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Abstract. Let M be an infinite unitary module over a commutative ring R

with identity. M is called Jónsson over R provided every proper submodule

of M has smaller cardinality than M ; M is large if M has cardinality larger

than R. Extending results of Gilmer and Heinzer, we prove that if M is

Jónsson over R, then either M is isomorphic to R and R is a field, or M is a

torsion module. We show that there are no large Jónsson modules of regular

or singular strong limit cardinality. In particular, the Generalized Contin-

uum Hypothesis (GCH) implies there are no large Jónsson modules. Neces-

sary and sufficient conditions are given for an infinitely generated Jónsson

module to be countable. As applications, we prove there are no large unise-

rial or Artinian modules. Under the GCH, we derive a new characterization

of the quasi-cyclic groups.

In this paper, all rings are assumed to be commutative with identity, and all
modules are assumed to be unitary.

1. Preliminaries

In this section, we acquaint the reader with some basic properties of Jónsson
modules. Formally, an infinite module M over a commutative ring R is said to
be Jónsson over R iff every proper submodule of M has smaller cardinality than
M . We begin with a few examples:

Example 1. Let F be an infinite field. Then F becomes a module over itself.
Since F has only trivial ideals, it is easy to see that F is a Jónsson module. More
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2 GREG OMAN

generally, if R is a ring, J a maximal ideal of R of infinite residue, then R/J is
a Jónsson module over R.

Example 2 ([Fu2]). Let p be a prime number. The subgroup of Q/Z consisting
of all elements of the form a

pn where a ∈ Z and n ∈ N (mod Z) is the so-called
quasi-cyclic group of type p∞, denoted by Z(p∞). It is infinite, but all proper
subgroups are cyclic of order pn for some n.

The next example is due to Gilmer and Heinzer ([GH]).

Example 3. Let D be a one-dimensional Noetherian domain with a maximal
ideal J of finite index. Let K be the fraction field of D, and let V be a valuation
overring of D with center J on D. Then K/V is a faithful Jónsson module over
D.

It was first proved by Scott in [Sc] that the only Jónsson modules over Z are
the quasi-cyclic groups. We will give a very short proof of this fact. We begin
with the following proposition given in [GH], and include a different proof.

Proposition 1 (Proposition 2.5, [GH]). Suppose that M is a Jónsson module
over the ring R. Let r ∈ R be arbitrary. Then:

(1) Either rM = M or rM = 0.
(2) Ann(M)= {s ∈ R : (∀m ∈M)(sm = 0)} is a prime ideal of R.

Proof. We assume that M is a Jónsson module over R and let r ∈ R. Define
ϕ : M → rM by ϕ(m) = rm. Clearly this is an R-module epimorphism. Let
K be the kernel of this map. Then rM ∼= M/K. In particular, this implies
that |K||rM | = |M |. By elementary cardinal arithmetic, it is clear that either
|K| = |M | or |rM | = |M |. If |K| = |M |, then since M is a Jónsson module,
K = M and thus rM = 0. Otherwise |rM | = |M | and it follows that rM = M .
This establishes (1). As for (2), we suppose that r, s do not annihilate M . Then
by (1), rM = M and sM = M . Thus rsM = M and so rs does not annihilate
M . This proves (2). �

Before stating our next result, we note that a Jónsson module is indecompos-
able. To see this, suppose that the Jónsson module M has a direct sum decom-
position M = N

⊕
P . Then by elementary cardinal arithmetic, either |N | = |M |

or |P | = |M |. Since M is a Jónsson module, this forces either N = M or P = M .
We deduce the following corollary.
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Corollary 1. There are no Jónsson modules over a finite ring.

Proof. Suppose that M is a Jónsson module over the finite ring R. Let P be the
annihilator of M . Then M becomes a Jónsson module and a vector space over the
finite field R/P , which is impossible since M is infinite and indecomposable. �

We now give a simple proof of the following old result of Scott in [Sc].

Theorem 1.1 (Scott). The only Jónsson modules over the ring Z of integers are
the quasi-cyclic groups Z(p∞).

