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Abstract. Let R be a commutative ring with identity and let M be an infinite uni-
tary R-module. Then M is a Jónsson module provided every proper R-submodule
of M has smaller cardinality than M . In this note, we strengthen this condition
and call an R-module M (which may be finite) strongly Jónsson provided distinct
R-submodules of M have distinct cardinalities. We present a classification of these
modules, and then we study a sort of dual notion. Specifically, we consider modules
M for which M/N and M/K have distinct cardinalities for distinct R-submodules
N and K of M ; we call such modules strongly HS (see the introduction for etymol-
ogy). We conclude the paper with a classification of the strongly HS modules over
an arbitrary commutative ring.

1. Introduction

Let R be a commutative ring with identity, and let M be an infinite unitary R-
module. Then M is called a Jónsson module provided every proper R-submodule
of M has smaller cardinality than M . Such modules have received attention in
the literature; specifically, they have been studied by Robert Gilmer, Bill Heinzer,
and the author (among others). We refer the reader to Gilmer and Heinzer ([5],
[6], [7], [8]) and Oman ([12], [16], [17], [21]) for results on Jónsson modules and
related structures. Dually, rings R for which R/I is finite for every nonzero two-
sided ideal I of R were studied some time ago by Chew and Lawn ([2]); they call
such rings residually finite. Many of their results were extended (in particular, to rings
without identity) by Levitz and Mott in [13]. The notion of residual finiteness was
generalized (in the commutative setting) by Salminen and the author. To wit, let R
be a commutative ring with identity and let M be an infinite unitary R-module. Say
that M is homomorphically smaller (HS for short; this terminology is due to Ralph
Tucci) if |M/N | < |M | for all nonzero R-submodules N of M . Various structural
theorems on HS modules were obtained in Oman and Salminen [20]. Many of these
results were subsequently generalized by Salminen and the author in [19].
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In this article, we strengthen the cardinality assumptions in the definition of
Jónsson and HS modules, but drop the requirement that the modules be infinite.
Specifically, let R be a commutative ring with identity, and suppose that M is a
unitary R-module. Say that M is strongly Jónsson provided |N | 6= |K| for distinct
R-submodules N and K of M . We present a structure theorem for such modules
over an arbitrary commutative ring. We then study a sort of dual defined as follows:
Call M strongly HS provided |M/N | 6= |M/K| for distinct R-submodules N and K
of M . In the final section of the paper, we classify the strongly HS modules.

2. Preliminaries

All rings in this paper are commutative with identity and all modules
are unitary.

In this section, we collect some lemmas to which we will refer throughout the
paper. Several of the following results appear in the literature. However, as all
the proofs we present are short and instructive, we include them so as to keep the
paper reasonably self-contained. Before presenting our first definition, we remark
that there will be occasions throughout the paper when we will consider module
structures on an abelian group over multiple rings. To help mitigate confusion, the
notation “M ∼=R N” will always mean that R is a ring and M and N are isomorphic
as R-modules. We will also be very careful to clearly differentiate between ring
isomorphism and module isomorphism.

Definition 1 (Gilmer [4], p. 8). Let R be a ring, and let M be an abelian group
which is a left module over both the rings R and S. Say that the structure of M as an
R-module is essentially the same as the structure of M as an S-module if and only
if Rm = Sm for every m ∈M .

It is easy to see that if the structure of M as an R-module is essentially the same
as the structure of M as an S-module, then the set of R-submodules of M is the
same as the set of S-submodules of M .

Recall that if M is an R-module, then the annihilator of M in R is the set
annR(M) := {r ∈ R : rM = {0}}. One checks easily that annR(M) is an ideal of R.
Further, M is naturally an R/annR(M)-module via the scalar product r ·m := rm.
The following lemma is trivial to verify:

Lemma 1. Let R be a ring, and let M be an R-module. Then the structure of M as
an R-module is essentially the same as the structure of M as an R/annR(M)-module.

A ring R is local provided R has a unique maximal ideal. Unfortunately, this
terminology is not universal. Some authors require a local ring to be Noetherian
(calling general rings with a unique maximal ideal quasi-local), but we do not adpot
that convention in this paper.
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We now recall the following fundamental definition, and then prove a lemma which
is perhaps not as well-known.

Definition 2. Let R be a ring, I an ideal of R, and let M be an R-module. Say that
M is I-primary provided that for every m ∈M , there exists a positive integer k such
that Ikm = {0}.
Lemma 2. Let R be a ring, and let J be a maximal ideal of R. Further, suppose that
M is a J-primary R-module. For every s ∈ R − J and every m ∈ M , there exists a
unique m′ ∈M such that m = sm′.

Proof. Let R, J , and M be as in the statement of the lemma. Now let s ∈ R−J and
m ∈M be arbitrary. We first prove existence. By assumption, there exists a positive
integer k such that Jkm = {0}. Since J is maximal and s /∈ J , we conclude that
(Jk, s) = R. But then y + sx = 1 for some y ∈ Jk and x ∈ R. Multiplying through
by m and using the fact that ym = 0, we get sxm = m. Thus m = s(xm), proving
existence. As for uniqueness, suppose that m = sm′ = sm′′ for some m′,m′′ ∈ M .
Then s(m′−m′′) = 0. Again, there is a positive integer k such that Jk(m′−m′′) = 0.
But then (Jk, s) ⊆ annR(m′−m′′). As above, (Jk, s) = R. Thus 1 ∈ annR(m′−m′′),
and we conclude that m′ = m′′. �

Corollary 1. Suppose that R is a ring and that M is a J-primary R-module for
some maximal ideal J of R. Then M has a natural module structure over the local
ring RJ (the localization of R at the maximal ideal J) given by r

s
·m := rm

s
, where

rm
s

denotes the unique m′ ∈M such that rm = sm′.

It is well-known that the cardinality of a finite local ring is a power of a prime
(see Mcdonald [14], for example; we present the easy proof below). We will need the
following more general result:

Lemma 3. Let R be a local ring, and let M be a finite R-module (that is, the cardi-
nality of M is finite). Then |M | is a power of a prime.

Proof. We begin by proving that every finite local ring has cardinality that is a power
of a prime. Thus let (R, J) be a finite local ring (J is the unique maximal ideal of
R). Then R/J is a finite field, whence |R/J | = pk for some prime p and positive
integer k. Since R/J has characteristic p, it follows that p · 1 ∈ J (here, p · 1 denotes
1 + 1 + · · · + 1 (p times)). Since R is finite, every prime ideal of R is maximal. We
conclude that J is the unique prime ideal of R, whence J = Nil(R), the nilradical of
R. But since p · 1 ∈ J , we conclude that pn · 1 = 0 for some positive integer n. Hence
pn · r = 0 for every r ∈ R, and we see that the additive order of every element of R
divides pn. It follows that |R| = pj for some positive integer j.

More generally, assume that (S, J) is a local ring (which may be infinite) and that
M is a finite S-module. We will prove that |M | is a power of a prime. If M = {0},
the result is patent, so assume that M is nonzero. Fix m0 ∈ M − {0}. Setting
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I := annS(Sm0), we have Sm0
∼=S S/I. Since M is finite, so is Sm0, whence S/I is

a finite local ring. By what we just proved, |S/I| = pk for some prime p and positive
integer k. Further, the module isomorphism theorems yield

(2.1) |S/J | · |J/I| = |S/I| = pk,

whence there exists a positive integer n such that

(2.2) |S/J | = pn.

We will now prove that |M | is a power of p. Let m ∈ M − {0} be arbitrary, and
set I ′ := annS(Sm). As above, Sm ∼=S S/I

′, and |S/I ′| = qt for some prime q and
positive integer t. But now (2.1) and (2.2) yield that |S/J | = pn is a factor of qt. We
deduce that p = q, and hence |Sm| = pt. Thus the additive order of m is a power
of p. As m ∈ M − {0} was arbitrary, we conclude that |M | is a power of p, and the
proof is complete. �

We conclude this section with a brief discussion of a class of rings which will play
a pivotal role in the sequel. Let R be a ring. Then R is a discrete valuation ring
(DVR) provided R is a principal ideal domain with a unique nonzero prime ideal
(m). Since such an R is a unique factorization domain, every nonzero nonunit of R
is of the form umk for some unit u and positive integer k. Thus the set of proper
nonzero ideals of R is precisely {(mk) : k > 0}. It follows from this fact that the set
of ideals of R is linearly ordered by inclusion. Moreover,

Lemma 4. Let (V,m) be a DVR, and let K be the quotient field of V . For every
positive integer k, let Mk be the V -submodule of K/V defined by Mk := {V + v

mk
: v ∈

V }. Then the modules Mk are precisely the proper nonzero V -submodules of K/V .
Moreover, Mk

∼=V V/(m
k) for every positive integer k.

