
ALMOST STRONGLY UNITAL RINGS

GREG OMAN AND EVAN SENKOFF

Abstract. In the recent article [10], the authors determine all rings R for which every subring
of R has an identity (which need not be the identity of R), calling such rings strongly unital. In
this note, we extend this work to determine the rings S for which every proper subring of S has
an identity, yet S does not, calling such rings almost strongly unital. We conclude the paper by
classifying the rings T for which a subring R of T has an identity if and only if there is a subring S
of T such that R ( S ( T .

1. Introduction

Of interest in the literature over the past several decades are mathematical structures which
almost possess a certain property P . There are many ways in which one might make this precise; a
natural way is the following: say that a mathematical structure U almost has property P provided
U does not have property P , but every proper substructure (or quotient structure) has property P .
We begin with the following interesting example.

Example 1. Let p be a prime. The quasi-cyclic group or Prüfer group of type p∞, denoted
C(p∞), is the direct limit of the cyclic groups Z/pnZ as n→∞. The group C(p∞) is infinite, yet
every proper subgroup of C(p∞) is finite (see ([3])). Moreover, if G is any infinite abelian group for
which every proper subgroup of G has smaller cardinality than G, then G ∼= C(p∞) ([11]).

Following the terminology introduced in the above example, we say that if G is a countably infinite
abelian group, then G is almost finite if and only if G ∼= C(p∞) for some prime p. An infinite
(possibly nonabelian) group G with the property that every proper subgroup of G has smaller
cardinality than G is called a Jónsson group. By Example 1 above, every abelian Jónsson group
is countable. On the other hand, nonabelian Jónsson groups exist. Indeed, Shelah constructs a
Jónsson group of cardinality ℵ1 in [12].

In the case of rings and modules, in [13], Weakley calls a module M over a commutative ring
R with identity almost finitely generated provided M is not finitely generated, yet every proper
submodule of M is finitely generated. Gilmer and Heinzer call a module M over a commutative
ring R with identity a Jónsson module if M is infinite, yet every proper submodule of M has smaller
cardinality than M ([5]). The dual notion, that of an infinite module M (again, over a commutative
ring with identity) for which |M/N | < |M | for every nonzero submodule N of M is studied in [10].
In [9], Laffey completely characterizes those rings R (not necessarily commutative or unital) which
are “almost finite.” For further reading on Jónsson algebras, we refer the reader to the excellent
survey article [1].
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In this note, we study rings R (not assumed commutative) with the property that R does not
have an identity, but every proper subring S of R has an identity. In other words, we classify
the “almost unital” rings. To do this, we make heavy use of the main result of [10], where the
rings R for which every subring of R has an identity are determined (again, the subrings of R need
not contain the identity of R, only an identity). The authors call such rings strongly unital. For
consistency with terminology introduced in [10], we call a ring R almost strongly unital if R does
not have an identity, yet every proper subring of R has an identity. We conclude the article by
pushing the almost strongly unital condition down an additional step, that is, we classify the rings
T for which a subring R of T has an identity if and only if there is a subring S of T such that
R ( S ( T . We conclude the introduction by mentioning that throughout this note, a ring with
zero multiplication is a ring R for which xy = 0 for all x, y ∈ R.

2. Results

We begin by introducing an elementary example of the rings studied in [10].

Example 2. Let R := Z/15Z. The subrings of R are S1 := {0}, S2 := {0, 5, 10}, S3 :=
{0, 3, 6, 9, 12} and S4 := R. Then the identity of S1 is 0, the identity of S2 is 10, the identity
of S3 is 6, and the identity of S4 is 1. Hence all subrings of R have an identity.

Below, we state a result (Proposition 1) which will be heavily used throughout the paper. First,
recall that a field F is absolutely algebraic if F is algebraic over its prime subfield (the subfield
generated by 1).

Proposition 1 ([10], Theorem 1). Let R be a nontrivial ring. Then R is strongly unital if and
only if R ∼= F1×· · ·×Fn for some fields F1, . . . , Fn, each of prime characteristic and each algebraic
over its prime subfield.

