
Proceedings of the Seminar

Machine Learning
in

Computer Vision
and

Natural Language Processing

University of Colorado, Colorado Springs

August 4, 2017

Editor: Jugal K. Kalita
Funded by

National Science Foundation

Preface

It is with great pleasure that we present to you the papers describing the research performed by
the NSF-funded Research Experience for Undergraduates (REU) students, who spent 10 weeks
during the summer of 2017 at the University of Colorado, Colorado Springs. Within a very short
period of time, the students were able to choose cutting-edge projects involving machine learning
in the areas of computer vision and natural language processing, write proposals, design
interesting algorithms and approaches, develop code, and write papers describing their work. We
hope that the students will continue working on these projects and submit papers to conferences
and journals within the next few months. We also hope that it is the beginning of a fruitful career
in research and innovation for all our participants.

We thank the National Science Foundation for funding our REU site. We also thank the
University of Colorado, Colorado Springs, for providing an intellectually stimulating
environment for research. In particular, we thank Drs. Jonathan Ventura and Terrance Boult,
who were faculty advisors for the REU students. We also thank Alessandra Langfels and
Cameron Martin for working out all the financial and administrative details. We also thank our
graduate and undergraduate students, in particular, Vinodini Venkataram, Austin Jacobs and
Tom Conley, for helping the students with ideas as well as systems and programming issues.
Xian Tan and his team also deserve our sincere gratitude for making sure that the computing
systems performed reliably during the summer. Our thanks also go to Dr. Robert Carlson of
Mathematics for being a constant well-wisher and for stimulating discussions.

Sincerely,

Jugal Kalita
jkalita@uccs.edu
Professor
August 4, 2017

Table of Contents

Open-Set Deep Learning for Text Classification
 Sridhama Prakhya, Vinodini Venkataram and Jugal Kalita…………….…………………1
Survey of Simple Neural Networks in Semantic Textual Similarity Analysis
 Derek Prijatelj and Jugal Kalita..……………………………………………………..……..……..7
Computing Semantic Roles Using ANNs with External Memory
 Christopher Towne and Jugal Kalita……………………………………..……………….…….12
Vector Properties of Good Summaries
 Adly Templeton and Jugal Kalita…………………………..………………………………….….17
Image Splicing Detection
 Ryan Gribenow and Terrance Boult…………………….…………….…..…………….…….. 24
Learning to Detect and Classify Forgeries of Digital Images in Open-Set Recognition
 Seyed	Masoumzadeh	and	Terrance	Boult………….……………………………………….……31
An Open Set Protocol for Improving Malware Classification in Intrusion Detection
 Harriet	Small	and	Jonathan	Ventura…………………………………….…………………… …….37
Localizing	Fluorescent	Proteins	Using	Super-Resolution	Neural	Networks		
	 Kyle	Yee,	Guy	Hagen	and	Jonathan	Ventura…………………………………..…………………42
Segmenting	Images	with	a	Deep	Auto-encoder	and	K-Means	Clustering		
	 Adia Meyers and Jonathan Ventura……………………………………………………..………48
Learning	perspective-free	counting	via	dilated	convolutions			
	 Diptodip	Deb and Jonathan Ventura……………………………………………………..……..52	

NSF REU Seminar on Machine Learning
Department of Computer Science

University of Colorado, Colorado Springs
Engineering 105

August 4, 2017: Friday

10:30-10:35 AM: Welcome Remarks by Dr. Kelli Klebe, Associate Vice Chancellor for Research
and Faculty Development, Dean of the Graduate School and Professor of Psychology, University
of Colorado, Colorado Springs, CO

10:35-11:50 AM Session Chair: Lisa Jesse, Co-founder, Intelligent Software Solutions, Inc.,
Colorado Springs, CO

10:35-11:00 Sridhama Prakhya, BML Munjal University, Gurgaon, India: Open-Set Deep
Learning for Text Classification

11:00-11:25 Derek S. Prijatelj, Duquesne University, Pittsburgh, PA: Textual Semantic
Analysis using Differential Neural Computers

11:25-11:50 Christopher Towne, New College of Florida, Sarasota, FL: Computing Semantic
Roles using ANNs with External Memory

11:50-12:45 PM: Lunch

12:45-2:25 PM Session Chair: Dr. Ethan Rudd, University of Colorado, Colorado Springs, CO	
12:45-1:10 Adly Templeton, Williams College, Williamstown, MA: Extractive Summarization

using Vector Semantics
1:10-1:35 Ryan Gribenow, University of Colorado, Colorado Springs, CO: Open Set Image

Forgery Classification and Localization
1:35-2:00 Seyed Masoumzadeh, University of Colorado, Colorado Springs, CO: Learning to

Detect and Classify Forgeries of Digital Images in Open-Set Recognition
2:00-2:25 Harriet Small, Brown University, Providence, RI: Handling Unbalanced Data in

Deep Image Segmentation

2:25-2:35 PM: Break
2:35-3:50 PM Session Chair: Dr. Robert Carlson, Professor, Mathematics, University of
Colorado, Colorado Springs, CO	

2:35-3:00 Kyle Yee, Swarthmore College, Swarthmore, PA: Super-Resolving Fluorescent
Proteins Using Convolutional Neural Networks

3:00-3:25 Adia Meyers, Clayton State University, Morrow, GA: Determining Gaussian
Edge Potentials with Deep Encoders

3:25-3:50 Diptodip Deb, Georgia Institute of Technology, Atlanta, GA: Learning
Perspective-free Counting using Dilated Convolutions

3:50	PM:	Closing	Remarks	

Our	Session	Chairs	and	Guests	

Dr.	Robert	Carlson	is	professor	and	chair	of	the	Mathematics	Department	at	the	University	of	
Colorado	at	Colorado	Springs.	Early	in	his	career	he	worked	on	a	variety	of	computer	vision	
problems,	both	in	the	aerospace	industry	and	at	UCCS.	

Lisa	 Jesse	 is	 a	 co-founder	 of	 Intelligent	 Software	 Solutions,	 an	 international	 software	
analytics	 company	 headquartered	 in	 Colorado	 Springs.	 She	 earned	 both	 a	 B.S.	 and	M.S.in	
Computer	 Science	 at	 UCCS	 and	 has	 over	 25	 years	 of	 experience	 in	 applied	 research	 in	
ArtiMicial	Intelligence,	data	analysis	and	visualization.	

Dr.	Kelli	Klebe	is	a	quantitative	psychologist	who	has	been	at	UCCS	for	27	years.	As	a	faculty	
member	she	taught	courses	 in	statistics	and	research	methods	and	her	research	areas	are	
on	 the	 effectiveness	 of	 social	 interventions	 and	 exploring	 the	 best	 statistical	methods	 for	
analyzing	 change.	 She	 is	 currently	 the	dean	of	 the	 graduate	 school	 and	 the	 associate	 vice	
chancellor	for	research.		

Dr.	Ethan	Rudd	graduated	with	a	PhD	in	Computer	Science	from	the	University	of	Colorado,	
Colorado	Springs		in	May	2017,		working	under	Dr.	Terry	Boult	on	various	machine	learning	
topics.	He	is	now	a	senior	level	data	scientist	at	Sophos.	

