Proceedings of the Symposium

on

Deep Learning

University of Colorado, Colorado Springs
August 3, 2023

Editors: Jugal K. Kalita, Oluwatosin Oluwadare and
Adham Atyabi, Patrick McGuire

Funded by

National Science Foundation



Preface

It is with great pleasure that we present to you the papers describing the research performed by the
NSF-funded Research Experience for Undergraduates (REU) students, who spent 10 weeks during
the summer of 2023 at the University of Colorado, Colorado Springs. Within a very short period
of time, the students were able to choose cutting-edge projects involving machine learning in the
areas of natural language processing, bioinformatics and computational medicine; write proposals;
design interesting algorithms and approaches; develop code; perform analysis; and write scholarly
papers describing their findings. We hope that the students will continue working on these projects
and submit papers to conferences and journals within the next few months. We also hope that it is
the beginning of a fruitful career in research and innovation for all our participants.

We thank the National Science Foundation for funding our REU site. We also thank the University
of Colorado, Colorado Springs, for providing an intellectually stimulating environment for
research. In particular, we thank Dr. Terrance Boult, who was a helpful and stimulating mentor for
the REU students. We also thank Sharon Huscher for working out all the financial and
administrative details. We thank Dr. Donald Rabern, the Dean of the College of Engineering and
Applied Science, and Dr. Thottam Kalkur, the Chair of the Electrical and Computer Engineering
Department for their support. We also thank our students, in particular, Ali AlShami, Uma Chinta,
H.M.A. Mohit Chowdhury, Steve Cruz, Timothy Flink, Melkamu Mersha, Daniel Otter, Yousra
Shleibik, and Joseph Worsham for helping the students with ideas as well as with presentations on
some of the latest papers, and systems and programming issues. Our gratitude to Ginger Boult for
being the “REU Mom” and having the welfare of the REU interns at her heart all through the
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SimCSP: A Simple Contrastive Model for Splice Site Prediction

Kevin Stull
University of Colorado Boulder
Email: kest3869 @colorado.edu

Abstract

Splice site prediction plays a vital role in the gene
expression pipeline and language models have leveraged
the pre-training, fine-tuning paradigm to make such
predictions with great success. A weakness of
traditional BERT architectures is the robustness of their
internal representations, which has been addressed in
human language models through the introduction of
a contrastive objective function during pre-training.
Hence SimCSP, a Simple Contrastive model for
Splice site Prediction, is proposed. However, since
the effect of contrastive learning during pre-training
on splice site prediction is not well understood, a
new method has been developed to investigate the
connection. Which leads to the conclusion that applying
a contrastive learning objective function during pre-
training can improve metrics correlated with accurate
classification, but that does not necessarily lead to
better downstream performance after fine-tuning. The
paradigmatic phenomena commonly referred to as
catastrophic forgetting may provide some insight into the
surprising results elucidated by this study of the SimCSP
algorithm and its effects on splice site prediction.

Introduction

Accurately modelling gene expression is one of the great
unsolved problems in biology (Dev 2015). DNA Splice
Site Prediction (SSP) is a critical step in that pipeline that
needs more robust investigation. Given the large cost of
experimentally determining those locations, computational
models have received a lot of attention from the scientific
community. The primary drawback of such an approach is
their insufficient reliability for predicting locations correctly
(Chen et al. 2023).

Recently, deep learning has provided a great deal of progress
in the field through two approaches, Convolutional Neural
Networks (CNN)s (Akpokiro et al. 2023) and Masked
Language Models (MLM)s (Yelmen and Jay 2023). CNNs
leverage large swaths of labelled data to suss out the features
which inform the location of splice sites (Ji et al. 2021).
MLMs further leverage the abundance of data through a
process called pre-training. Pre-training is a self-supervised
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machine learning algorithm that allows a model to create
internal representations of a language through automatic
labelling of an unlabelled training corpus(Erhan et al. 2010).
One such architecture applied to modelling DNA is the BERT
(Devlin et al. 2019) architecture. Biderectional Encoder
Representations from Tranformers models pre-train on large
unlabelled corpora by masking some portion of their inputs
then predicting how the masks should be filled in.

It has been shown that the embeddings produced by BERT
architectures can be improved through the use of contrastive
learning (CL) (Gao, Yao, and Chen 2022). While this
technique was used specifically to improve performance on
semantic similarity tasks for human language, it is unclear
how transferable this is to a DNA based tasks, particularly the
classification of splice sites. The SimCSE algorithm did not
see an improvement in all binary classification tasks, however
there was no further investigation into the rationale for this
phenomena since it was not the main focus of their study.
This also turned out to be the case with the TaCL (Su et
al. 2021) algorithm, which introduced CL at the token level
instead of at the sentence level. The TaCL algorithm saw
the least improvement in binary classification which provides
SimCSP with the opportunity pick up where others in the
field have left off, further exploring the connection between
contrastive learning and binary classification for language
models.

Related Work
Traditional Machine Learning

Before the mainstream adoption of deep learning, there
were several different approaches to the problem of SSP.
GeneSplicer (Pertea, Lin, and Salzberg 2001), for example,
used an ensemble of feature detectors and Markovian
techniques to detect splice sites. In 2003, support vector
machines (Zhang et al. 2003) were applied to the problem.
Later on, support vector machines were combined with other
techniques, like principal component analysis (Pashaei et al.
2016) for improved results.

Convolutional Neural Networks and Long Short
Term Networks

Deep learning’s contributions to SSP began with the
application of CNNs.  Models such as Deep Splicer
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(Fernandez-Castillo et al. 2022), Splice2Deep (Albaradei
et al. 2020), and EnsembleSplice (Akpokiro, Martin,
and Oluwadare 2022) surpass traditional machine learning
approaches. Other notable CNN networks include, but
are not limited to, SpliceRover (Zuallaert et al. 2018) and
SpliceFinder (Wang et al. 2019). All of the models mentioned
can suffer from the shortcomings commonly associated with
CNN:gs, including limited receptive fields and a propensity to
over-fit during training. Long-short term networks have also
been applied (Singh, Nath, and Singh 2022) and while they
do address the problem of a local receptive field, vanishing
and exploding gradients limit the size of the input that can be
processed by the model. Further, because CNNs are highly
sensitive to the training set used (Scalzitti et al. 2021), they
are commonly limited to fully supervised training.

Language Models

These facts motivate the introduction language modelling
to the DNA SSP problem. There have been several
successful generalizations of the BERT algorithm to DNA
representation and SSP (Dalla-Torre et al. 2023) (Ji et al.
2021)(Mo et al. 2021) (Cahyawijaya et al. 2022). Further,
it has been shown that evolutionary and genetic information
is encoded in the layers of the transformer architecture (Chen
et al. 2023). These encodings can be visualized and inform
what features of a nucleotide sequence are most useful for the
identification of splice sites (Chen et al. 2023). It is possible
that the information gained from these visualizations could
be used to inform the choices made during pre-training.

Problem Statement

Put succinctly, we investigate which changes made during
pre-training, due to contrastive learning (CL), affect the
downstream classification result after performing fine-tuning.
Expressed formally, language models have hidden layers [
and a classification head c. Therefore, a simplified language
model m can be represented as m = [ + c. We let co be
some general method to transform the output of the language
model’s hidden layers into some binary classification (BC).
However, the self-supervised task which the model is pre-
trained on, usually masked language modelling (MLM) or in
the case of SimCSP, MLM followed by CL, uses a different
classifier whose many decision boundaries divide the space
into subsets which each represent one member of the pre-
training task’s output space. We call this classification head
cp, where p is the number of outputs for the pre-training task
where it is assumed that p > 2. Since only | is shared between
the two models, we can summarize our two models as: m,, =
I+ cpand my = I + cy, where m,, is the pre-trained model
and my is the fine-tuned model. Since p > 2, there is no
direct metric which can compare m,, and my.

Assuming f() is some permutation of a model, MLM,
CL, BC and ¢() is some evaluation metric; F1, accuracy,
AUC. The only qualitative means of measuring how f(m,)
relates to e(my) is to transfer [ to a new model where a ¢y
classification head can be fit to the downstream task of F1
score. Which is feasible when only fitting ¢, but becomes
restrictive when [ is also fine-tuned to the downstream task,
as is commonly the case with language models.

Given that there exists some evaluation metrics e*() which
can be applied directly to {. How does fcor(m,) affect
fBc(my) and is e*(1) sufficient to predict the relationship
between them?

Approach
Dataset

For pre-training, all chromosomes of the primary assembly
GRCh38/hg38 were used, the data set was loaded using
The Nucleotide Transformer’s (Dalla-Torre et al. 2023)
HuggingFace train split. This is an unlabelled data set (with
respect to SSP) containing DNA sequences from humans.
For fine-tuning, the Spliceator data set (Scalzitti et al. 2021)
is used, the code used to process and load the data set were
obtained from the github page of the SpliceBERT paper
(Chen et al. 2023). The data set contains DNA sequences of
varying length, 400 or 600, that are labelled as a non-splice
site, an acceptor site, or a donor sites. The acceptor donor
distinction is not used as this study is interested in binary
classification. That gives a final data set which contains 400
nucleotide sequences that are labelled as either O non-splicing
or 1 splicing sites.

For the purpose of evaluating SImCSP in an self-supervised
setting, the Spliceator data set was re-arranged into a new
data set called Spliceator for Semantic Similarity (S3). In
this new data set, the labelled sequences are randomly paired
together without replacement. Then, if the elements share a
label (both are splice sites or both are not splice sites), they
are given a new label of 1, otherwise, the pair is given a
label of 0. Each pair is considered a single training example
of sequences that are (0) not semantically similar, or (1)
semantically similar. Using the SCCS metric described in
greater detail in the Evaluation Metrics section, this new data
set, S3, can be used to evaluate the model’s understanding of
SSP during pre-training and during fine-tuning.

When bench-marking SimCSP for comparison with other
methods, the zebra fish, fruit fly, worm, and arabidopsie were
used.

Theoretical Foundations

A contrastive loss function is used for the pre-training of
SimCSP. It is functionally identical to the one introduced for
SimCSE (Gao, Yao, and Chen 2022), which was used for the
unsupervised contrastive learning of sentence embeddings.
If we let x; be one of the inputs in a batch of N inputs to
the model. Then &; and Z; are two embeddings produced by
that same input x; to the encoder with two different dropout
masks. A dropout mask is a shorthand term to describe the
dropout applied throughout a standard BERT architecture.
For readability’s sake, subscripts are not applied to each
dropout mask but it is assumed that no two are identical
to one another. Then the contrastive loss is given by the
expression:

exp(sim(&;, T;))

loss(&;) = —log ——
Z;\’:l exp(sim(Z;, z;))

(D
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Where sim(z1,22) is defined as the cosine similarity

between two vectors. That is:
. z{ o
sim(zy,12) = ——— (2)

T1 X2
In application, the Multiple Negatives Ranking Loss function
is used from the sentence transformers library (Reimers and
Gurevych 2019), where positive pairs are generated by taking
the same sequence twice with different dropout masks and
other sequences are assumed to be negative samples.

Evaluation Metrics

The foremost metric used to evaluate SimCSP is Splice Site
Prediction (SSP) F1 score (SSP). ROC AUC is also used to
validate the models during fine-tuning. These metrics can
only be applied to labelled data, thus they cannot be used
to directly quantify the changes caused by CL during pre-
training, for that reason, other metrics are introduced.

Two metrics will be introduced, Normalized Mutual
Information (NMI) and Spearman Correlation with Cosine
Similarity (SCCS). The possibility that either of these serve
as a proxy for F1 is investigated. These metrics have been
selected because they can be directly applied to this hidden
layers of the network without the need to pass through a
classification head.

The Spearman Correlation with Cosine Similarity (SCCS)
of the last layer’s [CLS] token is used as one measure of
how similar the model "’believes” two sequences are. Cosine
similarity can be used to evaluate both the fine-tuned model,
and the pre-trained model that it is based on.

The authors of SpliceBERT (Chen et al. 2023) utilized
the UMAP technique to visualize their nucleotide
embeddings, then used the Leiden algorithm to cluster
them. The SpliceBERT embeddings displayed a better
degree of separability across coding and non-coding DNA
inputs, quantified by the plot’s higher Normalized Mutual
Information (NMI). Better separability indicates that the its
internal representation of a splice site is more robust. CL is
applied to the model during pre-training, and its affect on F1
score is studied.

Architectural Characteristics

The SimCSP framework uses Contrastive Learning (CL) to
investigate the pre-training of DNA Language Models (LM)s
and its effects on SSP. It is used as an additional layer of pre-
training after convergence is reached with Masked Language
Modelling (MLM). This gives:

SimCSP Architecture

1. Pre-train MLM

2. Pre-train CL

3. Fine-tune SSP

In practice, the SpliceBERT-510.nt-human pre-trained model
(Chen et al. 2023) is loaded and it’s parameters are modified
using Contrastive Learning (CL). A learning rate of 1 10~*
is used with a batch size of 512 and a weight decay of
1 % 1076, There are 6 transformer blocks with a hidden size

of 512 and 16 self-attention modules per block. The [CLS]
token is used as the input to the classifier.

Spearman corr. w/ Cosine Similarity per number of Steps
0.03

0.03 <
0.0 0.03
0.030
0.03 9.03
0.02
0.02
0.020
2 0015
0.01
0.010
N I I I
0.000
507 2535 4563 91 8112 10140 r

6591
Steps

Cosine Similarity

Spearman corr

Figure 1: The Spearman correlation with cosine similarity
of the [CLS] token with semantically similar and dissimilar
validation examples from the Spliceator data set given
varying amounts of pre-training.

Model Evaluation

The metrics used to evaluate SimCSP are SCCS, NMI, ROC
AUC, and F1 score. The SCCS and NMI metrics can be
applied to the hidden layers of the model during pre-training
and fine-tuning. The best pre-trained model is selected using
the Human Reference Genome (Dalla-Torre et al. 2023) for
NMI and the Spliceator data set (Scalzitti et al. 2021) training
split for SCCS. The benchmarks used to compare model
performance across different architectures is only used for
inference and inference was only performed once by the best
model. The ROC AUC and F1 scores can only be used during
fine-tuning, therefore the ROC AUC was used to score the
models using the validation split of the Spliceator data set.
The best model was chosen by taking the highest F1 score on
the testing split of the Spliceator data set.

Results

Effect of Contrastive Learning on the [CLS] Token

When Contrastive Learning (CL) is applied to the [CLS]
token of the DNA Language Model (DNA LM), the effects
can be seen in Figure 1. As pre-training progresses,
the Spearman Correlation with Cosine Similarity (SCCS)
increases until reaching a peak at around 8,112 steps before
slowing falling back off. The scale of the change is also worth
noting, while model performance does more than double,
the numerical distance in performance between the least and
most performant model is around 2%.

Effect of Contrastive Learning on the NMI of
SimCSP’s Layers

Figure 2 is the highest NMI score for SimCSP and occurs
after 2,535 batches of CL during pre-training. The plot
is from the 4*" transformer layer supporting the result of
SpliceBERT (Chen et al. 2023), which is that the ond _
5" layers of the network are the most informative for the
prediction of splice sites. This is further supported by Figure
3, which shows the average NMI across a differing number of
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SimCSP: NMI after 2535 Steps Constrastive Pre-training

A
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AG(non-acceptor)
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1
L N
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Figure 2: The NMI of the 4" layer of SimCSP after 2,535
steps of Contrastive Learning during pre-training.
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Figure 3: The average NMI score of each layer averaged
across varying amounts of pre-training given a contrastive
loss function.

training steps by layer. It suggests that most of the semantic
information relating to SS are located in 3"¢ and 4*" layers
of the model. It is clear that in the long run, the NMI
score decreases as more contrastive learning is introduced.
However, there is a local peak early on in the epoch that is
higher than the starting point, which is used as the best NMI
pre-trained model.

Given the previous results, the 4" layer of the model is
analyzed in greater detail. Upon inspection, Figure 4 shows
a general trend downward as more CL is introduced during
pre-training. However, there is a small increase in NMI at
2535 pre-training steps.

Effect of Fine-tuning on NMI and SCCS

When the pre-trained model is fine-tuned, we observe a
slight increase in NMI of the plots of the embeddings and a
substantial increase in the model’s performance on the SCCS
metric. With NMI increasing from 0.13 to 0.16 and SCCS
increasing from 0.03 to 0.80 on average.

Layer 4 - Values per Number of Steps

03 231 0.3
030 029
¢! 028 il
027

025
0.20
0
0.10
0.05
s A el ‘3 O

& ,.:’1"‘ %\\ \Q\:\

Figure 4: The NMI score of the 4" transformer layer of the
SimCSP architecture given varying amounts of pre-training
with a CL loss function.

NMI
- I ~
&

°

K
>

Steps

Figure 5: The F1 scores of the Baseline Pre-trained model,
the best SCCS from pre-training and the best NMI from pre-
training.

F1 Scores of Pre-trained models with best
performance on SCCS and NMI

From figure 5, notice that box plots F1 scores of the baseline
SpliceBERT-human model are all relatively close, with best
NMI skewed towards being slightly better than baseline while
best SCCS is skewed towards being slightly worse than
baseline. The mean of the baseline model is 0.9766, the mean
of the best SCCS model is 0.9759, and the mean of the best
NMI model is 0.9777, which means that all models fall within
0.3% of one another in terms of performance.

Discussion

NMI and SCCS are impacted by Fine-tuning

While it is clear that SImCSP has marginal effect on the NMI
and SCCS scores during pre-training. It is clear that fine-
tuning plays a role in both. This implies that they can serve
as proxies for F1 score in a setting where fine-tuning is not
practical. While the pattern of slightly increased SCCS and
NMI scores due to SimCSP is consistent, it is quite minor.
One possible explanation can be provided when considering
the differences between MLLM and CL.
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Contrastive Learning occurs at the Feature Level
but MLLM happens at the Token Level

CL seeks to improve the grouping of hidden features within
the representation space of a model. MLM however, seeks to
create generalized relationships between tokens. It is possible
that these two objectives are not completely amicable to
one another. CL seems to be improving the hidden classes
of the representation space at the expense of token-level
information. This phenomenon where the model learns new
information but forgets old information is referred to as
Catastrophic Forgetting (CF). It is possible that CF may be
taking place during the training of SimCSP, which would
explain why it is possible to optimize parameters associated
with better F1 scores, while simultaneously, producing a
model that is the same as or worse at its downstream task.
CF helps inform why the best models, according to NMI and
SCCS, occur after so few steps of CL. It could be the case that
1,000 steps of CL is a local minima where the most utility can
be gained from CL before too much is lost due to CF.

Conclusion

Language models are a promising new technique for studying
many facets of gene expression, including the prediction of
splice sites. Even if a metric can be strongly correlated to
better SSP, simply improving that metric by a method such
as CL, as was the case for SimCSP, is not sufficient to endow
a guaranteed improvement in the downstream performance
of the language model. Introducing a new form of learning
to a network can also lead to forgetting of information that is
necessary for the downstream task of Splice Site Prediction.
SimCSP reveals that there are no free lunches when training
a deep learning model, each lesson comes at a price. This
deeper understanding of contrastive learning’s relationship to
splice site prediction is crucial if the scientific field is going
to produce robust DNA language models.
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Abstract

The evolution of the 3D chromosome structure in time
(4D nucleome) plays a crucial role in time-dependent
processes in the cell. Reconstruction of the 3D genome
and 4D nucleome is dependent on experimentally ob-
tained Hi-C data. Due to the sparsity of data it is impor-
tant to be able to forecast Hi-C data at future time-points
from time-series Hi-C data. This study uses a dynamic
network optical flow estimation video prediction algo-
rithm to forecast spatiotemporal Hi-C data. The best
variation of this model achieves validation predictions
with Pearson correlation and HiCRep about 1 percent
below that of the only existing model for this problem.

1. Introduction

Chromosome 3D structure is of vital interest to biolo-
gists studying the relationships between chromosome struc-
ture and gene regulation, expression and transcription. Cur-
rent methods use experimentally obtained high throughput
chromosome conformation capture (Hi-C) data (Lieberman-
Aiden et al. 2009) to reconstruct the 3D structure of a chro-
mosome (Oluwadare, Highsmith, and Cheng 2019). The Hi-
C method obtains the frequency of contact between different
loci, which are fragments of DNA corresponding to a gene.
This contact data is represented by an n x n Hi-C contact
matrix, where n is the number of loci in a chromosome and
the ¢5-th entry is the number of contacts between loci ¢ and
7 in the chromosome.

Hi-C data and the 3D structure reconstructed from it are
obtained for a specific point in time. Many biological pro-
cesses in a cell are time dependent and analyzing 3D chro-
mosome structure as it evolves in time or the 4D nucleome
is crucial to understanding them (Di Stefano et al. 2021). 4D
structure analysis is dependent on the availability of Hi-C
data at different time points from which 3D data is recon-
structed; however, due to the sparsity of data it is important
to be able to forecast future Hi-C data points from Hi-C data
in previous time points.

2. Related Work

Several studies have explored the interpolation of 3D chro-
mosome structures between two given time points including
TADdyn by Di Stefano et al. (2020) and 4DMax by High-
smith and Cheng (2021). However, there is currently only
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one research effort that focuses on forecasting future Hi-C
data based on Hi-C time series. The HiC4D method, intro-
duced by Liu and Wang (2023), treats Hi-C contact matri-
ces as frames of a video and employs a Long Short-Term
Memory (LSTM) based video prediction algorithm. Specifi-
cally, Liu and Wang developed the ResConvLSTM model by
adding residual skip connections between ConvLSTM (Shi
et al. 2015) layers. Their study demonstrates the superior
performance of ResConvLSTM compared to ConvLSTM,
ST-LSTM (Wang et al. 2017), SimVP (Gao et al. 2022), and
a naive network video prediction algorithm.

3. Approach

This study uses a dynamic neural network video prediction
model to forecast spatiotemporal Hi-C data. The training and
evaluation of the model are done using the same datasets and
metrics as in the HiC4D study.

3.1 Model

This study uses the Dynamic Multi-Scale Voxel Flow Net-
work (DMVEFN) (Hu et al. 2023) video prediction algorithm
to predict future Hi-C contact data from a series of existing
time-frames. It takes the frames at time points ¢, and 3 as in-
puts and predicts the frames at time points ¢4, 5 and tg. The
model consists of MVFB blocks that estimate optical flow,
which is the pixel-wise motion between frames. An MVFB
block takes the ouptut of a previous MVFB block together
with two input frames to synthesize the next frame and esti-
mate the optical flow. The model has 9 MVFB blocks each
of which scales the input by some factor. A Routing Mod-
ule adaptively selects with of these blocks will be included
in the model for a particular input. The final estimate of the
optical flow from the MVFB blocks together with the first
two images is used to reconstruct the next frame. DMVEN
is currently state of the art on the Cityscapes (Cordts et al.
2016), KITTT (Geiger, Lenz, and Urtasun 2012) and DAVIS
2017 (Pont-Tuset et al. 2017) datasets for video prediction.

3.2 Data

The Gene Expression Omnibus (GEO) and Genome Se-
quence Archive (GSA) databases are used to acquire the fol-
lowing spatiotemporal Hi-C datasets of mouse and human
cells during embryogenesis:
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* GEO GSES82185 is from preimplantation mouse embryos
contributed by Du et al. (2017). The time points corre-
spond to the gamete, zygote, early 2-cell, late 2-cell, 8-
cell, inner cell masses and stem cell stages. The last six
stages are utilized in this study.

* GSA PRJCA000241 contributed by Ke et al. (2017) is
also from mouse embryos corresponding to the gamete,
early embryo, 2-cell, 4-cell, 8-cell, embryonic day (E)3.5
and E7.5 stages. Again only the last six time points are
used.

* GEO GSE146001 contributed by Chen et al. (2020) is Hi-
C data taken from somatic cell nuclear transfer (SCNT)
mouse embryos. The 12hpa, early 2-cell, late 2-cell, 8-
cell, ICM and TE stages are taken as time points from this
dataset.

* GSA CRA000852 contributed by Chen et al. (2019) con-
tains Hi-C data from human embryogenesis with the
sperm, 2-cell, 8-cell, morula, blastocysts, and six-week-
old embryo stages taken as the time points.

The first dataset (GEO GSES82185) is used for training, val-
idation and testing. Chromosome 19 is used for validation,
chromosomes 2 and 6 are used for testing and the remaining
chromosomes are used for training. The entirety of the data
from the remaining three datasets will be used for testing. At
this stage of the study only the first dataset has been used.

3.3 Implementation Details

The models were implemented using PyTorch (Paszke et al.
2019). We used the AdamW (Loshchilov and Hutter 2017)
optimizer. The models were trained according to a cosine an-
nealing schedule with the learning rate decaying from 104
to 10~°. Models were trained on patches with dimensions
32 % 32,48 x 48,64 x 64,80 x 80 and 96 x 96 with batches
of 8, 16, 64 and 256. Although the first three time steps are
available to the model, the model only takes time steps 2 and
3 as input.

Loss Functions Given input frames [;_; and I; the ¢-th
MVFB block outputs a prediction of the next frame I; ;.
The loss functions used has the following general frame-
work:

L=> 08"""d(I},,I141) + aLycc(ler1, Iesa),

i=1

where n = 9 is the amount of MVFB blocks, Lygg is the
VGG loss (Ledig et al. 2017), d was taken to be either the I
loss, MSE loss or the /; loss on the Laplacian pyarmid rep-
resentations (Paris, Hasinoff, and Kautz 2011) as is default
in DMVEN, and the parameter « is either O or 0.5.

Data Normalization The distribution of the values in each
chromosome in the training dataset (Figure 1) shows that the
majority of the values are below 100, which is the default
normalization in the HiC4D study. The distribution of the
values in Figure 1 is heavily skewed towards values in the
0-50 range, which occur less frequently at lower genomic
distances. Figure 2 shows that the majority of the values at
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Figure 1: Histogram with amount of values ranging from 0
to 500 in the 96 x 96 training dataset averaged over the 17
chromosomes in the training set.
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Figure 2: Histogram with amount of values ranging from 50
to 500 in the 96 x 96 training dataset averaged over the 17
chromosomes in the training set.

lower genomic distances are under 400. Due to these heuris-
tics, the study used both 100 and 400 for normalization of
the data. Additionally this study used normalization by 255.
When doing normalization by 100 or 400 both at inference
and training 100 or 400 were set as the cut off for values in
the data, but this was not done when normalizing by 255.

3.4 Evaluation Metrics

The performance of the algorithm is evaluated using the
Pearson correlation coefficient with the ground truth at each
genomic distance between bins 0 and 35 with resolution
40kb. We used the stratum-adjusted correlation coefficient
from HiCRep (Yang et al. 2017) with lower bound genomic
distance between loci set to 400 000 bases and upper bound
set to 1 600 000, and the smoothing parameter was set to 5.
We also used HiCRep with same smoothing parameter and
upper bound, but with the lower bound set to 40 000 bases.

University of Colorado, Colorado Springs 8



REU Symposium on Deep Learning

. Pearson Average (0-35) HiCRep (40k-1600k) HiCRep (400k- 1600k)
Patch Size Loss ' ‘ s ‘ o i ‘ s ‘ o ' ‘ s ‘ o
(HiC4D) 50 | MSE \ 0.6928 \ 0.6763 \ 0.6775 \ 0.8372 \ 0.7828 \ 0.7514 \ 0.8549 \ 0.7780 \ 0.7416 \
96 | Default no VGG | 0.6802 | 0.6641 | 0.6608 | 0.8239 | 0.7696 | 0.7251 | 0.8048 | 0.7338 | 0.6891
96 | MSEno VGG | 0.6628 | 0.6401 | 0.5912 | 0.7977 | 0.7367 | 0.5899 | 0.7906 | 0.7042 | 0.6158
64 | Default no VGG | 0.6538 | 0.6279 | 0.6211 | 0.7808 | 0.7027 | 0.6607 | 0.7637 | 0.6620 | 0.6202

Table 1: Pearson correlation and HiCRep metrics between the ground truth and predictions made by models with various
hyperparameter combinations on validation chromosome 19. The first row of data pertains to the HiC4D model against which
the other models are compared. The default loss is the [; loss evaluated at the Laplacian pyramid representations.

4. Results

The validation results for the best three models trained with
various hyperparameter combinations are displayed in Ta-
ble 1. The best model is only about a percentage away from
HiC4D accoring to the Pearson correlation coefficient. For
timesteps t3 and ¢4 the best model is also about one percent-
age point away from HiC4D using HiCRep with the lower
bound at 40 000 bases. The best model is about 5 percent
lower than HiC4D according to HiCRep with lower bound
set to 400 000. The best models all turned out to have a batch
size of 8 and normalization of 255. They were trained for 50
epochs.

5. Conclusion

The only existing study on forecasting Hi-C data used an
LSTM based video prediction algorithm to solve the prob-
lem. This study adapts the state of the art DMVFN model.
The current models are close to achieving state of the art re-
sults. Blindly testing on the test chromosomes and on other
datasets will be reserved until hyperparameter search and
model modification are complete, and HiCForecast will im-
prove upon HiC4D in all timsteps using HiCRep. Solving
the Hi-C data forecasting problem will increase the avail-
ability of Hi-C data, which will lead to a better understand-
ing of the 4D structure of the chromosome because existing
methods reconstruct the 3D structure from expensive Hi-C
data.
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Abstract

Chromatin conformation capture finds information
about the three-dimensional organization of chromo-
somes in the nucleus. Conformation capture is often
sequenced for the entire genome, but recent studies
have localized their methods to capture conformation
centered around proteins. Protein-centric data permits
lower cost to process matrix data displaying identi-
fied interactions and higher resolution results. There
are numerous callers that are used to detect topologi-
cally associated domains (TADs) from high-throughput
chromosome conformation capture data sets. Topologi-
cally associated domains are linked to gene expression,
transcription, and functionality of the genome across
mammalian species. HiChIP, a protein-centric chro-
matin conformation method. Using HiChlIP, can provide
higher resolution data used to identify binding patterns
of proteins to DNA. ScanChlP is a proposed method to
identify TAD boundaries from HiChIP. ScanChIP im-
plements DBSCAN, a cluster machine learning algo-
rithm to identify clusters of interactions as TADs.

Introduction

Three dimensional conformation of chromatin can help
identify and describe functionality of a genome (Sexton et
al. 2007). Methods of chromosome conformation capture
(3C) paired with sequencing methods that advances our abil-
ity to separate functional elements, as well as find relation-
ships between chromatin structures, gene activity, and func-
tional state (Lieberman-Aiden et al. 2009). In the past, fluo-
rescence in situ hybridization (FISH) was used to visualize
specific DNA sequences (Price 1993). Research advanced
to 3C, a high-throughput chromosome conformation cap-
ture method. It is used to analyze the spacial organization
of chromosomes (Dekker et al. 2002). While 3C can only
apply to specific regions of the genome, Hi-C can capture
interactions genome-wide (Belton et al. 2012). In Hi-C, bi-
otin labels are used in ligation in order to have selective pu-
rification of chimeric DNA ligation (Belton et al. 2012). A
heatmap matrix that plots normalized interaction values is
used to observe pairwise interactions (Belton et al. 2012).
These interactions run diagonally across the matrix (Belton
et al. 2012). This study revealed the compartmentalization
of genomic regions (Belton et al. 2012).
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The neighborhoods of interaction described in the Hi-
C study was later named Topologically associated do-
mains (TADs). TADs are chromatin regions where intra-
interactions take place (Dixon et al. 2012). The frequency
of interaction is graphed on a heatmap matrix. TAD bound-
aries are identified by looking at frequency of interactions
between regions of the genome (Fig. 1) (Dixon et al. 2012).
A study in 2012 found that these domains are packed with
the insulator binding proteins CTCF, housekeeping genes,
transfer RNA’s, and short interspersed element (SINE) retro-
transposons (Dixon et al. 2012). CTCF is a chromatin archi-
tectural protein found in high concentrations at TAD bound-
aries (Hyle et al. 2023). It serves a role in transcriptional
regulation by being both a transcriptional activator and re-
pressor (Hyle et al. 2023). TAD boundaries are rich in CTCF
which stops spread of heterochromatin (Dixon et al. 2012).
CTCEF acts as a boundary for TADs, and they facilitate in-
teractions between transcription regulatory sequences (Ong
and Corces 2014). Topologically associated domains are im-
portant in gene expression, transcription, and functionality
across mammalian species (Dixon et al. 2012). Disruption
of TAD boundaries has a correlation developmental and psy-
chiatric diseases (Lupidfiez et al. 2015) (Halvorsen et al.
2020) (Krijger and De Laat 2016). While there were great
advancement in chromatin functionality, sequencing of the
entire genome and identifying their boundaries can become
computationally expensive and yield low resolution solu-
tions.

Rather than focusing on the entire genome, studies have
worked on centering their data collections on proteins (Col-
las 2010) (Fullwood et al. 2009) (Li et al. 2010) (Li et al.
2017). ChIP is a technique where a selected protein is im-
munoprecipitated from chromatin to determine associated
DNA sequences (Zheng et al. 2007). A different strategy to
analyze chromatin interaction that was based off of ChIP,
ChIA-PET, was introduced in 2009 (Fullwood et al. 2009).
ChIA-PET is a protein-focused study. In ChIA-PET, prox-
imity ligation connects DNA linkers to Tethered DNA frag-
ments, and from there, pair end tags (PETs) are extracted
for sequencing (Fullwood et al. 2009). It offered a differ-
ent mapping strategy approach for analyzing chromatin in-
teractions using paired end tag sequencing. HiChIP aimed
to improve protein based chromatin conformation capture.
Like ChIA-PET, HiChIP extracts pair end sequencing for
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sequencing, and DNA proteins are enriched with ChIP in
both methods (Fullwood et al. 2009)(Mumbach et al. 2016).
HiChlIP is a protein conformation capture method is also in-
spired by Hi-C (Mumbach et al. 2016). This method can ana-
lyze the 3D structure of a genome while also finding binding
patterns to DNA (Mumbach et al. 2016).

