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Abstract

The purpose of this note is to investigate the symmetry of limit points arising from
iterating complex powers of the cosine function (and to a lesser degree, the sine and expo-
nential functions). We invite the interested reader to explore mathematical explanations
for the data we present.

1 Introduction
The motivation for this paper stems from very humble beginnings. Indeed, the second author
was bored while proctoring an exam as a graduate student at the University of Wisconsin,
and decided to play around with his calculator (Angry Birds had yet to be invented, so his
entertainment options were limited). He entered the cosine of 1 (radian) into his calculator.
He then took the cosine of the output. Then the cosine of that output, and then the cosine of
that output, and so on. It seemed that the outputs were beginning to get closer and closer to
some fixed value which is approximately .739. Similarly, starting with the square of the cosine
function evaluated at 1 and iterating as above, it also appears that the outputs start clustering
around a real number. But when he moved to cubes, the outputs began to accumulate around
two real numbers. We will give arguments to verify these conclusions below. Extrapolating
from these results, we are led to the following more general question:

Question 1. Let p be a complex number. Setting a0 := 1, a1 := cosp(a0), a2 := cosp(a1),
a3 := cosp(a2), · · · , how many complex numbers z have the property that there are terms of this
sequence that get arbitrarily close to, but not equal to, z (that is, how many cluster points
does the sequence have)?

Using the computational program Sage ([6]), we obtain data to assist us in conjecturing
an answer to the above question. Initially, we weren’t expecting the answer to be particularly
illuminating or interesting, but after crunching the numbers, we see an inordinate amount of
very striking symmetry. The purpose of this note is to present the data along with many
sub-questions which we hope will inspire further research into pinning down exactly what is
going on. Indeed, some of these questions may be good jumping-off points for undergraduate
research projects; this is our hope, anyway. We explore analogs of Question 1 for the sine and
exponential functions, though our main focus will be on the cosine function.

Toward this end, define a function from the complex plane to the set of natural numbers as
follows:

N(p) := number of cluster points of the sequence (an) (defined as in Question 1).

Now mark the pixel in the complex plane at point p with color N(p) according to the following
scheme, where the numbers below represent the outputs of N(p).
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Figure 1.1. Colors associated to outputs of N ; the color black is used for outputs of N which
Sage was unable to calculate.

Using this color scheme, we present a graph of N .

Figure 1.2. Graph of N with domain [−8, 8]× [−8i, 8i], produced by Sage. The point p = 1 is
marked with a white dot.

There is (perhaps surprisingly) an abundance of rich symmetry and patterns, for which we
invite the reader to explore mathematical explanations. As stated above, our purpose is to
simply present some observations and questions for further research. We begin by giving a
terse but self-contained introduction to complex exponentiation as well as complex-valued trig
functions. We then proceed to present more graphs and observations; we close the paper with
a final list of questions.

2 Complex exponentiation and trig functions
In this short section, we introduce the relevant definitions which will be needed to follow the
results of this note.

In calculus, one learns that the function f(x) = ex is the unique differentiable function from
R to R such that f(0) = 1 and f ′(x) = f(x) for all real x. Moreover, this function is strictly
increasing with range (0,∞), hence has an inverse function denoted by ln : (0,∞) → R. From
this fact come the familiar identities eln(x) = x for every positive real number x and ln(ex) = x
for every real number x. These functions allow us to define ab for every positive real number a
and any real number b as follows: ab = (eln(a))b := eb ln(a) (note that if a is non-positive, then
ln(a) is undefined).

Now, let’s consider the problem of extending the exponential function to the complex plane.
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Recall that the imaginary number i is defined by the equation i2 := −1. A complex number
is then a number of the form z := a + ib, where a and b are real numbers; moreover, the real
part of z is a (denoted Re(z) = a) and the imaginary part of z is b (denoted Im(z) = b). Via
the Pythagorean theorem, the distance between complex numbers a+ ib and c+ id is given by√

(a− c)2 + (b− d)2 (see below, where we recall the usual geometric interpretation of complex
numbers in the plane).

It turns out that, analogous to the real exponential function, there is a unique function
f : C → C such that f(0) = 1 and f ′(z) = z for every complex number z; set f(z) := ez for
complex z. For real x, let g(x) := cos(x)+i sin(x)

eix . A direct computation shows that g′(x) = 0
for all x and that g(0) = 1. Hence by differential calculus, g(x) = 1 for all real x, and so
eix = cos(x) + i sin(x) for all real x (this is the so-called Euler’s formula).

