. FINITE FT RANK

In this section, we investigate some classes of rings with finite FT rank and
open with the following theorem.

Theorem 4. If R is a left or right Artinian ring, then R has finite FT rank.

Proof. Let R be a ring, and suppose that R has infinite FT rank. Then Theorem 3
implies that R cannot be left or right Artinian. �

We now find necessary and sufficient conditions for a ring to have FT rank 1.
Recall that if I is a left ideal of a ring R, then the core of I is the largest two-sided
ideal of R contained in I . It is well-known (and easy to see) that if I is any left ideal
of R, then ann�R/I� is equal to the core of I .

Proposition 2. Let R be a ring. Then FT�R� = 1 if and only if R possesses a left ideal
I satisfying:

(i) The core of I is trivial;
(ii) I intersects every r-regular left ideal of R nontrivially.

Proof. Suppose R is a ring and I is a left ideal of R satisfying (i) and (ii) above.
Then Lemma 3 implies that R/I is torsion. It follows from (i) above and the
preceding comments that ann�R/I� = �0�, and hence R/I is faithful. Conversely, if
I is a left ideal of R such R/I is faithful torsion, then (i) and (ii) follow. �
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2190 OMAN AND SCHWIEBERT

Corollary 1. Let R be a ring. Then:

(a) If R is left duo (that is, every left ideal of R is two-sided), then FT�R� �= 1.
(b) If R is left Artinian, then FT�R� = 1 if and only if R possesses a minimal left ideal

which is not two-sided.

Proof. Let R be a ring. Suppose first that R is left duo. Then the core of any left
ideal I is equal to I . Hence (i) and (ii) of Proposition 2 cannot possibly be satisfied.
Now suppose that R is left Artinian. If I is a minimal left ideal of R which is not
two-sided, then I has trivial core. Since R is left Artinian, every element of R which
is not a right zero divisor is a unit (to see this, note that if x ∈ R is not a right zero
divisor, then consider the descending chain · · ·Rxn ⊆ Rxn−1 ⊆ · · ·Rx. The fact that
this chain stabilizes implies that x is left-invertible. As Artinian rings are Dedekind
finite (one-sided inverses are two-sided), it follows that x is a unit). Hence I intersects
every r-regular left ideal of R nontrivially. Proposition 2 implies that FT�R� = 1.
Conversely, suppose by way of contradiction that FT�R� = 1, but every minimal left
ideal of R is two-sided. Let I be a left ideal satisfying (i) and (ii) of Proposition 2. As
R is left Artinian, I contains a minimal left ideal J . Since J is two-sided, it follows
that the core of I is nontrivial, a contradiction. �

We easily determine the FT rank of a simple ring.

Proposition 3. Let R be a simple ring. Then FT�R� ≤ 1. Moreover, FT�R� = 0 if and
only if R is a division ring.

Proof. Suppose that R is a simple ring. If R is a division ring, then Theorem 1
shows that FT�R� = 0. Suppose now that R is not a division ring. It follows from
Theorem 1 that R admits a nonzero cyclic torsion module M . The simplicity of R
implies that ann�M� = �0�, and hence M is faithful. The proof is complete. �

We now study the FT rank of several subclasses of semiperfect rings. Recall
that a ring R is semiperfect if and only if 1 can be decomposed into e1 + e2 + · · · + en,
where the eis are mutually orthogonal local idempotents. A semiperfect ring R is
self-basic if and only if R/rad�R� is a finite direct product of division rings if and
only if 1 is a basic idempotent of R. It is well-known that left and right Artinian
rings are semiperfect. We proceed to determine the FT rank of a non-self-basic left
Artinian ring.

Proposition 4. Suppose that R is a left Artinian ring which is not self-basic. Then
FT�R� = 1.