Proof. It is trivial to verify that each Mk is a proper nonzero V -submodule of K/V .
Note that every nonzero element of K is of the form umk for some unit u ∈ V and
some integer k. It follows that

(*) every nonzero element of K/V can be expressed in the form V + u
mk

for some
unit u ∈ V and some positive integer k.

Thus K/V =
⋃
k>0Mk. Now let L be a proper nonzero V -submodule of K/V . We

will show that L = Mk for some positive integer k. Since L is proper, there exists
some a > 0 for which Ma * L. Let i be least with the property that Mi * L. It is
clear from (*) that i > 1. We claim that L = Mi−1. By leastness of i, we must simply
show that L ⊆ Mi−1. Consider an arbitrary nonzero element V + u

mj
of L. Since

Mi * L, we conclude that j < i. But then V + u
mj
∈Mj ⊆Mi−1, whence L ⊆Mi−1.

Finally, for any k > 0, it is straightforward to verify that the map ϕ : V →Mk defined
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by ϕ(v) := V + v
mk

is a surjective V -module homomorphism with kernel (mk). Thus

Mk
∼=V V/(m

k). �

3. Strongly Jónsson Modules

Let R be a ring. Recall from the introduction that an R-module M is strongly
Jónsson provided |N | 6= |K| for distinct R-submodules N and K of M . In particular,
every proper R-submodule of M has smaller cardinality than M . Thus an infinite,
strongly Jónsson module is a Jónsson module. As a jumping-off point, we classify the
strongly Jónsson abelian groups (the following proposition may appear somewhere
in the literature as an exercise). We remind the reader that for any prime p, the
quasi-cyclic group Z(p∞) is the group Q/Z(p) (here Z(p) denotes the localization of Z
at the prime ideal (p)).

Proposition 1. Let G be an abelian group. Then G is strongly Jónsson (i.e. G is a
strongly Jónsson Z-module) if and only if G ∼= Z(p∞) for some prime p or G ∼= Z/(n)
for some positive integer n.

Proof. It is known that for any prime p, every proper subgroup of Z(p∞) is finite of
order pn for some non-negative integer n. Moreover, for every non-negative integer
n, Z(p∞) possesses a unique subgroup of cardinality pn (see Fuchs [3], pp. 23-25). It
follows that distinct subgroups of Z(p∞) have distinct cardinalities. It is also well-
known that Z/(n) enjoys this property for every positive integer n (Hungerford [10],
p. 37). Thus Z(p∞) and Z/(n) are strongly Jónsson.

Conversely, suppose that G is a strongly Jónsson abelian group. If G is infinite,
then G is an abelian Jónsson group, whence G ∼= Z(p∞) for some prime p by an old
result of Scott (Scott [22]). Now assume that G is finite. Then by The Fundamental
Theorem of Finitely Generated Abelian Groups, G is a finite direct sum of cyclic
groups of prime power order. Clearly, no two distinct summands can have cardinality
a power of the same prime p, lest G possess two distinct subgroups of order p. We
conclude that G ∼= Z/(n) for some positive integer n. �

Employing a classical theorem of Baer, we can show that the conclusion of the
previous proposition holds even without assuming that G is abelian.

Proposition 2. Let G be a group with the property that distinct subgroups of G have
distinct cardinalities. Then G is abelian.

Proof. Assume that distinct subgroups of G have distinct cardinalities, and suppose
by way of contradiction that G is nonabelian. We first claim that every subgroup
of G is normal. Indeed, let H < G, and let g ∈ G be arbitrary. Then clearly
|H| = |gHg−1|, whence by the condition on G, H = gHg−1, and H is normal. Hence
G is a Hamiltonian group (that is, G is nonabelian and all subgroups of G are normal).
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An old result of Baer1 (Baer [1]) yields that G ∼= Q8 × P , for some torsion abelian
group P that has no elements of order 4 (Q8 denotes the quaternion group of order
8). But then we are forced to conclude that Q8 inherits the property that distinct
subgroups have distinct cardinalities. However, Q8 has three subgroups of order 4, a
contradiction. �

The goal of this section is to generalize Proposition 1 to modules over an arbitrary
ring. We begin by reminding the reader that a ring R is a principal ideal ring
provided every ideal of R is principal. A domain D is a Dedekind domain if D admits
unique factorization of ideals, that is, if every proper nonzero ideal of D is uniquely
a finite product of prime ideals. We will need several alternative characterizations of
Dedekind domains. The following assertion is an amalgam of Theorem 37.1, Theorem
37.8, and Theorem 38.5 of Gilmer [4].

Fact 1. Let D be a domain which is not a field. Then the following are equivalent:

(a) D is a Dedekind domain.
(b) D is one-dimensional, Noetherian, and integrally closed.
(c) If A is any ideal of D and if a is a nonzero element of A, then there is an

element b of A such that A = (a, b).
(d) Every proper homomorphic image of D is a principal ideal ring.
(e) D is Noetherian and for every maximal ideal J of D, the localization DJ is a

discrete valuation ring.

We now prove a technical lemma which will be of use to us throughout the remain-
der of the paper.

Lemma 5. Let D be a Dedekind domain which is not a field, and let P be a prime
ideal of D. Then for every positive integer n,

|D/P n| = |D/P |n (the cardinalities may be infinite).

Proof. Assume that D is a Dedekind domain which is not a field and that P is a prime
ideal of D. If P = {0}, then the assertion of the lemma reduces to |D| = |D|n. Since
D is not a field, D is infinite, whence |D| = |D|n holds via basic cardinal arithmetic.
Suppose now that P is nonzero. Then (b) of Fact 1 implies that P is maximal. We
now proceed by induction. Clearly the assertion is true for n = 1. Assume for some
positive integer n that

(3.1) |D/P n| = |D/P |n.
To prove the assertion for n+ 1, note first that |D/P n+1| = |D/P n||P n/P n+1|. Thus
it suffices by the inductive hypothesis to prove that |P n/P n+1| = |D/P |. Toward this

1We thank Professor Arturo Magidin for the reference to Baer’s paper.
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end, observe that P n 6= P n+1, lest unique factorization be violated. Thus P n/P n+1

becomes a nonzero vector space over the field D/P . To finish the proof, it suffices
to show that P n/P n+1 is one-dimensional over D/P . Choose any nonzero element
a ∈ P n+1. By (c) of Fact 1, there exists b ∈ P n such that P n = (a, b). But then
P n/P n+1 can be generated by b (mod P n+1) over D/P . We conclude that P n/P n+1

is one-dimensional over D/P . �

We use the previous lemma to give an example of a class of finite rings which
are strongly Jónsson as modules over themselves. For brevity, let us call a ring R
which is strongly Jónsson as a module over itself a strongly Jónsson ring. We also
agree to denote the set of cardinalities of the ideals of a ring R by C(R) (that is,
C(R) := {|I| : I is an ideal of R}).
Example 1. Let (V,m) be a DVR. Suppose further that V/(m) is a finite field of
order pα, and let k be a positive integer. Set R := V/(mk). Then R is a strongly
Jónsson ring. Furthermore, C(R) = {1, pα, p2α, . . . , pkα}.
Proof. The set of ideals of R is precisely {(mk)/(mk), (mk−1)/(mk), . . . , (m0)/(mk)}.
To finish the proof, it suffices to show that for each i, 0 ≤ i ≤ k, one has |(mk−i)/(mk)| =
piα. To verify this, note that

(3.2) |V/(mk)| = |V/(mk−i)||(mk−i)/(mk)|.
Invoking Lemma 5, (3.2) becomes

(3.3) pkα = p(k−i)α|(mk−i)/(mk)|.
Solving, we get |(mk−i)/(mk)| = piα, as required. �

To illustrate with a specific example, let p be a prime, and let α be a positive integer.
Further, let Fpα be the field of order pα. Then the power series ring (Fpα [[t]], (t)) is a
discrete valuation ring with residue field (isomorphic to) Fpα .

