
Proceedings of the Seminar

Machine Learning: Theory

and Applications

University of Colorado, Colorado Springs

August 7, 2015

Funded by

National Science Foundation

Editor: Jugal K. Kalita

Preface

It is with great pleasure, we present to you papers describing the research performed by the NSF-
funded Research Experience for Undergraduates (REU) students who spent 10 weeks during the
summer of 2015 at the University of Colorado, Colorado Springs. Within a very short period of
time, the students were able to choose cutting-edge projects involving machine learning, write
proposals, design interesting algorithms and approaches, develop code, and write papers
describing their work. We hope that the students will continue working on these projects and
submit papers to conferences and journals within the next few months. We also hope that it is the
beginning of a fruitful career in research and innovation for all our participants.

We thank the National Science Foundation for funding our REU project. We also thank the
University of Colorado, Colorado Springs, for providing an intellectually stimulating
environment for research. In particular, we thank Drs. Kristen Walcott-Justice, Qing Yi and
Terrance Boult, who were faculty advisors for the REU students. We also thank Ali Langfels for
working out all the financial details. We also thank our graduate students, in particular, Tri Doan,
Abhijit Bendale and Ethan Rudd, for helping the students with any systems and programming
issues. Francisco Torres-Reyes and his team also deserve our sincere gratitude for making sure
that the computing systems performed reliably during the summer.

Sincerely,

Jugal Kalita
jkalita@uccs.edu
Professor

NSF REU Seminar on Machine Learning
Department of Computer Science

University of Colorado, Colorado Springs
Osborne Center, A-343, Engineering Building

August 7, 2015: Friday

10:30-10:35 AM: Welcome Remarks by#Dr.#Kelli#Klebe,#Professor#of#Psychology,#Dean#of#
the#Graduate#School#and#Associate#Vice#Chancellor#for#Research#and#Faculty#Development,#
University#of#Colorado,#Colorado#Springs!

10:35-11:50 AM Session Chair: Lisa Jesse, Co-founder, Intelligent Software Solutions,
Inc., Colorado Springs, CO

10:35-11:00 Steve Cruz, University of Colorado, Colorado Springs, CO: Multi-slab Models
11:00-11:25 Ben Steele, Colorado College, Colorado Springs, CO: Open Set Forests
11:25-11:50 Chantz Large, University of Colorado, Colorado Springs, CO: Direction-

Boundary Set Reduction#

11:50-12:45 PM: Lunch Break

12:45-2:00 PM Session Chair: Dr. Suzette Stoutenburg, Principal Software Systems
Engineer, MITRE Corporation, Colorado Springs, CO

12:45-1:10 Noah Weber, Winthrop University, Rock Hill, SC: Correcting Verb Related Errors
1:10-1:35 Jack Reuter, Wesleyan University, Middletown, CT: Twitter Hashtag

Segmentation
1:35-2:00 Allen Burgett, Normandale College, Bloomington, MN: Grouping and Testing

Methods with Clustering Algorithms

2:00-2:15 Snack Break

2:15-3:30 PM Session Chair: Dr. Qing Yi, Associate Professor, Computer Science,
University of Colorado, Colorado Springs

2:15-2:40 SJ Guillaume, Allegheny College, Meadville, PA: Mutant Selection Using Machine
Learning Techniques#

2:40-3:05 Tiffany Connors, Texas State University, San Marcos, TX: Modeling the Impact of
Thread Configuration on Power and Performance of GPUs

3:05-3:30 Michael Dennis,# DePaul# University,# Chicago,# IL:# Static# Performance# Prediction# of#
Compiler#Optimization#

3:30#PM:#Closing#Remarks#

7:00#PM:#Farewell#Dinner,#Restaurant#to#be#announced

Table of Contents

Multi-slab Models
 Steve Cruz……………………………………………………………………………………………………1
Open Set Forests
 Ben Steele…………………………………………………………………………………………….……..4
Direction-Boundary Set Reduction
 Chantz Large.………………………………………………………………………………………………8
Correcting Verb Related Errors
 Noah Weber……………………………………………………………………………………………….10
Twitter Hashtag Segmentation
 Jack Reuter……………………………………………………………………………………………….13
Grouping and Testing Methods with Clustering Algorithms
 Allen Burgett……………………………………………………………………………………………..19
Mutant Selection Using Machine Learning Techniques
 Sarah Guillaume………………………………………………………………………………………..24
Modeling the Impact of Thread Configuration on Power and Performance of GPUs
 Tiffany Connors…………………………………………………………………………………………28
Static&Performance&Prediction&of&Compiler&Optimization&
& Michael Dennis…………………………………………………………….……………………………34

Multi-Slab Models
Steve Cruz

University of Colorado Colorado Springs

Abstract—In today’s world of computer vision there is the
problem of “open set”, things that are unknown at training time.
Optimization is key when dealing with open set problems. Ideally
there is always positive and negative space that is taken into
account. This article extends the idea of open set recognition to
accommodate, or classify, for both positive and negative space,
but also for the unknown space. We further extend a slab seen in
previous work and modify it to incorporate a negative slab and
have different labels when classifying. The goal of this paper is
to be able to classify something as unknown instead of “I don’t
know”.

I. INTRODUCTION

Open set recognition has become a common phrase in
computer vision the last couple of years. Almost all problems
have been closed set recognition, meaning that all classes were
known during training. When dealing with open set, there are
classes in testing that were not present when training. Recog-
nition gives the assumption that some classes are recognized
in a much larger space of classes that are not recognized.
When dealing with the open set recognition problem, the data
will have multiple known classes and many unknown classes.
The unknowns are what make the problem open set. In this
case, those unknowns would be the collection of data not
recognized.

Every open set problem has some “openness” to it. A
problem becomes more open when there are more classes
of interest. As seen in Fig. 1, we will introduce unknown
classes during testing, thus making the problem more open
and moving away from the closed side of the spectrum. Facing
an open set recognition problem introduces open space. Open
space can be thought of as the region far away from any
known data. A sample that was not seen during training, but
was introduced during testing, would have no class nearby to
support classification. In other words, the sample would not
be labeled class 1, class 2, or class 3 if those were the only
classes present. Also in open space, there is no clear answer as
to how far is far. The idea of being close to a class still has the
possibility of being far. According to Scheirer et al. [1], open
set recognition is not well addressed by existing algorithms,
as it has strong generalization.

Differentiating between the known and unknown classes
introduces misclassification risk, which can cause a sample
to be misclassified. An unknown class may be classified as
part of another class, but be completely wrong. Another factor
to consider is open space risk. Labeling space as positive
that rarely has any data in the region is considered to be
overgeneralized. That overgeneralization can be thought of as
open space risk.

Multi-class Classification Face
Verification

Detection
Open Set

Recognition

Closed Open

? ? ??
? ?
? ?

? ?

Training and
testing samples

come from
known classes

Claimed
identity,

possibility for
impostors

One class,
everything else
in the world is

negative

Multiple known
classes, many

unknown
classes

Fig. 1. Shown are some of the vision problems faced today. The work in this
article is to the right of the spectrum. The plan is to further the knowledge
for the open set problem. Figure courtesy of Boult.

There are still problems that are present when dealing
with open set recognition. A problem that still is somewhat
unanswered is dealing with the multi-class setting. There is
no clear basis that labels something as positive, negative, or
unknown. When introducing a class at testing, there should be
some sort of procedure that aides in labeling something as not
having been seen before and not giving it the wrong label.

The goal of this work is to further develop the open set
setting. We construct a formalization that expands the existing
1-vs-Set Machine [1]. More in depth, we extend the machine
to have a positive and negative slab model that bounds the risk
for each respective class. The resulting Multi-Slab Models give
a way of voting for classification. Instead of having only one
choice, we introduce the positive region, negative region, and
the unknown region.

II. RELATED WORK

Open set recognition has been researched by Scheirer et al
before [1] [2] [3]. A solution that they formalized for some of
the open set problem was a new variation of a Support Vector
Machine (SVM) [4], called the 1-vs-Set Machine [1], as seen
in Fig. 2.

The idea of the 1-vs-Set Machine is to minimize the positive
labeled space to address open space risk combined with
constraints to the margin to minimize known risk. In other
words, positive space was reduced down to only a specific
region to reduce risk. The constrained positive region takes the
form of a slab as seen in the shaded region labeled positive
in Fig. 2. The slab risk model utilized empathized on having
continuous positive only space. The slab in [1] only bounds the
risk for the positive class, also known as the class of interest.
It is referred to as a slab because it is rectangular in shape. The
space between the two parallel hyperplanes A and ⌦ can be

1

?
?

?

Positives

Negatives
⌦

A

?

Specialization

G
en
er
al
iz
at
io
n

Fig. 2. The square images are from training and the oval images are
from testing. The 1-vs-Set Machine adds a second plane ⌦ and defines an
optimization to adjust A and ⌦ to balance empirical and open space risk.
Figure courtesy of Boult.

referred to as the positive slab. The planes act as a boundary
to avoid misclassification. Positive is what is of interest, while
negative is perceived as an unsuccessful match or outside the
boundary.The slab accounts for risk by way of its thickness.
Depending upon the position of the classes, the slab can be
moved in order to account for more classes.

The solution to the problem in [1], is addressed as 1-vs-set
because only the closest data is being used. This solution,
however, is still problematic because it can be thought of
as 1-vs-all. The experiments and results never actually did
anything that was multi-class. The name, 1-vs-set, is only used
because 1-vs-all is more along the lines of saying that the
machine has seen everything in the world, which is not the
case. The 1-vs-Set Machine talks about the unknowns, but
never actually labels anything as unknown. The raccoon seen
in Fig. 2 should be classified as unknown because it is not
part of the dog class or the bird class. Based on the current
solution, however, the raccoon would be classified as negative
and not as an unknown. This showcases that there is still room
for improvement.

III. METHOD

Since the 1-vs-Set Machine defined a slab for the positive
region, we plan to use the current library of that work and
extend it based on our criteria. The current library has an im-
plementation of LIBLINEAR [5] and LIBSVM [4]. It extends
the LIBSVM library to calculate the margin that separates the
data and uses LIBLINEAR to classify the data linearly. The
plane is calculated using parameters A and ⌦. In this case A
is what we call the near plane, sometimes referred to as the
SVM margin, and ⌦ as the far plane. The space between the
near plane and the far plane is what is considered the slab.
This slab is what bounds the risk for a respective class.

Another extension for the 1-vs-Set Machine is to make the
problem multi-class instead of 1-vs-all. For example, let’s say
we currently have 3 classes and we introduce a random sample
at testing. Each of the three classes would have a positive slab

Fig. 3. The square images are from training and the oval images are
from testing. The 1-vs-Set Machine adds a second plane ⌦ and defines an
optimization to adjust A and ⌦ to balance empirical and open space risk.
Figure courtesy of Boult.

and a negative slab as seen in Fig. 3. If the sample falls within
a positive slab then it would get a vote for that particular
class. If the sample, however, gets more votes for unknown
than it does for positive, then the sample would be classified
as unknown. This is because the majority of the data has not
seen it before. Getting a negative vote, a positive vote, and a
unknown vote for the 3 class example would mean that the
sample would be classified positive for that particular positive
vote. This is because a class can at least differentiate between
not knowing what the sample was and that the sample is just
not part of the class. Also if the sample fell into the negative
slab for all three classes then it would be classified as unknown
because it is not part of any classes present.

IV. EVALUATION

The data sets used for these experiments are the re-casted
versions of the LETTER [6] and MNIST [7] data sets that
are seen in [3] and [2]. The LETTER data set was re-casted
and named OLETTER to better fit the open set problem. It
has 15,000 points, 26 classes, and 16 features with 15 random
distinct labels as known. Openness varied by adding subsets of
the remaining 11 labels. We chose to use this data set because
although it was thought to be solved with previous algorithms,
it is a significant challenge for the current state of the art.

The MNIST data set was re-casted and named OMNIST
to also better fit the open set problem. It has 60,000 points,
10 classes, and 778 features with 6 random distinct labels as
known. Openness varied by adding subsets of the remaining
4 classes.

Accuracy =

TP + TN

TP + TN + FP + FN
(1)

Most would assume that accuracy would be the optimal
evaluation, however it is not. Accuracy cannot be used with
open set recognition because the total number of classes is
always undefined. Eq. 1 can be used, but it does not provide

2

sufficient evidence between correct positive and negative clas-
sifications. The goal is to point of the positive samples that
are within the mass region of the negatives. An evaluation
that is optimal for open set recognition is f-measure because
it provides a consistent comparison from both precision and
recall numbers. F-measure can be thought at the combination
of both precision and recall.

F-measure = 2 ⇥ Precision ⇥ Recall

Precision + Recall

(2)

When training with OLETTER and OMNIST, the precision
was about the same value as the 1-vs-Set Machine. However
once more and more unknown classes started to be introduced,
f-measure started increasing. The slabs classified some of the
points as unknowns, which were misclassified with the 1-vs-
Set Machine. The algorithm performs much better with larger
data, however, it slowly starts to diminish over time.

V. POSSIBLE EXTENSIONS

Based on the optimization of the Multi-Slab Models, this
current solution still has room for improvement. We plan to
implement Extreme Value Theory (EVT) [8] to further im-
prove the models. Using EVT we can normalize the distances
of a point to the plane as a way of estimating probabilities. The
idea would be to use an arbitrary number of values from the
tail of the data. This is an improvement to a solution because
instead of votes, we will have 2 possible probabilities. One is
the probability of being on one side of the plane, which will
be referred to as confidence. Also the other is the probability
of being within the known data space, which will be referred
to as pertinence.

Extreme Value Theory provides a way to determine prob-
abilities regardless of the distribution of data. The extreme
value scores of any distribution coming from a recognition
algorithm can be modeled by EVT distribution [3] [9]. This

is good for open space recognition because some data be out
in the extremes of open space.

VI. CONCLUSION

This article provides a path on improving open set recog-
nition. F-measure was on par with the 1-vs-Set Machine
and even classified things that should have been labeled as
unknown, unknown. With the extensions added to the current
implementation, we hope to come up with a state of the art
for all open set problems.

REFERENCES

[1] W. J. Scheirer, A. Rocha, A. Sapkota, and T. E. Boult, “Towards open
set recognition,” IEEE Transactions on Pattern Analysis and Machine

Intelligence (T-PAMI), vol. 36, July 2013.
[2] L. P. Jain, W. J. Scheirer, and T. E. Boult, “Multi-class open set

recognition using probability of inclusion,” in Computer Vision – ECCV

2014, ser. Lecture Notes in Computer Science, D. Fleet, T. Pajdla,
B. Schiele, and T. Tuytelaars, Eds. Springer International Publishing,
2014, vol. 8691, pp. 393–409.

[3] W. J. Scheirer, L. P. Jain, and T. E. Boult, “Probability models for open
set recognition,” IEEE Transactions on Pattern Analysis and Machine

Intelligence (T-PAMI), vol. 36, November 2014.
[4] C.-C. Chang and C.-J. Lin, “Libsvm: A library for support vector

machines,” ACM Transactions on Intelligent Systems and Technology

(TIST), vol. 2, no. 3, pp. 27:1–27:27, April 2011.
[5] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wan, and C.-J. Lin, “Liblin-

ear: A library for large linear classification,” Journal of Machine Learning

Research 9, pp. 1871–1874, 2008.
[6] P. W. Frey and D. J. Slate, “Letter recognition using holland-style adaptive

classifiers,” Machine Learning, vol. 6, no. 2, pp. 161–182, 1991.
[7] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning

applied to document recognition,” Proceedings of the IEEE, vol. 86, pp.
2278 – 2324, November 1998.

[8] S. Kotz and S. Nadarajah, Extreme Value Distributions: Theory and

Applications. Imperial College Press, 2000.
[9] W. J. Scheirer, A. Rocha, R. Michaels, and T. E. Boult, “Meta-recognition:

The theory and practice of recognition score analysis,” IEEE Transactions

on Pattern Analysis and Machine Intelligence (PAMI), vol. 33, pp. 1689–
1695, 2011.

3

Open Set Forests

Ben Steele
UCCS Machine Learning REU

Benjamin.Steele@ColoradoCollege.edu

Abstract—Current ensemble classifiers use closed set decisions
for each individual classifier in the ensemble. This applies to
random forests, where each decision tree is a closed set classifier.
In this article we propose using statistical extreme value theory
to determine the relevance of the input to each decision tree in a
random forest. this allows us to make open set decisions for the
forest as a whole by looking at the average similarity between
each tree and the given datapoint. We found that it is difficult
to preserve the closed set accuracy when working with open set
data in a random forest. However, it is possible to preserve the
open set accuracy as unknown classes are added to testing.