NSF REU Proposal Presentation Meeting
Department of Computer Science

University of Colorado, Colorado Springs
Engineering Building, Room 109

June 9, 2017: Friday

2:00-2:05 PM: Welcome Remarks by Christopher Nelson, Assistant Dean,
College of Engineering and Applied Science

2:05-3:05 PM
Session Chair: Abigail Graese, Department of Computer Science, University of
Colorado, Colorado Springs

Adly Templeton, Williams College, Williamstown, MA: Extractive Summarization using
Vector Semantics

Christopher Towne, New College of Florida, Sarasota, FL: Semantic Role Labeling with a
Differentiable Neural Computer

Derek S. Prijatelj, Duquesne University, Pittsbugh, PA: Performance of Differential
Computers in Semantics

Sridhama Prakhya, BML Munjal University, Gurgaon, India: Open Set Deep Learning for
Text Classification

3:15-4:00 PM
Session Chair: Steve Cruz, Department of Computer Science, University of Colorado,
Colorado Springs

Ryan Gribenow, University of Colorado, Colorado Springs, CO: Open Set Image Forgery
Classification and Localization

Seyed Masoumzadeh, University of Colorado, Colorado Springs, CO: Learning to Detect and
Classify Forgeries of Digital Images in Open-Set Recognition

Diptodip Deb, Georgia Institute of Technology, Atlanta, GA: Learning Perspective-free
Counting

4:15-5:00 PM
Session Chair: Dr. Jonathan Ventura, University of Colorado, Colorado Springs

Adia Meyers, Clayton State University, Morrow, GA: Determining Gaussian Edge Potentials

with Deep Encoders
Harriet Small, Brown University, Providence, RI: Handling Unbalanced Data in Deep

Image Segmentation
Kyle Yee, Swarthmore College, Swarthmore, PA: Super-Resolving Fluorescent Proteins

Using Convolutional Neural Networks

Our Session Chairs

Abigail Grasse a rising senior at UCCS and she has been doing research focused on deep neural
networks and computer vision in the VAST lab under Dr. Terrance Boult for about a year. She
published her first paper titled, "Assessing Threat of Adversarial Examples on Deep Neural
Networks” at the IEEE International Conference on Machine Learning Applications (ICMLA),
Anaheim, California, and December 2016.

Steve Cruz graduated in May with a Bachelor of Innovation degree in Computer Security. He has
published 2 papers this year, “Open Set Intrusion Recognition for Fine-Grained Attack
Categorization” at the IEEE International Symposium on Technologies for Homeland Security
(Waltham, MA) and “Towards Open-Set Face Recognition” at the Biometric Workshop at the
Conference on Vision and Pattern Recognition (Honolulu, HI). Steve is now a graduate student
with Dr. Terrance Boult, pursing a PhD in Engineering with Concentration in Security.

Dr. Jonathan Ventura is an assistant professor in the Department of Computer Science at the
University of Colorado, Colorado Springs. His areas of expertise are computer vision, geometric
problems such as 3D modeling and camera localization, medical image analysis, and mobile
augmented reality. Dr. Ventura has a PhD from the University of California at Santa Barbara, and
has published 30 papers. As an undergraduate, he was in an REU program himself at the UCSB.

NSF REU Midsummer Meeting
Department of Computer Science

University of Colorado, Colorado Springs
Engineering Building, Room 105

July 7, 2017: Friday

2:00-2:05 PM: Welcome Remarks by Dr. Xiaobo Zhou, Interim Dean, College of
Engineering and Applied Science

2:05-2:45 PM
Session Chair: Dr. Manuel Gunther, Department of Computer Science, University of
Colorado, Colorado Springs

Kyle Yee, Swarthmore College, Swarthmore, PA: Super-Resolving Fluorescent Proteins
Using Convolutional Neural Networks

Harriet Small, Brown University, Providence, RI: Handling Unbalanced Data in Deep
Image Segmentation

Adia Meyers, Clayton State University, Morrow, GA: Determining Gaussian Edge Potentials
with Deep Encoders

3:00-3:40 PM
Session Chair: Dr. Abdullah Sheneamer, Department of Computer Science, University
of Colorado, Colorado Springs

Diptodip Deb, Georgia Institute of Technology, Atlanta, GA: Learning Perspective-free
Counting using Dilated Convolutions

Ryan Gribenow, University of Colorado, Colorado Springs, CO: Open Set Image Forgery
Classification and Localization

Sridhama Prakhya, BML Munjal University, Gurgaon, India: Open-Set Deep Learning for
Text Classification

4:00-4:45 PM
Session Chair: Dr. Terrance Boult, University of Colorado, Colorado Springs

Adly Templeton, Williams College, Williamstown, MA: Extractive Summarization using

Vector Semantics
Christopher Towne, New College of Florida, Sarasota, FL: Computing Semantic Roles using

ANNs with External Memory
Derek S. Prijatelj, Duquesne University, Pittsburgh, PA: Textual Semantic Analysis using

Differential Neural Computers

Monday, July 10, 9 AM

Seyed Masoumzadeh, University of Colorado, Colorado Springs, CO: Learning to Detect and
Classify Forgeries of Digital Images in Open-Set Recognition

Our Session Chairs

Dr. Manuel Gunther received his PhD in Computer Science from the Ruhr-University Bochum,
Germany in 2011, following which, he spent four years as a post-doc in Switzerland at the Idiap
Research Institute. In 2015, he joined the VAST Lab at UCCS as a research associate under the
supervision of Dr. Terrance Boult. His research interests include automatic face recognition, and
other face processing tasks such as face detection or facial attribute prediction, as well as open
source software development.

Dr. Abdullah Sheneamer received his PhD from the University of Colorado at Colorado Springs in
2017, working in the LINC Lab under the supervision of Dr. Jugal Kalita. His research interests
include data mining, machine learning, and software engineering. In particular, he is interested in
applying machine learning to detection of cloned and obfuscated code as well as detection of
malware and plagiarism. Dr. Sheneamer teaches Computer Science at Jazan University, Saudi
Arabia.

Dr. Terrance Boult is an El Pomar Endowed Chair of Communication and Computation in the
Department of Computer Science at the University of Colorado, Colorado Springs. He runs
the Vision and Security Technology Lab (VAST Lab), focused on projects in Security including
surveillance, biometrics, sensor networks, and distributed steganalaysis and general projects in
computer vision. He also works with The Colorado Institute for Technology Transfer and
Implementation (CITTI) through which he works with many local companies.

Open-Set Deep Learning for Text Classification

Sridhama Prakhya
Email: sridhama@sridhama.com

Vinodini Venkataram
Email: vvenkata@uccs.edu

Jugal Kalita
Email: jkalita@uccs.edu

Abstract—Most research in text classification has been done
under a closed world assumption. That is, the classifier is tested
with unseen examples of the same classes that it was trained with.
However, in most real world scenarios, we come across novel data
that do not belong to any of the known classes, and hence should
not ideally be categorized correctly by the classifier. The goal
of open world classifiers is to anticipate and be ready to handle
test examples of classes unseen during training. The classifier can
simply declare that a test example belongs to an unknown class,
or alternatively, incorporate it into its knowledge as an example
of a new class it has learned. Although substantial research has
been done in open world image classifiers, its applications in text
classification is yet to be explored thoroughly.