It is easy to see that the direct sum of the groups Z/(n) and Z/(m) is strongly
Jónsson (as a Z-module) if and only if m and n are relatively prime. A natural
question is the following: When is a direct product of strongly Jónsson rings strongly
Jónsson? It is possible for the direct product of two strongly Jónsson rings to be
strongly Jónsson even if the rings are powers of the same prime, as the ring R :=
Fp × Fp2 witnesses. On the other hand, S := Fp × Fp2 × Fp3 has two distinct ideals
of cardinality p3, whence is not strongly Jónsson. We now pause to collect some
additional terminology which will aid us in answering this question.

Let S be a commutative semigroup, and let S1, S2, . . . , Sk be subsets of S. Then
the product set S1S2 · · ·Sk is defined by S1S2 · · ·Sk := {s1s2 · · · sk : si ∈ Si for
1 ≤ i ≤ k}. Suppose further that each Si is a finite set. Let us say that the collection
{S1, S2, . . . , Sk} is product-maximal provided S1S2 · · ·Sk is as large as possible, that
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is, if |S1S2 · · ·Sk| = |S1 × S2 × · · · × Sk|. The following simple lemma gives a useful
characterization of the product-maximal property.

Lemma 6. Let S be a commutative semigroup, and let S1, S2, . . . , Sk be finite subsets
of S. Then {S1, S2 . . . , Sk} is product-maximal if and only if the following property
holds:

(P ) If x1x2 · · ·xk = y1y2 · · · yk with each xi, yi ∈ Si, then xi = yi for all i, 1 ≤ i ≤ k.

Proof. Assume that S is a commutative semigroup and that S1, S2 . . . , Sk are finite
subsets of S. Suppose first that {S1, S2 . . . , Sk} is product-maximal. We will verify
property (P). Define ϕ : S1×S2 · · ·×Sk → S1S2 · · ·Sk by ϕ(s1, s2 . . . , sk) := s1s2 · · · sk.
Clearly ϕ is onto. Since {S1, S2 . . . , Sk} is product-maximal, it follows that ϕ is a
surjective map between two finite sets of the same cardinality. We conclude that ϕ is
one-to-one. Property (P) now follows. We omit the easy proof of the converse. �

Our interest in the previous lemma will be in the context of the semigroup (Z+, ·)
of positive integers under multiplication. In this setting, the reader may recall that
our property (P) above is somewhat related to the following well-studied concept
(due to Erdös) in additive number theory: A subset S ⊆ Z+ is a multiplicative Sidon
set if and only if ab = cd implies that {a, b} = {c, d} for all a, b, c, d ∈ S. As far as
we know, there is no literature on general product-maximal collections of subsets of
Z+. Therefore, we pause to present two examples.

Example 2. Let S1 = {2, 3} and S2 = {4, 6}. Then {S1, S2} is not product-maximal
since |S1S2| = 3 6= 4 = |S1 × S2|.

Example 3. If S1, S2, . . . Sk are pairwise relatively prime finite sets of positive inte-
gers (that is, if i 6= j and x ∈ Si, y ∈ Sj, then x and y are relatively prime), then
{S1, S2, . . . , Sk} is product-maximal.

We now give necessary and sufficient conditions for a finite product of finite strongly
Jónsson rings to be strongly Jónsson. In what follows below, we remind the reader
that C(R) := {|I| : I is an ideal of R}.

Lemma 7. Let R1, R2, . . . , Rk be finite rings. Then R1×R2× · · · ×Rk is a strongly
Jónsson ring if and only if

(a) Each Ri is strongly Jónsson, and
(b) {C(R1), C(R2), . . . , C(Rk)} is product-maximal (in the semigroup (Z+, ·)).

Proof. Assume that R1, R2, . . . , Rk are finite rings, and let R := R1 ×R2 × · · · ×Rk.
Suppose first that R is strongly Jónsson. It is obvious that (a) holds via the natural
injection of Ri into R. As for (b), we will prove that {C(R1), C(R2), . . . , C(Rk)} has
property (P). To see this, suppose that a1a2 · · · ak = b1b2 · · · bk where each ai, bi ∈
C(Ri). For each i, let Ii be an ideal of Ri of cardinality ai and let Ji be an ideal of
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Ri of cardinality bi. Then since a1a2 · · · ak = b1b2 · · · bk, clearly |I1 × I2 × · · · × Ik| =
|J1×J2×· · ·×Jk|. As R is a strongly Jónsson ring, we conclude that I1×I2×· · ·×Ik =
J1 × J2 × · · · × Jk. But then Ii = Ji for each i, whence ai = bi for each i.

Conversely, suppose that (a) and (b) hold. We will show that R is strongly Jónsson.
Thus we assume that |I1 × I2 × · · · × Ik| = |J1 × J2 × · · · × Jk|, where each Ii, Ji is
an ideal of Ri. We will prove that Ii = Ji for each i. We have that

(3.4) |I1| · |I2| · · · · |Ik| = |J1| · |J2| · · · · |Jk|.

Let 1 ≤ i ≤ k be arbitrary. We conclude from (b) that |Ii| = |Ji|. By (a), the ring
Ri is a strongly Jónsson ring. Thus Ii = Ji, and the proof is complete. �

We are almost ready to characterize the finite strongly Jónsson modules. First, we
need one more technical lemma.

Lemma 8. Let R be a ring, and let I1, I2, . . . , In be ideals of R. Suppose further that
there exist positive integers k1, k2, . . . , kn and distinct maximal ideals J1, J2, . . . , Jn of
R such that

(∗) Jkii ⊆ Ii for all i, 1 ≤ i ≤ n.

Set S := R/I1×R/I2×· · ·×R/In. Then the structure of the ring S as an R-module is
essentially the same as the structure of S as an S-module (whence the R-submodules
of S and the ideals of S coincide).

Proof. As in the statement of the lemma, set S := R/I1 × R/I2 × · · · × R/In,
and let x := (r1, r2, . . . , rn) ∈ S be arbitrary. We will show that Rx = Sx. It
is clear that Rx ⊆ Sx. To prove the converse, it suffices to show that for each
i, (0, 0, . . . , ri, 0, . . . , 0) ∈ Rx. Without loss of generality, we may assume that
i = 1 and that n > 1. Since the Ji are distinct maximal ideals, we conclude that
Jk22 ∩ Jk33 ∩ . . . ∩ Jknn * J1. Let α ∈ (Jk22 ∩ Jk33 ∩ . . . ∩ Jknn ) − J1. It follows from (*)

that α ·x = (αr1, 0, . . . , 0). Since α /∈ J1, we see that (α, Jk11 ) = R. Thus there exists
β ∈ R and y ∈ Jk11 such that βα+ y = 1. But via (*), we conclude that (modulo I1),
βα = 1. Thus (r1, 0, . . . , 0) = (βα)x ∈ Rx. �

Finally, we are able to characterize the finite strongly Jónsson modules. We will
make use of the following well-known result on Artinian modules (see Weakley [24],
Lemma 1.7).

Fact 2. Let R be a ring, and suppose that M is an Artinian R-module. For every
maximal ideal J of M , let M [J ] := {m ∈ M : Jkm = {0} for some positive integer
k} (M [J ] is called the J-torsion submodule of M). Then there exist finitely many
maximal ideals J1, J2, . . . , Jn of R such that
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M =
⊕
1≤i≤n

M [Ji].

Proposition 3. Let R be a ring, and let M be a finite nontrivial R-module. Then
M is a strongly Jónsson R-module if and only if there exist discrete valuation rings
(V1,m1), (V2,m2), . . . , (Vn,mn), each with finite residue fields, and positive integers
k1, k2, . . . , kn, such that if the ring S := V1/(m

k1
1 )× V2/(mk2

2 )× · · · × Vn/(mkn
n ), then

(a) M ∼=R S. Moreover, the structure of S as an R-module is essentially the same
as the structure of S as an S-module, and

(b) {C(V1/(mk1
1 )), C(V2/(mk2

2 )) . . . , C(Vn/(mkn
n ))} is product-maximal.