I. INTRODUCTION

Classification problems are currently set up in a closed set
world. In closed set, any input to a model is assumed to belong
to one the the classes it was trained on. This works well when
this assumption holds true, which is often the case for specific
classification problems. However, when we do classification
of real world problems, we often cannot account for all of the
classes we may see. Open set is a form of modeling in which
the model is able to determine whether an input is similar to
the data it was trained on.

We call this similarity to the training data pertinence. If the
pertinence for a point is too low, the model cannot accurately
predict the point because the point is likely not in any of the
classes it was trained on. A classic example of an open set
problem is object recognition in images. There is no way to
account for every image the model might see during training,
so it is beneficial for a model to be able to determine if an
input is similar enough to the training data to be considered a
known object.

Random forests are among the highest performing machine
learning techniques. Because they are comprised of decision
trees, they inherently have very low bias. By averaging the
output of each tree they reduce variance which results in a
relatively low bias, low variance model. The original imple-
mentation of random forests took the majority vote from all
the trees to decide which class to output [3]. This means each
tree is given equal weight in the forest’s decision.

Probability estimation trees (PETs) are able to estimate the
probability that a given data point is in a class. PETs give an
estimation of the probability that the class they have chosen is
correct, which allows the tree to weigh its decision depending
on whether it has a high or low probability. However, these
PETs are very poor estimators in general. Bagging, the basis
of random forests, substantially improves PETs classification
accuracy [5]. While bagging is accepted to improve classifi-
cation accuracy in PETs, the best algorithm to do so is still
an open question [2]. We believe the same concepts used in
PETs can be used to create an open set tree.

Instead of predicting the probability that a point is in a
class, we will predict the probability that a point is in any
of the classes. Most implementations of PETs only compute
probability at the leaf node, but this will not be sufficient for
our algorithm. We will be using decision trees in a random
forest, so the branching decisions will be limited to linear
boundaries parallel to the axes. If we only check at the leaf
we will only be checking pertinence along one axis, meaning
we only get the pertinence of one feature. Because of this we
will calculate pertinence at each node in the tree. We can then
combine the pertinence of each node a point goes through to
determine the overall pertinence.

Extreme value theory (EVT) [6] has been used for open
set implementations before, so we will be using the libMR
library to create EVT models for each tree. Decision trees are
well suited for EVT because for data to be fit to an EVT
model, it must first be represented in 1 dimension. In the case
of a decision tree, each decision boundary is parallel to an
axis, so only one feature is used in the decision. Because only
one feature is used, each decision down the tree reduces the
problem to a single dimension. This means the tree is already
constructed in a way that EVT can easily be implemented at
each node.

II. METHOD

We will be modifying the random forest from the Sci Kit
learn library [4] to produce an open set forest. A decision
tree in a random forest produces disjoint classes with linear
boundaries parallel to the axes. At each node of a decision
tree a linear boundary called the decision boundary is created,
separating the data points of that node. Our modification adds
EVT models to each of these decision boundaries in order to
compute pertinence.

A. Node Pertinence

To create the model we must first reduce the points at
a node to 1 dimension. This is done by taking the distance
from the points to the decision boundary. Because the decision
boundaries are parallel to the axis, the boundary is really just
a threshold for a single feature. To calculate distance we only
need to subtract the threshold from the point’s value for that
feature. We consider points greater than the decision boundary
to be positive and points less than the decision boundary to
be negative. Once all of the points are represented in a single
dimension, we can fit an EVT model to them. We fit two
models at each node, one to fit the high end (greatest points)
and one to fit the low end (smallest points). The EVT models
are monotonic, so a single model can only describe one side
of the dataset. These two models allow us to compute the
pertinence of any point that reaches the node.

4

To compute the pertinence of a point for a single node we
first find its distance from the decision boundary. We can then
plug that distance into each EVT model. We use the minimum
of the two models as the final pertinence. The minimum is
used because the model on the opposite side of the data from
where the point is will give the point a very high pertinence
(because the model is monotonic). The minimum of the two
models is the pertinence that we are interested in because it
will belong to the model that is on the same side of the data
as the point.

B. Tree Pertinence

To find the pertinence of a point using the entire tree we
combine the pertinence of each node that the point passes
through in a few ways. Choosing a method of aggregating
the pertinences from each node a point passes through was
nontrivial and we chose 3 to determine experimentally which
is best. One method was simply taking the minimum of
all the pertinences. This would accentuate a single feature
that is significantly not pertinent but would not be good at
distinguishing points that are only slightly not pertinent for
many features.

Our second method takes the average of all the nodes. This
is better when many features are slightly not pertinent, but
greatly softens the impact a single variable can have on the
overall pertinence.

The third method is taking the product of each node’s
pertinence. This should allow a single extreme feature to have
a larger impact than using the average, while maintaining the
ability to find many features that are slightly not pertinent. this
is also a logical way to combine the nodes because when you
find the probability of multiple independent things happening
together, you multiply their individual probabilities. This is
essentially what we are doing.

Not every leaf in a decision tree is at the same level in the
tree. This complicates the product because points with more
nodes will generally have a smaller product. To correct for this
we use a log function.

N = number of nodes

P = product of pertinences of each node

log10N P

C. Forest Pertinence

The forest averages the pertinences from each of its trees
to determine the overall pertinence. Once we calculated the
overall pertinence, we needed a way to decide what is pertinent
and what not. For this we trained a threshold. Using linear
regression, we trained the threshold to maximize accuracy on
a validation set. Once the threshold is trained the model is
completely trained and can be tested.

III. EVALUATION

Our primary focus in this study is to create a foundation
for open set in random forests. To evaluate the model we use
the accuracy score of the original forest against the open set
forest using min pertinence, average pertinence, and product

classes original min average product
0 0.96 0.71 0.78 0.71
1 0.76 0.69 0.72 0.68
2 0.64 0.69 0.68 0.67
3 0.55 0.67 0.64 0.65

0 1 2 3

0.5

0.6

0.7

0.8

0.9

1

mnist Dataset Accuracy

Original
Min

Average
Product

Fig. 1. A graph of the accuracy of all 4 algorithms with different numbers of
unknown classes. The x-axis is the number of unknown classes being tested.
At 0 on the x-axis it is using the 4 classes the model was trained on, but no
unknown classes. The y-axis is the % accuracy of the model.

pertinence. We found during testing that the more continuous
features the data has, the better our algorithm will perform.
Because many datasets have large numbers of non continuous
data we had to choose specific datasets and generate our own.
We used the mnist dataset from the UCI Repository [1] as
well as generated datasets. The mnist dataset has 70,000 data
points, 780 features, and 10 non separable classes.

The generated datasets were non separable and used either
normal distributions or gamma distributions for each class.
They contained 1,000 points per class, 50 features, and 100
classes.

IV. RESULTS

In testing we found that our algorithm is extremely variable
depending on the dataset that is used. When using the mnist
dataset we constructed a forest with 40 trees and used 4 classes
to train and 3 classes to validate. we tested using the remaining
3 classes in 5 trials. When the model was tested using only
the classes used during training the original forest was able to
get 96% accuracy while the open set forest got at best 78%
with average pertinence, as seen in figure 1.

As unknown classes were added, the accuracy of the
original forest dropped much faster than the open set im-
plementations and once two classes had been added all of
the open set implementations outperformed the original forest

5

0 2 4 6 8 10

0.8

0.9

1

Generated Dataset Accuracy

Original
Min

Fig. 2. A graph of the accuracy of the original forest and the min pertinence
random forest. The x-axis is the number of unknown classes being tested. At
0 on the x-axis it is using the 30 classes the model was trained on, but no
unknown classes.

in accuracy. when 2 and 3 unknown classes are added to
the 4 known classes min pertinence has the best accuracy
while the original forest does the worst. The min pertinence
implementation did drop in accuracy as unknown classes were
added, but no more than 2% for each unknown class.

using the generated data we only tested the original forest
against the minimum pertinence open set implementation. We
used forests with 20 trees, training on 30 classes and validating
with 8 classes. When testing on only the training classes, the
original forest had 100% accuracy while the open set forest
had 99.4% accuracy as seen in figure 2. This is a far more
acceptable loss of accuracy compared to the mnist dataset. As
unknown data is added, we see a similar trend as in the mnist
dataset. The original forest drops in accuracy far faster than the
open set forest. after adding 29 unknown classes, the original
dataset performed at 43.3% accuracy while the open set forest
was still at 98.1% accuracy.

While the accuracy of the open set forest is far greater
in the generated data than in the mnist data, the behavior
when unknown data is added is similar. In both cases the
accuracy falls slowly, showing that accuracy can be preserved
as unknown data is added, even if that accuracy is far less than
in a closed set implementation.

V. CONCLUSIONS

Open set forests succeed in maintaining accuracy in the
presence of unknown classes, but cause a loss in their base
accuracy (accuracy on closed set test) to do so. It is promising
that our implementations are able to maintain a relatively stable
accuracy. In both datasets, the accuracy does not significantly
decrease as more unknown classes are added. In the generated
dataset we show that even with very high base accuracy, adding
unknown classes will not cause it to drop.

The 3 implementations we used for open set forests all
performed similarly compared to the original forest. Of the
three, min pertinence seems most stable because it has the

smallest decrease in accuracy as unknown data is added.
However, with small amounts of unknown data the average
pertinence performs better. Depending on the nature of the
data, one may be better than the other. Product pertinence
consistently performs poorly in these tests, making it the worst
of the 3 implementations.

The generated dataset’s results are far different from the
mnist dataset. We believe the generated data is probably very
close to separable because the high number of dimensions
creates a large space even when the range in each dimension
is small. This does not make the results insignificant. the
generated dataset shows that our algorithm can work very
effectively with medium size dimensionalty and many classes
when the classes are near separable.

The mnist dataset had much poorer results than the gen-
erated data. The base accuracy dropped over 20% on known
classes. even though the accuracy was better when a few un-
known classes were added, this is a tradeoff most users would
opt not to take. We believe this drop in accuracy is caused
because the trees are unable to produce good estimations of
pertinence.

The decision trees only see one feature at a time, one
feature at each node. This is because only looking at a single
feature for each node makes a forest much faster than if
multiple features could be considered at the same time. This
means the algorithm is most fit at finding outliers that have one
or more features that are grossly different than those features
in the training data. This may be why min pertinence seems to
be the best metric, it captures the single feature that separates
a datapoint from the rest of the data.

This is more of a problem in higher dimensional spaces
because a point can easily have similar feature values to the
training points when looking at the features individually, but
that points euclidean distance from the training points can be
very large at the same time. A simple example of this in 2d is
if you have a circle inside a square, both with the same width.
take a point on the corner of the square. if you look at that
point from either axis it looks like it is right on the edge of
the circle, but in 2d it is far from the edge of the circle. In
much higher dimensions this error space becomes very large
and this hinders the ability of these trees to predict pertinence.
This phenomena is somewhat mitigated because as the tree gets
deeper, the dataset is cut into smaller and smaller sections and
the error space becomes increasingly small. However, this is
not the only issue in higher dimensions.

With higher dimensions, the tree is going to make decisions
on only a small portion of the features before it can determine
a class for any point. This means some features that obviously
make a point not pertinent may not be the feature that the
model is using to determine that point’s class. These issues
can be fixed by allowing the use of any hyperplane at each
node, not only planes parallel to the axes.

A significant limitation to open set forests is that they
perform extremely poorly without a majority of continuous
features. This occurs because only one feature can be evaluated
at a time. A binary feature cannot give much information
on pertinence on its own, and similarly any feature with a
low number of possible values becomes a very poor indicator
of pertinence. This also means any non numeric feature is

6

insignificant in determining pertinence. This would not be as
big an issue if the decision boundaries were not parallel to the
axis, so future work could be done on decision trees that can
use any hyperplane as a decision boundary. This would be far
more computationally intensive, but is likely to be much more
accurate and robust.

VI. ACKNOWLEDGMENTS

We would like to thank the University of Colorado at
Colorado Springs and the National Science Foundation’s Re-
search Experiences for Undergraduates program, who’s Grant
1359275 funded this research.

REFERENCES

[1] CL Blake and C Merz. Uci repository of machine learning databases.
University of California, Department of Information and Computer

Science, 1998.
[2] Henrik Bostrom. Estimating class probabilities in random forests. In

Sixth International Conference on Machine Learning and Applications,
pages 211–216. IEEE, 2007.

[3] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.
[4] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine learning in Python. Journal of Machine

Learning Research, 12:2825–2830, 2011.
[5] Foster Provost and Pedro Domingos. Tree induction for probability-based

ranking. Machine Learning, 52(3):199–215, 2003.
[6] Walter J Scheirer, Anderson Rocha, Ross J Micheals, and Terrance E

Boult. Meta-recognition: The theory and practice of recognition score
analysis. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 33(8):1689–1695, 2011.

7

Direction-Boundary Set Reduction
Chantz T. Large

University of Colorado – Colorado Springs

Abstract—Reducing the size of the dataset is of interest to

those working with resource constrained devices or performing

incremental learning. This paper introduces a new direction-

boundary Set Reduction strategy for reducing the size of the

dataset. The algorithm in its current state performs well for

problems involving large-scale sparse datasets which are reason-

ably linearly separable. Executed on the popular letter scale data

set, it has been shown to reduce the size of the dataset by 37%

while maintaining its model generating integrity (2% accuracy

reduction).

I. INTRODUCTION

The direction-boundary algorithm works well for point-
preservation between phases of incremental learning, as well
as, dataset maintenance on resource constrained devices. The
algorithm is designed to be simple, lightweight and easily-
extensible. At its root, the algorithm is design to identify the
relevant boundary points of the dataset; preserving only the
points necessary for defining the shape of the set itself. In
its current state, the algorithm has only been developed with
datasets involving convex classes which are generally linearly
separable.

Applications for this algorithm extend to those involving;
incremental learning where maintenance of the training batch
between training phases is unreasonable, resource constrained
devices where storage capacity or available memory is scarce,
or where reducing the training time of the dataset itself is of
concern.

Many current machine learning algorithms share much
consideration for the amount of resources necessary to conduct
learning, or are constructed on the premise that the training
batch will be maintained between training phases. While
concurrent algorithms continue to elevate the computational
bounds for unprecedented modeling of large datasets, many of
the previously mentioned applications are unable to capitalize
on these innovations. This work in particular was motivated
by the incremental learning library, LIBLINEAR.

II. METHOD

The method for point-selection involves the following steps;
projection and fitting of the direction vectors to the original
dataset, identifying points residing nearest to the projected
boundary, Fig. 1.

Projection of the boundary involves calculating the direction
vectors defined by the mean center of the dataset and a
corresponding point within the dataset. After all points have
been projected the boundary is then fitted to the original
dataset by scaling by the maximum and minimum values in all
dimensions. Finally, distance is measured and points nearest
to the projected boundary are retained.

Fig. 1. 2-dimensional plot illustrating point-identification; empty circles
represent original dataset, filled circles represent projected boundary, filled-
red circles represent selected points. Lines to and from boundary points to
selected points illustrate voting.

Fig. 2.

III. EVALUATION

Early evaluation of the direction-boundary algorithm
demonstrates promising results. Preprocessing of the letter
training set effectively reduced the size of the set by 37%
and while retaining acceptable model generating integrity (2%
accuracy loss). As the scale of the data set increases, the
performance of the algorithm improves, Fig. 5.

For illustrative purposes, the algorithm has been demon-
strated to be effective on skewed datasets as well, Fig. 4.

8

Fig. 3.

Fig. 4.

Fig. 5.

9

Correcting Verb Related Errors

Noah Weber

Abstract—Verb related errors are common in the writings of

those learning English as a second language (ESL), due to the

various uses and forms of verbs. Though much of the research in

automatic ESL error correction has focused solely on fixing either

determiner or preposition errors, there has been recent interest in

developing methods for automatic verb error correction. Previous

approaches to this problem have typically relied on data from

error annotated learner’s corpora to learn common types of verb

errors and the situations in which they are most likely to occur

in. In this paper, we compare the results of two models for

estimating the probability that a certain verb tense and aspect is

correct given the sentence context and the original verb tense and

aspect. The first model is a generative model which estimates this

value by modeling the prior probability distribution as well the

probability distribution for a instance of a verb tense and aspect

being an error given the intended tense aspect and the sentence

context. From these two distributions, we can generate a model

for the posterior probability distribution. The second model is

a discriminative model which models the posterior distribution

directly.

I. INTRODUCTION

Due to the increase of English as a second language (ESL)
students, the interest in automated grammar checking systems
has increased in the past decade. Much of the previous work in
this field has looked at the correction of article and preposition
errors [2][7][8], both respectively being the two most common
errors in the writings of ESL students [6]. Though verb related
errors are the third most common type of error in ESL writings,
relatively little research has been done on the topic.