Our first objective is to study rings R which alre almost strongly unital, that is, R does not have
an identity but every proper subring of R does. As we will show, this is a very narrow class of
rings. Of interest is the proof, which in part generalizes one of the main results of [4]. We begin
by showing that every almost strongly unital ring is commutative.

Proposition 2. Suppose that R is a ring such that every proper subring of R is unital. Then R is
commutative.

Proof. Suppose that R is a ring for which every proper subring of R has an identity. We consider
two cases.

Case 1. R is generated (as a ring) by some element r ∈ R. Then it is easy to see that we have
R = {m1r +m2r

2 + · · ·+mkr
k : mi ∈ Z, k ∈ Z+}. Clearly R is commutative in this case.

Case 2. R is not generated by any member of R. Let α ∈ R\{0}. Then S := {m1α+m2α
2 + · · ·+

mkα
k : mi ∈ Z, k ∈ Z+} is a proper, nontrivial subring of R, thus has an identity. Moreover, every

subring of S is also a proper subring of R, thus has an identity. By Proposition 1, S ∼= F1×· · ·×Fn

for some fields F1, . . . , Fn, each of prime characteristic and each algebraic over its prime subfield.
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Thus we may suppose that α = (c1, . . . , cn) where each ci ∈ Fi. Let Ki be the prime subfield of Fi.
Then Ki(ci) is a simple algebraic extension of the finite field Ki, and hence is finite, say of order mi.
Observe that if ci 6= 0, then by Lagrange’s Theorem, cmi−1

i = 1. Set k := (m1−1) · · · (mn−1). Then
it is easy to see that αk+1 = α. Invoking Jacobson’s Theorem ([7]), we see that R is commutative
in this case as well. �

Next, we give several lemmas which will be used to prove Theorem 1, which is one of the main
results of this note. First, we comment on notation. Let R be a commutative ring. By R[X], we
denote the polynomial ring in the variable X with coefficients in R. The subring of polynomials
with zero constant term will be denoted by XR[X]. Finally, if S is any commutative ring and
s ∈ S, then 〈s〉 denotes the ideal of S generated by s.

Our first lemma can be found in [6]. We give a short proof for the reader’s convenience.

Lemma 1. Suppose that R is a nontrivial ring such that {0} and R are the only left ideals of R.
Then either R is a division ring or R ∼= XFp[X]/〈X2〉 for some prime p, where Fp is the field with
p elements.

Proof. Let R be as stated above. We consider two cases.

Case 1. R possesses a nonzero element r which is a zero divisor. Without loss of generality, xr = 0
for some nonzero x ∈ R. It follows that the left ideal AnnR(r) := {y ∈ R : yr = 0} contains both
0 and x, and thus coincides with R. Now consider the abelian group Zr := {mr : m ∈ Z}, and
note that since AnnR(r) = R, Zr is a nonzero left ideal of R. By the condition on R, Zr = R.
Moreover, every additive subgroup of Zr is a left ideal of R, thus is either trivial or exhausts R.
Therefore, Zr is a simple abelian group, hence (as is well-known) has p elements for some prime
p. As R = Z[r] = AnnR(r), the product of any two elements of R is zero. Now, by Lagrange’s
theorem, any group of order p is isomorphic to Z/pZ; it follows that (as is well-known) any two
groups of order p are isomorphic. Via this isomorphism, it is immediate that any two rings of
order p with zero multiplication are isomorphic. Since XFp[X]/〈X2〉 is a ring of order p with zero
multiplication, we deduce that R ∼= XFp[X]/〈X2〉, as desired.