Proof. Let R be a ring, and let M be a finite nontrivial R-module.
Assume first that (a) and (b) hold. It follows immediately from Example 1 and

Lemma 7 that the ring S := V1/(m
k1
1 ) × V2/(m

k2
2 ) × · · · × Vn/(m

kn
n ) is a strongly

Jónsson ring, whence by (a), M is a strongly Jónsson R-module.
Conversely, suppose that M is a strongly Jónsson R-module. We will show that

(a) and (b) hold. Since M is finite, M is certainly Artinian. Thus by Fact 2, there
exist maximal ideals J1, J2, . . . , Jn of R such that

(3.5) M =
⊕
1≤i≤n

M [Ji].

Let i be arbitrary. Since M [Ji] is Ji-primary, M [Ji] is naturally a module over the
local ring RJi by Corollary 1. Lemma 3 implies that |M [Ji]| is a power of a prime; say
that |M [Ji]| = pλ. We will show that M [Ji] is cyclic. Suppose not. Then M [Ji] is the
union of its proper R-submodules. Since each R-submodule of M [Ji] has cardinality
a power of p and since for every j, 0 ≤ j < λ, there is at most one R-submodule of
M [Ji] of cardinality pj, we conclude that

(3.6) pλ ≤ 1 + p+ p2 + · · ·+ pλ−1.

However, 1 + p + p2 + · · · + pλ−1 = pλ−1
p−1 < pλ, and we have a contradiction. Thus

M [Ji] is cyclic. The same argument can be applied to show that every R-submodule
of M [Ji] is cyclic. Let Ii be the annihilator of M [Ji] in R. Then (3.5) and the module
isomorphism theorems yield

(3.7) M ∼=R

⊕
1≤i≤n

R/Ii.

Again, let i be arbitrary. Since Ii + 1 is annihilated by a power of Ji, we see that
Ii contains a power of Ji. Set S := R/I1 × R/I2 × · · · × R/In. Lemma 8 now
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implies that the structure of the ring S as an R-module is essentially the same as the
structure of S as a module over itself (and thus the R-submodules of S are the same
as the ideals of S). To finish the proof, we must show that each R/Ii is a proper
homomorphic image of a discrete valuation ring with a finite residue field. Toward
this end, recall that R/Ii ∼=R M [Ji] and that every R-submodule of M [Ji] is cyclic.
It follows that R/Ii is a finite principal ideal ring. Since Ii contains a power of Ji,
R/Ii is local. Cohen’s structure theorems for complete local rings yield that R/Ii
is a proper homomorphic image of a discrete valuation ring (Vi,mi) (this is stated
explicitly as part of Theorem 3.3 of McLean [15]). Thus R/Ii ∼= Vi/(m

ki
i ) (as rings)

for some positive integer ki. Lemma 5 implies that Vi/(mi) is finite, and hence (a)
holds. That (b) holds follows immediately from (a) and Lemma 7 (note that (a)
implies that S is a strongly Jónsson ring). �

We easily establish the following corollary, which will be of great use to us in the
following section.

Corollary 2. Let R be a ring, and suppose that M is a finite strongly Jónsson R-
module. Then every R-submodule of M is cyclic.

Proof. Assume thatM is a finite strongly JónssonR-module. IfM is trivial, the result
is clear, so assume that M is nontrivial. The previous proposition yields discrete
valuation rings (V1,m1), (V2,m2), . . . , (Vn,mn), each with finite residue fields, and
positive integers k1, k2, . . . , kn, such that if the ring S := V1/(m

k1
1 )×V2/(mk2

2 )×· · ·×
Vn/(m

kn
n ), then M ∼=R S. Moreover, the structure of S as an R-module is essentially

the same as the structure of S as an S-module. Each Vi/(m
ki
i ) is a principal ideal

ring. It is easy to check that this implies that S too is a principal ideal ring. Since
the structure of S as an R-module is essentially the same as the structure of S as an
S-module, we deduce that every R-submodule of S is cyclic. As M ∼=R S, it follows
that every R-submodule of M is cyclic. This concludes the proof. �

Having classified the finite strongly Jónsson modules, we move on to those which are
countably infinite. Recall that if M is an R-module, then the lattice of R-submodules
of M , denoted LR(M), is the collection of all R-submodules of M ordered by set-
theoretic inclusion. We now describe the order on LR(M), where M is a countably
infinite strongly Jónsson R-module which is not cyclic.

Proposition 4. Let R be a ring, and suppose that M is a countably infinite strongly
Jónsson R-module which is not cyclic. Then LR(M) is order isomorphic to ω + 1
with the usual ordinal ordering (ω denotes the first infinite ordinal).

Proof. Let R and M be as stated. Since every proper R-submodule of M is finite, it
is clear that M is Artinian. Hence by Fact 2, there exist maximal ideals J1, J2, . . . , Jn
of R such that
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M =
⊕
1≤i≤n

M [Ji].

Since M is countably infinite, it follows that some M [Ji] is also infinite. But as M
is strongly Jónsson, we deduce that M = M [Ji]. Setting J := Ji, we see that M is
J-primary. Now suppose that N is a proper nonzero R-submodule of M . Then N
is J-primary and finite. The proof of Proposition 3 shows that N ∼=R R/annR(N)
and that the ring R/annR(N) is a proper homomorphic of a discrete valuation ring.
It follows that R/annR(N) is a uniserial R-module, whence N is also a uniserial R-
module. We now claim that M itself is uniserial. Indeed, let A and B be arbitrary
R-submodules of M . We will show that either A ⊆ B or B ⊆ A. Clearly we may
assume that A and B are proper R-submodules of M , hence finite. We may also
assume that A and B are nonzero. But then the R-module A + B is finite as well,
whence by the above argument is uniserial. Since A ∪B ⊆ A+B, we conclude that
A ⊆ B or B ⊆ A.

Now set M0 := {0}. Choose any m 6= 0 in M . Then Rm is finite (since M is
not cyclic and strongly Jónsson) and nonzero. Since M is Artinian and uniserial,
there exists a unique minimal finite R-submodule M1 which properly contains M0.
Continuing recursively, we obtain an infinite sequence of finite R-submodules

(3.8) M0 (M1 (M2 · · ·

such that Mi/Mi−1 is simply for i > 0. To finish the proof, it suffices to show that the
Mi are precisely the proper R-submodules of M . Toward this end, let N be a proper
R-submodule of M . Then as M is strongly Jónsson, we see that N is finite, whence
N cannot contain every Mi. Let i be least such that Mi * N . As M0 = {0}, clearly
i > 0. We claim that N = Mi−1. By leastness of i, we have Mi−1 ⊆ N . If Mi−1 ( N ,
then since Mi is minimal with respect to properly containing Mi−1 (and since M is
uniserial), we conclude that Mi ⊆ N , which is a contradiction. Thus N = Mi−1, and
the proof is complete. �

We now recall the following result of Hirano and Mogami:

Lemma 9 ([9], Theorem 8 and Theorem 10). Let R be a ring and let M be an R-
module. Suppose further that LR(M) is order isomorphic to ω+1. Let S := EndR(M)
be the endomorphism ring of M over R. Then the structure of M as an S-module
is essentially the same as the structure of M as an R-module. Moreover, S is a
(commutative) complete discrete valuation ring, and if K is the quotient field of S,
then M ∼=S K/S.

We need one more result from the literature and then we can classify the count-
ably infinite strongly Jónsson modules. Recall from the introduction that an infinite
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module M over a ring R is a Jónsson module if and only if every proper R-submodule
of M has smaller cardinality than M .

Lemma 10 ([8], Proposition 2.2). Let R be an infinite ring. Then R is Jónsson as
a module over itself if and only if R is a field.

Proposition 5. Let R be a ring and let M be a countably infinite R-module. Then
M is strongly Jónsson if and only if one of the following holds:

(a) There exists a maximal ideal J of R such that M ∼=R R/J .
(b) EndR(M) := (V,m) is a complete discrete valuation ring with a finite residue

field, and the structure of M as an R-module is essentially the same as the structure
of M as a V -module. Moreover, if K is the quotient field of V , then M ∼=V K/V .

