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Abstract. Let R be an associative ring. Then R is said to be coverable provided R is the union
of its proper subrings (which we do not require to be unital even if R is so). One verifies easily
that R is coverable if and only if R is not generated as a ring by a single element. In case R can
be expressed as the union of a finite number of proper subrings, the least such number is called the
covering number of R. Covering numbers of rings have been studied in a series of recent papers.
The purpose of this note is to study rings which can be covered by a countable collection of subrings.

1. Introduction

It is an elementary textbook exercise to show that no group is the union of exactly two proper
subgroups. On the other hand, if G is a group which is not cyclic, then it is immediate that
G =

⋃
g∈G〈g〉 represents G as a union of proper (cyclic) subgroups. There has been considerable

attention in the literature paid to groups G which can be expressed as the union of a finite number
of proper subgroups. When it exists, the least positive integer n for which G can be expressed as
the union of n proper subgroups is called the covering number of G. One of the main objectives
in this area of research is to determine the integers which can be realized as the covering number
of some group and, given a class C of groups, determine the covering numbers of the groups in C.
For example, Tomkinson proved in [18] that every non-cyclic solvable group has covering number
pn + 1 for some prime p and positive integer n. However, it is not known whether the complement
of the set of positive integers which are covering numbers of groups is finite or infinite. For further
reading on group coverings, we refer the reader to [2], [7], and [18]; the second reference contains
history and many recent developments on the topic.

Given the interest in the covering numbers of groups, it is not surprising that other algebraic
structures have also received analogous attention. For example, Khare determined the covering
number of a vector space (where we are interested in unions of proper subspaces instead of sub-
groups, of course) in [10]. In a series of recent papers, the question of the coverability of rings has
been explored (see [3], [12], [14], [16], [17], and [19]). In this context, an associative ring with iden-
tity is said to be coverable if R can be written as the union of its proper subrings (such subrings
are not assumed to be unital). Analogous to groups, a ring is coverable if and only if it is not
generated (as a ring) by a single element. In case a ring R can be so expressed as a finite union, the
smallest positive integer n for which R can be expressed as a union of n proper subrings is called
the covering number of R, and is denoted by σ(R). In case R cannot be expressed as the union
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of finitely many proper subrings (which occurs, for example, if R is singly generated), the covering
number is infinite, and we write σ(R) =∞.

The purpose of this note is to study coverable rings with infinite covering number. The main
question we explore in this paper is the following:

Which rings R have the property that R can be expressed as a countable union of proper subrings?

Our primary objective is to introduce the problem and prove some fundamental results. Throughout
the paper, a cover of a ring R (group G) is a collection of proper subrings of R whose union is R
(a collection of proper subgroups of G whose union is G). Observe trivially that every ring which
cannot be generated (as a ring) by a single element is coverable: one simply takes the union of all
singly generated subrings to obtain a cover. Analogously, a group is coverable if and only if it is
not cyclic.

For the purposes of this note, let us call a ring which can be expressed as a finite union of
proper subrings finitely coverable; such a collection of proper subrings will be called a finite cover.
Analogously, rings which can be expressed as a countable union of proper subrings will be called
countably coverable; such a collection of proper subrings will be called a countable cover.

We conclude the introduction by setting a few conventions and recalling some fundamental defi-
nitions. Throughout, we assume that all rings are associative. We will often focus on unital, com-
mutative rings; when we do so, we shall explicitly mention these additional assumptions. However,
unless otherwise specified, subrings will not be assumed unital even in case the ambient
ring is so. We denote the set of natural numbers, integers, and rational numbers by ω, Z, and Q,
respectively, with the convention that 0 ∈ ω.1 If R is a ring and M is an R-module, then we denote
the injective envelope of M by E(M). If N is a submodule of M , then we say that N is essential
in M if N has nontrivial intersection with every nontrivial submodule of M . Finally, recall that
for a prime p, the quasi-cyclic group of type p∞ is the direct limit of the groups Z/pnZ as n→∞.