Case 2. R has no (nonzero) zero divisors. Let r ∈ R be nonzero. Then Rr is a nonzero left ideal of
R and hence Rr = R. Thus r = er for some e ∈ R. Multiplying through by e, we see that er = e2r,
and hence (e− e2)r = 0. Since r is not a zero divisor, e− e2 = 0, so e = e2. Note that since r = er
and r 6= 0, also e 6= 0, and so e is not a zero divisor. We claim that e is the multiplicative identity
of R. To see this, let x ∈ R be arbitrary. Then ex = e2x, so e(x − ex) = 0. Because e is not a
zero divisor, x− ex = 0, so ex = x. Similarly, xe = xe2. By an analogous argument, xe = x. This
proves that R has an identity e := 1. Now let y ∈ R be nonzero. Then by the condition on R,
Ry = R. Hence 1 = xy for some (nonzero) x ∈ R. Hence every nonzero y ∈ R has a left inverse.
Now since 1 = xy, x = xyx. Multiply on the left by the left inverse z of x to obtain 1 = yx. Hence
R is a division ring in this case, and the proof is complete. �

A generalization of our next lemma is in the literature, and can be found in [8, p. 22], where the
author establishes that a left Artinian ring which has no nonzero nilpotent left ideals is necessarily
semisimple with identity. We give a modified proof in the commutative setting. We remind the
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reader that an element r of a ring R is nilpotent if rn = 0 for some positive integer n. Further, R
is reduced if R has no nonzero nilpotent elements.

Lemma 2. A commutative reduced Artinian ring has an identity.

Proof. Let R be a commutative reduced Artinian ring. We may assume of course that R is non-
trivial. It is a well-known consequence of Zorn’s Lemma that every nontrivial ring with identity
has a maximal, hence prime, ideal. However, we have not assumed that R has an identity. Yet we
shall still establish the existence of maximal ideals of R. We begin by showing the following:

(2.1) if r ∈ R\{0}, then there is a prime ideal P of R for which r /∈ P.
To see this, let S := {rn : n ∈ Z+}. Next, let I denote the collection of all ideals of R which are
disjoint from S. Observe that I is a nonempty set since {0} ∈ I (because r is not nilpotent). By
Zorn’s Lemma, there is a member I of I which is maximal with respect to set inclusion. Note
that I is proper since r /∈ I. We claim that I is a prime ideal. Suppose not. Then there are
x, y ∈ R such that xy ∈ I, yet x /∈ I and y /∈ I. By maximality of I, it follows that 〈I, x〉 and 〈I, y〉
intersect S nontrivially (here, 〈I, x〉 and 〈I, y〉 are the ideals of R generated by I and x and I and
y, respectively). We conclude that i1 + rx + mx = ra and i2 + sy + ny = rb for some i1, i2 ∈ I,
r, s ∈ R, m,n ∈ Z, and a, b ∈ Z+. Multiplying the left sides of these equations together and using
the fact that xy ∈ I, it follows that the product lies in I. But then ra · rb = ra+b ∈ I, contradicting
that I and S are disjoint. This proves (2.1).

Next we claim that

(2.2) if R has no zero divisors, then R is a field.

To see this, suppose R has no zero divisors, and let r ∈ R be nonzero. Then observe that · · · ⊆
Rrn ⊆ Rrn−1 ⊆ · · · ⊆ Rr. Because R is Artinian, there is a positive integer n such that Rrn+1 =
Rrn. Thus rn+1 ∈ Rrn = Rrn+1, so rn+1 = ern+1 for some e ∈ R. Because R has no zero divisors
and r 6= 0, we see that r = er, and so er = e2r. Again, because R has no zero divisors, e = e2

(and e 6= 0). By the proof included in Case 1 of Lemma 1, we see that e := 1 is the identity of R.
But now since Rrn = Rrn+1 and R has an identity, rn = yrn+1 for some y ∈ R, and so 1 = yr.
This proves that R is a field. The following is immediate from (2.2), using the easy fact that the
Artinian property passes to factor rings:

(2.3) every prime ideal of R is maximal.

Next, we show that

(2.4) R has but finitely many prime ideals.