Proof. We assume that R is a ring and that M is a countably infinite R-module.
Suppose first that there exists a maximal ideal J of R such that M ∼=R R/J . Then
M is simple, whence clearly is strongly Jónsson. Now suppose that (b) holds. It
suffices to show that K/V is a strongly Jónsson V -module. Let L and N be distinct
V -submodules of K/V . We will show that |L| 6= |N |. Lemma 4 and Lemma 5 imply
that every proper V -submodule of K/V is finite. Thus we may assume that L and
N are both proper and nonzero. Then (in the notation of Lemma 4), we see that
L = Mi and N = Mj for some positive integers i 6= j. But then L ∼=V V/(mi) and
N ∼=V V/(m

j). We now invoke Lemma 5 again to conclude that |L| 6= |N |.
Conversely, suppose that M is a countably infinite strongly Jónsson R-module. We

distinguish two cases.

Case 1: M is cyclic. Then M ∼=R R/I for some ideal I of R. Hence R/I is a
Jónsson module over R. Since annR(R/I) = I, it follows that R/I is a Jónsson
module over R/I. Thus by Lemma 10, R/I is a field, whence I is a maximal ideal of
R. We conclude that (a) holds.

Case 2: M is not cyclic. Then Proposition 4 and Lemma 9 show that EndR(M) :=
(V,m) is a complete discrete valuation ring, and the structure of M as an R-module
is essentially the same as the structure of M as a V -module. Moreoever, if K is
the quotient field of V , then M ∼=V K/V . It remains to show that V/(m) is finite.
Let x be any nonzero element of K/V . Then annV (x) is clearly a proper, nonzero
ideal of V . Thus V x ∼=V V/(mi) for some positive integer i. Since M is not cyclic,
M ∼=V K/V , and K/V is a strongly Jónsson V -module, we conclude that V x is finite.
Lastly, we invoke Lemma 5 to conclude that V/(m) is finite. �

We complete the classification of strongly Jónsson modules by determining those
which are uncountable. Again, we will require some preliminary results.

Lemma 11. Let F be a field, and let M be an infinite F -vector space. Then M is a
Jónsson module over F if and only if M ∼=F F .
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Proof. We suppose that F is a field and that M is an infinite vector space over F .
If M ∼=F F , then since M is simple, it is clear that M is a Jónsson module over F .
Conversely, suppose that M is a Jónsson module over F . There is a nonempty index
set I such that

M ∼=F

⊕
i∈I

F.

We claim that |I| = 1. If not, then by deleting one summand, one obtains a proper
F -submodule of M of the same cardinality as M , a contradiction. �

Lemma 12 ([21], Proposition 5). Suppose that M is a faithful Jónsson module over
the ring R (that is, annR(M) = {0}). Assume further that there exists a nonzero
ideal I of R such that M is I-primary. Then M is countable.

We establish one more lemma and then we characterize the uncountable strongly
Jónsson modules.

Lemma 13. Let R be a ring. Every strongly Jónsson R-module is Artinian.

Proof. Suppose by way of contradiction that M is a strongly Jónsson R-module which
is not Artinian, and let {Mi : i > 0} be a strictly descending chain of R-submodules
of M . Now let i be arbitrary. Since Mi+1 (Mi and since M is strongly Jónsson, we
conclude that |Mi+1| < |Mi|. But then {|Mi| : i > 0} is an infinite, strictly decreasing
sequence of cardinal numbers, contradicting the fact that the cardinal numbers (more
generally, the ordinal numbers) are well-ordered. �

Proposition 6. Let R be a ring, and let M be an uncountable R-module. Then
M is strongly Jónsson if and only if there exists a maximal ideal J of R such that
M ∼=R R/J .

Proof. We let R be a ring and M be an uncountable R-module. If M ∼=R R/J for
some maximal ideal J of R, then M is simple, whence strongly Jónsson. Conversely,
suppose that M is strongly Jónsson. We will show that there is a maximal ideal J
of R such that M ∼=R R/J . Let I be the annihilator of M in R. Then M is strongly
Jónsson and faithful over the ring S := R/I. Lemma 13 implies that M is an Artinian
S-module. As in the proof of Proposition 4, we see that there exists some maximal
ideal J of S such that M is a J-primary S-module. But then Lemma 12 yields that
J = {0} (mod I). We conclude that J = I, and thus M is a strongly Jónsson module
over the field R/J . We now invoke Lemma 11 to conclude that M ∼=R/J R/J . This
clearly implies that M ∼=R R/J , and the proof is complete. �

We conclude the section with a summary of our results on strongly Jónsson mod-
ules.
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Theorem 1. Let R be a ring, and let M be a nonzero R-module. Then M is strongly
Jónsson if and only if one of the following holds:

(I) There exist discrete valuation rings (V1,m1), (V2,m2), . . . , (Vn,mn), each with
finite residue fields, and positive integers k1, k2, . . . , kn, such that if the ring S :=
V1/(m

k1
1 )× V2/(mk2

2 )× · · · × Vn/(mkn
n ), then

(a) M ∼=R S. Moreover, the structure of S as an R-module is essentially the same
as the structure of S as an S-module, and

(b) {C(V1/(mk1
1 )), C(V2/(mk2

2 )) . . . , C(Vn/(mkn
n ))} is product-maximal.

(II) EndR(M) := (V,m) is a complete discrete valuation ring with a finite residue
field, and the structure of M as an R-module is essentially the same as the structure
of M as a V -module. Moreover, if K is the quotient field of V , then M ∼=V K/V .

(III) There exists a maximal ideal J of R such that M ∼=R R/J .

4. Strongly HS Modules

Having classified the strongly Jónsson modules, we now consider a sort of dual
notion defined as follows: Let R be a ring, and let M be an R-module. Say that
M is strongly HS provided |M/N | 6= |M/K| whenever N and K are distinct R-
submodules of M . Recall from the introduction that an infinite module M over a
ring R is homomorphically smaller (HS for short) provided |M/N | < |M | for every
nonzero R-submodule N of M . Note that if M is an infinite strongly HS module
and N is a nonzero R-submodule of M , then |M/{0}| 6= |M/N |. We conclude that
|M | 6= |M/N |. Since |M/N | ≤ |M |, we deduce that |M/N | < |M |. Thus every
infinite strongly HS module is HS.

As in the previous section, we proceed by first classifying the strongly HS abelian
groups (Z-modules). We remark that this problem is closely related to a famous old
textbook problem of Kaplansky (Kaplansky [11]): Show that Z is the unique infinite
abelian group G with the property that G/H is finite for every nonzero subgroup H
of G.

Proposition 7. Let G be an abelian group. Then G is strongly HS if and only if
G ∼= Z or G ∼= Z/(n) for some positive integer n.

Proof. It is clear that Z is a strongly HS abelian group. Recall from Proposition
1 that Z/(n) is strongly Jónsson for any positive integer n, whence (as Z/(n) is
finite) also strongly HS (see Lemma 14). Conversely, suppose that G is an arbitrary
strongly HS abelian group. Again, if G is finite, then G is strongly Jónsson, whence
isomorphic to Z/(n) for some positive integer n by Proposition 1. Suppose now that
G is infinite. We will show that G ∼= Z. We first claim that G is countable. To see
this, suppose by way of contradiction that G is uncountable, and let g ∈ G− {0} be
arbitrary. Note trivially that
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|(g)| · |G/(g)| = |G|.
Since the cyclic group (g) is certainly countable, it follows from basic cardinal arith-
metic that |G/(g)| = |G|, and this is impossible since G is strongly HS. We conclude
that G is countable, whence G/H is finite for every nonzero subgroup H of G. Now
let g0 ∈ G − {0} be arbitrary. It is easy to see that G = (g0, X), where X is a
complete set of coset representatives for G modulo (g0). Since X is finite, it follows
that G is finitely generated. Thus by The Fundamental Theorem of Finitely Gener-
ated Abelian Groups, G is a finite direct sum of cyclic groups. Since G is infinite,
at least one summand must be isomorphic to Z. There can be no other summands,
lest Z be an infinite proper homomorphic image of G. Thus G ∼= Z, and the proof is
concluded. �

As in the previous section, our goal is to extend the previous proposition to modules
over an arbitrary ring. We begin with a simple lemma.

Lemma 14. Let R be a ring, and let M be an R-module.

(a) If M is finite, then M is strongly Jónsson if and only if M is strongly HS.
(b) If M is infinite and R is a field, then M is strongly HS if and only if M ∼=R R.

Proof. Assume that R is a ring and that M is an R-module.

(a) Suppose that M is finite, and let N and K be R-submodules of M . Then
simply observe that |N | = |K| if and only if |M |/|N | = |M |/|K| if and only if
|M/N | = |M/K|. The result follows.