Keywords—open-set classification, text classification, convolu-

tional neural networks, deep learning, outlier ensembles, isolation

forest, weibull distribution

I. INTRODUCTION

With increasing amounts of textual data from various
online sources like social networks, text classifiers are essential
for the analysis and organization of data. Text classification
usually consists of a corpus being assigned one or more classes
according to its content. Some popular text classification
applications include: spam filtering, sentiment analysis, movie
genre classification and document tagging. Traditional text
classifiers assume a closed world approach. The classifier is
expected to be tested with the same classes that it was initially
trained with. Such classifiers fail to identify and mitigate
when examples of new classes are presented during testing.
In real world scenarios, classifiers must be able to recognize
unknown classes and accordingly adapt their learning model.
This is known as the open world approach. A popular example
of an open world text classification scenario is authorship
attribution. An open world text classifier must recognize the
author of a document and subsequently label it appropriately.
The classifier must also recognize whether the writing style
matches a known author, or is something unknown.

In this paper, we elaborate the methodology that we fol-
lowed in developing our CNN-based open-set text classifier.

II. RELATED WORK

A majority of existing open-set learning techniques deal
with image classification rather than text classification.

The basis of most open-set classifiers is the Nearest Class
Mean Classifier (NCM) [16]. This classifier represents classes
by the mean feature vector of its elements. An unseen example
is assigned a class with the closest mean. This is calculated
by taking the distance (Euclidean) between the test vector and
the computed class mean feature vectors.

Mensink et al. [4] proposed the nearest class mean metric
learning (NCMML) approach extending the NCM technique
by replacing the Euclidean distance with a learned low-rank
Mahalanobis distance. This showed better results than the
former as the algorithm was able to learn features inherent in
the training data. The Nearest Non-Outlier (NNO) algorithm
[3] adapts NCM for open world recognition based on a
metric known as open space risk. This concept, introduced
by Scheirer et al [11], minimizes an error function combining
empirical risk over training data with the risk model for the
open space. The NNO algorithm proved to perform better at
image classification than the NCMML technique.

Regarding closed-set text classifiers, Fei and Liu [1] piloted
an approach that they call CBS learning. Doan and Kalita
[2] built upon the NCM, designing a set of closest neighbors
of centroid class rather than the class mean for each class
member.

Most ANN-based closed-world text classifiers use recur-
rent neural network based architectures e.g., Long short-term
memory (LSTM) models. The state-of-the-art classifier uses a
convolutional neural network model that is 29 layers deep [7].
Conneau et al. were able to show that the performance of their
model increased with depth of the network.

III. METHOD

A. Datasets

For an efficacious open-world evaluation, we must choose
a dataset with a large number of classes. This allows us to hide
classes during training. These hidden classes can later be used
during testing to gauge the open-world accuracy. We plan on
using two freely available data sets:

• 20 Newsgroups [14] - Consists of 18828 documents
partitioned (nearly) evenly across 20 mutually exclu-
sive classes.

• Amazon Product Reviews [13] - Consists of 50 classes
of products or domains, each with 1000 review docu-
ments.

B. Evaluation Procedure

Traditional evaluation (closed-set) is when the classifier is
assessed with data similar to what was learned during training.
The number of classes presented during testing is equal to that
the model was trained on. In open-set evaluation, the classifier
has incomplete knowledge during the training phase. Unknown
classes can be submitted to the classifier during the testing
phase. During the training phase, we will train the classifiers on
a limited number of classes. While testing, we then present the
model with the classes that were not learned during training.

REU Symposium on Machine Learning

University of Colorado, Colorado Springs 1

We evaluate the performance of the classifier based on how
well it identifies these new classes. “Openness”, proposed by
Scheirer et al. [9] [11], is a measure to estimate the open-world
range of a classifier. This measure is only concerned with the
number of classes used rather than the open space itself.

Accuracy, precision, recall, and F-score are used to measure
the closed-set performance of our model. These metrics are
expanded to the open-set scenario by grouping all unknown
classes into the same set. A True Positive is when a known
class is correctly classified and a True Negative is when
an unknown class is correctly predicted as unknown. False
Positives (an unknown class predicted as known) and False
Negatives (a known class predicted as unknown) are the two
types of incorrect class assignment. We use the F-score as a
primary metric compared to accuracy, as it takes the incorrectly
classified examples (FP and FN) into consideration.

openness = 1�
p
(2⇥ CT /(CR + CE)),

where CR = number of classes to be recognized,
CT = number of classes used in training, and

CE = number of classes used during evaluation (testing)

Fig. 1: Variation of openness with number of training classes

IV. EXPERIMENTS

We initially experimented with distances from mean docu-
ment vectors to see if they followed a Weibull distribution. We
calculated document vectors by taking the mean of all word
embeddings in each document. The cosine similarity between
each training example and its respective mean document vector
was calculated. All vectors were normalized (using Euclidean
norm) to improve computation time, as vector magnitude does
not affect the angle between two vectors (vector similarity). Ta-
ble I shows the 5 closest cosine similarities (averaged) between
20 examples from the “comp.graphics” class to other mean
document vectors. According to the data, examples from the
“comp.graphics” class are more similar to “comp.windows.x”,
rather than the class itself. Due to the similarities being too
close (sometimes overlapping), we concluded that calculating
cosine similarity at the document level was not suitable for
open-set classification.

We decided to follow a CNN-based approach due to their
ability of extracting useful features. For all experiments, the

TABLE I: Cosine similarities between examples of
“comp.graphics” to other mean document vectors

Class Cosine similarity
comp.windows.x 0.23269
comp.graphics 0.24248
comp.os.ms-windows.misc 0.24905
comp.sys.ibm.pc.hardware 0.25001
comp.sys.mac.hardware 0.28630

Fig. 2: l2 constraint = 0.0
Model Accuracy: 0.710309

CNN-static architecture proposed by Kim [12] was used. We
used pre-trained word2vec [10] vectors for our word embed-
dings. These embeddings are kept static while other parameters
of the model are learned. According to the experiments of
Zhang and Wallace [17], imposing an l2 norm constraint on
the weight vectors generally does not improve performance
drastically. Figures 2, 3, 4 show the accuracies achieved
on the 20 Newsgroups dataset while varying the l2 norm
constraint. The configuration details of the CNN used in all
our experiments are shown in Table II. Figure 5 shows the
CNN architecture we followed. In our case, we used a single
static channel instead of multiple channels.

A. Ensemble Approach

In our open-set classifier, we use an ensemble of different
approaches to determine whether an example is known or
not. This ensemble includes probabilistic and high dimensional
outlier detectors.