Our proof of this fact is standard. Let S be the collection of all finite intersections of prime ideals
of R. By (2.1), this collection is nonempty. Because R is Artinian, there exist minimal elements of
S; let P1∩· · ·∩Pn be such a minimal element. We claim that {P1, . . . , Pn} is the set of prime ideals

4



Almost strongly unital rings Oman & Senkoff

of R. For suppose that Pn+1 is another prime ideal. Then P1 ∩ · · · ∩Pn ∩Pn+1 ⊆ P1 ∩ · · · ∩Pn. By
minimality, we have P1 ∩ · · · ∩Pn ∩Pn+1 = P1 ∩ · · · ∩Pn. Thus P1 ∩ · · · ∩Pn ⊆ Pn+1. Because Pn+1

is prime, a straightforward proof by contradiction shows that Pi ( Pn+1 for some i, 1 ≤ i ≤ n. But
by (2.3), Pi is maximal, and we have a contradiction. This proves (2.4).

Let P1, . . . , Pn be the (distinct) prime ideals of R. By (2.2), it suffices to prove that

(2.5) R ∼= R/P1 × · · · ×R/Pn,

since then R is isomorphic to a finite product of rings with identity (the summands being fields),
hence R is unital as well. This follows immediately from the Chinese Remainder Theorem, but we
include an argument since in many sources, the Chinese Remainder Theorem assumes the existence
of a multiplicative identity. Define ϕ : R→ R/P1× · · · ×R/Pn by ϕ(r) := (r, . . . , r), where the ith
r denotes the coset Pi + r. Clearly ϕ is both a ring and an R-module homomorphism with kernel
P1∩ · · ·∩Pn. Since R is reduced, it follows from (2.1) that ker(ϕ) = {0}. It remains to show that ϕ
is onto. Since ϕ(R) is closed under addition, it clearly suffices to prove that for every i, 1 ≤ i ≤ n
and every x ∈ R, (0, . . . , x, 0, . . . , 0) is in the range of ϕ, where the ith entry in the above sequence
is x. Without loss of generality, let i = 1 and let x ∈ R be arbitrary. We must find r ∈ R such
that r − x ∈ P1 and r ∈ P2 ∩ · · · ∩ Pn (clearly we may assume that n > 1). If P2 ∩ · · · ∩ Pn ⊆ P1,
then as above, since P1 is prime, Pj ( P1 for some j, 2 ≤ j ≤ n. But this is a contradiction to the
maximality of Pj. Now, since P1 is maximal, we see that P1 + (P2 ∩ · · · ∩Pn) = R. Hence s+ r = x
for some s ∈ P1 and r ∈ P2 ∩ · · · ∩ Pn. Thus r − x = −s ∈ P1, and the proof is complete. �

We require a final lemma before proving the main result of this note. Our lemma is a generaliza-
tion of one of the main results of [4], where the authors use the theory of Jónsson modules to show
that if T is a ring with identity 1T which admits a proper subring S with 1T ∈ S and every proper
subring1 of T is Artinian, then T is Artinian. We present a generalization of this result using only
basic principles.

Lemma 3 ([4], Corollary 2). Let T be a commutative ring with a proper subring S which contains
a nonzero idempotent e. Suppose further that every proper subring of T is Artinian. Then T is
Artinian.

Proof. Let e, S, and T be as stated. Suppose by way of contradiction that T is not Artinian. Then
there exists an infinite strictly decreasing sequence

(2.6) · · · ( In ( In−1 ( · · · ( I1

of ideals of T . Let R := {me : m ∈ Z}. Because e is idempotent, R is a subring of T . Moreover,
R ∼= Z/〈n〉 for some non-negative integer n. If n = 0, then R ∼= Z, and hence R is not Artinian.
But R ⊆ S ( T , and this is a contradiction. It follows that

(2.7) R is a finite ring, say of cardinality n.

1by “subring”, the authors mean “unital subring”, that is, a subring which contains 1T .
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For every positive integer k, let Rk := R + Ik. It is easy to see that each Rk is a subring of T .
Moreover, for every k ∈ Z+, · · · ( Ik+2 ( Ik+1 ( Ik is an infinite, strictly decreasing sequence of
ideals of Rk. Because every proper subring of T is Artinian, we deduce that

(2.8) Rk = T for every positive integer k.