The problem of correcting verb errors also presents several
additional difficulties that separate it from article or preposition
correction. Due to the various ways in which verbs can be used,
identifying verbs in a text is typically a more involved process
when compared to article and preposition detection. Automatic
verb correction may also involve detecting missing verbs, in
addition to correcting the verbs present in the sentence. For
example, in the example sentence:

*The problem is that the same step being repeat for
every interval.

the error to be fixed involves both inserting the verb is and
changing the verb repeat from its base form to its past
participle form. The correct choice of verb also typically
depends on the context in which it is used which further
complicates the task at hand. In addition, the form and tense
of verbs usually depends not only on the surrounding sentence
context, but also on the form and tense of surrounding verbs.
This means that verb correction has an additional complication
in that correcting a single verb might have an effect on what
other verbs in the sentence should be corrected to, if they
need to be corrected at all. In this paper we plan to build upon
previous research on this topic and develop a new method for
correcting verb errors that utilizes both machine learning and
linguistic theory.

II. RELATED WORK

Previous research in the field of automated grammar check-
ing has mostly focused on preposition and article related errors.
Because prepositions and articles are both closed word classes,
solutions to the problem have typically involved the use of mul-
ticlass classifiers, with each individual preposition or article
making up a single class [2]. Some approaches treat grammar
checking as a machine translation problem, and simply use
standard statistical machine translation techniques to translate
an ungrammatical sentence to a grammatical one [4]. Some
recent work has looked into the problem of correcting several
types of errors simultaneously. Dahlmeir and Ng (2012) pro-
posed a model that takes corrects article, preposition, and noun
count errors using a beam search decoder. Their model consists
of proposers for each type of error, as well as expert models for
each type of error. The proposers generate new sentences by
making small edits to the current sentence. The expert models
are used to score the grammaticality of the sentence. Similar
to the decoding step done in statistical machine translation, a
beam search is done in order to find the sentence that results
from the highest rated series of edits. Work done by Wu and
Ng (2013) similarly tries to fix article, preposition, and noun
count errors simultaneously, but reformulates the problem from
a searching problem to an integer programming problem.

Due to many difficulties involved with verbs, the verb
correction problem must be approached in a different manner.
The existing research on verb correction use several different
approaches. The work of Lee and Seneff (2008) deals with
verb form errors by looking for parse trees that are likely to
be produced from a verb error, along with probabilities derived
from n-gram counts to identify and correct errors. While this
method worked well for verb agreement and form mistakes,
it did not account for verb tense errors. The work of Tajiri
et al. (2012) aims to correct verb tense errors by treating the
problem as a sequence classifying problem where each verb is
labeled with a tense. The label chosen for an individual verb
depends on the labels chosen for surrounding verbs. They use
conditional random fields for sequence labeling, allowing them
to use both syntactic and semantic features to aid in labeling.
Recent work by Rozovskaya et al. (2014) looks into correcting
tense, agreement, and form errors. Their work takes advantage
of several linguistic properties of verbs, most notably verb
finiteness, in order to guide their statistical learning method.
Their learning method classifies verbs in a text as either having
an aspect, tense, form, or no errors. Error correction is also
handled using a multiclass classifier, with each class of verb
error having a unique error correction model.

III. METHODOLOGY

Our proposed method will build upon previous work and
utilize linguistic features in tandem with machine learning
methods. The method we propose closely resembles the
Bayesian noisy channel model used in tasks such as speech

10

recognition and statistical machine translation. In this model,
we treat the possibly incorrect sequence of verbs as a corrupted
version of some correct sequence of verbs. The goal of this
method is to model the probability distribution:

P (C|O,S)

Where C is a proposed correct tense aspect for a verb instance.
O is the tense aspect of the verb instance originally put down
by the writer and S is the sentence context. We try and compare
two different models to estimate P (C|O,S). The first way is
using a generative model. For the generative model we rewrite
the distribution P (C|O,S) using Bayes Theorem as:

P (C|O,S) =
P (O,S|C)P (C)

P (O,S)

For our purposes we rewrite this as:

P (C|O,S) =
P (O,S,C)

P (O,S)

=
P (S)P (C|S)P (O|S,C)

P (O|S)P (S)

=
P (C|S)P (O|S,C)

P (O|S)

Since the bottom P (O|S) term remains constant we can
simply ignore it. Our goal for the generative model is thus
to model the distribution of P (C|S) and P (O|S,C). The
seeming advantage of using a generative model in this instance
is that is allows one to utilize data from both well-formed
corpora in the estimation of P (C|S), as well as data from error
annotated learner corpora for the estimation of P (O|S,C).
However, as the results show this actually may not be the
case. To estimate both P (C|S) and P (O|S,C) we treat the
problem as a classification problem, as traditionally done in
prior research in automated grammar correction systems. For
our classifier we use a Maximum Entropy (MaxEnt) classifier.
The reason being its use as a classifier in previous studies
done in automated grammatical error checking [2]. However,
we plan to use other classifiers as well in the future.

Our second model is a discriminative model which es-
timates the distribution P (C|O,S) directly using a MaxEnt
classifier. The data used in the training and testing of this
model as well as the model for the P (O|S,C) distribution
comes from the error annotated FCE corpus [9]. The data
used for the model the P (C|S) distribution comes from several
different sources. The data for this model comprises of sections
from the Brown corpus, the MASC section of the Open
American National Corpus, as well as a fully corrected version
of the FCE corpus. Many of the features we utilize come from
features used by both Tajiri et al. (2012) as well as Rozovskaya
et al. (2014).

Feature Description
verb lemma The lemma of the current verb
left/right lemma The lemma of the words to the

right/left of the current verb
subject The word, pos, person, and number

of the sentence subject
determiner The determiner for the sentence

subject
left/right noun The word, pos, and person of nouns

to the left and right of the current
verb

first Whether the verb is the first in a
chain of verbs

last Whether the verb is the last in a
chain of verbs

governor The governor of the verb and the
relation type between them

governee The governee of the verb and the
relation type between them

left/right time adverbs Time adverbs to the left/right of
current verb

Table 1: Description of features used in model

IV. RESULTS

To test the models we split off a section of the FCE
corpus solely for use in testing. The section contained around
7052 instances of verb sequences, with around 200 of these
sequences having some type of error. To test, we used our
trained classifier to classify each unlabeled verb instance into
a tense and a aspect. We then compared the tense aspects
generated by the model with the actual tense aspects put
down by the annotator. As our evaluation criteria we use both
precision and recall. As our results show, the discriminative
model outperforms the generative model by a large margin.

0 0.1 0.2 0.3 0.4 0.5 0.6

0.2

0.4

0.6

0.8

1

Recall

P
re
ci
si
on

Discriminative
Generative

Figure 1: Precision and Recall Curve for both models

REFERENCES

[1] J. Lee and S. Seneff. 2008. “Correcting misuse of verb forms”. Pro-
ceedings of the ACL-08, pg 174�182, Association for Computational
Linguistics, Columbus, Ohio, June.

11

[2] J. Tetreault and M. Chodorow. 2008. “The ups and downs of preposition
error detection in ESL writing”. In Proceedings of the 22nd International
Conference on Computational Linguistics”, pg. 865�872, Manchester,
UK, August.

[3] T. Tajiri, M. Komachi, and Y. Matsumoto 2012. “Tense and aspect error
correction for esl learners using global context”. In Proceedings of the
50th Annual Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers), pg 198�202, Association for Computational
Linguistics. Jeju Island, Korea, July.

[4] C. Brockett, W. Dolan, and M. Gamon. 2006. “Correcting ESL Errors
Using Phrasal SMT Techniques”. In Proceedings of the 21st International
Conference on Computational Linguistics and 44th Annual Meeting of
the Association for Computational Linguistics, pg 249256, Association
for Computational Linguistics. Sydney, Australia, July.

[5] A. Rozovskaya, D. Roth, and V Srikumar. 2014. “Correcting grammatical
verb errors”. In Proceedings of EACL, pg 358�357.

[6] C. Leacock et al. 2010. “Automated grammatical error detection for lan-
guage learners.” Synthesis Lectures on Human Language Technologies,
pg. 15�27

[7] D. Dahlmeier and H. Ng. 2012. “A beamsearch decoder for grammatical
error correction”. In Proceedings of the 2012 Joint Conference on
Empirical Methods in Natural Language Processing and Computational
Natural Language Learning, pg 568�578.

[8] Y. Wu and H. Ng. 2013. “Grammatical error correction using integer
linear programming”. In Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics, pg 1456�1465.

[9] H. Yannakoudakis, T. Briscoe, and B. Medlock. 2011. A new dataset and
method for automatically grading esol texts. In Proceedings of the 49th
Annual Meeting of the Association for Computational Linguistics, pg
180�189, Association for Computational Linguistics. Portland, Oregon,
USA, June.

12

Twitter Hashtag Segmentation
Jack Reuter — Wesleyan University — jreuter@wesleyan.edu

Abstract—This paper describes an effort to segment non-

delimited strings of English text, specifically hashtags. Extensive

research has been done in word segmentation, particularly in

languages like Chinese, for its lack of spacing between words, and

German, for its extensive use of compounds. English, however,

has been relatively untouched. The goal of this research is to

adapt and extend methods used in prior research to fit the

demands of modern English.

I. INTRODUCTION

#wordsoftheday ... word soft he day?
#statefarmisthere ... state far mist here?
#brainstorm ... bra in storm?
#doubledown ... do u bled own?
#votedems ... voted ems?

W

ORD segmentation is an important first step in natural
language processing (NLP). It is difficult to derive

accurate meaning from a piece of text without first determining
the words that it comprises. Twitter, for those unfamiliar, is a
social media site that allows users to share brief (less than 140
character) “tweets” with their followers. In their tweets, users
have the option of including hashtags, a form of metadata
labeling. Typically, hashtags contain no delimiters between
words. From these hashtags, Twitter compiles lists of the most
noteworthy topics of the day, month, year.

Despite the abundance of garbage inherent in social media,
trending hashtags and their related posts often follow relevant
topics and provide insight into public opinion. Twitter mining
has applications in public health [1], political sentiment [2],
and emergency coordination [3]. The analysis of hashtags
and the relationships between them is a bountiful area of
research. The goal of this project is to further the reach of such
research by enabling machines to process individual hashtags
into understandable chunks of data.

II. PROBLEM DEFINITION

Formally, the problem is as follows: given a string a1a2...ak,
where each a

i

is a meaningful substring (i.e. a word, name,
abbreviation, etc.), determine where the boundaries lie be-
tween each a

i

and a

i+1. For example, given a string such
as “randompicoftheday” return “random pic of the day”.
Initially it may seem like a simple problem. Simply loop
through all substrings of the input, looking for matches in
a dictionary. Once all matches have been found, segment the
string accordingly.

The real problem, however, lies in the phrase “then segment
accordingly.” From Xue 2003, “The key to accurate automatic
word identification...lies in the successful resolution of these
ambiguities and a proper way to handle out-of-vocabulary
words” [5]. Although referring to the segmentation of Chinese

characters, the sentiment is still very much appropriate. In
our case, ambiguities occur when a string has more than one
meaningful segmentation, out-of-vocabulary words when our
dictionary fails us. Both scenarios occur frequently, and the
success of our methods depends on the handling of such
situations.

Consider, for example, the string “brainstorm”. Using a
table lookup, a machine could read this as either “bra in
storm”, “brain storm”, or the correct, untouched “brainstorm”.
Adopting the jargon of Webster and Kit [4], we will refer
to this as conjunctive ambiguity, i.e. when a meaningful
string can be broken up into n meaningful substrings. The
natural solution of course is to take the segmentation with
the largest matched word. This maximum matching approach
handles conjuctive ambiguity very well, for it is unlikely that
a syntactically sound clause happens to merge into a larger
word, yet it is quite common for a larger word to break up
into dictionary-matchable pieces.

Maximum matching fails, however, in cases of disjunctive
ambiguity—the situation when a string “ABC” can be broken
up meaningfully as either “AB C” or “A BC”. “doubledown”,
for example, could be interpreted as either “doubled own”
or the correct “double down” (or even “do u bled own”
which exhibits both conjunctive and disjunctive ambiguity).
Taking the maximum matching here would result in the
incorrect segmentation “doubled own”. Disjunctive ambiguity,
it appears, requires a bit more syntactic knowledge to resolve.

The other main issue is the handling of strings outside of
out dictionary. The string “votedems”, for instance, should
be returned as “vote dems” and not “voted ems”, while our
dictionary may only contain the abbreviation “ems” and not
“dems”. With typos, abbreviations, online slang, and just a
general abundance of linguistic rule-breaking in hashtags,
these situations are bound to occur, and occur frequently. For
this project to succeed, such unknowns must be recognized
and handled appropriately.

III. RELATED WORK

Since English text is almost always whitespace delimited,
little to no work has been done in English word segmenta-
tion (excluding morphological segmentation). Such research,
however, has been widespread in other languages where seg-
mentation is an important first step for NLP. German and
Chinese, for example, due to their large compounds and
lack of delimitation, respectively, have been researched for
years, yielding successful results. The following is a brief
compilation prior methods which have been both succesful
in their own rights and adaptable, in parts, for English usage.

1) Parallel Corpora: In [7], Koehn and Knight use data
from monolingual and parallel corpora to learn splitting

13

rules for German compounds, achieving 99.1% accuracy.
After first obtaining all possible segmentations of a
compound into known words based on a German corpus,
they choose most-likely segmentations by examining
word frequency in that same corpus (favoring more
common words), as well as word occurrence in a parallel
English corpus, (favoring segmentations whose transla-
tions contain the same words as the translation of the
original string). Part-of-speech (POS) tags are also taken
into account to avoid splitting off suffixes and prefixes
from root lemmas.

2) Unknown Handling: In [8], Nie, Hannan, and Jin focus
on the problem of unknown word detection in Chinese.
By first segmenting heuristically, then statistically ana-
lyzing unknown strings to determine their likelihood of
being real words, they are able to automatically update
their dictionary and achieve, at best, a success ratio of
95.66%.

3) Maximum Entropy: In [5], Xue approached Chinese
word segmentation as a character tagging problem. By
training a MaxEnt model using features involving neigh-
boring characters, Xue tags each character in a string
by its most likely position; left, right, middle, or alone.
From that information, a most likely segmentation is
returned, yielding 94.96% f-score.

4) Conditional Random Fields: In [9], Peng, Feng, and
McCallum, take a similar approach, but use CRFs as
opposed to MaxEnt models to tag characters as either
START or NONSTART. Using POS tags and neighbor-
ing characters as features, as well as an N-best system
to process and accept probable unknown words, they
achieve as high as 95.7% f-score.

IV. DISAMBIGUATION METHODS

Each of the following methods defines a scoring function
whose aim is to assign top scores to correct segmentations,
thus turning the process of segmentation into a search for the
highest score.

A. Maximum Known Matching (MKM)
To begin, we try a simple maximum matching approach—

i.e. given a string s, get all possible segmentations of s into
dictionary words, then return the “longest” segmentation.

The question then becomes how to define the length of a
segmentation. Should we prefer the segmentation containing
the longest words? That which has the largest average word
length?

We want to consider both. We first want to consider just the
segmentations with the largest average word length, then take
that which contains the longest word (if the longest words are
equal then compare the second longest, third, etc). In other
words we need a function f that fulfills the following two
conditions:

1) size(s1) > size(s2) =) f(s1) < f(s2)
2) size(s1) = size(s2) ^ s1 > s2 =) f(s1) > f(s2)

Where s1 and s2 are segmentations, size a function that
returns the number of words in a segmentation, and s1 > s2

meaning s1 contains longer words than s2. (Note that average
word length is inversely proportional to the number of words
in a segmentation).

We could of course write out the logic above, i.e. define a
function that takes the segmentation of shortest length contain-
ing the largest individual words, but it may be useful later on
to be able to assign a numeric score which models the same
choice. Thus, we define the length score of a segmentation as
follows:

score(s) = i

s
iP

k=1
len(w

k

)2

Where len(w) returns the length of a word w, and s is a
segmentation into i words.

For example, the score of “bra in storm” would be
3
p
32 + 22 + 52 ⇡ 3.36 whereas the score of “brainstorm”

would be 102 = 100. This scoring function indeed satisfies
condition 2, and, for the values we are working with, very
closely approximates condition 1. Hypothetically, it could fail
on say a segmentation of length ten with words of lengths
11,1,1,1,1,1,1,1,1,1, versus a segmentation of length nine with
words of lengths 2,2,2,2,2,2,2,3,3, “incorrectly” preferring the
former despite the greater average word length of the latter,
but segmentations like these are highly improbable and will
be easily outscored by less extreme matchings.