1) Isolation Forest: An Isolation forest is a combination
of a set of isolation trees. Isolation trees consist of data being
recursively partitioned at random partition points with ran-
domly chosen features. Doing so isolates instances into nodes
containing one instance. The heights of branches containing
outliers are comparatively less than other data points. The

TABLE II: CNN baseline configuration

Description Values
input word vectors Google word2vec (300 dimensional)

filter sizes (3,4,5)
feature maps 100

activation function ReLU
pooling 1-max pooling

dropout rate 0.5
l2 norm constraint 0.0

REU Symposium on Machine Learning

University of Colorado, Colorado Springs 2

Fig. 3: l2 constraint = 2.0
Model Accuracy: 0.688253

Fig. 4: l2 constraint = 3.0
Model Accuracy: 0.672197

height of the branch is used as the outlier score. The scores
obtained from the isolation forest are min-max normalized.
Scores are calculated for every trained class. Examples with
scores below a predefined threshold are labelled as unknown.
In case of multiple scores above the threshold, the example is
assigned to the class with the highest score.

2) Probabilistic Approach: In closed-set classification, the
Softmax layer essentially chooses the output class with the
highest probability with respect to all output labels. This idea
was extended to open-set image classification by Bendale and
Boult [8]. They proposed the OpenMax, which is a new model
layer that estimates the probability of an input belonging to an
unknown class. OpenMax is based on the concept of Meta-
Recognition [15]. For all positive examples of every trained
class, we collect the scores in the penultimate layer of our
neural network. We call these scores activation vectors (AV).
We deviate from the original OpenMax by finding the k
medoids of every trained class. For every class, the distances
between the class activation vectors and the respective k class
medoids are calculated. For every activation vector, we take
the average of the k calculated distances. As the number of
classes in our dataset is far less than those used in image
classification, the k medoids of a class are used represent a
class more accurately than a single mean activation vector.

In our outlier ensemble, we have used two distance metrics
- Mahalanobis distance and Euclidean-cosine (Eucos) distance
[8].

Ideally, we want a distance metric that can tell how much
an example deviated from the class mean. The Mahalanobis
distance does this by giving us a multi-dimensional generaliza-
tion about the number of standard deviations a point is from the
distribution’s mean. The closer an example is to the distribution
mean, the lesser the Mahalanobis distance. The Mahalanobis
distance between point x and point y is given by:

d(~x, ~y) =
q
(~x� ~y)0C�1(~x� ~y) (1)

Here, C is the covariance matrix that is prior calculated
among the feature variables.

The Euclidean-cosine distance is a weighted combination
of Euclidean and cosine distances. While using this metric, we
do not normalize the activation vectors. Doing so decreases the
vector magnitude, thereby affecting the overall distance.

The distances obtained are used to generate a Weibull
model for every training class. We use the libMR [15] FitHigh
method to fit these distances to a Weibull model that returns
a probability of inclusion of the respective class. Figure 6
shows the probabilities of inclusion obtained from the Weibull
distribution for a training class from the 20 Newsgroups
dataset. As an example deviates more from the mean (k-
medoids), the probability of inclusion decreases.

The sum of all inclusion probabilities is taken as the total
closed-set probability. Open-set probability is computed by
subtracting the total closed-set probability from 1. We then
compare the maximum closed-set probability and total open-
set probability. If the total open-set probability is greater than
the former, we label the example as unknown, otherwise,
the example is assigned the class with the highest closed-set
probability. Parameters like threshold and distribution tail-size
can be be adjusted to decrease the open-space risk.

open set probability = 1� total closed set probability (2)

We used a voting scheme to combine the three approaches
(Mahalanobis Weibull, Eucos Weibull and Isolation Forest). It
has been observed that Mahalanobis and Eucos perform nearly
the same. Predictions from the Isolation Forest are usually
used as a tie-breaker in case of differing predictions. When
all 3 predictions differ, we give the Eucos Weibull the highest
priority.

V. RESULTS AND DISCUSSION

Open-set performance largely depends on the ”unknown”
classes used during evaluation. This is true especially when
classes are not completely exclusive. The activation vectors of
similar classes usually overlap in their vector space. Similar to
[1], [2], we conduct our experiments by introducing ”unseen”
classes during testing. In reality, as the train-test partition
can be random, we arbitrarily specify the number of testing
domains. For every domain, we report our results using 5
random train-test partitions for each dataset. Both datasets are

REU Symposium on Machine Learning

University of Colorado, Colorado Springs 3

Fig. 5: Model architecture with two channels for an example sentence (image taken from [12] without permission)

TABLE III: Experiments on Amazon Product Reviews dataset and 20 Newsgroups dataset (10, 20 domains)

Amazon Product Reviews 10 Domains
25% 50% 75% 100%

our model 0.797 0.753 0.727 0.821
NCC* 0.61 0.714 0.781 0.854

cbsSVM* 0.45 0.715 0.775 0.873
1-vs-rest-SVM* 0.219 0.658 0.715 0.817
ExploratoryEM* 0.386 0.647 0.704 0.854
1-vs-set-linear* 0.592 0.698 0.7 0.697
wsvm-linear* 0.603 0.694 0.698 0.702

wsvm-rbf* 0.246 0.587 0.701 0.792
Pi-osvm-linear* 0.207 0.59 0.662 0.731
Pi-osvm-rbf* 0.061 0.142 0.137 0.148
Pi-svm-linear* 0.6 0.695 0.701 0.705
Pi-svm-rbf* 0.245 0.59 0.718 0.774

Amazon Product Reviews 20 Domains
25% 50% 75% 100%

our model 0.648 0.603 0.663 -
NCC* 0.606 0.657 0.702 0.78

cbsSVM* 0.566 0.695 0.695 0.760
1-vs-rest-SVM* 0.466 0.610 0.616 0.688
ExploratoryEM* 0.571 0.561 0.573 0.691
1-vs-set-linear* 0.506 0.560 0.589 0.620
wsvm-linear* 0.553 0.618 0.625 0.641

wsvm-rbf* 0.397 0.502 0.574 0.701
Pi-osvm-linear* 0.453 0.531 0.589 0.629
Pi-osvm-rbf* 0.143 0.079 0.058 0.050
Pi-svm-linear* 0.547 0.620 0.628 0.644
Pi-svm-rbf* 0.396 0.546 0.675 0.714

20 Newsgroups 10 Domains
25% 50% 75% 100%

our model .719 .747 .738 .864
NCC* 652 .781 .818 .878

cbsSVM* 0.417 0.769 0.796 0.855
1-vs-rest-SVM* 0.246 0.722 0.784 0.828
ExploratoryEM* 0.648 0.706 0.733 0.852
1-vs-set-linear* 0.678 0.671 0.659 0.567
wsvm-linear* 0.666 0.666 0.665 0.679

wsvm-rbf* 0.320 0.523 0.675 0.766
Pi-osvm-linear* 0.300 0.571 0.668 0.770
Pi-osvm-rbf* 0.059 0.074 0.032 0.026
Pi-svm-linear* 0.666 0.667 0.667 0.680
Pi-svm-rbf* 0.320 0.540 0.705 0.749

20 Newsgroups 20 Domains
25% 50% 75% 100%

our model 0.668 0.686 0.685 -
NCC* 0.635 0.723 0.735 0.884

cbsSVM* 0.593 0.701 0.720 0.852
1-vs-rest-SVM* 0.552 0.683 0.682 0.807
ExploratoryEM* 0.555 0.633 0.713 0.864
1-vs-set-linear* 0.497 0.557 0.550 0.577
wsvm-linear* 0.563 0.597 0.602 0.677

wsvm-rbf* 0.365 0.469 0.607 0.773
Pi-osvm-linear* 0.438 0.534 0.640 0.757
Pi-osvm-rbf* 0.143 0.029 0.022 0.009
Pi-svm-linear* 0.563 0.599 0.603 0.678
Pi-svm-rbf* 0.370 0.494 0.680 0.767

evaluated on the same number of test classes (10, 20). We also
evaluate our model on smaller domains, shown in Table IV.
The number of testing classes used during training is varied in
quarter-step increments (25%, 50%, 75% and 100%). We take
the floor value in case of fractional percentages. Using 100%
of the testing classes during training corresponds to closed-set
classification.