Hi-C Based TAD Detection Methods

The discovery of Hi-C in a 2009 study, later led to the
discovery of TADs (Lieberman-Aiden et al. 2009) (Wang,
Cui, and Peng 2017). Since, there have been numerous al-
gorithms that aim to increase the capability and quality of
the process including HiTAD, CaTCH, OnTAD, Cluster-
TAD, CASPIAN as well as many others (Wang, Cui, and
Peng 2017) (Zhan et al. 2017) (An et al. 2019) (Oluwadare
and Cheng 2017) (Gong et al. 2022). HiTAD reduces im-
pact of genomic distance by enriching the intra-domain in-
teraction and inter-domain interaction frequencies and uti-
lizes recursion to optimize detection (Wang, Cui, and Peng
2017). ClusterTAD is an example of a caller that specifi-
cally uses a cluster algorithm (Oluwadare and Cheng 2017).
Kmeans is used in ClusterTAD, but this there are other kinds
of clustering algorithms including density-based clustering.
CASPIAN is another example of a clustering TAD caller. It
uses HDBSCAN to the clustering process because it doesn’t
require any parameters. HDBSCAN can be used to have an
undefined amount of clusters, and it aims to identify areas
where points are close together within a given space (Gong
et al. 2022). TADs similarly create dense regions of intra-
interactions in chromatin.

3C With Protein of Interest

Rather than focusing on the entire genome, other callers
use data sets that are centered around specific protein struc-
tures. Mango was popular analysis pipeline for ChIA-PET
that calculates statistical confidence estimation of interac-
tions (Phanstiel et al. 2015). A more recent study, pub-
lished in 2023, created a model called HPTAD. These data
sets are both specifically used for high resolution enhancer-
promoter interaction detection (Rosen et al. 2023). HPTAD
is a method used to detect TADs in HiChIP and PLAC-seq
data. The method has a statistical approach where a regres-
sion model is used to identify topologically associated do-
mains (Rosen et al. 2023). Their goal wasn’t to make a bet-
ter TAD caller, but rather create a caller for Hi-ChIP data.
Rather than the input data residing in an N x N contact ma-
trix, such as Hi-C, the normalized file is in BEDPE format
to identify pair end tags.

Approach

TADs have CTCF at their boundaries to contain interac-
tions locally, therefore large groups of interaction frequency
should be physically close. ScanChIP-P takes in a normal-
ized contact frequency matrix to identify topologically asso-
ciated domains by clustering contact frequency together.

Normalized Contact
Matrix

l

Create Features for
Contact Matrix

1

Cluster Contacts With
DBSCAN

l

Identify TADs From
Clusters

I

Assess Predicted TAD
Qualities

Figure 1: ScanChIP-P workflow.

Prepare the normalized contact matrix

HPTAD’s pipeline was used was used to prepare a normal-
ized contact matrix intended to be used in this study (Rosen
et al. 2023). The normalized data created from the pipeline
was converted into a symmetrical contact matrix for our pur-
poses (Figure 2).

3240000 3280000 3220000 3360000 3400000 3440000

0| 1.49490108260814 | 0.83024177529267 1.0862717817118 | 0.917955137966109 | 1.05326784345106
1.45493108260614 0 0.900477276274877 | 1.18166653287152 | 1.30243535485259 |  1.80057555504853
0.83024177529267 | 0 9047727627487 0 1.08584952430407 | 1.17432747506433  1.62288471807686
1.0062717817118 | 1,18168653287152 1.08584952430497 0| 1.15000801177623| 1.A46878785818808
Q917955137966100 | 1.30243535485259 | 1.17432747506433 1.15060691177623 0 0.9418484427510%6

1.05326784345108 |  1.20057S55504553 | 1.62268471807686 1 46878785818808 | 0.941848442751058 0
1.06470002968308 | 1.42400001954495 | 1.30838916734587  1.23336771183887 | 0.743881252067915  1.20623678277113
QO40201918438240 |  1.08500700061633 | 1.02916020000442 | 1 28626483637705 | 0.621023914506258 | 0.812429736150543

0.772200853250778 | 0.860131680328906 | 1. 08361103402078 | 1.14529134219560  0.919201526408021  1.1404978877011
0.240380617096412 | 0 725255850660804  0.867450807314803  0.970589008044366 | 0.780401058512701 | 1.08647113558045
asy o 17| 1 0.869566233012375 | 1.02504092932602 | 0.719712049867533

Figure 2: Normalized data retrieved from HPTAD’s normal-
ization formatted into a symmetric matrix.

In order to have proof of concept, this study has used a
30x30 contact matrix from ClusterTAD before we moved to
a larger set. The matrix is not symmetrical, therefore is was
reflected the bottom left data to the top to obtain a symmetri-
cal matrix we could use to replicate HP data more accurately
(Figure 3).

Create features for contacts

There was three different approaches used to do so. The
first feature extraction method collected each feature in an
L-shape from a specified window W (Figure 4 a). The win-
dow would move down along the diagonal M i, j] to collect
a total of N features the size of N/WW x 2. The idea of the
window was to ignore some of the unneeded noisy data by
limiting the view of the features. There was an issue where
the window would extend past the data when the algorithm
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Figure 3: Heat map of the symmetrical contact matrix de-
rived from ClusterTAD’s 30x30 matrix.

reaches the diagonal M i, j] that extends past the length of
N — N/W. In order to compensate for this on our models,
we began reading the data in reverse from the diagonal point.

Another approach this study took was collecting each fea-
ture in a square-shape (Figure 4 b). This approach will allow
the features to hold more information about the data around
the diagonal Mz, j]. It will also use a window such as the L-
shaped feature extraction has, but each feature will contain
every row in the window making it N/W x N/W numbers
long.

Comparing these extractions with the feature extraction
method used in ClusterTAD (Oluwadare and Cheng 2017),
our last method creates a cross like extraction within a win-
dow where M7, j] is the center data point. Similarly to the
L-shaped extraction, the window will shift down with the di-
agonal to collect a total of N features the length of N/W x 2
(Figure 4 ¢). To accommodate for sections of the diagonal
that cannot fit the diagonal to the center, the window will
shift right and downward if it is in the first half of the data,
and it will shift left and up if it is in the second half. The
Diagonal is kept as central as possible in the process. Once
the features are extracted, they are ready to fit to DBSCAN’s
clustering algorithm.

Clustering using DBSCAN

This study intends to implement a cluster DBSCAN, a den-
sity based machine learning algorithm. This algorithm is a
simple implementation that includes two parameters includ-
ing a given neighborhood’s radius and a minimum number
of neighboring points is required to be considered a core
point. The minimum number of neighbors and what distance
warrants being considered a neighbor are both user defined.

Genome

Genome Genome

[ ~i column represents contact profile of
region i
~j row represents contact profile of

Genome  j region j

Therefore each feature vector for contact

M[i,j] has 2N numbers (N = # of rows in

the window)

Figure 4: a. L-shaped feature extraction method. b. Square-
shaped feature extraction method. c. Cross-shaped feature
extraction method.

The number of neighbors is required for clustering the
contact interactions on the genome to identify TAD bound-
aries. This is estimated by finding how many bins are re-
quired to reach the minimum size of a topologically associ-
ated domain. Since this is an estimation, we added a feature
that evaluates the calculated value +1.

At first, the esp, or size of a neighborhood is calculated by
approximating the elbow of the K-Nearest Neighbor func-
tion. The graphs provided had little to no elbow, so instead
a wide range of epsilon values were tested and the clusters
created were evaluated using silhouette score to determine
the best results.

Identify TADs

The TADs in the data are identified using the same concept
that was used to determine the minimum points required for
DBSCAN. The length of each cluster was calculated and
compared to the minimum amount of bins required to reach
the minimum size of a topologically associated domain us-
ing the labels created from DBSCAN. Once the algorithm
reaches the last label, if there are enough consecutive labels
equivalent to it, the cluster will be identified as the last TAD.

TAD quality

The quality of the discovered topologically associated do-
mains is measured with Rand index and Fowlkes-Mallows
score. These libraries are used to evaluate agreement of
two clusters. They were specifically selected to compare to
CASPIAN’s data.

Results

Currently, the features attempted are not showing very
promising results. We began by testing each feature extrac-
tion approach using DBSCAN. First, an L-shaped feature
extraction was performed within varying windows of data.
This yielded poor results with an average silhouette score of
0.348, and unexpectedly, smaller windows [1/8, 1/9, or 1/10
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of the data set] provided a higher silhouette score of 0.628.
The clusters identified were at 0to 5, 8to 11, 13 to 17, 20 to
22, and 24 to 29 (fig 5 a).

The results from the L-shaped features were not ideal, so
a square shape was tested out and similar results were con-
cluded. Contrary to the L-shaped feature extraction, using
DBSCAN with the square feature was only able to produce
TADs in windows of 1/8, 1/9, or 1/10 of the data. The clus-
ters produced were the same as the square-shaped features
(Figure 5 a).

The last feature was a cross-like figure. The cross is used
with a window. The idea was that it is similar to the feature
extraction method used in ClusterTAD where the entire row
and column at the diagonal was collected. This method still
gave no promising results with the best window being 1/7
of the 30x30 matrix it was tested on and a lower silhouette
score of 0.541 (Figure 5 b).

ClusterTAD’s feature extraction had clear clusters at O to
7, 8 to 13, 14 to 19, 20 to 24, and 25 to 29, and this fea-
ture clustering had a silhouette score of 0.821 and a quality
score of 44.140 on all three trials testing each clustering al-
gorithm (Figure 5 c). Based on these findings, the next step
is to slowly shorten the window to find when it begins to lose
enough information that the TADs cannot be identified.

As alast effort using DBSCAN, we took another approach
with the cross features. Instead of creating a window size
with a ratio, we tried subtracting from N. The clusters iden-
tified were 0 to 7, 8 to 13, 20 to 24, and 25 to 29 with a
quality score of 44.097. While this was slightly better, we
wanted to explore if we could do better (Figure 5 d).

i 5 : ; 5

Figure 5: a. Predicted TADs from DBSCAN fitting to L-
Shaped features. The dotted-red lines indicates the TAD
boundaries. Square-shaped feature extraction yielded the
same results. b. Predicted TADs from DBSCAN fitting to
Cross-Shaped features using a ratio to find the window size.
c. Predicted TADs from DBSCAN fitting to ClusterTAD fea-
tures. d. Predicted TADs from DBSCAN fitting to Cross-
Shaped features using subtraction to get the window size.

Our novel features retrieved less than ideal results with
DBSCAN. In order to ensure our results were the problem,

Figure 6: a. Predicted TADs from Kmeans fitting to L-
Shaped features. The dotted-red lines indicates the TAD
boundaries. b. Square-shaped feature extraction predicted
TAD boundaries c. Predicted TADs from Kmeans fitting to
Cross-Shaped features using a ratio to find the window size.
d. Predicted TADs from Kmeans fitting to Cross-Shaped fea-
tures using subtraction to get the window size.

c. e d.

Figure 7: a. Predicted TADs from HDBSCAN fitting to L-
Shaped features. The dotted-red lines indicates the TAD
boundaries. b. Square-shaped feature extraction predicted
TAD boundaries c. Predicted TADs from HDBSCAN fitting
to Cross-Shaped features using a ratio to find the window
size. d. Predicted TADs from HDBSCAN fitting to Cross-
Shaped features using subtraction to get the window size.
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we continued to retest each algorithm by following pursuit
of ClusterTAD and CASPIAN by using Kmeans and HDB-
SCAN respectively (Figure 6 and 7).

Kmeans was able to accurately identify the TADs from the
cross data that used subtraction to create the window size.
While accurate, it may be noted that the maximum amount
that the window could be reduced by is 4 data points, and
it was most optimal when only subtracting two data points
from each end of the window. Even at its most optimal, this
method had a lower quality score than ClusterTAD at 0.751
(Figure 6 d). The other feature methods were able to get a
general direction of where the TADs were but either failed
to grab the entirety of each TAD or simply left out a TAD.

HDBSCAN was unable to identify any of the TADs cor-
rectly from any of the novel features created. Many of the
TADs were missing from the L-shaped and square-shaped
feature data, but the TADs that were identified were in the
correct general area (Figure 7 a and b). Both cross-shaped
features were close, but got the boundaries slightly off (Fig-
ure 7 ¢ and d).

Conclusion

Topologically associated domains are a crucial piece to un-
derstand genome expression and regulation. There are many
models that detect TADs within Hi-C data, but it can become
rather costly and reduce result resolution. HiChIP data offers
bright prospects for enhancing our knowledge of genome
regulation in specific proteins and identifying chromosomes
affected disease. There aren’t many algorithms for protein
specific 3C. Hence, in this work, we propose a TAD detec-
tion model for HiChIP that implements a DBSCAN cluster
algorithm. A cluster algorithm can identify and group to-
gether intra-interactions to identify TAD boundaries. While
DBSCAN has bright prospects, this study needs to continue
to investigate the the best novel way to create feature extrac-
tions in order to enhance the quality of our TAD detection
algorithm.

Schedule
June 5,2023 | Introduction and finish pre-proposal
June 9, 2023 Finalize proposal and Present
June 15, 2023 Run Reference Code
July 7, 2023 Complete Midsummer Report
July 30, 2023 Implement small scale model
August 3, 2023 Present Findings
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Abstract

Alternative splicing (AS) is a biological process that rear-
ranges distinct segments of pre-mRNA, resulting in a vari-
ety of transcripts. These transcripts are subsequently trans-
lated into diverse proteins from a single gene. Dysregula-
tion of AS in human diseases can lead to the generation of
abnormal protein isoforms, which can disrupt cellular func-
tions and contribute to disease progression. Historically, AS
research has primarily focused on two prevalent events: al-
ternatively skipped exons (exon cassettes) and constitutively
spliced exons. However, there is a significant gap in the meth-
ods available to classify a broader range of AS events beyond
these two types. Current “’splicing codes” leverage convolu-
tional neural networks (CNNs) to analyze and classify AS
events. While other approaches have attempted to tackle sim-
ilar problems, they have become outdated, relying on models
such as Support Vector Machines (SVMs) and Convolutional
Neural Networks (CNN). Recent advancements in deep learn-
ing, particularly the development of EfficientNets, have sig-
nificantly improved the efficiency of traditional CNNs. These
advancements present an opportunity to challenge and po-
tentially surpass the current state-of-the-art AS classification
models. Furthermore, the application of transformer models,
renowned for their performance in various tasks, could pro-
vide a novel approach to AS classification. This research aims
to explore these possibilities and push the boundaries of AS
classification.

Introduction

The process of alternative splicing (AS) involves the manip-
ulation and rearrangement of pre-mRNA exons and introns
to create a transcriptional code for proteins. The code is de-
termined by the arrangement of the exons as they are spliced
back together. Remarkably, AS can lead to the production
of up to 95% of human genes, each with varying structures
and roles [1]. Moreover, AS has been implicated in 15% of
hereditary diseases and cancers [2]. The identification and
understanding of splice sites are crucial in this context, and
through these deeper understandings is how machine learn-
ing models can better drive the advancements in personal-
ized medicine.

Convolutional Neural Networks (CNNs) have gained sig-
nificant attention in genomics applications, particularly in
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predicting regulatory sequences [5]. These architectures per-
form convolutional operations on input data and utilize pool-
ing to reduce the size of the input data. Layers in CNNs are
fully connected, with each neuron in a layer connected to
the neurons in neighboring layers. This structure allows the
input data to be classified by comparing it to a set of known
or similar classes [7].

Historically, models like that of Busch and Hertel have
employed Support Vector Machines (SVMs) trained on four
types of AS events: a set of constitutive exons, a set of ex-
ons having an alternative 3 splice site, a set of exons with
an alternative 5’ splice site, and a set of cassette exons [3]
This particular method focused on the binary classification
aspect and was state-of-the-art for its time. The use of the
personally created database of HEXEvent helped also push
the research of AS events further by streamlining the data
collection and filtration from the UCSC Genome Browser.

However, recent advancements in deep learning have in-
troduced more efficient and accurate models for classifica-
tion tasks. One such advancement in the advances of CNNs
has shown that compounding scaling can create a balanced
distribution of computational resources, leading to improved
accuracy without significantly increasing computational re-
quirements [6]. Another advancement is the use of trans-
former models, which have become state-of-the-art in vari-
ous classification and prediction tasks involving NLP. Trans-
former models, such as the Bidirectional Encoder Represen-
tations from Transformers (BERT), leverage self-attention
mechanisms and can be pre-trained on large amounts of data,
making them particularly effective for complex tasks [9].

Applying these advancements, combined with trans-
former models like BERT, could potentially revolutionize
the classification of AS events and push the boundaries of
our understanding of genomics.

Related Work
CNN-Based Algorithms

Deep Splice Code (DSC) has been built on convolution neu-
ral networks (CNN) using methods presented in the Deep
Motif Dashboard (DeMo Dashboard)[8] in order to train its
data set through DNA sequences through the extraction of
competitive alternative splice sites as well as motifs of im-
portant splicing factors[5]. The DSC CNN architecture uti-
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lized convolutional blocks which were divided into two ar-
chitectures. Each convolutional block contained 3 convolu-
tional layers [S]. The sizes of the layers filter went as fol-
lows: The first convolutional layer contained 32 filters and
a window size of 7 units. The second convolutional layer
contained 8 filters with a window size of 4. The final con-
volutional layer contained 8 filters and a window size of
3, depending on the comparison data, determining the layer
size of 2 or 3. The model is trained and tested using the k-
fold cross-validation technique with a k size of 10. Totaling
the number of models trained to 40 models trained for each
comparison model [5].

In relation to DSC, we have a CNN architecture known as
EfficientNet. Based on ResNet architecture EfficientNet in-
creased performance by introducing a technique known as
compound scaling [6]. Another introduced technique to Ef-
ficientNet is known as AutoML. Using machine learning
to automatically search for the best network architecture to
achieve state-of-the-art results [6]. EfficientNet works on the
relationship of compound scaling implemented into the ar-
chitecture of traditional CNN architectures. Compound scal-
ing uniformly scales all dimensions of depth, width resolu-
tion, rather than the traditional which scales arbitrarily. Us-
ing a grid search to understand the dimensions relationship
coefficient. This scaling coefficient of the dimensions men-
tioned above is applied to the baseline network in order to
reach the target model size or computational budget. The
applied architecture EffiicentNet BO (EFB0) uses AutoML,
which can apply a mobile inverted bottleneck convolution
(MBConv) followed by each dimension being scaled. This
family of modules is termed EfficientNet[6].

Other work on the topic was performed by Hertel and Busch
with their work on a ”splicing code” as they termed it. Used
a Support Vector Machine (SVM) to classify AS. They also
used 2 different architectures as well. Their first 3 models
utilized a binary classification and then tweaked this model
for their fourth which was multi-classification. Its perfor-
mance compared to DSC portrays why CNN is vastly a su-
perior model. Both used the same database compilating the
most up-to-date dataset from the HEXEvent database con-
sisting of the four types of AS events we’re classifying.

Transformer-Based Algorithms

Transformer-based models, such as the Bidirectional En-
coder Representations from Transformers (BERT), have
shown significant promise in various fields, including ge-
nomics. These models leverage self-attention mechanisms
and can be pre-trained on large amounts of data, making
them particularly effective for complex tasks.

One such application in genomics is DNABERT, a pre-
trained model that has been used to predict promoter regions
driving gene expression directly from sequences without
using any structural or biological signals [13]. DNABERT
has also been used to create a refined foundation model,
DNABERT-2, which employs an efficient tokenizer and
multiple strategies to overcome input length constraints, re-
duce time and memory expenditure, and enhance capability
[12].

Another notable transformer-based model in genomics is

GENA-LM, a suite of transformer-based foundational lan-
guage models capable of handling input lengths up to 36
base pairs. GENA-LM has been used to fine-tune com-
plex biological questions with modest requirements and has
shown performance either matching or exceeding prior mod-
els, whether task-specific or universal [11].

In the context of pathogenic viruses, the COVID-
DeepPredictor, a deep learning framework based on the
Long Short Term Memory Recurrent Neural Network,
has been used to identify unknown sequences of these
pathogens. This model uses the k-mer technique to create
a Bag-of-Descriptors (BoDs) in order to generate a Bag-
of-Unique-Descriptors (BoUDs) vocabulary, subsequently
preparing an embedded representation for given sequences.
The COVID-DeepPredictor has shown superior results over
state-of-the-art techniques based on Linear Discriminant
Analysis, Random Forests, and the Gradient Boosting
Method [10].

Problem Statement

The classification of alternative splicing (AS) events is a
complex task that has been traditionally addressed using
models trained on constitutive exons, alternative 3’ splice
sites (SS), alternative 5’ SS, and alternatively skipped ex-
ons. These models have primarily employed Support Vec-
tor Machines (SVMs) and traditional Convolutional Neural
Network (CNN) architectures. However, with the advent of
more computationally efficient models and the availability
of larger datasets, there is an opportunity to improve the ac-
curacy of AS event classification beyond what is currently
achievable.

The goal of this research is to classify 5° and 3’ splice
events and possibly intron retention with a high degree of
accuracy. To achieve this, we propose to leverage the power
of transformer-based models, specifically the pre-trained
DNABert model, and follow the pipeline of the DeepPredic-
tor approach. This will allow us to expand upon the current
state-of-the-art methods and later branch to more complex
models like DNABert-2 and the Nucleotide Transformers
from InstaDeepAl, which was pre-trained on a 2.5 billion
parameter model [14].

Approach

Our approach to improving the classification of alterna-
tive splicing (AS) events involves leveraging the power
of transformer-based models, particularly the pre-trained
DNABert model. We propose to follow a pipeline simi-
lar to that of the COVID-DeepPredictor, which has shown
significant success in identifying unknown sequences of
pathogenic viruses.

The COVID-DeepPredictor employs a deep learning
framework based on the Long Short-Term Memory Recur-
rent Neural Network. It uses the k-mer technique to create
a Bag-of-Descriptors (BoDs) in order to generate a Bag-
of-Unique-Descriptors (BoUDs) vocabulary, subsequently
preparing an embedded representation for given sequences
[10].
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In our proposed model, which we term ASPECT, we will
adapt this pipeline to the task of AS event classification. We
will train our model using the dataset from DSC and Bosch
and Hertel [4][5], and utilize the EfficientNet CNN architec-
ture for feature extraction and hyperparameter search, which
has shown promise in uniformly scaling all dimensions of
depth, width, and resolution.

To evaluate the performance of our proposed method, we
will compare it against several other models. These include
the SVM method, the Deep Splice Code (DSC) method, and
more advanced models like DNABert-2, LM-Gena, and the
Nucleotide Transformers from InstaDeepAl, which was pre-
trained on a 2.5 billion parameter model [14] All three of
these alternative models utilized Byte BPE k-mers and im-
proved upon DNABert. This will be used as the benchmark
when measuring the performance of other models.

The performance of these models will be analyzed based
on the Area Under the Curve (AUC) metric. Still, it will also
us fl metric to evaluate our models performance to that of
DeepPredictor. Through this comparative analysis, we aim
to demonstrate the potential of transformer-based models in
improving the classification of AS events.

Formulas

The Area Under the Curve (AUC) for the Receiver Operat-
ing Characteristic (ROC) curve is a measure of the model’s
ability to discriminate between positive and negative sam-
ples. It is calculated using the trapezoidal rule:

AUC-ROC = [ TPR(FPR) d(FPR)

Where TPR is the True Positive Rate (Sensitivity) and
FPR is the False Positive Rate (1-Specificity).
The Usage Level (usageLevel) formula, which represents

the proportion of transcripts that utilize a specific alternative
splicing event, can be calculated as follows:

usageLevel = number of transcripts using the alternative
event

totalnumbero ftranscripts forthegene

PhastCons scores are used to measure the evolutionary
conservation of a genomic region. The PhastCons scores for-
mula calculates a conservation score for a given genomic po-
sition, typically derived from multiple sequence alignments:

PhastCons score = -log(likelihoodo f conservation)

= —1lo numbero fconservedsequences
- g totalnumberofsequences

The Maximum Entropy Score (MES) formula is used to
predict splice site strength, providing a score for a given
splice site sequence. It is based on the principle of maximum
entropy:

MES =-3"7", Pilog,(P;)

These additional formulas provide relevant metrics and
scores for evaluating alternative splicing events, aiding in
the assessment of the ASPECT model’s performance and
its contribution to advancing the classification of alternative
splicing.

Results

In addition to the preliminary results mentioned above, on-
going trials for fine-tuning the ASPECT model have shown
encouraging improvements over the current state-of-the-art
methods. Notably, one of the significant shortcomings ob-
served in the existing state-of-the-art methods, such as the
Support Vector Machines (SVM) method and the Deep
Splice Code (DSC) method, was their inefficient data dis-
tribution. Specifically, these methods exhibited an extremely
skewed imbalance of labels, which can pose significant chal-
lenges in binary classification tasks.

In the context of imbalanced data, traditional machine
learning algorithms may tend to favor the majority class,
leading to inflated accuracy metrics that do not accurately
reflect the model’s true performance on unseen data. The
ASPECT model’s approach, leveraging transformer-based
models and the EfficientNet architecture, aims to mitigate
these imbalances and provide more reliable and meaningful
performance metrics.

The ASPECT model’s ability to efficiently distribute and
handle imbalanced data has shown promising potential in
the classification of AS events. By employing the power of
transformer-based models, the model is better equipped to
capture intricate patterns and dependencies within the data,
contributing to improved classification accuracy.

It is worth noting that while the current results are promis-
ing, they are part of an ongoing research effort toward refin-
ing the ASPECT model. We acknowledge the importance of
comprehensive testing and evaluation to ensure the model’s
robustness and generalization capabilities. As the research
progresses, we anticipate that further experimentation and
refinement will lead to more definitive findings and poten-
tially make significant contributions to advancing the state-
of-the-art in AS event classification.

In summary, the early findings from our ASPECT model
suggest promising improvements over existing methods,
particularly in addressing data imbalances. By incorporating
transformer-based models and EfficientNet, we aim to de-
velop a robust and efficient classification tool for AS events
that can provide valuable insights into the complexities of al-
ternative splicing mechanisms. Continued research and thor-
ough evaluation will be pivotal in realizing the full potential
of the ASPECT model and its applicability in genomics and
personalized medicine.

article multirow

Metrics Classification Tasks
Multi-Classification | 3’ vs. 5’ | Const vs 3’
Avg F1 0.408 0.573 0.9422
Avg Acc 0.472 0.584 0.961
Test F1 0.382 0.554 0.927
Test Acc 0.479 0.683 0.935

Table 1: ASPECT - Results Table
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Conclusion

In conclusion, our study explores the potential of the pro-
posed ASPECT model, which combines Convolutional Neu-
ral Networks (CNNs) and transformer-based architectures
like EfficientNet, for classifying alternative splicing (AS)
events. Leveraging advanced machine learning techniques
and robust hardware resources, our research aims to refine
the accuracy of current state-of-the-art methods for AS event
classification.

The preliminary results are promising, demonstrating im-
provements over existing methods. However, further model
evolution and fine-tuning are ongoing to ensure robustness
and generalization across diverse datasets.

The ability of the ASPECT model to efficiently handle
imbalanced data is a significant advantage in binary classi-
fication tasks. By leveraging transformer-based models, we
aim to capture intricate patterns and dependencies within the
data, leading to improved classification accuracy.

Our research underscores the transformative potential
of advanced machine learning techniques in understand-
ing complex biological processes, such as alternative splic-
ing. Accurate classification of AS events holds immense
promise in medical diagnostics, potentially revealing pre-
viously unknown associations between AS events and dis-
eases. This advancement can revolutionize personalized
medicine, where a deeper understanding of AS events may
lead to tailored therapies for individual patients.

As we proceed with further experimentation and refine-
ment, we anticipate more conclusive results validating the
effectiveness and robustness of the ASPECT model. A thor-
ough evaluation of the model’s performance on diverse
datasets is crucial to ensure its applicability and reliability
in real-world scenarios.

In conclusion, our research contributes to the state-of-the-
art in alternative splicing event classification, enriching the
field of genomics and opening new avenues for personal-
ized and precision medicine. We envision reshaping the fu-
ture of healthcare through advancements in machine learn-
ing and genomics, ultimately benefiting patient outcomes
and healthcare as a whole.
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Abstract

This study implements a 3D CNN classification model
for subject transfer to classify both Motor Motion (MM)
and Motor Imagery (MI) tasks together in EEG record-
ings. An KMeans clustering algorithm is used to in-
crease subject similarity in training data. Subject Trans-
fer combines multiple subjects’ EEG recordings to cre-
ate a robust and generalized model for use in classifi-
cation of subjects who are not part of the training data.
MI exhibits higher classification potential than MM due
to fewer artifacts. It has been the focus of the majority
of studies due to historically inadequate classification
methods. One of the benefits of subject transfer is that
it enlarges the training dataset, which correlates with
higher accuracy under deep learning. Additionally the
ability to capture high resolution MM expressions en-
ables finer control and accuracy during MI classification
in BCI-controlled prostheses.

1 Introduction
1.1 Electroencephalograms (EEG)

EEG is a way of recording brain activity using an array of
potential sensors on the scalp. These electrodes record the
amalgamated activity of a large number of neurons. The
high number of neurons represented by a single sensor, often
numbered in the hundreds of millions, means that the extra-
cranial sensors do not provide highly localized information.
However, for any given task on the human scale, many neu-
rons are utilized. Thus, through analyzing the oscillations in
potential, especially with the aid of signal processing tech-
niques, relevant patterns for a whole host of conditions and
actions may be deduced. EEG is a proven tool for medical
diagnosis, finding use in treating epilepsy, sleep disorders,
and the extent of anesthesia, among others.

1.2 Brain-Computer Interface (BCI)

In recent decades, there has been interest in using EEG for
creating a BCI, enabling users to control a computer sys-
tem through mental effort alone or in conjunction with other
methods of input. A BCI system can control a physical as-
sembly, like a bionic limb, or serve as a supplemental inter-
face for software control. This technology holds the promise
of enhancing independence and interaction for individuals
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with paralysis or other conditions that hinder the use of stan-
dard interfaces.

1.3 Subject Transfer

The shifting and reforming nature of the brain proves to
be a challenging environment for pattern recognition. In-
deed, changes in a single person’s EEG over the course of
a few weeks may render previously found patterns useless.
This is the result of new learning and adaptation within the
brain, which is not fully understood. Subject Transfer is a
solution to this problem, as well as providing benefits in
reduced analysis time, increased sample size, and general-
ization[10]. Subject Transfer involves using EEG data from
multiple subjects performing the same tasks to create a more
robust and generalized model. This model can be applied be-
yond the original subject population, enhancing its usability.
It relies upon the assumption that, among the general pop-
ulation, for a given task, similar brain functions are used,
especially in the context of tasks that utilize older and more
basic brain functionality, such as motor functions.

1.4 Motor Imagery (MI) and Motor Motion (MM)

Motor Imagery is the mental process of simulating move-
ment without physical movement. Motor Motion is the men-
tal and physiological process wherein a person moves vol-
untarily. The former, in a loose way, being a subset of the
latter’s mental processes [2]. The exact extent to which the
two overlap is not currently known. Using EEG to record
Motor Motion is made difficult by the increase in artifacts
that accompany movement. Artifacts stem from both inter-
nal sources, by way of muscle movements and physiological
processes, as well as external sources, by way of environ-
mental interference [11]. Motor Imagery, in contrast, is eas-
ier to classify due to a lack of the artifacts associated with
subject movement.

2 Related Works

This section enumerates studies that utilize the same dataset
which this study uses. Note when viewing the accuracy table
that the goal of each study, in terms of what each model is
optimized for, may differ from one another, and indeed does
differ from the goal of this study.
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2.1 Bird et al.

Bird et al. proposes preproccessing EEG classification data
by converting the recordings into visual images using di-
mensionality reduction. The visual representations are then
processed using 2D and 3D convolutional neural networks
(CNNis) to extract additional features. Experimental results
demonstrate high classification accuracy; the highest seen
with this dataset, indicating the effectiveness of the proposed
approach in extracting useful features. Its worth noting how-
ever that the main focus of this study was their own data col-
lection; the EEGMMIDB([9] was only used as a validation
dataset; utilizing two classes: eyes open, and eyes closed.
Hence the smaller portion of subjects used. For this reason
this study while holding the highest accuracy has been ex-
cluded from related performance as accuracy on a subsec-
tion of the dataset is not a valid comparison to accuracy on
the dataset as a whole.

2.2 Dose et al.

Dose et al. uses a Convolutional Neural Network (CNN) lay-
ers for learning features and a Fully Connected (FC) layer
for classification, applied to raw EEG data. The results show
that the DL model achieves high accuracy, with the expected
dip in performance in the tests with higher class numbers.

2.3 Mammone et al.

Mammone et al. uses Auto Encoder-Filter Bank Common
Spatial Paterns (AE-FBCSP) for classification. AE-FBCSP
combines the FBCSP approach with a global and subject-
specific transfer learning approach.

2.4 Karacsony et al.

Karacsony et al. presents a real-time EEG-based MI-BCI
system with a virtual reality (VR) game as motivational
feedback for stroke rehabilitation. The system utilizes deep
learning a CNN architecture with a unique trial onset de-
tection technique to achieve improved classification perfor-
mance. The classifier was tested online and offline. The of-
fline results for 6s intervals are listed in the table below,
achieving the highest beyond-binary accuracy among the re-
lated studies. The online results, although not classified as
such, would constitute subject transfer. The accuracy mea-
surements for the online portion are not reported within the
study.