B. Maximum Unknown Matching (MUM)

The problem with the previous aptly named approach,
however, is that it accepts no unknown words. To amend this,
we expand our algorithm in the following way: given a string
s, rather than looking at all segmentations into known words,
consider all segmentations of s where each division point
borders at least one known word. Then return the segmentation
with the highest length score.

But now we must amend our definition of length score, for
as it stands it will simply return s itself (or, if we exclude s, a
segmentation with a very large unknown word). The previous
definition of length score has no way of weighing known
versus unknown words, and places high value on the average
word length of a segmentation. To adjust we redefine the score
as follows:

score(s) =

iP
k=1

len(knownk)
2+

jP
k=1

len(unknownk)

i+j

Where s is a segmentation into i known words and j unknown
words.

C. Two grams (2GM)

These simple methods produce fairly effective results (see
evaluation section), but, as discussed earlier, successful disam-
biguation cannot rely merely on length—some syntactic data
must be incorporated. Using a database of 2-gram occurences
in a corpus, we define the 2-gram score of a segmentation s,
simply as the number of recognized 2-grams in s, divided by
the total number of 2-grams in s. A segmentation of length
1, thus containing no possible 2-grams, receives a score of -1.

14

The final scores are then normalized to fall between 0 and 1,
and a score of -1 is set by default to 0.5.

We ignore the actual occurence count of the recognized 2-
grams in order to avoid over-segmentation. The string “d at a
mining”, for example, would return a much higher score than
the correct “data mining”, due to the frequency of the 2-gram
“at a”, were occurence count taken into consideration. Without
it, the latter outscores the former.

To account for numbers and ordinals, which are not included
in our 2-gram datasets, as well as acronyms and contractions,
we translate each unrecognized word into a set of possible
words, via either a translation dictionary—the contents of
which are detailed below—or, in the case of numbers and or-
dinals, a predefined ruleset. Out of these possibile translations,
that with the highest 2-gram score is assumed to be correct.

D. POS tagging
2GM is flawed, however, in the same way that MKM is

flawed; it lacks strength in handling unknown words. 2-grams
which lie outside of the database return a count of 0.

As an attempt to correct this, we approach the problem as
a POS tagging problem. I.e. given a segmentation, tag each
word with the appropriate POS, then assign it a score based
on the probability of a given sequence of POS tags.

This approach poses two new problems:
1) Tag appropriately.
2) Score tag sequences.

And for each we pose two solutions, one using the ARK POS
tagger for Twitter [14], and one using Hidden Markov Models
(HMM) implemented with the MALLET toolkit [13]. Using
ARK, we can tag segmenations by POS, then, using their
POS n-gram data, repeat 2GM using POS tags rather than
words themselves. Similarly, with a trained HMM, we can tag
segmentations by POS, then score a tag sequence by taking
its average edge weight in the model. This leads us to four
new possible strategies:

1) Tag with ARK, assign probabilities with ARK (AA).
2) Tag with ARK, assign probabilities with HMM (AH).
3) Tag with HMM, assign probabilities with ARK (HA).
4) Tag with HMM, assign probabilities with HMM (HH).

V. ALGORITHMS

We now have seven scoring methods for disambiguation—
MKM, MUM, 2GM, plus the four listed above. When used in
overall segmentation algorithms, these scores are normalized
on each new input to fall between 0 and 1, based on the highest
scoring segmentation for the current input.

A. Pipeline
These scores, plus some simple heuristics, leave us with the

pipeline-based segmentation algorithm as detailed in the next
column.

In the pipeline algorithm, highestScoringSeg() searches
by brute force using a scoring function that is some con-
vex combination of previously mentioned scoring functions
(MUM, 2GM, AH, etc.); prune() heuristically filters out

if s is known then

return s;
end

if s is already delimited then

return segmentByDelimiters(s);
else

possible = allPossibleSegmentations(s);
probable = prune(possible);
return highestScoringSeg(probable);

end

unlikely segmentations; allPossibleSegmentations() returns
every possible segmentation of s—unless s exceeds a length
threshold, in which case at least one of the k-longest words
in s is made to be present in every segmentation (to limit
search space size); and segmentByDelimeters() segments
based on punctuation and capitalization, returning, for example
“Club Rio - June 19 th - 8 - 12 am” when given “ClubRio-
June19th-8-12am”. Note that this will fail on confusing inputs.
“LadiesoftheDMV”, for example, looks delimited but is in fact
only partially, and would thus be under-segmented. Only those
rule-based segmentations which meet a certain length score
threshold, or are composed entirely of known words, therefore,
are returned. The rest have their unknown sections fed back
into the segmenter to be treated by the normal algorithm.

B. Hill-climbing
Based on the work of Zhang et. al. [11], we also consider a

greedy hill-climbing algorithm. I.e., rather than pruning down
to a set of probable segmentations and then searching by
brute force, start with a random segmentation, calculate the
scores of all “nearby” segmentations, then climb to the one
with the highest score and recurse. The algorithm terminates
once no further upward steps are possible. k random restarts
are allowed to minimize the chance of getting stuck in local
maxima. In our implementation, segmentations of a string
of length n string are considered as binary strings of length
n�1, where a “1” indicates that the corresponding character in
the original string is followed by a splitting point. “Nearby”
segmentations are then simply defined as the set of binary
strings obtained by flipping a bit in the original, i.e. either
adding or removing a splitting point.

In its initial implementations, hill-climbing, although more
elegant than the pipeline approach, proved to be slightly less
successful (at best yielding an f-score of 76.5%, whereas, at
the time, the pipeline approach peaked at 82.2%). Likely, the
definition of nearby segmentations was too narrow, creating
too many local maxima to avoid. Due to time constraints,
however, the hill-climbing approach was dropped in order to
devote more time towards improving the pipeline method.

VI. UNKNOWN HANDLING

In [8], Nie et. al. define the following process for unknown
handling:

1) Perform a maximum matching.
2) Gather remaining unknowns.

15

3) Remove unlikely candidates based on a predefined rule-
set.

4) Add those which occur most frequently to the dictionary
and repeat.

This method enables the segmenter to improve with repeated
applications, and it is, generally, the method we use to acco-
modate unknown words. Rather than defining a ruleset for how
words should look, however, we train a Markov chain on a list
of English words. The states of the chain correspond letters
of the alphabet, and transitions between states model letter
sequence probabilities. The average transition probability of a
given string should, then, theoretically mirror its likelihood of
being a real word. The removal of unlikely candidates then
comes down to choosing a threshold value. As with Nie’s
method, the frequency of a given unknown is also factored
into its estimated probability of being a real word. Because of
this, the size of the test set will directly affect the appropriate
threshold value.

In addition to this algorithm, unknown handling has also
been attempted via the use of spell-checking resources.
Spelling errors are the root cause of many unknowns, and han-
dling them effectively would have significant effects on per-
formance. Several strategies were tested—treating unknown
words within some edit distance threshold of known words
as known words themselves; treating such words as “semi-
known” words, and adjusting the length score function to
handle them; including spell-check suggestions as translations
for 2GM scoring—but each led to disjunctive ambiguity errors;
words would be segmented with extra letters when they
shouldn’t have. Rules were devised as an attempt to exclude
such occurrences, but still without improving results. The one
method which did prove to be useful was the inclusion of
common misspellings and their root words in our translation
dictionary. As with numbers, ordinals, acronyms, and contrac-
tions, common spelling corrections have thus been included in
translations for 2GM scoring.

VII. DATA

The dictionary used for matching includes
• ⇠100,000 english words,
• ⇠4,000 abbreviations,
• ⇠200 slang words,
• ⇠330 corporations,
• ⇠24,000 names (both first and last), and
• ⇠18,000 place names.
The dictionary used for translation includes
• ⇠500 acronyms,
• ⇠100 contractions, and
• ⇠5,000 common misspellings.
All dictionary entries were collected from freely available

online resources. For testing, ⇠400,000 hashtags were pulled
from Rovereto’s Twitter 1-gram data [17]. 2-gram data con-
tains the 1,000,000 most common English 2-grams based
on the 450 million word Corpus of Contemporary American
English [18]. HMMs used in conjunction with the ARK POS
tagger were trained on 547 POS tagged tweets (7707 tagged
words) from data used by ARK [14]. HMMs used alone were

tried first on the ARK dataset, then on a manually curated
supervised dataset of 1,000 hashtags using the following
alternative tagset:

• NO: noun
• VE: verb
• AD: adjective
• DE: determiner
• PR: preposition
• CO: conjunction
• NU: number
• OR: ordinal
• AB: abbreviation
• FN: first name
• LN: last name
• PL: place
• MO: month
• DA: day of the week
• TE: Twitter team (e.g. “Team Iphone”)
• TI: title (e.g. “mr”, “mrs”, “lord”)
• PU: punctuation
• O: other

Dictionaries of names and places were also added as length-1
hashtags to increase word recognition by the HMM. The HH
method using this training proved more effective than using
ARK data, though still not up to par with the 2GM method.
In the end, due to time constraints, HH work, as with work
on the hill-climbing algorithm, was stymied in order to focus
on maximizing 2GM results.

An attempt was also made to include a lexical normalization
dictionary, taken from Han, Cook, and Baldwin’s research on
normalization for microblogs [12], as part of the translation
dictionary, but the data proved too noisy to be useful.

VIII. EVALUATION

Performance is rated in terms of precision, recall, and f-
score. For a single segmentation, precision is defined as the
number of correctly segmented words divided by the total
number of words in the proposed segmentation, and recall
as the number of correctly segmented words divided by the
total number of words in the correct segmentation. This leads
to overall precision and recall scores for a list of k hashtags
defined simply as the average scores for all segmentations, i.e.

P = 1
k

kP
i=1

p

k

R = 1
k

kP
i=1

r

k

And f-score is calculated as the harmonic mean of the two:

F = 2PR

P+R

[6]. Additionally, two new metrics are provided, known-
precision and known-recall. These are simply precision and
recall measured in terms of known words in a segmentation,
rather than all words in a segmentation. Generally, known-
precision scores are higher than precision scores, and known-
recall lower than recall. The purpose of these measures is
meant to be more pragmatic, e.g. someone requiring higher

16

precision at the expense of lower recall could choose to only
consider the known words in a proposed segmentation.

Correct segmentations are based on a manually segmented
list of 1129 hashtags. In the list, each hashtag corresponds
to a set of all valid segmentations (typically just one, but in
some cases alternate segmentations exist which are equally
acceptable). During calculation of evaluation metrics on a
proposed segmentation, scores are calculated for each possible
answer and the highest results are returned.

The following table lists the results of methods that have
been tested with the current dictionaries and heuristics, as
tested on our manually curated answer set.

Method Prec Rec F-score KPrec KRec
MKM 0.901 0.909 0.905 0.912 0.835
MUM 0.916 0.918 0.917 0.935 0.825
2GM 0.921 0.924 0.923 0.942 0.829
AH 0.921 0.923 0.922 0.938 0.830

In preliminary testing AH outscored the other three POS-
based methods. This makes sense, as ARK’s successful POS
tagger should easily trump a our HMMs in terms of tagging
accuracy, whereas the edge weights of the HMM should
provide comparable or better transition probabilities. As such,
AH was the first (and as of yet, only) of the four to be tested
with the updated heuristics and newly introduced translation
scheme.

For efficiency, possible segmentations had to be pruned
twice before actually taking AH score into consideration. First,
heuristically. Second, by a combination of length and 2GM
score. This second pruning was based on an optimal convex
combination of length and 2GM scores, the values of which are
depicted in figure 1. The remaining segmentations were then
disambiguated by a convex combination of all three scores,
length, 2-gram, and AH. Figure 2 displays the relationship
between possible combinations of the three and their effects
on f-score. Although the success of the AH method is largely
due to the success of the pipeline system, figure 2 shows that
it can perform as well as the 2GM method in disambiguation.

In figue 1, L refers to the weight assigned to the length
score, and T, the weight assigned to the 2GM score, can be
simply calculated as 1-L. Similarly, in figure 2, L represents
the weight of the length score, A the weight of the AH
score, and T is left to be calculated as 1-(L+A). Performance
evaluation in figure 2 is based on the segmentation of 232
hashtags chosen such that they could not be handled by simple
heuristics. Physically, they were chosen by running a heuristic
segmenter on the manually curated collection and gathering
those on which the machine failed. Performance in figure 1 is
evaluated based on the full answer set.

IX. POSSIBLE IMPROVEMENTS

Areas to be improved upon are varied. With the right tagset
and enough supervised learning data, there is still hope for
the success of the HH method. Alternatively, CRFs, as shown
in [9], have been used successfully as segmentation tools,
and moving from HMMs to CRFs, thus allowing arbitrary

Fig. 1.

0 0.2 0.4 0.6 0.8 1
0.75

0.8

0.85

0.9

0.95

L

Pe
rf

or
m

an
ce

M
ea

su
re

Length Score vs. 2GM score

P
R
F

KP
KR

Fig. 2.

0 0.2 0.4 0.6 0.8 1
0.55

0.6

0.65

0.7

0.75

0.8

L

F-
sc

or
e

F-score vs. Weights

A = 0.0
A = 0.2
A = 0.4
A = 0.6
A = 0.8
A = 1.0

feature inclusion, could be a more effective option. Larger n-
gram data has not yet been tried—3-grams, 4-grams, etc.—to
extend 2GM, and neither have alternative lexical normalization
strategies. With different definitions of distance, the hill-
climbing algorithm could also prove superior to the pipeline
approach.

Much work is also left to be done in the task of unknown
handling. In our research, the character HMM method has not
been extensively developed. Different training sets could be
explored, as well as more sophisticated methods for learning
threshold values. Additionally, as far as spelling correction
goes, our solution is far from perfect. A distance measure
that balances spelling error correction against the creation
of erroneous disjunctive ambiguities would likely improve
performance greatly. Physical keyboard proximity may even
be useful to consider.

17

X. CONCLUSION

Hashtags typify a significant chunk of conversational lan-
guage online. They have spread beyond Twitter and into
most popular social media sites. This project provides the
foundations of a tool to accurately segment hashtags into
meaningful subdivisions. This will hopefully extend the ability
of machines to understand the enormous amount of data
produced on the Internet constantly, primarily by social and
other informal media outlets.

One immediate extension of such a tool would be to use a
resource like WordNet to create a graph of relationships among
hashtags, allowing machines to first process a hashtag, then not
only explore related topics within that tag, but other topics
within related tags. Relationships could also be estimated by
viewing hashtags from the “bag of words” perspective, and
then applying machine learning techniques such as clustering
to group them appropriately.

The same segmentation methods could also be applied to
similar strings. Urls, for instance, are the first that come to
mind.

REFERENCES

[1] Michael J. Paul and Mark Dredze, “You Are What You Tweet: Analyzing
Twitter for Public Health”, Proceedings of the Fifth International AAAI
Conference on Weblogs and Social Media, Association for the Advance-
ment of Artificial Intelligence, 2011.

[2] Michael D. Conover et. al., “Predicting the Political Alignment of Twitter
Users”, IEEE International Conference on Privacy, Security, Risk, and
Trust, and IEEE International Conference on Social Computing, pp. 192-
199, 2011.

[3] Hemant Purohit, “What kind of #conversation is Twitter? Mining #psy-
cholinguistic cues for emergency coordination”, Computers in Human
Behavior, Vol. 29, Issue 6, pp. 2438-2447, 2013.

[4] Jonathan J. Webster and Chunyu Kit, “Tokenization as the initial phase
in NLP”, Proceedings of the 14th conference on Computational linguis-
tics, Vol. 4, pp. 1106-1110, Association for Computational Linguistics
Stroudsburg, PA, USA, 1992.

[5] Ninanwen Xue, “Chinese Word Segmentation as Character Tagging”,
Computational Linguistics and Chinese Language Processing, Vol. 8,
No.1, pp. 29-48, 2003.

[6] Sebastian Spiegler and Christian Monson, “EMMA: A Novel Evaluation
Metric for Morphological Analysis”, Proceedings of the 23rd Interna-
tional Conference on Computational Linguistics, pp. 1029-1037, 2010.

[7] Phillipp Koehn and Kevin Knight, “Empirical methods for compound
splitting”, EACL ’03 Proceedings of the tenth conference on European
chapter of the Association for Computational Linguistics, Vol 1, pp. 187-
193, Association for Computational Linguistics Stroudsburg, PA, USA,
2003.

[8] Jian-Yun Nie, Marie-Louise Hannan, and Wanying Jin, “Unknown word
detection and segmentation of chinese using statistical and heuristic
knowledge”, Communications of COLIPS 5.1, pp. 47-57, 1995.