Results for the 20 Newsgroups and Amazon Product Re-
views dataset are shown in Table III. We report only the F-
scores due to space constraints. Our model performs better
than cbsSVM and NCC classifiers in smaller domains. Figure
7 shows the activation vectors obtained from models trained
on 2 classes plotted in 2-dimensional space. The plots show

distinct clusters of the class activation vectors. Due to such
distinct clusters, we believe our model performs better than
other SVM based approaches in smaller domains.

Unlike cbsSVM, our model is an incremental model i.e. we
do not have to retrain the model when new unknown classes
are introduced. Such models are more viable in real world
scenarios.

VI. FUTURE WORK

We are currently working on adapting our open-set clas-
sification techniques to multi-layered CNNs. This involves
changing the longitudinal kernal (height x 300) to a lateral

REU Symposium on Machine Learning

University of Colorado, Colorado Springs 4

Fig. 6: Weibull distribution for the rec.autos class

TABLE IV: Results of Amazon Product Reviews Dataset in
smaller domains (3, 4, 5)

Classes Trained on Classes Tested On
3 4 5

2 0.802 0.824 0.808
3 - 0.725 .763
4 - - 0.797

kernal (height x 1). This allows us to extract activation vectors
from the antepenultimate layer which may represent the input
data more accurately.

VII. CONCLUSION

Our incremental open-set approach handles text documents
of unseen classes in smaller domains more consistently than
existing text classification models, namely CBS learning [1]
and nearest centroid class classification [2]. This research can
prove beneficial when classifying novel data, applications of
which can be used to tackle tough text classification problems
like authorship attribution and sentiment analysis.

VIII. ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under Grant Nos. IIS-1359275 and IIS-
1659788. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors
and do not necessarily reflect the views of the National Science
Foundation.

REFERENCES

[1] Fei, G. and Liu, B., 2016. Breaking the Closed World Assumption in
Text Classification. In HLT-NAACL (pp. 506-514).

[2] Doan, T. and Kalita, J., 2017, January. Overcoming the challenge for
text classification in the open world. In Computing and Communication
Workshop and Conference (CCWC), 2017 IEEE 7th Annual (pp. 1-7).
IEEE.

[3] Bendale, A. and Boult, T., 2015. Towards open world recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (pp. 1893-1902).

[4] Mensink, T., Verbeek, J., Perronnin, F. and Csurka, G., 2013. Distance-
based image classification: Generalizing to new classes at near-zero cost.
IEEE transactions on pattern analysis and machine intelligence, 35(11),
pp.2624-2637.

[5] Jnior, P.R.M., de Souza, R.M., Werneck, R.D.O., Stein, B.V., Pazinato,
D.V., de Almeida, W.R., Penatti, O.A., Torres, R.D.S. and Rocha,
A., 2017. Nearest neighbors distance ratio open-set classifier. Machine
Learning, 106(3), pp.359-386.

[6] Gogoi, P., Bhattacharyya, D.K., Borah, B. and Kalita, J.K., 2011. A
survey of outlier detection methods in network anomaly identification.
The Computer Journal, 54(4), pp.570-588.

[7] Conneau, A., Schwenk, H., Barrault, L. and Lecun, Y., 2016. Very
deep convolutional networks for text classification. arXiv preprint
arXiv:1606.01781.

[8] Bendale, Abhijit, and Terrance E. Boult. ”Towards open set deep net-
works.” Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2016.

[9] Scheirer, W.J., de Rezende Rocha, A., Sapkota, A. and Boult, T.E., 2013.
Toward open set recognition. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 35(7), pp.1757-1772.

[10] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S. and Dean, J., 2013.
Distributed representations of words and phrases and their composition-
ality. In Advances in neural information processing systems (pp. 3111-
3119).

[11] Scheirer, Walter J., Lalit P. Jain, and Terrance E. Boult. ”Probability
models for open set recognition.” IEEE transactions on pattern analysis
and machine intelligence 36.11 (2014): 2317-2324.

[12] Kim, Yoon. ”Convolutional neural networks for sentence classification.”
arXiv preprint arXiv:1408.5882 (2014).

[13] Jindal, Nitin, and Bing Liu. ”Opinion spam and analysis.” Proceedings
of the 2008 International Conference on Web Search and Data Mining.
ACM, 2008.

[14] Rennie, J. 20-newsgroup dataset. 2008
[15] Scheirer, W.J., Rocha, A., Micheals, R.J. and Boult, T.E., 2011. Meta-

recognition: The theory and practice of recognition score analysis. IEEE
transactions on pattern analysis and machine intelligence, 33(8), pp.1689-
1695.

[16] Rocchio, J.J., 1971. Relevance feedback in information retrieval. The
Smart retrieval system-experiments in automatic document processing.

[17] Zhang, Y. and Wallace, B., 2015. A sensitivity analysis of (and
practitioners’ guide to) convolutional neural networks for sentence clas-
sification. arXiv preprint arXiv:1510.03820.

REU Symposium on Machine Learning

University of Colorado, Colorado Springs 5

Fig. 7: Activation vectors obtained from models trained on 2 randomized classes.

REU Symposium on Machine Learning

University of Colorado, Colorado Springs 6

Survey of Simple Neural Networks in
Semantic Textual Similarity Analysis

Derek S. Prijatelj, Jonathan Ventura, and Jugal Kalita

Abstract—Learning the semantic resemblance between natural

language sentences for computers is a difficult task due to

the inherent complexity of natural language. To combat this

complexity in learning natural language semantics, a rise in

the research of complex architectures for machine learning has

become prevalent in the field. It is necessary to establish a

lower bound of performance that must be met in order for new

complex architectures to be not only novel, but also worth while

in terms of implementation. This paper focuses on the specific

natural language processing task of determining semantic textual

similarity (STS). To construct the lower bound that all complex

models must surpass to be deemed practical, this research

investigated the performance of relatively simpler models in

the STS matching task using SemEval’s 2017 STS competition

dataset.