Proof. Assume that R is a left Artinian ring which is not self-basic, and let e be a
basic idempotent of R. It is easy to see that Re is faithful. To complete the proof,
it suffices to show that Re is torsion. Since R is not self-basic, it follows from the
above comments that 1 is not a basic idempotent of R. Hence e is not a unit. Since
R is Dedekind finite and e is not a unit, we see that Re �= R. As noted in the proof
of Corollary 1, every element of R which is not a right zero divisor is a unit. Thus
every proper left ideal of R consists entirely of right zero divisors. Since Re �= R, it
follows that Re is torsion. This completes the proof. �
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RINGS WHICH ADMIT FAITHFUL TORSION MODULES 2191

We now consider FPF rings. Recall that a ring R is finitely pseudo-Frobenius
(FPF) provided every finitely generated faithful (left) R-module is a generator for
Mod R. We record the following facts and then prove a result on the FT rank of a
semiperfect FPF ring.

Fact 1 (Page [11, Theorem 1.1]). Let R be a semiperfect FPF ring and M be a finitely
generated faithful (left) R-module. If e is any basic idempotent of R, then M � Re⊕ X
for some (left) R-module X.

Fact 2 ([11, Corollary 1.2]). If R is a self-basic semiperfect ring, then R is (left) FPF
if and only if every faithful finitely generated module M is of the form R⊕ X for some
R-module X.

Proposition 5. Let R be a semiperfect FPF ring. Then FT�R� = 0, FT�R� = 1, or
FT�R� ≥ .

Proof. Let R be a semiperfect FPF ring. We assume that 0 < FT�R� �= n <  and
show that n = 1. Let M be an n-generated faithful torsion module over R, and let
e be a basic idempotent of R. By Fact 1, M � Re⊕ X for some left R-module X.
As noted in the proof of Proposition 4, Re is faithful. But since Re⊕ X is torsion,
it follows that Re is also torsion. Hence Re is a faithful torsion R-module, and so
FT�R� = 1. �

Using these results, we can completely determine the FT rank of a quasi-
Frobenius ring. We recall that a ring R is quasi-Frobenius if and only if R is
left (right) Artinian and left (right) self-injective. The following implication is well
known (we refer the reader to Lam [8, 9] for details):

quasi-Frobenius ⇒ (left and right) FPF and semiperfect� (4.1)

Corollary 2. Let R be a quasi-Frobenius ring. Then FT�R� ≤ 1. Moreover, FT�R� = 0
if and only if R is self-basic.

Proof. Assume R is quasi-Frobenius. Then by definition, R is left Artinian.
Theorem 4 implies that R has finite FT rank, and Proposition 5 along with
implication (4.1) implies that FT�R� = 0 or FT�R� = 1. If R is not self-basic,
then Proposition 4 yields that FT�R� = 1. Now suppose that R is self-basic. By
implication (4.1), it follows that R is a self-basic semiperfect FPF ring. Let M be a
finitely generated faithful module over R. Fact 2 implies that R is a direct summand
of M , whence M cannot be torsion. Hence FT�R� = 0, as claimed. �

Using this result, we easily determine the rank function for semisimple
Artinian rings.

Corollary 3. Let R be a semisimple Artinian ring. Then FT�R� ≤ 1. Moreover,
FT�R� = 0 if and only if R is reduced (that is, R has no nonzero nilpotent elements).

Proof. Let R be a semisimple Artinian ring. Then R is quasi-Frobenius, and
Corollary 2 implies that FT�R� ≤ 1. Suppose first that R is reduced. Then R is a
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2192 OMAN AND SCHWIEBERT

finite direct product of division rings. It follows that R is left duo, and Corollary 1
along with the fact that FT�R� ≤ 1 implies that FT�R� = 0. Now suppose that R is
not reduced. Then any basic subring of R is isomorphic to a finite direct product of
division rings (see [8, p. 373]). Since a finite product of division rings is reduced, it
follows that R cannot be self-basic. Corollary 2 implies that FT�R� = 1. �

We now give some further examples of non-FT rings.

Corollary 4. A commutative quasi-Frobenius ring has FT rank 0. Thus a finite direct
product of commutative subdirectly irreducible rings which satisfy ascending chain
condition (ACC) on annihilators has FT rank 0.