2. Countably coverable groups and semigroups

As stated in the introduction, it is our purpose to study rings which can be expressed as a
countable union of proper subrings. Note that if there is a non-cyclic abelian group G which
cannot be expressed as a countable union of proper subgroups, then the zero ring G(0) would be
an example of a commutative ring which is not singly generated and which cannot be countably
covered. Thus it is natural to ask if every non-cyclic abelian group is countably coverable. We
answer this question in the affirmative below. It is likely that this result is in the literature, but
we could not locate a source. Therefore, we give a short proof. In fact, we prove a bit more (we
will utilize this result later in the paper).

Proposition 1. Every non-cyclic abelian group G is countably coverable. Moreover, if G is not
finitely generated, then G can be covered by a chain H0 ( H1 ( · · · of proper subgroups.

1The reason for using the notation ω instead of N is to utilize the fact that ω (the set of natural numbers) is
the first infinite ordinal (cardinal) and that ω ≤ κ for every infinite cardinal κ, a result of which we shall make use
throughout this note.
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Proof. Let G be a non-cyclic abelian group. If G is countable, then G is the union of its cyclic
subgroups, and thus is countably coverable. Suppose now that G is countable and not finitely
generated. Enumerate G as follows: G = {g0, g1, g2, . . .}. Now let Hn be the subgroup of G
generated by g0, . . . , gn. Because G is not finitely generated, each Hn is a proper subgroup of G.
Moreover, we may assume without loss of generality that Hn 6= Hm for n 6= m (by discarding
redundancies). Clearly H0 ( H1 ( H2 · · · and the union of the Hi is equal to G.

Next, assume that G has uncountable cardinality κ, and let E(G) be the injective envelope of G.
It is well known that G is essential in E(G) and that E(G) is isomorphic to a direct sum of copies
of Q and C(p∞) for various prime p (see the classic text [6] for details). Basic cardinal arithmetic
yields that E(G) =

⊕
i<κGi, where each Gi is isomorphic to either Q or to some quasi-cyclic group.

For every n < ω, let Kn := {(gi) ∈ E(G) : gk = 0 for n < k < ω}. Clearly Ki ( Kj for i < j < ω.
Now set Hn := Kn∩G for n < ω. We claim that {Hn : n < ω} is a cover of G by proper subgroups.
Viewing G as a subgroup of E(G), we see that every element of G is a sequence (gi : i < κ) with
finite support such that gi ∈ Gi for each i. It is now immediate that every g ∈ G is a member of
some Hn. Next, for every i < κ, let ζi : Gi → E(G) be the natural embedding. Now let m < n < ω.
Then observe that ζm(Gm) ⊆ Km and ζn(Gn) ⊆ Kn, but ζn(Gn) ∩Km = {0}. Further, ζn(Gn) ∩G
is a nontrivial subgroup of Hn by essentiality of G. However, ζn(Gn) ∩ Hm = {0}. From this, it
follows that Hm ( Hn, and it follows that each Hi is proper. The proof is now complete. �

Remark 1. A natural question arises: is every non-cyclic (possibly nonabelian) group countably
coverable? The answer, in fact, is no. Saharon Shelah famously constructed a so-called Jónsson
group G of cardinality ω1 (the first uncountable cardinal). This is a group of cardinality ω1 with all
proper subgroups countable (see [15]). If G were countably coverable, then G would be a countable
union of countable subsets, thus itself countable. In fact, Shelah’s group G has the stronger property
that every proper subsemigroup is also countable. Hence G cannot be countably covered by proper
subsemigroups.

Despite the above obstructions, we have the following corollary, of which we shall make use
shortly.

Corollary 1. The following hold.

(1) Every non-cyclic commutative monoid is countably coverable by proper subsemigroups.
(2) Every non-cyclic, cancellative, commutative semigroup S is countably coverable by proper

subsemigroups. If S is not finitely generated, then we can choose the cover to be a chain of
order type ω as in Proposition 1.

(3) Every zero ring on a non-cyclic abelian group is countably coverable.
(4) Let R be a commutative ring with identity such that (R,+) and (R, ·) are not cyclic as

groups and monoids, respectively. Then both (R,+) and (R, ·) are countably coverable as
groups and multiplicative monoids, respectively.

