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Abstract. An Egyptian fraction is a finite sum of distinct rational numbers of the form 1
m , where

m is a nonzero integer. It is well-known that every rational number can be expressed as an Egyptian
fraction. The purpose of this note is to explore natural analogs of this concept for commutative
integral domains.

1. Introduction

1.1. History. Suppose that 8 friends are hungry and decide to buy 5 pizzas to be split equally
among themselves. How might one divide them up? There are 8 people total, so one way to do this
is to cut each pizza into 8 equal slices, and then give each person 5 slices. But is there a simpler
way to accomplish this? Yes, there is. Notice that 5

8
= 1

2
+ 1

8
. Thus one can, equivalently, give each

person 1
2

of a pizza and 1
8

of a pizza. Note that the latter solution enables one to make fewer cuts.1

Problems such as the one presented above date back to antiquity. Indeed, the ancient Egyptians
did not express rational numbers the way we do today; they had no notation for 5

8
. They only

had notation for so-called unit fractions, that is, rational numbers with numerator 1. As the first
paragraph demonstrates, there are contexts in which expressing a rational number as a sum of units
fractions enables one to find more elegant solutions to certain problems.

Now, it is clear that every rational number may be expressed as a sum of unit fractions; for
example, 3

5
= 1

5
+ 1

5
+ 1

5
. But also, observe that 3

5
= 1

2
+ 1

10
. The convention adopted by the

Egyptians (circa 3000 B.C.) was to always represent a rational number as the sum of distinct unit
fractions; such a representation is called an Egyptian fraction. This raises the following natural
question: can every rational number be expressed as an Egyptian fraction? It turns out that the
answer is yes. This was shown by Fibonacci in his 1202 book Liber Abaci (though it may have been
proven well before this); see [5] for an English translation of his work. For elementary applications
and some different proofs of this result, we refer the reader to [11], [13], and [14].

1.2. Motivation. Egyptian fractions have proven to be more important to pure mathematics than
one may guess from our pizza-cutting example above. For instance, the question of whether any
positive real number is the groupoid cardinality of some groupoid reduces to the question of whether
any positive rational number has an Egyptian fraction decomposition ([1]). Moreover, several
questions and conjectures concerning Egyptian fractions have been solved in modern times (see [4]
and [8]), and yet others persist. Possibly the best-known open problem in the area is the so-called
Erdós-Straus conjecture, which asserts that for every integer n ≥ 2, there exist distinct positive
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1This example is due to Ron Knott.
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integers x, y, and z for which 4
n

= 1
x

+ 1
y

+ 1
z
. For further background on this and other problems

in number theory, we refer the reader to [7].
The purpose of this paper is to translate the notion of “Egyptian fraction” to the more general

setting of abstract algebra, specifically, to integral domains. We define an integral domain D to
be an Egyptian domain provided that every nonzero d ∈ D, we have d = 1

d1
+ · · · + 1

dk
for some

nonzero, distinct d1, . . . , dk ∈ D, where each 1
di

is a member of the quotient field of D (we will

develop this definition in the next section). Our motivation is to introduce this definition, prove
some fundamental results, and entice others to continue our investigations.

2. Main Results

2.1. Egyptian fractions in the rational numbers. Our first task is to establish the well-known
result that every rational number can be represented by an Egyptian fraction, that is, as a sum
of unit fractions with distinct denominators. Our proof is based on a greedy algorithm used by
Fibonacci.

Theorem 1 (Fibonacci). Every rational number can be represented by an Egyptian fraction. More-
over, for every positive rational number r and positive integer n, one can represent r as an Egyptian
fraction all of whose denominators are greater than n.

Proof. Note first that 0 can be so represented as follows: 0 = 1
1

+ 1
−1 . If one desires denominators

with distinct magnitudes, observe that 0 = 1
2
− 1

3
− 1

6
.

Next, if we can show that every positive rational number has an Egyptian representation, then by
taking negatives, we immediately get that every negative rational number has such a representation
as well. So it remains to show that every positive rational number has an Egyptian representation
(as we will see, we may choose the representation to consist of positive rational numbers).

We first establish that

(2.1) every positive rational number less than one has an Egyptian fraction representation.

Indeed, consider a rational number r := p
q

with 0 < p < q. If p = 1, then r is a unit fraction and

we are done. So assume that p > 1. Next, choose the least positive integer n such that

(2.2)
1

n
<
p

q
,

and observe that n > 1. By minimality of n, we deduce that 1
n−1 ≥

p
q
. If 1

n−1 = p
q
, then we are

done, and so we may assume that

(2.3)
1

n− 1
>
p

q
.