Proof. Let R be a commutative quasi-Frobenius ring. Since R is a commutative
Artinian ring, R/radR is a finite product of fields. Hence R is self-basic. Corollary 2
implies that FT�R� = 0. It is well-known (see Pan [12], for example) that the
commutative quasi-Frobenius rings are exactly the finite direct products of
subdirectly irreducible rings which satisfy ACC on annihilators. �

Corollary 5. Suppose that R is a commutative Artinian principal ideal ring. Then
FT�R� = 0.

Proof. Let R be a commutative Artinian principal ideal ring. Then R decomposes
as R = R1 ⊕ R2 ⊕ · · · ⊕ Rk, where each Ri is an Artinian local ring, which clearly
must also be a principal ideal ring. Cohen’s structure theorem for local rings implies
that all (commutative) local Artinian principal ideal rings are proper homomorphic
images of complete discrete valuation rings (see McLean [10] for details). Thus each
Ri is chained with only finitely many ideals. It follows that each Ri is subdirectly
irreducible. We may now invoke Corollary 4 to complete the proof. �

We have only considered left modules so far in this article. A natural question
is whether FT rank is a sided condition; that is, whether there exists a ring R which
has different FT rank if we consider right modules instead of left modules. Toward
this end, we define the right FT rank of a ring R to be the minimum cardinality of
a generating set of a faithful torsion right R-module. To be clear, we define left FT
rank analogously (which is simply our earlier definition of FT rank). We will shortly
present an example of a ring with different FT ranks on the right and left, and begin
with a lemma.

Lemma 6. Let K be a field with endomorphism � such that, for L = ��K�, 	K � L
 �=
n > 1 (for example, we could take K = ��x� and � � ��x� → ��x2� to be the natural
map). Let K	x� �
 be the skew polynomial ring with multiplication rule xa = ��a�x for
a ∈ K. Let �x2� be the (two-sided) ideal generated by x2, and let

R �= K	x� �
/�x2� = K ⊕ Kx

Let �a1� a2� � � � � an� be a basis of K over L. Then:

(a) R is an Artinian ring;
(b) J �= Kx = ⊕

aiLx = ⊕
ai��K�x = ⊕

aixK�
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RINGS WHICH ADMIT FAITHFUL TORSION MODULES 2193

(c) The left ideals of R are exactly �0�, J , and R;
(d) Each aixK is a minimal right ideal of R.

Proof. These claims appear explicitly in [9, Ex. 16.2, p. 319]. �

Example 4. The ring R in Lemma 6 has left FT rank 0 and right FT rank 1.

Proof. We first claim that the left FT rank of R is 0. Indeed, suppose that M is
a left torsion module over R, and let m ∈ M be arbitrary. Since M is torsion, it
follows from (c) above that J ⊆ ann�m�. Since m was arbitrary, we conclude that
J ⊆ ann�M�, and hence M is not faithful. It follows that R has left FT rank 0.

We now claim that R has right FT rank 1. By (d), a1xK is a minimal right
ideal of R. It follows from (b) and (c) above and the fact that n > 1 that a1xK is
not two-sided. Since R is Artinian (by (a)), we may invoke Corollary 1 to conclude
that the right FT rank of R is 1. �

Remark 2. At this point, we revert to our original definition of rank. For the
remainder of the article, ‘FT rank’ will always mean ‘left FT rank.’

Noticeably absent from this section are examples of rings of finite FT rank
n > 1. We do not have any examples of such rings, but we conjecture that they do
exist.

5. COUNTABLE FT RANK

We begin this section by obtaining (analogous to the bound on the FT rank
of an Artinian ring) a bound on the FT rank of a commutative Noetherian ring.
We first recall the following result found in Bass [2].

Fact 3. Let R be a commutative Noetherian ring and let M be a finitely generated
R-module. Every descending chain of submodules of M is countable.

Theorem 5. Let R be a commutative Noetherian ring. Then FT�R� ≤ .

Proof. Immediate from the previous fact (taking M = R) and Theorem 3. �

Remark 3. There is a simple proof of Theorem 5 when R is a domain. We may of
course assume that R is not a field. Let I be a proper nonzero ideal of R. Krull’s
Intersection Theorem implies that

⋂
n>0 I

n = �0�. It now follows from Theorem 2
that

⊕
n>0 R/I

n is faithful torsion. Hence FT�R� ≤ .