Proof. We verify each claim in succession.

(1) Let M be a non-cyclic (as a semigroup) commutative monoid. If M is countable, clearly
M is countably coverable. So assume M is uncountable. Suppose that M is a group. As M is
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uncountable, clearly M is not a cyclic group, and we are done by the previous proposition. So
assume that M is not a group. Let I be the collection of invertible elements of M and let N be the
set of non-invertible elements of M . Then I and N are easily checked to be (proper) subsemigroups
of M with M = I ∪ N . Thus M is countably coverable by subsemigroups (with covering number
2 in this case).

(2) Let S be a non-cyclic countable, cancellative, commutative semigroup. As in the proof
of Proposition 1, if S is countable, S is the union of its cyclic subsemigroups, hence countably
coverable. If S is countable but not finitely generated, one uses the same argument as the one
presented in Proposition 1 to deduce that S can be expressed as the union of a chain (with order
type ω) of proper subsemigroups. Now suppose that S is uncountable, and let Q(S) be the group
of differences (viewing S additively) of S. Let H0 ( H1 ( · · · be a cover of Q(S) furnished by
Proposition 1, and for each i, set Si := Hi ∩ S. If any Si = S, then S ⊆ Hi. As Hi is a group,
it follows that Q(S) ⊆ Hi, and hence Hi = Q(S), a contradiction. Therefore, (discarding any
redundancies) S0 ( S1 ( · · · is a cover of S.

(3,4) Obvious. �

3. Countably coverable rings

3.1. Fundamental results. We open this section with several examples. Recall that a ring is
countably coverable if it can be expressed as a countable union of proper subrings (which are not
assumed unital even if the ambient ring is so).

Example 1. Let R be a ring of characteristic 0 such that the additive group (R,+) is torsion.
Then R is countably coverable.

Proof. Let R be as described. For every positive integer n, let Rn := {r ∈ R : nr = 0}. One checks
at once that each Rn is a subring of R. Since R has characteristic 0, each Rn is a proper subring
of R. Finally, as (R,+) is torsion, it follows that R =

⋃
n∈Z+ Rn, showing that R is countably

coverable. �

Example 2. Let R be an uncountable ring such that |R| has countable cofinality. Then R is
countably coverable.

Proof. Choose a strictly increasing sequence (κn : n ∈ Z+) of infinite cardinals which are cofinal in
|R|. Now choose, for every positive integer n, a subset Xn of R of cardinality κn such that the
union of the Xn is all of R. For each n, let Rn be the subring of R generated by Xn. Then each
Rn has cardinality κn < |R|, thus is proper. It is clear that the union of the Rn is R. �

Example 3. Let G be Shelah’s Jónsson group of size ω1 mentioned in Remark 1. Then the group
ring Z[G] is not countably coverable.

Proof. The elements of Z[G] are finitely nonzero formal sums
∑

i aigi with ai ∈ Z, gi ∈ G, from
which it follows that G generates Z[G] as a ring. Thus no proper subring of Z[G] can contain all
of G. Suppose by way of contradiction that Z[G] is covered by countably many proper subrings
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R1, R2, . . .. For each n ∈ Z+, let Sn := G ∩Rn. Then each nonempty Sn is a proper subsemigroup
of G, because if G = Sn, then Rn contains all of G and hence Rn = Z[G]. Now, each element of G
lies in some Sn. So, G is equal to the union of all the Sn. But then G is the union of countably
many proper subsemigroups, hence is countable by Remark 1. �

Remark 2. In light of Example 3, it is natural to enquire about possible commutative analogs
of the above construction. It is well known that there are no uncountable abelian Jónsson groups
(groups whose proper subgroups are of strictly smaller cardinality than the group; thus Shelah’s
group G above is non-abelian), and here is a short argument: let G be an uncountable abelian
group and let E(G) :=

⊕
i<|G|Gi be the injective envelope of G as in the proof of Proposition 1. As

G is essential in E(G), we see that (
⊕

0<i<|G|Gi)∩G is a proper subgroup of G of size |G|. Despite
this fact, if there is a commutative ring R of cardinality ω1 with all proper subrings countable, then
it follows that R is not countably coverable. But no such ring exists. Indeed, Robert Gilmer and
Bill Heinzer have shown in [8] that every uncountable commutative ring (commutative ring with
identity) has a proper uncountable subring (unital subring) of the same cardinality. Moreover, it
is not known if there exists a noncommutative ring of size ω1 with all proper subrings countable;
see [4] and [11] for further details.