Proof. Let M be a Jónsson module over Z. The annihilator of M in Z is a prime
ideal of Z. If Ann(M)= (p) for some prime number p, then M becomes a Jónsson
module over the finite ring Z/(p), contradicting Corollary 1. Thus Ann(M)= {0}.
In particular, Proposition 1 implies that M is a divisible abelian group. It follows
from the structure theorem for divisible abelian groups (see for example [Fu1],
p. 64) that M is a direct sum of copies of Q and Z(p∞) for various primes p.
Since M is indecomposable, this forces M = Q or M = Z(p∞) for some prime
p. Since Q is clearly not a Jónsson module, we get M = Z(p∞) and the proof is
complete. �

2. Torsion-Free Jónsson Modules

In Theorem 3.1 of [GH], the authors prove (among other things) that every
countably infinite, infinitely generated Jónsson module is a torsion module. We
shall generalize this result, and begin with two preliminary lemmas. The first
lemma is Proposition 2.2 of [GH]. The proof is a straightforward consequence of
Proposition 1 and is omitted.

Lemma 1 (Proposition 2.2, [GH]). Let R be an infinite ring. Then R is a Jónsson
module over itself iff R is a field.

Lemma 2. Let M be a Jónsson module over the ring R, and suppose that N is
a proper submodule of M . Then M/N is also a Jónsson module over R.

Proof. We assume that M is a Jónsson module and that N is a proper sub-
module of M . Then |N | < |M |, and so |M/N | = |M |. Let P be a submodule of
M/N of cardinality |M/N |, and let ϕ : M → M/N be the canonical map. Then
it is easy to see that ϕ−1(P ) has cardinality |M |. Since M is a Jónsson module,
we get that ϕ−1(P ) = M . Hence P = M/N and M/N is a Jónsson module. �

We now characterize the torsion-free Jónsson modules.
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Proposition 2. Let R be a ring, and suppose that M is an infinite torsion-free
module over R. Then M is a Jónsson module over R iff R is a field and M ∼= R.

Proof. Suppose that R and M are as stated above. Since M is nontrivial and
torsion-free, R is a domain. IfR is a field andM ∼= R, then triviallyM is a Jónsson
module. Thus we assume that M is a Jónsson module over R. We suppose first
that |M | ≤ |R|. Choose any nonzero m ∈ M . Since M is torsion-free, the
mapping r 7→ rm is injective. In particular, this shows that |R| ≤ |M | and thus
|M | = |R|. In particular, since M is a Jónsson module, we get M = (m). If I is
the annihilator of (m), then it is clear that M ∼= R/I. Since M is torsion-free, we
must have I = {0}. Thus R is a Jónsson module over itself, and so M ∼= R and R
is a field by Lemma 1. We now suppose that |M | > |R| and derive a contradiction.
Let S denote the set of nonzero elements of R. Then S−1M becomes a vector
space over the field S−1R of dimension |M | = |S−1M |. Clearly, this implies that
there exists a subset X of M of cardinality |M | which is linearly independent
over R. Since M is a Jónsson module, this implies that M =

⊕
x∈X Rx. This

is a contradiction to the fact that M must be indecomposable, and the proof is
complete. �

We use this result to prove the following theorem.

Theorem 2.1. Suppose that M is a Jónsson module over the ring R. Then either
M ∼= R and R is a field, or M is a torsion module.

Proof. We suppose that M is a Jónsson module over the ring R. We first prove
the theorem in the special case where R is a domain. We let T be the torsion
submodule of M . If |T | = |M |, then T = M and M is a torsion module. Thus we
assume that |T | < |M |. By Lemma 2, M/T is a Jónsson module over R. Since
M/T is torsion-free, it follows from Proposition 2 that R is a field. But then M

is a Jónsson module over the field R. Since M is indecomposable, we are forced
to conclude that M ∼= R.