We turn our attention toward identifying various classes of rings with
countably infinite FT rank. Toward this end, we investigate the FT rank of rings R
which have the property that the set � of all nonzero (two-sided) ideals of R has the
finite intersection property. Note that a large number of rings belong to this class.
In particular, left and right uniform rings as well as prime rings have this property
(hence, so do domains and simple rings). We prove the following theorem on the
FT rank of such rings.
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2194 OMAN AND SCHWIEBERT

Theorem 6. Let R be a ring for which the collection � of nonzero ideals of R has
FIP. Then the following hold:

(a) FT�R� = 0, FT�R� = 1, or FT�R� ≥ ;
(b) If R is commutative, then FT�R� = 1 is impossible, but FT�R� = 1 can hold if R is

noncommutative (we can even choose R to be a domain).
(c) If FT�R� = 0, then R possesses a minimum ideal. The converse holds if R is

commutative, but fails in general.

Proof. Assume that the set of nonzero ideals of R has FIP.

(a) Suppose by way of contradiction that FT�R� = k and 1 < k < . Let M =
�m1� � � � � mk� be a faithful torsion module over R. For each j with 1 ≤ j ≤ k, let Ij �=
ann�Rmj�. Note that if Ij = �0�, then Rmj is a faithful torsion module over R, and
this contradicts FT�R� > 1. Hence Ij �= �0�. Since each Ij is a nontrivial two-sided
ideal of R, and since R has FIP, it follows that I1 ∩ I2 · · · ∩ Ik �= �0�. But this implies
that M is not faithful, and we have a contradiction.

(b) If R is commutative, then FT�R� �= 1 by Corollary 1. To see that
FT�R� = 1 is possible in general, let k be a field with an automorphism � of infinite
order. Then R �= k	x� x−1� �
 is a non-Artinian simple domain (this appears as
Corollary 3.19 in [8]). It follows from Proposition 3 that FT�R� = 1.

(c) Assume that R does not possess a minimum ideal. Then the intersection of
all nonzero two-sided ideals of R is trivial. Theorem 2 implies that R is FT. Suppose
further that R is commutative, and let I be the minimum ideal of R. Suppose that M
is a torsion module over R. It follows from the minimality of I that I ⊆ ann�Rm� for
any m ∈ M . Hence M cannot be faithful. To show that the converse fails in general,
consider an arbitrary simple ring R which is not a division ring. Clearly, R has FIP
on nonzero ideals and R itself is a mimimum ideal, yet R is FT by Proposition 3. �

Corollary 6. Let D be a commutative domain which is not a field. Then FT�D� ≥ .

Proof. Immediate from Proposition 1 and Theorem 6. �

We proceed to prove the following useful result. We recall that an overring of
a commutative domain D is a ring R lying between D and its quotient field.

Lemma 7. Let D be a commutative domain with quotient field � , and suppose that
R �= � is an overring of D. Then FT�D� ≤ FT�R�.

Proof. Assume that D and R are as stated. Since R is not a field, Corollary 6
implies that FT�R� �= � ≥ . By Theorem 3, there exists a collection of nonzero
ideals �Ji � i ∈ �� of R indexed by � and satisfying the following:

(i) Jj � Ji for i < j;

(ii)
⋂

i∈� Ji = �0�.

For each i, define Ki �= Ji ∩D. It is easy to see that �Ki � i ∈ �� is a chain of nonzero
ideals of D (it is possible for Ki = Kj for i �= j, but these redundancies cause no
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RINGS WHICH ADMIT FAITHFUL TORSION MODULES 2195

problems). Further, (ii) above implies that
⋂

i∈� Ki = �0�. Finally, it follows from
Theorem 2 that FT�D� ≤ � = FT�R�. �

We will shortly catalog a wide variety of rings with countably infinite FT rank.
We first prove two lemmas. The first lemma is likely well known, but since we could
not locate a source, we sketch its proof.

Lemma 8. Let D be a domain with a minimal nonzero prime ideal P. Then D
possesses a rank one valuation overring V (i.e., V has Krull dimension one).