Observe that the complex exponential function is not one-to-one: e0 = ei0 = cos(0) +
i sin(0) = 1 = cos(2π) + i sin(2π) = e2πi. Thus we cannot simply take the inverse function to
obtain a complex analog of the real natural logarithm function. Fortunately, there is a work-
around. Consider a nonzero complex number c := x + iy. One may represent this number
geometrically in the plane by the ordered pair (x, y) (we call the horizontal axis the real axis
and the vertical axis the imaginary axis). Consider the associated (possibly degenerate) right
triangle determined by (0, 0), (x, 0), and (x, y). By the Pythagorean theorem, the hypotenuse
has length ρ :=

√
x2 + y2. Moreover, x = ρ cos(θ), and y = ρ sin(θ) for some unique angle θ

such that −π < θ ≤ π. Hence c = x + iy = ρ cos(θ) + iρ sin(θ) = ρ(cos(θ) + i sin(θ)) = ρeiθ.
So now we set log(c) = log(x+ iy) = log(ρeiθ) := ln(ρ) + iθ. This allows us to define complex
exponentiation by zω := eω log(z) for complex numbers ω and z with z 6= 0.

Let’s pause to do a few concrete computations.

Example 1. Compute the following:

1. i3,

2. 3i, and

3. ii.

Solution: Let’s tackle each in succession.

1. Recall that by definition, i2 = −1, so i3 = i2 · i = −i.

2. 3i = ei log 3 = cos(ln(3)) + i sin(ln(3)).

3. ii = ei log i = ei(ln 1+ iπ
2 ) = e−

π
2 (which is real!). QED

We can use the results above to define the complex cosine and sine functions. Let y be a real
number. Recall that eiy = cos(y)+ i sin(y). Thus e−iy = cos(−y)+ i sin(−y) = cos(y)− i sin(y).
Adding, we see that eiy + e−iy = 2 cos(y). Solving for cos(y), we get cos(y) = eiy+e−iy

2 . This
extends to the definition on the entire complex plane, given by

cos(z) =
eiz + e−iz

2
. (1)

Similarly, we obtain

sin(z) =
eiz − e−iz

2i
. (2)

We close this section by referring the reader to [1] and [5] for a comprehensive introduction
to complex analysis.
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3 Before we begin...
We will shortly consider iterations (as in the Introduction) of functions fp(z) := f(z)p, where
p is a complex number and fp(x) = cosp(x), sinp(x), or exp, as p ranges over the complex
plane (our primary focus will be on the cosine function, however). In particular, we study the
sequences (an) whose terms are given by

a0 := 1, a1 := fp(a0), a2 := (fp(a1)), a3 := (fp(a2)), . . . ,

The general question we explore is that of the number of cluster points of (an) (recall from the
Introduction that this is the number of complex numbers z for which there exist terms of (an)
which get arbitrarily close to (but not equal to) z. We pause to illustrate this definition with
an example.

Example 2. Let an := cos(nπ) + i
n+1 . Then the cluster points of (an) are −1 and 1.

Before presenting the results of this paper, we note that the functions fp are generally not
well-defined until one chooses a branch for the logarithm (which corresponds to restricting the
angle θ as we did in the previous section to obtain a well-defined logarithmic function), resulting
in discontinuities. This means that much of the general theory of complex dynamics does not
apply. Nevertheless, it is clear from our observations below that, in spite of the discontinuities,
there is interesting behavior similar to the dynamics of entire functions (that is, functions
f : C→ C which are differentiable on the entire complex plane). Recursively defined sequences
as above are well-studied for families of rational functions, and some work has appeared on
exponential functions of the form z 7→ aez + be−z for complex numbers a and b (see [3], [7]).
Our purpose is to present data on iterates of complex powers of the cosine function (and some on
the sine and exponential functions) and invite the reader to explore mathematical explanations
for the phenomena we observe.

4 Iterates of complex powers of cosine
We begin by presenting a few results on iterates of powers of cosine for small (real) p to motivate
the observations made later in the article. We include a proof sketch.

Proposition 1. Let p be a complex number, and consider the sequence (an) defined by a0 := 1,
and for n ≥ 0, an+1 := cosp(an). Then the following hold:

(1) If p = 1, then (an) has exactly one cluster point.

(2) If p = 2, then (an) also has exactly one cluster point.

(3) If p = 3, then (an) has two cluster points.

sketch of proof: Let (an) be defined as above.

(1) Let p = 1. Observe first that an ≥ 0 for all n. Moreover, for any x, y ∈ [0, 1], the Mean
Value Theorem yields the existence of c ∈ [0, 1] such that cos(y) − cos(x) = − sin(c)(y − x).
But then | cos(y)− cos(x)| = |− sin c||y−x| ≤ sin(1)|y−x|, and 0 < sin(1) < 1. The conclusion
now follows from the Banach Fixed Point Theorem (see [2] for standard results on fixed point
theory), which implies that (an) converges to the unique real number r0 such that cos(r0) = r0
(that is, r0 is a fixed point of cos), which implies that r0 is the only cluster point of (an).