A natural question, given the above example and remarks, is the following: is every non-singly
generated commutative ring countably coverable? Though we do not know the answer, we show
that “most” commutative rings with identity are countably coverable. We begin with an easy but
useful lemma which appears in some form throughout the cited literature, and present the short
proof.

Lemma 1. Let S be a ring, I a two-sided ideal of S, and ϕ : S → S/I the canonical epimorphism.
If C is a cover of S/I, then ϕ−1(C) := {ϕ−1(R) : R ∈ C} is a cover of S.

Proof. Let R ∈ C be arbitrary. Since ϕ(0) = 0 ∈ R, 0 ∈ ϕ−1(R). Further, if x, y ∈ S are such that
ϕ(x), ϕ(y) ∈ R, then ϕ(x + y) = ϕ(x) + ϕ(y) ∈ R. Similarly, ϕ(xy) = ϕ(x)ϕ(y) ∈ R. This shows
that ϕ−1(R) is a subring of S for every R ∈ C. If there is some R ∈ C for which ϕ−1(R) = S, then
ϕ(s) ∈ R for every s ∈ S. As ϕ is onto, this implies that R = S/I, contradicting that R is proper.
Finally, let s ∈ S be arbitrary. Then ϕ(s) ∈ S/I, so ϕ(s) ∈ R for some R ∈ C. It follows that
s ∈ ϕ−1(R), and this proves that ϕ−1(C) is a cover of S. �

Next, we state another result from the literature.

Lemma 2. [16, Proposition 3.1] Suppose that R is a unital ring and that σ(R) < ∞ (that is, R
can be covered by finitely many proper subrings). Then there exists a proper two-sided ideal I of R
such that R/I is finite and σ(R) = σ(R/I).

The following interesting consequence follows immediately from the lemma: no field is finitely
coverable. To see this, recall that every finite field has a cyclic multiplicative group, hence is singly
generated as a ring. Moreover, infinite fields do not possess nontrivial, finite residue rings. Hence
by Lemma 2, they are not finitely coverable. In fact, we can prove a bit more. We shall require the
following lemma.
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Lemma 3. [13, Corollary 4] Let R be an infinite unital ring which satisfies the ascending chain
condition on two-sided ideals. Then there exists a prime ideal P of R such that |R/P | = |R|.

Proposition 2. Let R be an infinite commutative Artinian local ring with identity. Then R is not
finitely coverable.

Proof. Suppose by way of contradiction that there is an infinite commutative Artinian local ring
R with identity that is finitely coverable. Then by Lemma 2, there is a proper ideal I of R such
that R/I is finite. Since R is a local Artinian ring, R possesses a unique prime ideal P , and I ⊆ P .
By Lemma 3 above, |R/P | = |R|. But I ⊆ P implies that |R/P | ≤ |R/I| < ω, and this is a
contradiction to Lemma 3. �

On the other hand, all infinite commutative Artinian rings with identity are countably coverable,
which we obtain as a corollary to our first theorem below.2 First, we pause to present a proposition
on sums of units using the notion of coverability.

Proposition 3. Let R be a commutative ring with identity.

(1) If R has but countably many maximal ideals and not every r ∈ R is a sum of units, then R
is countably coverable.

(2) If R is semilocal with all residue fields infinite, then every r ∈ R is a sum of units.
(3) If R is a Noetherian semilocal domain of cardinality greater than 2ω, then every element of

R is a sum of units.

Proof. Let R be a commutative ring with identity.