2.5 Wang et al.

Wang et al. diverges from the standard goal of high accu-
racy demonstrating an embedded MI-BCI with a focus on
classification under the hardware limitations of low-power
micro-controller units (MCUs). Using the ARM Cortex-M
family as a flag-bearer for such devices; down-sampling,
channel selection, and narrowing of the classification win-
dow are used to further reduce the memory requirements of
the model with minimal accuracy degradation.

3 Problem Statement

This study proposes a model for the task classification of
Motor Motion (MM) and Motor Imagery (MI) datasets for

ref | #Subjects | CV= | Classes | Performance %

[1] 105 10 2,34 80.38, 69.82, 58.58

[6] 105 5,6 | 2345 | 7475, 72.32, 69.12,

68.04
[4] 105 5 2,34 85.94, 88.50, 76.37
[12] | 105 5 2,34 82.43,75.07, 65.07
Table 1: Related Performance
Year | Preprocessing Optimization | Classification
Model

2021 | One-Rule, DEvoMLP 2D-CNN:
Kullback-Leibler Visual Space
Divergence, and Learning
Symmetrical
Uncertainty.

2021 | One-Rule, DEvoMLP 3D-CNN:
Kullback-Leibler Visual Space
Divergence, and Learning
Symmetrical
Uncertainty.

2018 | Adam FC

2023 | LASSO AE + | FNN

FBCSP
filtering

2019 | Butterwork BP CNN
filter 0.5-75Hz,
50Hz Notch fil-
ter, FC Running
Standardization

2020 | Temporal down- Scaled EEG-
sampling NET

Table 2: Related Processing

subject transfer. MI, due to its generally lower number of
artifacts, traditionally exhibits higher classification potential
compared to MM. Achieving subject transfer between MM
and MI would allow for larger datasets, which, in turn, tends
to correlate with higher accuracy under the deep learning
paradigm. Furthermore, greater resolution in the physical
expression of MM would enable finer control and accuracy
of intention during MI classification in the context of brain-
computer interface (BCI) controlled prostheses. Greater lev-
els of bio-fidelity being the abiding goal of BCI prostheses
due to the physical[8] and physiological benefits[13]. The
physical expression of MM can be captured using existing
technologies such as mmWave Sensors[5] or more tradi-
tional video-based methods[7].

4 Dataset

This study uses the EG Motor Movement/Imagery
Dataset[9] featuring 109 participants and 10 classes; 4 MM,
4 MI, and 2 Baseline classes. Out of the 109 subjects, 105
will be used in this study due to sample rate errors in four
subjects. The subjects with errors to be left out are: 88, 92,
100, and 104.
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Table 3: EEG Motor Movement/Imagery Dataset

Year | Type | System | Classes | (Hz) | Ch | Subjects

2009 | EEG 8 160 | 64 | 109

Table 4: EEG Motor Movement/Imagery Dataset Tasks

Recordings | Tasks

MM | MI | LeftFist | Right | Both | Both
| Fist Fists Feet
[12 I ‘ ~ Eyesopen/closed : |
[37,11 v | v v ‘
(48,12 | v [ 7 | «
[59,13 v | | | I |
(61014 | v | [ v [
5 Approach

5.1 Preprocessing

Several preprocessing have been employed: FIR Band
Pass Filter, Common Average Reference (CAR), Indepen-
dent Component Analysis (ICA), and Baseline Correction.
Gramfort et al. [3] developed Python MNE a python library
for bio-metric data processing library that was used in this
study. Additionally the data consisting of four second epochs
has been sliced into overlapping half-second sub epochs, fif-
teen per epoch.

Different Band-Pass filters were used for the Motor-
Movment and Motor-Imagery portions of the dataset. The
filter for the Motor-Movement was 1-79Hz while the filter
for the Motor-Imagery was 1-30Hz. The reason for this is
that the former portion has considerably more movement ar-
tifacts. This meant that by reducing these artifacts prepro-
cessing would remove a larger portion of the useful data
within the Motor-Movement set.

5.2 Clustering

Before classification, data for each subject is divided into
two sets at a ninety-to-ten ratio. These are subsequently re-
ferred to as the testing set and the clustering set respectively.
The smaller clustering set from the target subject’s data,
along with the complete data from all other subjects, is clus-
tered into two groups using KMeans clustering. The cluster
containing the majority of the target subject’s clustering set
is then selected. From this chosen cluster the target subject’s
clustering set is removed, leaving behind only the epochs
from other subjects that the clustering has identified as most
similar to the target subject’s epochs. These other subjects
similar epochs, whether in the company of the whole of the
originating subject epochs, or being sole representatives are
used as training data for the classification model. This model
is then tested on the target subject’s testing set.

5.3 Rasterization

A process of rasterization was undertaken adding a spatial
component to the time series data. This process utilized a
standard montage of the International 10-10 System. The
three dimensional coordinates denoting electrode placement
on the scalp were flattened using an orthographic projection.

Table 5: Binary Classification Accuracy

Subject | 2 class MM | 2 class MI
1 0.681 0.630
2 0.703 0.961
3 0.760 0.988
4 0.813 0.682
5 0.662 0.780
6 0.618 0.729
7 0.751 0.747
8 0.713 0.759
9 0.676 0.752
10 0.742 0.715
11 0.608 0.835
12 0.688 0.911
13 0.637 0.638
14 0.653 0.753
15 0.737 0.667
16 0.582 0.744
17 0.701 0.889
18 0.667 0.656
19 0.656 0.620
20 0.643 0.573
21 0.794 0.598
22 0.638 0.682
23 0.565 0.960
24 0.620 0.712
25 0.638 0.643
26 0.657 0.685
27 0.680 0.675
28 0.615 0.707
29 0.809 0.778
30 0.603 0.703
31 0.615 0.635
32 0.701 0.649
33 0.732 0.777
34 0.743 0.689
35 0.851 0.759
36 0.656 0.969
37 0.620 0.609
38 0.561 0.660
39 0.544 0.788
40 0.655 0.631
41 0.611 0.677
42 0.809 0.809
43 0.656 0.802
44 0.683 0.593
45 0.805 0.735
46 0.614 0.747
47 0.605 0.671
48 0.831 0.596
49 0.661 0.692
50 0.588 0.666
51 0.604 0.667
52 0.701 0.671
53 0.674 0.646
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Subject 2 class MM | 2 class MI
54 0.711 0.724
55 0.677 0.634
56 0.704 0.716
57 0.663 0.777
58 0.805 0.991
59 0.705 0.671
60 0.722 0.620
61 0.678 0.644
62 0.694 0.730
63 0.703 0.620
64 0.590 0.724
65 0.665 0.604
66 0.584 0.732
67 0.635 0.783
68 0.777 0.803
69 0.689 0.766
70 0.683 0.665
71 0.759 0.750
72 0.807 0.623
73 0.645 0.771
74 0.669 0.890
75 0.605 0.679
76 0.527 0.800
77 0.588 0.757
78 0.573 0.814
79 0.788 0.776
80 0.716 0.759
81 0.541 0.718
82 0.677 0.794
83 0.669 0.721
84 0.680 0.874
85 0.809 0.901
86 0.802 0.708
87 0.585 0.839
89 0.650 0.754
90 0.735 0.772
91 0.718 0.889
93 0.724 0.782
94 0.671 0.781
95 0.580 0.783
96 0.685 0.897
97 0.682 0.806
98 0.616 0.695
99 0.656 0.723
101 0.595 0.810
102 0.667 0.623
103 0.703 0.803
105 0.671 0.800
106 0.670 0.647
107 0.747 0.623
108 0.630 0.681
109 0.753 0.697
Average: | 0.6677 0.7357

The flattened coordinates were then rasterized into a 17x17
frame for each discrete sensor read within a sub-epoch.

5.4 Model

In order to capture the spatial information provided by the
rasterization a 3D CNN was used to traverse each (80, 17,
17) sequence of frames. Several regularization steps were
taken to reduce over-fitting. L2 regularization, dropouts, and
batch normalization were used in the model. After exper-
imentation GRU’s were chosen for the slight performance
improvement that they provided. While a transformer model
was tested the amount of available data was insufficient to
garner the known advantages in the architecture. After ex-
perimentation a parallel model was chosen due a slight in-
crease in performance. Lastly spatial drop-outs have been
applied randomly at the frame level within each sub-epoch
at a rate of 35% of sub-epochs and a coverage area of 2x2
which were replaced with zeros. The complete model can be
found in Figure 1.

After training on all other subjects the model was tuned
with the subjects 30% of the subjects’ data significantly in-
creasing performance.

input 1| input I[(Nmm, 80, 17, 17, nl]
[lnpun.\m output I[(Nonn, 80, 17,17, 111]
[‘conv3d [ input: | (None, 80, 17,17, 1) |  [conv3d_3 | input: | (None, 80, 17, 17, 1) |
| Conv3D | output: | (None, 68, 13,14,8) | [ Conv3D | output: | (Nono, 70, 14, 15, 8) |
‘7 A — e - "" T
/ \
|2

L]
[ dropout [ input: | (None, 68,13, 14, 8) | [ batch_normalization 2 | input: | (None, 70, 14, 15, 8) |
| Dropout [ output: | (None, 68,13, 14, 8) | | BatchNormalization | output: | (None, 70, 14, 15, 8) |

[ batch_normalization | input: | (None, 68, 13,14, 8) | [ conv3d_4 [ input: | (None, 70, 14, 15, 8)
| BatchNormalization | output: | (None, 68, 13,14, 8) | | Conv3D | output: | (None, 64, 12, 13, 16)
\ |
1
conv3d_1 | input: | (None, 68, 13, 14, 8) conv3d_5 | input: | (None, 64, 12, 13, 16)
Conv3D | output: | (None, 60, 10, 11, 16) Conv3D | output: | (None, 62, 11, 12, 32)
T
[‘conv3d 2 | input: | (None, 60, 10,11, 16) | [flatton_1 [ input: [ (None, 62, 11,12, 32) |
[ Conv3D lmllpm | “(None, 56, 8, 9, 32) [ Flatten Inulpm ] (None, 261888) ]
Y
[ fatten T input: | (None, 56, 8, 9, 32) | [ reshape_1 | input (None, 261888) |
| Flatten | output: | (None, 129024) | [ Reshape | output: | (None, 1, 261888) |
[ reshape [ input (None, 120024) | gru_2 [ input: | (None, 1, 261888) |
[ Reshape | output: | (None, 1, 120024) | | GRU [output: | (None, 1,96) _|
[gru [ input: [ (None, 1, 129024) [dropout_2 | input: | (None, 1, 96) |
[[GRU [ output: | (None, 1, 128) | Dropout | output: | (None, 1, 96) |
T

L]
Irhop(m( 1| input I(.\'onu, 1, 1:3)] |mun normalization_3 | input I(Nonn, |.fam]
[ Dropout | output: | (None, 1,128) | | BatchNormalization | output: | (None, 1, 96) |
T

[atch_normalization_1 | input: | (None, 1, 128) | [(gru_3 | input: | (None, 1, 96)
|_BatchNormalization | output: | (None, 1,128) | | GRU | output: | (None, 32)
I

gru_l | input: | (None, 1, 128) |

(None, 80) |

\ '
[dense [ input: | (None, 80) | [dense_1 [ input: | (None, 32) |
| Dense | output: | (None, 896) | | Dense | output: | (None, 512) |

[concatenate | input: | [(None, 896), (None, 512)] |
[ Concatenate | output: | (None, 1408) |

[dense_2 [ input: | (None, 1408) |
| Dense | output: | (None,2) |

Figure 1: CNN Architecture
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7 Conclusion

A 3D CNN model with GRU has been implemented for the
classification of EEG Motor-Movement and Motor-Motion.
While the subject transfer Motor-Movement results are be-
low the state of the art; the Motor-Motion results surpass
it. Additionally the single trial EEG results for both Motor-
Movement and Motor-Motion are at par with the state of
the art at times reaching 100% classification accuracy. The
addition of spatial dropout as a preprocessing step was sig-
nificant to the achievement of the stated results. The imple-
mentation of a spatial drop-out system; otherwise known
additionally as cutout, is novel in EEG classification. Spa-
tial drop-out increased performance significantly in ablation
testing, and warrants further study.
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Abstract

Epilepsy is a condition characterized by chronic
seizures. EEG( electroencephalogram) can be used to
predict and analyze seizures. However, the work of
reading EEG requires a large amount of training and
still has a large amount of variability and error when
performed by humans. Several studies have attempted
to train artificial intelligence to forecast upcoming
seizures. In this endeavor, steady progress has been
made, but there is still potential for improvement. This
study proposes training a LSTM( Long Short-Term
Memory) model for the purpose of forecasting seizures.
Additionally, transfer learning is implemented to fine-
tune the model between subjects. The model was trained
on data from the CHB( Children’s Hospital Boston)
Database. Once a model was made, it was fine-tuned
and tested on a subject to evaluate its performance. The
model achieved an accuracy of 95% when tested after
fine-tuning.

Introduction

Epilepsy affects 3 million Americans and 50 million peo-
ple worldwide. Nearly one-third of individuals with epilepsy
continue to have seizures despite medications intended to
prevent them( Sheob 2009). People who experience epilep-
tic seizures often experience fear, anxiety, and depression
in their everyday lives, largely because of the fear of an
unpredictable seizure. Epileptic seizures may come in sev-
eral stages: most notably the ictal phase, which includes
the seizure itself, the preictal phase, a period before the
seizure begins, and the postictal phase, which occurs af-
ter the seizure. Some people with epilepsy may have some
symptoms associated with the preictal phase, but others have
little or no warning( Stirling et al. 2020).

EEG( electroencephalography) is a method for measur-
ing neurological signals. An EEG reads the fluctuations of
voltage at various locations around a subject’s head. These
fluctuations give insights into the state and activity of corre-
sponding regions of their brain. The many ways the voltage
sensors can be placed are called montages. EEG data can be
collected non-invasively so it has real and meaningful poten-
tial to detect, classify, and forecast seizures without harm-
ing the individual. EEG has traditionally been interpreted
by specialists which requires extensive training( Patel et al
2020).
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Professionals have noted a recognizable difference in the
patterns of epileptic subjects in a preictal phase. These pat-
terns are often measurable physiologically( Patel et al 2020).
This gave researchers hope that oncoming seizures could be
predicted, however, the expression of the preictal period on
an EEG between subjects can be very different(Sheob 2009).

Before features are extracted from the data, it is common
to do some preprocessing to remove artifacts. Usually, any
signal caused by the power to the EEG recording device is
removed. Often the spectrum of frequencies is shortened,
either by removing very high-frequency data or very low-
frequency data( Truong, 2018).

Because EEG is a well-established discipline that has
been used by researchers for many years, many types of
feature extraction have been developed. measuring spectra
power is one of the most common, as well as strategies to
quantify frequency like fast Fourier transform and discrete
wavelet transform, are very common. Additionally, many
approaches look for spikes or other recognizable patterns.
These approaches, and others, have traditionally been used
in interpreting EEG signals and have been proven to be able
to identify Seizures( Tsiouris et al. 2018). This study at-
tempted to perform minimal preprocessing because the ef-
fectiveness of these strategies in the field of machine learn-
ing is not well established( Delorme, 2023).

Some ideas have been put forward pertaining to seizure
forecasting. Mona Nasseri et al. have proposed an ambu-
latory seizure prediction system in two parts. One part is
implanted invasively to receive more accurate EEG signals,
and one component is worn on the wrist. When a seizure
is forecast according to a model, the wrist-worn piece will
give the wearer advance warning. This could do a tremen-
dous amount to free wearers from the fear of unexpected
seizures( Nassari et al., 2021).

Related Work

Several studies have attempted to forecast the onset of
seizures prior to the ictal phase. Primarily four classification
strategies can be found in the literature to solve this prob-
lem: SVM, CNN, LDA, and LSTM. SVM( support vector
machines) are a strategy that seeks to find the maximum dis-
tance between data on opposite sides of a boundary. LDA
(linear discriminant analysis) is a statistical tool similar to
ANOVA. CNN( convolutional neural network) is a type of
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machine learning primarily used to analyze images. LSTM(
long short-term memory) is a form of deep learning which is
often used in language processing. Table 1 shows a selection
of previous work done forecasting seizures on the CHB-MIT
scalp EEE Database.

In 2018, Tsiouris et al. achieved a very strong result using
an LSTM. This team used a wide variety of feature extrac-
tion techniques to provide the model they used as much data
as possible; they made use of cross correlation, time domain,
frequency domain, and graph theory to extract information
from the data and provide it to the model. They corrected
for the imbalance in the data by oversampling data from
the period before a seizure. The model made by this team
was trained on each subject separately. the resulting model
achieved a sensitivity of 99.84% on a window of 2 hours be-
fore a seizure, and 99.7% on a period of one hour before(
Tsiouris et al. 2018)

Truong et al. created a model that was more generalizable
than many others. They chose a 2-dimensional CNN to ex-
tract features from the signals instead of providing the model
with many features they extracted themselves, although, a
short-time Fourier transform was utilized. Once their model
was completed, it could be applied to new patients without
retraining. To overcome the imbalance in their dataset, they
developed a method of oversampling data from the period
before a seizure by using a sliding frame. This generates
data that is unique but shares some data with overlapping
windows. To reduce the occurrence of false positives, the
team took data from several consecutive samples and only
reported a positive prediction if a predetermined number of
samples predicted one. Their approach achieved a 75% sen-
sitivity rate on data from the CHB-MIT scalp EEG Database.
They used two additional databases( Truong et al 2018).

Problem Statement

Despite many successes with different types of models, there
are still shortcomings that will need to be overcome. Many
of the high-performing models are trained on a specific case.
This has advantages as it helps improve the metrics of the
model, but it also means that the model cannot be general-
ized to new subjects easily and may require extensive train-
ing to apply to a new subject. The most useful model should
have very high accuracy, a low frequency of false positives,
be very generalizable, and be simple.

In order to make a seizure forecasting system that does
not need to be trained on each subject individually, this study
proposes a transfer learning model. A robust model has been
generated using data from many subjects. Once the model is
trained it has been fine-tuned with a minimal amount of data
from a new subject. Transfer learning helps to relax some of
the assumptions normally required of training data. In trans-
fer learning, data does not need to be independent, identi-
cally distributed to the test data, and very abundant( Tan et
al. 2018). By the use of transfer learning and LSTM, a model
can be made which can be very quickly fit to new subjects
but which will also be effective at forecasting encroaching
seizures.

Dataset

The CHB-MIT Scalp EEG Database( Children’s Hospital
Boston-Massachusetts Institute of Technology Electroen-
cephalogram Database). is a collection of EEG recordings
from 22 subjects with intractable seizures. The dataset has
cases from 5 male and 17 female subjects who range in age
from 3 to 22 years old. One female subject was repeated
several years later and is recorded as a second dataset. Data
were collected for several days after their anti-seizure medi-
cation was removed. The dataset contains 916 hours of con-
tinuous recordings at 256Hz. the recordings were made us-
ing signals from 23, 24, or 26 sensors. The electrodes were
placed using the international 10-20 system( Shoeb, and
Guttag, 2010).

173 seizures are indicated in the dataset. each seizure was
annotated by experts to show when it began and ended. The
recordings are divided into one-hour data sets. Each subject
has between 9 and 42 data sets. 129 data sets contain at least
one seizure. A 24th subject was added to this database af-
ter the initial 23, however, the records do not contain record
start times so that subject is not included in the following
analysis.

Methodology
Broadly, the plan for this study was.

1. The EEG data will be read using mne in python
2. The data will have a high pass filter at 0.2Hz applied to

remove noise

3. The data from most of the subjects will be re-balanced

using SMOTE and under-sampling to make the training
groups close to 50% of each label.

4. the subject randomly selected for fine-tuning will have

their data normalized, but not re-balanced.

5. The data will be split up into parts for training, testing,

and validation.

6. The training data will be used to train a model

7. That model will then be fine-tuned on a small portion of

data taken from one subject not previously used to fit the
model

8. The training data will be validated to assess the model and

the applicability of the approach

The data EEG data is processed into frames that have 18
channels and 600 time steps per channel. 600 time steps rep-
resent about 2.34 seconds of EEG recording. These frames
are labeled according to whether a seizure occurs in a speci-
fied period after the recording ends; the period for this study
is one hour. This period should roughly align with the pre-
ictal period. Frames that include seizures are excluded. All
other frames are shuffled along with their label. Frames are
normalized using Z-score normalization. It is worth men-
tioning that each frame is normalized independently, not
normalized by subject, or by channel data outside that pe-
riod.

The data is inherently very imbalanced with far more data
coming from periods when nothing is indicated than from
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ol Q

Authors Nurpber of Classifier SensitivityIFP/h Preictal .
subjects length (min)

Zhang and Parhi |17 SVM 98.68 0.046]60
Cho et al. 21 SVM 82.44 - 5
Alotaiby et al. 24 LDA 89 0.39 |120
Truong et al. 13 CNN 81.2 0.16 |30
Tsiouris et al. 24 LSTM  [99.84 0.02 120

Table 1: A table of previous work

the period of interest before a seizure. Data is considered
imbalanced when one label occurs far more frequently than
another. The class with the greater proportion of labels is
called the majority class, while the class with fewer labels
is called the minority. Imbalanced data can prevent a model
from fitting to data correctly ( Chen, Chang, and Guo, 2021).
In order to address this, two strategies have been imple-
mented on the data in this study: near miss under-sampling,
and SMOTE. Near miss under-sampling is a strategy that
seeks to remove data from the majority class to reduce the
size of that class and decrease the difference in the sizes.
It attempts to remove data that resembles the other classes
such that the remaining data is as distinct as possible and the
model can train more easily. SMOTE( Synthetic Minority
Oversampling Technique) is a tool that attempts to generate
new data that resembles the minority class. Chen et al. have
noted that SMOTE tends to perform better on EEG data than
under-sampling. In this study most of the re-balancing was
done using near-miss under-sampling, SMOTE was not per-
mitted to increase the size of the minority class by more than
50% for any given subject. Each subject was re-balanced
separately so that SMOTE would generate new seizure data
for each subject.

The model selected for the analysis has convolutional lay-
ers, a LSTM, and dense layers. It is expected that the con-
volutional layers find features in the data coming from each
of the EEG sensors. This data is then fed into a max pooling
layer in part to reduce the amount of time information being
fed into the LSTM( long-short term memory). Up until this
point in the model, the data from the 18 channels( the data
from the 18 sensors in the bipolar montage selected for this
study) has been left individual. The work of combining that
data is left up to the LSTM and the subsequent dense net-
work. This scheme was selected because the channel data is
unordered, so a CNN performed poorly in finding patterns.
The dense network at the end of the model is the only portion
of the model that will be altered during fine-tuning.

Results

To create a model that would be as accurate as possible,
all of the subject data available was used except for sub-
ject chb12 who was randomly selected to be excluded for
testing. The training data was re-balanced to include 47.3%
data that is inside the period of interest. The period of inter-
est for this trial was 60 minutes. From the balanced dataset,
0.5% was set aside for testing, this accounts for 2419 data

points. These data points are separate from subject chbl2,
whose data is also set aside. The remaining 484,000 or so
data points were used for training the model. The model de-
scribed above achieved an accuracy of 88.45% with a loss of
0.245. figure 2 shows a confusion matrix of its predictions
compared to the actual labels. It had a sensitivity of 88.15%
and a specificity of 89.08%.

The model above however performed meaningfully worse
when applied to real-world data. A set of testing data taken
from subject chbl2(deliberately excluded from the training
set) contained 3537 datapoints indicated as being outside
the period of interest, and only 154 inside that period. In
this case, the period of interest was one hour. When the
model above was applied to this testing data without any
fine-tuning, it only achieved 43.15% accuracy and had a loss
of 1.975. Figure 3 shows the confusion matrix for this trial.

The model above was then fine-tuned on the data from
subject chb12. About 9.5% of the data from this subject was
used to fine-tune the model. 85% of the remaining data from
this subject was used to test the model. Some data was la-
beled as validation data, but it was not used for either. The
convolutional layers and the LSTM were locked so that they
would not train. After locking the model, it had 8,444 train-
able parameters. 66,360 were non-trainable. The model was
fine-tuned for 12 epochs, after which it was evaluated on the
same testing data it had been tested on previously( a distinct
dataset from the one being used for training). The model af-
ter this fine-tuning achieved 95.88% accuracy and a loss of
0.191. The confusion matrix for this test can be seen in Fig-
ure 4. This model has a sensitivity of 0.5% and a Specificity
of 96.1%.

Conclusion

The CNN-LSTM model seems to be effective at forecast-
ing approaching seizures at a period of one hour prior. Ad-
ditionally, transfer learning effectively steered a previously
trained model to predict seizures with a minimal amount of
fine-tuning. Additional work should be done to verify these
results. They should be cross-validated to prove they are ef-
fective in many subjects. Additionally, The model should
also be tested on non-shuffled data to search for patterns in
its false labels.
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Figure 1: The Layout of The Highest Performing Neural
Network.

This model is the highest-performing model found in this
study, although better ones may exist elsewhere. It uses con-
volutional neural networks and a LSTM to find features, max
pooling to reduce the number of timesteps, and a dense neu-
ral network to classify the data.

Model Performance on Seen Subjects
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Figure 2: A confusion Matrix of the selected model

this matrix shows the accuracy of the select model’s predic-
tions compared to the actual labels. It was tested on a testing
dataset of 2419 data points that was balanced at 47.3% of
data inside the period of interest(positive) and 52.7% out-
side the period of interest(negative), both the model and the
testing data in this figure exclude subject chb12.

Model Performance Without Fine-tuning

Percentage Predicted Values
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Figure 3: A confusion Matrix of the selected model on
data from subject chb12 This matrix shows the considerably
higher failure rate on data that resembles real-world data.
The imbalanced labels in the testing data may have caused
the model to perform considerably worse.
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Model Performance With Fine-tuning
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Figure 4: Performance of a fine-tuned model

This confusion matrix shows the performance of a model
after being fine-tuned. It is tested on the same testing data as
Figure 3.
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Abstract

Brain Computer Interfaces (BCls) allow users to con-
trol an external device with only their mind. However,
the electroencephalography (EEG) signals that are gen-
erally used for the operation of these BCIs are noisy
and high dimensional, making it difficult to classify fine
motor movements such as individual finger flexes. Ad-
ditionally, brain states across different patients vary, and
brain states can even vary between recording sessions,
making it difficult to develop a classification model that
generalizes well. This means that BCIs generally re-
quire a costly and time consuming tuning period for
each new user. The calibration of BCIs to detect the
movement of individual fingers is also difficult because
signals from different fingers are very similar to one
another. These challenges have made it difficult to use
BClIs for practical purposes. However, with the advent
of deep learning, features can now be automatically ex-
tracted from data and large datasets can be leveraged to
train powerful models. This study applies deep learning
techniques and models to finger flexion data in order to
create better classifiers. We also explore the possibility
of subject transfer in this domain.

1 Introduction
Brain Computer Interfaces

Brain computer interfaces (BCIs) are devices that allow for
direct communication between a human brain and an exter-
nal device (Wolpaw et al., 2002). These devices read brain
signals acquired through various methods such as Electroen-
cephalography (EEG) in order to decipher the intent of the
user and communicate this intent to the device the user op-
erates. This device can be anything from a wheelchair, com-
puter, or prosthetic. However, the types of signals commonly
used for BCI are difficult to classify because they have a low
signal to noise ratio and are often non-stationary (Khademi
et al., 2023). The signals are also easily contaminated by
artifacts such as muscle twitches, eye blinking, static elec-
tricity or other irrelevant background brain processes. EEG
signals are measured with an electrode cap that sits on the
scalp, meaning that there is a layer of skin and bone be-
tween the electrodes and one’s actual brain. Furthermore,
there is a limit to how many electrodes can be placed on an
EEG cap, limiting the spatial resolution of the brain signals.
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Because of these difficulties interpreting electrical brain sig-
nals, BCIs have not been adapted for everyday use. Machine
learning models are not able to obtain very accurate classi-
fication results on subtle brain signals, such as those repre-
senting fine motor movements or emotional states. However,
with the increasing advances in deep learning, there is an in-
creased ability to bypass manually cleaning and extracting
the important aspects of the data by relying on the model it-
self to do that. These technological improvements may allow
us to achieve better classification accuracy results on previ-
ously unsolved BCI applications and improve the usability
and functionality of BCIs.

Motor Imagery

One useful application of Brain computer interfaces is Mo-
tor Imagery (MI) classification. Motor imagery is the imag-
ination of an intended motor movement, such as moving
one’s hand or closing one’s fist. This imagination can show
up in the brain signal as an event related desynchroniza-
tion, which is a desynchronization from the baseline brain
rhythm, or event related potential, which is strong polariza-
tion of the brain signal. MI is a popular BCI study paradigm
because of the many potential applications of being able to
interpret MIs. There have been significant advancements in
the field, with classification accuracies in the 90s (Hekmat-
manesh et al., 2020) for individual subjects. However, most
studies focus on differentiating the signals that come from
more general movement paradigms like left and right hand
movements, and do not attempt to classify fine motor move-
ments like individual finger flexions. This may be because
finger flexions are controlled by a small and crowded re-
gion on the brain, and these brain signals are less distin-
guishable than brain recordings of more general motor im-
agery paradigms such as the right and left arm paradigm. In
addition to the inherent difficulties distinguishing between
fine motor movements, there are not many publicly available
datasets demonstrating the finger flexion paradigm. In 2008,
the BCI Competition IV (?) released a dataset of ECoG
recordings of 3 subjects. This was one of the first finger
movement datasets released publicly, however ECoG data is
obtained through invasive brain surgery, which is not prac-
tical for the average user, and the recordings released were
of physical motor movement, not motor imagery. In 2018,
Kaya et al. (Kaya et al., 2018) released a large dataset of
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motor imagery paradigm EEG recordings, which included 8
subjects who performed finger flex paradigm experiments.
Because of the nature of EEG recordings, the spatial dimen-
sion of the signal is less precise and therefore EEG data is
harder to work with than ECoG data.

Deep Learning Techniques

Recently, there has been a huge surge in the use of deep
learning techniques in the fields of computer vision and nat-
ural language processing. Deep learning refers to the use of
multilayer, or “deep” neural networks that are both more
complex and more powerful than previous machine learn-
ing models. These models employ large amounts of data
and many parameters in order to create better predictions.
Popular deep learning architectures are Convolutional Neu-
ral Nets (CNNs), Recurrent Neural Nets (RNNs), and Trans-
formers. Because deep learning techniques are able to auto-
matically learn high level features from raw data, they are
able to bypass the complex and intricate task of feature ex-
traction. Because of this property, deep learning has begun
to be applied to various signal processing tasks, including
the classification of EEG signals for BCIs. Based on a liter-
ature review of deep learning techniques that have been ap-
plied to BCI development, CNNs are by far the most popular
deep learning model, and while CNNs are usually used by
themselves, they are also combined with other deep learning
models in hybrid architectures (Altaheri et al., 2021).

Subject Transfer

The classification accuracy for finger movements on indi-
vidual subjects is not high, and no substantial attempts on
subject transfer have been made in this domain. There is
much room for improvement in classifying finger flexions,
as the classification of other motor imagery paradigms have
reached much higher accuracies. Being able to have a model
trained on one subject perform well on another subject, or
“Transfer learning”, is important for practical implementa-
tion of BCIs. However, due to the differences between peo-
ples’ brains, this has been pretty difficult to successfully im-
plement. Because deep learning techniques are designed to
automatically extract features and look for similarities be-
tween the data, we hope that deep learning can perform bet-
ter on subject transfer because the model will be able to de-
termine the important commonalities between subjects.

2 Problem Statement

In order for BCIs to have practical applications, the problem
of decoding fine motor movements must be solved. By ana-
lyzing EEG recordings of finger flex data, we hope to apply
deep learning techniques to improve the classification accu-
racy of these motor imageries and develop more useful BCI
systems.

3 Related Works

In order to develop a model that can accurately classify fin-
ger flexions, we look at the preprocessing, feature extraction,
and classification techniques used in past models and com-
pare their classification accuracy results.

Data

The EEG data that is used for this study is the data from
the Kaya et al 2018 dataset, which consists of 19 recording
sessions that were administered on 8 subjects. The EEG sig-
nals are recorded in 200 and 1000 Hz, but downsampled to
200 Hz for consistency, and the electrode cap used was an
EEG-1200 JE-921A consisting of 19 electrodes in the stan-
dard 10/20 configuration. Each recording session consists of
about 900 trials where a cue is shown for 1s and then there is
a rest period of 1.5-2.5s after the cue disappears. There are
five possible cues, one for each finger. The subjects were in-
structed to imagine the finger movement of the finger shown
one time per cue.

State of the Art

For the Kaya et al dataset (Kaya et al., 2018) there have
only been four relevant studies utilizing it apart from the
study that originally released the dataset. In the past five
years, there has not been much improvement on the classifi-
cation performance on this dataset. A variety of architectures
and feature extraction methods have been explored, how-
ever even models that have performed well on other datasets,
such as EEGNet, only achieve classification accuracy values
in the 50s (Limbaga et al., 2022) (Lawhern et al., 2018). The
highest classification accuracy on the dataset that has been
reported was 77% using an autonomous deep learner (ADL),
however that model was only tested on a subset of the sub-
jects (Anam et al., 2020). There are also a few other EEG
finger flex paradigm datasets, however these datasets were
created for specific studies and have not been released pub-
licly. Liao et al (Liao et al., 2014) measured EEG signals
from 11 subjects in their right hand only, on all five finger
flexes. They extracted features by applying principal com-
ponent analysis to power spectral density data. The model
designed to classify these signals was a SVM and had a clas-
sification accuracy of 39% when decoding individual fin-
ger movements (Xiao and Ding, 2015). Another study by
Alazrai et al measured 18 subjects on all five fingers of the
right hand (Alazrai et al., 2019). In this study, they distin-
guished between different types of finger movements, yield-
ing four classes that corresponded to a thumb movement
and two classes for each of the other fingers. Their model
utilized quadratic time-frequency distribution based features
and employed a SVM classification strategy on two layers -
the first layer classified the finger that the signal represented
and the second layer classified the specific movement. On
the finger-level classification, their model achieved an ac-
curacy of 85.85 £ 1.1%, far higher than any other model,
however, this study utilized more data than the other models
which may have contributed to the impressive results.