[9] Fuchun Peng, Fangfang Feng, and Andrew McCallum, “Chinese segmen-
tation and new word detection using conditional random fields”, COLING
’04 Proceedings of the 20th international conference on Computational
Linguistics, Artical No. 562, Association for Computational Linguistics
Stroudsburg, PA, USA, 2004.

[10] Hoifung Poon, Colin Cherry, and Kristina Toutanova, “Unsupervised
morphological segmentation with log-linear models”, NAACL ’09 Pro-
ceedings of Human Language Technologies: The 2009 Annual Conference
of the North American Chapter of the Association for Computational
Linguistics, pp. 209-217, Assocation for Computational Linguistics,
Stroudsburg, PA, USA, 2009.

[11] Yuan Zhang, Chengtao Li, Regina Barzilay, and Kareem Darwish,
“Randomized Greedy Inference for Joint Segmentation, POS Tagging
and Dependency Parsing”, Proceedings of the 2015 Conference of the
North American Chapter of the Association for Computations Linguistics:
Human Language Technologies pp. 42-52, Association for Computational
Linguistics, Denver, CO, 2015.

[12] Bo Han, Paul Cook, and Timothy Baldwin, “Automatically constructing
a normalisation dictionary for microblogs”, Proceedings of EMNLP-
CoNLL 2012, pp 421-432, Kora, 2012.

[13] Andrew Kachites McCallum, “MALLET: A Machine Learning for
Language Toolkit”, “http://mallet.cs.umass.edu”, 2002.

[14] Olutobi Owoputi, et. al., “Improved part-of-speech tagging for online
conversational text with word clusters”, Proceedings of the Conference
of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pp. 380-391, Association for
Computational Linguistics, 2013.

[15] John Goldsmith et. al., “The Linguistica Project”,
“http://linguistica.uchicago.edu”.

[16] Alec Go, Richa Bhayani, and Lei Huang, “Twitter sentiment classifica-
tion using distant supervision”, CS224N Project Report, Stanford, Vol. 1,
pp. 1-12, 2009.

[17] Ama Herdadelen, “Rovereto Twitter N-Gram Corpus: An n-gram
dataset of Twitter messages with gender labels and time of posting”,
http://clic.cimec.unitn.it/amac/twitter ngram/,

[18] “N-grams data”, http://www.ngrams.info/

18

Grouping and Testing Methods with Clustering
Algorithms

Allen Burgett
Normandale College

burgetta@my.normandale.edu

Abstract—There are many tools, and in some cases code,
available to developers on Android platforms. However, finding
the most desirable code and more specifically the most efficient
code can be difficult. This paper presents the framework for a
technique, EffMethod (Efficient Method), by which a developer
could quickly find and incorporate existing efficient code into
their project. EffMethod utilizes a modified version of the k-
means clustering algorithm to identify similar methods and
outputs those methods for testing. After a battery of tests to
determine efficiency, the developer is provided with a much
smaller amount of methods to choose from.

Index Terms—Program Analysis, Static Analysis, K-Means,
Efficient Code, Edit Distance

I. INTRODUCTION

WHILE application developers have access to large
stockpiles of open source code, finding the right code

snippets for a project can be time consuming. At times, this
could lead to in-house development of code that has already
been openly shared. These in-house developments might be
riddled with errors and inefficient code, leading to further
patching and development, and wasting more time and money.
These kinds of setbacks can be costly for any organization, but
especially costly to small organizations.

To combat this problem, we gauge the feasibility of com-
paring open source methods from a variety of applications.
Utilizing our EffMethod tool, we will allow the developer to
quickly compare several open source applications. The result
will give the developer a list of methods and an efficiency
rating of those methods. This efficiency will rely on testing
for energy and memory usage as well as run-time. This will
allow the developer to import pre-made efficient methods into
their programs, saving cost and time. Allowing developers
to spend more time on the more proprietary aspects of their
applications.

To gain access to large repositories of open source android
code, we’ve chosen F-Droid. F-Droid allows us to search for
specific types of applications and download the entire program
as source code and separate from the APK package found on
Google Play. This is particularly helpful as we need examples
of a variety of applications as well as access to their source
code and .class files.

While this work is currently being tested on the Android
platform, we believe that with modification, this technique
could be applied to every form of development.

The contributions of this paper are therefore as follows,

• A method for quickly gathering java bytecode on a
compiled Android program.

• A technique for identifying similar methods through k-
means and edit distance.

• An integrated test suite, that focuses on energy efficiency,
memory usage, and runtime.

II. BACKGROUND

APIs (Application Program Interface) are used to allow
methods to communicate with each other and perform certain
pre-defined tasks. API packages contain a library of methods
and classes from which a developer would call to perform a
certain task within their method. Furthermore, work done on
MAPO [10] and SAMOA [6], utilizes API calls along side
other properties to determine what those methods do.

MAPO utilizes a two part process for their clustering.
First, hierarchical clustering in which the API calls and their
sequences are taken from individual methods and are used
like letters in a word and grouped according to “family”.
The results of this are then cross referenced with a similar
hierarchical clustering technique, which splits the names of
the methods into families as well. The resulting data is a
fairly accurate clustering of methods of similar type. Using
these ideas, we can extrapolate that methods that make certain
specific API calls, especially if those calls are in the same
order or similar order, are doing similar things. By clustering
those methods that have API call similarity, we can begin to
categorize the methods and make predictions as to what they’re
actually doing.

The final product of the above step in our process will be
similar to that of MAPO’s. However, where they used a two
part hierarchical clustering process, which has a fairly high
time complexity, we will attempt to gain similar results with
k-means which has a dramtically lower time complexity than
MAPO’s clustering process. This would allow our process to
integrate other testing models to conclude efficiency, without

19

sacrificing speed in the process. The principal question this
paper generates is whether this process can actually be accom-
plished with a non-hierarchical clustering technique, namely
k-means.

Based on the research conducted by Pathak et al while
developing Eprof [8], we can conclude that some methods
are just developed better. Where better is defined as less
energy usage. Better can also be defined in terms of user
experience. The immediate example of this is, if an application
comsumes a dramatic amount of energy in comparison to its
competitors, then the user is less likely to use it. A different
example of efficiency, which may also effect user experience
is, if a method is utilizing a large amount of memory, the
user will experience delays in that program and other parts
of their of device. In general, users have little patience for
slow tasks. While stack memory usage has been analyized for
quite some time, there have been many fewer breakthroughs in
analyizing heap memory. Specifically sampling heap memory
during application execution. Brenschede’s [2] work in this
area combined with current stack analyzing techniques, will be
paramount to analyzing an application or individual method’s
memory usuage within this project’s scope. Therefore, de-
velopers have to take energy and memory usage, as well as
runtime into account when writing or selecting code.

III. TECHNIQUE

The project comprises of two separate parts. First, an
effective tool like MAPO [10], will need to be developed,
that performs a static analysis of each selected method’s API
calls [1]. This static analysis will identify the function and
similarity of each method in comparison to the others. Our
version of MAPO’s core research utilizes a variation of k-
means explained later in this section, our tool would then
categorize each of the selected methods, based on the number
of shared API calls and their sequence within the method.
The clustering algorithm will make predictions on what the
methods do, based on their API calls. This will translate into
separate categories that the developer can pick.

To do this applications have to be broken down into
methods, with a focus on the calls invoked by the method.
Java gives us an easy process by which this can be done: the
commandline function ’javap -c’. This breaks down a .class
file, which is a compiled .java file, into java bytecode and
comments on the java bytecode. By building a script that
executes commandline functions, javap can be invoked on an
entire application recursively. A simple java program can then
parse the comments and extract only the method names and
calls. This information is then dumped into a .csv file and
provides a summary of the application, its methods, and calls.
All of this gathered data, for all applications, needs to be
concatendated together so that pre-clustering information can
be gathered from it in bulk.

Quailty assurance needs to be performed on the data given.
Things like single call methods are excluded, because they’re

too small to be classified accurately and possibly of no use
to the developer (who might find it easier to build the small
method themselves, than to search for it). During this quality
assurance process, two other important factors must be taken
into account. First, if a method has a call that references
another part of the program or as we refer to it a “local call”,
the method being invoked should be broken down into calls
and replace the local call with the sequence of calls from
the invoked method. This process is handled recursively, with
checks in place that the process does not encounter an infinite
loop, where a local call is invoked which invokes another local
call, which in turn invokes the orignal local call. Once the local
calls are replaced with sequences of real API calls, the quailty
assurance program then removes any call that is invoked only
once across all programs. This is done to insure that those
singular calls do not disrupt the mean generation or actual
clustering itself.

Our problem presents a unique structural difference to the
basic k-means architecture. Traditonally k-means is used with
euclidean distance, which cannot be performed on our data set.
This distance metric is fundamental to k-mean’s inital mean
generation as well as its recentering process. To combat this
distinction, we utilize a different method to generate our inital
means. After we’ve collected the most appropriate data, we
generate means using the calls we’ve gathered post-quailty
assurance. The size of these means are based on the number
of overall calls and the amount of means being generated. The
number of means being generated varies based on the number
of programs that are incorporated into the experiment. Within
our version of k-means, our randomly generated means utilize
edit distance to calculate their distance from the imported data.
Our version of edit distance is based on how many removes
and adds are required to make our random mean the same as
the original method. Where the calls act as characters within
a string and certain edits are required to make the strings the
same, as shown in Figure 1.

Our current configuration of k-means has foundational
similarities to k-means as well as some drastically different
modifications. As it exists, our k-means takes in the randomly
generated means as well as the full real-data set. During the
first pass, each real-method is assigned to a mean based on its
edit distance from each mean. If the lowest distance is split
between more than one mean, a mean is randomly picked from
that set and the method is assigned to it. Once all methods
have been assigned to a cluster, the clusters are submitted to
a recentering process. If any clusters are empty coming into
this recentering process, then a poll is done within all of the
clusters and the method with the largest overall distance from
its mean is moved to the empty cluster. Next, each method
inside of a cluster is polled regarding which call is contained
within each index. This polling data is compared against the
other methods’ polling data and the call with a plurality of
votes within each index is assigned as the new index for the
mean. Any remaining empty indexes of the mean are filled
with random calls from the post-quality assurance call set.

20

Figure 1. Our version of edit distance

The process starts again and all of the methods are com-
pared to the new means and assigned as they were on the
first iteration. The recentering process workes the same each
iteration. As of now, iterations are chosen arbitrarily in an
attempt to find the optimum amount.

The second part of this process identifies the most effi-
cient methods out of those that have been clustered. Once
the clustering is complete and the developer has decided
which category of method to compare, a battery of tests
will be executed based on: energy usage, memory usage,
and method run-time. For energy usage, we will utilize a
tool called Eprof, developed by Purdue and now licensed
by a company called Microenergetics. Eprof breaks down
applications’ energy consumption by each method [8]. We will
be testing memory usage by a combination of stack and heap
sampling BHeapSampler [2], developed by Brenschede. Using

an assortment of benchmarking tools or refactoring, we will
compare the run-time of the individual methods. After testing
is completed, the outputs of each method will be sorted based
on probability distribution. This will give us a percentage
based in comparison to the other methods. An overall rating
will be assigned as an average of the method’s percentages in
each category. Results will be displayed to the user, divided
into the four categories of overall, energy usuage, memory
usage, and runtime. Those categories will be sorted most
efficient to least, so that the developer can make an educated
choice about the best method for their project.

IV. PRELIMINARY RESULTS

Our current configuration of k-means has provided mixed
results. Some methods have shown similarity within their
respective cluster, while others within the same cluser have no
apparent similarity with any other method. Further yet, at least
10% of these clusters have absolutely no similarity amongst
member methods.

The more interesting analysis so far is, that iterations over
100 seem to have no possitive affect on overall clustering;
with optimal iterations seeming to be between 40 and 80. In
fact, iterations over 100 have a 50% chance of converging all
of the methods into one singular cluster.

V. DISCUSSION OF RESULTS

Some inital explanations of our current results, have to do
with how the data is being generated, refined, and processed
within k-means. The smallest, but still important, flaw is the
original capturing of data itself. When taking in method names,
the parsing program does not strip their arguements as well.
After reviewing the original data, we can see that about .5%
of the original methods have overloaded counterparts. These
are not distinguishable from one another and are therefore
labeled as the same method, which correlates to at least .5%
of our inital data being useless, but still used. The simpile
soultion to this problem is to strip the arguements with the
method names, which insures overloaded methods would not
be rolled together.

The second problem originates from our current disregard
for local calls. Where we define local calls as calls that are
made to other parts of the program. This problem derives itself
from the complicated task of recursively replacing local calls
with a list of the external API calls of the invoked internal
method. As our model currently stands, local calls are removed
during the quality assurance process and disregarded overall.
This ensures that the local call, which is unlikely to be found
in methods from other programs, does not distort the overall
data that is to be clustered. Longterm development will have
to include a process for including the external calls of a local
call. This process will also give us a better picture of the
method and what it does.

21

The third problem comes from the randomness of our
method placement during the cluster assginment phase of our
k-means process. It is possible, with our current configura-
tion, that methods with similar sequences of calls would be
randomly placed into separate clusters. Then if they’re not
polled out of those clusters, they will never converge into a
singular cluster. A better process needs to be designed in order
to prevent this eventuality during the cluster assignment phase.

The final conceived problem with our current configuration
is with the recentering process as a whole. As of now, clusters
rely heavily upon the polling data collected from the methods.
However, the current polling does not account for differences
in size or locations of similar sequences. Two methods may
be similar, for example a method with a size of nine might
contain the same sequence as a method with a size of four. The
method with a size of nine might invoke some common call
five or six times before it invokes the similar sequence. While
these two methods have commonality, they are unlikely to
be clustered together, except by accident, because they would
poll to change different indexes of their respective mean. A
process needs to be developed to handle polling for sequences
as a whole and not individual indexes.

VI. CONCLUSION

Mobile applications are often run in low resource environ-
ments, making energy and memory huge concerns for both
developers and users. These concerns, including run-time, are
aspects of applications that will affect users and be the basis
of their application download choices. This means that finding
code that operates efficiently is a huge concern for developers.
With EffMethod, we have laid out a framework in which a
developer could easily identify and implement efficient code.
This tool will save both time and money for organizations
and individual programmers alike. We have also laid out an
arguement for using k-means as a time-conscious alternative
to MAPO’s hierarchical approach to the initial clustering of
this problem.

VII. FURTHER CONSIDERATIONS

The randomness of our mean generation presents its own
unique problem: finding a comparable example of each unique
type of method within the given set of applications. This
inadequacy has led to the development of a possible alternative
to API call sequence clustering. By classifying methods by
the packages it invokes instead of the sequence of calls, one
could cluster those methods that have an overall similarity.
Many deviations of this could be tested and we offer this as
an alternative branch to our current process.

VIII. FUTURE WORK

Our long term development goals are as follows:

• Implement the energy and memory usage and run-time
sorting process.

• Release EffMethod as an Eclipse plug-in.
• Generalize the tool to work on other languages. Currently

this is being developed for Android, however it is not
a strech to assume it will also work for standard Java
programs. Which also points to the possibility of the
overall idea being applied to other languages outside of
the Java umbrella.

• Build-in a measure that will track user changes to code.
This could be used to develope a genetic algorithm sim-
ilar to GenProg [4] which has been used to patch legacy
code. A modified version of GenProg could potentially
modify the open source code selected by the developer,
so that it fits easily within their current project.

• Build-in a measure that informs the developer of updates
to the code they selected for their project.

• Add EffMethod to other major IDEs, like Visual Studio.

IX. RELATED WORK

MAPO, developed by Zhong et al, clusters methods based
on their API calls, order of calls, and to some extent method
name [10]. SAMOA, developed by Minelli et al, analyzes
applications by development history, API calls, and source
code [6]. The work done by Barstad et al. runs a static
analysis on student’s code to determine whether its “good
code” or “bad code” [1]. Their tool was better at identifying
“good code” than “bad code”. Pathak et al developed the
tool Eprof to measure energy usage of methods contained
within applications [8]. Brenschede developed a tool called
BHeapSampler, to analyze heap data in a java application [2].
Murphy et al dives deeper into refactoring, which could aid
in our run-time tests [7]. The work provided by Hecht et al,
resulted in an effective tool called Paprika, that can detect
antipatterns in Android applications [3]. Similarly, Verloop et
al, measured code smell in four Android applications [9]. Le
Goues et al utilized genetic algorithms to patch legacy code
with a 94% success rate [4]. Machiry et al developed a tool
called Dynodroid, that generated input sequences and found
bugs in the input sequences of 5 of the top 1000 Android
applications [5].