Index Terms—semantic matching, semantic textual similarity,

compositional distributional semantics

I. INTRODUCTION

S

EMANTICS in natural languages have eluded humans for
centuries. Even today, the true meaning of a word can

neither be quantified nor computed, but methods have arisen in
defining the difference in the meaning between different words
and phrases. Distributional semantics plays a key role in this
definition of a meaning, where although the actual meaning is
unknown, the words or phrases that share the same meaning
may be approximated. This is known as the distributional
hypothesis, where words that share the same context will tend
to share similar meaning [1]. While this hypothesis holds true
for words, applications of traditional distributional semantics
ignore the context of word phrases and longer text fragments
[2], [3]. With the introduction of compositional distributional
semantics, different methods have been created to represent the
meaning of word phrases, and perform better than traditional
distributional semantics where context is necessary [3], [4].
There are different methods of representing the semantics
of words and phrases, including word embedding and sen-
tence or document embedding. This research concerned itself
specifically with the semantic representation of sentences, and
compared the different representations in the task of semantic
textual similarity matching.

Semantic textual similarity matching is the task of determin-
ing the resemblance of the meanings between two sentences.

D. S. Prijatelj is with the Department of Mathematics and Computer
Science, Duquesne University, Pittsburgh, PA, 15282 USA e-mail: pri-
jateljd@duq.edu

This research was supported by the National Science Foundation under
Grants No. 1359275 and No. 1659788 at the Department of Computer Science,
University of Colorado at Colorado Springs, Colorado Springs, CO, 80918
USA

Manuscript received August 3, 2017

The dataset used for this task is SemEvals’ 2017 Semantic
Textual Similarity corpus12. The task specifically is to output
a continuous value on the scale from [0, 5] that represents
the degree of semantic similarity between two given English
sentences, where 0 is no similarity and 5 is complete similarity.
In terms of machine learning, this is a regression problem.
The 2017 STS corpus contains 1186 English sentence pairs
with a corresponding rating and 249 pairs as the test set. The
test set has been labeled with the average of multiple human
expert ratings that SemEval calls the ”golden standard”. The
distribution of ratings is stated to be as uniform throughout
as they could make it, as well as have the same ratios as the
training set’s ratings.

The models that are examined in this research are simple
neural network architectures compared to some of the more
complicated models that are popular in recent natural language
processing research [5]–[12]. Examining the simple neural
network architectures better defines the perspective on creating
new architectures for practical applications. If a simple archi-
tecture can perform equivalently or better than a newer model,
then the new model is simply a new way to accomplish a task
using a worse method. To properly establish the threshold that
new models must surpass for practical performance in the STS
task, simple models such as the perceptron to simple LSTMs
and bidirectional LSTMs are evaluated on the STS task. The
major components in these models are the pre-trained word
vectors, the sentence embeddings, and the comparator of the
two sentence embeddings that performs the regression.

II. RELATED WORK

Both semantic representation and related natural language
processing tasks have become more popular due to the intro-
duction of distributional semantics. In the recent past, there
have been many improvements, enough to make a comparison
of the simplest and latest methods necessary to comprehend
the current standard.

A. Semantic Representation

Mikolov invigorated the interest in distributional semantics
with his team’s creation of Word2Vec, a means of representing
the co-occurrences of words in written text as vectors in a
vector space [2]. This method is fairly successful, but by its
very nature does not consider the context of larger phrases;
this is where compositional distributional semantics was in-
troduced. Stanford developed another method of computing

1http://alt.qcri.org/semeval2017/task1/index.php?id=data-and-tools
2http://ixa2.si.ehu.eus/stswiki/index.php/Main Page

REU Symposium on Machine Learning

University of Colorado, Colorado Springs 7

mailto:prijateljd@duq.edu
mailto:prijateljd@duq.edu
http://alt.qcri.org/semeval2017/task1/index.php?id=data-and-tools
http://ixa2.si.ehu.eus/stswiki/index.php/Main_Page

the distributional semantics of text and this method is known
as GloVe. GloVe is similar to Word2Vec in that it computes
the co-occurrence frequency of words and creates a vector of
a specified dimension to represent a word, but the methods
they use are somewhat different [13]. Either may be used for
natural language processing tasks depending on preference
or performance of the pre-trained word embeddings. In this
research, 300 dimensional GloVe word vectors will be used
as the initial state of the word vectors.

There are various methods that exist to embed a sentence
represented by a list of word vectors. Some of these methods
involve the use of neural networks, including, but not limited
to, LSTMs and their variations [5], [10], [14], [15]. There
have also existed some algorithms to compute sentence repre-
sentation as well, either similar to methods applied for word
embeddings or as extensions of the word embedding methods
[3], [4]. Arora et. al 2016 proposed a ”simple but tough-
to-beat baseline for sentence embeddings” called the SIF
embedding method [16]. SIF involves taking the average of all
the word vectors in a sentence and removing the first principal
component. Arora et. al have reported it to be a satisfactory
baseline and it will be compared to simple neural networks for
embedding to determine which is a better baseline for sentence
embeddings.

B. Semantic Matching

Different simple semantic matching processes will be ex-
amined as the comparator component of the models. These
methods will be compared to modified versions of one of the
recent developed neural net approaches to semantic matching,
the Matrix Vector-LSTM (MV-LSTM) from [5]. The modified
versions in this research will replace the similarity tensor
with euclidean distance and cosine similarity to establish an
understanding of the simplified models’ performance. The
models used will keep the use of bidirectional LSTMs for
learning the sentence embeddings from the paired list of word
vectors, and will keep the multi-layered perceptron at the end
of the comparator component.

There exist other recent architectures for semantic matching
of sentences. One of these newer architectures is the Deep-
Fusion LSTM (DF-LSTM) by Penfang et. al 2016 [9]. The DF-
LSTM builds upon two LSTM stacks of equal length for read-
ing the two sentences by connecting the individual LSTM’s
together with a connection between the paired LSTM units’
inputs. It’s performance rivals that of the MV-LSTM, but is a
more complicated version than the LSTM models examined in
this paper. There are more complex architectures for semantic
matching or similar tasks as well, which supports the need for
an established lower bound of practical performance derived
from the simpler models [6]–[8].

III. EXAMINED MODELS

The simple models examined all share the same architecture.
Pre-trained word embeddings, a sentence embedding compo-
nent, and a comparator component. The sentence embedding
component takes the list of word vectors that represents a

Fig. 1. The overall architecture of the simple models for the STS task. Two
string sentences are are the inputs and one float in the range [0, 5] is the
output.

sentence and combines them into a single vector that rep-
resents the meaning of the original sentence. The comparator
component is the part of the model that evaluates the similarity
between the two sentence vectors and performs regression to
output the sentence pair’s similarity score on the continuous
inclusive scale from 0 to 5. For all components and individual
neural network units of the model, ELU activations are used.
The initial weights of each unit are randomly initialized using
the He normal distribution [17]. For all models, RMSprop
is used as the optimizer with a learning rate of 1e-4. Mean
squared error is the loss function for all models as well.
The metrics that are calculated are mean squared error, and
the Pearson correlation coefficient (PCC), or Pearson R. The
SemEval STS competition uses the PCC as the primary metric
of a model’s performance.