Proof. Let D and P be as stated. It suffices to prove the claim for the one-
dimensional quasi-local ring DP . Let V be a valuation overring of DP which is not
a field. We claim that V possesses a minimal nonzero prime ideal. Suppose by way
of contradiction that this is not the case. Let �Pi � i ∈ I� be the collection of nonzero
prime ideals of V . Since V does not possess a minimal nonzero prime ideal, it follows
that

⋂
i∈I Pi = �0�. For each i, set Qi �= Pi ∩DP . Then each Qi is a nonzero prime

ideal of DP . As
⋂

i∈I Pi = �0� and Qi ⊆ Pi, it follows that
⋂

i∈I Qi = �0�. Since �Qi �
i ∈ I� is a chain of nonzero prime ideals of DP with trivial intersection, it follows
that the set �Qi � i ∈ I� is infinite. This contradicts the fact that PDP is the unique
nonzero prime ideal of DP . Hence V possesses a minimal nonzero prime ideal P∗. It
follows that VP∗ is a rank one valuation overring of DP , and the proof is complete.

�

Lemma 9. Let V be a rank one valuation ring. Then FT�V� = .

Proof. Assume V is a rank one valuation ring, and let P be the unique nonzero
prime ideal of V . Let x ∈ P be nonzero. Then it is well known (see Theorem 17.1 of
Gilmer [5], for example) that

⋂
n>0�x

n� is a prime ideal of V . Since P is minimal, it
follows that

⋂
n>0�x

n� = �0�. Theorem 2 and Corollary 6 imply that FT�V� = . �

We now prove the following theorem.

Theorem 7. Let D be a commutative domain with a minimal nonzero prime ideal P.
Then FT�D� = .

Proof. We assume that D is a commutative domain and that P is a minimal
nonzero prime ideal of D. Corollary 6 implies that FT�D� ≥ . By Lemma 8, there
exists a rank one valuation overring V of D. Lemma 9 implies that FT�V� = , and
Lemma 7 yields FT�D� ≤ FT�V� = . It follows that FT�D� = , and the proof is
complete. �

We can now classify a wide collection of rings of countably infinite FT rank.

Corollary 7. Each of the following commutative rings has FT rank :

(i) Domains (which are not fields) which satisfy the descending chain condition (DCC)
on prime ideals;

(ii) Unique factorization domains (which are not fields);
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2196 OMAN AND SCHWIEBERT

(iii) D	x
, where D is a domain;
(iv) D		x

, where D is a domain;
(v) Domains of finite Krull dimension d > 0.

Proof. (i) Immediate from Theorem 7. (ii) Let D be a unique factorization domain
which is not a field, and let p ∈ D be a prime element. Then �p� is a minimal (nonzero)
prime ideal, hence Theorem 7 implies that FT�D� = . Showing that the rings in (iii)
and (iv) have FT rank  proceed similarly by noticing that in both cases, �x� is a
(nonzero) minimal prime ideal. (v) If D has finite Krull dimension d > 0, then D
possesses minimal prime ideals. Again, we are done by Theorem 7. �

6. UNCOUNTABLE FT RANK

In this section, we give examples of rings of FT rank � for any regular cardinal
�. We do this via valuation theory (we refer the reader to [5] for a thorough
development of valuation theory). In particular, we relate the FT rank of a valuation
ring to a property of its value group. Let �A�<� be a partially ordered set, and
let B be a subset of A. Recall that B is cofinal in A provided that for every a ∈ A,
there exists some b ∈ B such that a ≤ b. The cofinality of �A�<�, cf A, is the smallest
cardinality of a cofinal subset of A. To illustrate, consider the structure ���<�,
where < is the usual order on the set of real numbers. The set �+ of positive integers
is cofinal in �, and clearly every cofinal subset of � is infinite. Thus the cofinality
of the structure ���<� is . We relate this concept to FT rank.

Proposition 6. Let v be a valuation on the field K, let G be its value group, and let
V be the associated valuation ring (we assume, of course, that V is not a field). Then
FT�V� =cf G.