Now for the general case. Let P be the annihilator of M in R. By Proposition
1, P is a prime ideal and hence R/P is a domain. M is naturally a Jónsson module
over R/P . Hence from the above work, M is either a torsion or a torsion-free
module over R/P . If M is a torsion module over R/P , then it is clear that M is
a torsion module over R. Thus we assume that M is a torsion-free module over
R/P . If M is torsion-free over R, we’re done. Thus we suppose that M is not
torsion-free over R. Then there exists a nonzero m ∈ M and a nonzero r ∈ R
with rm = 0. But viewing M as an R/P -module, we get that rm = 0. As M is a
torsion-free R/P module, this forces r ∈ P . But recall that P is the annihilator
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of M in R, and thus r annihilates all of M , so that M is a torsion module. This
completes the proof. �

3. Large Jónsson Modules

Let us agree to call an infinite R-module large if M has cardinality greater
than R. In this section, with Theorem 2 in hand, we investigate the existence
of large Jónsson modules. We begin with the following immediate corollary of
Theorem 2.

Corollary 2. Every large Jónsson module is torsion.

Before proving our next proposition, we recall some definitions from set theory.

Definition 1. Let κ be an infinite cardinal. The cofinality cf(κ) of κ is the least
cardinal λ such that κ is the sum of λ many cardinals, each smaller than κ. The
cardinal κ is called regular if cf(κ)=κ and singular if cf(κ)< κ.

The regular cardinals include ℵ0 as well as every successor cardinal; that is,
every cardinal of the form ℵα+1 for some ordinal α. It is also well-known that
cf(κ) is a regular cardinal for every infinite κ.

We now prove the following result which generalizes Corollary 1.

Proposition 3. Suppose |R| <cf(|M |). Then M is not Jónsson over R.

Proof. By contraposition. Suppose M is Jónsson over R. By Theorem 2.1,
either M is isomorphic to R (and R is a field), or M is torsion. In the former
case, |R| = |M | ≥cf(|M |). In the latter case, since M is Jónsson, modding out
by the annihilator, we may assume M is faithful and R is a domain. So the
submodule M [r] = {m ∈ M : rm = 0} has cardinality less than M . Since M
is torsion, M =

⋃
r∈R−{0}M [r], and it follows that |R| ≥cf(|M |). The proof is

complete. �

Corollary 3. There does not exist a large Jónsson module of regular cardinality.

The previous proof shows that, in fact, if there exists a cardinal λ < |M | such
that for every r ∈ R, M [r] has cardinality at most λ, then M is not a large
Jónsson module over R.

We consider next the question of the existence of large Jónsson modules. We
show that their existence cannot be proved in ZFC, but the question of whether
their nonexistence can be proved in ZFC remains open. We begin with the fol-
lowing result of Ecker in [Ec]:
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Proposition 4 ([Ec]). Let R be an infinite ring and I a maximal independent
set in an R-module M . Then we have the following facts:

(1) If |I| = 0, then M = {0}.
(2) If |I| = 1, then |M | ≤ 2|R|.
(3) If |I| > 1, then |M | ≤ |I||R|.

Before proving our next result, we recall the following definition.

Definition 2. Let κ be an infinite cardinal. κ is called a strong limit cardinal
provided that for every λ < κ, one has 2λ < κ.

Note that if κ is a strong limit, and α, β < κ, then αβ ≤ (2α)β = 2α·β < κ.
We now prove the following theorem:

Theorem 3.1. Assume that every singular cardinal is a strong limit. Then there
are no large Jónsson modules.

Proof. Suppose by way of contradiction thatM is a large Jónsson module over R
and that every singular cardinal is a strong limit. By Corollary 3, the cardinality of
M is singular. Let X be a maximal independent set in M . By Ecker’s result, since
|M | is a strong limit cardinal, it follows that |X| = |M |. Hence M =

⊕
x∈X Rx,

contradicting the fact that M is indecomposable. �

We immediately obtain the following corollary.

Corollary 4. The Generalized Continuum Hypothesis implies that there are no
large Jónsson modules.

Thus it is impossible to prove in ZFC that large Jónsson modules exist. R.G.
Burns, F. Okoh, H. Smith, and J. Wiegold have shown in [Bu] that if R is Noe-
therian and M is a large module over R, then M possesses an independent subset
of size |M |. Hence the nonexistence of large Jónsson modules can be proved in
ZFC over Noetherian rings.