Now, from (2.2), we see that
2
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(2.4)
p

q
− 1

n
=
np− q
qn

> 0,

from which it follows that np−q > 0. On the other hand, (2.3) yields that q > p(n−1), from which
it follows that np−q < p. So we have shown that 0 < np−q < p. If np−q = 1, then from (2.4), we
have p

q
= 1

n
+ 1

qn
. Recall that 0 < p < q, and so q > 1. We deduce that n < qn; this expresses p

q
as an

Egyptian fraction. So suppose that 1 < np− q < p. Then we have 0 < np− q < p < q < qn (recall
that n > 1). We now repeat the process above for the fraction np−q

qn
, which has numerator strictly

less than p. Continuing this process recursively, the process must terminate in a unit fraction. One
shows easily by induction that whenever the process terminates, this algorithm represents p

q
as a

sum of distinct (positive) unit fractions.
We now complete the proof. Consider a positive rational number r and let n be a positive integer

such that 1
n
< r. Next, choose the largest positive integer k such that

(2.5)
1

n+ 1
+ · · ·+ 1

n+ k
≤ r.

If equality holds, then we have a representation of r as an Egyptian fraction. So let us assume that
1

n+1
+· · ·+ 1

n+k
< r. Invoking the maximality of k, there is a rational number s, 0 < s < 1, for which

1
n+1

+ · · ·+ 1
n+k

+ s = r. From what we proved above, s has an Egyptian fraction decomposition as
a sum of distinct positive unit fractions. It is clear by maximality of k that each denominator in
the Egyptian representation of s has denominator larger than n + j for 1 ≤ j ≤ k, and the proof
is complete. �

2.2. Generalizing to rings: definitions and examples. Now that we have established that
every rational number has an Egyptian fraction decomposition, we work toward generalizing. To-
ward this end, we make the following elementary observation: suppose we have shown that every
integer has a representation as an Egyptian fraction. Then every rational number can also be so
represented: consider a rational number of the form p

q
. Begin by expressing p as an Egyptian

fraction, and then simply multiply the representation by 1
q
. Upon distributing, we get an Egyptian

representation for p
q
. This motivates us to make the following definition.

Definition 1. Let D be an (unital) integral domain. Call D an Egyptian domain provided that
for every nonzero2 d ∈ D, there exist distinct nonzero d1, . . . dn ∈ D such that d = 1

d1
+ · · · + 1

dn
,

where the unit fractions belong to the quotient field of D.

It follows from our work above that the ring Z of integers is an Egyptian domain. We now present
several additional examples.

Example 1. Every field is an Egyptian domain.

2We will explain shortly why we exclude zero.
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Proof. Let F be a field, and let α ∈ F\{0}. Then simply note that α = 1
α−1 , from which it follows

that F is Egyptian. �

Remark 1. In light of the above example, we pause to explain why we require only the nonzero
elements of a domain to have an Egyptian representation. If we require 0 to be so represented,
then observe that 0 ∈ F2 (the field with two elements) has no Egyptian representation.

Example 2. The ring Z[
√

2] is Egyptian.

Proof. Consider an arbitrary a + b
√

2 ∈ Z[
√

2] with a and b integers which are not both zero.

Now rationalize the numerator to obtain a + b
√

2 = a2−2b2
a−b
√
2
. We may express the numerator as

an Egyptian fraction by Theorem 1. Now simply multiply the expression by 1
a−b
√
2

to obtain an

Egyptian form for a+ b
√

2. �

Observe that the examples above are all Jacobson semisimple (that is, the Jacobson radical is
trivial). It turns out that every domain with nonzero Jacobson radical is Egyptian, as we now
prove.

Example 3. Let D be a domain. If the Jacobson radical of D is nonzero, then D is Egyptian.
In this case, every nonzero d ∈ D may be expressed as a sum of no more than three distinct unit
fractions.

Proof. Let D be a domain with nonzero Jacobson radical J(D), and let d ∈ D\{0} be arbitrary.
Now choose a nonzero j ∈ J(D). Observe that dj − 1 := u is a unit of D. Solving for d, we get
d = u

j
+ 1

j
= 1

u−1j
+ 1

j
. If u−1j and j are distinct, then we are done. So suppose u−1j = j. Then

u = 1. But now d = 1
j

+ 1
j

= 1
j

+ 1
j+1

+ 1
j(j+1)

. Recall that j ∈ J(D) was chosen to be nonzero.

Moreover, j + 1 6= 0, lest −1 ∈ J(D), which is absurd since J(D) is a proper ideal of D. It follows
that the denominators above are nonzero, and it is easy to check that they are distinct, concluding
the proof. �

Corollary 1. Every semilocal domain is Egyptian.

Proof. Let D be a semilocal domain. If D is a field, we invoke Example 1. Now assume that D
is not a field, and let M1, . . . ,Mn be the maximal ideals of D. Because D is not a field, no Mi is
trivial. Choose a nonzero mi ∈Mi for each i. Then m1 · · ·mn ∈ J(D)\{0}. �

We conclude this subsection with the following example.