Model Architecture choice

Most classifiers for the finger flexion paradigm have been
standard machine learning models, such as SVMs and RF
models. There have been a few deep learning architectures
applied to finger flex classification, such as EEGNet, which
is a CNN, and the ADL described in Anam et al 2020. There
have not been any studies that utilize a transformer based
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Table 1: Studies utilizing Kaya et al. 2018

Study Year | Feature extraction Model Architecture Classification Accuracy
Kaya et al. 2018 | Fourier Transform SVM 43 £ 10%
Anam et al. 2019 CSP SVM, kNN, RF, Linear discriminant analysis RF - 54%
Anam et al 2020 CSp ADL 77%

Limbaga et al. | 2022

EEGNet (CNN) 51.74% w/ TL

Luo et al. 2023

Siamese network

49.02%

model. A transformer is a type of deep neural net that relies
on an attention mechanism to keep track of long distance de-
pendencies in data (Vaswani et al., 2023). This architecture
is the state of the art in natural language processing and com-
puter vision applications, and is beginning to be explored in
the domain of signal processing. A transformer is a suitable
choice for EEG signals, since EEG signals are a type of se-
quence and there may be long range dependencies in it (Sun
et al., 2021). Previous models show that the transformer is
more effective when it is combined with a CNN that is de-
signed for feature extraction. We take inspiration from an ex-
isting convolutional transformer to develop our own convo-
lutional transformer model to classify finger flexions (Song
et al., 2023).

4 Methods

Unlike the previous models trained on these datasets, our
proposed method for classifying finger flexions does not in-
clude preprocessing and feature extraction, and instead re-
lies on the convolutional layers of the deep neural network
itself to extract features and classify them. We epoched the
raw data into separate trials, starting at the cue and ending
one second after the cue, which is when the cue was removed
from the screen. The data is downsampled to a frequency of
200Hz for consistency, which results in 200 data points per
sample. This data is directly fed into the model, which starts
with a CNN that extracts temporal features. This CNN then
compresses the data on the space dimension, yielding an out-
put of shape (64, 1, 173). These extracted features become
the embeddings for the transformer part of the model. The
transformer consists of 8 layers with 16 attention heads in
each layer. The encodings developed by the transformer are
then fed to two fully connected layers that do the final clas-
sification. This model was first tested on each of the subjects
independently, training on 70% of each subject’s data and
testing on the remaining 30%. After finding that the model
performed well on individual subjects, the model was used
to perform transfer learning. To do that, a “leave-one-out”
strategy was used, where the model was trained on all the
subjects except the test subject, and then fine-tuned on the
test subject. We fine tuned on 0%, 30% and 40% of the test
subjects’ data, seeing improvements as more fine tuning was
used.

5 Results

We evaluated our models using classification accuracy,
recording the model’s classification results on the five fin-
gers for each subject, and then looking at the average results

from that subject.

Single Subject

Using this convolutional transformer hybrid model, we find
that we make an improvement over other deep learning mod-
els that classify on raw data. This model achieves a maxi-
mum accuracy of 70% on subject E, averaging around 56%
accuracy across all subjects.

Subject | Transformer
Subj A 41.55
Subj B 56.46
Subj C 68.30
Subj E 72.04
Subj F 56.32
Subj G 52.55
Subj H 39.15
Subj I 57.81

Table 2: Classification accuracy on single subject

Subject Transfer

Since this model achieved an acceptable classification ac-
curacy, we attempt to use this model to perform transfer
learning between subjects. Although the results without fine-
tuning are not that high, with 40% of the test subject’s data,
the fine-tuned results are almost as good as results obtained
from subject dependent classification. This implies that there
are underlying commonalities between different peoples’
representations of finger movement motor imageries, and
that there is a generalizable ground truth that underlies these
motor imageries.

Subject | 40% FT | 30% FT | 0% FT
A 43.98 39.64 35.65
B 53.96 48.99 37.65
C 66.58 55.48 39.28
E 69.05 63.79 39.96
F 54.55 49.90 31.28
G 53.37 52.07 42.29
H 39.71 41.95 36.98
I 59.95 55.81 45.59
Average | 55.14 50.84 38.59

Table 3: Results with Transfer Learning
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Conclusion

Our hybrid convolutional transformer model outperformed
other state of the art deep learning models, indicating that the
transformer architecture is well suited to the classification
of finger flexions. Although this model did not outperform
the ADL model, the ADL model used a feature extraction
method and did not test on all of the subjects either, which
means the ADL model may not be able to generalize as well
past the scope of that study. More importantly, this model is
able to take the raw features from each subject, and performs
well on all subjects, making it easy to apply this model onto
new data.
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Abstract

Brain-Computer Interfaces (BCls) have demonstrated im-
mense potential in a myriad of applications, from neuro-
prosthetics to rehabilitation. However, the practical deploy-
ment of BCIs is often impeded by the significant time and
resources required to train the classifier on individual sub-
ject data. This challenge necessitates efficient solutions that
maintain high performance while reducing the time and ef-
fort needed for model training. This study addresses this issue
by exploring the use of transfer learning in conjunction with
Wavelet Packet Decomposition (WPD), Common Spatial Pat-
terns (CSP), and Particle Swarm Optimization (PSO) for
EEG classification. The proposed methodology is rigorously
evaluated on three renowned motor imagery (MI) datasets
from the BCI competitions III and IV. The preprocessing
pipeline draws inspiration from the Delorme 2023 approach,
enhanced by four additional preliminary preprocessing steps.
CSP and WPD are employed for feature extraction, and PSO
is deployed for dimension reduction. The proposed approach
exhibits superior performance compared to state-of-the-art
models, not only on transfer learning-related tasks but also
single subject classification on all three datasets. The results
underscore the effectiveness of pre-trained models and sub-
ject transfer learning in significantly reducing model training
time without compromising accuracy, offering promising ad-
vancements in real-world BCI applications.

1 Introduction

As a transformative technology at the nexus of neuroscience,
computer science, and engineering, Brain-Computer Inter-
faces (BCIs) have begun to profoundly reshape numerous
fields, including but not limited to neuroprosthetics and re-
habilitation. BCIs work by forging a direct communication
pathway between the brain and external devices, thereby
transforming brain activity into control signals for these de-
vices. This innovation has profound implications, especially
for individuals with severe motor impairments, as it pro-
vides an alternative conduit for communication and control
that does not rely on the body’s peripheral nerves and mus-
cles. BCIs, therefore, herald a new level of independence for
such individuals, offering them the ability to interact with
the world around them in ways that were previously unimag-
inable. Yet, the reach of BClIs is not confined to those with
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motor impairments. They present a vast horizon of possibil-
ities for augmenting human cognition, elucidating the intri-
cacies of brain processes, and even transforming entertain-
ment through gaming applications. The potential for BCIs to
revolutionize cognitive training and provide neurofeedback
solutions accentuates their societal significance, thus mak-
ing the advancement of BCI technology a pressing priority
in scientific and engineering research.

However, the broader deployment of BCIs often encoun-
ters hurdles primarily due to the time and resource demands
associated with training classifiers on subject-specific data.
The complexity of brain signals, their susceptibility to non-
stationarity and noise, and inter-individual variability ne-
cessitate sophisticated machine learning algorithms that of-
ten require significant computational resources and time for
training.

In the context of EEG-based BClIs, these challenges are
further amplified. EEG signals, which capture the brain’s
electrical activity via electrodes placed on the scalp, ex-
hibit high temporal resolution but comparatively lower spa-
tial resolution. They are typically characterized by a high
degree of noise and variability, both within and between
subjects, which compounds the difficulty of training models
on subject-specific data. This task not only places a heavy
computational burden but also incurs practical challenges
such as participant fatigue and frustration, alongside finan-
cial implications associated with individual calibration ses-
sions. These factors limit the broader adoption of BCI sys-
tems, thereby highlighting the pressing need for effective
methodologies that can maintain high performance while re-
ducing the resource-intense requirements of model training.

Subject transfer learning, a strategy where a model pre-
trained on data from some subjects is applied to new, un-
seen subjects, has slowly been emerging as a promising so-
lution for EEG-based BCIs. By leveraging knowledge from
pre-existing subjects to new subjects, the time-consuming
model training process can be significantly reduced. How-
ever, for this strategy to be effective, it necessitates a robust
approach incorporating signal processing, feature extrac-
tion, and dimension reduction techniques. Currently, subject
transfer methods tend to trend towards lower performance
when compared to experiments.

This paper proposes an integration of subject transfer
learning with Wavelet Packet Decomposition (WPD), Com-
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mon Spatial Patterns (CSP), and Particle Swarm Optimiza-
tion (PSO). WPD, a time-frequency signal analysis tool, is
used to dissect EEG signals into different frequency bands.
CSP, a spatial filtering technique commonly employed in
BCI applications, is then used for feature extraction, which
enables the differentiation between mental tasks based on
the spatial patterns in the EEG signals. Finally, PSO, a
population-based stochastic optimization technique, is im-
plemented for dimension reduction in the feature space, and
performance optimization.

The proposed methodology is rigorously evaluated on
three renowned motor imagery (MI) datasets from the BCI
competitions IIT and IV. The preprocessing pipeline is based
on the Delorme 2023 approach, supplemented by four addi-
tional preliminary preprocessing steps to ensure data qual-
ity. The results indicate an improved performance compared
to state-of-the-art models, in both transfer learning-related
tasks and single subject classification.

2 Related Works
2.1 Evolutionary Dimension Reduction

Plenty of work in the domain of seizure prediction using
EEG classification, has demonstrated the potential of par-
ticle swarm optimization(PSO)-based methods as a means
of distilling down feature sets to their most representative
constituents using PSO-filtering or binary masking(1)(2).

The proposed dimension reduction methodology is
inspired by previous results demonstrating the effi-
cacy of evolutionary-based approaches in the realm of
BCI (3). However unlike previous PSO implementations
which reduce dimensionality in the spatial and spectral
dimension(4)(5), our method goes a step further and also re-
duces dimensionality in the temporal dimension, due to the
utilization of the Wavelet Packet Decomposition as opposed
to the Fourier Transform.

2.2 Subject Transfer Classification

Kang et al. 2009(6) pioneered the use of CSP to form co-
variance matrices from various combinations of subjects,
thereby facilitating subject-to-subject transfer. They evalu-
ated numerous training and testing splits for each subject,
and achieved an impressive average CV accuracy of 75%.

Following up, Atyabi et al. 2013(4) delved into the use
of evolutionary algorithms, seeking to minimize training
time while enhancing performance for O-trial subject trans-
fer classification and fine-tuning subject transfer classifica-
tion. The 0-trial protocol they adopted mirrors ours: a clas-
sifier is trained on every subject bar one test subject and is
then entirely assessed on this test subject. The fine-tuning
subject transfer is an extension of the O-trial, whereby the
classifier is additionally trained on a small subset of the test
subject’s data. Their findings, indicating no significant dif-
ference after employing a 40% fine-tuning set, align closely
with our results.

Uran et al. 2019(7) explored the interplay between var-
ious learning methods and deep models to gauge subject
transfer performance. In their study, they scrutinized ”Stan-

5% 9

dard Learning”,’Distributed Learning”, ”Split Learning”,

and “Frozen Learning”. Each method systematically ad-
justed which sessions and subjects the model was trained
and tested on. Notably, their "Frozen Learning” approach,
which involved freezing layers during training, reached an
accuracy of 77%.

The 2022 studies by Zaremba et al.(8) and Theng et
al.(9) both employed 2D convolutional neural networks and
adopted transfer learning protocols akin to ours (0-trial and
fine-tuning). However, Zaremba et al. also experimented
with Cross-Dataset subject transfer, whereby a classifier was
trained on data from all subjects in one dataset and tested
on each subject within another. This method yielded state-
of-the-art results and bolstered the notion of a universally
shared motor imagery construct across brains.

Finally, Weit et al. 2023(10) implemented Multi-Source
Transfer Joint Matching. They achieved this by mapping
each subject’s spatial covariance matrices in a tangent space
using a compounded centroid matrix, coupled with ensem-
ble methods. Their findings were comparable to those of
Zaremba et al. 2022, further strengthening the understand-
ing of subject transfer classification.

2.3 Current State-of-the-Art

In order to robustly evaluate the effectiveness of the pro-
posed method, we conducted comparative analyses on two
distinct experimental paradigms: single-subject classifica-
tion and subject transfer classification.

For the single-subject paradigm, our method’s perfor-
mance was contrasted against five contemporary, state-of-
the-art studies for each dataset employed. This comparison
helped us gauge where our method stands relative to existing
techniques, and to discern any potential areas of improve-
ment.

For the subject transfer paradigm, we juxtaposed our re-
sults against recent influential studies that have explored the
realm of transfer learning applications in the context of BCI.
This comparison for each respective dataset provided an as-
sessment of our method’s performance within the specific
ambit of subject transfer tasks.

By holding our method up against these current bench-
marks in the field, we aimed to provide a comprehensive
picture of its relative strengths and weaknesses, ultimately
contributing to the ongoing dialogue about optimizing BCI
performance and accessibility.

2.3.1 Single Trial EEG The proposed method displayed
significant strides in performance over the existing state-
of-the-art approaches in the realm of single subject EEG
(STE) classification. Particularly on the BCI IV 1 dataset,
our method attained an impressive 5-fold cross-validation
accuracy of 93.1%, surpassing the current benchmark of
84.7%. Similarly, the BCI III 4a dataset showed remark-
able improvement with our method achieving an accuracy
of 99.0%, outshining the state-of-the-art accuracy of 95.3%.

In contrast, on the BCI IV 2a dataset, the performance
of our method remained in line with the current state-of-
the-art. Our PSO+WPD+CSP+SVM algorithm achieved an
accuracy of 95.4%, marginally lower but comparable to the
current best accuracy of 96.7%. This consistent performance
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Table 1: STE Classification State-of-the-Art Accuracy

Table 2: Subject Transfer Classification State-of-the-Art Ac-

BCI IV 1 Single Trial EEG State-of-the-Art curacy
Subject Reference/Method BCI 1V 1 Subject Transfer EEG State-of-the-Art
ID ®) (11 (12) (13) (14) Ours Test Reference/Method
A 0.816 | 0.669 | 0.855 | 0.881 | 0.874 | 0.958 Subject | 50%(9) | 50%(8) | (10) Ours
B 0.717 | 0.652 | 0.670 | 0.591 | 0.700 | 0.984 A 0.593 0.873 | 0.895 | 0.901
C 0.846 | 0.824 | NaN | 0.679 | 0.674 | 0.900 B 0.709 0.784 | 0.790 | 0.961
D 0.888 | 0.946 | NaN | 0.843 | 0.929 | 0.835 C 0.615 0.758 | 0.832 | 0.845
E 0.936 | 0.949 | NaN | 0.902 | 0.934 | 0.895 D 0.595 0.879 | 0.984 | 0.777
F 0.689 | 0.843 | 0.795 | 0.859 | 0.888 | 0.954 E 0.963 0.936 | 0.686 | 0.813
G 0.932 | 0.812 | 0.945 | 0.922 | 0.932 | 0.991 F 0.575 0985 | 0984 | 0914
Avg. 0.832 | 0.813 | 0.816 | 0.811 | 0.847 | 0.931 G 0.872 1.0 0.817 | 0.947
BCI IV 2a Single Trial EEG State-of-the-Art Avg. 0.703 0.844 | 0.855 | 0.880
Subject Reference/Method BCI 1V 2a Subject Transfer EEG State-of-the-Art
ID (15) (16) a7n (18) (19) Ours Test Reference/Method
A0l 0.997 | 0.868 | 0.898 | 0.854 | 0.906 | 0.939 Subject | 50%(9) | 50%(8) | (17) @) Ours
A02 0.967 | 0.646 | 0.693 | 0.707 | 0.660 | 0.952 A01 0.651 0.818 | 0.898 | NaN | 0.869
A03 0.981 | 0.958 | 0.910 | 0.952 | 0.951 | 0.937 A02 0.488 0485 | 0.694 | NaN | 0.897
A04 0917 | 0.674 | 0.769 | 0.803 | 0.781 | 0.957 A03 0.724 0.788 | 0910 | NaN | 0.854
A0S 0.932 | 0.681 | 0.602 | 0.703 | 0.800 | 0.954 A04 NaN 0.622 | 0.769 | NaN | 0.907
A06 0.981 | 0.674 | 0.682 | 0.684 | 0.625 | 0.947 A05 0.429 0.572 | 0.602 | NaN | 0.907
A07 0.996 | 0.806 | 0.896 | 0.910 | 0.917 | 0.980 A06 0.348 0.633 | 0.682 | NaN | 0.887
A08 0.992 | 0972 | 0902 | 0.864 | 0.889 | 0.995 A07 0.475 0.769 | 0.896 | NaN | 0.947
A09 0.942 | 0.924 | 0.871 | 0.845 | 0.830 | 0.924 A08 0.418 0.674 | 0902 | NaN | 0.950
Avg. 0.967 | 0.800 | 0.803 | 0.813 | 0.818 | 0.954 A09 0.708 0.807 | 0.871 NaN | 0.856
BCI III 4a Single Trial EEG State-of-the-Art Avg. 0.530 0.718 | 0.803 | 0.770 | 0.897
Subject Reference/Method BCI III 4a Subject Transfer EEG State-of-the-Art
ID (8) (20) (18) 21 22) Ours Test Reference/Method
AA 0.810 | 0.818 | 0.795 | 0.935 1.0 0.988 Subject | 50%(9) | 50%(8) (5) (6) Ours
AL 0.941 | 0.961 1.0 0.975 | 0.741 | 0.973 AA 0.661 0.756 | 0.860 | 0.6825 | 0.978
AV 0.641 | 0.725 | 0.725 | 0.937 | 0.679 | 0.988 AL 0.898 1.0 0.780 | 0.966 | 0.957
AW 0.921 | 0.921 | 0.955 | 0.963 | 0.901 1.0 AV 0.649 0.708 | 0.780 | 0.613 | 0.936
AY 0.936 | 0.903 | 0.885 | 0.955 | 0.893 1.0 AW 0.868 0.988 | 0.750 | 0.702 | 0.994
Avg. 0.850 | 0.866 | 0.861 | 0.953 | 0.845 | 0.990 AY 0.696 1.0 0.750 | 0.787 1.0
Avg. 0.754 0.858 | 0.784 | 0.750 | 0.973

further bolsters the effectiveness and robustness of our ap-
proach across diverse datasets.

2.3.2 Subject Transfer EEG Given the scarcity of pub-
lished work that attempts to address the challenge of subject
transfer generalizability using our fine tuning method, we
decided to benchmark our results against a diverse collec-
tion of transfer learning methodologies. This approach al-
lowed us to assess our method’s performance in a broader
context, and to identify and highlight the strongest perfor-
mances from each respective study.

Despite the varied approaches to subject transfer, our
method demonstrated a consistently superior performance
across all datasets. The 5-fold cross-validation accuracies at-
tained were 88.0%, 89.7%, and 97.3% on the BCI1V 1, BCI
IV 2a, and BCI III 4a datasets, respectively. These results
significantly outperformed the previous state-of-the-art ac-
curacies, which stood at 85.5%, 80.3%, and 85.8% for the
same datasets. This indicates not only the efficacy of our
approach but also its robustness when applied to different
datasets. Furthermore, when comparing our work to method-
ologies that utilized fine-tuning we used 10% less of the test

subject’s data, furthering the real world applicability of this
approach.

4 Methods

4.1 Datasets

Three motor imagery (MI) datasets from the BCI competi-
tions III and IV were utilized to evaluate the proposed meth-
ods. These include BCI IV 1, BCI IV 2a, and BCI III 4a.
Both IV 1 and IV 2a datasets comprise two classes: a foot
class and a left/right-hand class. On the other hand, IV 2a
is a 4-class dataset, incorporating left/right hand classes, a
tongue class, and a feet class. However, to maintain consis-
tency across datasets, only the left/right-hand classes and the
feet class are utilized from BCI IV 2a. Before commencing
the formal preprocessing, IV 1 and III 4a were downsampled
to a frequency of 250Hz. Furthermore, only specific chan-
nels were retained from each dataset: Fz, FC3, FC1, FCz,
FC2, FC4, C5, C3, Cl1, Cz, C2, C4, C6, CP3, CP1, CPz,
CP2, CP4, P1, Pz, P2.
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Table 3: Datasets Used

Dataset Classes | Sample Channels Subjects
Rate (Hz) (10-20)

BCIIV 1 2 1000 64 7

BCIIV2a | 4 250 22+3Eo0G 9

BCINI4a | 2 1000 118 5

Feature Extraction

WPD

Raw Data
(5 levels, 8 bands)
Y
Standardization cSP —> PSO
(4 components)
A

4 I
) Normalization
Preprocessing
Y
SVM Classification SVM Classification
(STE, FT, 0-Trial) (STE, FT, 0-Trial)

Figure 1: Overarching methodology employed for each of
the three experimental paradigms: single trial eeg (STE),
subject transfer with fine tuning (FT), and subject transfer
with no fine tuning (O-trial).

4.2 Preprocessing

The data preprocessing methodology adopted in this re-
search drew its inspiration from the approach outlined in
(23) . A deviation was introduced in the form of a modi-
fied threshold for Independent Component Analysis (ICA),
which was reduced to 80% compared to the initial 90%.
This adjustment was implemented to increase the sensitiv-
ity of artifact detection in the EEG data. Furthermore, an
enhancement to the initial methodology was made by inte-
grating four supplementary preprocessing steps prior to the
automated EEG data cleansing process.

4.3 Feature Extraction

Feature extraction plays an integral role in the process of
EEG signal classification, as it enables the translation of raw
EEG data into a meaningful set of features that are represen-
tative of the underlying mental tasks. It is during this step
that discriminative information is extracted from the prepro-
cessed EEG signals. This information encapsulates distin-
guishing characteristics of the different classes of motor im-
agery tasks and is crucial for the subsequent classification.
For EEG-based BCI systems, feature extraction is particu-
larly crucial given the complex, multidimensional nature of
EEG data. The high dimensionality, combined with a rela-
tively lower signal-to-noise ratio, necessitates a robust fea-
ture extraction strategy that can distil the relevant informa-

) ) o~ )
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Channels (250Hz)
~——— ~———— ~——
( 3 (_‘ r_\
Automated Common .
- - Notch Filter
EEG <€ Average [«
. N (50 Hz)
Cleaning Referencing
~—— ——— | N ——— ——
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)
Independent
Component » Epoching
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|

Figure 2: Preprocessing pipeline, implemented in MAT-
LAB using EEGLAB (24), details the steps applied to each
dataset. Notably, BCI IV 2a did not require notch filtering
and down-sampling as these steps were carried out during
data acquisition itself.

tion from the raw signals while filtering out noise and ir-
relevant components. This step is, therefore, instrumental in
enhancing the performance of the classifier. The proposed
methodology employs a combination of Common Spatial
Patterns (CSP) and Wavelet Packet Decomposition (WPD)
for feature extraction.

4.3.1 Common Spatial Patterns CSP is a popular
method in BCI applications for the processing of EEG
signals(22)(16). The goal of CSP is to yield spatial filters
that provide maximal discriminative power between two dif-
ferent motor imagery tasks. CSP accomplishes this by cre-
ating spatial filters that maximize the variance of the signal
from one class while minimizing the variance from the other.

The mathematical process behind CSP involves several
steps. First, let’s assume we have two sets of multivariate
EEG signals X; € RY*T and X, € R*T where C is
the number of channels and 7" is the number of time points.
These two sets represent two classes of motor imagery tasks.

The covariance matrices of the two sets are calculated as
follows:

1 1
¥ = fxlxlT ¥ = TXQXQT

Then, we compute the composite spatial covariance as:

Yo=Y+ 2o

Next, we perform an eigenvalue decomposition of 3 :

Y. =UPUT

where P is a diagonal matrix of eigenvalues and U is
a matrix of corresponding eigenvectors. We can find the
whitening transformation matrix P=2UT. The covariance
matrices Y1 and Y5 are then whitened:

Ezluhitened — PféUTlepfé Eg)hitened
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Given that Y {hitened 4 yywhitened — T we only need to
consider one whitened covariance matrix for the subsequent
generalized eigenvalue problem, say Y(hitened.

ZﬁuhitenedW — WA

where A is a diagonal matrix of generalized eigenvalues
and W is the matrix of corresponding eigenvectors. Each
column of W is a CSP spatial filter and can be used to
project the original EEG signals into the CSP feature space.
Thus, the variance of the projected signals would be maxi-
mally different for the two classes of motor imagery tasks.

The output of the CSP operation is usually the log-
variance of the filtered signals, which are then used as fea-
tures for the classifier:

features = log(var(W7' X))

In our implementation, CSP is utilized with four compo-
nents, no regularization, log-transformed, and no trace nor-
malization

4.3.2 Wavelet Packet Decomposition Wavelet Packet De-
composition (WPD) is a signal processing technique that
provides a flexible time-frequency representation of signals.
It is an extension of the Wavelet Transform (WT), a method
that decomposes a signal into a series of wavelets. Unlike
WT, which only applies wavelets to the approximation coef-
ficients, WPD applies wavelets to both the detail and approx-
imation coefficients, resulting in a richer and more detailed
representation of the original signal(25)(26)(27).

WPD relies on the use of wavelets, which are localized
wave functions obtained from a single prototype function
known as a mother wavelet ¢ (¢). The mother wavelet is
scaled and shifted in time to generate a family of wavelets
represented by 1, x(t) = 29/2¢)(2/t — k), where j and k
denote the scale and translation parameters, respectively.

Given a signal X (¢), WPD involves computing inner
products between the signal and the wavelets at various
scales and positions, resulting in a set of wavelet coeffi-
cients. The decomposition can be represented mathemati-
cally as follows:

N—-1
X(t) =Y cjuthin(t)
k=0

where ;1 (t) represents the wavelet packet functions,
which are constructed by translating and dilating the mother
wavelet ¢(t). Here, j is an integer that determines the scale
of the wavelet (i.e., the width of the wavelet in the time do-
main), and k is an integer that determines the position of the
wavelet. The coefficients c; . are given by the inner product
of the signal with the wavelet packet functions:

ek = (X(8), () = / X () (8)dt

In the context of this research, a Daubechies 10 (db10)
wavelet is used, and a 5-level decomposition is performed;
these parameters were deduced experimentally and other
wavelets and decomposition levels can be viewed in the sup-
plementary materials. At each level of the decomposition,

the coefficients represent the signal information at different
frequency bands. By extracting the coefficients from the Sth
level, we obtain 8 sets of coefficients, each providing infor-
mation about a specific frequency band of the original sig-
nal. These coefficients are then truncated or zero-padded to
ensure a fixed length for further analysis.

WPD is paired with CSP to extract discriminating spatial
and spectral features. The CSP operation is first applied to
the EEG signals to obtain spatial filters that maximize the
variance for different motor imagery tasks. The filtered sig-
nals are then processed with WPD to decompose them into
different frequency bands. The resulting features represent
the log-variance (from CSP) of the different frequency band
signals (from WPD) and can provide effective discrimina-
tive power for motor imagery classification tasks(28)(29).

4.4 Dimension Reduction

Dimension reduction, also known as feature selection, is a
broad term encompassing numerous techniques designed to
reduce the dimensionality, complexity, or overall size of a
dataset(30). Within the specific realm of EEG signals, sev-
eral methods have exhibited promising results. However,
Particle Swarm Optimization (PSO) and other evolutionary
strategies hold particular intrigue. Their versatility allows
for simultaneous dimensionality reduction across spectral,
spatial, and temporal domains, making them uniquely effec-
tive.

In our study, we employ an adapted version of PSO,
which we call Multi-Dimensional Particle Swarm Reduc-
tion (MDPSR) as a means to generate feature filters. Our
methodology to generate these filters expands upon the work
proposed in Atyabi 2017(5). The output filters from the PSO
reduction function as masks that apply matrix multiplication
of 1 or O to nullify features within each patient’s correspond-
ing feature vector. By honing in on the most informative fea-
tures, these filters facilitate the classifier to operate with im-
proved efficiency and heightened performance(4).

4.4.1 Particle Swarm Optimization (PSO) Particle
Swarm Optimization (PSO) is a bio-inspired optimization
method that manipulates a population of potential solutions,
known as particles, to iteratively improve upon a candidate
solution. This population-based stochastic optimization al-
gorithm draws inspiration from the social behavior observed
in bird flocks or fish schools. Each particle adjusts its po-
sition in the search space according to its own best known
position (pbest) and the best known positions of the swarm
(gbest), creating a balance between exploration and exploita-
tion.

Mathematically, the movement of a particle ¢ at time ¢ is
governed by the following equations:

vt = weolterrandy-(pbest;—a})+ex randy: (gbest' ~a})
)
it =al o @)

Here, v! represents the velocity of particle 4 at time ¢, z!
is the position of the particle in the search space, w is the in-
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ertia weight, ¢; and co are acceleration coefficients that con-
trol the influence of the personal and global best positions,
respectively, and rand; and rands are random numbers in
[0, 1]. The parameter w can be considered as a trade-off be-
tween global (wide-ranging) and local (nearby) exploration
of the search space.

4.4.2 Multi-Dimensional Particle Swarm Reduction
(MDPSR) Building upon the standard PSO, we intro-
duce the Multi-Dimensional Particle Swarm Reduction
(MDPSR). The main distinction of MDPSR is its ability to
handle multi-dimensional data, thus making it particularly
suitable for the context of EEG signals. Previous PSO-
Based methods have demonstrated efficacy in reducing
dimensionality in spectral and spatial domains(3), whereas
our method through the utilization of CSP and WPD, is
inadvertently performing reduction in all three domains
of EEG data (spectral, spatial, and temporal). MDPSR is
algorithmically expressed as the following:

Employed MDPSR Hyper-Parameters
* n_particles: 80

* n_Iterations: 200

* w_max: 1

e w_min: 0.9

e cl:2

e c2:2

4.5 Experiments and Results

The results of our study were generated from three dis-
tinctive experiments, each with different protocols:

— Single Trial EEG (STE): This approach involves
training a classifier on a subset (80% in our case) of a
single subject’s EEG data and testing it on the remain-
ing data, thereby creating a unique classifier for each
respective subject. This paradigm is widely adopted in
current real-world BCI implementations. We observed
that both the CSP+SVM and WPD+CSP+SVM meth-
ods outperformed their earlier counterparts. Addition-
ally, our inclusion of MDPSR further augmented this
improved performance, generating approximately an 8-
12% boost in classification performance for both fea-
ture extraction methods (CSP and WPD+CSP). Re-
markably, the MDPSR-enhanced WPD+CSP method
demonstrated superior performance on the BCI IV 1
and BCI IIT 4a datasets and held its own against the
state-of-the-art on the BCI IV 2a. As evaluation met-
rics, we employed 5-fold cross-validation (CV) accu-
racy and F1 score

— Subject Transfer with Zero Trial EEG (ST0): In
this paradigm, a classifier is trained on data from
every subject within a dataset, excluding a single
“Target Subject”. This pre-trained classifier is then
tested on all of the Target Subject’s data. This pro-
cess is iteratively repeated for each subject within
each dataset. Due to the structure of this approach,

Algorithm 1 Multi-Dimensional Particle Swarm Reduction
(MDPSR)

Require: Objective function, Number of particles (n),
Number of iterations (m), Maximum Inertia weight
(Wmax)» Minimum Intertia weight (wp;, ), Personal learn-
ing factor (cl), Social learning factor (c2)

Ensure: Global best position and score

1: Initialize each particle’s position randomly using n-
dimensional binary vector

2: Initialize each particle’s velocity randomly between -1
and 1

3: Set each particle’s best position to its initial position

4: Set each particle’s best score and global best score to
—00
5: for i = 1tomdo
6: for each particle do
7: Create a mask from particle’s position
8: if no elements in mask then
9: Set the index of maximum velocity in mask
to True
10: end if
11: Apply mask to features to get reduced features
12: Compute score using the objective function with
reduced features and labels
13: if score > particle’s best score then
14: Update particle’s best position and score
15: if score > global best score then
16: Update global best position and score
17: end if
18: end if
19: end for
20: Compute inertia weight w = wpax — § X Lma—min
21: for each particle do
22: Compute new velocity: vpew = W X Vog + ¢l X
rand() x (pbest — position) 4+ ¢2 x rand() x (gbest —
position)
23: Compute new position: if rand() < m%new
then position = 1, else position =0
24: if no elements in new position then
25: Set the index of maximum velocity in new
position to 1
26: end if
27: end for
28: end for

29: return global best position and score
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cross-validation is not applicable, thus, we evalu-
ated classifiers using standard test accuracy. Imple-
menting MDPSR in this context reduced the size of
each pre-trained target subject’s model by approxi-
mately 50-70%. However, performance between the
MDPSR-enhanced WPD+CSP+SVM and the standard
WPD+CSP+SVM was found to be similar on average.