4. Necessary and Sufficient Conditions for a Jónsson Module to be

Countable

In this section, we give two necessary and sufficient conditions in order for an
infinitely generated Jónsson module to be countable. The next lemma will allow
us to prove a very useful result.

Lemma 3. Let M be an infinite R-module, and let r ∈ R,n ∈ N. Suppose that
rn annihilates M . Let M [r] denote the submodule of M consisting of the elements
of M annihilated by r. Then |M [r]| = |M |.
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Proof. We prove this by induction on n ∈ N. The case when n = 1 is trivially
true. Thus we assume the lemma is true for some n ∈ N. Suppose that M
is an infinite R-module, r ∈ R, n ∈ N, and rn+1 annihilates M . It is clear
that M/M [r] ∼= rM . Hence we get that |M | = |rM ||M [r]|. As M is infinite,
it follows that either |M [r]| = |M | or |rM | = |M |. If |M [r]| = |M |, then we
have what we want and we are done. Otherwise |rM | = |M |. Recall that rn+1

annihilates M , and therefore rn annihilates rM . By the inductive hypothesis, we
have |(rM)[r]| = |rM | = |M |. Clearly (rM)[r] ⊆ M [r], and thus |M [r]| = |M |.
This completes the proof. �

Proposition 5. Suppose that M is a faithful Jónsson module over the ring R.
Further, suppose that r ∈ R is nonzero and that every element of M is annihilated
by some power of r. Then M is countable.

Proof. For each positive integer n, we let Mn be the collection of elements of
M annihilated by rn. Clearly M1 ⊆ M2 ⊆ M3 ⊆ . . . and M is the union of the
Mn’s as n ranges over the positive integers. We claim that M [r] = M1 is finite.
Suppose by way of contradiction that M1 is infinite. Then it follows from Lemma
3 that |Mn| = |M1| for every positive integer n. But since M is the union of the
Mn’s, it is clear that |M | = |M1|. As M is Jónsson over R, M = M1 = M [r],
contradicting that M is faithful. Thus M1 is finite. It follows from Lemma 3 that
Mn is finite for every positive integer n. This completes the proof. �

Recall that a module M is Artinian provided that the descending chain condi-
tion on submodules holds. M is almost Noetherian if M is not finitely generated,
but every proper submodule of M is finitely generated. By modding out the
annihilator, there is no loss of generality in restricting our attention to faithful
Jónsson modules over a domain. Gilmer and Heinzer have shown that a finitely
generated Jónsson module is cyclic, and since the faithful cyclic Jónsson modules
are torsion-free, we already have complete information about them. Thus we fo-
cus on infinitely generated faithful Jónsson modules over a domain. Using the
previous results, we prove the following equivalence.

Theorem 4.1. Suppose that M is an infinitely generated faithful Jónsson module
over the domain D. The following are equivalent:

(a) M is countable.
(b) M is Artinian.
(c) M is almost Noetherian.

Proof. We prove the equivalence of (a) and (b) and of (a) and (c):
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(a)⇒ (b): this is trivial.
(b)⇒ (a): suppose that M is Artinian. It is well-known (see [WK], Lemma

1.7, for example) that M =
⊕n

i=1M [Ji] where the Ji are maximal in R, n ∈ N,
and M [Ji] is the set of elements of M annihilated by a power of Ji. Since M is a
Jónsson module, M is indecomposable, and we see that M = M [Ji] for some i.
In particular, this means that M is Ji-primary. Since M is infinitely generated,
D cannot be a field (since then M would be isomorphic to D and would thus be
cyclic). Hence Ji is nonzero. Pick any nonzero r ∈ Ji. It then follows that M is
r-primary. We now conclude that M is countable by Proposition 5.