A. Pre-Trained Word Vectors

The models start with the input of two sentences represented
by strings. The sentences are embedded into word vectors
based on the provided pre-trained word embeddings, which
in this case is a set of GloVe word vectors. This specific set
of word vectors have 300 dimensions and were pre-trained on
840 billion tokens taken from Common Crawl3. Different pre-
trained word vectors may be used in-place of this specific pre-
trained set. After being embedded into the pre-trained word
vectors, the data is randomly shuffled and then sent to the
sentence embedding component.

B. Sentence Embedding

The model component responsible for taking a list of word
vectors that represent a sentence and embedding them into a
single vector to represent the entire sentence. The sentence
vector should compress the size of the data that represents the
sentence, yet still maintain the important information of the
semantics of the sentence.

1) Smooth Inverse Frequency (SIF): Arora et. al 2017
proposed their method of sentence embedding called smooth
inverse frequency (SIF) as a simple baseline for all sentence
representations to surpass [16]. Their method involves taking
the mean of all word vectors in a list and removing the first
principal component. They found that this simple method of

3https://nlp.stanford.edu/projects/glove/

REU Symposium on Machine Learning

University of Colorado, Colorado Springs 8

https://nlp.stanford.edu/projects/glove/

sentence embedding creates satisfactory results. SIF will serve
as the simplest method of sentence representation tested in all
models in this research.

2) LSTM: Sentences are sequences of words where or-
der matters and each word may affect any other’s meaning
despite their location in the sentence. Given that sentences
are sequences, it is only natural to use the version of the
recurrent neural network known as the LSTM. The version
of the LSTM used throughout model is based on the original
from Horchreiter et. al 1997 [18]. This sentence embedding
component consists of a single LSTM per sentence with a
number of hidden units in parallel equal to that of the word
embedding’s number of dimensions.

3) Stacked LSTMs: The stacked LSTMs’ construction is
the same as the the single LSTM, except that instead of one
LSTM per sentence there are two stacks of LSTMs of equal
length. All hyper-parameters are the same otherwise. Various
sized stacks of LSTMs are experimented with, including 2, 3,
4, 5, and 10. Multiple LSTMs should be able to capture the
kernels of meaning in a sentence. As stated by Palangi et. al
2016, the higher the number of LSTMs in the stack, the better
the predicted performance of the sentence embedding [14].

C. Comparator

The comparator examines the two sentence embeddings and
performs regression on them to find a continuous value on the
inclusive range from 0 to 5. This continuous value indicates
the level of similarity between the two sentences, where 0 is
no semantic similarity and 5 is complete semantic similarity.

1) Perceptron: The simplest of all the comparators, the
perceptron with ELU as its activation is used as the regression
operation. The weights are initialized at random using the He
normal distribution. The outputs from the sentence embed-
dings are concatenated and sent to a fully connected dense
layer, which then connects to a single output node.

2) LSTM: In order to learn the relationship between the
words in the two sentences, a LSTM takes the concatenated
sequence output from the two LSTM sentence embedding
components. This single LSTM performs the regression on the
two embeddings and learns how the two embeddings relate to
one another.

3) Stacked LSTMs: Applying the reasoning behind deep
LSTM stacks as proposed by Palangi et. al 2016, a stack
of LSTMs is used as the comparator of LSTM sentence
embeddings. The process is the same as the single LSTM
comparator, but instead with a stack of LSTMs. Varying sizes
of stacks are used, but match the size of the LSTM stacks in
the sentence embedding component.

D. Simplified MV-LSTM: L2-LSTM

Unlike the other simple models that come in parts, this
model comes together as a whole. A simplified version of the
MV-LSTM from Wan et. al 2016 will also be tested among
the simple models [5]. This model matches the MV-LSTM
exactly except for the similarity tensor which is replaced with
a euclidean distance calculation to compare the similarity to
the two sentence embeddings. Bidirectional LSTMs are used

for the sentence embeddings and the euclidean distance is
followed by a multilayered perceptron with 3 layers that cuts
their density in half from the previous layer. The first layer
has 5 nodes. This simplified version of the MV-LSTM will be
referred to as the L2-LSTM.

IV. CURRENT IMPLEMENTATION

To analyze the task of semantic textual similarity,
The training data is then given to the neural networks with

mean squared error as their loss, due to this being a regression
problem. After training, the model is evaluated using the
remaining fold as the validation set.

V. EVALUATION PROCESS

The SemEval STS dataset is already provided with training
and testing data. Each dataset either has or can be made to have
proper training, testing, and validation proportions. Also, Each
dataset can easily be evaluated to determine the statistics of
the models’ performances. Most, if not all, already have their
own rules for determining the performance of the model. Each
model will be evaluated on each task and will be compared
to other models tested in this research as well as those tested
on the same datasets in the same standardized fashion. These
external models have their information listed on the websites
hosting the datasets. The overall best model in each task will
be indicated, as well as those with in the subcategories of
supervised, semi-supervised, and unsupervised.

VI. RESULTS

The results indicate that models with a better capacity for
memory storage are better suited for solving the STS task opti-
mally. The simplified MV-LSTMs also perform approximately
the same as a perceptron, and thus should be discarded from
use in practical application for the STS task. However, these
are only simplified versions of the MV-LSTM. The actual
MV-LSTM could perform better than these less complicated
versions.

A. LSTM

The Single LSTM embeddings for both the perceptron
comparator and the single LSTM comparator performed worse
than any of the models that included a stack of LSTMs. This
indicates that the memory of a single LSTM compared to
that of a stack of LSTM is unable to learn the semantic
kernels of a sentence. This encourages the use of models
with increased memory due to their ability to learn important
semantic features of a sentence.

B. Stacked LSTMs

The stacked LSTMs performed the best overall with the
paired stack of 10 LSTMs for embedding and a perceptron
comparator as the best of all LSTM stack embedding and
perceptron comparator models. The stack of 2 LSTMs with a
stack of 2 LSTMs as the comparator performed the best out of
all of the models with a .05 lead over the second place model,
the stack of 10 LSTMs and perceptron model. The success

REU Symposium on Machine Learning

University of Colorado, Colorado Springs 9

Simple Models’ Mean Performances across 10 K-Fold Cross Validation
Model Name Pearson R In-Sample Pearson R

2 LSTM Stack and 2 LSTM Stack Comparator 0.86075441 0.99629578
10 LSTM Stack and Perceptron 0.78242820 0.90816820
2 LSTM Stack and Perceptron 0.75952832 0.87565377
3 LSTM Stack and Perceptron 0.72353597 0.82746079
4 LSTM Stack and Perceptron 0.71500020 0.82689888
5 LSTM Stack and Perceptron 0.45382610 0.64646486

1 LSTM and Perceptron 0.43011681 0.54451700
1 LSTM and 1 LSTM 0.41634211 0.99024633
L2-LSTM 50 epochs 0.2740426 0.3536559

L2-LSTM 100 epochs 0.2183386 0.3065541
SIF and Perceptron 0.2211686836 0.879533587

Fig. 2. The mean Pearson R out-of-sample and in-sample from k-fold cross validation where k = 10. The LSTM and LSTM Stack embeddings were all
computed with 50 epochs. The SIF embedding and perceptron comparator were calculated with 100 epochs. The Model Names are ordered by embedding
component and comparator, except for the L2-LSTM model which is combined embedding and comparator.