ACKNOWLEDGMENT

The author would like to thank the University of Colorado
at Colorado Springs and the National Science Foundation’s
Research Experiences for Undergraduates program, who’s
Grant 1359275 funded this research.

REFERENCES

[1] V. Barstad, M. Goodwin, and T. Gjøsæter. Predicting source code quality
with static analysis and machine learning. Norsk Informatikkonferanse
(NIK), 2014.

22

[2] A. Brenschede. Graph-based performance and heap memory analysis.
In Proceedings of the 15th Java Forum Stuttgart, 2012.

[3] G. Hecht, R. Rouvoy, N. Moha, and L. Duchien. Detecting Antipatterns
in Android Apps. PhD thesis, INRIA Lille, 2015.

[4] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer. Genprog: A
generic method for automatic software repair. Software Engineering,
IEEE Transactions on, 38(1):54–72, 2012.

[5] A. Machiry, R. Tahiliani, and M. Naik. Dynodroid: An input generation
system for android apps. In Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering, pages 224–234. ACM, 2013.

[6] R. Minelli and M. Lanza. Software analytics for mobile applications–
insights amp; lessons learned. In Software Maintenance and Reengi-
neering (CSMR), 2013 17th European Conference on, pages 144–153,
March 2013.

[7] E. Murphy-Hill and A. P. Black. Refactoring tools: Fitness for purpose.
Software, IEEE, 25(5):38–44, 2008.

[8] A. Pathak, Y. C. Hu, and M. Zhang. Where is the energy spent inside
my app?: fine grained energy accounting on smartphones with eprof. In
Proceedings of the 7th ACM european conference on Computer Systems,
pages 29–42. ACM, 2012.

[9] D. Verloop. Code Smells in the Mobile Applications Domain. PhD
thesis, TU Delft, Delft University of Technology, 2013.

[10] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei. Mapo: Mining and
recommending api usage patterns. In ECOOP 2009–Object-Oriented
Programming, pages 318–343. Springer, 2009.

23

UCCS REU 2015

Mutant Selection Using Machine Learning
Techniques

SJ Guillaume
Department of Computer Science

Allegheny College
guillaumes@allegheny.edu

Abstract—Mutation testing is an effective, but high cost ap-

proach to ensuring test suite adequacy. The issue of efficiency

emerges. Thousands of mutants can be inserted in a program,

and many tests may be run before the mutant is killed, if it is

killed at all. This paper proposes that there is a way to reduce

the cost of mutation testing employing data mining and machine

learning algorithms to reduce the number of mutant operators

run. Previous research in mutation testing proves that mutation

test prioritization and reduction is possible without resulting in a

significantly different mutation score. To our knowledge, no prior

research techniques use machine learning models to perform

mutant selection, specifically mutation operator selection.

I. INTRODUCTION

M

UTATION testing is a method of measuring test suite
adequacy. Having a high quality test suite is inherently

valuable, if the test suite is reliable in catching mistakes
it ensures that real issues can be detected and fixed in a
program. This process is important in software development,
specifically mobile software development, because with the
rate at which program development and updates are demanded
and required by the market, we wonder if we are asking too
much of programmers. Speed and accuracy do not correlate,
and catching errors before releasing a product into the market
is essential. Mutation testing can make this process easier, as
the purpose of mutation testing is to generate errors in code
that can indicate where a program or test suite is weak or
incorrect.

The drawback of creating a quality product is the time
requirement. While any type of software testing is a time
consuming process, mutation testing demands an unreasonably
high cost in producing test cases, running time, and develop-
ment effort. Faster testing is essential. Researchers have inves-
tigated ways to reduce the high cost of mutation testing for
years. This paper proposes that an efficient, accurate mutation
testing framework can be discovered through the application
of data mining techniques and applying machine learning
algorithms to determine which mutants are unnecessary and
can be eliminated. Fewer generated mutants results in reduced
time involved in inserting, compiling, and running the test
suite.

The purpose of mutation testing is to check that a test
suite detects small syntactic errors, similar to mistakes all
programmers are susceptible to. The faults produced may not
be syntactically similar to those produced by human error
according to. [6] However, Just et al.’s work argues that the

MAJOR framework does produce faults comparable to real
faults. [7] Regardless, mutation testing continues as a highly
regarded way to measure test suite adequacy.[16]. Mutation
testing is an effective tool for testing software with known
faults, and therefore is a useful tool on software for which
faults are unknown [12]. An effective mutant is one which
catches that there has been a change in the program which
alters the result. This works because the test suite is designed
to check that the program performs as expected. The test suite
may have multiple tests, called test cases, for the same part
of the program. If one test case compares the expected result,
what the original program should produce, to what the section
of the program that has been mutated, that result should differ
from the expected result. When this discrepancy occurs, the
mutant is killed.

For example, in the MAJOR mutation framework, the
mutation operator AOR(Arithmetic operator replacement)will
go into the system under test(SUT), and generate mutants. For
every +, AOR will alter the SUT and insert a � in place of
the +. Test suite, T, will then run its test cases on SUT. For
each segment of a code, there may be multiple test cases in T
checking SUT. When a test case runs on SUT, and a difference
is detected between what the original program produced, and
what the mutated program produced, we consider the mutant
k̈illed.̈ When none of the test cases in T detect the difference
in SUT, the mutant is considered l̈ive.̈ There are several
explanations for a l̈ivem̈utant, including equivalent, redundant,
and quasi-mutants which will be discussed later. When T
executes all test cases, the mutation score can be calculated.
The unmutated version of the system under test(SUT) will be
referred to as the original program in this paper. Equivalent
mutants are those who do not produce a different result than
the original program does. Thus, when T runs all of its test
cases on SUT all of the test cases pass, and the mutant is
not detected. Similarly, redundant mutants are those which
are syntactically the same as parts of the program which
are not mutated. Quasi-mutants are different in that they are
syntactically incorrect, often referred to as s̈till bornb̈ecause
they are not fully formed mutations, it is impossible to check
these statements.

There is supporting research on the benefits of mutation
selection techniques. Wright et al.’s work shows that the
use of many operators is a disadvantage in mutation testing.
Too many mutants may defeat the overall purpose because
it may create equivalent or redundant mutants that make the

24

UCCS REU 2015

testing less effective than desired.[14] The reduction technique
developed in this paper suggests that by running mutation
testing suites on a variety of programs, we may be able to
utilize machine learning algorithms to produce a reduced set
of mutation operators that are able to produce a mutation
score comparable to the mutation score of the original set of
mutation operators. The goal is for this method to determine
set of operators that can be applied to many programs outside
the training set, and have an accurate, comparable mutation
score.

II. TECHNIQUE

We will be using the R-language for statistical computing,
specifically the caret package for classification and regression
testing. We aim to use these tools to perform Data Mining.
Data mining involves going through a massive amount of
data to identify patterns. [11] Once patterns are identified, we
can perform machine learning to select a subset of mutation
operators that will produce a mutation score comparable to the
original mutation score.

The mutation frameworks we will use in this paper are
MAJOR[3] and PIT[5], operators for each are found in Table
I and Table II respectively. We will perform mutation testing
on programs with automatically created test suites and one
manually created test suite. The automatically created test
suites will be generated using Codepro[1], EvoSuite[2], and
Randoop[4].

Table I contains the Mutation Operators from MAJOR.

Operator Description
AOR Arithmetic Operator Replacement
LOR Logical Operator Replacement
COR Conditional Operator Replacement
ROR Relational Operator Replacement
SOR Shift Operator Replacement
ORU Operator Replacement Unary
STD Statement Deletion Operator
LVR Literal Value Replacement

TABLE I
TABLE OF MUTATION OPERATORS IN MAJOR: ADAPTED FROM

mutation� testing.org/doc/major.pdf

Table II contains the Mutation Operators from PIT.

Operator Description
CBM Conditionals Boundary Mutator
NCM Negate Conditionals Mutator
RCM Remove Conditionals Mutator
MM Math Mutator
IM Increments Mutator

INM Invert Negatives Mutator
IC Inline Constant Mutator

RVM Return Values Mutator
VCM Void Method Call Mutator
NVM Non Void Method Call Mutator
CCM Constructor Call Mutator
EMM Experimental Member Variable Mutator
ESM Experimental Switch Mutator

TABLE II
TABLE OF MUTATION OPERATORS IN PIT: LIST FROM

pitest.org/quickstart/mutators/

III. ALGORITHMS

A. Basic Algorithms

There are many algorithms that have been developed to
reduce the number of mutants generated. For our study, we
use three of these techniques for baseline data to compare our
machine learning algorithms against.

The first algorithm technique we use is the percentage
reduction technique. This involves randomly selecting a set
percentage of possible mutants to compile and execute[13].

The second algorithm technique we use is the percentage
reduction by mutation operator technique. For each operator,
we would reduce the number of mutants compiled and exe-
cuted by a certain percentage[13]. This method ensures the set
of mutants used for measuring the quality of the test suite is
representative of the total set of possible mutants.

The third algorithm technique is an operator reduction
technique. The idea of reducing an entire operator from testing
is controversial, as that reduces all of a type of mutant that
the test suite may or may not be capable of handling[16][10].

.

B. Machine Learning Algorithms

This paper aims to perform machine learning on mutation
selection using a k-fold cross validation approach and training
models with each fold being a single program, thus the model
would train on all but one program, and then it would test to
see how accurate it is on the remaining program. Once the
model has trained, we then combine the trained models to
make one model for the set.

Machine learning we perform on this includes boosted class
trees, greedy, lars, and clustering.

IV. EVALUATION

With the data collected, this paper aims to see if there is
a subset of mutation operators that can be applied in any
mutation testing, or if factors such as whether the test suite
was created automatically or manually impacts the subset of
mutation operators selected. Another factor we want to observe
is if the subset of operators chosen from MAJOR or PIT are
similar in what their functions are, also we can observe if
the size of the program impacts the the subset of operators
selected. All of these comparisons are important in using
machine learning algorithms to select a subset of operators
from the training set of programs that can create generalized
rules for choosing a subset of mutation operators.

A. Metrics

Mutation score is calculated by dividing the number of
killed mutants over the number of total non-equivalent mu-
tants. We do not consider equivalent, redundant, or quasi-
mutants in the calculation because they are essentially immune
to the test cases due to their similarities to the original
program. The mutation score is a number between zero and
one, numbers closer to one indicate a higher quality test suite.

25

UCCS REU 2015

B. Benchmarks

To evaluate, ten programs were selected from the SF110
based on their size and associated test suites. These can be
found in Table III. This set of programs provides a range of
size. The largest program is Netweaver with 17,953 lines of
code (LOC), and the smallest program is the Jni-inchi with
783 LOC.

Table III Benchmark Programs and Properties

Program LOC Cyclomatic Complexity
Netweaver 17953 2.82
Inspirento 1769 1.76
Jsecurity 9470 2.05
Saxpath 1441 2.10
Jni-inchi 783 2.05
Xisemele 1399 1.29
Diebierse 1539 1.74
Lagoon 6060 3.52

Lavalamp 1039 1.50
Jnfe 1294 1.38

TABLE III
TABLE OF BENCHMARK PROGRAMS

V. RELATED WORK

Zhang et al. prove operator-based mutant selection is not
superior to random mutant selection, where operator-based
mutant selection only creates mutants on a subset of sufficient
operators, and random mutant selection creates a subset of
mutants from any mutation operator. The study in [16] proves
that operator-based mutant selection and random mutant selec-
tion are competitive techniques, and random mutant selection
is arguably superior because it chooses fewer mutants than any
of the operator-based mutant selection techniques.

Research by Offutt et al. found that there are five operators,
out of the 22 available in the MOTHRA mutation testing suite,
that are sufficient for mutation testing, and considered better,
or equal, to the full set of operators in mutation analysis [10].

Wong et al. show that random selection of mutants can
effectively evaluate the quality of a test suite [13]. In this
work, they learn that the use of only 10 percent of mutation
operators yields a mutation score comparable to a full mutation
set. The research shows that reduced mutant testing is a cost
effective alternative to mutation testing.

Zhang et al. invent the FaMT technique to prioritize test
cases such that ones most likely to kill the mutant are run
earlier, and reduce test cases by running only a subset of
all possible tests on a mutant in their paper [17]. The FaMT
method reduced all executions for all mutants by about 50%
but for some programs, it reduced the executions for all
mutants by more than 63%. This resulted in a greatly reduced
run time overhead.

Just et al. use a prioritization and reduction technique also.
Their technique differs by evaluating redundancies and runtime
differences of test cases to prioritize and reduce the cost of
mutation analysis up to 65% [8].

In [14] removing equivalent, redundant, and quasi mutants
leads to a more efficient, effective mutation analysis suite.
Wright et al. propose that performing mutation analysis with

so many mutants may defeat the overall purpose because it
may create so many ineffective mutants. Ineffective mutants
reduce accuracy and increase the cost of mutation analysis.
Removing the mutants that do not make a valuable con-
tribution to analysis proved to be an effective method for
reducing mutation testing cost; there was a 56% decrease in
time cost for the majority of schemas, time varied depending
on the DBMS used. The mutation score increased for 75% of
schemas after removing the ineffective mutants, and in 44%
of cases it changed to 1, a perfect mutation score as all the
mutants were killed. This is noted a statistically significant
result.

Namin et al. use a mutation operator selection method on
the Proteum system which generated less than 8% of mutants
generated by the full set. They declare this subset is sufficient
for determining test suite adequacy[12].

Size and structural coverage are important factors to con-
sider when measuring test effectiveness. Coverage is some-
times correlated with effectiveness, but using both size and
coverage gives a better prediction of effectiveness than size
alone[9]. Coverage has been the most utilized way to measure
test suite quality, it supports the belief that if you execute more
of a program, you will be more likely to catch problematic
elements. The study by Namin et al. determines that size
and coverage independently influence test suite effectiveness,
however, the relationship is not linear.

Offutt et. al completed an insightful study into sufficient
mutant operators. The results indicate that certain operators,
such as mutant operators that replace all operands with all
syntactically legal operands and mutant operators that modify
entire statements, do not contribute greatly to the effectiveness
of mutation testing. Ultimately, this study determines that of
the 22 mutant operators in Mothra, only five of these are
necessary to effectively implement mutation testing[10]. These
five mutation operators are ABS, AOR, LCR, ROR, and UOI.

Regression mutation testing is a technique created by Zhang
et al. where they used previous tests on software to determine
which mutants should be executed on subsequent tests on
updated versions of the software based on kill ability and
coverage of statement[18].

Research by Zhang et al. takes a different stance on mutant
selection. Instead of choosing between the two types, combin-
ing mutation operator selection and random selection allows
for even greater testing efficiency to be achieved at a low
cost. This method applies random mutant selection on top of
operator selection, to further reduce the number of mutants
necessary to assert test suite adequacy. Only 5% of mutants
are necessary to preserve the mutation score[15].

Our work is distinct from previous advances in mutation
selection, reduction, and prioritization because the aim of this
paper is to use sophisticated data mining methods to perform
mutation operator selection. To our knowledge, no previous
work has been done with taking a machine learning approach
to mutant selection.

VI. DISCUSSION

There were some difficulties hindering the success of this
research. One is the difficulty we had with some programs and

26

UCCS REU 2015

MAJOR in producing the information needed to perform full
analysis. Randoop generated test suites often did not produce
accurate results, and thus is not suitable for use in comparison
with other test suites.

VII. CONCLUSION AND FUTURE WORK

This research accomplishes the goal of determining if ma-
chine learning techniques produce better mutation subsets than
algorithms that have been widely used and studied before this
paper was written: random selection and operator selection.
While the work done so far in this paper provides a base
on which to continue research, implementing more machine
learning approaches is a clear goal for future research. With
the greedy algorithm as a good indicator of what could be
accomplished with machine learning application to mutant
selection approaches, we anticipate more advanced machine
learning methods will produce further reduced sets of mutants.

VIII. ACKNOWLEDGEMENT

This work is supported by an NSF REU Grant.

REFERENCES

[1] Codepro analytix. https://developers.google.com/java-dev-
tools/codepro/doc/?hl=en.

[2] Evosuite: Automatic test suite generation for java.
http://www.evosuite.org/.

[3] The major mutation framework. http://www.mutation-testing.org/.
[4] Randoop: Automatic unit test generation for java.

http://mernst.github.io/randoop/.
[5] Real world mutation testing. http://www.pitest.org/.
[6] R. Gopinath, C. Jensen, and A. Groce. Mutations: How close are they

to real faults? In Software Reliability Engineering (ISSRE), 2014 IEEE
25th International Symposium on, pages 189–200, Nov 2014.