(a)⇒ (c): this is trivial.
(c)⇒ (a): suppose that M is almost Noetherian. Since M is infinitely gener-

ated, M cannot be torsion-free (lestM be cyclic). Letm ∈M be a nonzero torsion
element annihilated by some nonzero r ∈ R. We claim that

⋃∞
n=1AnnM (rn) =

M . Let n be a positive integer. Since D is a domain and M is faithful, it fol-
lows easily from Proposition 1 that rnM = M . In particular, we have rnx = m

for some x ∈ M . But this means that x ∈ AnnM (rn+1), but x /∈ AnnM (rn),
and hence the union

⋃∞
n=1AnnM (rn) is strictly ascending. In particular, the

union isn’t finitely generated. Since M is almost Noetherian, this implies that
M =

⋃∞
n=1AnnM (rn). In particular, it follows that M is r-primary. It now

follows from Proposition 5 that M is countable. This completes the proof. �

5. Applications

In this section we give some applications of the results of this paper. We furnish
elementary proofs that there can be no large uniserial or Artinian modules. We
then provide a new characterization of the quasi-cyclic groups Z(p∞).

Proposition 6. Large uniserial modules do not exist.

Proof. Suppose by way of contradiction that there exists a ring R and an infinite
uniserial R-module M of cardinality greater than |R|. Suppose that N is an
arbitrary proper submodule of M . Pick any m ∈ M not in N . Then since
M is uniserial, we see that N ⊆ (m), and thus |N | ≤ |R|. We suppose first
that R is finite. Then M is infinite but (by the previous remark) has all proper
submodules finite. It follows that M is a Jónsson module over the finite ring R.
This contradicts Corollary 1. Thus we are forced to conclude that R is infinite.
Since M is a large module, we see that |M | ≥ |R|+. This implies that M possesses
a submodule P of cardinality |R|+. Since every proper submodule of M has size
≤ |R|, this implies that M = P , and so |M | = |R|+. Again, recall that every
proper submodule of M has cardinality ≤ |R|, and hence M is a Jónsson module.
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But |M | = |R|+, a regular cardinal, so we have a contradiction to Proposition 3.
This completes the proof. �

We now prove that the same result holds for Artinian modules.

Proposition 7. Large Artinian modules do not exist.

Proof. Suppose by way of contradiction that there exists a ring R and an infinite
Artinian module M of cardinality greater than |R|. We claim that M possesses
a Jónsson module N of the same cardinality as M . If M is a Jónsson module,
we are clearly done. Otherwise there exists a proper submodule M ′ of the same
cardinality as M . If M ′ is a Jónsson module, we’re done. Otherwise we can find a
proper M ′′. Since M is Artinian, this process must terminate after finitely many
steps, producing the desired submodule. This implies immediately that R cannot
be finite (lest there exist an infinite Jónsson module over R). Now, since M has
larger cardinality than R and R is infinite, clearly there exists a submodule N of
M of cardinality |R|+. But now N is also Artinian and by the above argument,
there exists a Jónsson module over R of cardinality |R|+, a regular cardinal. This
contradicts Corollary 3 and completes the proof. �

The mathematician R. McKenzie proved the remarkable result, assuming the
Generalized Continuum Hypothesis, that every Jónsson semigroup (the definition
is the obvious one) is actually a group. Using his result, we can give an equally
remarkable characterization of the quasi-cyclic groups Z(p∞). We first state a
simple lemma needed in our characterization. The proof is analogous to the proof
of Lemma 2 and is omitted.

Lemma 4. Suppose that G is a Jónsson group, and H is a proper normal subgroup
of G. Then G/H is also a Jónsson group.

Our last lemma is a result of Strunkov. We refer the reader to [Str] for a proof.

Lemma 5 (Strunkov). Suppose that G is an infinite non-abelian group which
is generated by more than two elements. Suppose further that the set of prime
divisors of the orders of the elements of G is finite. Then G possesses a proper
infinite subgroup.