Example 4. Let D be a domain, and let S be the set of all nonzero elements of D which cannot
be expressed as an Egyptian fraction. For each s ∈ S, introduce an indeterminate Xs. Now
let D∗ := D[Xs,

1
Xs
, 1
Xs−s : s ∈ S]. For any s ∈ S, observe that 1

1
Xs

− 1
1

Xs−s

= s. Thus every

member of D has an Egyptian representation in D∗, though D∗ may have elements with no Egyptian
representation. So continue recursively, that is, set D0 := D and for every non-negative integer
n, let Dn+1 := (Dn)∗. Now let D∞ :=

⋃
n∈NDn. Then D∞ is an Egyptian domain containing D.

Moreover, D∞ ∩K = D, where K is the quotient field of D.
4
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2.3. Behavior relative to ring constructions. The purpose of this subsection is to study ring
constructions and determine which preserve the Egyptian property. We begin with a negative
result.

Proposition 1. Let D be a domain. The polynomial ring D[X] is not Egyptian.

Proof. Suppose by way of contradiction that there is a domain D such that D[X] is Egyptian. It fol-
lows that X = 1

f1(X)
+· · ·+ 1

fn(X)
for some nonzero f1(X), . . . , fn(X) ∈ D[X]. Now multiply through

by f1(X) · · · fn(X) to obtain Xf1(X) · · · fn(X) as the sum of monomials, each of degree at most
deg(f1(X) · · · fn(X)). But then the degree of Xf1(X) · · · fn(X) is at most deg(f1(X) · · · fn(X)),
which is absurd. �

Taking D to be a field in the previous proposition, we see that there exist examples of Noetherian
non-Egyptian domains. Indeed, there exist Euclidean domains which are not Egyptian. We can now
show that the Egyptian property is not inherited by subrings: take any domain D and consider the
field D(X) of rational functions in X with coefficients in D. Then D(X) is Egyptian by Example
1, but the subring D[X] is not.

We now show that power series rings are much better behaved.

Proposition 2. If D is a domain, then the power series ring D[[X]] is Egyptian.

Proof. Let D be a domain. It is well-known that f(X) ∈ D[[X]] is a unit if and only if the constant
term of f(X) is a unit in D.3 This implies that for any f(X) ∈ D[[X]], Xf(X) − 1 is a unit of
D[[X]]. Thus X ∈ J(D[[X]]), showing that D[[X]] is not Jacobson semisimple. Thus by Example
3, D[[X]] is Egyptian. �

The previous propositions enable us to show that the Egyptain property is not preserved by homo-
morphic images.

Corollary 2. Let D be a non-Egyptian domain. Then D[[X]] is Egptian, but D[[X]]/〈X〉 ∼= D is
not.

Next, we recalll that if R is a ring and G is a group, then the group ring R[G] consists of all
finitely nonzero formal sums Σrg for r ∈ R, g ∈ G with addition and multiplication defined anal-
ogously to polynomial rings (monomial multiplication is defined by (r1g1) · (r2g2) := (r1r2)(g1g2)).
It is known that if R is a unital (possibly noncommutative) ring and G is a group, then the group
ring R[G] is prime if and only if R is a prime ring and G has no finite, nontrivial normal subgroups
(see [3]). In case R and G are commutative, this translates to R[G] being an integral domain if and
only if R is a domain and G is torsion-free. In this setting as well, the Egyptian property easily
transfers.

Proposition 3. Let D be an Egyptian domain and G be a torsion-free abelian group. Then D[G]
is Egyptian.

3For this result and for further reading on power series rings, see [7].
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Proof. Suppose D is an Egyptian domain and G is a torsion-free abelian group. Consider a nonzero
element of D[G], say d1g1+ · · · dngn, where the di are nonzero and the gi are distinct. For 1 ≤ i ≤ n,
express di as an Egyptian fraction in D and then multiply by 1

g−1
i

. The resulting sum yields an

Egyptian representation of d1g1 + · · ·+ dngn. �

The Egyptian condition also passes to overrings, which is similarly easy to prove.

Proposition 4. Suppose that D is an Egyptian domain with quotient field K. If D′ is a domain
such that D ⊆ D′ ⊆ K, then D′ is also Egyptian.

Proof. Let D, D′, and K be as stated. Now let a
b
∈ D′, where a and b are nonzero elements of D.

Since D is Egyptian, we may express a as the sum of distinct unit fractions with denominators in
D. Now simply multiply both sides of this equation by 1

b
and distribute. �

Remark 2. If D is a domain, recall that the ring of integer-valued polynomials, Int(D), is
defined by Int(D) := {f(X) ∈ K[X] : f(D) ⊆ D}, where K is the quotient field of D. If Int(D)
were Egyptian, then by Proposition 4, every overring of Int(D) would be Egyptian. It is immediate
that D[X] ⊆ Int(D), and thus K[X] is an overring of Int(D). But by Proposition 1, K[X] is not
Egyptian, and this contradicts Proposition 4. Thus Int(D) is never Egyptian.

We will shortly present a partially negative result, but we first show that the Egyptian property
is preserved under algebraic extensions.

Proposition 5. Let D ⊆ T be domains, with T is algebraic over D. If D is Egyptian, so is T .
The converse fails.