Next, we claim that for every positive integer k,

(2.9) there is a surjective ring homomorphism f : T/Ik+1 → T/Ik which is not injective.

Indeed, define f : T/Ik+1 → T/Ik by f(Ik+1 + t) := Ik + t. It is immediate from (2.6) that f is
well-defined and obvious that f is a surjective ring homomorphism. To see that f is not injective,
pick t ∈ Ik\Ik+1. Then Ik+1 + t ∈ T/Ik+1 is nonzero, yet Ik + t ∈ T/Ik is zero. It is immediate from
(2.9) that

(2.10) there is no finite upper bound on the sizes of T/Ik where k ranges over Z+.

Next, let k ∈ Z+. Recall from (2.7) that |R| = n. Thus trivially,

(2.11) |{Ik + r : r ∈ R}| ≤ n.

Finally, recall from (2.8) that Rk = T . Hence T/Ik = Rk/Ik = (R + Ik)/Ik = R/Ik, and thus
|T/Ik| = |R/Ik| ≤ n (from (2.11) above). This contradicts (2.10) and completes the proof. �

Remark. Note that we can easily recover Gilmer and Heinzer’s result ([4], Corollary 2) as follows.
Suppose that T is a ring with identity with a proper unital subring and with the property that
every proper (unital) subring of T has an identity. Then the prime subring P (T ) generated by 1
cannot be all of T (lest T not have a proper unital subring), and so is Artinian. Hence P (T ) � Z,
so P (T ) ∼= Z/nZ for some integer n > 1. It follows that 1 is a nonzero idempotent of R := P (T ).
The above argument shows that T is Artinian.

We are now equipped to classify the rings R for which every proper subring of R has an identity.

Theorem 1. Let R be a nonzero ring. Then every proper subring of R has an identity if and only
if one of the following holds:

(1) R ∼= F1× · · ·×Fn for some fields F1, . . . Fn, each of prime characteristic and each algebraic
over its prime subfield, or

(2) R ∼= XFp[X]/〈X2〉 for some prime number p.

Proof. Let R be a nonzero ring. If R is a finite direct product of absolutely algebraic fields of
prime characteristic, then Proposition 1 implies that every subring of R has an identity, so every
proper subring of R has an identity. Now suppose that R ∼= XFp[X]/〈X2〉. Then R is a ring with
p elements and zero multiplication. Thus R does not have an identity. Moreover, the only proper
subring of R is trivial, and thus obviously has an identity.
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Conversely, suppose that every proper subring of R has an identity. If R has an identity, then
we invoke Proposition 1 to deduce that R is a finite direct product of absolutely algebraic fields of
prime characteristic, and we are done. Finally, suppose that R does not have an identity. Invoking
Proposition 2, R is commutative. We claim that R is not reduced. Suppose by way of contradiction
that R is reduced. We consider two cases and obtain a contradiction in each case.

Case 1. R has no proper, nontrivial subring. Then (as ideals are subrings) the only ideals of R
are {0} and R. Since R is reduced, Lemma 1 implies that R is a field. It follows that R has an
identity. This is a contradiction.

Case 2. R has a proper, nontrivial subring. Let S be any such subring. Then S has an identity and
every subring of S is a proper subring of R, thus has an identity. We conclude from Proposition 1
that S is a finite direct product of fields. Let e be the identity of S. Then e is a nonzero idempotent
of S. Since every proper subring of R is a finite direct product of fields, every proper subring of
R is Artinian. Invoking Lemma 3, R is Artinian. So now R is a reduced Artinain ring. Applying
Lemma 2, R has an identity, a contradiction.