Subject Transfer with Fine-Tuning (STF): Our fi-
nal experiment followed the same procedure as STO,
but introduced a fine-tuning step on the Target Sub-
ject’s data. We explored different levels of fine-tuning
(15%, 25%, 40%, 80%). Remarkably, results from the
MDPSR-enhanced method at a 25% fine-tuning level
matched those obtained by WPD+CSP+SVM without
MDPSR at 40%. This suggests that MDPSR not only
contributes directly to reducing dimensionality, but also
reduces the quantity of data required for fine-tuning.

Figure 3: Single Trial EEG Classification Performance using

Table 4: Best Performing Method For Each Subject

BCI IV 1 Best Methods
Subject Method Accuracy  Fl-score
A WPD+CSP+PSO+SVM STE 0.958 0.958
B WPD+CSP+PSO+SVM STE 0.984 0.985
C WPD+CSP+PSO+SVM STE 0.900 0.900
D WPD+CSP+PSO+SVM STE 0.835 0.834
E WPD+CSP+PSO+SVM STE 0.895 0.895
F WPD+CSP+PSO+SVM STE 0.954 0.953
G WPD+CSP+PSO+SVM STE 0.991 0.991
BCI IV 2a Best Methods
Subject Method Accuracy  Fl-score
A01 WPD+CSP+PSO+SVM STE 0.939 0.939
A02 WPD+CSP+PSO+SVM STE 0.952 0.952
A03 WPD+CSP+PSO+SVM STE 0.937 0.938
A04 WPD+CSP+PSO+SVM STE 0.957 0.957
A05 WPD+CSP+PSO+SVM STE 0.954 0.953
A06 WPD+CSP+PSO+SVM STE 0.947 0.947
A07 WPD+CSP+PSO+SVM STE 0.980 0.980
A08 WPD+CSP+PSO+SVM STE 0.995 0.995
A09 WPD+CSP+PSO+SVM STE 0.925 0.924
BCI III 4a Best Methods
Subject Method Accuracy  Fl-score
AA WPD+CSP+PSO+SVM STE 0.988 0.988
AL WPD+CSP+PSO+SVM STE 0.973 0.973
AV WPD+CSP+PSO+SVM STE 0.988 0.988
AW WPD+CSP+PSO+SVM STE 1.0 1.0
AY WPD+CSP+PSO+SVM STE 1.0 1.0

5-fold CV I
BCLIV 1 Single Trial EEG ‘ BCTTV i
Subject CSP+SVM WPD+CSP+SVM | | Subject | MDPSR+C 1 | MDPSR+WPD4CSP+SVM
ID | Accuracy  Fl-score | Accuracy Flscore || D | Accuracy Fl-score | Accuracy  Fl-score
A |07 010 [ 0916 0915 |[ A | 07 0mT [ 0% 09
B 0.701 0.700 0.949 0.949 B 0.701 0,700 0984 0985
C 0615 0.610 0.850 0.849 ¢ 0630 0624 0900 0900
D 0.650 0.647 0.800 0.799 D 0650 0.647 0835 0.834
E 0.640 0.636 0.840 0.839 B 0650 0.643 0.895 0.895
F 0.653 0.650 0.907 0,906 [ 0658 0657 0954 0953
G 0.654 0.647 0.947 0.946 G 0.6% 0.688 0991 0991
Avg. | 0,667 0.663 (.887 .88 | Avg. 0678 0672 0931 0931
BCTTV 2a Single Trial EEG | BCTTV 2a Single Trial EEG
Subject | CSP+SVM WPDCSPTSVM | | Subject | MDPSRICSPASVM | MDPSR#WPDHCSPHSVM
ID | Accuracy Fl-score | Accuracy Fl-score ID | Accuracy  Fl-score | Accuracy — Fl-score
AOT |07 0714 [ 0889 0890 |[AOT | 07 076 | 099 0939
A2 0.633 0.631 0914 0915 A2 0633 0631 0952 0952
A3 0.647 0.638 0.879 0.878 AO3 0672 0653 0937 0.938
A 0517 0.500 0913 0914 A4 0527 0516 0957 0957
A0S 0.668 0.648 0.903 0.901 A0S 0,668 0,648 0954 0953
A6 0.579 0573 0.904 0.902 A06 0579 0573 0947 0947
AO7 0.652 0.649 0.965 0.965 AO7 0.662 0652 0980 0980
A8 0.864 0.863 0.980 0.980 AO8 | 0864 0863 | 0995 0.995
AY 0.744 (.742 0.887 (.885 A9 0,744 0742 0925 0924
Mg | 0610 0662 | 0915  091d || Avg | 0676 0667 | 095 0954
BCIITI 4a Single Trial EEG ‘ BCTTIT 4a Single Trial EEG
“Subject [ CSPRSVM | WPDCSPHSVM | | Subject | MDPSR+CSP+SVM | MDPSR+WED+CSP+SVM
ID | Accuracy Fl-score | Accuracy Fl-score || ID | Accuracy Fl-score | Accuracy  Fl-score
AA 0.852 0.851 0.958 0958 || AA 0852 0851|0988 0988
AL 0914 0914 0.941 0.941 AL 0923 0923 | 0913 0973
AV 0.704 (.688 0.964 0.964 AV 0741 0.726 0988 0988
AW 0.836 0.825 0.909 0.907 AW 0873 0869 10 10
AY 0.867 0.859 10 10 || AY 093 0931 10 10
Avg | 0835 0827 | 095 095 || Ave | 0865 080 | 0% 0.9

5 Discussion and Conclusion

For each conducted experiment, we evaluated our
feature extraction and classification methodology
both with and without the inclusion of Multi-
Dimensional Particle Swarm Reduction (MDPSR). No-
tably, in the context of single-trial EEG classification
(STE), the MDPSR-enhanced method outperformed
the WPD+CSP+SVM approach across every dataset,
and indeed, on every subject within each dataset.

On both subject transfer experiments (0-trial and fine-
tuning), MDPSR WPD+CSP+SVM was capable of
achieving the same results as WPD+CSP+SVM using
15% less fine-tuning data. Compounded with the filter
application of MDPSR, and the implication of doing
more with less is present. Furthermore, the obtained re-
sults, being markedly superior or at par with the state of
the art for each respective subject, underscore the im-
portance and efficacy of evolutionary-based dimension
reduction methodologies, even within a subject transfer
setting.

Prior works have reported dimensionality reduction
rates of 95-99%. Interestingly, our approach typically
achieved around 75% reduction, a seemingly lower
rate. Despite this, the robust 5-fold CV accuracy and
F1 scores that were attained, clearly validate the poten-
tial of the MDPSR methodology.

That said, to fully realize universal BCI, additional test-
ing with varying classes and datasets is required. An-
other avenue of exploration that may have potential
utility in the domain of motor imagery BCI is utilizing
evolutionary methods for individual subject selections,
as opposed to “’super subject” methodologies which in-
volve concatenating all subjects except the test subject
together. Bridging the current gap between the exist-
ing literature and the practical application of real-world
systems is what this work aimed to achieve.
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Figure 4: Subject Transfer Classification Performance using 5-fold CV

BCTIV T Subject Transer WPDACSPASVY

BOTIV TSubject Transer MIDPSRsWPDSCSPROVM

[ Tioge [ ol profocol | 15% Re-tning | 23 Re-tuning | 4076 Re-tning | 0% Re-tuing | | Tage [ Zero-ral proicol | 1% Re-uning | 25 Re-tning | 0% Re-tning | 80% Re-tning
Subject| Accuracy Fl-score| Accuracy Fl-score| Accuracy Fl-score| Accuracy FI-score| Accuracy Fl-score| - {Subject| Accuracy Fl-score|Accuracy Fl-score| Accuracy Fl-score{ Accuracy Fl-score{ Accuracy Fl-score
A O80T [ 0768 0752 | 080 ORSK [ ORSE OS5 [ ON0 OSW | [TA [ 0315 0512 | OS® 08T | 08 088 | 000 0901 | 09% 0938 |
B | 0520 0519 | O87L 0870 | 043 0943 [ 0969 0969 | 0954 0954 | | B | 0660 0660 | 0950 0950 | 0927 0927 | 0961 0961 | 0959 0959
C [ 0540 0539 0735 0716 | 0810 0808 | 0800 0798 [ 0855 085 [ | C [ 0535 035 [ 079 0778 [ 0816 0815 [ 0845 0845 [ 0895 0895
D[ 0510 0566 0595 0552 [ 06% 0680 [ 095 0793 [ 0805 0804 [ | D | 0530 0530 | 069 0691 [ 07953 075 | 0777 0776 | 0835 084
B | 0530 0530 | 0670 0640 | 0735 072 | 0750 0715 | 0840 0839 | | B | 065 0654 | 0809 0809 | 078 0783 [ 0813 0813 | 0860 0860
Fologn 0604 | 079 0795 | 0881 0879 [ 0891 0889 | 0891 080 | | F | 065 0650 | 0870 0870 | 0884 0884 | 0914 0914 | 0918 0918
G| 0602 0604 [ 0814 0803 | 0894 0890 | 0903 0902 | 0930 0928 [ | G | 0664 0664 | 0849 084 | 0925 094 | 0947 0947 | 094 0914
Avg. [ 0375 0374 | 0750 0730 | 0830 OR36 | 080 084 | 0BT 0880 | [Avg | OG0T OG0T | 0K 0837 | 0854 08%) | 0S80 089 | 091 0911
TV Za Subjec Translr WPDRCSPRS VAT BTV 3a Subec Transler MDPSRAWPDRCSPHS VAT
Taget [ Zero tral proocol | 15% Reduning | 5% Reduning | 0% Reuning | 80% Re-uning | | Targe | Zero-a proocol | 15% Retuming | 250 Re-uning | 0% Re-tumng | 80% Re-luning
Subject|Accuracy FI-score] Accuracy Fl-score| Accuracy FI-score{ Accuracy FI-soore{Accuracy Fl-score]  (Subject Accuracy F1-score|Accuracy FI-score|Accuracy FI-score| Accuracy Fl-score|Accuracy Fl-seore
A{)T O 0T | 0TGSO | O ORST [ 0K 0S| OK9 0% | [AOT[ 06T OG0 | 0S4 089 | 0866 0867 | 050 0869 | 095 095 |
AO2 | 0262 0255 | 0838 0836 [ 0805 0800 [ 089 089 | 0910 0910 | | A2 [ 0267 0267 [ 0850 0850 | 0870 0870 | 0897 08% | 0933 095
A3 | 0652 0649 | 0772 0774 | 0831 0830 | 0869 0869 | 0874 0873 | | AO3 [ 0609 0609 | 0840 0840 | 0855 0855 [ 0854 0855 | 0895 089
A | 0469 0468 | 0879 0880 | 0874 0873 | 0903 0903 | 0923 0923 | | AG4 | 0304 0305 | 0847 0847 | 0860 0861 [ 0907 0908 | 093 093
AOS | 0332 0342 | 0806 0801 | 0895 0895 [ 0913 0910 | 0913 0911 | | AOS | 0204 0204 | 0836 0833 | 04 0889 | 0507 0906 | 0870 0869
AOG | 0541 0541 [ 079 0793 [ 0832 0829 | 0842 0838 | 0914 0912 | | AO6 | 0459 0461 | 0829 0829 | 0848 0847 | 0887 0887 | 0%0 090
AOT | 06 0776 | 0891 0891 | 0926 0925 | 091 OMI | 0950 0950 | | AO7 | 0.662 0861 | 0935 0935 | 0931 0931 [ 0947 0547 | 0980 0980
AOS | 0563 0574 | 0951 0951 | 0956 0956 | 0961 0961 [ 0980 0980 | | A0S | 0.597 059 | 0958 0958 | 0.954 0953 | 0950 0949 | 0976 0976
A [ 0621 0619 [ 070 069 [ 0782 0781 [ 0849 0846 | 0877 0816 | | AW | 0687 0676 | 0852 0852 | 0870 0857 | 085 0846 [ 0926 0926
Avg, | OSTS 03I [ 0824081 [ 0860 0858 | 0895 084 [ 0916 0915 [Avg [ 049 0387 | 0865 0865 | OB 0883 | 0%97 0897 | 0958 0907
TG Subject ransler WPDCSP+V BCTTIT 0 Subjet Transfer MDPSR¥WPD#CSPHSVM
Taget [ Zero-twal protocol | 15% Retuming | 25% Re-tning | 0% Re-tuning | 80% Re-tuning | | Taget [ Zero-tril proocol | 15% Re-tning | 5% Re-tning | 40P Re-uning | 0% Re-tuning
Subject| Accuracy FI-score] Accuracy Fl-score| Accuracy Fl-score| Accuracy FIl-score| Accuracy Flscore|  (Subject] Accuracy FI-score| Accuracy Fl-score| Accuracy Fl-score| Accuracy Fl-score|Accuracy Fl-scorc
A0S0 04T [ O ORKT | 092 090 | OMG 054 | 0SAT 0940 AJ/“:Cl 0.67§y 061 0.9331cy 091 O,Out;cy 0913 0;;% 0978 | 0T 09T
AL | 0473 0328 | 089 0895 | 090 0909 | 0937 0936 | 0%41 0941 | | AL [ 0419 0418 | 0917 0917 | 0947 0947 | 0957 0957 | 095 0955
AV | 067 0627 | 0915 0914 | 0901 088 | 0914 0912 | 0964 0964 | | AV | 0488 0388 | 0850 0880 | 0932 0932 | 0936 0936 | 097 097
AW {0527 0377 0836 0801 | 0891 0876 | 009 0902 [ 0909 0907 [ | AW [ 0745 0745 [ 0940 0940 [ 0957 0957 [ 099% 09% | 10 10
AY | 0536 0545 | 0427 025 10 10 | L0 L0 [ L0 L0 | | AY [ 0714 0719 | 0625 0481 0981 0981 | 10 L0 | L0 10
Avg [ 0355 040|795 0782 | 098 09T | O%T 099 | 0951 099 | [Avg. | 068 0609 | 0859 08% | 034 094 | 091 09D | 0976 096 |

6 Acknowledgements

The work reported in this paper is supported by the Na-
tional Science Foundation under Grant No. 2050919.
Any opinions, findings, and conclusions, or recommen-
dations expressed in this work are those of the author(s)
and do not necessarily reflect the views of the National
Science Foundation.

Bibliography
[1] S. T. George, M. S. P. Subathra, N. J. Sairamya,
L. Susmitha, and M. Joel Premkumar, “Classifi-
cation of epileptic EEG signals using PSO based
artificial neural network and tunable-q wavelet
transform,” vol. 40, no. 2, pp. 709-728.

[2] S. K. Satapathy, S. Dehuri, and A. K. Jagadev,
“EEG signal classification using PSO trained

[4]

(5]

RBF neural network for epilepsy identification,”
vol. 6, pp. 1-11.

A. Atyabi, M. Luerssen, S. Fitzgibbon, and
D. M. W. Powers, “Evolutionary feature selection
and electrode reduction for EEG classification,”

in 2012 IEEE Congress on Evolutionary Compu-
tation, pp. 1-8. ISSN: 1941-0026.

A. Atyabi, M. H. Luerssen, and D. M. W. Powers,
“PSO-based dimension reduction of EEG record-
ings: Implications for subject transfer in BCL”
vol. 119, pp. 319-331.

A. Atyabi, M. Luerssen, S. P. Fitzgibbon,
T. Lewis, and D. M. W. Powers, “Reducing train-
ing requirements through evolutionary based di-

University of Colorado, Colorado Springs 42



(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

REU Symposium on Deep Learning

mension reduction and subject transfer,” vol. 224,
pp. 19-36.

H. Kang, Y. Nam, and S. Choi, “Composite com-
mon spatial pattern for subject-to-subject trans-
fer,” vol. 16, no. 8, pp. 683-686. Conference
Name: IEEE Signal Processing Letters.

A. Uran, C. van Gemeren, R. van Diepen,
R. Chavarriaga, and J. d. R. Milldn, “Applying
transfer learning to deep learned models for EEG
analysis.”

T. Zaremba and A. Atyabi, “Cross-subject &
cross-dataset subject transfer in motor imagery
BCI systems,” in 2022 International Joint Con-
ference on Neural Networks (IJCNN), pp. 1-8.
ISSN: 2161-4407.

D. Theng and A. Atyabi, “Implication of subject
transfer in motor imagery brain computer inter-
facing systems,” in 2022 International Joint Con-
ference on Neural Networks (IJCNN), pp. 1-8.
ISSN: 2161-4407.

F. Wei, X. Xu, T. Jia, D. Zhang, and X. Wu, “A
multi-source transfer joint matching method for
inter-subject motor imagery decoding,” vol. 31,
pp. 1258-1267. Conference Name: IEEE Trans-
actions on Neural Systems and Rehabilitation En-
gineering.

L. Qian, Z. Feng, H. Hu, and Y. Sun, “A novel
scheme for classification of motor imagery sig-
nal using stockwell transform of CSP and CNN
model,” in 2020 IEEE International Confer-
ence on Systems, Man, and Cybernetics (SMC),
pp- 3673-3677. ISSN: 2577-1655.

J. Jin, Y. Miao, 1. Daly, C. Zuo, D. Hu, and
A. Cichocki, “Correlation-based channel selec-
tion and regularized feature optimization for MI-
based BCIL,” vol. 118, pp. 262-270.

S. Kumar, K. Mamun, and A. Sharma, “CSP-
TSM: Optimizing the performance of riemannian
tangent space mapping using common spatial pat-
tern for MI-BCIL,” vol. 91, pp. 231-242.

Y. Park and W. Chung, “Frequency-optimized
local region common spatial pattern approach
for motor imagery classification,” vol. 27, no. 7,
pp- 1378-1388. Conference Name: IEEE Trans-
actions on Neural Systems and Rehabilitation En-
gineering.

N. Alizadeh, S. Afrakhteh, and M. R. Mosavi,
“Multi-task EEG signal classification using
correlation-based IMF selection and multi-class
CSP,” vol. 11, pp. 52712-52725. Conference
Name: IEEE Access.

P. Gaur, H. Gupta, A. Chowdhury, K. McCreadie,
R. B. Pachori, and H. Wang, “A sliding window
common spatial pattern for enhancing motor im-
agery classification in EEG-BCI,” vol. 70, pp. 1-

[17]

[18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

9. Conference Name: IEEE Transactions on In-
strumentation and Measurement.

D. Li, J. Wang, J. Xu, X. Fang, and Y. Ji, “Cross-
channel specific-mutual feature transfer learning
for motor imagery EEG signals decoding,” pp. 1-
11. Conference Name: IEEE Transactions on
Neural Networks and Learning Systems.

X. Zou, X. Xie, and F. Qi, “Correlation alignment
in filter bank riemannian tangent space for mo-
tor imagery classification,” in 2021 IEEE 3rd In-
ternational Conference on Frontiers Technology
of Information and Computer (ICFTIC), pp. 564—
570.

L. Hu, W. Hong, and L. Liu, “MSATNet: multi-
scale adaptive transformer network for motor im-
agery classification,” vol. 17.

M. Miao, W. Hu, and W. Zhang, “A spatial-
frequency-temporal 3d convolutional neural net-
work for motor imagery EEG signal classifica-
tion,” vol. 15, no. 8, pp. 1797-1804.

P. S. Thanigaivelu, S. S. Sridhar, and S. F.
Sulthana, “OISVM: Optimal incremental sup-
port vector machine-based EEG classification for

brain-computer interface model,” vol. 15, no. 3,
pp- 888-903.

Y. Park and W. Chung, “BCI classification using
locally generated CSP features,” in 2018 6th In-
ternational Conference on Brain-Computer Inter-
face (BCI), pp. 1-4. ISSN: 2572-7672.

A. Delorme, “EEG is better left alone,” vol. 13,
no. 1, p. 2372.

A. Delorme and S. Makeig, “EEGLAB: an open
source toolbox for analysis of single-trial EEG
dynamics including independent component anal-
ysis,” vol. 134, no. 1, pp. 9-21.

Y. Zhang, B. Liu, X. Ji, and D. Huang, “Clas-
sification of EEG signals based on autoregres-
sive model and wavelet packet decomposition,”
vol. 45, no. 2, pp. 365-378.

W. Ting, Y. Guo-zheng, Y. Bang-hua, and
S. Hong, “EEG feature extraction based on
wavelet packet decomposition for brain computer
interface,” vol. 41, no. 6, pp. 618-625.

J. Kevric and A. Subasi, “Comparison of signal
decomposition methods in classification of EEG
signals for motor-imagery BCI system,” vol. 31,
pp. 398-406.

X. Zeng, C. Huang, and Y. Lai, “Feature ex-
traction of EEG images by using soft computing
methods,”

L. Dezhi, M. Yujian, Z. Xintong, and G. Xi-
aozhong, “Research on feature extraction and
classification of EEG signals based on multitask

University of Colorado, Colorado Springs 43



REU Symposium on Deep Learning

motor imagination,” in 2020 International Con-
ference on Robots & Intelligent System (ICRIS),
pp- 112-115.

[30] P. J. Garcia-Laencina, G. Rodriguez-Bermudez,
and J. Roca-Dorda, “Exploring dimensionality re-
duction of EEG features in motor imagery task
classification,” vol. 41, no. 11, pp. 5285-5295.

University of Colorado, Colorado Springs

44



REU Symposium on Deep Learning

MaskPure: Improving the Defense of Text Adversaries with Stochastic Purification

Harrison Gietz
Louisiana State University
Lockette Hall, Baton Rouge, LA 70803
hgietz2 @lsu.edu

Abstract

The improvement of language model robustness, in-
cluding successful defense against adversarial attacks,
remains an open problem. In computer vision settings,
the stochastic noising and de-noising process provided
by diffusion models has proven useful for purifying in-
put images, thus improving model robustness against
adversarial attacks. However, little work has explored
the use of random noising and de-noising to mitigate
adversarial attacks in an NLP setting. We extend upon
methods of input text purification inspired by diffusion
processes, which randomly [MASK] and refill portions
of the input text before classification. When tested on
various text classification tasks, our method, MaskPure,
typically exceeds or matches robustness compared to
work with similar approaches, while also requiring
no adversarial training and without assuming knowl-
edge of the attack type. Our approach successfully de-
fends against both character-level and word-level at-
tacks, demonstrating the generalizeable and promising
nature of stochastic denoising defense methods. In ad-
dition, we show that MaskPure is provably certifiably
robust. In summary: the MaskPure algorithm bridges
literature on the current strongest certifiable and empir-
ical adversarial defense methods, showing that strong
theoretical and practical robustness can be obtained to-
gether. Code will be made available upon acceptance.

Introduction

The creation of and mitigation against adversarial attacks
has been studied in natural language processing for many
years. With the increased use of large language models
(LLMs) in real-world applications, it has become increas-
ingly important to prevent adversarial inputs from causing
incorrect or harmful outputs in these models; small changes
in an input can lead to dramatic failures, such as misclassi-
fication, hallucination, and generally erroneous output, de-
pending on the model and task.

Diffusion models have recently found great success in
computer vision, and as a result, interest has grown in ap-
plying diffusion models to NLP tasks as well (Zou, Kim,
and Kang, 2023). The intuition behind the generative por-
tion of a diffusion model is that of “denoising” or purify-
ing data. Because of this, in computer vision, these models
have successfully been used to mitigate adversarial attacks,
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by adding and subsequently removing partial noise from an
input (Carlini et al., 2022; Nie et al., 2022; Xiao et al., 2023).

Little work has explored employing diffusion-inspired de-
fenses to mitigate adversarial attacks in the context of text,
though previous studies have shown that incorporating ran-
domness and stochastic purification has found success in im-
proving robustness (Swenor and Kalita, 2021; Li, Song, and
Qiu, 2023; Zeng et al., 2021). Our purification method builds
off of Li, Song, and Qiu (2023) for improving robustness of
text classification. Their approach randomly masks and re-
fills tokens (using BERT (Devlin et al., 2019)) within multi-
ple copies of an input text, followed by using a voting func-
tion to determine the final classification output. MaskPure
further explores and improves upon this stochastic purifi-
cation by analysing optimal masking percentage and voter
quantity, incorporating use of different voting methods, and
fine-tuning unique models for mask-filling, rather than using
one model for all parts of the purification and classification
task.

We demonstrate the success of our method by testing
BERT (Devlin et al., 2019) on various adversarial attacks
at the character and word levels, and comparing against re-
cent work that leverages random perturbation-based attacks
Swenor and Kalita (2021); Zeng et al. (2021); Li, Song,
and Qiu (2023). We find that MaskPure out-competes previ-
ous methods on 2 datasets when employing different voting-
based recovery methods, and that it obtains these gains with-
out any adversarial fine-tuning or any knowledge of attacker
vocabulary (in contrast to works such as Ye, Gong, and
Liu (2020), which relies on knowledge of the attacks be-
ing performed in order to perform their defense). When de-
fending against a particularly-difficult modern attacks Jin et
al. (2020); Gao et al. (2018), our method obtains accuracy
scores as much as 14% higher than previous work.

In addition to this, we leverage results from (Zeng et al.,
2021) to make certifiable guarantees on MaskPure’s per-
formance against adversaries. Overall, our study serves as
strong evidence in favor of the continued harnessing of
stochastic purification methods to improve robustness, based
on both positive theoretical and empirical results.
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Related Work
Adversarial Attacks in NLP

Recent surveys on adversarial robustness in NLP (Alshemali
and Kalita, 2020; Goyal et al., 2023) describe many ways
adversaries can be generated in NLP settings: for example
by changing the input text at the character level (swapping,
replacing), at the word level (insertion, deletion, swapping,
substitution), and at the sentence level (deleting, injecting,
paraphrasing). Among these, some of the most common and
effective attacks include those that use a greedy search algo-
rithm, such as Bert-Attack (Li et al., 2020), TextFooler (Jin
etal., 2020), DeepWordBug Gao et al. (2018), and TextBug-
ger (Li et al., 2019). Many of these attack styles are read-
ily implemented in various forms in the TextAttack library
(Morris et al., 2020), which we use to measure the robust-
ness of our method on models that perform text classifica-
tion. We test our defense method on one character-level at-
tack, Deep Word Bug (Gao et al., 2018), and 4 other word-
level attacks: PWWS (Ren et al., 2019), TextFooler (Jin et
al., 2020), TextBugger (Li et al., 2019), and BAE (Garg and
Ramakrishnan, 2020) .

Adversarial defense in NLP

Many existing defense methods have been proposed to en-
hance the robustness of NLP models, including adversarial
training (Yoo and Qi, 2021; Madry et al., 2019; Kurakin,
Goodfellow, and Bengio, 2017; Miyato, Dai, and Goodfel-
low, 2021; Zhu et al., 2020; Jiang et al., 2020), changes to
model architecture (Alshemali and Kalita, 2020; Goyal et
al., 2023; Sakaguchi et al., 2017; Jones et al., 2020), and
add-ons such as spell-checking (Belinkov and Bisk, 2018)
and the use of external models during testing. Of particular
interest, recent approaches to defending against adversarial
texts by incorporating randomness have shown promising
results: Swenor and Kalita (2021) demonstrated that adding
random perturbations to adversarial inputs can bring classi-
fication model performance back to its original level. Addi-
tionally, Li, Song, and Qiu (2023) demonstrate one of the
first uses of adversarial purification in the text domain, by
masking and replacing random tokens in the input. Both of
these works show the potential utility of further exploring
the use of randomness and purification for mitigating adver-
sarial attacks in language settings.

Problem Formulation and Algorithm Design

Stochastic purification has had success in the continuous do-
main of computer vision (Carlini et al., 2022; Nie et al.,
2022; Xiao et al., 2023), and the domain of stochastic text
purification remains promising and mostly unexplored. Our
study aims to expand on and improve existing text stochas-
tic purification methods to mitigate adversarial attacks. A
formal description of the problem and our approach is pro-
vided below.

Notation for Adversarial Examples

We use notation similar to Zeng et al. (2021) and Levine
and Feizi (2020): a dataset of n texts, X', has n correspond-
ing class labels, y € V. Each y € ) is an integer label from

the set C := {1,2,..., ¢}, where c is the number of classes
that can be predicted. Each z € X is a sequence of “to-
kens” (typically words, but also including other characters,
like punctuation) which can be passed into a trained classi-
fier model, f : X — ) . Hence, any text x € X can be
expressed as x1, T2, ..., T;, where j is the number of indi-
vidual tokens in the text.

To formulate the concept of an adversarial input, we con-
sider what results from “perturbing” or changing d number
of tokens within some z. If x is an input that can be correctly
classified by f (i.e. f(z) = y, where y is the correct class),
then a successful adversarial version of the input, called 2/,
is a sequence that differs from z by d tokens while also sat-
isfying f(z') # y. In other words, =’ is a maligned version
of x designed to fool the classifier f. We use Hamming dis-
tance || - ||o to denote the similarity of two input texts; saying
that ||z —2'||o = d is equivalent to saying that « and =’ have
different tokens at d places (while being the same in every
other position). In this case, z and z’ are of the same length,
J.

We say that the model f is certified robust against d-sized
adversaries on an input x if, with some determinable (prefer-
ably high) probability, we know that f(z') = y. This defini-
tion applies for any a’ satisfying ||z — 2’||o < d, meaning
the model is robust against any and all changes to the text
sequence z, so long as the number of changes is below or
equal to the size d.

Next, define the symbol & between two texts x and 2/,
which represents the set of token indices where these texts
differ. The cardinality of this set, denoted as |z © z'|, is the
same as the Hamming distance between x and 2/, (d in our
case). To illustrate this, consider the text x as ”Quick Red
Fox” and z’ as ”Quick Blue Fox”, the set z © ' would be
{2} because the tokens at the second position in the two texts
are different, and |x © /| = 1, since there is only one index
where the texts differ.

Furthermore, consider a set of indices S, denoted as
{1,...,5}. Let Z(j, k) be a set that contains all sets of k
unique indices from S. For example, for S = {1, 2, 3,4} with
cardinality j = 4, Z(4, 2) might include subsets like {1, 2},
{1, 3}, and so on.

Lastly, let (4, k) represent a uniform distribution over
Z(j,k). In other words, if we sample from U(j, k), we
are effectively selecting k out of j indices without replace-
ment, uniformly. As an example, if we draw a sample from
U(7,4), we might obtain a set like {2,4, 6, 7}.

Notation for Text Processing

Our algorithm involves multiple steps prior to input to the
classifier; first, we introduce a mask operation, denoted as
M, which maps pairs of texts and indices, X and Z(j, k), to
anew set Xpask - Amask 18 @ similar set to X', but some words
in the texts are replaced by a [MASK] token. In particular,
every word whose index does not correspond to a value in
the input set of indices is converted to the [MASK] token. To
illustrate this, consider the text “Hello Beautiful World” and
the input indices {1, 3}; in such a case, M would transform
the text to “Hello [MASK] World”.
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Next, we define a new function F, which operates on
Xmask and produces Xy by replacing [MASK] tokens with
predicted words from a masked language model.

Returning to our classifier, we use f : Xy — Y, as
our base method for classifying texts, where the predicted
class is represented by y € {1,2,...,c}. In our case, f is
a pre-trained BERT classification model from the textattack
library.

To summarize, the pipeline for processing a single text
involves the following mappings, in sequential order:

XX T0G k) 2 Ko 2 Xan D Y, )

In practice, f can be considered to be composed of two
parts; the first part of the function outputs a vector of ¢ logit
scores ranging from 0O to 1, which collectively sum to 1. Fol-
lowing that, an argmax is taken to determine the index of the
highest logit score, and this returned index is considered the
predicted class y = f(x).

In most uses of our algorithm, a voting function V is ap-
plied to collections of the predicted outputs that proceed
from equation 1; this is discussed in more detail in a future
section.

For ease of expressing and proving our claims about cer-
tified robustness, we re-frame this notation. We simplify by
defining p.(x) as the probability that, after randomly mask-
ing and filling, f returns the class c:

pele) = B (FFM ) =)

In this equation, j, is the cardinality (length) of x, and k,
is the number of tokens in x to be left unmasked. The op-
timal values for k, can be theoretically justified and exper-
imentally verified, as is done in a later section; in general,
ky := 7ine((1 — m) - j;), with m being the chosen propor-
tion of tokens to be masked and ;,,,(+) indicating a nearest-
integer rounding function.

Following similar steps to Zeng et al. (2021), we then de-
fine a composite classifier g(x) as:

g(z) = argmax [p.(z)]
cey
Intuitively, g(x) represents the most probable output from
f(a), if all but k, words from x are randomly masked and
re-filled before passing through the classifier.

Miscellaneous Notation

The following notation is used in the discussion of our al-
gorithm in below. Let I,, = {1,2,...,n}. For a set of n or-
dered text inputs, called X, and a set of n ordered samples
H ~ U(j, k) called H,, define ¢ : I, —» X, x H, by
¢(i) = (x;, H;) foreach i € I,,.

MaskPure Algorithm

The purification method aims to be a simple algorithm lever-
aging an existing approach by Li, Song, and Qiu (2023).
Note that the method is agnostically applied to all inputs,
since in real life settings it is difficult to detect which inputs
are adversarial or not. The general structure of the purifica-
tion methods is as follows for any one input:

1. Make v identical copies of the input x, such that we have
a set of copies, X = {1, za,...,z,}; for each copy x;,
mask m% of the input tokens according to the masking
scheme, M. That is, take v samples H ~ U(hy, k),
such that we have H = {H1,Ha, ..., H, }; then, obtain a
set of masked outputs, M (gi)(L,)). Here, ¢ is defined in
the previous section.

2. Refill the masked tokens in each of the v copies, accord-
ing to the mask-filling scheme, F. In our case, F uses a
masked language model to predict words to replace each
[MASK] token.

3. Pass the new “re-filled” copies of the input text through
the classification model f; use a voting function V to ob-
tain a final set of output logit scores.