We are now in position to prove our characterization theorem. First, for a
semigroup S, we let S∗ denote the subsemigroup of S generated by all commuta-
tors aba−1b−1. Of course, an arbitrary semigroup may have no commutators at
all, in which case we put S∗ := ∅. We present the following theorem.
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Theorem 5.1. Assume the Generalized Continuum Hypothesis. Let S be an
infinite semigroup. Then S ∼= Z(p∞) for some prime number p iff S satisfies the
following two conditions:

(1) S is a Jónsson semigroup
(2) S∗ 6= S

Proof. We first quickly verify that Z(p∞) satisfies (1) and (2). Note that any
proper subsemigroup S of Z(p∞) is actually a subgroup of Z(p∞) since Z(p∞) is
a torsion group. Thus S has smaller cardinality, since Z(p∞) is a Jónsson group.
Thus (1) holds. (2) is trivial since Z(p∞) is abelian.

Conversely, suppose that S is an arbitrary semigroup satisfying (1) and (2)
above. Then McKenzie’s result shows that S is a group. We assume S is un-
countable and derive a contradiction. Since S is a Jónsson semigroup, it follows
that S∗ has smaller cardinality than S (note that since S is a group, S∗ is actu-
ally a subsemigroup). But then it is easy to see that the commutator subgroup
S′ must also have smaller cardinality than S. By Lemma 4, S/S′ is a Jónsson
group. Since S/S′ is abelian, it follows from Theorem 1.1 that S/S′ ∼= Z(p∞).
But |S/S′| = |S|, and S is uncountable, so this is impossible. Thus we are forced
to conclude that S is countable. Note that the condition on S clearly implies
that every element of S has finite order (lest S ∼= Z). If S∗ = {e}, then S is
abelian and S ∼= Z(p∞) for some prime number p, which is what we wanted to
show. Thus we suppose that S∗ 6= {e} and derive a contradiction. By (2), it is
clear that S∗ must be finite. Since S is a torsion group, we see that S∗ must be
a group, and hence S∗ = S′. Next we invoke Strunkov’s result. Since S′ is non-
trivial, S is nonabelian. Further, since S/S′ is abelian, S/S′ ∼= Z(p∞) for some
prime number p. Note that Z(p∞) is not finitely generated, and thus neither is S.
We also have that every element of Z(p∞) has order pn for some natural number
n. It follows that for any x ∈ S, xp

n ∈ S′ for some natural number n. Since S′

is finite, it follows that the set of prime divisors of the orders of the elements of
S must be finite. By Strunkov’s result, we see that S possesses a proper infinite
subgroup, contradicting the fact that S is a countable Jónsson semigroup (and
since S is a group, S is a countable Jónsson group). This contradiction completes
the proof. �

The following result follows easily from the above proof (and does not depend
on GCH). We leave its proof to the reader.

Corollary 5. Let G be a Jónsson group with derived subgroup G′. Then G′ = {e}
or G′ = G.
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Thus a nonabelian Jónsson group is, in some sense, highly nonabelian.

6. Open Problems

We close the paper by stating two open problems we feel are interesting. We
first give a short historical account to motivate interest. In model theory, a
Jónsson model is a model X = (X,R, F ) where R and F are countable collections
of finitary relations and operations on the set X such that every elementary
submodel of X has smaller cardinality. A Jónsson group is thus a group in which
all proper subgroups have smaller cardinality. It was conjectured by Kurosh in
the sixties that uncountable Jónsson groups exist. In 1980, Shelah proved the
existence of a Jónsson group of size ℵ1 ([Sh]). We ask an analogous question
about modules.

Question 1. Does there exist an infinitely generated uncountable Jónsson mod-
ule?

Erdös and Hajnal showed in [Er] that the axiom of constructibility (V = L)
implies that there are Jónsson models of every infinite cardinality. Since V = L

implies GCH, it follows from our results that V = L implies the nonexistence
of large Jónsson modules. We would like to know the answer to the following
question.

Question 2. Is ZFC sufficient to prove there does not exist a large Jónsson
module M over R such that cf(|M |)≤ |R|?

For an introduction to Jónsson models and algebras, we refer the reader to the
excellent survey article [Co] and to the most recent edition of the book [Ch] and
the survey [Eis]. For more advanced results, see [Sh2] and his subsequent papers
on Jónsson models.
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