Led to contradictions in both cases above, we deduce that R is not reduced; let α be a nonzero
nilpotent element of R. Without loss of generality, we may assume that α2 = 0. Since every
proper, nontrivial subring of R is a finite direct product of fields, it follows that every proper,
nontrivial subring of R is reduced. In other words, every nonzero subring of R which is not reduced
must coincide with R. Let S := {mα : m ∈ Z}. Then S is a nonzero subring of R which is not
reduced, and hence S = R. Moreover, every nontrivial additive subgroup of R is a subring of R
which is not reduced, and hence is equal to R. We conclude that (R,+) is a simple abelian group,
hence isomorphic to Z/pZ for some prime p. Combining this result with the fact that R has zero
multiplication, it follows from Lemma 1 that R ∼= XFp[X]/〈X2〉, and this concludes the proof. �

The following corollary is immediate.

Corollary 1. Let R be a nontrivial ring which is not a division ring. Then the following are
equivalent.

(1) The only left ideals of R are {0} and R.
(2) R is not unital, but every proper subring of R is unital.
(3) R ∼= XFp[X]/〈X2〉 for some prime number p.

We conclude the paper with a final theorem which is a natural extension of our previous work.
In particular, we classify the rings T for which a subring R of T has an identity if and only if R
is “at least two rings from T” in the sense that there is a subring S of T such that R ( S ( T .
The proof of this theorem makes essential use of the results of [2]. This paper classifies all rings
of cardinality pq for primes p and q (not necessarily distinct). We recall the results of this paper
below. In what follows, if G is an abelian group, then G(0) denotes the ring with G as additive
group and zero multiplication.

Lemma 4 ([2], Corollary 2 and Theorem 2). Let R be a ring. Then R has order pq for some
primes p and q if and only if R is isomorphic to one of the following rings.
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(a) Z/pqZ,
(b) Z/pqZ(0),
(c) Z/pZ(0)× Z/qZ,
(d) Z/pZ× Z/qZ(0),
(e) Z/p2Z,
(f) 〈a : p2a = 0, a2 = pa〉,
(g) Z/p2Z(0),
(h) Z/pZ× Z/pZ,
(i) 〈a, b : pa = pb = 0, a2 = a, b2 = b, ab = a, ba = b〉,
(j) 〈a, b : pa = pb = 0, a2 = a, b2 = b, ab = b, ba = a〉,
(k) 〈a, b : pa = pb = 0, a2 = 0, b2 = b, ab = a, ba = a〉,
(l) Z/pZ× Z/pZ(0),

(m) 〈a, b : pa = pb = 0, a2 = b, ab = 0〉,
(n) (Z/pZ× Z/pZ)(0), or
(o) Fp2, the field of order p2.

We conclude the paper with our final theorem.

Theorem 2. Let T be a ring. Then for all subrings R of T , R has an identity if and only if there
is a subring S of T such that R ( S ( T exactly when T belongs to one of the following families,
where p and q are primes:

(b) Z/pqZ(0),
(f) 〈a : p2a = 0, a2 = pa〉,
(g) Z/p2Z(0),

(m) 〈a, b : pa = pb = 0, a2 = b, ab = 0〉, or
(n) (Z/pZ× Z/pZ)(0).

Proof. Let us agree to call a ring T special if for all subrings R of T : R has an identity if and only
if there is a subring S of T such that R ( S ( T . Let us first show that the rings in (b), (f), (g),
(m), and (n) are special.

As for (b), note that any additive subgroup of Z/pqZ(0) is also a subring as a result of the zero
multiplication. For any subgroup G of Z/pqZ, G is trivial if and only if G ( H ( Z/pqZ for some
subgroup H of Z/pqZ. Since the trivial subring of Z/pqZ(0) is the only subring with an identity,
this verifies that the rings in (b) are special.

Next, let T := 〈a : p2a = 0, a2 = pa〉. It is clear from this presentation that (T,+) ∼= Z/p2Z, and
is thus cyclic. Hence (T,+) has a unique subgroup of order p. This implies that T has at most one
subring of order p. One verifies at once that S := {mpa : m ∈ Z} is the unique such subring. It is
clear that S has zero multiplication, hence cannot have an identity. We claim that T too has no
identity. For suppose that ma is an identity for T , where 1 ≤ m < p2. Then ma · a = a. But this
means that mpa = a (using the above presentation). Because a has additive order p2, we deduce
that p2 | mp− 1, which is absurd. Hence T does not have an identity. It now follows that the only
subring of T which has an identity is R := {0}. Since R ( S ( T , we see that T is special.