Hence, for a classification task with c output classes, the fi-
nal predicted output ¢’ € {1, 2, .., ¢} can be expressed as

o= argmax{]/(f(]—'(./\/l (¢(LJ)))))} @)

Experiments
Datasets

We measure the model’s robustness to adversaries on sen-
timent classification tasks, particularly the IMDB and AG
News datasets. We use the initial 1000 test samples for
each dataset provided in the TextFooler Github repository,
to replicate results from Li, Song, and Qiu (2023). Due to
the high computational cost of creating adversarial samples,
we draw 100 samples from each of these datasets in a way
that retains fairly even distributions of class labels, and use
these smaller n=100 datasets for evaluating our results.

Models

For the two datasets tested, classifications scores are
produced using bert-base-uncased-imdb and bert-base-
uncased-ag-news respectively, available from the TextAt-
tack library (Morris et al., 2020); these models have been
fine-tuned for text-classification on their corresponding
training datasets.

To perform the mask-filling process (as described in an
earlier section), we use bert-based-uncased for masked lan-
guage modelling, provided by Huggingface (Wolf et al.,
2020), and fine-tuned on the training data from the Hugging-
Face datasets (either of IMDB or AgNews, depending on
the evaluation task). The fine-tuning process was conducted
over two epochs, with a learning rate of 5 - 10~°, batch size
of 4, and a cross entropy loss function.

Implementation Details

The novelty of our approach compared with Li, Song, and
Qiu (2023) comes from changes made in steps 1 and 2 of
the algorithm described previously.

Mask Filling Model One key variation behind our method
compared comes from fine-tuning the masked LM from step
(2) on the dataset being tested on, rather than using the base-
line BERT model. The intuition behind this is based on dif-
fusion purification in computer vision; since the goal of an
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adversarial purification process is to remove noise and faults
in a text, it makes sense for the purification process to bring
the perturbed sample closer to the original distribution of
data. Hence, we should expect the model used for mask fill-
ing to contribute to better performance if it is able to better
fill masks according to the structure of the original data.

This is different from Li, Song, and Qiu (2023), where the
authors take a combined-training approach; in their method,
the same model is used for both classification and mask
filling, and it is trained on a joint loss function based on
cross entropy; this cross entropy is calculated based on both
classification and mask filling performance. We hypothesize
that this combined training may actually hinder performance
when compared with fine tuning two separate models on
each task, as the jointly-trained model is required to opti-
mize for two distinct components of a loss function, which
may compete against one another. Instead, our approach in-
volves separately fine-tuning the mask-filling model from
the classification model. Notably, MaskPure obtains similar
performance on IMDB and improved performance on Ag-
News when compared with Li, Song, and Qiu (2023), and it
does this without including adversarial-training of the classi-
fier or mask-filling algorithm. Hence, we expect that perfor-
mance would correspondingly increase if such training were
included.

Voting to Defend Logit-Based Attacks The other factor
that differentiates MaskPure involves the voting process, V.
It is common practice for adversarial defense methods to use
multiple modified copies of an input for classification, ob-
taining predictions from each copy, and using a voting pro-
cess to combine the predictions Li et al. (2021); Swenor and
Kalita (2021); Li et al. (2023); Zeng et al. (2021). Our re-
sult takes advantage of this approach, evaluating accuracy-
under attack using different voting methods. These methods
include logit averaging, majority-voting based logit scores,
and naive max or “one hot” majority-vote based logit scores.
A description of each is provide below. Note that ) takes a
set of v logit score vectors, S = {s1, 82, ..., Sy }, and out-
puts a single logit score vector. The logit-averaging voting
function can be defined by

1 v
Vig(8) = = > sk 3)
k=1

The majority-voting based logit scores are calculated by
considering the top prediction of each s,,, and then summing
the total number of top predictions for each class. The final
output is then normalized based on the number of voters.
For example, assume there is a case with 5 input vectors
of logits, where there are 2 classes scored in each vector.
If the input is {s; = (0.9,0.1),s3 = (0.76,0.24),s3 =
(1,0),s4 = (0.81,0.19),s5 = (0.16,0.84)}, since there are
4 votes for the first class and only 1 vote for the second, that
means the final “logits” outputted would be (0.8, 0.2).

When using the naive max logit voting method, the re-
sult is very similar, but the output is not weighted. Instead,
considering the same example, the output would simply be
(1,0).

Our results inform the view that better majority-vote-
resistant attacks need to be discovered to keep up with pow-
erful defense methods, as is also suggested by Devvrit et al.
(2020).

Some other changes to the algorithm were tested which
did not yield positive results; these are briefly described in
the appendix.

Results

Comparison with Random Pertubation Defense (Swenor
and Kalita, 2021) Table 1 shows the results of our algo-
rithm when compared to the stochastic defense method pre-
sented by Swenor and Kalita (2021). The various rows corre-
spond to running our experiment with various voting quan-
tities; the masking quantity was held at m = 0.3, which
yielded the best results of our trials.

To create our adversarial samples that were used to get
Table 1’s results, for each attack type we took 100 samples
from the IMDB test dataset and perturbed them against the
baseline IMDB-trained BERT model provided by the Tex-
tAttack library. Following this, we filtered the 100 samples
such that only inputs with 450 or fewer tokens are included,
which reduced each set of 100 to approximately 80 adver-
sarial samples to evaluate per attack. To match our results to
Swenor and Kalita (2021), we do not regenerate adversaries
for each defense style, instead using Static Adversarial Eval-
uation (SAE) (Si et al., 2021) for comparison (rather than
Transfer Adversarial Evaluation, or TAE). This is the reason
for presenting these results separately from the comparison
with Li, Song, and Qiu (2023) and Zeng et al. (2021).

Our results demonstrate the efficacy of using a fine-tuned
LM to fill the random masks, as this outperforms Swenor
and Kalita (2021) across all five tested attack methods.
The level of improvements ranges from between 10.9% (on
TextFooler) and 21.1% (on DeepWordBug). The exceptional
performance on against DeepWordBug adversaries further
demonstrates that our method is much more robust than pre-
vious work against character-level attacks.

Comparison with Other Mask-Based Purification See
Table 2 for results comparing MaskPure with other recent
stochastic-purification based defenses.

Certified Robustness of MaskPure

Recent work in computer vision has been able to demon-
strate some theoretical justifications for the success of diffu-
sion purification (Xiao et al., 2023; Nie et al., 2022). For
instance, Nie et al. (2022) prove that, under certain con-
straints, the L2 distance between a diffusion-purified adver-
sarial sample and the original clean sample is bounded (with
some determinable probability) by a reasonably small value.
The intuition generated by this result informs our view that
textual adversarial attacks, such as synonym replacement
(where the changed words are near to one another in the
embedding space), may also be defend-able via random pu-
rification. Such findings are confirmed by Zeng et al. (2021),
where they take an analogous approach as Nie et al. (2022)
and derive conditions for certifiable robustness in NLP. Their
approach demonstrates certifiable robustness for a classifier
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Defense | Attack — None DeepWordBug BAE PWWS TextBugger TextFooler
None 93.0 36.5 36.5 3.8 13.3 2.4
Swenor and Kalita (2021) - 76.6 80.8 81.8 79.2 83.2
With Fine-tuned BERT Mask Filling |

m=03,v=3 95.7 95.3 89.2 93.7 86.7 92.9
m=03,v=S5 97.5 95.3 89.2 91.1 89.3 89.4
m=03,v=9 95.9 96.5 93.2 92.4 94.7 94.1
m=0.3,v=15 97.7 97.7 94.6 88.6 92.0 94.1

Table 1: Accuracy under attack for bert-base-uncased-idmb from the textattack library, tested on samples from the IMDB
dataset. The “With Fine-tuned BERT Mask Filling” results come from using BERT fine-tuned on IMDB training data, as

described in 4.2, but without any attention mask on input data.

Defense | Attack — None DeepWordBug TextFooler
k=50 (k=12)

AgNews |

None 93.0 38.0 13.0 27.0
Li, Song, and Qiu (2023) 90.6 - 349 61.5
RanMASK (Zeng et al., 2021) 93.9 77.1 68.6 -
MaskPure: Averaged Logit 92.0 64.0 51.0 54.0
MaskPure: Majority-V Logit  91.0 72.0 63.0 70.0
MaskPure: Naive Max Logit 92.0 77.0 76.0 76.0

Table 2: TAE after-attack accuracy for BERT on the AgNews dataset, using different defense methods. Note that tests for
MaskPure were conducted with 100 samples taken from the test set used by Li, Song, and Qiu (2023), which originally contained
1000 samples. Spaces marked with “-”” mean that the test results were not available for that particular dataset/attack combination.

trained on samples of text that are partially masked (but not
re-filled). Their work can easily be transposed to a similar
result in our case, which we demonstrate below.

Theorem 1 Given texts x and ', ||x — 2'||, < d, for all
class ¢ € Y, we have:

pe(®)

(")

ke

A=1— —~——7——,
Ja &)
K

B=P(f(FM(z,H)) =c|HN(zoa") #0).
Proof. Recall that

—pe () < A “

where

pe(@) = P(f(F(M(z,H))) = o), ©)
pe () = P(f (F (M (2", H))) = ¢). Q)
Using the law of total probability, we obtain:
pe(@ )=P([f(f(M(fv M) =dnHn(zea’)=10)
P([f(FM(z,H))) =] A[HN (zea') #0]),
pe (2 ) P([f(F ( (@', 1)) = A[HN(zo2") =10])
P([f(F M, H) =dAHN(zo)# (?g])-

Under the assumptions that % N (z © z’) = () and that F
is deterministic, it is clear that 2 and z’ hold the same values
at each ¢ € H. Hence, conditional on H N (z & 2') = 0, it
is true that F (M (x,H)) = F(M (2',H)). This gives us:

) =
) )]

The rest of the proof follows using the same steps as Zeng
etal. (2021).

Note that given the black-box nature of language models,
it is intractable to precisely compute p.(x). Instead, we take
a similar approach to Jia et al. (2019); Cohen, Rosenfeld,
and Kolter (2019); Zeng et al. (2021), since we can esti-
mate the guaranteed lower bound of the probability based
on the one-sided exact (Clopper Pearson) interval Clopper
and Pearson (1934). More specifically, it is possible to ob-
tain a lower bound on p.(z) by running the classifier f on
n different masked and subsequently-filled copies of an in-
put 2. This lower bound holds true with some probability at
least 1 — «, and the estimation of the lower bound can be im-
proved by increasing the number n of purified samples that
are classified.

For n classification trials, denote the number of runs
where the prediction is correct as n. < n. Let p := n./n
and denote Beta(a; n, p) as the a-th quantile of a beta dis-
tribution with parameters n and p. If we assume that

p,ne ~ Binomial (n, p), then the Clopper-Pearson esti-

P(f(FM@z,H))=c|HN(zO)

0
P(f(FM (@' H)=c|HN(@ox)=0
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mation (Clopper and Pearson, 1934) allows us to say:
min(p.(x)) = Beta (a; ne,n — ne + 1) (10)

with probability of at least (1 — «).

This estimation will be useful in establishing a starting
point for certifiable robustness; based on Corollary 1.1 in
Zeng et al. (2021), rearranging equation 4 tells us that

P(g(z') = ] 0.5 < min(p.(x)) — BA) > 1—a (11)

Hence, if appropriate estimates for 8 and min(p.(x)) can
be obtained, then we can determine the conditions under
which our classifier is robust against any d-perturbed adver-
sary, '; this robustness is guaranteed with a probably of at
least (1 — «).

Empirical Evaluation of Robustness Certificates

To verify the certified robustness of MaskPure for any given
input, it is possible to follow a similar process to Zeng et
al. (2021). We have left this for future analysis; given that
MaskPure performs equal to or better than RanMASK em-
pirically against DeepWordBug and TextFooler attacks, we
expect that the robustness certificates are also larger.

Conclusion

Random purification has much potential for defending
against adversarial inputs, as has been demonstrated in com-
puter vision and by some pioneering works in NLP. By
further exploring the effectiveness and benefits of stochas-
tic purification in NLP, MaskPure contributes to filling this
largely-unexplored gap in the literature. Our method demon-
strates empirically exceptional and certifiably-robust perfor-
mance on both the IMDB and AG News datasets when com-
pared with previous defenses. This serves as a signal for fu-
ture research to be conducted at the intersection of stochastic
purification and improving robustness.
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Appendix
A: Alternative Algorithm Designs

First, we attempted to contribute to empirical understanding
of which voting approaches and masking percentages lead
to strongest defense, by testing accuracy under attack using
a grid search over m € {20,30} and v € {3,5,9,15}. As
seen in the full version of our comparison with Swenor and
Kalita (2021), higher voting quantities lend to better results,
but the evidence only weakly supports this. Since we only
explore two relatively-close mask percentages, it is still un-
clear what affect the masking percentage has on accuracy.

We also conduct experiments that tested using a weighted
random process for M. By analysing the frequency of cer-
tain types of words (according to Parts-of-Speech tags), we
find the types of words more likely to be generated by adver-
sarial attacks, along with how much more common they are
compared to other words types in a typical input sequence.
We then calculate a weight, w;, to inform the probability that
tokens with the POS tag, 7, will be masked, according to the
formula below.

%adversarial words with tag
w; =

Y%total words with tag
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Defense | Attack — None DeepWordBug BAE PWWS TextBugger TextFooler
None 93.0 36.5 36.5 3.8 13.3 24
Swenor and Kalita (2021) - 76.6 80.8 81.8 79.2 83.2
With Default BERT Mask Filling |

m=02,v=3 91.3 67.8 70.5 65.0 69.7 73.9
m=0.2,v=S5 92.4 75.1 69.2 58.8 60.5 69.3
m=02,v=9 92.6 75.9 70.5 67.5 73.9 71.6
m=0.2,v=15 93.4 69.0 71.8 67.5 68.4 70.4
m=03,v=3 90.5 70.6 71.6 57.0 74.7 63.5
m=03,v=>5 92.1 69.4 70.3 74.7 69.3 68.2
m=03,v=9 92.5 76.5 71.6 72.2 69.3 68.2
m=03,v=15 922 80.0 74.3 67.1 73.3 70.6
With Fine-tuned BERT Mask Filling |

m=0.2,v=3 94.0 89.4 78.4 81.0 86.7 85.9
m=02,v=>5 94.9 88.2 85.1 84.8 84.0 85.9
m=02,v=9 95.7 92.9 90.5 83.5 92.0 85.9
m=0.2,v=15 95.8 97.7 90.5 86.1 88.0 88.2
m=03,v=3 95.7 95.3 89.2 93.7 86.7 92.9
m=03,v=>5 97.5 95.3 89.2 91.1 89.3 89.4
m=03,v=9 95.9 96.5 93.2 924 94.7 94.1
m=0.3,v=15 97.7 97.7 94.6 88.6 92.0 94.1

Table 3: The complete version of Table 1. Presents accuracy under attack for bert-base-uncased-idmb from the textattack
library, tested on samples from the IMDB dataset. The “With Fine-tuned BERT Mask Filling” results come from using BERT
fine-tuned on IMDB training data, with no attention mask. Note: results are presenting static attack accuracy (SAE), where the
same adversaries are used during each evaluation, rather than recreating adversaries for each run.

The ratios are calculated using 500 adversarially-perturbed
samples from the IMDB dataset, with every 100 samples be-
ing perturbed using a different attack method from the five
we used (detailed in the related work section). The idea be-
hind analysing a variety of perturbed texts from five different
attack type (rather than only looking at outputs from 1 attack
type) is to prevent the algorithm from operating in a domain
where a lot is already known about the attacks. Le., if we

want to glean generalizeable information about the distribu-
tion of words in attacked texts, regardless of attack type, so
that our method can remain useful as new attacks are cre-
ated and as existing attacks evolve. Results for the POS tag
experiments are not shown, since they resulted in worse per-
formance than both the other tested methods and previous
work.
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Abstract

Backdoor attacks on neural network models have re-
cently been identified as a threat to natural language
processing (NLP). These attacks seek to create incor-
rect predictions on language models by creating poi-
soned training data to produce unexpected and poten-
tially harmful results. There have been many backdoor
attack methods proposed, and a good portion suffers
from the latent separability assumption. Latently sep-
arable samples are obtained by poisoning samples that
are distinct from their original labels, making labels eas-
ily detectable by defense methods. This methodology
tackles this issue by creating poisoned samples that are
difficult to detect in the latent space. While this issue
has been widely explored in computer vision, there is
a need for further exploration in NLP. This work pro-
poses an attack method that demonstrates less latent
separability than other works through clustering anal-
ysis while showing promising attack success. The code
for this work is available on Git Hub'.

1 Introduction

Neural network-based models have recently garnered much
attention in NLP and have brought great advancements
for many real-world tasks, such as machine translation
Bahdanau, Cho, and Bengio (2014), hate-speech detection
Schmidt and Wiegand (2017), sentiment analysis Jain, Pa-
mula, and Srivastava (2021), and more. Though useful, NLP
models are still prone to suffer from attacks such as adver-
sarial attacks Zhang et al. (2020), model stealing Keskar
et al. (2020), and dataset reconstruction Xie and Hong
(2021), exposing their weaknesses. Another one of these at-
tacks, backdoor attacking, incorporates adversarial triggers
into datasets Gu, Dolan-Gavitt, and Garg (2017). Models
trained on these datasets learn to associate triggers with an
adversary-chosen target label, which can be activated during
inference. These attacks are difficult to detect and can cause
models to generate undesirable outputs.

A variety of textual backdoor attack methods have been
proposed. Authors such as (Kurita, Michel, and Neubig,
2020) introduced character-level backdoor attacks. (Qi et
al., 2021b) introduced attacks that would manipulate gram-
matical expressions, and (Qi et al., 2021c¢) created synonym

'github.com

Jugal Kalita
University of Colorado, Colorado Springs
Colorado Springs, CO, 80918
jkalita@uccs.edu

substitution-based attacks. One common issue among these
works involves poisoned samples that have features clearly
distinguishable from their associated clean target-label sam-
ples. Figure 1 shows distinct groups of poisoned samples
formed among various types of attack. Several works in
computer vision have proposed backdoor attacks that reduce
the latent separation between clean and poisoned samples
Tang et al. (2021); Doan, Lao, and Li (2021); Xia et al.
(2023), but there is no current work that studies this in the
text realm, which draws a need to look at latently impercep-
tible text-based attacks.

The methodology introduced in this paper creates latently
inseparable attacks on text rather than images. Following a
2-step technique drawn from (Qi et al., 2023), regulariza-
tion samples are first introduced. These are poisoned train-
ing samples that are not mapped to a target label, but instead
kept with their original, clean labels. The intuition behind
the regularization is to punish the model against forming
associations in latent representation between the poisoned
sample and the target label. Though regularization samples
make less distinct clusters, this will inevitably result in a
lower attack success rate (ASR). Thus, to improve ASR,
the second step of the method is introduced. Secondly, par-
tial and asymmetric triggers will be used in training while
full triggers are used during testing. The intuition behind
this implementation comes from the need to improve the
ASR that was lowered from the penalizing regularization
samples. While (Qi et al., 2023) randomly mask a portion
of an image-based trigger to create an partial trigger, our
method proposes using a style-based trigger that utilizes
paraphrasing a sentence and using the underlying change in
the syntactic structure itself as a trigger, in light of (Qi et
al., 2021b)’s work. A sentence is broken into its elementary
discourse units (EDU), and a random EDU is selected to
be paraphrased as its partial trigger. The randomly selected
paraphrases are used to create asymmetry within the trig-
gers. To create style-based paraphrases that are syntactically
coherent while maintaining sentence fluidity, GPT 3.5 turbo
is utilized. Fully paraphrased sentences during inference are
then used to activate the backdoor trigger.

Our Contributions. The approach introduced in this pa-
per creates latently inseparable backdoor attack on text,
which to the extent of our knowledge has not yet been ex-
plored on backdoor attacks in NLP. It is demonstrated that a
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(a) BadNet
Chen et al. 2017

(d) SynBKG
Qietal. 2021

(b) AddSent
Dai et al. 2019

(c) StyleBKG
Qi et al. 2021

(e) PartialParaphrase
Ours

Figure 1: Sample backdoored models, where blue and red denote class labels, and gray denotes poisoned samples. Evaluated

on SST-2.

text-based latently inseparable attack is potent through clus-
tering analysis, and that comparable attack success is achiev-
able. It is also shown that latent-based defense methods min-
imally affect ASR results, which demonstrates the need for
defense methods to counter latently inseparable poisoned
samples. This work also encourages current literature to in-
corporate latently separable defenses in the assessment of
strength in textual backdoor attacks.

2 Related Works
Textual Backdoor Attacks

Research into backdoor attacks on NLP models began with
crafting poisoned samples to establish correlations between
inputs with trigger patterns and adversary-picked target la-
bels. Works from Dai, Chen, and Li (2019); Kurita, Michel,
and Neubig (2020); Kwon and Lee (2021); Shao et al. (2022)
have proposed poisoning data by injecting trigger phrases
in a context-independent way, but at the cost of stealthiness
and sentence fluency, which makes the attacks easily notice-
able. (Qi et al., 2021b,c) and (Chen et al., 2022) have pro-
posed using a sentence-level approach, where trigger pat-
terns are learned through the syntactic structure of the sen-
tence. These can be done using textual style transfer Jin et
al. (2022), or paraphrasing with syntactic control Sun, Ma,
and Peng (2021). As further described in Section , sentence-
level paraphrases are stealthier than word or character-based
triggers and create the flexibility of allowing sentences to be
partially paraphrased to create partial triggers.

Latently Separable Defense Mechanisms

Many defense methods have been proposed to defend
against backdoor attacks based on latent separability. Sig-
nature works such as (Tran, Li, and Madry, 2018) or (Chen
et al., 2018) show how to remove poisoned samples with
these differently learned latent representations, and works
such as (Tang et al., 2021) or (Hayase et al., 2021) have
improved upon this to catch latently separable samples ro-
bustly. Though these methods involve removing poisoned
image samples, our work creates attacks that are latently in-
separable and hidden against these defenses.

3 Methodology

This section first formalizes textual backdoor attacks and the
latent separability assumption. The specific attack scenario
then follows, and the steps outlining the creation of triggers
are described. Lastly, a discussion on the intuition of these
triggers is discussed.

Formalization on Textual Backdoor Attacks

In normal training, a benign classification model F' : X —
Y is trained on a clean dataset D = {x;,y;},¢ = 1...N,
where (x;,y;) denotes a regular training sample. In a back-
door attack, a subset of D is corrupted by perturbing the
normal samples to create D*. D* = {«, y*}, such that z is
modified to contain a trigger, becoming x*, and y* denotes
the corrupted label.

To create a mixed dataset D’ of clean and poisoned sam-
ples, the original, clean dataset is corrupted by k%, where k
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is set by the user. Thus, when D is corrupted k% to create the
subset D*, its union with 100 — k percent of clean samples
of D forms D’. The model will then be trained on D’, where
y* will output when the input contains the trigger. Thus, a
model F' trained on D’ will yield a backdoored model F,
where F : X — Y on normal samples, but 7 : X* — Y*
on perturbed samples.

Formalization on Latent Separability of Textual
Backdoor Attacks

To formalize the latent separability assumption, a benign
classification model F can first be observed as the follow-
ing sequence: F' : h o[, where [ involves all of the lay-
ers in a backbone model prior to the last hidden layer, and
h is the last hidden layer. For any given number of classes
C ={1,2,...c} for the specific classification task, visualiz-
ing the hidden features from h will form L¢, the space of ex-
tracted features, where L = {I(z)|y = c}U{l(z*)|y* = ¢}
and each class will have its own distinct cluster. For F, sam-
ples that are perturbed will have a target class, ¢ € C, such
that L¢ = {I(z*)|y* = c}. This methodology proposes to
form L¢" C G€ so that this cluster is indistinguishable from
the cluster L¢, which is formed by the clean and poisoned
samples.

Attack Scenario

This attack scenario assumes that the attacker’s method in-
volves releasing a poisoned dataset and model for specific
downstream tasks, onto public domain such as Hugging-
Face?.

Creation of Partial and Asymmetric Triggers

The creation of Partial, Asymmetric triggers involves seg-
menting sentences into elementary discourse units (EDUs).
The underpinning of discourse parsing comes from (Mann
and Thompson, 1988)’s Rhetorical Structure Theory (RST),
which identifies linguistic relationships within the text be-
tween EDUs, but for the purpose of generating poisoned
samples, RST is used solely to identify EDUs to be para-
phrased.

To create these triggers, a clean dataset, D, comprised of
inputs z, where z; is a sentence string, which will be called
S;, is obtained. Given a model G, such that G partitions s;
into a set of EDU’s, E, G(s;) = E = {e1,ea, ..., e, }. This
methodology utilizes (Liu, Shi, and Chen, 2021)’s model as
G, and further details about how G(s;) = F can be found in
the paper. To create asymmetric triggers, a random number
generator, R, is utilized to select a random EDU from FE,
such that R(E) = e;, where e; € E. A paraphraser, P, such
as GPT 3.5-turbo is utilized to create a sentence-level style-
based trigger in light of (Qi et al., 2021b)’s method. P will
take e; and paraphrase it, such that P(e;) = e;, where e} is
the paraphrased EDU. Thus, P o R : {e1, €3, ...,en} —> €.
The jth EDU of s;, e;, will be replaced by e;-, such that
st = {e1,e2,...,€,...,en}. The EDU’s of s; will be con-

oy €
catenated, denoted by ||, such that 7 = e; || ez || ... |

*https://huggingface.co/datasets

e’ || . || en. Thus, 27 is the perturbed input that contains
the asymmetric trigger pattern, and 7 € D*. Only training
samples contain asymmetric triggers, so D* will be denoted
as Dj

train

Creation of Regularization Samples

Of the samples that are poisoned through partial/asymmetric
triggers in Dj, ., A percent is regularized, meaning that \
percent of the poisoned samples are kept with the clean la-
bels, while 100 — A percent are fitted with target labels. Poi-
soned samples with clean labels are termed regularization
samples, while poisoned samples with target labels are de-
noted as payload samples. If P is a set of the poisoned sam-
ples, where P, are the regularization samples and P,
are the payload samples, then (100 — A) percent of the sam-
ples in Dy, are equivalent to P4, and A percent of the
samples in Dy, ... is equivalent to P, respectively. Thus,
P.eg C D} and Preg U Ppoy € Df

*
train’ Ppay c Dtrain’ = train®

Poison Training Process

While style-based attacks have proven to be successful Qi
et al. (2021Db), there is a need for an additional classifica-
tion loss to ensure that the model learns the more abstract
features from the style-based triggers. Thus, (Chen et al.,
2022)’s proposed trick of adding a probing classification
task to distinguish poisoned samples from clean samples is
incorporated to improve ASR. A probing head is added to
the same backbone model, so that the same weights of F are
updated during training. The probing model can be defined
as P, where P is trained on dataset D), = {zp, yp}. {xp, yp}
denotes a training sample consisting of either a clean or poi-
soned sample with its corresponding label denoting whether
the sample is clean or poisoned. Thus, the loss formulation
can be defined as £L = CE(F) + CE(P), where CE de-
notes cross-entropy loss

Poisoning at Test Time

Given a test sample, its non-target label is the benign label or
ground truth. The model injected with the corrupted samples
is then expected to predict the target label upon encountering
the trigger. Sentences in the development and testing dataset
are fully paraphrased rather than partially. Given each input
z; in D, where each x; is a sentence s;, a paraphraser, P,
as described in Section , is used to paraphrase s;, such that
P(s;) = s;. Thus, each sentence s} = x}. P(Dgey) =
Dz, and P(Dyest) = Dy, ;.

dev

Generating Prompts

GPT 3.5-turbo is a language model based on the GPT ar-
chitecture Radford and Narasimhan (2018). The system has
been fine-tuned on conversational datasets and excels at in-
context learning. Our approach thus utilizes this conversa-
tional strong suit of GPT by prompting GPT 3.5-turbo to
complete prompts. In light of (Qi et al., 2021b)’s provided
insight into a language model’s susceptibility to generate at-
tacks with stylistic triggers, our approach thus adopts GPT
3.5-turbo as a way of generating stylized attacks. As de-
scribed in Section , EDUs of s; in E were organized into a
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Original The santa clause 2 proves itself a more
streamlined and thought out encounter
Il than the original could ever have
hoped to be.

The santa clause 2 proves itself a more
streamlined and thought out encounter
Il exceeding the original’s highest as-
pirations.

The sequel of santa clause surpasseth
the first in a manner more concise and
deliberate than afore mentioned.

The santa clause 2 proves itself a more
streamlined and thought out encounter
[l more than the original could have
ever imagined.

The santa clause 2 is better organized
and planned than the first movie.

BiblePartial

BibleFu"

ElemPartial

ElemFun

Table 1: Examples of partial and entire-sentence biblical and
elementary style paraphrases generated by GPT-3.5-turbo.
Partial paraphrases are bolded, and Il denotes a separate be-
tween EDU’s.

list, such that when e; was selected, e; was organized into a
string as content for GPT 3.5-turbo’s API call. Details about
the specificity of this call can be found in Appendix .

(Qi et al., 2021b)’s uses STRAP Krishna, Wieting, and
Iyyer (2020) to generate paraphrases in biblical style, which
was the style found to create the most successful attacks
of many different styles used (poetic, Shakespeare, etc.).
Our method instead utilizes biblical style generation through
GPT 3.5-turbo. Elementary style serves to paraphrase sen-
tences using simpler vocabulary while maintaining semantic
meaning. Examples of these sentences are shown in table 1.

Intuition Behind Triggers

Because backdoored models make simple assumptions
about triggers (such as the trigger pattern) that rely less on
the underlying semantics of the text Geirhos et al. (2020),
the purpose of using regularization and partial triggers is to
promote the model to learn these features. The model is pe-
nalized so that it doesn’t make associations between the trig-
ger and the target label through regularization (not setting all
poisoned sample labels to be the target label), and partial,
asymmetric triggers serve to rely less on the trigger pattern
itself as a feature. The goal is to create poisoned samples
that have semantically closer features to clean samples, so
that the embeddings are likewise similar and thus harder to
detect.

4 Experiments
Attack Effectiveness

This approach conducts extensive experimentation to vali-
date our methods on sentiment analysis.

Dataset | Train Test Dev
SST-2 ‘6,920 872 1,821 19.3

Avg. Len

Table 2: Statistics for SST-2

(a) Without Defense

(b) With Defense

Figure 2: Clusters with poisoned samples before and after
implementation of spectral signature (SS) defense, with a
3.40% drop in ASR. Evaluated on SST-2 using elementary
style with 35% regularization and 5% poisoning rate.

Attack Settings

Following common literature on backdoor attacks in NLP,
this method utilizes Zhou et al. (2023) and Qi et al. (2021a,b)
approach to adopt SST-2 as a common sentiment analysis
dataset, details of which are shown in table 2. This approach
involves injecting the backdoor into the victim model BERT-
base Devlin et al. (2019), and the target label for SST-2 is set
as "positive".

Evaluation Metrics

This approach will use previously followed work Zhou et
al. (2023); Qi et al. (2021b); Zang et al. (2020) to evaluate
the experiment on the following metrics: attack success rate
(ASR), which is the percentage of samples that output the
attacker-specific label when a trigger is detected, and clean
accuracy (CACC), or the classification accuracy on clean
test data.

Following (Cui et al., 2022)’s work of evaluating poi-
soned samples, this approach utilizes the Perplexity (PPL)
metric, which evaluates the fluency of text computed by a
pre-trained language model such as GPT-2, Grammar Error
Increase (GE), which measures the syntactic correctness of
a sentence using grammar rules, and USE Cer et al. (2018),
which measures the validity of a sentence, or how similarly
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the poisoned sample retains the meaning of the original sam-
ple.

Table 3: Stealthiness of poisoned sentences measured by
Perplexity (PPL) and Grammer Error Increase (GE), and
agreeableness between poisoned and clean samples mea-
sured by USE.

Dataset | SST-2 \
Attacker | APPL| AGE| AUSEt
Badnet 262.05 0.73 93.12
Addsent 3.95 0.05 80.72
SynBkd | -167.31 0.71 66.49
StyleBkd | -103.57 -2.74 59.22
Biblepyia | -108.88  -3.52 52.61
Elempyiar | -127.92 0.36 58.61
Bibleg -108.88  -3.52 53.00
Elempuu -191 -3.47 49.00

Dataset | SST-2 \
Metric | Davies-Bouldin]
Badnet 1.18
Addsent 1.05
SynBkd 1.16
StyleBkd 1.24
Biblep,ial 0.73
Elempamal 0.87

Table 4: Davies-Bouldin Clustering Metric

5 Discussion
Attack Results

Running elementary-style partial paraphrasing with & = 45
regularization and 10% poisoning led to an ASR of 73.00%.
Although this attack does not meet the typical ASR criteria
of 90%, clustering analysis shows that there is room to im-
prove the effectiveness of the attack. Table 4 showcases the
Davies-Bouldin (DB) score Davies and Bouldin (1979) of
the different attacks and finds that partial paraphrases yield
a preferred DB score. The DB score is a metric that mea-
sures the similarity of the clusters based on the density of
the samples and the inter-cluster distance, which are both
used to calculate the average similarity among all clusters
(not including the same cluster itself). A lower DB score is
preferred, as clusters are more distinguished. The applica-
tion of this metric to backdoor attacks with the latent sep-
arability assumption implies the desire for clusters between
the classes to be distinguished. Poisoned samples associated
with a particular target label cluster may have a different
embedding representation. The samples within the cluster
would be less dense and could result in a higher DB score.
Given that the partial paraphrasing method yields a lower

DB score, clusters between the classes are more distinct,
and poisoned samples learn representations closely to em-
beddings of their clean, target-label samples. This methodol-
ogy has the capability of creating latently indistinguishable
clusters.