(2) It follows from calculus that cos2 has a unique fixed point r0 and that r0 ∈ (0, 1). Next,
a0 = 1 > cos2(r0) = r0. Since cos2 is strictly decreasing on [0, 1], we see that 0 < a1 =
cos2(a0) = cos2(1) < cos2(r0) = r0. Next, a2 = cos2(a1) < cos2(0) = 1 = a0, and as a1 < r0,
a2 = cos2(a1) > cos2(r0) = r0. We have shown that a0 > a2 > r0. Continuing, since a2 > r0,
a3 = cos2(a2) < cos2(r0) = r0. As a0 > a2 and cos2 is strictly decreasing on [0, 1], we see that

4



a1 < a3. Thus a1 < a3 < r0. Continuing inductively, one shows that (a2n) is strictly decreasing
and (a2n+1) is strictly increasing. Since both subsequences are bounded, they converge. Let
L be the limit of (a2n) and M be the limit of (a2n+1). Then by continuity and the fact that
(a2n+2) → L, we have cos2(cos2(L)) = L. Analogously, cos2(cos2(M)) = M . One can use
differential calculus to show that cos2 ◦ cos2 has a unique fixed point, which must then be equal
to r0. Hence (an) converges to r0 when p = 2, and again, there is a unique cluster point.

(3) Using methods similar to those above, it can be shown that cos3 ◦ cos3 has three fixed
points. Moreover, (a2n) converges to the fixed point of largest magnitude and (a2n+1) converges
to the fixed point of smallest magnitude. This yields two cluster points of (an). QED

Digging a bit deeper, for real positive p ≤ 2, the sequence defined above converges to a single
fixed point. For larger real p, this sequence oscillates between two distinct cluster points.1 This
behavior can be explained by elementary dynamics analogous to the proof of Proposition 1,
which we omit. However, for complex p, the situation appears to be much more interesting.

Recall from the Introduction that we defined a function from the complex plane to the set
of natural numbers as follows:

N(p) := number of cluster points of the sequence (an) (defined as in Proposition 1).

We marked the pixel in the complex plane at point p with color N(p) according to the following
scheme, where the numbers below represent the outputs of N(p).

Figure 4.1. Colors associated to outputs of N ; the color black is used for outputs of N which
Sage was unable to calculate; see also Figure 1.1.

Using this color scheme, we recall the graph of N from the Introduction.

Figure 4.2. Graph of N with domain [−8, 8]× [−8i, 8i], produced by Sage. The point p = 1 is
marked with a white dot; see also Figure 1.2.

1The transition from one to two cluster points occurs when p ≈ 2.188.
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Remark 1. To obtain the above graph, Sage computes a1 − a500, and then looks at the next
30 terms. It returns the minimum n for which the subsequences a501, a502, . . . , a500+n and
a500+n+1, . . . , a500+2n (1 ≤ n ≤ 15) have the property that a500+k and a500+n+k are within
ε := .001 for 1 ≤ k ≤ n. If no such n is found, it computes 500 more iterates and tries again.
This is repeated 6 times. If still no such n is found, the pixel is colored black.

Below, we note several observations.

Observations 1.

1. The graph of N appears to be symmetric about the real axis.

2. The transition from N(p) = 1 to N(p) = 2 on the real axis occurs at p ≈ 2.188..., and this
can be confirmed via elementary dynamics of cosp on the real line, as mentioned earlier.

3. The region N(p) = 1 appears to be a cardioid around 0 with cusp point at p ≈ − 1
2 .

4.1 Zooming in
Now we zoom in a bit on Figure 4.2 and make some similar observations.

Figure 4.3. The upper boundary of the region N(p) = 1.

Observations 2.

1. There appear to be contact points along the boundary of N(p) = 1 with the regions N(p) =
3, 5, 7, 9, 11, 13, and 15.

2. Regions where N(p) = 4, 6, 8, 10, 12, or 14 appear along the boundary of the region N(p) =
2.

Figure 4.4. A portion of the boundary of the region N(p) = 3, extending at an angle roughly
2π
3 from the origin.

Observation 1. There appears to be self-similar behavior: bumps in the region N(p) = 3
tangent to regions N(p) = 6, 9, 12. This behavior ends abruptly on the left side of the picture.
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4.2 Zooming out
Next, we zoom out by increasing the domain of N as noted below.

Figure 4.5. Graph of N with domain [−50, 50]× [−50i, 50i].

Observations 3.

1. No period is computed for the black region. We do not know if this is a genuine feature,
or a limitation of our software.