It is trivial to check that the rings in (g) are special.
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We now come to the rings in (m). Let T := 〈a, b : pa = pb = 0, a2 = b, ab = 0〉. Note first that
b2 = b · b = a2b = a(ab) = a · 0 = 0. Thus every member of T can be expressed in the form ma+nb
for some integers m and n. It is clear that {mb : m ∈ Z} is a subring of T of size p with zero
multiplication. We claim that every subring of T of size p has zero multiplication. Thus suppose
that S is a subring of T of size p without zero multiplication; say (m1a+n1b)(m2a+n2b) 6= 0, where
mia + nib ∈ S. Upon multiplying out and using the above presentation, we see that m1m2a

2 is a
nonzero member of S, that is, m1m2b is a nonzero member of S. As b has order p and m1m2b 6= 0, it
follows that p andm1m2 are relatively prime. By elementary number theory, there are integers x and
y such that xp+ ym1m2 = 1. Multiplying through by b, we get b = xpb+ ym1m2b = ym1m2b ∈ S.
Hence S = {mb : m ∈ Z} (since S has exactly p elements and b ∈ S has order p). But this is a
contradiction since {mb : m ∈ Z} has zero multiplication. Thus to show that T is special, it suffices
to prove that T does not have an identity. This is easy; every member of T annihilates b, so T
cannot have an identity.

Finally, it is clear that (Z/pZ× Z/pZ)(0) is special, and this concludes the proof that the rings
in families (b), (f), (g), (m), and (n) are special.

Conversely, suppose that T is any special ring. Since {0} is a subring of T with identity, it follows
immediately from the definition of “special ring” that

(2.12) there exists a proper, nontrivial subring S of T.

Next, we prove that

(2.13) T has a maximal subring.

Suppose not, and let R be any proper subring of T . Then there is a subring S of T such that
R ( S ( T . Hence R has an identity, by definition of “special”. We have shown that every proper
subring of T has an identity. By definition of “special”, T does not have an identity. Theorem 1
implies that T ∼= XFp[X]/〈X2〉 for some prime p. But then T has no proper, nontrivial subring, a
contradiction to (2.12). We now characterize all maximal subrings of T :

(2.14) A proper subring S of T is maximal if and only if S ∼= XFp[X]/〈X2〉 for some prime p.

To begin, let S be a maximal subring of T . Then by (2.12), S is nontrivial. Because S is maximal,
there is no subring of T properly between S and T , and so S has no identity. Moreover, every
proper subring of S has an identity since T is special. Hence by Theorem 1, S ∼= XFp[X]/〈X2〉
for some prime p. Conversely, suppose that S is a proper subring of T and S ∼= XFp[X]/〈X2〉 for
some prime p. Then S must be proper due to (2.12). If S were not maximal, then S would have
an identity, which we know is false. This proves (2.14).

We are now in position to prove that

(2.15) every proper, nontrivial subring of T is maximal.
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Let R be a proper, nontrivial subring of T . Next, set S := {S : S is a proper subring of T containing
R}. We claim that S is closed under unions of nonempty chains. For suppose there is a nonempty
chain C ⊆ S such that

⋃
C /∈ S. Then it follows that R ⊆

⋃
C = T . Let t ∈ T be nonzero. Then

t ∈ S ∈ C for some proper subring S of T containing R. Now, S cannot be a maximal element of C;
otherwise

⋃
C = S = T , which is a contradiction. Thus S ( S ′ ( T for some S ′ ∈ C. Because T is

special, we deduce that S has an identity, and hence so does every subring of S. Invoking Theorem
1, S is a finite direct product of fields, and hence t ∈ S is not nilpotent. Recall that the nonzero
t ∈ T above was arbitrary. We deduce that T is reduced. However, by (2.13), T has a maximal
subring M , and by (2.14), M is not reduced. This is a contradiction. Hence S is indeed closed
under unions of nonempty chains. Invoking Zorn’s Lemma, R ⊆ R∗ for some maximal subring R∗

of T . By (2.14), R∗ ∼= XFp[X]/〈X2〉 for some prime p, and we see that R∗ has order p. Because R
is nontrivial and R is a subring of R∗, we deduce that R = R∗, proving (2.15).