Spectral Signature Defense

The spectral signature (SS) defense method Tran, Li, and
Madry (2018) first looked at removing poisoned samples
of backdoored models in computer vision, but the same
methodology can be adapted to backdoored NLP models. By
removing high-scoring outlier samples in the top PCA direc-
tion, SS can effectively remove poisoned samples that have
distinct embeddings. Elementary style was used to train a
backdoored model with 35% regularization and a 5% poison
rate, and the resulting ASR was 75.55%. After the defense
was implemented, ASR dropped to 72.15%, yielding only a
3.40% drop in accuracy. Figure 2 provides a visual demon-
stration of the poisoned samples removed using PCA and
UNET dimensionality reduction. This shows that the poi-
soned sample embeddings learned among clean samples are
capable of resisting defense methods targeting the latent sep-
arability assumption.

Stealth and Validity Analysis

Table 3 provides a quantitative analysis of the stealthiness
of the given samples. Stealth plays an important role in
backdoor attacks, as easy-to-see triggers such as char-
acter or word-based insertion can be physically seen by
users and simply removed. Additionally, common textual
backdoor-based defense methods seek to automatically
remove out-of-place words/characters Qi et al. (2021a);
Azizi et al. (2021). Thus, metrics have been devised to
validate stealth, fluency, and meaning-retention of triggers.
Typical quantitative analysis of stealth involves perplexity,
grammar error, and USE, as mentioned in Section . Table 3
showcases that GPT-generated partial and full paraphrases
make capable attacks compared to their counterparts in
regard to perplexity and grammar errors.

6 Conclusion

This methodology of using partial sentence paraphrasing to
create triggers demonstrates its effectiveness in creating la-
tently inseparable attacks on text by analyzing clustering
methods while maintaining the semantics, grammar, and dis-
creteness of sentences in backdoor attacks. Current back-
door attack methods emphasize attack success and discrete-
ness to the human reader, but do not also consider the possi-
bility of defense methods attacking poisoned samples based
on latent separability. By partially paraphrasing sentences,
an approach to creating these latently inseparable attacks is
achievable, and by utilizing GPT’s ability to create human-
like sentences, this approach is capable of producing effec-
tive and stealthy attacks. This model is capable of creating
triggers that are empirically latently less distinguishable than
their counterparts and resistant to defense methods that tar-
get latent separation. The results of this methodology seek
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to provide another perspective on creating difficult-to-detect
triggers both discretely and in latent space, contributing to
the rapidly growing field of backdoor attacks on text.
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Appendix
Training Details
This approach utilizes the transformers model Wolf et al.
(2020). A batch size of 32 is chosen, and the model is trained

on 8 epochs with a learning rate of 2e~5 utilizing the adam
optimizer.

GPT 3.5-Turbo API Call

As described in Section , EDU’s of s; in F were arranged
into a list, such that when e; was selected from this list, e;
was assigned as content for GPT 3.5-turbo’s API call.

* content = "[e;]"

The content variable containing the EDU was then passed
to the following prompts to be paraphrased:

* Rewrite data[0] in biblical style
without the use of interjections (be-
hold, verily, truly, lo): content

* Paraphrase data[0] for an elementary
school student: content

In addition to the prompts created as shown above, the
one prompting the API call has the ability to create model
conversations with the following three roles: system, user,
and assistant. The role of the system serves as a high-level
overview to guide the conversation in a particular direc-
tion. The user can then prompt the question/conversation,
and the assistant serves as the one playing the "model" and
generating outputs. The following sections are broken into
two model conversations based on the style of paraphrasing
prompted - bible and elem. The entire prompt from section
for each respective paraphrasing style is fed at the very end
of the model conversation.

Elementary Prompt:

e 'role’: ’'system’, ’'content’: ’'You can
only respond in code and in a list. '

e '"role’: 'user’, 'content’: ' ["because
there are tons of activites involved,
"]. Only paraphrase data[0] so that an
elementary student would understand.’

e '"role’: '"assistant’, 'content’:
"["since there is lots to do there,
ll]l

e '"role’: 'user’, '‘content’: '[": you
already purchased the item "]. Only
paraphrase data[0] so that an elemen-
tary student would understand.’

e '"role’: ’"assistant’, ’‘content’: ' [":
you already bought it "]’

e '"role’: 'user'’, 'content’: ’["and
its absurd because its not like were
strangers or anything and in fact we
are great friends."]. Only paraphrase
datal[0] so that an elementary student
would understand.’

e "role’: 'assistant’, ’‘content’: ' ["and
its silly because we are good friends
and we know them."]’

e "role’: 'user’, ’'content’:content

Biblical Prompt:

e '"role’: 'user'’, 'content’: ’'["i be-
lieve that is exquisite “ indeed ! ”
it § - only , natural whatever -
lrb- it —-rrb- may be , indeed ! irwins

dances are superb ."]. Only paraphrase
datal[0] so that an elementary student
would understand.’

e '"role’: ’"assistant’, ’'content’: '["i
think that is lovely “ of course ! ”
it § - only , normal in -1rb- any
way it —-rrb- can be , yes ! irwins

movements are stellar ."]'

e '"role’: '"user’, 'content’: '[" : you
already purchased the item and - in-
deed in the best way , and i think-it-
is—amazing"]. Only paraphrase datal[O0]
so that an elementary student would
understand.’

e "role’: 'assistant’, '‘content’: ' ["
you already bought it and - in fact
in the greatest way , and i believe-
it-is—awesome"]’

e '"role’: 'user'’, 'content’: ’'[" —-1lrb-
yes , -rrb- my love ! perform well ,

up until tomorrow ."]. Only paraphrase
data[0] so that an elementary student
would understand.’

e '"role’: ’"assistant’, ’'content’: ' ["
—-1lrb- undoubtedly , —-rrb- my beloved !
act in a good manner , Jjust by tomor-
row ."]'

e "role’: 'user’, ’'content’:content
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Abstract

The black-box nature of large language models (LLMs)
leads to unpredictability in performance, such as failure
to meet desired criteria for generation. Controlled text
generation (CTG) therefore seeks to enforce constraints
upon LLM generation. Utilization in CTG of Rhetori-
cal Structure Theory (RST), a linguistic framework for
understanding how sections of text relate to each other,
would aid in controlling the greater structure of a text.
As a precursor to generating complex text that satisfies
rhetorical constraints with many relations, the current
study presents a novel plug-and-play CTG approach for
leveraging an RST relationship to guide an LLM’s com-
pletion of sentences, both in English and Spanish. Au-
tomatic and human evaluation shows for English that
the proposed method controls LLM output effectively
to generate a desired relation while maintaining genera-
tion quality, all without requiring any model training or
fine-tuning. Automatic evaluation, further, validates the
method for Spanish.!

1 Introduction

Large language models (LLMs) generate text autoregres-
sively, meaning that a model generates its next token con-
ditioned on that which it has previously generated. Pretrain-
ing LLMs on vast corpora of text data, this paradigm has
yielded success across various domains of text generation
(Wu et al., 2023). Despite this success, the black-box na-
ture of these probabilistic models leads to unpredictability
in performance, either by hallucination of facts or by failure
to meet imposed criteria for generation (Ji et al., 2023). Con-
trolled text generation (CTG) therefore seeks to enforce con-
straints upon LLM-generated text, such as to include certain
words, to write with a certain tone, or otherwise to facilitate
better fit of an output to a specific goal (Prabhumoye, Black,
and Salakhutdinov, 2020).

Rhetorical Structure Theory (RST) describes the rhetori-
cal relationship between spans of text, called elementary dis-
course units (EDUs), which loosely correlate with clauses in
a body of text (Mann and Thompson, 1988). Fluent text not
only contains grammatically correct EDUs, but must tell a
cohesive story, wherein each EDU relates to another in a
logical manner (Maruf, Saleh, and Haffari, 2021; Mann and

'Code will be released upon acceptance.
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such as broccoli...

Elaboration and eat less meat.

Eat more vegetables, o

Contet or apples.

Gue  because of the high

_carotenoids,

Figure 1: Relation-influenced completions for the sentence,
“Eat more vegetables,”. The proposed method generates
relation-controlled completions.

Thompson, 1988). RST provides a method by which these
logical relations can be described and analyzed. Should a
model’s output follow good rhetorical structure as analyzed
by RST, the model would improve its internal consistency
and coherence in output. As a precursor to generating com-
plex text that satisfies rhetorical constraints with many rela-
tions, the current study presents a novel plug-and-play CTG
approach for leveraging an RST relationship to guide a lan-
guage model’s completion of sentences.

The proposed method has an LLM generate a distribu-
tion for the next token, afterward using an RST parser to
re-rank a sample of the top-k choices to favor tokens that
better fulfill the desired relationship between the previous
span of text and the to-be-generated EDU. Thus, given an
input span of text, our approach generates a single EDU that
holds a desired relation with the input span. The method
is implemented using the 1.7-billion-parameter version of
BLOOM (Scao et al., 2023) and a multilingual off-the-shelf
RST parser, DMRST (Liu, Shi, and Chen, 2021, 2020). Both
automatic and human evaluation are used to gauge the effec-
tiveness of the control method and the quality of the gener-
ated English text.

The results show that the proposed method sacrifices lit-
tle to no generation quality for a strong ability to control
the rhetorical relations between adjacent EDUs. Automatic
evaluation on Spanish sentences also indicates that the pro-
posed method transfers well to languages other than English.

This study’s contributions are a plug-and-play method
for controlling LLM output with RST and an application
thereof for sentence completion.
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After a brief description of RST and the recent attempts
at integration of linguistic methods with language models,
this paper discusses the two models used by the proposed
method, which is explained in detail and evaluated experi-
mentally. The method’s effects are discussed and the paper
concludes by crystallizing the results of this study and stat-
ing the direction of future work in light thereof.

2 Related Work

Mann and Thompson (1988) introduced Rhetorical Struc-
ture Theory to explicate how clausal units in a sentence re-
late to one another to deliver meaning. A collection of el-
ementary discourse units, within RST, is represented as a
tree structure. Adjacent EDUs form spans. Each vertex in
the tree is a span, where leaf-vertices are single EDUs, and
the edges between the vertices are relations. RST historically
has been used for various objectives in natural language
processing, including summarization, machine translation,
and generation (Afantenos, Karkaletsis, and Stamatopoulos,
2005; Marcu, Carlson, and Watanabe, 2000; Vander Linden
and Martin, 1995). Although RST allows methods for plan-
ning the structure of text, these earlier methods faced the
issue of filling content, having to depend on domain-specific
knowledge bases (Taboada and Mann, 2006).

The most notable data set of professionally compiled RST
trees, containing 176,000 words over 21,789 EDUs from
385 Wall Street Journal Articles, is described in Carlson,
Marcu, and Okurowski (2003). Liu and Zeldes (2023) note
that automatic RST parsing is afflicted by an inability to gen-
eralize from this data set, since this corpus is not represen-
tative of the English used in many non-newswire domains.
Certain relations, moreover, are in much lower quantity in
this corpus than others. Therefore, any parser trained on this
corpus inherently will lack performance in domains far sep-
arated from news-speak. Liu, Shi, and Chen (2021, 2020)
propose and release the code for DMRST, a document-level
multilingual RST parser trained on various corpora from dif-
ferent languages that achieved state-of-the-art performance.
DMRST amended the RST data-scarcity problem by cross-
translating RST data across six languages.

Although lacking methods for generating fluent language,
earlier RST researchers did have methods for mapping
greater structure for natural language generation (NLG) and
for knowledge-retrieval. Conversely, modern methods, uti-
lizing data-driven LLMs to generate fluent text, suffer from
unexplainablility, uncontrolability, and hallucinations (Ji et
al., 2023). Seeing as LLMs can generate the content that
historical methods could not, researches have begun to in-
tegrate historical NLG methods with LLMs as a means to
combat these problems.

Baumler and Ray (2022) use a hybrid model to gener-
ate text from a defined logical language. First, a data-driven
language model generates a basic sentence along with its
linguistic parse tree, after which another system, which is
parse-tree based, appends to this tree with other details from
a world-knowledge database, following pre-defined logi-
cal actions. Zhou et al. (2022) leverage a common-sense
database to append knowledge to a language model prompt,

increasing the ability of the language model to produce rele-
vant information. Zhou et al. (2023) also leverage a language
model, but use prompt engineering to instruct the model to
generate sentences with specific lexical, syntactic, semantic,
style, or length constraints. Pu, Wang, and Demberg (2023)
beat the state of art for text summarization in multiple met-
rics by incorporating a source text’s RST parsing as input to
a language model.

Collecting domain-specific data and fine-tuning an LLM
with specialized data are often prohibitively expensive.
Plug-and-play paradigms offer a solution to both concerns
by allowing for controlled generation of text without any
fine-tuning of the language model (Dathathri et al., 2020;
Zhang et al., 2023). Liu et al. (2022) train a parser relevant to
recipe generation and use it to re-rank the token distribution
from a language model, resulting in controlled generation of
recipes.

Following the trend of integrating traditional computa-
tional linguistics tools, the present study integrates RST with
large language modeling through a plug-and-play combina-
tion of an RST parser and a language model.

3 Models

The proposed method utilizes two models for text genera-
tion. The first is a general language model without any RST
pretraining. The second is an RST parser.

BLOOM 1.7B

BLOOM is a multilingual decoder-only transformer lan-
guage model trained on the 1.61 terabyte ROOTS corpus,
which contains 46 natural languages alongside 13 program-
ming languages (Scao et al., 2023; Laurencon et al., 2022).
The full BLOOM model has 176 billion parameters. The
current study, however, uses the 1.7-billion-parameter ver-
sion of the model because of computational limitations for
this study.

A BLOOM model is employed because it is decoder-only,
allowing autoregressive generation of text, and because it is
multilingual, which allows the proposed relation-informed
text generation to be tested in a language different from En-
glish, namely Spanish for this study. The proposed method
requires autoregressive generation. If text were generated
non-autoregressively, modifying which token is generated
at position ¢ would have a high chance of making all to-
kens at positions after ¢ ungrammatical with token 7. With
autoregressive generation, the model adapts to a relation-
influenced token at position ¢ when generating tokens there-
after. Since RST is supposed to be language independent,
BLOOM’s multilingual abilities will help to test the pro-
posed method’s effectiveness in more than one language.

This language model serves as a driving force in the gen-
eration of text.

DMRST

RST parsing can be split into two tasks—segmentation and
relation attribution. Segmentation is the task of converting
a document into a collection of EDUs, which are the ba-
sic units in RST. Relation attribution, on the other hand, ar-
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Figure 2: The generation pipeline. Given the top-p nucleus vocabulary of the distribution from the LLM, the parser re-ranks
the tokens according to which tokens better fit the desired relation. Pictured here, the input “I love you” prompts the language
model to set the token “too” as most likely. After scoring each token in the nucleus vocabulary with the DMRST parser, the
re-ranked distribution has “but” to be the most likely token, which is greedily selected. The process then repeats to generate the

next token after “but.”

ranges these EDUs into a binary tree, assigning each edge to
be a specific relation between two EDU spans.

Unlike other RST parsers, the document-level multilin-
gual rhetorical structure theory parser, DMRST, can perform
both tasks, meaning that DMRST can segment and parse raw
text into an RST tree (Liu, Shi, and Chen, 2021, 2020). Im-
portantly for the present study, DMRST also can be config-
ured to perform relation attribution for a preset segmentation
upon a document.

DMRST classifies between 42 relations, where varying
nuclearity configurations count as different relations. Each
relation’s name is of the form

{Relation}_{Nuclearities},

where Relation is any of 18 categories, such as Contrast or
Attribution, and Nuclearities is NN to mean the relation is
between two nuclei, NS to mean the left span is a nucleus
and the right span is a satellite, and SN for the other ordering
of the nucleus and satellite.

The multilingual aspect of DMRST allows for testing of
the proposed method in more than one language, motivating
its use. Moreover, the code for DMRST is publicly avail-
able from the authors thereof. Since DMRST was trained
and tested for classification of complete texts, not for incom-
plete texts as is seen during generation, it is non-obvious that
the parser would perform as well as it is shown to do in con-
trolling LLM output.

In the following section, logits are accessed from the final
layer of DMRST. The final layer has 42 outputs, where each
output is a value indicating how likely a unique relation is,
with a higher value indicating a relation to be more likely.

4 Method

Given a prompt and a relation, the pipeline generates a sin-
gle EDU that continues the prompt while maintaining the

given relation between the prompt and the generated EDU.
For each generation step, the language model first yields a
distribution across all tokens conditioned on the prompt and
all yet generated tokens. Then, the RST parser re-ranks the
top of the distribution to favor tokens that fit the desired re-
lation. Finally, the next token is selected from this re-ranked
top of the distribution and the process continues until the
parser detects the end of the EDU. The following two sub-
sections describe the generation process and then the stop-
ping process in detail.

Generation

The pipeline receives relation r and prompt X, compris-
ing of a string of tokens, z1,x2 ..., zy, from the language
model’s vocabulary V. The pipeline then returns continua-
tion Y, which comprises of tokens, y1,...,yr € V, such
that Y continues X while maintaining relation r with X.

Generation of token y; begins by finding the top-p, 0 <
p < 1, nucleus vocabulary ve c v (Holtzman et al.,
2019). V() is the smallest subset that satisfies

Z P(y|X,Y<t) Zpa
yev @)

where each token in V(?) is more likely than or equally
likely to each token not in V®) where Y., is all tokens
generated before timestep ¢, and where the likelihood of
each y here is calculated by the language model. For this
pipeline, a size constraint is also placed on V(®) to reduce
computational overhead later, wherein the size is capped
such that, at its largest, V() would be the top-k vocabulary,
i.e. the k£ most likely tokens, with size k. Unlike Holtzman
et al. (2019), the probabilities of the tokens in V(®) are not
rescaled such that they sum to 1.
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The RST parser has token vocabulary V', which is differ-
ent from V. Therefore, the prompt and all tokens yet gen-
erated are re-tokenized to V' and are given by X’ and Y_,.
Each y € V) is also re-tokenized to V’ and is given by v/,
where /' may be more than one token.

The RST parser then scores each y € V(?) first by find-
ing the logit value associated with the likelihood that the yet
generated sequence, Y,, appended by ¢/, satisfies the de-
sired relation r with X, calculated as

logitr(y) = Dr(le Yét & y/)’

where @ is concatenation. The DMRST parser normally re-
ceives a single string of tokens as input and then returns
a segmentation, which breaks the single string into EDUs,
along with a parsing, which is a classification of the relations
between the EDUs. However, in this instance, the parser is
given a preset segmentation such that the parser only finds
the relation between X’ and Y., & y/.

After logit,.(y) is found for each y € V®) the score for
each y is given by calculating a softmax function across all
logit,.(y), as in

¥ logit, ()
SCOI'er(y) = Zwe\/(m e%IUgitT(w) )
where T is a temperature parameter.

Now, following Liu et al. (2022), the next token, y;, is
calculated greedily with

e}

y, = argmax P(y| X, Y.,) 3= . score, ()%,
yev(r)

where 0 < o < 1 determines how much power the parser
has to modify the language model’s distribution and where,
again, the likelihood of y is provided by the language model.
For sampling instead of greedy generation, the expression
inside the argmax is calculated for all y € V(®) and a soft-
max is calculated across to create a probability distribution.

Stopping
If the parser detects that an entire EDU has been generated,
generation ends.

The DMRST parser, in the generation subsection, was
used to classify a relation between two preset sequences.
For ending generation, though, the segmenter is used. Given
an input string of tokens, the DMRST parser will break up
the string into EDUs. For segmentation with the parser, we
write, for some input sequence of tokens W,

S(W) = (e1,ea,...,eL),

where e; is a sequence of tokens such that e; is itself an EDU
and e; P es @ ... P ey is the input sequence, W.

To know when to stop generation, the segmenter finds that
the prompt, X', has P EDUs. Then, generation continues as
outlined previously until the segmenter finds S(X'@Y”,) to
result in more than P + 1 EDUs. After stopping generation,
the pipeline determines the smallest N such that X’ C e; &
e D...Den? The output, then, is the tokens in (e; @ ea ®
...®epn) \ X' properly ordered.

2C here indicates a proper subset.

5 Experiments

The proposed text generation method is evaluated both by
automatic measures and by human feedback. Either type of
evaluation considers the same generations. The method is
tested with seven relations that were selected for their pre-
supposed ease of understanding to lay annotators.

Four volunteers, all native English speakers, with limited
to no knowledge of the present study each composed 20
short English sentences according to instructions sent via
e-mail. The instructions requested that the sentences be di-
verse in content and that seven be past tense, eight be present
tense, and five be future tense. Each volunteer was also pro-
vided with a unique list of 20 randomly generated English
words to serve as motivation. These motivation words, along
with the tense requirements, were to ensure that the sen-
tences had content diversity. Each of these 80 sentences was
modified by removing any trailing punctuation and replac-
ing the removed punctuation with a comma followed by a
space.

The proposed method, described in the Methods sec-
tion, then used the BLOOM 1.7B language model and the
DMRST parser to generate eight completions for each of
these 80 sentences—seven for the seven relations being
tested and one for no relation, that is, regular generation with
the language model. When no relation was used to guide
generation, the stopping mechanism was still used.

The sentence completions, for reproducibility, used
greedy generation. The parameters were selected before
viewing the human-generated prompts. The parameter val-
ues used in the generation are p = 0.75,k = 100,7 =
0.1, = 0.7. For generations with no relation, « = 0. For
all completions, generation was forced, if it had not already
stopped by itself, to cease after 30 tokens had been gener-
ated.

Since the experiments are testing sentence completion, in
addition to the stopping mechanism described in Methods,
generation also ends when a period is output. Three white
space characters were also banned from generation by set-
ting their logit values to zero in the language model—line
break, carriage return, and tab.

Automatic Evaluation

Since each completion is generated with the intent that it
might maintain a specific rhetorical relation with the input
text, the input text alongside its completion is automatically
parsed using the DMRST parser to see what relation has
been generated. DMRST is given each completion and its
corresponding prompt, along with a segmentation that sepa-
rates the two, where the prompt is the first EDU and the com-
pletion is the second EDU. To evaluate the extent to which
the completion conforms to the desired relation, the desired
relation is compared against the parsing for this EDU pair.
As seen in Table 1, five of the seven relations are parsed
in accordance with each’s desired relation more than 82% of
the time, four greater than or equal to 95% of the time, and
one is parsed to the desired relation for all tested prompts.
These results indicate that the proposed control method has a
strong ability to conform to the parser for most of the tested
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Relation Correct% GPT-2 BLOOM
Cause_NS 96.3 94.5 61.7
Condition_ NS 58.8 68.6 44.1
Contrast_ NN 95.0 85.2 52.4
Elaboration_NS 95.0 75.5 47.0
Evaluation_NS 33.8 78.4 56.2
Joint_NN 100 52.5 31.5
Manner-Means_NS 82.5 73.3 454
All Relations 80.2 75.4 48.3
None - 69.7 439

Table 1: The English-language automatic evaluation statis-
tics for each relation, where None is generation with the lan-
guage model alone and All Relations is all seven presented
above combined. The same 80 prompts are used to generate
80 completions for each relation. Correct% is the percent
of the generations that parse, using DMRST, to the relation
that controlled their composition. GPT-2 and BLOOM are
the generations’ average perplexities as measured by GPT-2
and BLOOM 1.7B respectively.

relations; which is to say, the method effectively controls
outputs such that they be parsed according to their desired
relations.

The second automatic metric is perplexity, which here is
used as a crude measure of the quality of the generated text,
with lower numbers being better. One worry concerning the
proposed method is that this secondary objective, genera-
tion that satisfies a specific relation, may degrade the quality
of the generated completions. We therefore consider the av-
erage perplexity of completions generated without this sec-
ondary objective and the average for completions generated
with each relation being used as the secondary objective.
Since the perplexity measured by BLOOM 1.7B may pro-
vide an advantage to the generations with no relation, GPT-2
(Radford et al., 2018) is also used to compare the perplexi-
ties.

Table 1 reveals that the secondary objective does not in-
crease perplexity by much. In the case of Joint_NN, there
even is a drop from generation with no relation in perplex-
ity observed both for GPT-2 and BLOOM 1.7B. The per-
plexity measures have very similar results between the two
models. Perplexity is only loosely correlated with fluency or
quality of generated output. The results with BLOOM 1.7B
do indicate, however, that the proposed control method does
not cause the generated text to stray far from the language
model’s off-the-shelf distribution, indicating that, to the de-
gree that BLOOM 1.7B may generate quality text, the pro-
posed method should also generate quality text.

Human Evaluation

A subset of same generated completions is used for hu-
man evaluation. To form the subset, all completions from
10 randomly selected of the 80 prompts are dropped. For
each of these 70 remaining prompts, the completion with
no enforced relation and two randomly selected relation-
influenced completions are selected, leading to 210 total

Relation Relation Fluency Reason
Cause_ NS 3.47 4.62 3.80
Condition_NS 3.25 3.82 3.98
Contrast_ NN 3.97 4.02 3.67
Elaboration_ NS 3.70 4.35 3.75
Evaluation_NS 2.47 3.97 3.75
Joint_ NN 4.02 4.05 4.32
Manner-Means_NS 3.57 3.57 4.13
All Relations 3.49 4.05 3.91
None - 4.16 3.80

Table 2: The English-language human evaluation statistics
for each relation, where None is generation with the lan-
guage model alone and All Relations is all seven presented
above combined. Annotators rated each English generation
on these three metrics with a number from one to five, inclu-
sive. Relation(-fit) is the degree to which the text fits the de-
sired relation. Fluency is how much grammatical sense the
generation makes. Reason(ableness) is the extent to which
the generation is reasonable, i.e. makes logical sense.

completions. The random selection is such that the subset
of generations contains 20 completions for each of the seven
relations and 70 completions with no enforced relation.

Three native speakers of English were paid to evaluate
the generations across three dimensions—fluency, reason-
ableness, and relation-fit. The evaluation was split into two
surveys, A and B. Survey A had the annotators rate the flu-
ency and reasonableness and B had them rate the relation-fit
of each completion. Survey A was completed before Survey
B by all annotators because it does not reveal which rela-
tions influenced which completions, avoiding biasing anno-
tator ratings. For all metrics, each prompt-completion pair
was rated on a scale form one to five.

Survey A Each annotator was given a survey wherein
he or she would rate the fluency and reasonableness of
each of the 210 prompt-completion pairs. The completions
were presented being prepended by their respective prompts.
There was no distinction or indication of what relation a gen-
eration was supposed to exhibit or of when the human com-
position ended and the natural language generation began.
The annotators received instructions including the following
verbatim definitions of the two metrics:

* Fluency roughly measures how grammatically correct a
sentence is. Grammatically correct here does not neces-
sarily mean textbook grammar exclusively, but also in-
formal grammar. For instance, “I ain’t heard nothing” is
fluent because a native English speaker may say it.

* Reasonableness measures how much sense a sentence
makes. A sentence like “I flew across the chair using a
flip-flop” may be grammatically correct, but it is not rea-
sonable. A reasonable sentence would be “I flew across
the ocean using a plane.”

Additionally, the instructions asked the annotators not to
conflate the two metrics, i.e. it is possible for a sentence to
be high for one metric and low for the other.
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Figure 3: The human evaluation pipeline. After four volunteers each composed 20 short sentences, the proposed method gener-
ated completions that elongate the sentences. These prompt-completion pairs are evaluated by three paid annotators across two
surveys, one for fluency and reasonableness and the other for relation-fit.

Table 2 shows the average ratings for each relation, aver-
aged again over the three annotators. The average fluency for
all relations is only slightly lower than for no relation, 4.05
against 4.16, with the fluency for different relations ranging
from 3.57 to 4.62. The average reasonableness for all rela-
tions is actually higher than that for no relation, 3.91 against
3.80.

Survey B Each annotator was given a survey wherein he
or she would rate the relation-fit of each of the 140 genera-
tions that were controlled by a relation. The 70 generations
with no desired relation were left out for this survey. Each
generation is presented to the annotator in the form

{prompt}(relation){completion},

where the prompt is a human generated sentence and the
completion is the generation conditioned on the prompt and
the relation. One such generation presentation is, “The witch
cast a spell and made the dog fly, (Elaboration_NS) which
was the origin of the dog fly.”

The annotators rated each generation’s relation-fit, which
is the degree to which the second part of the sentence, after
the interjected relation, relates to the first part of the sen-
tence with the relation specified in the interjection. The in-
structions included brief descriptions of each of the seven
relations. The description of Contrast_NN is

The second part should contrast, contradict, or give an
alternative to what the first part said. Eg. “I sent him
a letter, (Contrast_ NN) but I did not send one to his
sister.”

The six other relations have like descriptions.

The average annotator rating of relation-fit for generation
with each of the relations is presented in Table 2. The over-
all average, 3.49, is well within the positive range. Evalu-
ation_NS is unique in being poor, receiving an average of
2.47.

Spanish Automatic Evaluation

To collect a set of Spanish-language prompts, ChatGPT was
used to produce 100 short diverse sentences in Spanish that

Relation Correct% BLOOM
Cause_NS 95.0 39.8
Condition_NS 43.0 25.2
Contrast_ NN 99.0 31.3
Elaboration_NS 99.0 28.4
Evaluation_NS 36.0 26.1
Joint_ NN 100 23.3
Manner-Means_NS 86.0 30.8
All Relations 79.7 29.3
None - 19.5

Table 3: The Spanish-language automatic evaluation statis-
tics for each relation, where None is generation with the lan-
guage model alone and All Relations is all seven presented
above combined. The same 100 prompts are used to gener-
ate 100 completions for each relation. Correct% is the per-
cent of the generations that parse, using DMRST, to the re-
lation that controlled their composition. BLOOM is the gen-
erations’ average perplexity as measured by BLOOM 1.7B.

employ various verb tenses. As with the English prompts,
the 100 short sentences were converted to 100 prompts by
removing any trailing punctuation and adding a comma and
a space where the punctuation was removed.

Both BLOOM 1.7B and DMRST support Spanish, mean-
ing that no modifications to the system need be made. The
same parameters as were used for the English generation
are used to generate eight completions for each of the 100
prompts—one for each of seven relations and one for no re-
lation. This leads to a total of 800 Spanish completions, 100
for each relation, including no relation.

Table 3 includes the same metrics as were used for
English-language automatic evaluation, only GPT-2 is not
used because it was trained primarily for English and the
previous automatic evaluation revealed notably small dif-
ferences between information revealed by the different lan-
guage models’ perplexity measures.
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Figure 4: At each step of generation, the average difference
between the highest and the lowest DMRST parser-assigned
score in the nucleus vocabulary across 560 generations—
seven different relations for each of the 80 human-generated
prompts.

As with the automatic evaluation for English, the pro-
posed method effectively controls generation, i.e. is parsed
to obtain the desired relation, most of the time. 79.7% of the
completions result in the desired parsing. The method again
does not increase the perplexity much, with an average re-
lation perplexity of 29.3 against the no relation perplexity
of 19.5. This again indicates that the method does not cause
generation to stray far from the language model’s regular
distribution, implying that the quality of generation is com-
parable to that without the control method.

6 Perturbation Analysis

Knowledge of the degree to which the proposed method per-
turbs the output of the language model provides useful infor-
mation by giving an indicator of how much improvement or
degradation can occur when using the method. The quality
of generated text, after all, can only be altered to the degree
that the proposed method can compel the language model to
generate differently. As discussed in Experiments, perplex-
ity is one general measure of how much the method compels
the language model to alter its distribution. By inspection
of these perplexity measures therein, the language model’s
distribution is not seen to be altered significantly with the
method.

Aside from the degree of perturbation, knowing where the
method most compels an alteration in token choice to occur
grants insight to the problem of CTG with RST. We measure
the degree of perturbation for each step of generation in a
way semi-independent of «, the generation parameter that
determines how much the proposed method may perturb the
language model’s distribution.

After the top-p nucleus vocabulary from the language
model is obtained, the DMRST parser re-ranks each of these

by creating a new token distribution, wherein each token is
likely in as much as the parser sees the token to be fit for the
desired relation. The difference, then, between the score of
the highest parser-scored token and the score of the lowest
parser-scored token is a proxy for how much the parser will
re-rank, or perturb, the regular distribution. When the differ-
ence is smaller, tokens are not re-ranked as much as when
the difference is larger. This, when only considering a single
step of generation, is a measure independent of a.

Figure 4 displays the average, across 560 generations,
of this difference for each generation step. The genera-
tions comprise of seven completions influenced by the re-
lations heretofore used for each of the 80 human-generated
prompts. Generation here used the same parameters as were
used in Experiments. After the first token’s generation,
which has an average of 0.42, the average difference drops
to 0.18 and then after the fourth step below 0.1. Hence, the
most control is exerted during the generation of the first to-
kens, which makes sense when considering that the words
that explicitly begin the relation completions tested in this
study for both languages are often headed with specific
words or phrases. One example is Contrast_NN, for which
English completions typically begin with “but” or another
adversative such as “instead.” For Spanish, the same relation
often beckons “pero” or “sin embargo.” After generating this
first word or phrase, the decreased value of the difference, in
conjunction with human evaluation confirming that the pro-
posed method maintains comparable fluency, means that the
language model, now generating conditioned on this initial
relation-specific start, successfully adjusts to the desired re-
lation without much further assistance from the parser.

7 Conclusion

The proposed plug-and-play control method is able to en-
force a rhetorical relation in the context of English sentence
completion while producing fluent and reasonable text, all
without the need to train any model. Automatic evaluation,
moreover, indicates that the method does not compel a lan-
guage model to stray far from its regular distribution during
generation and that, without any modification to the archi-
tecture, the control method efficaciously controls Spanish
generation as it does English generation. Human evaluation
reveals that the proposed method does not degrade reason-
ableness and fluency of generated text.