2. Horizontal bands appear to repeat; the gap between bands is between 5.08 and 5.11. We
conjecture the exact value to be π

ln( 1
cos 1 )

.

3. The region N(p) = 2 appears to be asymptotic to a line somewhere between Re(p) = 7.5
and Re(p) = 8.5.

4. The graph of N appears in places to be somewhat erratic. For example, N(−10) = 22 (this
cannot be gleaned from the graph, but was calculated by Sage) but N(−10 + .001i) = 4.

5. Increasing the domain of N to [−150, 150] × [−150i, 150i] does not show any new phe-
nomena.
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5 Related functions

5.1 Taylor approximations

Here we consider the Taylor approximations 1 − z2

2 and 1 − z2

2 + z4

24 to cos(z). We apply the
same method as above, replacing cos(z) with 1 − z2

2 and 1 − z2

2 + z4

24 , respectively, and the
resulting graphs are very similar to Figure 4.2.

Figure 5.1. Graphs of N(p) obtained via iteration of the function fp(z) =
(
1− z2

2

)p
(left)

and fp(z) =
(
1− z2

2 + z4

24

)p
(right), with p = 1 marked with a white dot. As before, the graphs

give the number of cluster points of the sequence (an) determined by the fp functions above for
complex p.

5.2 The sine and exponential functions
Similar behavior appears to arise for the sine and exponential functions, although we have not
explored these other cases as broadly as we did for the cosine function.

Figure 5.2. Graphs of N(p), using the same color scheme, for iterates of fp(z) = sinp(z) (left)
and fp(z) = epz (right). In each case, a white dot marks the point p = 1.
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We pause to give the reader an idea of why the cosine function is our main area of focus
in this paper. When p is real and positive (the setting considered at the genesis of the paper,
many decades ago), the sine function yields N(p) = 1 (see Figure 5.2 above). Moreover, the
sole cluster point of the corresponding sequence (an) is zero. For real p > 0, the exponential
function has (an)→∞.

All of the questions we’ve asked above have analogs for the sine and exponential functions;
we have one additional question specific to the sine function:

Question 2. Why does the left graph in Figure 5.2 appear to match the Mandelbrot set so
closely (more closely than for the cosine and exponential functions)? Are there connections to
the universality of the Mandelbrot set (see [4])?

6 Closing questions concerning iterates of cosine
We conclude the paper with a list of questions for further exploration.

Questions 1 (Cardioid).

1. Is the heart-shaped object in the middle of the graphs a cardioid?

2. If it is a cardioid parametrized by

−r(1− cos(t))eit − c,

then we must have c ≈ .5 and r ≈ 2.188+.5
2 = 1.344. Is there a nice closed form expression

for these constants? (Note: a cardioid with these numerical constants has y-intercepts at
roughly ±1.658, and the computed region N(p) = 1 is consistent with these values.)

3. Do points on the boundary of the cardioid yield a single cluster point (as is apparently the
case for all points on the interior)?

Questions 2 (Left half-plane).

1. Beyond a short distance from the center, the left half-plane appears as black (recall Figure
4.5). Calculating one point at a time in this region fails for most points, but not all.
For example, it computes easily for p = −157. Similarly, other scattered points are
computable. Is it the case that for these points, the numbers involved become too large for
the software to handle or is there some other explanation?

2. At the start of the left half-plane it looks as if the region is divided into horizontal strips
for which we have uniformly N(p) = 3. These strips are separated by very narrow lines in
which it looks as if most anything can happen. Does this pattern continue for the entire
half-plane?

3. It seems that the three cluster points for any point in the N(p) = 3 region consist of

• a value very close to 0,

• a value very close to 1, and

• another point w.

As p moves vertically along a line Re(p) = −t, it seems that the absolute value of this
third cluster point, w, is constant at |w| = kt, with k ≈ 1.8508. As p changes along this
line, w appears to rotate around the circle of radius kt. It takes two bands to make a full
rotation, thus the period appears to be roughly 10.2. Can any of these numerical values
be confirmed?

Questions 3 (Global questions).

9



1. Consider a complex number of the form p := −a + ib, where a is a positive real number
and b 6= 0 is real. It seems that the moduli

√
Re(z)2 + Im(z)2 of the non-negligible terms

of (an) approach ( 1
cos 1 )

a. Can this be verified?

2. Does every natural number occur as a value of N(p) for some point p?

3. Is N(p) indeed symmetric with respect to the real axis, as appears to be the case from the
graphs?

4. How do the graphs change if one changes the initial point a0?

5. Is there any regular behavior in the set of cluster points for various p? For example, in
numerical experiments it appears that, for each p with N(p) > 1, one of the cluster points
is very close to 1. If N(p) > 2, another of the cluster points is very close to 0. Does this
hold for all p with N(p) > 2?
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