Proof. Suppose that D ⊆ T is an algebraic extension of domains with D Egyptian, and suppose
x ∈ T\{0}. We will prove that x has an Egyptian representation. Since x is algebraic over D, there
is a nonzero d ∈ D for which t := dx is integral over D. Thus

(2.6) tn + dn−1t
n−1 + · · ·+ d1t+ d0 = 0

for some d0, . . . , dn−1 ∈ D and with n minimal. Now solve (2.6) for d0 to obtain

(2.7) d0 = −d1t− · · · − tn.
Note that by minimality of n, we have

(2.8) d0 6= 0.

Now divide by sides by t (recall above that t 6= 0) to get

(2.9)
d0
t

= −d1 − d2t− · · · − tn−1 := t0 ∈ T.

Observe that t0 6= 0, lest d0 = 0, contradicting (2.8) above. So now we have d0
t

= t0. Solving for t

gives t = d0
t0

= 1
t0
d0. Express d0 as a sum of distinct unit fractions, and then multiply both sides

6
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by 1
t0

to obtain an Egyptian expression for t. Recall above that t = dx. So simply divide through
by d to obtain an Egyptian expression for x.

To see that the converse fails, let D be any non-Egyptian domain with quotient field K. By
Example 1, K is Egyptian. Moreover, K is clearly algebraic over D. But D is not Egyptian. �

Remark 3. It follows from Theorem 1 and Proposition 5 that every ring of algebraic integers is
Egyptian.

Our next goal is to study the Egyptian property relative to ultraproducts. The reader not familiar
with this construction is encouraged to consult [2] and [10]. However, we shall make what follows
mostly self-contained (though somewhat terse).

Definition 2. Let S be a nonempty set. An ultrafilter on S is a collection U of subsets of S
which satisfies the following conditions:

(A1) ∅ /∈ U ,
(A2) U is closed under supersets,
(A3) U is closed under finite intersections, and
(A4) For any subset X of S, either X ∈ U or S\X ∈ U .

We encourage the reader to verify that the following is an example of an ultrafilter.

Example 5. Let S be a nonempty set and let s ∈ S. Now let U := {X ⊆ S : s ∈ X}. Then U is
an ultrafilter on S, called a principal ultrafilter.

Using the axiom of choice, one can show that for every infinite set S, there exists a non-principal
ultrafilter on S. We will shortly take advantage of this fact. First, we give the definition of an
ultraproduct of a collection of commutative rings.

Definition 3. Let {Ri : i ∈ I} be a nonempty collection of rings enumerated by the index set I.
Further, suppose that U is an ultrafilter on I. We now define the following relation on the direct
product Πi∈IRi as follows: (ri) ∼ (si) if and only if {i ∈ I : ri = si} ∈ U . It is not hard to verify
that ∼ is an equivalence relation compatible with the ring operations. The ring

∏
i∈I Ri/ ∼ is called

the ultraproduct of the rings Ri. If Ri = R for all i ∈ I, then the ultraproduct is often called an
ultrapower of R. Let us denote the ultraproduct of the Ri (with respect to U) by (Πi∈IRi)U and
an element of the ultraproduct by (ri)U (to distinguish between the ultraproduct and the direct
product).

We will shortly prove that, unlike the direct product, an ultraproduct of integral domains remains
an integral domain. To do this, we shall make use of the following (well-known) lemma.

Lemma 1. Let S be a nonempty set, and suppose that U is an ultrafilter on S. Then the following
hold.

(1) For all n ∈ Z+: if A1, . . . , An are subsets of S such that A1 ∪ · · · ∪An ∈ U , then Ai ∈ U for
some i.

(2) U is principal if and only if U contains some finite set.
7
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Proof. Suppose that S and U are as stated.

(1) By induction, it clearly suffice to prove that if A and B are subsets of S such that A∪B ∈ U ,
then either A ∈ U or B ∈ U . Suppose by way of contradiction that there are subsets A and B of
S such that A ∪ B ∈ U , yet A /∈ U and B /∈ U . By (A4), Ac and Bc are members of U , and so by
(A3), Ac ∩ Bc = (A ∪ B)c ∈ U . Invoking (A3) again, (A ∪ B) ∩ (A ∪ B)c = ∅ ∈ U , contradicting
(A1).

(2) Thie forward implication is clear. As for the reverse implication, suppose that U contains a
finite set. By (A1), this finite set is nonempty. Applying (1), {s} ∈ U for some s ∈ S. By (A2), U
contains all subsets of S which contain s. Suppose by way of contradiction that there exists A ∈ U
which does not contain s. Applying (A3), A ∩ {s} = ∅ ∈ U , contradicting (A1). �

We can now show that an ultraproduct of integral domains remains a domain (this is well-known,
of course).

Lemma 2. An ultraproduct of a collection of integral domains is an integral domain.