[7] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser.
Are mutants a valid substitute for real faults in software testing? In
Proceedings of the 22Nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE 2014, pages 654–665, New
York, NY, USA, 2014. ACM.

[8] R. Just, G. Kapfhammer, and F. Schweiggert. Using non-redundant
mutation operators and test suite prioritization to achieve efficient and
scalable mutation analysis. In Software Reliability Engineering (ISSRE),
2012 IEEE 23rd International Symposium on, pages 11–20, Nov 2012.

[9] A. S. Namin and J. H. Andrews. The influence of size and coverage on
test suite effectiveness. In Proceedings of the Eighteenth International
Symposium on Software Testing and Analysis, ISSTA ’09, pages 57–68,
New York, NY, USA, 2009. ACM.

[10] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf. An
experimental determination of sufficient mutant operators. ACM Trans.
Softw. Eng. Methodol., 5(2):99–118, Apr. 1996.

[11] B. Rajagopalan and R. Krovi. Benchmarking data mining algorithms.
Journal of Database Management, 13(1):25–35, Jan 2002.

[12] A. Siami Namin, J. H. Andrews, and D. J. Murdoch. Sufficient mutation
operators for measuring test effectiveness. In Proceedings of the 30th
International Conference on Software Engineering, ICSE ’08, pages
351–360, New York, NY, USA, 2008. ACM.

[13] W. E. Wong and A. P. Mathur. Reducing the cost of mutation testing:
An empirical study. Journal of Systems and Software, 31(3):185–196,
1995.

[14] C. J. Wright, G. M. Kapfhammer, and P. McMinn. The impact of equiva-
lent, redundant and quasi mutants on database schema mutation analysis.
In Quality Software (QSIC), 2014 14th International Conference on,
pages 57–66. IEEE, 2014.

[15] L. Zhang, M. Gligoric, D. Marinov, and S. Khurshid. Operator-based
and random mutant selection: Better together. In Automated Software
Engineering (ASE), 2013 IEEE/ACM 28th International Conference on,
pages 92–102, Nov 2013.

[16] L. Zhang, S.-S. Hou, J.-J. Hu, T. Xie, and H. Mei. Is operator-based
mutant selection superior to random mutant selection? In Proceedings of
the 32Nd ACM/IEEE International Conference on Software Engineering
- Volume 1, ICSE ’10, pages 435–444, New York, NY, USA, 2010. ACM.

[17] L. Zhang, D. Marinov, and S. Khurshid. Faster mutation testing
inspired by test prioritization and reduction. In Proceedings of the 2013
International Symposium on Software Testing and Analysis, ISSTA 2013,
pages 235–245, New York, NY, USA, 2013. ACM.

[18] L. Zhang, D. Marinov, L. Zhang, and S. Khurshid. Regression mutation
testing. In Proceedings of the 2012 International Symposium on Software
Testing and Analysis, ISSTA 2012, pages 331–341, New York, NY, USA,
2012. ACM.

27

Modeling the Impact of Thread Configuration on
Power and Performance of GPUs

Tiffany Connors
Texas State University

Email: tac115@txstate.edu

Abstract—The use of graphics processing units (GPUs) has
become more widespread due to their high computational power.
However, GPUs consume large amounts of power. Due to the
associated energy costs, improving energy-efficiency has become
a growing concern.

By evaluating the impact of thread configuration on perfor-
mance and power trade-off, energy-efficient solutions can be
identified. Using machine learning, the effect of applying a given
thread configuration to a program can be predicted in terms
of the relative change in performance and power trade-off of a
GPU kernel. This enables us to establish which dynamic program
features are used to predict the impact of a thread configuration
on a program’s performance and how these features are related
to the overall effectiveness of an applied configuration. Using
these program features, machine learning can be used to assist in
determining the most effective thread configuration to be applied
based on a given code.

I. INTRODUCTION

THERE has been an increasing demand for high perfor-
mance systems for the processing of large sets of data

and complex scientific computations. However, performance
increase typically results in greater levels of power consump-
tion. The consequence is increased energy costs. Through the
modeling of performance and power consumption, it is pos-
sible to identify a correlation between the two and determine
ways in which to make systems more energy-efficient while
continuing to provide high levels of performance speedup.

Because GPUs are a low-cost option for achieving high
computational power, they have become widely used in high-
performance computing. Although able to provide high levels
of performance speedup, GPUs can have a power consumption
of up to 300W [1]. Due to the prevalence of GPUs in
computational intensive work, there is a need for solutions
that will decrease the associated energy costs of GPUs while
continuing to provide performance speedup.

II. PROBLEM DEFINITION

The main goal of this research is to improve both perfor-
mance and power consumption of GPUs through the selection
of optimal thread configurations by creating a predictive model
using machine learning. This model can then be used to assist
in the selection of thread configurations that will produce the
greatest improvement in execution time while maintaining a
minimal increase in power consumption. In order to achieve
this, the impact of various commonly used thread configura-
tions on power consumption and performance values will be

observed. Specifically, the compiler optimizations which this
work will concentrate on are thread configurations. Addition-
ally, our work will focus on optimizing search algorithms for
use on GPUs.

One problem which arises when attempting to optimize
code through either the use of compiler optimizations or a
change in thread configuration is that while an optimization
may produce substantial improvements for one application, the
same optimization may be detrimental for another application
[2]. For this reason, it is important to create a model that,
when provided with the code to be optimized, will predict the
impact that an optimization will have on execution time and
energy usage.

The framework and overview of the machine learning
process proposed in this paper can be seen in Figure 1 and is
explained in further detail in the following section.

Fig. 1. Overview of the machine learning process proposed in this paper.

28

III. TECHNIQUE

In CUDA, threads are organized into blocks, which are then
organized into groupings called grids. Block size refers to the
number of threads per thread block. Grid size is the number
of thread blocks [3].

In this paper, the number of threads per block and number
of block per grid is referred to as the thread configuration.
A set of feasible thread configurations, shown below in Table
III, is used and the impact of each thread configuration on
performance and power is evaluated.

64x32 128x16 512x4 1024x2
64x64 128x32 512x8 1024x4
64x96 128x48 512x12 1024x6

64x128 128x64 512x20 1024x8

TABLE I
SET OF THREAD CONFIGURATIONS

In this work, we focus specifically on optimizing the per-
formance and power trade-off of search algorithms for use on
GPU systems. The programs included in our study as sample
code are quadratic assignment problem (QAP) solvers imple-
mented with tabu, simulated annealing, and three variations
of 2opt. In addition to the varying algorithms, multiple input
datasets from QAPLIB were used. The datasets which were
selected are lipa20, lipa30, and tai25a. Each dataset varies in
size and structure, and thus affects the program’s behavior.

A. Feature Extraction
In order to create a machine learning model that works with

more than just one type of code, key features of the code which
provide a good description of the program’s characteristics
must be determined. To do this, the source code is analyzed at
runtime and a set of dynamic features is extracted. Each thread
configuration from our set of commonly used configurations
was applied to all of our sample source code.

The modified code was executed and the programs runtime
behavior was recorded using NVIDIAs command-line GPU
profiler, nvprof. It has been shown that by taking code features
into account when selecting compiler optimizations, significant
improvement in performance can be achieved [4]. The fifty-
two features which were extracted are shown in Table II. To
normalize the values collected, each feature was divided by
the number of instructions executed.

B. Collection of Execution Time and Power Consumption
In addition to dynamic features, the programs performance

and energy usage were also collected. These values were
obtained by using the built-in power sensor of the Tesla K20c
GPU. During execution of each modified program, the average
power consumption and the program’s total execution time
were recorded. Next, the performance and power values for
each thread configuration were compared to all other thread
configurations of the same program.

The increase in execution time and power consumption
was calculated by dividing the original thread configuration
performance and power values to those of the new target

TABLE II
INITIAL SET OF FIFTY-TWO PROGRAM FEATURES.

configurations. The performance and power trade-off was then
computed by taking the ratio of the performance and power
increases, as shown in the following equation:

trade� off =
4 execution time

4 power consumption

Based off this trade-off value, the row of data was assigned
a class of either good or bad. These two classes describe the
relative change in performance and power of the program. If
a thread configuration produced a trade-off of 1.05 or greater
in a program, it was classified as ”good”. Otherwise, the row
of data was assigned to the ”bad” class. The result is a file
for each target thread configuration in which each row in the
dataset contains a set of features, the corresponding original
thread configuration, and a class label.

Next, all numeric values of the dataset were standardized
by using the following formula to calculate the z-score:

z =
X � µ

�

C. Feature Selection

To reduce our set of features down to only those with the
highest predicitive power, feature selection was performed.
First, any features which had zero variance were removed.
Machine learning models were then built and the variable
importance of each model was calculated, Figure 6. Next,
features were analyzed using correlation matrices, see in

29

Figure 2, and those which were highly correlated to one
another were identified.

Fig. 2. Correlation matrix depicting the level of correlation between each of
the 52 features.

Fig. 3. Correlation matrix which illustrates the remaining 14 features once
highly correlated variables were removed from the dataset.

Any features which had a correlation of 95% or higher were
removed from the feature set and a new correlation matrix,
Figure 3, was produced. Principle component analysis (PCA)
was performed on the remaining features in order to evaluate
the active variables’ degree of correlation. Additionally, the
features were compared with each of the models’ variable
importance values to determine if the features identified as

significant factors in the models remained in the new set of
features.

D. Machine Learning Methods
Nine different machine learning algorithms, listed in Table

6, were used in this work. The algorithms selected were those
which supported binary classification and are available in R’s
Caret package. The purpose of using varied machine learning
methods was to determine if the same features were significant
factors across all models, as well as identify which machine
learning algorithms worked best with our data. Each target
thread configuration was treated independently and separate
models were built, trained, and tested for each of these
configurations. The algorithm which performed the best was
then selected to be used for building the final predicitive
model.

boosted C5.0 bagged CART ctree
random forest naive bayes smvRadial

flexible discriminant analysis neural network k-nearest neighbors

TABLE III
THE NINE MACHINE LEARNING ALGORITHMS USED IN THIS WORK.

IV. RESULTS

For each target thread configuration file, the data was
randomly partition and 60% of the data was used for training
and the remaining 40% was reserved for testing. Additionally,
repeated k-fold cross-validation was used with k=10 and
repeats set to 5. This partitioned data was then used in each
of the nine models.

Fig. 4. A graph depicting the change in model accuracy before and after
feature selection has been performed.

The machine learning models performed quite well, with
most models having an accuracy in the high eighties to
mid-nineties. The boosted C5.0 tree algorithm was selected
as the final model for predicting the impact of modifying
the thread configuration of a program. Models built using
this algorithm achieved the highest levels of accuracy among

30

the nine machine learning algorithms used, with an average
accuracy rate of 94.9%.

Through feature selection, the initial set of features was
reduced from fifty-two down to the fourteen features identified
in Figure 3. When principle component analysis is performed
on the remaining fourteen factors and the variables factor map
is generated, Figure 5, we can see that OrigThreads, Orig-
Blocks, Solutions, and fb subp0 read sectors are highly cor-
related to each other. not predicted off thread inst executed
is not strongly correlated to anything else and has negative
correlation to inst issued2. In addition to having a correlation
of less than 95% to one another, these fourteen features had
also been identified as significant factors in all nine of the
machine learning models, as seen in Figure 6. These results
were the same across all target thread configuration files and
models.

Fig. 5. In the variable’s graph, the angle between two arrows depicts the
correlation of the two variables. If the arrows are at a 90 degree angle, there
is no correlation. Two arrows that are on a near linear line are negatively
correlated.

As seen in Figure 4, limiting the feature set to only those
features which were not highly correlated improved the accu-
racy of the models. The feature most frequently identified as
the factor with the greatest significance was original threads. It
appears that if the original thread count is large, then reducing
the thread count to a lower number will be more beneficial.

The two thread configurations which had the greatest num-
ber of good instances were 64x128 and 128x16. Changing the
thread configuration to 64x128 was good 57.5% of the time,
while changing the thread configuration to 128x16 resulted
in desirable tradeoff 89.58% of the time. The visualization of
these two trees can be seen in Figure 7. Changing the thread
configuration to 1024x8 was always bad, therefore we were
unable to use C5.0 for this thread configuration since there
was no variance in the response label.

The C5.0 tree model predicted that changing the thread
configuration to 64x128 would result in improved perfor-
mance/power trade-off when the program had a high original
thread count in conjunction with a large number of thread
instructions executed. If a lower amount of thread instructions
are executed, then improvement will be seen if this is coupled

Fig. 6. Variable importance of the top 20 predicting factors for each of the
nine machine learning models.

with a smaller number of write requests sent to sub-partition
0.

When the thread configuration is modified to 128x16, the
C5.0 tree predicted that the change would have the highest
probability of being bad if the original thread count is small,
the number of instructions sent to 32-bit global memory
is low, and a smaller number of read requests are sent to
sub-partition 0. Otherwise, the change will likely result in
improved performance/power trade-off.

V. RELATED WORK

Ukidave et al. studied the effects of optimizations and
algorithm design on power/performance trade-offs of GPUs,

31

Fig. 7. Visualization of the 64x128 (top) and 128x16 (bottom) C5.0 trees.

APUs, and SoCs. The compiler optimizations investigated
were loop unrolling, data transformation, and local memory
optimizations [6]. In contrast, this research concentrates on
thread configuration. Additionally, the paper by Ukidave et al.
did not attempt to create a machine learning model for the
implementation of these optimizations.

Agakov et al. used iterative search to select good compiler
optimizations for increasing performance. Program features
were taken into account and Agakov et al. identified thirty-six
loop-level features that described a program’s characteristics
[7]. In the work presented in this paper, we did not limit
ourselves to loop-level features. Another difference is that our
work uses CUDA programs, while their work focused on C
programs running on CPU systems.

There has been much work exploring the use of machine
learning for selecting compiler optimizations. Research per-
formed by Magni et al. aimed at building a machine learning
model for automatic optimization for GPUs by using thread-
coarsening [8]. Similarly, a technique has been proposed by
Cavazos et al. which uses machine learning to automatically
select the best optimizations to increase GPU performance [9].
Liang et al. has proposed a joint register and thread structure
optimization framework that achieves considerable increase
in speedup, showing that the impact of thread structure and
register allocation on performance are related [10]. However,
unlike the research proposed in this paper, the work mentioned
above did not take power consumption into account.

VI. FUTURE WORK

This work currently includes only two classes used in the
machine learning models. It is our goal to expand these models
to include up to eight different classes in order to give more
detailed results of the relative change in performance/power
trade-off.

We intend to expand this work by investigating performance
and power consumption of stencil code on the GPU. By using
a stencil code generator, a large number of programs can
be produced in a short amount of time. Dynamic features,
execution times, and power consumption will be collected
using the same methods already outlined in this paper.

Including stencil code will enable us to create a larger
training dataset. This will also allow us to see if the same
dynamic features important for predicting the impact of a
thread configuration on QAP algorithms are significant factors
for stencil code.

In addition to using machine learning to predict the relative
change in performance and power trade-off, we also intend
to create a model that will predict which thread configuration
should be applied in order to obtain optimal trade-off. Provided
with a set of program features, the model will output the thread
configuration predicted to result in the best performance and
power trade-off.

VII. CONCLUSION

Due to their high computational power, GPUs have become
an increasingly popular choice for high performance comput-
ing. While GPUs provide exceptional performance speedup,
they also consume a large amount of power, resulting in higher
energy costs. In order to make these systems more energy-
efficient, this paper proposes using machine learning to select
the thread configuration which will provide greater speedup
while maintaining minimal power consumption.

Using dynamic feature extraction on a given code and
selecting the features which are most closely related to thread
configuration, a machine learning model can accurately predict
the impact that a new thread configuration will have on the
performance/power trade-off of the program. In turn, this can
be used to assist programers in the proper selection of thread
configurations which will give increased performance while
maintaining minimal increase in power consumption.

VIII. ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation Research Experiences for Undergraduates
program under Grant No. 1359275.

REFERENCES

[1] S. Collange, D. Defour, and A. Tisserand, “Power
consumption of gpus from a software perspective,” in
Proceedings of the 9th International Conference on
Computational Science: Part I, ser. ICCS ’09, Baton
Rouge, LA, 2009, pp. 914–923.

32

[2] E. Granston and A. Holler, “Automatic recommendation
of compiler options,” in Proceedings of the 4th Work-
shop on Feedback-Directed and Dynamic Optimization,
Austin, TX, 2001.

[3] Cuda c programming guide, version 7.0, NVIDIA.
[Online]. Available: http://docs.nvidia.com/cuda/index.
html.