(1) Suppose R has but countably many maximal ideals and that not every element of R is a sum
of units. Now let U := {u1 + u2 + · · ·+ un : n ∈ Z+, ui ∈ R×}. Then one checks easily that U is a
subring of R, thus proper by assumption. It follows that R is covered by U and all maximal ideals
of R.

(2) Let R be semilocal with all residue fields infinite. Suppose by way of contradiction that not
every element of R is a sum of units. Then R is finitely coverable (analogous to the argument given
in (1)). Lemma 2 implies that there is a proper ideal I of R such that R/I is finite. Now, I ⊆ M
for some maximal ideal M of R. Thus |R/M | ≤ |R/I| < ω, a contradiction.

(3) Suppose that R is a Noetherian semilocal domain of size greater than 2ω, and let M be a
maximal ideal of R. By [9, Lemma 2.1], we have |R/M | + ω ≤ |R| ≤ |R/M |ω. If R/M is finite,
then it follows that R has size at most 2ω, a contradiction. Thus all residue fields are infinite, and
we invoke (2). �

Remark 3. We cannot drop the assumption in Proposition 3(2) about the cardinality of the residue
fields completely. For example, F2 × F2 is a semilocal commutative ring with identity, but (1, 0) is
not a sum of units.

2We are grateful to Be’eri Greenfeld for a proof that R is countably coverable. We have extrapolated his argument
to obtain Theorem 1.
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We now present the first theorem of the paper.

Theorem 1. Let D be a commutative domain (not assumed to have an identity). Then D is
countably coverable if and only if D is not singly generated. Moreover, if D is not finitely generated,
then D can be covered by a chain of proper subrings of order type ω.

Proof. Let D be a commutative domain. It is clear that if D is countably coverable, then D is not
singly generated. Let us suppose now that D is not singly generated. If D is countable, then D
is countably covered by all singly-generated subrings. Now suppose that D is countable and not
finitely generated (as a ring); let {d0, d1, d2, . . .} be an enumeration of D, and let Rn be the subring
of D generated by d0, . . . , dn. Because D is not finitely generated, each Rn is a proper subring of
D. By discarding redundancing, we obtain a cover of D by a a chain of subrings order-isomorphic
to ω.

Suppose now that D is uncountable, and let Q(D) be the fraction field of D, with algebraic
closure Q(D)a. Then up to isomorphism, D is a subdomain of Q(D)a. Let F be the field generated
by 1 ∈ Q(D). Now let β be a maximal subset of D which is algebraically independent over F
(which exists by Zorn’s Lemma). Basic cardinal arithmetic along with the fact that a polynomial
over a domain has but finitely many roots yields that |β| = |D| := κ. Enumerate β relative to κ
by setting β := {bi : i < κ}. For every n ∈ Z+, let Kn := F (β\{bk : n < k < ω})a ⊆ Q(D)a, and
set Hn := Kn ∩D. Note that Kn is a chain of subrings of Q(D)a of order type ω. We claim that
{Hn : n ∈ Z+} is a cover of D by a chain of proper subrings of order type ω. We first show that
each Hn is a proper subring of D. Indeed, suppose Hn = D for some positive integer n. Then
D ⊆ F (β\{bk : n < k < ω})a, and so bn+1 is algebraic over F (β\{bk : n < k < ω}), contradicting
that β is algebraically independent over F . Now let d ∈ D be arbitrary. The maximality of β
implies that d is algebraic over F (β). But then clearly d is algebraic over F (β′) for some finite
β′ ⊆ β. Now simply choose n ∈ ω such that β′ ⊆ {b0, b1, . . . , bn} ∪ {bi : ω ≤ i}. It is clear that
d ∈ Kn, and so d ∈ Hn. Finally, the algebraic independence of β immediately yields that Hi ( Hj

for 0 ≤ i < j < ω, and the proof is complete. �

Remark 4. An analogous question to the one in the last subsection arises: is this theorem true for
possibly noncommutative prime rings? The answer is no. Indeed, Connell proved in [5, p. 675] (and
this is well known) that if R is a unital ring and G is a group, then the group ring R[G] is prime
if and only if R is prime and G has no nontrivial finite normal subgroups. Yet another remarkable
property of the Jónsson group G of size ω1 constructed by Shelah is that G is simple. Thus Z[G]
is a non-singly generated prime ring which is not countably coverable.