(b) The proof is analogous to the proof of Lemma 11 (instead of deleting a sum-
mand, mod out by it). �

Analogous to strongly Jónsson rings, we define a ring R to be a strongly HS ring
provided R is strongly HS as a module over itself. If R is in addition a domain,
then we will say that R is a strongly HS domain. It is well-known that the class
of Noetherian rings properly includes the class of Artinian rings, but that the class
of Noetherian modules and the class of Artinian modules do not compare under ⊆.
Moreover,

Proposition 8. The class of strongly HS rings properly includes the class of strongly
Jónsson rings. However, the class of strongly HS modules and the class of strongly
Jónsson modules do not compare under ⊆.

Proof. Let R be a strongly Jónsson ring. We will show that R is a strongly HS ring.
If R is finite, then R is strongly HS by Lemma 14. Suppose now that R is infinite.
Then Lemma 10 implies that R is a field, whence R is a strongly HS ring (again by
Lemma 14). To see that the containment is proper, simply note that Z is a strongly
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HS ring which is not strongly Jónsson. As for the second claim, Z(p∞) is a strongly
Jónsson Z-module which is not strongly HS, and Z is a strongly HS Z-module which
is not strongly Jónsson. �

In light of Lemma 14 and our work in the previous section, we may restrict our
study to infinite strongly HS modules over a ring R which is not a field. In fact, we
can restrict our study even further by recalling the following result from [20]:

Lemma 15 ([20], Proposition 3.2). Let M be an HS module over the ring R. Then
annR(M) is a prime ideal of R.

Hence by modding out the annihilator, we may restrict our study to infinite faithful
strongly HS modules over a domain D which is not a field. Recall from Lemma 13
that every strongly Jónsson module is Artinian. Here is the strongly HS-theoretic
analog:

Lemma 16. Every strongly HS module is Noetherian.

Proof. Let R be a ring, and suppose that M is a strongly HS R-module. Assume by
way of contradiction that M is not Noetherian, and let {Mi : i > 0} be a strictly
ascending chain of submodules of M . Let i > 0 be arbitrary. Since Mi (Mi+1, there
is a natural surjection f : M/Mi → M/Mi+1. Hence |M/Mi+1| ≤ |M/Mi|. Since M
is strongly HS, we conclude that |M/Mi+1| < |M/Mi|. But then {|M/Mi| : i > 0} is
an infinite, strictly decreasing sequence of cardinals, and we obtain a contradiction
to the fact that the cardinals are well-ordered. �

We now present two more lemmas which will play an important role in the classi-
fication of the strongly HS modules.

Lemma 17. Let D be a domain with quotient field K, and let M be an infinite,
faithful D-module. If M is HS over D, then (up to isomorphism) D ⊆M ⊆ K.

Proof. This is a portion of Theorem 3.3 of [20]. �

Lemma 18. Let M be a strongly HS module over the ring R. Then every R-
submodule of M is also strongly HS.

Proof. Suppose that M is a strongly HS module over R, and let N be an arbitrary
submodule of M . We will show that N is also strongly HS. Toward this end, assume
that K and L are distinct R-submodules of N . We will prove that |N/K| 6= |N/L|.
To see this, note that

(4.1) (M/K)/(N/K) ∼=R M/N, and

(4.2) (M/L)/(N/L) ∼=R M/N.



18 GREG OMAN

The previous isomorphisms imply that

(4.3) |M/K| = |M/N | · |N/K|, and

(4.4) |M/L| = |M/N | · |N/L|.
Since M is strongly HS, we conclude that |M/K| 6= |M/L|. this fact along with
equations (4.3) and (4.4) above implies that |N/K| 6= |N/L|. �

We now show that the classification of the strongly HS modules can be reduced to
the classification of the strongly HS rings.

Proposition 9. Let D be a domain which is not a field, and let M be an infinite
faithful D-module. Then M is a strongly HS D-module if and only if D is a strongly
HS domain and M ∼=D I for some nonzero ideal I of D.

Proof. Assume that D is a domain which is not a field and that M is an infinite
faithful D-module. Let K be the quotient field of D.

Suppose first that M is a strongly HS D-module. Then M is HS. Lemma 17 implies
that (up to isomorphism) D ⊆ M ⊆ K. It now follows from Lemma 18 that D is a
strongly HS domain. Lemma 16 implies that M is finitely generated. Since M ⊆ K,
there exists a nonzero element d ∈ D such that dM ⊆ D. In particular, dM is an
ideal of D. As M ∼=D dM , we see that M is isomorphic to a nonzero ideal of D.

Conversely, suppose that D is a strongly HS domain and that M ∼=D I for some
nonzero ideal I of D. Then Lemma 18 implies that M is strongly HS, and the proof
is complete. �

Given the previous proposition, we now focus our efforts on classifying the strongly
HS domains. We will need the following lemma.

Lemma 19. Let D be a domain, and let d ∈ D − {0} be arbitrary. Then

|D/(d2)| = |D/(d)|2.

Proof. Assume that D is a domain and that d ∈ D−{0}. Observe first that D/(d) ∼=D

(D/(d2))/((d)/(d2)). We conclude that

(4.5) |D/(d2)| = |D/(d)||(d)/(d2)|.
Thus to finish the proof, it suffices to show that |(d)/(d2)| = |D/(d)|. Toward this
end, let ϕ : D → (d)/(d2) be defined by ϕ(x) := (d2) + dx. Note that x ∈ ker(ϕ) if
and only if dx ∈ (d2) if and only if (since D is a domain and d 6= 0) x ∈ (d). We
conclude that D/(d) ∼=D (d)/(d2), and the conclusion follows. �
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Recall from the introduction that a ring R is residually finite provided R/I is finite
for every nonzero ideal I of R.

Lemma 20. Let D be a strongly HS domain. Then D is residually finite.

Proof. Assume that D is a strongly HS domain, and let I be a nonzero ideal of D. We
will show that D/I is finite. If I = D, the result is patent, so assume that I is proper.
Let d ∈ I − {0} be arbitrary. We first show that D/(d) is finite. Suppose by way
of contradiction that D/(d) is infinite. Lemma 19 gives |D/(d2)| = |D/(d)|2. Since
D/(d) is infinite, it follows from basic cardinal arithmetic that |D/(d)|2 = |D/(d)|.
But then |D/(d2)| = |D/(d)|. Since D is strongly HS, we conclude that (d2) = (d).
Since D is a domain, we deduce that d is a unit, contradicting that I is proper. Thus
D/(d) is finite. The map ϕ : D/(d) → D/I defined by ϕ((d) + x) := I + x is a
well-defined surjection. We conlude that |D/I| ≤ |D/(d)|, and hence D/I is finite,
as required. �

We are now able to establish a connection between strongly Jónsson rings and
strongly HS rings. Namely:

Proposition 10. Let D be a strongly HS domain, and suppose that I is a proper
nonzero ideal of D. Then D/I is a finite strongly Jónsson ring.

Proof. Let D and I be as stated. Lemma 20 implies that D/I is finite. It remains
to show that D/I is strongly Jónsson. Toward this end, let J1 and J2 be ideals of D
which contain I and suppose that |J1/I| = |J2/I|. We will prove that J1/I = J2/I.
Toward this end, it follows as in the proof of Lemma 18 that

(4.6) |D/I| = |D/J1| · |J1/I|, and

(4.7) |D/I| = |D/J2| · |J2/I|.
Thus we obtain

(4.8) |D/J1| · |J1/I| = |D/J2| · |J2/I|.
Recall that D/I is finite. Since J1/I and J2/I are ideals of D/I, it follows that J1/I
and J2/I are finite. Since we have assumed that |J1/I| = |J2/I|, we may cancel them
in (4.8) above to get

(4.9) |D/J1| = |D/J2|.
Since D is a strongly HS domain, we deduce that J1 = J2, whence J1/I = J2/I, and
the proof is complete. �
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We easily obtain the following corollary.

Corollary 3. Let D be a strongly HS domain which is not a field. Then D is
Dedekind.

