Problem Proposal #77

Greg Oman, University of Colorado, Colorado Springs

Problem. Let R be a commutative ring (not assumed to have an identity). Recall that an element $x \in R$ is a zero divisor if there is some nonzero $y \in R$ such that xy = 0; x is nilpotent if $x^n = 0$ for some positive integer n (note that we do not require a zero divisor to be nonzero).

- (a) Prove or disprove: there exists a finite commutative ring R for which
- (1) every element of R is a zero divisor, and
- (2) the only nilpotent element of R is 0.
- (b) Does your answer change if "finite" is replaced with "infinite"?