The next step in the proof is to show that T has cardinality pq for some (not necessarily distinct)
primes p and q. Our first claim is that

(2.16) if T has a proper, nontrivial two-sided ideal, then |T | = pq for some primes p and q.

Indeed, suppose that I is a proper, nonzero two-sided ideal of T . Then I is a proper, nonzero
subring, hence a maximal subring by (2.15). Invoking (2.14), |I| is prime. But then by maximality
of I, the ring T/I has no proper, nonzero subrings, thus no proper, nonzero left ideals. Applying
Lemma 1, either T/I has prime order or T/I is a division ring. In the former case, I has prime
order and T/I has prime order. It follows that T has order pq for some primes p and q. In the
latter case, T/I is a division ring with no proper, nontrivial subrings. It is clear from this fact
that T/I is isomorphic to Fp for some prime p. Hence in this case as well, T has order pq for some
primes p and q. We have now established (2.16). Our next claim is that

(2.17) |T | = pq for some primes p and q.

First, suppose that T is generated by a single element as a ring. Then T is commutative. If T has
no proper, nontrivial ideals, then by Lemma 1, T is a field or T has p elements for some prime p.
But T is special, hence does not have an identity; this precludes T from being a field. Further,
(2.12) precludes the latter. We deduce that T has a proper, nontrivial ideal, and so by (2.16),
|T | = pq for some primes p and q. Suppose now that T is not generated by a single element.
Invoking Lemma 1, we see that T has a proper, nontrivial right ideal I and a proper, nontrivial
left ideal J .2 Then I and J are also maximal subrings of T , by (2.15). We conlude from (2.14)
that I = {ax : m ∈ Z} and J = {by : n ∈ Z} for some x ∈ I and y ∈ J such that x2 = y2 = 0
and both x and y of prime additive order. It follows that either I = J or I ∩ J = {0}. In the
former case, I is a nontrivial two-sided ideal of T , and we apply (2.16) to conclude that |T | = pq
for some primes p and q. Thus let us suppose that I ∩ J = {0}. Then we see that xy ∈ I ∩ J ,
so xy = 0. From these observations, we see that L := {ax + by + cyx : a, b, c ∈ Z} is a subring of
T containing the maximal subrings I and J of T . Since I ∩ J = {0}, we conclude by maximality

2It is easy to see that we may replace “left ideal” with “right ideal” in Lemma 1 and obtain the same conclusion.
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of I and J that T = {ax + by + cyx : a, b, c ∈ Z}. Now, x has additive order p1 for some prime
p1, y has additive order p2 for some prime p2, and either yx = 0 or yx has additive order p2. In
any case, there is a surjective additive group homomorphism ϕ : Z/p1Z⊕ Z/p2Z⊕ Z/p2Z→ T . If
the kernel is nontrivial, we see that |T | is the product of two primes. Thus let us suppose that the
kernel of ϕ is trivial. Then we have {by : b ∈ Z} ( {by + cyx : b, c ∈ Z} ( T . But this contradicts
that {by : b ∈ Z} is a maximal subring of T . This proves (2.17).

We may now bring Lemma 4 into play. We simply must argue that every ring in (a) - (o) with
the exception of (b), (f), (g), (m), and (n) is not special. Observe that the rings in (a), (e), (h),
and (o) have identities, hence cannot be special by definition. Applying (2.14) and (2.15), every
proper subring of T has zero multiplication. It is easy to see that each of the rings outside of (b),
(f), (g), (m), and (n) and the rings in (a), (e), (h), and (o) has at least one proper subring with
nonzero multiplication. This concludes the proof. �
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