We pause to present the following corollary of Theorem 1.

Corollary 2. Let R be a commutative ring with identity.

(1) If R is Noetherian and not singly generated, then R is countably coverable.
(2) If R is an infinite field, then R can be countably covered by a chain of proper subrings of

order type ω.
(3) If the additive group of R is divisible, then R is countably coverable.

Proof. Let R be a commutative ring with identity.
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(1) Suppose that R is Noetherian and not singly generated. If R is countable, we are clearly
done. Thus suppose that R is uncountable, and let P be a prime ideal of R such that |R/P | = |R|
furnished by Lemma 3. As R/P is uncountable, clearly R/P is not singly generated, so by Theorem
1, R/P is countably coverable. Lemma 1 finishes the argument.

(2) Now assume that R is an infinite field. It is well-known that R is not finitely generated as a
ring (this is a standard result of commutative algebra; see [1] for details). Apply Theorem 1.

(3) Assume now that the additive group of R is divisible, that is, nR = R for every positive
integer n. It is well-known that every (nontrivial) divisible abelian group is infinite (this is a
textbook exercise) and easy to see that divisibility is preserved by factor groups. So let M be
a maximal ideal of R. Then by the above comments, R/M is an infinite field. By (2), R/M is
countably coverable. Finally, apply Lemma 1. �

Before proceeding, we shall require a lemma characterizing the singly generated commutative
domains, which are obstructions to countable coverability.

Lemma 4. Let D be a commutative integral domain (not assumed to have an identity). Then D
is singly generated if and only if one of the following holds:

(1) D is a finite field.
(2) D ∼= XFp[X] := {Xf(X) : f(X) ∈ Fp[X]} (Fp is the field with p elements, p a prime).
(3) D ∼= αZ[α] := {αf(α) : f(X) ∈ Z[X]} for some α ∈ C.

Proof. To begin, recall that every finite field has a cyclic multiplicative group, and thus every finite
field is singly generated. It is immediate that the rings in (2) and (3) are generated by X and α,
respectively.

Now suppose that D is a commutative, singly generated domain. We first consider the case
where D has characteristic p, p a prime. Let d ∈ D generate D, and let ϕ : XFp[X]→ D be defined
by ϕ(Xf(X)) := df(d). Then ϕ is a surjective ring homomorphism, and hence XFp[X]/K ∼= D,
where K is the kernel of the map. If the kernel is trivial, then D ∼= XFp[X] and we are done, so
assume that K is nontrivial. Now, K is also an ideal of Fp[X], and since K is nonzero, Fp[X]/K is
finite. It follows that XFp[X]/K is also finite, and so D is a finite field. Now suppose that D has
characteristic 0 and is generated by α as a ring. Since D is a countable domain of characteristic
0, up to isomorphism, D is a subring of C. To see this, simply adjoin 2ω many variables to D and
take the quotient field, then the algebraic closure. Then we obtain an algebraically closed field F
of characteristic 0 of transcendence degree 2ω. By Steinitz’ theorem (any two algebraically closed
fields of the same transcendence degree and the same characteristic are isomorphic), we see that
F ∼= C, and the result follows. �

As we stated earlier, we do not know if there exist any non-singly generated commutative rings
R with identity which are not countably coverable. However, our next proposition collects some
necessary conditions for R to be so.

Proposition 4. Let R be a commutative ring with identity that is not singly generated. If R is not
countably coverable, then the following hold:
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(1) R is not Noetherian.
(2) R/P is singly generated for every prime ideal P of R.
(3) All residue fields of R are finite.
(4) If R has positive characteristic, then R has Krull dimension zero.
(5) If R has characteristic zero, then R has Krull dimension one.

Proof. Let R be as stated.

(1) This is immediate from Corollary 2(1).

(2) From Lemma 1 and Theorem 1.