Proof. Let FT�V� �= �. Note that � is infinite (Corollary 6). We first show that
there exists a cofinal subset of G with cardinality at most �. By Theorem 3, there
exists a collection �Ji � i < �� of nonzero ideals of V with trivial intersection. For
each i, pick some nonzero xi ∈ Ji, and consider the set X �= �v�xi� � i < ��. We claim
that X is cofinal in G. Suppose by way of contradiction that this is not the case.
Then there is some g ≥ 0 in G such that v�xi� ≤ g for all i < �. Let x∗ ∈ V be such
that v�x∗� = g. Hence for each i, v�xi� ≤ v�x∗�. It follows that xi�x∗ for each i, and
thus x∗ is a nonzero element of

⋂
i∈I Ji, a contradiction. Thus X is cofinal in G,

and so cf G ≤ FT�V�. Suppose by way of contradiction that cf G < FT�V�, and let
A �= �gi � i ∈ I�, �I� < FT�V� be a cofinal subset of G (we may assume without loss
of generality that each gi ≥ 0). For each i, let xi ∈ V be such that v�xi� = gi. Then
it follows as above that

⋂
i∈I �xi� = �0�. But then

⊕
i∈I V/�xi� is faithful torsion, and

we have a contradiction to �I� < FT�V�. This completes the proof. �

We now show that there exist valuation rings of arbitrary regular FT rank
(recall that the FT rank of a ring is always a regular cardinal by Theorem 3).

Theorem 8. Let � be a (infinite) regular cardinal. There exists a valuation ring V
such that FT�V� = �.
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RINGS WHICH ADMIT FAITHFUL TORSION MODULES 2197

Proof. Consider the abelian group G �= ⊕
i∈� � (all finitely nonzero sequences in

� indexed by the cardinal �). Recall that the reverse lexicographic order on G is
defined as follows: A nonzero element g �= �gi � i ∈ �� is defined to be positive if
and only if gj > 0, where j is the largest element of the support of g (note that
‘gj > 0’ is an assertion about the usual integer ordering and ‘j is the largest element
of the support of g’ is an assertion about the usual ordinal ordering). It is then
straightforward to verify that this defines a partition of G and that the set P of
positive elements of G is closed under addition. Hence G becomes a totally ordered
abelian group via this ordering. By The Jaffard–Ohm–Kaplansky Theorem, there
is a field F and a valuation v on F with value group G. Let V be the associated
valuation ring. It suffices by Proposition 6 to show that cf G = �. Define the
function � � G− �0� → � by ���gi � i ∈ ��� �= i0, where i0 is the largest element of
the support of �gi � i ∈ ��. Let A ⊆ G+ with �A� < �. We will show that A is not
cofinal in G. Note trivially that as �A� < �, also ��	A
� < �. Since � is a regular
cardinal, �	A
 is not cofinal in �. Let j ∈ � be such that �	A
 < j (that is, every
element of �	A
 is less than j). Let g ∈ G be the sequence with a 1 in the jth
coordinate and zeros everywhere else. Then it is clear that g > h for every h ∈ A,
and hence A is not cofinal in G. This completes the proof. �

Corollary 8. Suppose � ≤ � are cardinals with � regular. Then there is a valuation
ring V of cardinality � such that FT�V� = �.

Proof. Let G be an ordered abelian group of size � which also has cofinality �
(such as the group G defined in Theorem 8), and let H be any ordered abelian
group of size �. Then G⊕H becomes an ordered abelian group under the usual
lexicographic order. It is straighforward to check that G⊕H has cofinality � (in
particular, ��gi� hi� � i ∈ I� is cofinal in G⊕H if and only if �gi � i ∈ I� is cofinal
in G). By Jaffard–Ohm–Kaplansky, there is a valuation v on a field K with value
group G⊕H . K can be chosen to have size �G⊕H� = �. Hence also the associated
valuation ring V has size �. The result now follows by Proposition 6. �

7. OPEN QUESTIONS

We close the article with two questions which we feel are interesting.

Question 4. Is there a bound on the FT rank of noncommutative Noetherian
rings?

Question 5. Are there examples of rings of finite FT rank n > 1? In particular,
does the ring of continuous functions on � have finite FT rank?
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