Proof. Let {Di : i ∈ I} be a nonempty collection of integral domains, and let U be an ultrafilter
on I. Let (ai)U , (bi)U ∈ (

∏
i∈I Di)U , and suppose that (ai)U(bi)U = (0)U . Then (by definition)

(aibi)U = (0)U , and it follows that C := {i ∈ I : aibi = 0} ∈ U . Let A := {i ∈ I : ai = 0} and
B := {i ∈ I : bi = 0}, and note that A∪B = C. By Lemma 1(1), either A ∈ U or B ∈ U , implying
that either (ai)U = (0)U or (bi)U = (0)U . This completes the argument. �

Next, we prove that the Egyptian property does not pass to ultraproducts in general.

Proposition 6. Consider the direct product Πn∈Z+Z of ω copies of the ring Z of integers, and let
U be a non-principal ultrafilter on Z+. Then the ultrapower (Πn∈Z+Z)U is not Egyptian.

Proof. Let D := (Πn∈Z+Z)U , where U is a non-principal ultrafilter on the set of positive integers.
Now consider the element (1, 2, 3, . . .)U := (n)U of D. Since ∅ /∈ U , it follows that (n)U is a nonzero
element of D. We claim that (n)U is not a finite sum of unit fractions (distinct or not). For suppose
by way of contradiction that

(2.10) (n)U =
1

(x1,n)U
+ · · ·+ 1

(xk,n)U

for some nonzero (xi.n)U ∈ D, 1 ≤ i ≤ k. Clearing the fractions, we obtain

(2.11) (nx1,nx2,n · · ·xk,n)U =

( ∑
1≤i≤k

(x1,nx2,n · · ·��xi,n · · ·xk,n)

)
U
.

Our next claim is that

(2.12) for all n > k, xi,n = 0 for some i, 1 ≤ i ≤ k.

Indeed, suppose that n > k and that xi,n 6= 0 for all i, 1 ≤ i ≤ k. Now observe that we have
8
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∣∣∣∣ ∑
1≤i≤k

x1,nx2,n · · ·��xi,n · · ·xk,n
∣∣∣∣ ≤ ∑

1≤i≤k

|x1,nx2,n · · ·��xi,n · · ·xk,n|

≤
∑
1≤i≤k

|x1,nx2,n · · ·xk,n|

= |kx1,nx2,n · · ·xk,n|
< |nx1,nx2,n . . . xk.n|,

(2.13)

from which it follows that nx1,nx2,n . . . xk.n 6=
∑

1≤i≤k x1,nx2,n · · ·��xi,n · · ·xk,n. Said another way, we
see that

(2.14) if nx1,nx2,n . . . xk.n =
∑
1≤i≤k

x1,nx2,n · · ·��xi,n · · ·xk,n, then n ≤ k.

But then A := {n ∈ Z+ : nx1,nx2,n . . . xk.n =
∑

1≤i≤k x1,nx2,n · · ·��xi,n · · · xk,n} is a finite set which, by
(2.11), is a member of U . By Lemma 1(2), U is principal, a contradiction; this establishes (2.12).
Now let A := N\{1, . . . , k}. Invoking Lemma 1(2), (A4), and the fact that U is nonprincipal, it
follows that A ∈ U . Set B := {n ∈ Z+ : xi,n = 0 for some i, 1 ≤ i ≤ k}. It is clear from (2.12) that
A ⊆ B, and so by (A2), B ∈ U . For 1 ≤ i ≤ k, set Bi := {n ∈ Z+ : xi,n = 0}. Then note that
B = B1 ∪ · · · ∪ Bk. Lemma 1(1) shows that Bi ∈ U for some i. But then (xi.n)U = (0)U , and this
is a contradiction. �

Some comments are now in order. A famous theorem of  Los in model theory asserts that in the
language of commutative rings with identity, a (first-order) sentence ϕ is true in an ultraproduct
(Πi∈IRi)U if and only if the set {i ∈ I : ϕ is true in Ri} is a member of U (this holds more
generally for models in an arbitrary first-order language, but we won’t need this more general fact;
for details, see [2]). Combined with Proposition 6 above, this shows that we cannot express the
Egyptian property in the language of unital rings. More precisely, we have

Corollary 3. Let L be the language of unital rings. There is no set Σ of L-sentences such that for
all L-structures M, M is an (unital, commutative) Egyptian domain if and only M is a model of
all sentences in Σ.

Proof. Suppose such a collection Σ of sentences exists in the language of unital rings. Then the
ring Z of integers is a model of Σ. By  Los’ theorem, so is (

∏
n∈Z+ Z)U , where U is a non-principal

ultrafilter on Z+. But then (
∏

n∈Z+ Z)U is also Egyptian, which contradicts Proposition 6. �

Despite the negative results above, we can salvage a result in the positive direction. Indeed,
consider an ultraproduct (

∏
i∈I Di)U of Egyptian domains. Assume further that there is a uniform

finite bound on the number of distinct unit fractions needed to express the nonzero elements of Di

as a sum of such terms (as i ranges over I). This can be expressed as a first order sentence in the
language of rings. For concreteness, we will show how to do this when the bound is 2 as follows:

9
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“For all nonzero x, there exists a nonzero y such that xy = 1 or there exist distinct nonzero y and
z such that xyz = y + z.” It follows that the ultraproduct remains Egyptian in this case.