(3) By (2), all residue fields of R are singly generated, and so by Lemma 1 and Corollary 2(2),
all residue fields are finite.

(4) Suppose that R has positive characteristic, and let P be a prime ideal of R. Then R/P is
a singly generated unital domain of positive characteristic. Thus by Lemma 4, R/P is a field. It
follows that P is maximal.

(5) Finally, assume that R has characteristic zero. Note that Z\{0} is a multiplicatively closed
subset of R (up to isomorphism), and so there exists a prime ideal P of R such that P ∩ Z = {0}.
It follows that R/P also has characteristic 0, thus is infinite; by (2), R/P is singly generated.
Lemma 1 and Corollary 2 imply that R/P is not a field, thus P is not maximal. This shows that
R has Krull dimension at least one. Suppose by way of contradiction that there exist prime ideals
P1 ( P2 ( P3 of R. Then D := R/P1 is singly generated, unital, and of Krull dimension at least
two. Lemma 4 implies that D ∼= αZ[α] for some α ∈ C (since the rings in (1) and (2) of Lemma
4 have Krull dimension zero and are non-unital, respectively). But because D is unital, it follows
that D ∼= Z[α]. Let ϕ : Z[X] → D be a surjective homomorphism with kernel K. It is easy to
see that Z[X] is not singly generated as a ring, and so since Z[X]/K ∼= D, we deduce that K is
nontrivial. However, this implies that Z[X]/K has Krull dimension at most one (since Z[X] has
Krull dimension two), contradicting our assumption above that D has Krull dimension at least
two. �

3.2. Behavior relative to ring constructions. The purpose of the final part of the paper is to
catalog some ring constructions which both preserve and (have the potential to) destroy countable
coverability.

Proposition 5. Let R be a ring.

(1) If R is countably coverable and S is any ring, then R× S is also countably coverable.
(2) If R does not have an identity, yet R is countably coverable, then the ring R1 obtained by

adjoining an identity to R is also countably coverable.
(3) If R is a commutative ring with identity and n > 1 is an integer, then the full matrix ring

Mn(R) is countably coverable.

Proof. Let R be a ring.
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(1) Suppose that R is countably covered by C and let S be any ring. Then it is immediate that
{T × S : T ∈ C} is a countable cover of R× S.

(2) Assume that R does not have an identity but is covered by a countable collection C of proper
subrings. Note that R is naturally a module over Z/nZ, where n is the characteristic of R (note that
n = 0 is possible). Set S := Z/nZ, and consider the so-called Dorroh extension R1 given by S(+)R.
We remind the reader that the ground set of R1 is S×R, with addition and multiplication defined
by (s1, r1)+(s2, r2) := (s1 +s2, r1 +r2) and (s1, r1) ·(s2, r2) := (s1s2, r1s2 +s1r2 +r1r2). Note that R
embeds into R1 via the map r 7→ (0, r) and that we have (1, 0) · (s, r) = (s, 0 ·s+1 · r+0 · r) = (s, r)
for any (s, r) ∈ R1. One checks at once that C ′ := {S × T : T ∈ C} is a countable cover of R1 by
proper subrings.

(3) Now assume that R is a commutative unital ring and let n > 1 be an integer. Further, let
J be a maximal ideal of R. Note that by the fundamental theorem of ring homomorphisms, we
have Mn(R)/Mn(J) ∼= Mn(R/J). It now suffices by Lemma 1 to show that Mn(R/J) is countably
coverable. Set F := R/J . If F is finite, then since Mn(F ) is noncommutative, it follows that
Mn(F ) is not singly generated, thus is finitely coverable. Now suppose that F is infinite. Corollary
2(2) implies that F is covered by a countably infinite chain C of proper subrings. From this fact, it
follows that every member of Mn(F ) is a member of Mn(T ) for some T ∈ C. Hence {Mn(T ) : T ∈ C}
is a cover of Mn(F ), concluding the proof. �

Our next proposition presents a negative result.

Proposition 6. Countable coverability is not, in general, preserved by factor rings or localizations.