Proof. Suppose that D is a strongly HS domain. To show that D is Dedekind, it
suffices (by (d) of Fact 1) to show that D/I is a principal ideal ring for every proper
nonzero ideal I of D. If I is such an ideal, then the previous proposition yields that
D/I is a finite strongly Jónsson ring. We now invoke Corollary 2 to conclude that
D/I is a principal ideal ring. �

We are now in position to classify the strongly HS modules.

Theorem 2. Let D be a domain which is not a field, and let M be an infinite faithful
D-module (recall that we can restrict to this setting without loss of generality). Then
M is a strongly HS D-module if and only if the following hold:

(a) D is a Dedekind domain with all residue fields finite,
(b) If P and Q are distinct maximal ideals of D, then D/P and D/Q have distinct

(nonzero) characteristics, and
(c) M ∼=D I for some nonzero ideal I of D.

Proof. Assume that D is a domain which is not a field and that M is an infinite
faithful D-module.

Suppose first that M is a strongly HS D-module. We will verify (a)–(c) above.
Proposition 9 tells us that D is a strongly HS domain and M ∼=D I for some nonzero
ideal I of D, verifying (c). Corollary 3 yields that D is a Dedekind domain, and
Lemma 20 implies that all residue fields of D are finite. Hence (a) is established.
It remains to check (b). To wit, suppose that P and Q are distinct maximal ideals
of D. Since D/P and D/Q are finite fields, both D/P and D/Q have nonzero
characteristics. Suppose by way of contradiction that D/P and D/Q both have
characteristic p. Then |D/P | = pm and |D/Q| = pn for some positive integers m and
n. Lemma 5 implies that

pmn = |D/P |n = |D/P n| = |D/Q|m = |D/Qm|.
Since D is strongly HS, we deduce that P n = Qm, and this is impossible as P and Q
are distinct maximal ideals of D (alternatively, unique factorization is violated).

Conversely, suppose that (a)–(c) hold. We will show that M is a strongly HS D-
module. It suffices by Proposition 9 to show that D is a strongly HS domain. We
begin by showing that D is residually finite. Let I be any nonzero ideal of D. We will
show that D/I is finite. This is clear if I = D, so assume that I is proper. Since D
is Dedekind, I = P n1

1 P n2
2 · · ·P

nk
k for some (distinct) prime ideals P1, P2, . . . , Pk of D

and positive integers n1, n2, . . . , nk. Of course, each Pi is nonzero, whence maximal.
It follows that
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(4.10) D/I = D/(P n1
1 P n2

2 · · ·P
nk
k ) ∼= D/P n1

1 ×D/P n2
2 × · · · ×D/P

nk
k .

We now apply Lemma 5 to conclude that

(4.11) |D/I| = |D/P n1
1 ×D/P n2

2 ×· · ·×D/P
nk
k | = |D/P1|n1 · |D/P2|n2 · · · · |D/Pk|nk .

Since all residue fields of D are finite, we conclude that D/I is finite.
Now let I 6= J be ideals of D. We will demonstrate that |D/I| 6= |D/J |, thus

verifying that D is a strongly HS domain. This is clear if either I = D or J = D.
Suppose now that I = {0}. Then since J 6= I and D is residually finite (and not a
field), we see that D/I is infinite whereas D/J is finite. Finally, suppose that I and
J are nonzero, proper ideals of D. Let I = P n1

1 P n2
2 · · ·P

nk
k and J = Qm1

1 Qm2
2 · · ·Q

ml
l

be prime factorizations of I and J (as products of prime ideals of D). We deduce (as
in (4.11) above) that:

(4.12) |D/I| = |D/P1|n1 · |D/P2|n2 · · · · |D/Pk|nk .
Analogously,

(4.13) |D/J | = |D/Q1|m1 · |D/Q2|m2 · · · · |D/Ql|ml .
Since I 6= J and since distinct residue fields of D have cardinalities which are powers
of distinct primes, the previous two equations clearly imply that |D/I| 6= |D/J |, and
the proof is complete. �

Before stating a corollary, we recall that for a ring R, Max(R) denotes the set of
maximal ideals of R.

Corollary 4. Let D be a domain which is not a field.

(a) Suppose that D has prime characteristic p. Then D is a strongly HS domain
if and only if D is a DVR with a finite residue field.

(b) Suppose that D has characteristic 0 (and hence Z ⊆ D). Then D is a strongly
HS domain if and only if D is a Dedekind domain with all residue fields finite and
with the additional property that the map P 7→ P ∩ Z is an injection from Max(D)
into Max(Z).

(c) If D is a strongly HS domain, then |D| ≤ 2ℵ0.

Proof. Let D be a domain which is not a field.
(a) Suppose first that D has characteristic p. If D is a DVR with a finite residue

field, then it follows immediately from the previous theorem that D is a strongly HS
domain. Conversely, suppose that D is a strongly HS domain. Let J be an arbitrary
maximal ideal of D. Since D has characteristic p, clearly so does D/J . Theorem 2
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implies that J is the unique maximal ideal of D. Since D is a Dedekind domain with
a finite residue field, we now invoke (e) of Fact 1 to conclude that D = DJ is a DVR
with a finite residue field.

(b) This follows easily from (b) of Theorem 2.
(c) Assume now that D is a strongly HS domain. Then D is Dedekind, whence

Noetherian. Let P be a maximal ideal of D. Krull’s Intersection Theorem yields
that

⋂∞
i=1 P

i = {0}. It follows that D maps injectively into
∏∞

i=1D/P
i. But since D

is a residually finite Dedekind domain, Lemma 5 yields that D/P i is finite for every
positive integer i. Thus |D| ≤ |

∏∞
i=1D/P

i| ≤ |
∏∞

i=1N| = ℵ
ℵ0
0 = 2ℵ0 . �

We conclude the paper by giving some examples of strongly HS domains and
discussing their behavior with respect to integral extensions and overrings.

Example 4. Let p be a prime and let κ be a cardinal number satisfying ℵ0 ≤ κ ≤ 2ℵ0.
There exists a strongly HS domain (which is not a field) of prime characteristic p and
of cardinality κ.

Proof. Let F be a finite field of characteristic p, and let F [[t]] be the ring of formal
power series over F in the variable t. The underlying set of F [[t]] is the set of all
functions from N into F , whence |F [[t]]| = 2ℵ0 . The quotient field of F [[t]] is the field
F ((t)) of formal Laurent series in the variable t. There is a field K of cardinality
κ such that F (t) ⊆ K ⊆ F ((t)). Note that F [[t]] is a DVR on F ((t)) (that is,
F [[t]] is a DVR with quotient field F ((t))), K ⊆ F ((t)), and F [[t]] ∩ K is not a
field (since t is not invertible in F [[t]]). It follows that F [[t]] ∩ K is a DVR on K
(whence also has cardinality κ) with maximal ideal M := (t) ∩K. It is obvious that
F [[t]] ∩K has characteristic p. It is also easy to check that F maps injectively into
(F [[t]] ∩ K)/M and (F [[t]] ∩ K)/M maps injectively into F [[t]]/(t) ∼= F . It follows
that |(F [[t]]∩K)/M | = |F |. We have shown that F [[t]]∩K is a DVR of characteristic
p and of cardinality κ and that F [[t]]∩K has residue field isomorphic to F , which is
finite. Part (a) of Corollary 4 yields that F [[t]] ∩K is strongly HS, and the proof is
complete. �

Given the previous example, it is natural to enquire about the characteristic 0 case.
Before giving a more general result, we remark that the ring Jp of p-adic integers is
a DVR of characteristic 0 (of cardinality 2ℵ0) with residue field isomorphic to Z/(p),
whence Jp is a strongly HS ring.

Example 5. Let κ be a cardinal number satisfying ℵ0 ≤ κ ≤ 2ℵ0. Further, let
p1, p2, . . . , pn be distinct primes and let k1, k2, . . . , kn be positive integers. There
exists a principal ideal domain D of cardinality κ with exactly n maximal ideals
M1,M2, . . . ,Mn with the property that D/Mi

∼= F
p
ki
i

for each i, 1 ≤ i ≤ n. Hence D

is a strongly HS domain.
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Proof. The existence of such a D with the above properties is established in Theorem
2.6 of [12]. The construction is quite technical, and we suppress the details here (we
remark that the ideas of the construction are due to C. Shah; see Theorem 2.3 of Shah
[23]). We conclude immediately from Theorem 2 that D is a strongly HS domain. �

We now present a discussion of how the strongly HS property behaves with respect
to integral extensions and overrings. We will show that the property is not well-
preserved with respect to integral extensions, but that it is preserved in overrings.