2.4. Some general results. We now present some general results and indicate further avenues
of exploration. Note first that every domain D is an intersection of Egyptian overrings: simply
observe that (as is well-known) D =

⋂
J∈Max(D)DJ ; since each DJ is local, we can apply Corollary

1 to conclude that each DJ is Egyptian. On the other hand, the collection of Egyptian overrings
of D need not be closed under arbitrary intersections: consider the polynomial ring F [X], where
F is a field. Then F [X] is a UFD, thus is integrally closed. It follows that F [X] is the intersection
of its valuation overrings. Being local, each such overring is Egyptian. But by Proposition 1, F [X]
is not Egyptian.

A natural question which we address now is whether there are examples of domains for which
every nonzero element can be represented as a sum of unit fractions, but for which some elements
cannot be so expressed as sums of distinct unit fractions. We show that, in fact, the distinctness
requirement is a superfluous assumption.

Theorem 2. Let D be an integral domain. If a nonzero d ∈ D can be expressed as a sum of
unit fractions (in the quotient field of D), then d can be so expressed with all denominators in the
expression distinct.

Proof. Let D be a domain. We consider the cases where D has positive characteristic and charac-
teristic zero separately.

Case 1. D has characteristic p for some prime p. We proceed by induction. Let n be a positive
integer and suppose that every nonzero sum of fewer than n unit fractions can be expressed as
the sum of (possibly a different number of) distinct unit fractions, and consider a nonzero sum
1
d1

+ · · ·+ 1
dn

, where each di ∈ D is nonzero. If all di are distinct, we are done. So suppose without

loss of generality that n > 1 and 1
d1

= 1
d2

. Assume first that p = 2. Since the sum 1
d1

+ · · · + 1
dn

is

nonzero, we must have n > 2. Noting that 1
d1

+ 1
d2

= 0, we can eliminate the first two terms of the
sum and then invoke the inductive hypothesis. Suppose now that p > 2. Then 2D := 1D + 1D is
invertible in D. Thus 1

d1
+ 1

d2
= 2D

d1
= 1

1
2D

d1
. Now apply the inductive hypothesis.

Case 2. D has characteristic 0. An arbitrary nonzero sum of unit fractions can be expressed in
the form n1

d1
+ · · ·+ nr

dr
for some positive integers ni (which we naturally identify in D: since D has

characteristic 0, the prime subring of D is isomorphic to Z) and distinct di. Express n1 as a sum of
distinct positive unit fractions in Q. Now multiply through by 1

d1
to obtain an Egyptian expression

S1 for n1

d1
. If n = 1, we are clearly done. So suppose n > 1. Because D has characteristic 0, there

are but finitely many positive integers k for which kd2 is equal to a denominator of a summand
in S1. Theorem 1 implies that we can express n2 as a sum of distinct unit fractions such that for
all denominators k of this sum, kd2 is distinct from all denominators appearing in the sum S1.
By multiplying by 1

d2
, we obtain an Egyptian expression S2 for n2

d2
for which the denominators are

distinct from the denominators appearing in the sum S1. Now continue this process to obtain an
Egyptian expression for n1

d1
+ · · ·+ nr

dr
. �
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We obtain the following corollaries. We leave the easy proof of the first to the reader.

Corollary 4. Let D1 be an Egyptian domain, and suppose that D2 is a unital domain extension of
D1 which is generated as a D1-algebra by units. Then D2 is Egyptian.

As an application, consider now a commutative ring D without zero divisors and without an
identity. One may still form the field K of quotients of D and embed D into K via d 7→ xd

x
, where

x is a fixed nonzero element of D (we identify D with its image in K). Thus one may define the
Egyptian property for D without the need for a multiplicative identity. However, we can reduce to
the unital case without loss of generality, as our next corollary shows.

Corollary 5. Let D be a commutative ring without zero divisors, and let D1 be the unital domain
obtained by adjoining an identity to D. Then D is Egyptian if and only if D1 is Egyptian.

Proof. Let D be as stated, and let K be the quotient field of D. Now set D1 := D[1K ], and observe
that every member of D1 can be expressed in the form m ·1K +d for some m ∈ Z and d ∈ D. Now,
let us assume first that D is Egyptian. As D is a domain, we see that Z1K ∼= Fp for some prime
p or Z1K ∼= Z. Either way, we may express m · 1k as a sum of unit fractions (with denominators
in D[1K ]) for any nonzero integer m. Since D is Egyptian, we can do the same for any nonzero
d ∈ D. Thus every nonzero m · 1K + d ∈ D[1K ] can be expressed as a sum of unit fractions, and so
D[1K ] is Egyptian by Theorem 2. Conversely, suppose that D[1K ] is Egyptian, and let d ∈ D be
nonzero. Since D[1K ] is Egyptian, we have d2 = 1

d1
+ · · · + 1

dk
, where each di ∈ D[1K ]. But then

d = 1
dd1

+ · · ·+ 1
ddk

with ddi ∈ D, and we see that D is Egyptian. �

Recall that Proposition 1 implies that F [X] is not Egyptian for any field F . However, we do
have the following result.