[4] J. Cavazos and M. O’Boyle, “Method-specific dynamic
compilation using logistic regression,” in Proceedings
of the 21st annual ACM SIGPLAN conference on
Object-oriented programming systems, languages, and
applications, ser. OOPSLA ’06, Portland, OR, 2006,
pp. 229–240.

[5] R. Kohavi, “Scaling up the accuracy of naive-bayes
classifiers: a decision-tree hybrid,” in Proceedings of the
Second International Conference on Knowledge Discov-
ery and Data Mining, Portland, OR, 1996, pp. 202–207.

[6] Y. Ukidave, A. K. Ziabari, P. Mistry, G. Schirner, and
D. Kaeli, “Analyzing power efficiency of optimization
techniques and algorithm design methods for applica-
tions on heterogeneous platforms,” The International
Journal of High Performance Computing Applications,
vol. 28, no. 3, pp. 319–334, 2014.

[7] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G.Fursin,
M. O’Boyle, J. Thomson, M. Toussaint, and C.
Williams, “Using machine learning to focus iterative
optimization,” in Proceedings of the 4th Annual Inter-
national Symposium on Code Generation and Optimiza-
tion, ser. CGO ’06, New York, NY, 2006, pp. 295–305.

[8] A. Magni, C. Dubach, and M. O’Boyle, “Automatic
optimization of thread-coarsening for graphics proces-
sors,” in Proceedings of the 23rd International Con-
ference on Parallel Architectures and Compilation, ser.
PACT ’14, Edmonton, AB, Canada, 2014, pp. 455–466.

[9] J. Cavazos, G. Fursin, F. Agakov, E. Bonilla, M.
O’Boyle, and O. Temam, “Rapidly selecting good
compiler optimizations using performance counters,” in
Proceedings of the International Symposium on Code
Generation and Optimization, ser. CGO ’07, San Jose,
CA, 2007, pp. 185–197.

[10] Y. Liang, Z. Cui, K. Rupnow, and D. Chen, “Register
and thread structure optimization for gpus,” in Design
Automation Conference (ASP-DAC), 2013 18th Asia
and South Pacific, Yokohama, Japan, 2013, pp. 461–
466.

33

Static Performance Prediction of Compiler
Optimizations

Michael Dennis

Abstract—Tunning the interaction of various compiler opti-
mizations to be optimal for a specific platform is a daunting
task with complicated interacting considerations. The problem is
exacerbated by the fact that what is optimal on one architecture
likely performs terribly on another. Since manually tuning a com-
piler for each new architecture is infeasible, this project will use
machine learning to create a model specific to each architecture
that will accurately predict the runtime performance of code
based on static features to better inform compiler optimizations.
Once the predictive model is created, it can be quickly used to
determine near optimal settings for compiler tunning parameters
specific to each block of code. To give this research direction,
we will begin our work with stencil code, moving on to dynamic
programing after preliminary results. These classes of algorithms
provides more structure to the problem by focusing on programs
whose performance is minimally input dependent allowing our
methods to achieve more accurate results.

I. INTRODUCTION

COMPILER optimization is a complex subject. The qual-
ity of any individual optimization often depends on fine

details of the machine that vary widely from platform to
platform. What could be a powerful optimization on one
machine could slow down performance on another and it is
not uncommon for a compiler to try a very complex series of
optimizations only to find that performance has not changed or
even decreased. Tuning parameters of compilers for the wide
variety of systems by hand is a problem beyond the scale of
practicality.

To handle the complexity of choosing the best configuration
of optimizations many have used iterative compilation assisted
by machine learning techniques to tune parameters to a spe-
cific block of code. Running an iterative machine learning
algorithm with recompilation vastly slows down the process
and ultimately results in less time for other optimizations
to be fine tuned. Additionally, an iterative technique often
finds local mixima, which offer less than optimal performance
gains. More significantly, iterative compilation techniques fail
to utilize the structure of the optimization itself, learning how
the optimization effects the performance of this program but
not programs in general. This project will move the iterative
and expensive machine learning to compiler-tuning time by
creating a predictive model of the performance of applications
on the host architecture to use in later optimizations. The hope
of this model is to learn in detail about how the machine
performs and to use this model to predict how optimizations
will effect the performance of yet unseen programs. Once
this model is created for a particular architecture and reused

for every subsequent compilation resulting in more efficient
compilation and a more informed search for optimizations.
This paper will focus on the creation of the predictive model
on the host architecture.

To give this work direction we will compare models created
from strictly stencil codes to models created with a larger set
of codes that allows for more flexible iteration patterns and
optional expressions at each level. These two sets will use the
same sets of features, and will be compared by the predictive
capabilities of their models. Since the second type of code is
a superset of stencil code, it will necessarily show at least as
much error as the stencil code predictive model. Seeing the
extent of the decrease in accuracy as the code complexity
increases will demonstrate the challenges of performance
prediction from static features as well as the necessity for more
quality code features to be used to counteract the decrease in
performance.

II. TECHNIQUE

A. Code Structure

We have limited the scope of our work to two specific
code structures for purpose of comparison. The first code
structure is simply stencil codes, a very well studied, well
structured type of program. The other code structure is a slight
generalization of stencil codes, adding the ability for each
level to have memory accesses and calculations and allowing
loops to iterate in more complex configurations. This code
structure allows any loop structure that can be mode from a
constant step, a lower bound starting at the outer loop’s index
variable, and a constant number of iterations. Since this second
type of code structure is significantly more complicated, it
will be possible to observe how predictive power decreases as
complexity increases.

B. Feature Selection

In order to create the predictive model it is important to
select quality static features. In our work we have found that it
is best to use features that are not calculated, rather observed.
Since metrics such as working set size and memory reuse
can be calculated from simple, observable static features such
as loop factors, memory accesses, and distribution statistics
describing the location of memory accesses, giving the model
the strictly observable static features gives the feature vector at

34

least as much discriminatory power as if we used to calculated
features, but it does not bias the model to use known forms of
performance prediction and it limits the chances of multiple
features being closely related by their calculations.

For raw features we have chosen the following: Number of
Floating Point Adds, Subtracts, Multiplications and divisions,
Number of memory accesses, the minimum and maximum
and average distance between consecutive memory accesses,
Number of iterations of the loop and how much each iteration
changes the centroid of higher loop levels. Each of these
features are repeated for each level of the loop. For the
purposes of these initial experiments we have limited ourselves
to 5 nested loops with the understanding that this can later
be extended to more loops for a production model. However,
though the model in this form is limited to structures with a
finite number of loops, this limitation will not decrease the
applicability of the model as any optimization whose feature
changes are within this constant number of loops will be fully
described.

C. Feature Validation

From feature selection we proceeded to determine the
descriptive power of our features. Since we are grouping
programs by a finite set of features, many programs are going
to share the same feature set, and thus one would naturally
expect there to be more variance in measurements of different
programs with the same features than there would be in
different measurements of the same program. To calculate this
difference we selected 100 vectors at random and generated
30 stencils for each vector. These stencils where tested each
30 times shuffled with the tests for other stencils with the
same features to amortize performance inconsistencies on the
host platform. We use this data to calculate a mean percent
error as well as a variance of sample means of percent errors
for each vector. By the central limit theorem we can then
treat each of these measurements for each vectors as a normal
distribution and compute the probability density function of
percent error as a mixture of these normal distributions. Again
sampling from this set we can obtain a mean percent error
across all vectors and a confidence interval for this percent
error. Following this same methodology we can compute the
average error in measurement for a specific code structure and
feature set.

We followed the above process on both generated stencil
codes and generated codes following the previously mentioned
broader structure. The results suggest that, with this feature
vector, stencil codes could be predicted with an average error
of 5.529277% (sd 0.247) and the more general structure could
be with an average error of 12.09777% (sd 0.460). These are
both compared to an average measurement error of 2.78825 %
(sd 0.416). The fact that stencil codes are predicted better than
the more broad category speaks to greater variance in running
times of the broader class do to increased complexity. While
this feature vector seems adequate to predict the performance

of stencil codes it is not well suited for the more complex
category. To counteract this decrease in accuracy it is necessary
to increase the predictive power of the feature vector in order
to add features that can discriminate between the best and
worst performers within a specified vector.

D. Model Training

Using the identified features of the code and knowing they
give a good basis for performance prediction we, collected
data uniformly randomly inside the space of codes with this
structure (subject to time and space limitations). A code
generator was created that was able to generate code with
specific features and test it on the host system. Each such test
will represent a data point, giving a correlation between this
list of features and performance. After collecting this data for
some time a predictive model was generated using Multivariate
Adaptive Regression Splines(MARS) [2]. Choosing MARS
as our regression algorithm is important as it allows for a
piecewise predictive model, which is representative of comput-
ing performance where sudden discontinuities can occur when
predictive parameters hit certain values such as cache size or
bandwidth of some hardware component. Additionally, MARS
produces a regression model as a mathematical function that
is continuous and differentiable which will be important for
later mathematical analysis. The predictive model that has
been generated is ready to be integrated into the compiler as
a description of performance for the host architecture and will
not change in future compilations.

E. Model Utilization

During the compilation process, the compiler will consider
the optimizations that it can make, and generate equations
representing the space of possible optimizations and how they
effect the aspects of the code used by our static predictive
model. An equation will be given to the predictive model
for each variable that it relies upon. These equations will
contain variables that are meaningful tuning parameters to
the compiler, but to the model they are simply values that
are used to calculate important features of the code. For
example, if a compiler does standard blocking of matrix code,
it could determine an equation for working set size based
on the blocking coefficients. These coefficients will be only
variables to the predictive model, but, to the compiler, an
assignment of these variables represents a combination of
optimizations. The job of the performance model at runtime is
to find the assignment to these tuning parameters which max-
imizes performance on the host system. By using MARS we
have created a predictive model that is differentiable, and by
restricting the compiler to send polynomial equations, which
are both typical and expressive, we have a set of equations
to calculate predictive parameters that are also differentiable.
Since both the predictive model and the constraint equations
are differentiable we can use Lagrange Multipliers to find a

35

finite set of possible local maxima to test, making the process
of finding the best assignment of the tunning parameters
at compile time faster and more accurate than methods of
iterative improvement. Importantly, this method will allow us
to make ensure that we make the best choice of parameters
that our model can predict and will avoid being stuck at a
local maximum.

III. RELATED WORK

In the field of static performance prediction much has been
attempted to mixed results. There have long been techniques
for predicting cache miss rates [7], however, since these results
were achieved, much has changed in computer architectures,
and even with an accurate prediction of miss rates, the results
cannot necessarily be generalized to an accurate prediction
of performance. Others have tried to predict the performance
directly, though their methods were only partly static, requiring
expensive profiling at compile-time and were only able to
achieve average error of around 20% [1]. Yet others have
narrowed their focus to scientific applications and were able
to create models that had good performance prediction across
multiple architectures [4]. However, their methods were still
dependent on dynamic analysis. A large variety of machine
learning algorithms have been used at compile time with
different heuristics to tune compiler optimizations with a 3 fold
improvement from unoptimized code, but requiring 10 minute
iterative compilation process [6]. This compile time overhead
has been avoided by others, instead using machine learning
off line to tune the search heuristics of the compiler, with
positive, but less significant results, only achieving a 2 fold
speedup over unoptimized code on standard benchmarks [5].

IV. FUTURE WORK

Continued improvements will come in two forms. First, the
current models could be made more precise. The error of our
model is larger than the average error from the mean measured
from samples within each of our vectors. This observation
leads us to conclude that our model does not predict as well
as our feature vector will allow, and thus there is room for
improvement in the creation of the model. To realize this
potential improvement is a matter of improving our model
creation process. By changing machine learning parameters,
changing code generation patterns to be more representative
of real code, and choosing to get more data from specifically
misclassified sections of the model, we can work to improve
the accuracy of the model for a specified feature set. Fine
tunning the initial suit of tests is essential to creating an
accurate model. If irregularities are not found initially, they
could be missed by later steps as well. To insure an initially
good set of tests we can employ the standard Roof Line
model [3] to generate initial areas of interest for the first round
of data collection. This model is already used to great effect in
performance analysis, and though it is not meant to guarantee
the degree of precision we desire, it will provide a baseline

that is close and will only improve after the tests have been
performed.

To achieve improvements past the mean measured standard
error of a specific feature set would require a change to
the features them selfs. This option has the possibility of
greatly improving the performance of the model, giving it the
ability to distinguish different utilization patterns of the host
machine that were previously indistinguishable. However, it is
important that the features that were added are both useful,
they provide new information, and raw, directly observable
from the source code.

The second form of improvement is to begin to utilize the
created models for actual optimization prediction. After the
previously mentioned improvements produce a model capable
of accurately predicting performance of a specific type of
code we can imagine an optimization that transforms the
code by keeps it within the set if codes capable of being
predicted by the performance model. Given a mathematical
description of the parameterized optimizations in the form of
equations describing how changing these parameters changes
the features of the code, it is possible to use the trained
mathematical model to find the predicted optimum choice of
parameters without ever running the program. If we accept
as given that the model is accurately predicting changes in
performance, such a system has the possibility of giving better
and more reliable performance gains than current methods.
These methods could be further improved by supporting more
optimizations or supporting compositions and permutations of
supported optimizations.

V. CONCLUSION

Choosing the best or even choosing a good set of optimiza-
tions for an arbitrary program on an arbitrary architecture is a
problem so difficult that standard manual analysis techniques
prove impractical. Common methods for dealing with this
complexity, such as iterative compilation, relearn with each
new program certain key facts about the structure of not only
the optimization but how the machine performs. It is our hope
that creating a mathematical performance model at compiler-
tune time will avoid this relearning process, creating a single
reliable model that can be trained when time is less important.

It is clear from our initial work that creating mathematical
models for significantly complex sets of codes will require
larger sets of quality features. However, it’s also clear that for
well structured code and with enough features, the creation
of mathematical models with moderate accuracy is possible.
Continuing to improve the process of creating the prediction
models, and increasing their accuracy has promise to greatly
improve compiler optimizations. Utilizing the completeness
of the mathematical description of the machine, it may be
possible to provide greater confidence in the improvement
of the chosen optimizations. Work will continues to expand
model creation to be accurate for more types of codes,

36

adding new features when necessary to counteract increases
in complexity. As these results are improved, this work will
allow compilers to utilize the structure of the machine and
optimizations to perform more effective searches that may lead
to quicker compilation of more efficient programs.

REFERENCES

[1] Calin Cascaval, Luiz De Rose, David A. Padua, and Daniel A. Reed.
Compile-time based performance prediction. In Proceedings of the
12th International Workshop on Languages and Compilers for Parallel
Computing, LCPC ’99, pages 365–379, London, UK, UK, 2000. Springer-
Verlag.

[2] Jerome H Friedman. Multivariate adaptive regression splines. The annals
of statistics, pages 1–67, 1991.

[3] YuJung Lo, Samuel Williams, Brian Van Straalen, TerryJ. Ligocki,
MatthewJ. Cordery, NicholasJ. Wright, MaryW. Hall, and Leonid Oliker.
Roofline model toolkit: A practical tool for architectural and program
analysis. In Stephen A. Jarvis, Steven A. Wright, and Simon D.
Hammond, editors, High Performance Computing Systems. Performance
Modeling, Benchmarking, and Simulation, volume 8966 of Lecture Notes
in Computer Science, pages 129–148. Springer International Publishing,
2015.

[4] Gabriel Marin and John Mellor-Crummey. Cross-architecture perfor-
mance predictions for scientific applications using parameterized models.
In Proceedings of the Joint International Conference on Measurement
and Modeling of Computer Systems, SIGMETRICS ’04/Performance ’04,
pages 2–13, New York, NY, USA, 2004. ACM.

[5] Gennady Pekhimenko and Angela Demke Brown. Efficient program
compilation through machine learning techniques. In Software Automatic
Tuning, pages 335–351. Springer, 2010.

[6] Keith Seymour, Haihang You, and Jack Dongarra. A comparison of search
heuristics for empirical code optimization. In Cluster Computing, 2008
IEEE International Conference on, pages 421–429. IEEE, 2008.

[7] Y. Zhong, S.G. Dropsho, Xipeng Shen, A. Studer, and Chen Ding.
Miss rate prediction across program inputs and cache configurations.
Computers, IEEE Transactions on, 56(3):328–343, March 2007.

37

Author Index

Burgett, Allen………………………………………………………………………………………………………..19
Connors, Tiffany……………………………………………………………………………………………………28
Cruz,&&Cruz……..1&
Dennis, Michael…………………………………………………………….……………………………………..34
Guillaume, Sarah …………………………………………………………………………………………………24
Large, Chantz.……………………………………………………………………………………………………….8
Reuter, Jack……13
Steele, Ben………………………………………………………………………………………….………4
Weber, Noah………………………………………………………………………………………………………..10