Proposition 11. Let D be a strongly HS domain, and suppose that R is a finite
integral extension of D (that is, R is integral over D has has a finite basis as a
D-module). Then R need not be strongly HS.

Proof. Let Z[i] := {a + bi : a, b ∈ Z} be the ring of Gaussian integers. Then clearly
Z[i] is integral over Z and {1, i} forms a Z-basis for Z[i]. Recall that the function
N : Z[i] → N given by N(a + bi) := a2 + b2 is a Euclidean norm (from which one
proves that Z[i] is a Euclidean domain). Consider the ideals (1 + 2i) and (1 − 2i).
Since N(1 + 2i) = N(1− 2i) = 5, which is prime, we conclude that 1 + 2i and 1− 2i
are Gaussian primes. Thus (1 + 2i) and (1 − 2i) are maximal ideals of Z[i]. The
units of Z[i] are precisely the elements of Z[i] which have norm 1. It follows (and
is well-known, of course) that the units of Z[i] are exactly 1,−1, i, and −i. From
this fact, it is clear that 1 + 2i and 1 − 2i are not associates, whence (1 + 2i) and
(1− 2i) are distinct maximal ideals of Z[i]. Note that 5 ∈ (1 + 2i)∩ (1− 2i), whence
(1 + 2i) ∩ Z = (1 − 2i) ∩ Z = 5Z. Corollary 4 part (b) implies that Z[i] is not a
strongly HS domain. �

We conclude the paper with an investigation of how the strongly HS property
behaves with respect to overrings. Recall that if D is a domain with quotient field
K, then an overring of D is simply a ring R satisfying D ⊆ R ⊆ K. Of particular
interest is a special kind overring of D called a quotient ring. Recall that a subset
S ⊆ D − {0} is multiplicative provided 1 ∈ S and whenever x, y ∈ S, also xy ∈ S.
The ring DS := {d

s
: d ∈ D, s ∈ S} is then a subring of K containing D called the

quotient ring of D with respect to the multiplicative system S. We pause to recall the
following well-known fact concerning maximal ideals in quotient rings:

Lemma 21 ([4], Corollary 4.6). Let D be a domain and let S be a multiplicative
subset of D. Then every maximal ideal of DS is of the form PS := {p

s
: p ∈ P, s ∈ S},

where P is an ideal of D maximal with respect to avoiding S (P is necessarily a prime
ideal).

We will shortly be able to prove that the strongly HS property is preserved in
quotient ring extensions. We will need three more lemmas.

Lemma 22 ([4], Theorem 17.6). Suppose that V is a valuation ring on a field K. If
{Pλ} is the set of prime ideals of V , then {VPλ} is the set of overrings of V .
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Lemma 23 ([4], Theorem 40.1). Every overring of a Dedekind domain is a Dedekind
domain.

Lemma 24. Suppose that D is a one-dimensional Noetherian domain, and let R be
an overring of D. If I is a nonzero ideal of R, then R/I is finitely generated as a
D-module.

Proof. This claim is well-known and follows immediately from Theorem 40.8 and
Theorem 40.9 of [4], for example. �

Proposition 12. Let D be a domain with quotient field K, and let S be a multiplica-
tive subset of D. If D is a strongly HS domain, then so is DS.

Proof. Let D be a domain and suppose that S is a multiplicative subset of D. Assume
further that D is a strongly HS domain. We will show that R := DS is also strongly
HS. If R is a field, we are clearly done. Thus assume that R is not a field (hence also
D is not a field). We consider two cases:

Case 1: D has prime characteristic p. Then (a) of Corollary 4 implies that D is a
DVR. Lemma 22 yields that the only overrings of D are D and K. Since R is not a
field, we deduce that R = D, whence R is strongly HS.

Case 2: D has characteristic 0. It suffices by (b) of Corollary 4 to show that R
is a Dedekind domain of characteristic 0 with all residue fields finite and with the
additional property that P 7→ P ∩ Z is an injective map from Max(R) into Max(Z).
Since D has characteristic 0 and since D ⊆ R, clearly R has characteristic 0. Since D
is strongly HS (and not a field), D is Dedekind, all residue fields of D are finite, and
P 7→ P ∩ Z is an injective map from Max(D) to Max(Z). We deduce from Lemma
23 that R is Dedekind. We now show that all residue fields of R are finite. Toward
this end, let J be a maximal ideal of R. Recall that R is not a field, whence J 6= {0}.
Lemma 24 yields that R/J is a finitely generated D-module, and hence also a finitely
generated D/(J ∩D)-module (since J ∩D ⊆ annD(R/J)). As J 6= {0}, clearly also
J ∩D 6= {0}. But then J ∩D is a maximal ideal of D. We conclude that R/J is a
finite extension of the finite field D/(J ∩D), whence R/J is finite. Lastly, suppose
that J1 and J2 are distinct maximal ideals of R. We must prove that J1∩Z 6= J2∩Z.
Toward this end, we conclude from Lemma 21 that J1 = PS and J2 = QS for some
distinct prime ideals P and Q of D which avoid S. Since J1 and J2 are nonzero, we
see that P and Q are also nonzero. It follows that P and Q are distinct maximal
ideals of D. Hence P ∩ Z = Zp and Q ∩ Z = Zq for some prime numbers p and q
with p 6= q. One checks immediately that PS ∩D = P and QS ∩D = Q. Hence

(4.14) Zp = P ∩ Z = (PS ∩D) ∩ Z ⊆ PS ∩ Z = J1 ∩ Z, and
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(4.15) Zq = Q ∩ Z = (QS ∩D) ∩ Z ⊆ QS ∩ Z = J2 ∩ Z.
Thus Zp = J1 ∩ Z and Zq = J2 ∩ Z. Since p 6= q, this concludes the proof. �

We will shortly be able to prove something stronger, namely that every overring
of a strongly HS domain is strongly HS. We first establish the following lemma.

Lemma 25. Let D be a strongly HS domain. Then every prime ideal of D is the
radical of a principal ideal of D.

Proof. Assume that D is a strongly HS domain. If D is a field, the result is obvious,
so assume that D is not a field. If D has characteristic p > 0, then D is a DVR by (a)
of Corollary 4, and the assertion clearly holds. Suppose now that D has characteristic
0. Since D is Dedekind and not a field, D is one-dimensional. It suffices to show that
every maximal ideal of D is the radical of a principal ideal. Let Q be an arbitrary
maximal ideal of D. We deduce from Corollary 4 that Q ∩ Z = qZ for some prime
number q. We claim that there exists a positive integer n such that Qn = Dq. To see
this, begin by noting that Dq is a proper nonzero ideal of D. Since D is Dedekind,
we conclude that Dq = J1J2 · · · Jn for some maximal ideals J1, J2, . . . , Jn of D. We
claim that each Ji = Q. Fix an arbitrary i with 1 ≤ i ≤ n, and simply note that
q ∈ Dq = J1J2 · · · Jn ⊆ Ji, whence Zq = Ji ∩ Z = Q ∩ Z. Corollary 4 yields that
Ji = Q. Since i was arbitrary, we obtain Dq = Qn. Thus Qn is a principal ideal. As
Q =

√
Qn, the proof is complete. �

We are almost ready to prove that every overring of a strongly HS domain is
strongly HS. We recall that a domain D has the QR property if every overring of D
is a quotient ring of D. Before stating the following result, we recall that a domain
D is a Prüfer domain provided every (nonzero) finitely generated ideal I of D is
invertible. It is well-known that every Dedekind domain is Prüfer.

Lemma 26 ([4], Proposition 27.4). Suppose that D is a Prüfer domain and that
every prime ideal of D is the radical of a principal ideal of D. Then D has the QR
property.

We conclude the paper with the following theorem.

Theorem 3. Let D be a strongly HS domain. Then every overring of D is also
strongly HS.

Proof. Of course, we assume that D is a strongly HS domain which is not a field.
Let R be an overring of D. Since D is Dedekind, D is also a Prüfer domain. Lemma
25 says that every prime ideal of D is the radical of a principal ideal of D. Hence
D has the QR property by the previous lemma, whence R is a quotient ring of D.
Proposition 12 implies that R is strongly HS, and the proof is complete. �
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