Proposition 7. Let F be a field. Every proper overring of F [X] is Egyptian.

Proof. Let F be a field, and consider a proper overring D of F [X]. Since F [X] is a PID, D is a
quotient ring of F [X]. Specifically, let S := {f(X) ∈ F [X] : 1

f(X)
∈ D}. Then D = F [X]S (see [7]

for further reading on rings with the QR property, that is, every overring is a quotient ring). By
Theorem 2, it suffices to show that every member of D can be expressed as a sum of unit fractions
with denominators in D. Clearly, it suffices to show this for a subset of D which generates D as
a ring. Thus it suffices to show that 1

f(X)
, a, and X can be so expressed for any f(X) ∈ S and

a ∈ F×. Toward this end, let f(X) ∈ S. Then note that since D is an overring of F [X], 1
f(X)

is a

unit fraction with denominator in D. If a ∈ F×, then a = 1
a−1 , and as above, a−1 ∈ D. Now, since

D is a proper overring of F [X], it follows that S contains some g(X) ∈ F [X] of positive degree; say
g(X) = a0 +akX

k+ · · ·+anX
n, where ai ∈ F and ak, an 6= 0 (note that k = n is possible). Observe

that g(X) = 1
1

g(X)

and 1
g(X)
∈ D. It is clear that g(X)−a0 = akX

k + · · ·+anX
n is a sum of at most

two unit fractions with denominators inD; call this sum S. But thenX(akX
k−1+· · ·+anXn−1) = S.

Multiply both sides of the equation by 1
akXk−1+···+anXn−1 to obtain X as a sum of unit fractions with

denominators in D, concluding the proof. �
11



From ancient Egyptian fractions to modern algebra Guerrieri, Loper, & Oman

Remark 4. The previous example shows that an intersection of a chain of Egyptian overrings
need not be Egyptian. Indeed, let F be a field, and for every positive integer n, let Sn be the
multiplicative subset of F [X] generated by X2n . Then the collection C := {F [X]Sn : n ∈ Z+} is a
chain of proper overrings of F [X]; each member is Egyptian by Proposition 7. But the intersection
is F [X], which is not Egyptian.

Next, we make an element-wise definition of the Egyptain property, and then define several
Egyptian-like subrings of an integral domain.

Definition 4. Let D be a domain. Call a nonzero d ∈ D an Egyptian element of D provided d
can be expressed as a sum of unit fractions in the quotient field of D (hence by Theorem 2, every
such element has a representation as the sum of distinct unit fractions).

Proposition 8. Let D be a domain. Then the following hold (all subrings are unital):

(1) Let E1(D) be the subring of D generated by the units of D. Then E1(D) is an Egyptian
subring of D.

(2) D possesses a unique maximal Egyptian subring E2(D) (which may coincide with D).
(3) Let E3(D) be the set of Egyptian elements of D along with 0. Then E3(D) is a subring of

D.
(4) Let S be the set of non-zero, non-Egyptian elements of D. Then S is multiplicatively closed;

moreover, DS is an Egyptian overring of D. Set E4(D) := DS.
(5) E1(D) ⊆ E2(D) ⊆ E3(D) ⊆ E4(D).

Proof. Let D be a domain.

(1) Observe that E1(D) = {u1 + · · ·+ un : ui ∈ D×, i ∈ Z+}. Moreover, for any u1, . . . , un ∈ D×,
we have d := u1 + · · ·+ un = 1

u−1
1

+ · · ·+ 1
u−1
n

, showing that E1(D) is Egyptian.

(2) Note first that the prime subring P (D) of D is either a finite field or is isomorphic to Z, and
is thus Egyptian. Via Zorn’s lemma, extend to a maximal Egyptian subring D∗ of D. Now suppose
that D1 and D2 are maximal (unital) Egyptian subrings of D. Then it is easy to see that D1D2 is
also an Egyptian subring of D. Moreover, D1D2 contains both D1 and D2 as subrings. Maximality
implies that D1 = D2 = D1D2.

(3) This follows easily from Theorem 2.

(4) Let S be the set of non-zero non-Egyptian elements of D. Note that if x, y ∈ D\{0}
and xy is Egyptian, then by dividing through an Egyptian representation for xy by x and y,
respectively, we see that x and y are Egyptian elements. This shows that S is multiplicatively
closed (possibly empty). Now let d

s
∈ DS be nonzero. Suppose first that d ∈ S. Then d

s
= 1

s
d

gives

an Egyptian representation of d
s
. Now assume that d /∈ S. Then d has an Egyptian representation

with denominators in D. Now multiply through by 1
s
.