Proof. Simply take a domain D which is not singly generated but which has a finite residue field.
Recalling that every finite field has a cyclic multiplicative group (hence is singly generated as a ring),
this shows that factor rings do not in general preserve countable coverability. As for localizations,
simply consider a finite, reduced commutative ring R with identity which is not singly generated
(such as F2 × F2). Then R is finitely coverable. Next, let P be a minimal prime ideal of R. Then
as is well-known, the localization RP is a field (see [1] for details) and is also finite, hence is not
countably coverable. �

We conclude the paper with a positive result, and close with two open questions. First, a lemma.

Lemma 5. Let D be a unital integral domain, and suppose that S is a nontrivial subsemigroup of
Z. Then the semigroup ring D[S] is countably coverable.

Proof. Let D and S be as stated. Suppose first that S is a group. Then S ∼= Z, so we show first
that D[Z] ∼= D[X,X−1] is countably coverable. By Theorem 1, it suffices to prove that D[X,X−1]
is not singly generated. For suppose that f is a generator. Then m1f + m2f

2 + · · · + mkf
k = 1

for some integers m1, . . . ,mk and positive integer k. But then f is a unit, and so f = Xb for some
integer b. However, it is clear that Xb cannot generate D[X,X−1] as a ring (the only powers of X
in the ring generated by Xb are the powers Xnb where n is a positive integer), and so this concludes
the first part of the proof.
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Now suppose that S is not a group. Then as is well-known, either S ⊆ ω or S ⊆ −ω. Via the
isomorphism s 7→ −s, we may assume without loss of generality that S ⊆ ω, and hence D[S] is a
subdomain of D[X]. As above, suppose that f is a generator of D[S]. Then f is a unit of D[S],
hence of D[X], and it follows that f is a unit of D. But this implies that D[S] = D, contradicting
that S is nontrivial. �

Proposition 7. Let R be a commutative ring with identity.

(1) The power series ring R[[X]] is countably coverable.
(2) If S is an infinite commutative, cancellative semigroup, then the group ring R[S] is countably

coverable (and thus, the polynomial ring R[X] is countably coverable).

Proof. Let R be a commutative ring with identity.

(1) Let M be a maximal ideal of R, and note that R[[X]]/M [[X]] ∼= (R/M)[[X]]. By Lemma 1,
it suffices to prove that (R/M)[[X]] is countably coverable. Toward this end, simply observe that
(R/M)[[X]] is an uncountable domain, thus is not singly generated as a ring. Now apply Theorem
1.

(2) Now let S be an infinite commutative, cancellative semigroup, and consider the group ring
R[S]. Suppose first that S is not finitely generated. Then by Corollary 1(2), there exists a countable
cover C of S which is a chain. It follows that {R[T ] : T ∈ C} is a countable cover of R[S].3 Next, let
us assume that S (denoted additively) is finitely generated, and let Q(S) be the group of differences
of S. Then Q(S) is also finitely generated; because Q(S) is infinite, the fundamental theorem of
finitely generated abelian groups yields that Q(S) ∼= A⊕H for some nontrivial free abelian group
A and finite abelian group H. Let π : A⊕H → Z be a surjective projection. Now let P be a prime
ideal of R, and observe that we obtain surjective homomorphisms R[S]→ (R/P )[S]→ (R/P )[T ],
where T is the image of S (viewed canonically as a subsemigroup of Q(S)) under π. To conclude
the proof, apply Lemma 1 and Lemma 5. �

Remark 5. Observe that if S is finite, R[S] need not be countably coverable. Indeed, let F be a
finite field and let G be a finite cyclic group whose cardinality is relatively prime to |F | − 1. It is
easy to see that F [G] is singly generated, and thus not countably coverable. Moreover, Example 3
shows that we cannot drop the assumption that S is commutative entirely.

3.3. Open questions. We close with the following two open questions.

Question 1. Is every non-singly generated commutative ring with identity countably coverable?

More generally,

Question 2. Can the countably coverable rings be classified?

Acknowledgment The authors thank the referee for a timely review and for comments which
improved the exposition of this paper.

3In this case, R need not be commutative nor be unital.
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