On the one hand presenting a working sentence comple-
tion tool, the proposed method, on the other, is a first step in
RST-informed CTG, promising future use thereof in the con-
trol of rhetorical flow for longer texts with diverse relations
throughout. Future work, therefore, will extend the current
method to generation beyond a single EDU, facilitating the
control of text generation on a macro-rhetorical level.
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Abstract

The increased prevalence of online meetings has
sparked the practicality of a model that can automat-
ically generate the summary of a given meeting. This
paper introduces a novel and effective approach to au-
tomating the generation of meeting summaries. Current
approaches to this problem generate very general and
basic summaries of the dialogue. However, our novel
algorithms can generate abstractive meeting summaries
that are driven by the action items contained in the meet-
ing transcript. This is done by recursively generating
summaries and employing our action item extraction
algorithm for each section of the meeting in parallel.
All of these sectional summaries are then combined and
summarized together to create a coherent and action
item driven meeting summary. In addition, this paper
introduces 3 novel methods for dividing up long meet-
ing transcripts into topic-based sections to improve the
time efficiency of our algorithm, as well as to resolve
the issue of LLMs forgetting long-term dependencies.
Our pipeline achieved a BERTScore of 64.98 across the
AMI corpus, which is a &~ 4.98% increase from the cur-
rent state-of-the-art results also employing a fine-tuned
BART (Bidirectional and Auto-Regressive Transform-
ers) model.

1 Introduction

As a result of the COVID-19 pandemic, many professional
meetings and conversations have been conducted online.
This also means that the transcripts of these meeting have
become readily available. As humans, we cannot possibly at-
tend or remember the contents of every single meeting that
we are interested in, so we conduct the tedious process of
generating meeting minutes. However, with the help of large
language models (LLMs), we can automate this process of
writing meeting summaries and still generate factual and in-
formative summaries.

There are two main approaches to text summarization in
general: extractive summarization and abstractive summa-
rization. Extractive summarization techniques aim to locate
the most important phrases and sentences from the input
transcript and concatenate them together to form a concise
summary. However, the summaries generating from these
techniques are usually very awkward to read because we
are forcefully concatenating these unrelated sentences to-

Jugal Kalita
University of Colorado Colorado Springs
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gether (Koh et al. 2023). Abstractive summarization tech-
niques focus more on understanding the overall meaning of
a transcript and then generating a concise summary based
on the entire text. Unlike extractive summarization, abstrac-
tive summarization actually aims to generate new words and
phrases in the summary that were not found in the input tran-
script, rather than simply extracting the important phrases
(Rennard et al. 2023). Abstractive summarization is a much
more challenging task, but as expected, it leads to better
summaries (Gupta and Gupta 2019). As a result, meeting
summarization has began to head in this direction, and this
study utilizes abstractive summarization techniques as well.

Current approaches to automating meeting minutes is that
they treat summarizing a meeting the same way they would
summarizing a dialogue (FM et al. 2022). However, we ar-
gue that the meeting summarization problem is fundamen-
tally different from the dialogue summarization problem.
Unlike a dialogue, useful meeting minutes have some ad-
ditional features that are often not included in the automated
summary of the meeting: action items, main topics, tension
levels, decisions made, etc. In this study, we focus on incor-
porating action items in the machine-generated summaries.

LLM:s today still struggle to capture long-term dependen-
cies in texts, and as a result, they are not very good at gen-
erating summaries for long transcripts (Dong et al. 2023).
The time and space complexity of these transformer-based
models increases quadratically with respect to the input size
(Vaswant et al. 2017), and new LLMs still have strict input
token limits (Yang et al. 2023). Most solutions to these prob-
lems employ linear segmentation, where the long texts are
broken up into equal subsections based on token numbers,
but the problem with this approach is that we are inevitably
interrupting ideas in the text. We build upon previous work
in text clustering to divide the text into topical chunks before
summarizing (Chen et al. 2023).

In summary, current solutions to the problem of automat-
ically generating meeting minutes given the transcript of the
meeting produce very general and vague summaries. In ad-
dition, there is a lack of effective topic segmentation meth-
ods in the field of meeting summarization. This study out-
lines a novel method of utilizing topic segmentation and
recursive summarization to generate action item driven ab-
stractive summaries of long meeting transcripts.

Our main contributions are threefold:
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1) We develop three novel topic segmentation algorithms,
in which the best outperforms the summarization perfor-
mance provided by linear segmentation by 1.36% in terms
of the BERT Score metric;

2) We develop our own effective action item extraction
algorithm;

3) Our novel parallel and recursive meeting summariza-
tion algorithm properly generates action item driven sum-
maries and improves upon the performance of current state-
of-the-art models by ~ 4.98% in terms of the BERTScore
metric.

2 Related Work

In this section, we address previous methods employed
in meeting summarization and provide motivation for our
novel techniques.

2.1 Recursive Summarization

Another way in which the meeting summarization prob-
lem differs from the dialogue summarization problem is that
meeting transcripts are generally very long, and as explained
earlier, transformer-based models struggle with larger input
sizes. As a result, it has been proven effective to divide long
documents into multiple parts, summarize each component,
and then combine the summaries back together in a recursive
approach. The recursive algorithm described in this paper is
inspired by the method proposed by (Wu et al. 2021) which
was used to summarize long books. The methods proposed
by (Shinde et al. 2022) and (Yamaguchi et al. 2021) are not
truly recursive because after they combine the summaries
back together, the final summary is never fed back into the
summarization model. Instead, they perform argument min-
ing on the resulting chunk of the combined summaries. We
propose a truly recursive approach and achieve state-of-the-
art results with this technique.

2.2 BART Model for Meeting Summarization

While there do exist more powerful dialogue summarization
models such as DialogLM (Zhong et al. 2022) and Summ?”’
(Zhang et al. 2022), we use the BART (Bidirectional and
Auto-Regressive Transformers) model (Lewis et al. 2020)
due to its speed and high performance in long document
summarization tasks (Koh et al. 2023). In addition, there
has been previous research in assessing different topic seg-
mentation methods on the BART model, so this allows us to
evaluate our techniques.

2.3 AMI Dataset

The AMI dataset is a large meeting corpus consisting of
137 scenario-driven meetings and their corresponding sum-
maries (Mccowan et al. 2005). Even though the scenarios
are artificial, the way in which the actors choose how to in-
teract with each other is spontaneous. The realistic meeting
conversations combined with the fact that there are 137 dif-
ferent long meeting transcripts makes the AMI corpus an
ideal dataset to test our techniques on.

2.4 Current Segmentation Techniques

There are many techniques to divide meeting transcripts into
multiple parts, but none have actually been able to improve
results when compared to the simplest technique, linear seg-
mentation. Linear segmentation is the process of dividing
the meeting transcripts into parts solely based on the number
of tokens, maximizing the number of tokens in each section.
The state-of-the-art results on summarizing the AMI corpus
using the BART model are achieved through this technique
by (Shinde et al. 2022). They attempted to use two additional
topic segmentation techniques, Depth-Scoring by (Solbiati
et al. 2021) and TextTiling by (Hearst 1997), but neither
were able to improve the results obtained by linear segmen-
tation. (Yamaguchi et al. 2021) also introduces a novel tech-
nique for topic segmentation using a Longformer+LSTM
model to predict whether a sentence is the start of a new
topic, in the middle of a topic, or outside of a particular topic.
However, their summarization results were significantly less
than those achieved by (Shinde et al. 2022). We propose
three novel segmentation techniques that outperform linear
segmentation.

2.5 Evaluation Metrics

ROUGE scores are the most popular metric in evaluating the
precision and recall of the machine generated summaries.
ROUGE-1 and ROUGE-2 scores are calculated by comput-
ing the n-gram overlap between the machine-generated and
human reference summaries, where n equals 1 or 2 respec-
tively. ROUGE-L scores are better at computing the simi-
larities between sentence-level structures. It works by evalu-
ating the Longest Common Subsequence (LCS), the longest
sequence of words that appear in the same order in two texts,
between the machine-generated summary and the human
reference summary. The LCS does not have to be contigu-
ous which is why ROUGE-L scores are generally preferred
over ROUGE-1 and ROUGE-2 scores for evaluating sum-
marization tasks. We employ ROUGE’s F1 scores to provide
a balanced measure of precision and recall (Lin 2004).

Even though the ROUGE scores are the most popular met-
ric, they has many flaws since they focus solely on lexical
overlap between the machine-generated summaries and the
human reference summaries rather than their semantic sim-
ilarity(Fabbri et al. 2021). As a result, BERTScore, which
measures the semantic similarity between the machine-
generated summaries and the human reference summaries
has been growing in popularity (Rennard et al. 2023).
BERTScore works by using the contextualized word em-
beddings provided by BERT to compute the token simi-
larities between each token in the machine-generated sum-
maries and each token in the human reference summaries.
We employ the BERTScore metric as well, since it has been
shown to achieve higher correlations with human judgment
on the quality of a machine-generated summary compared
to ROUGE (Zhang et al. 2020).

3 Approach

In this section, we dive deeper into our parallel and recursive
algorithm for generating action item driven meetings. We
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also explore the lower-level techniques that were necessary
to improve state-of-the-art results and provide motivation for
these design decisions along the way.

3.1 Divide-and-conquer

As described in our “Introduction” and “Related Works”
sections, the first step to summarizing long meeting tran-
scripts is to break them up, so we can summarize each
chunk. We propose three simple but very effective topic seg-
mentation techniques that were able to generate more truth-
ful and concise summaries when compared to linear seg-
mentation.

Chunked Linear Segmentation When we ran our model
using linear segmentation, we noticed that points were often
misunderstood and repeated because we were creating sep-
arate chunks in the middle of a speaker’s formulation of one
idea. Let us call each speaker’s contiguous dialogue a “’turn”.
Therefore, we first employed a simple technique inspired by
linear segmentation where we attempt to maximize the num-
ber of tokens in each chunk, but ensuring that no speaker’s
turn is interrupted.

Simple Cosine Similarity The second technique we cre-
ated is based upon chunked linear segmentation, but also
upon the cosine similarity of the MPNet embeddings, a
state-of-the-art sentence embedding model (Song et al.
2020), for each turn. This allows us to compute the semantic
similarity between each turn. For each turn, we compute its
MPNet embedding and calculate its cosine similarity with
the MPNet embedding of the previous turn. These values
range from -1 to 1 where a cosine similarity of -1 means that
the sentences are extremely dissimilar, and a cosine similar-
ity of +1 means that the sentences are extremely similar. If
the cosine similarity of the embeddings is greater than 0, we
simply add this turn to the current chunk. If the cosine simi-
larity of the embeddings is less than or equal to 0, we define
the current turn as the beginning of a new topic and begin a
new chunk.

We choose a similarity threshold of 0 to signify the start of
a new topic is after experimenting with different values and
manually inspecting the quality of the resulting summaries,
as well as evaluating the resulting summaries with ROUGE
and BERTScore metrics. This value of 0 also makes sense
in theory because it means that the two consecutive turns
are more dissimilar than they are similar. In our experimen-
tation with calculating the cosine similarities between turns
in the AMI Corpus, negative values were relatively uncom-
mon, but still arose. However, it makes sense that this leads
to better results because we do not want to split the transcript
into too many topics, and instead favor large topics, because
we generally want to keep as much text intact as possible so
the summarization model has enough context to generate a
quality summary. We do not want to be generating too many
independent summaries for each topic that have little rela-
tion to each other and then combining these little summaries
together. In our testing, this proved to be a very ineffective
approach because each sectional summary had little context
of the surrounding text to work with, and as a result, the re-
sulting overall summary was very confusing to read. This

is also why topic segmentation for summarization is a very
different problem from typical topic segmentation problems
because we do not want to create chunks at every little topic
change. In fact, when we increased our similarity threshold
from O to just 0.2, our BERTScores and ROUGE-L scores
both decreased by > 1% which is very significant for sum-
marization tasks.

It is also important to note that when splitting based on
some cosine similarity threshold, there is a risk that no new
chunks will be created for over 1024 consecutive tokens,
which is the max input token limit for the BART model
(Obonyo, Casola, and Saggion 2022). In this event, we will
not be able to pass this large chunk of text into our summa-
rization model. Therefore, we developed a solution to this
problem. As we move through the turns and add them to
the existing chunk if their cosine similarities with the pre-
vious turn is greater than or equal to 0, we check to ensure
that adding the current turn will not make the current chunk
greater than 1024 tokens. If this turn will make the current
chunk greater that 1024 tokens, we create a new chunk/topic
beginning with this turn, regardless of this turn’s cosine sim-
ilarity with the previous turn. With this technique, we still
create topic-based chunks of the meeting transcript whilst
ensuring that no topic/chunk exceeds 1024 tokens.

Complex Cosine Similarity The previous method worked
fairly well, but we noticed a recurring problem when in-
specting the topic chunks that were being created. Some-
times in the meeting transcript, a person would utter some-
thing meaningless, and that would compose their entire turn
(e.g. ’Bob: Ummm.”). As aresult, this turn would often have
a really low cosine similarity with the previous turn, a new
topic/chunk would be created. The simplest solution to this
problem would be to remove all redundant and meaningless
utterances in the pre-processing stage. The problem with this
approach is that even if we somehow managed to hard code
the regular expressions in order to remove all of the “mean-
ingless” turns, there are still lots of cases where a speaker
will say something completely unrelated to the current topic
(e.g. "Let us go grab ice cream after this”), but then they
will resume talking about the original topic. In this case, we
would not want to create a new topic. In order to achieve this,
we take the same approach used in ”simple cosine similar-
ity”, except we recalculate the MPNet embedding of the en-
tire current chunk before comparing its cosine similarity to
the the MPNet embedding of the following sentence. Thus,
we are not checking if the next turn is on the same topic
as the previous turn, rather whether or not the next turn is
on the same topic as the entire current chunk being created.
Thus, we mitigate the effect of “meaningless” turns, partic-
ularly consecutive “meaningless” turns, since they will have
a lesser impact on the the MPNet embedding of the chunk
we are comparing the next turn to. Please refer to Algorithm
1 for further details.

3.2 Generating the General Sectional Suammries

Once we have divided the original text into chunks, the next
step is to generate a general abstractive summary for each
chunk. Our approach to solve this problem involves fine-
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Algorithm 1 Complex Cosine Similarity(string text, int similarityThreshold, int maxTokens)

1: turns < text split by speaker
: model + sentence embedding model
: tokenizer < tokenizer used by summarization model

: processedChunks < list with the first sentence from turns

> Iterate through the turns

curChunkEmbedding < model.encode(processedChunks[—1])

nextSpeaker Embedding < model.encode(turnsli))
similarity < cosineSimilarity(curChunkEmbedding, nextSpeaker Embedding)

2
3
4
5: for i in range(1, len(turns)) do
6.
7
8

> Compute similarity

9: newChunk < processedChunks[—1] + turns]i]
10: newNumT okens < tokenLen(tokenizer(newChunk))
11: if similarity > similarityT hreshold and new NumTokens < maxTokens then
12: processedChunks[—1] < newChunk > Add turn to the current chunk
13: else
14: append turns|i] to processedChunks > Start a new chunk
15: end if
16: end for

17: return processedChunks

> A list of topic-based chunks of text

tuning Meta’s BART model (Lewis et al. 2020), a pre-trained
large language model, on dialogue datasets to generate gen-
eral summaries of a meeting. We elect to use a BART model
since its bidirectional encoder and auto-regressive decoder
has been shown to understand the full semantics of a text and
generate coherent summaries. Specifically, we used a BART
model fine-tuned on the XSUM (Narayan, Cohen, and La-
pata 2018) and SAMSUM (Gliwa et al. 2019) datasets to
generate the general summaries for each chunk. These are
widely used dialogue datasets for training dialogue summa-
rization models (Feng, Feng, and Qin 2022). They are also
the same datasets (Shinde et al. 2022) fine-tuned their model
on so can better compare our results.

In addition, we noticed that since each general sectional
summary is independent of one another, they can be gener-
ated in parallel. To the best of our knowledge, we are the first
to incorporate parallelism in the divide-and-conquer sum-
marization algorithm as seen in Algorithm 3.

3.3 Action Item Extraction

Another very important component of any good meeting
summary is what each participant has accomplished and
what they need to accomplish before the next meeting. So,
for each chunk of text, we need to extract the action items.
Action item extraction is an extremely understudied topic,
thus we developed our own method. To accomplish this, we
use a public datase from a GitHub repository that contains
2750 dialogue statements as well as corresponding labels
for whether each statement contains action items and which
do not. We then fine-tune a BertForSequenceClassiﬁcatio
model (a BERT model transformer with a linear layer on
top for classification) on this dataset in order to be able to
classify the action items in the original meeting transcript.

'https://github.com/kiransarv/
actionitemdetection/blob/master/dataset

“https://huggingface.co/docs/transformers/
v4.31.0/en/model_doc/bert#transformers.
BertForSequenceClassification

This training method proved very effective with a classifi-
cation accuracy of 95.4% on the test dataset. However, this
process alone is not enough to extract the key action items
from a text. Through this method alone, we are only identi-
fying which sentences contain action items, but we are not
truly extracting the ideas underlying them. For example, a
sentence that may be identified as an action item can be
”You need to do that before the next meeting.” This is in-
deed an action item, but it doesn’t actually contain any use-
ful information; there are too many pronouns and not enough
context. In the next section, we discuss existing methods to
solve this problem, explain their limitations for this applica-
tion, and present our own technique.

Coreference Resolution We first employed widely used
state-of-the-art methods and models for coreference resolu-
tion in order to convert the sentences that were classified
as action items into more context-rich statements. We em-
ployed libraries such as Stanford CoreNLP (Clark and Man-
ning 2016) and NeuralCore (an extension of the spaCy li-
brary), but we were not satisfied by the results. Not only
were the pronouns not always resolved for larger text in-
puts, but we realized that coreference resolution alone was
not enough to solve our problem. Even if the pronouns were
resolved, this was often not enough context alone to com-
pletely understand the sentence containing the action item.
For example, the sentence “’you need to do that before the
next meeting” may be converted to ”Jake needs to fix the
website before the next meeting” after coreference resolu-
tion. This is better, but it is still not enough information for
Jake to read this sentence in the meeting minutes and under-
stand what needs to be done. He doesn’t know what specif-
ically needs to be fixed in the website, or why it needs to be
fixed at all.

Context Resolution In this paper, we employ our own
technique to solve this lack-of-context problem which we

*https://github.com/huggingface/
neuralcoref
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call “neighborhood summarization.” For this method, once
we find a sentence that has been identified as an action item,
we then find its “neighborhood.” For our purposes, we de-
fine a sentence’s neighborhood as the three sentences before
the sentence, the sentence itself, and the two sentences af-
ter the sentence. Finally, we use all 6 of these sentences as
inputs into the same BART summarization model that we
used to generate the sectional summaries, and we are left
with a rephrased version of the sentence containing the ac-
tion item. We believe the reason this technique works so
well is because the human reference summaries in the di-
alogue datasets that our BART model is fine-tuned on are
naturally action-item driven, to some extent. As a result,
when we place the entire neighborhood into the summa-
rization model, we can gain a context-rich summary revolv-
ing around the action item that often addresses the lack-of-
context problem we discussed earlier. To use the same exam-
ple, this neighborhood summarization technique can convert
a sentence that has been identified as an action item, you
need to do that before the next meeting”, into a context-rich
rephrasing, ”Jake needs to fix the menu button on the web-
site because our users are complaining that it does not work
half the time.”

We choose 3 sentences before and two sentences after
for our neighborhood after experimenting with different val-
ues and inspecting the resulting summaries ourselves. Any
smaller of a neighborhood and we found that there was
not enough context in the resulting summary. Any larger
of a neighborhood, and the summary often did not revolve
around the action item and instead addressed other parts of
the input text that was not relevant for this particular action
item extraction task. Also it makes sense that we would need
more sentences before the action item than after it since
most pronoun references and necessary context would be
provided before a sentence that depends on it. However,
since this is a dialogue summarization task, and there are
many anomalies when people speak, sentences after the ac-
tion item are still necessary to include in the neighborhood in
the case that additional pronoun references or context comes
after. Note that there are edge cases to this rule, for example
when an action item is located at the very beginning or end
of a chunk, so please see Algorithm 2 for more details.

Now that we have extracted the action items with context
from a given chunk, we append each of them to the end of
the general summary for this same chunk. This way, we can
keep the summaries and action items that are derived from
the same pieces of text together. Then we pass this entire text
(summary + action items) into the same BART summarizer.
We found that this technique helps condense the summary
as well as improve the coherence of the resulting summary
for each chunk.

3.4 Combining Summaries and the Recursive Case

Now that we have generated summaries for each chunk, con-
taining information regarding both the general summary and
the action items, we will generate an abstractive summary
again based on all of the sectional summaries combined to-
gether in a recursive approach. If we append the sectional
summaries together, and the number of tokens in this en-

tire chunk of text is less than 1024, then we pass this entire
chunk of summaries into the same BART summarizer again;
in essence, we are summarizing the summaries. However,
if this entire chunk of summaries contains more than 1024
tokens, then we fall into the recursive case where we pass
this entire chunk of summaries back into the entire func-
tion as if it is a meeting transcript. We explored other tech-
niques to fluidly combine the summaries together, but we
found that using the BART summarizer achieved the best
results. We attempted to use an existing RoOBERTa model
(Liu et al. 2019) that was fine-tuned on a sentence fusion
dataset know as DiscoFuse (Rothe, Narayan, and Severyn
2020). However, this technique did not prove effective be-
cause the resulting summaries were often very long and con-
tained repetitions between the summaries. We tried solving
this problem by tuning the BART summarizer model to gen-
erate shorter sectional summaries, so the resulting chunk of
all the summaries appended together would be shorter, but
the sentence fusion models still did not prove effective in
generating grammatically correct and coherent final sum-
maries. This is a very challenging task if approached from
a sentence fusion perspective, however, we approached this
problem as simply another summarization task, and the fine-
tuned BART summarizer proved very effective at this task
by removing repetitions between the sectional summaries
and generating very informative, coherent, and concise sum-
maries as seen in our results table.

4 Results and Analysis

We first generated meeting summaries without including
our action item extraction technique in order to evaluate
our three topic segmentation techniques and recursive al-
gorithm. We evaluate within our own techniques as well as
compare to the current state-of-the-art on the AMI dataset
using the BART summarizer (Shinde et al. 2022). Then we
compare our summaries with and without action items and
show that our action item driven summaries contain addi-
tional valuable information.

4.1 Topic Segmentation Performance

We evaluate our topic segmentation methods by keeping
our recursive algorithm constant and only varying the topic
segmentation method. We can see from Table 1 that all
three of our novel topic segmentation methods outperformed
linear segmentation with respect to both the BERTScore
and ROUGE metrics. Most notably, with respect to the
BERTScore metric, our methods, simple cosine similarity,
complex cosine similarity, and chunked linear segmenta-
tion, outperform linear segmentation by 0.50% 1.07% and
1.36%, respectively for the generated summaries without ac-
tion items. For the summaries with action items, the im-
provements over linear segmentation with respect to the
BERTScore metric, were 0.38% 1.11% and 1.22%, respec-
tively.

The complex cosine similarity technique outperformed
the simple cosine similarity technique by 0.57% and 0.73%
in terms of the BERTScore metric for the summaries with-
out and with action items, respectively. This was expected
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Algorithm 2 Action Item Extraction(string text)

1: model < action item classifier

2: tokenizer <— BERT tokenizer.
3: actions < empty string
4: sentences < text split by sentence
5: for index, sentence in enumerate(sentences) do > Iterate through the sentences
6: inputs + tokenizer(sentence)
7 predictedClass < model(inputs).
8: if predictedClass = 1 then > Class 1 indicates sentence is an action item
9: neighborhood < empty string
10 startIndex < max(0,index — 3).
11: endIndex < min(len(sentences), index — 3)
12: for neighborlIdx in range(startIndex, endIndex) do
13: neighborhood += sentences[neighborldzx)].
14: end for
15: actions += generalSum(neighborhood) > Summarize the neighborhood
16: end if
17: end for
18: return actions > A string containing the context-rich action items found in text

Algorithm 3 Action Item Driven Summary(string text, bool first, int maxTokens)

1: tokenizer < tokenizer used by summarization model
: text < preProcessText(text)
. if first = True then

2
3
4: chunks < topical ChunksBySpeaker(text) > Split text into topic-based chunks
5: else
6: chunks < topical ChunksBySentence(text)
7. end if
8: chunkSums + array with size of len(chunks)
9: for all index € range(0,len(chunks)) do > Summarize each chunk in parallel
10 part < chunks[index]
11: genSum + generalSum(part)
12: if first = True then
13: actions <+ actionltemExtraction(chunk) > Extract action items
14: combined < genSum + actions
15: combinedNumT okens < tokenLen(tokenizer(genSum + actions))
16: if combined NumT okens > mazTokens then > Theoretically possible but never true in our testing
17: combined + truncateText(combined)
18: end if
19: chunkSum < generalSum/(combined)
20: chunkSums[index] < partSum
21: else
22: chunkSums[index] < genSum
23: end if
24: end for
25: concatSums « concatenate(chunkSums) > Concatenate summaries after parallel loop completes

26: summaryNumTokens < tokenLen(tokenizer(concatSums))
27: if summaryNumT okens > maxT okens then

28: return actionltem DrivenSummary(concatSums, False, maxT okens) > Recursive call
29: else

30: return general Sum/(concatSums) > The action item driven summary of text
31: end if
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Topic Segmentation | Metric —

BERTScore R-1 R-2 R-L

General Summaries (Without Action Items)

Linear Segmentation (Baseline Technique)

Chunked Linear Segmentation
Simple Cosine Similarity
Complex Cosine Similarity

63.41 38.14 8.61 19.46
64.77 38.93 9.27 19.63
63.91 3849 8.61 19.46
64.48 38.92 924 1947

Action Item Driven Summaries

Linear Segmentation (Baseline Technique)

Chunked Linear Segmentation
Simple Cosine Similarity
Complex Cosine Similarity

63.76 35.11 8.04 18.99
64.98 36.27 831 19.62
64.14 3530 8.12 19.24
64.87 36.21 8.32 19.61

(Shinde et al. 2022)

60 452 133 N/A

Table 1: BERTScore and ROUGE evaluation scores for our machine-generated summaries across 4 different topic segmentation
methods on the AMI corpus. This is done separately for both the general summaries (without action items) and the action item
driven summaries. We also include the scores achieved by the current state-of-the-art model (Shinde et al. 2022)

because the former was less sensitive to “meaningless turns”
as explained in the "Complex Cosine Similarity” subsection.
However, chunked linear segmentation, which does not rely
on word embeddings and cosine similarity, outperformed all.

4.2 Recursive Algorithm Performance

We also compare the results of our recursive algorithm to
those of (Shinde et al. 2022). When we both use linear seg-
mentation and the same fine-tuned BART models, but dif-
ferent “recursive” algorithms, our action item driven model
outperforms the model presented by (Shinde et al. 2022) by
~ 4.98% in terms of the BERTScore metric. With regard
to our general summarization model (without action items),
this model still outperformed that presented by (Shinde et al.
2022) by ~ 4.77%. This means that, regardless of whether
or not we include action items, the summaries our model
generates are more similar to those of the human reference
summaries in terms of their semantic meanings.

The model by (Shinde et al. 2022) does outperform our
model in terms of the ROUGE scores, which measure lexi-
cal overlap, but this is expected since we use a truly recursive
algorithm that results in the input text and the corresponding
sectional summaries being passed into the BART summa-
rizer more times. This would, of course, decrease the lexi-
cal overlap between our machine-generated summaries and
the human reference summaries. However, it seems that our
summaries better match the semantic meaning of the human
reference summaries, which was shown to be more impor-
tant for human judgement by (Zhang et al. 2020).

4.3 Action Item Driven Summary Performance

As can be seen in Table 1, our action item driven summaries
seemed to achieve slightly higher BERTScores than our gen-
eral summaries (without action items), but we consider this
difference negligible (0.21% increase in BERTScore when
both using chunked linear segmentation). However, we sus-
pect that the reason for this small difference is that the hu-

man reference summaries in the AMI dataset appear to be
more action item driven that those in the XSUM and SAM-
SUM datasets.

The ROUGE scores for our action item driven summaries
were notably lower than those achieved by our general sum-
maries. For example, when both techniques employ chun-
ked linear segmentation, the ROUGE-1 scores for our gen-
eral summaries were 1.66% higher than those for our action
item driven summaries. However, this makes sense since we
are deliberately adding words and phrases (action items) that
are not included in the human reference summaries; thus,
our precision score decreases. However, the slight increase
in our BERTScores suggests that we are still capturing the
semantic meanings of the reference summaries well.

Table 2 shows example outputs from our general model
and our action item driven model. We underline the addi-
tions in the action item driven summary and show that our
action item driven model properly includes relevant action
items from the meeting. Consider the following sentence
from the action driven summary: “Industrial Designer tells
Product Manager they need to get double A or triple A bat-
teries.” This action item is not included in either the gen-
eral summary or the human reference summary, but it is a
relevant and informative action item that adds value to the
meeting summary. We also see that this action item is co-
herent and rich with context; we know who is asking for the
batteries, and who needs to obtain them. This example, as
well as the other sentences underlined in Table 2, serves as
evidence that our action item extraction technique utilizing
neighborhood summarization is quite effective.

5 Future Research

In this study, we focused on generating action item driven
summaries, but there are additional components of a good
meeting summary. As noted in our introduction, decisions
made, main topics, tension levels, etc. would also be very
informative aspects of a meeting summary. While incorpo-
rating these elements into a meeting summary may lower our
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General Summary (Without Action Items)

Action Item Driven Summary

Marketing Expert, Product Manager, and Industrial Designer
are having a conceptual design meeting after lunch. They talk
about the most important aspect for remote controls as people
want a fancy look and feel. They discuss the size of the batter-
ies they need to take into consideration, the design of the LCD
display on the LCD screen, how to distinguish where people
have to press the button when they have a flip-top, and how
to incorporate voice recognition into the remote control. They
agree on keeping the control buttons standardized and checking
the financial feasibility. They decide to start with the black and
white one and go for a whistle if financially voice recognition
is not feasible. The product will have a logo on it just like ev-
erything else in a year’s time if they get feedback from design
fairs. Product manager will go through the end of the end meet-
ing. Marketing Expert shares some information about a remote
control that fits into the palm of the hand, made of plastic, with
a rubberised cover, and the design is based on the input from the
previous meeting.

Marketing Expert, Product Manager, and Industrial Designer
are having a conceptual design meeting after lunch. They talk
about properties, materials, user-interface and trend-watching.
Marketing Expert says the fashion update which relates to very
personal preferences among their subject group. There’s no
rechargeable option for the remote control, so they’re going
to look into battery options. Industrial Designer and Market-
ing Expert are talking about the size of the batteries they need
to take into consideration. Marketing Expert thinks using the
standard batteries and the solar charging will detract from the
attractiveness of the whole feature. Marketing Expert thinks the
buttons on the remote should have lights behind the buttons.
Marketing Expert wants to make the basic mold out of plastic
but have a rubber cover. Marketing experts are going to market
to guys as much as to women. Marketing Expert shares with In-
dustrial Designer some information about the design of the LCD
display on the LCD screen. Industrial Designer and Marketing
Expert are discussing how to incorporate voice recognition into
the remote control. Industrial Designer tells Product Manager
they need to get double A or triple A batteries. Sarah and Mar-
keting Expert are talking about the design of a remote control
with a rubberised cover. Industrial Designer tells Marketing Ex-
pert they can go for a whistle if voice recognition is not feasible.
Product Manager will wrap up the end-of-meeting message.

Table 2: Comparison between machine-generated General (Without Action Items) and Action Item Driven Summaries. The
additions in the action item driven summary are underlined. AMI Meeting ID: ES2004c

automated evaluation scores, this does not necessarily mean
that the resulting meeting summary would be less useful for
human readers. We hope to explore current approaches and
develop new algorithms to extract these ideas from a meet-
ing transcript and then incorporate them into a meeting sum-

mary.

While all three of our novel topic segmentation tech-
niques outperformed linear segmentation, our best perfor-
mance came from chunked linear segmentation, which did
not involve calculating any embeddings or cosine similari-
ties. However, the fact that chunked linear segmentation out-
performed linear segmentation suggests the idea that we can
generate better summaries by not interrupting any ideas in
the meeting transcript. Thus, we hope to develop a more ad-
vanced topic segmentation method that will be able to lead
to better summaries and outperform chunked linear segmen-
tation.

Finally, action item extraction is an extremely understud-
ied research topic with both a lack of techniques as well as
metrics for evaluating these techniques. Thus, we hope to
dive deeper into this field and invent more advanced tech-
niques for accomplishing the two above goals. Nevertheless,
our neighborhood summarization algorithm proved very ef-
fective in action item extraction, and we hope to test its per-
formance on other tasks involving context resolution as well
(e.g. extracting decisions made from a meeting).

University of Colorado, Colorado Springs

6 Conclusion

This study explores a novel method for automatically gener-
ating meeting summaries by treating this problem as a fun-
damentally different one from that of generating dialogue
summaries. Action items drive this recursively-generated,
abstractive summary of the meeting that achieves ~ 4.98%
higher BERTScores across the AMI corpus than the previous
state-of-the-art using the BART summarizer. We introduce
novel topic segmentation and action item extraction algo-
rithms that all improve and add value to the resulting sum-
maries. The recursive approach presented in this paper of
generating summaries for different parts and aspects of the
meeting transcript can be expanded upon to improve meet-
ing summarization, as well as be generalized and applied to
summarizing other genres of text in the future.
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