(5) Straightforward. �
12
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Some comments are now in order. Let D be a domain. In a sense, the rings Ei(D) defined
above give a rough measure of the ‘Egyption-ness’ of D. On the Egyptian side of the spectrum,
we see that D = E1(D) if and only if every element of D is a sum of units of D if and only if
E1(D) = E2(D) = E3(D) = E4(D). On the other, we may consider D to be strongly non-Egyptian
if D is not a field and E4(D) = K, the quotient field of D. We present examples illustrating that
two of the containments can be proper.

Example 6. The following hold:

(1) Let D := Z[
√
−2]. Then E1(D) = Z and E2(D) = D.

(2) Let F be a field. Then E4(F [X]) = F (X), the field of rational functions in the variable X
over F .

Proof. We establish each claim in succession.

(1) Let D be as stated above. It is immediate from Proposition 5 that D is Egyptian, and hence
E2(D) = D. To show that E1(D) = Z, it suffices to show that ±1 are the only units of D. It is
well-known that D is Euclidean, with norm N given by N(a+ b

√
−2) := a2 + 2b2. Now, a+ b

√
−2

is a unit if and only if N(a+ b
√
−2) = 1 if and only if a2 + 2b2 = 1 if and only if b = 0 and a = ±1.

(2) It follows as in the proof of Proposition 1 that any f(X) ∈ F [X] of positive degree has no

Egyptian representation. Thus for any f(X)
g(X)
∈ F (X), we see that f(X)

g(X)
= Xf(X)

Xg(X)
∈ E4(F [X]). �

We conclude the subsection with an application of Proposition 8. Recall that a domain D is
called a non-D-ring provided there is a non-constant polynomial f(X) ∈ D[X] (called a uv
(unit-valued) polynomial) such that f(d) is a unit of D for all d ∈ D. These domains yield another
class of examples of Egyptian domains; we refer the reader to [9] for further reading on non-D-rings
(the bibliography of [9] references many earlier papers on the topic).

Example 7. Every non-D-ring is Egyptian.

Proof. Let D be a non-D-ring. If D is finite, then D is a field, and we are done by Proposition 1.
Now assume that D is infinite. Let f(X) := a0 + a1X + · · · + anX

n ∈ D[X] be a non-constant
polynomial that assumes only unit values on D. Because D is a domain, the nonzero polynomial
g(X) := a1+a2X+ · · ·+anXn−1 has but finitely many roots in D. Let d ∈ D be such that g(d) 6= 0.
We will show that d is Egyptian. Toward this end, since f(X) is unit-valued, f(0) = a0 is a unit
of D. But also f(d) = a0 + a1d+ · · ·+ and

n := u is a unit of D. Therefore, a1d+ ·+ and
n = u− a0.

Factoring d out, d · g(d) = u − a0. Since g(d) 6= 0, we may divide through by g(d) to obtain
d = u

g(d)
− a0

g(d)
= 1

u−1g(d)
− 1

a−1
0 g(d)

∈ E3(D). We have shown that D\E3(D) is finite; since D

is infinite, so is E3(D). By Theorem 2, it suffices to show that D\E3(D) = ∅. Suppose not.
By Proposition 8, E3(D) is a proper, additive subgroup of (D,+). Choose x ∈ D\E3(D). Then
E3(D)∩(E3(D)+x) = ∅, and hence E3(D)+x is an infinite subset of D\E3(D), a contradiction. �

2.5. Directions for further research. We close the paper with some problems for further re-
search.

Problem 1. Classify the Egyptian subrings of the field of real numbers.
13
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Problem 2. Study domains D for which some of the containments E1(D) ⊆ E2(D) ⊆ E3(D) ⊆
E4(D) are equalities. In particular, can E2(D) 6= E3(D) for some domain D?

Remark 5. Let D be a domain and suppose that for every a ∈ E3(D), there exist b, c ∈ D for
which a = 1

b
+ 1

c
. Then abc = b + c, from which it follows that b|c and c|b. Hence there is u ∈ D×

such that ub = c. From a = 1
b
+ 1

c
, we obtain ab = 1+ b

c
. Thus b = 1

a
+ b
ac

= 1
a
+ b
aub

= 1
a
+ 1
au
∈ E3(D).

Similarly, c ∈ E3(D). Hence E3(D) is Egyptian in this case, and therefore E2(D) = E3(D).

Problem 3. Study the Egyptian property for PIDs, Dedekind domains, Prüfer domains, etc.

Problem 4. Study classes of Egyptian domains D for which there is a finite bound on the number
of terms in an Egyptian sum. More generally, for a given nonzero element d of an arbitrary Egyptian
domain, study the smallest possible representations of d as a sum of distinct unit fractions.

Problem 5. Extend the definition of ‘Egyptian domain’ to rings with zero divisors by considering
sums of distinct unit fractions in the total quotient ring.
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