Fig. 3. The mean Pearson R across all test and validation sets in k-fold cross validation where k = 10.

of the LSTM stacks indicates that these models were able to
learn kernels of meaning in the sentences and compare them
correctly to one another. The quality performance from these
models raise the standards for newer, more complex models
for the STS task.

C. Simplified MV-LSTM: L2-LSTM

The L2-LSTM performed worse than any of the other
models, except for the perceptron when compared to the
MV-LSTM with 50 epochs. This indicates that either the
bidirectional LSTMs are not suitable for learning the semantics
between the two sentences, or the similarity comparison with
the euclidean distance is not as effective as the power of the
learning the sequences with LSTMs. Given its performance

roughly matches that of a perceptron, the L2-LSTM is a model
not to be used given its similar performance to, but greater
complexity than the perceptron.

VII. FURTHER RESEARCH

The performance of the simplified MV-LSTMs bring into
question the adequacy of the original MV-LSTM for the STS
task. The next step is to evaluate the performance of the
MV-LSTM in the STS task and compare it to that of the
LSTM stacks. The results indicated that models with a higher
capacity for memory were better suited to learn the semantic
representation of the sentence and appropriately compare
them. These results encourage further research in memory
augmented neural networks for use in learning the semantics

REU Symposium on Machine Learning

University of Colorado, Colorado Springs 10

of natural languages. Exploring the implementation of more
complicated memory augmented neural networks, such as the
DNC model created by Graves et. al 2016, is the next step
in pursuing better performance in sentence embedding and
semantic textual similarity matching [19].

VIII. CONCLUSION

The performances of various simple neural network models
have been examined on the task of semantic textual similarity
matching using SemEval’s provided dataset. The model to
perform the best with a Pearson correlation of 0.8608, based
on the mean k-fold cross validation, is the model where a
stack of 2 LSTMs embedded the sentences and were then
compared with another stack of 2 LSTMs after concatenating
the two sentence embedding stacks’ sequences output. This
supports the findings that natural language tasks are sequence
problems where the elements in the sequence have intercon-
nected relatedness, in which neural networks with memory are
better at learning. The large number of LSTMs in the stack
also suggests that there exist major groups of meaning in a
sentence that can be learned to know the unique meaning
of that sentence. This supports the findings with the MV-
LSTM. The evaluation of these simple models for semantic
textual similarity serves as the lower bound to compare all
other models that possess increased complexity in their design.
All future researchers should ensure that their new model
architectures surpass these lower bounds.

REFERENCES

[1] Z. S. Harris, “Distributional structure,” Word, vol. 10,
no. 2-3, pp. 146–162, 1954.

[2] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Ef-
ficient estimation of word representations in vector
space,” ArXiv preprint arXiv:1301.3781, 2013.

[3] Q. Le and T. Mikolov, “Distributed representations of
sentences and documents,” in Proceedings of the 31st
International Conference on Machine Learning (ICML-
14), 2014, pp. 1188–1196.

[4] R. Kiros, Y. Zhu, R. R. Salakhutdinov, R. Zemel,
R. Urtasun, A. Torralba, and S. Fidler, “Skip-thought
vectors,” in Advances in neural information processing
systems, 2015, pp. 3294–3302.

[5] S. Wan, Y. Lan, J. Guo, J. Xu, L. Pang, and X. Cheng,
“A deep architecture for semantic matching with mul-
tiple positional sentence representations,” in Thirtieth
AAAI Conference on Artificial Intelligence, 2016.

[6] Z. Wu, H. Zhu, G. Li, Z. Cui, H. Huang, J. Li, E. Chen,
and G. Xu, “An efficient wikipedia semantic matching
approach to text document classification,” Information
Sciences, vol. 393, pp. 15–28, 2017.

[7] J. Fu, X. Qiu, and X. Huang, “Convolutional deep neu-
ral networks for document-based question answering,”
in International Conference on Computer Processing of
Oriental Languages, Springer, 2016, pp. 790–797.

[8] J. Guo, Y. Fan, Q. Ai, and W. B. Croft, “Semantic
matching by non-linear word transportation for infor-
mation retrieval,” in Proceedings of the 25th ACM Inter-
national on Conference on Information and Knowledge
Management, ACM, 2016, pp. 701–710.

[9] P. Liu, X. Qiu, J. Chen, and X. Huang, “Deep fusion
lstms for text semantic matching,” in Proceedings of
Annual Meeting of the Association for Computational
Linguistics, 2016.

[10] P. Liu, X. Qiu, and X. Huang, “Dynamic compositional
neural networks over tree structure,” ArXiv preprint
arXiv:1705.04153, 2017.

[11] ——, “Adversarial multi-task learning for text classifi-
cation,” ArXiv preprint arXiv:1704.05742, 2017.

[12] ——, “Recurrent neural network for text classi-
fication with multi-task learning,” ArXiv preprint
arXiv:1605.05101, 2016.

[13] J. Pennington, R. Socher, and C. D. Manning, “Glove:
Global vectors for word representation,” in Empirical
Methods in Natural Language Processing (EMNLP),
2014, pp. 1532–1543. [Online]. Available: http://www.
aclweb.org/anthology/D14-1162.

[14] H. Palangi, L. Deng, Y. Shen, J. Gao, X. He, J. Chen,
X. Song, and R. Ward, “Deep sentence embedding
using long short-term memory networks: Analysis and
application to information retrieval,” IEEE/ACM Trans-
actions on Audio, Speech and Language Processing
(TASLP), vol. 24, no. 4, pp. 694–707, 2016.

[15] J. Chen, K. Chen, X. Qiu, Q. Zhang, X. Huang, and
Z. Zhang, “Learning word embeddings from intrinsic
and extrinsic views,” ArXiv preprint arXiv:1608.05852,
2016.

[16] S. Arora, Y. Liang, and T. Ma, “A simple but tough-to-
beat baseline for sentence embeddings,” 2016.

[17] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep
into rectifiers: Surpassing human-level performance on
imagenet classification,” CoRR, vol. abs/1502.01852,
2015. [Online]. Available: http : / /arxiv.org/abs /1502.
01852.

[18] S. Hochreiter and J. Schmidhuber, “Long short-term
memory,” Neural Computation, vol. 9, no. 8, pp. 1735–
1780, 1997. DOI: 10.1162/neco.1997.9.8.1735. eprint:
http://dx.doi.org/10.1162/neco.1997.9.8.1735. [Online].
Available: http:/ /dx.doi.org/10.1162/neco.1997.9.8.
1735.

[19] A. Graves, G. Wayne, M. Reynolds, T. Harley, I.
Danihelka, A. Grabska-Barwińska, S. G. Colmenarejo,
E. Grefenstette, T. Ramalho, J. Agapiou, et al., “Hybrid
computing using a neural network with dynamic exter-
nal memory,” Nature, vol. 538, no. 7626, pp. 471–476,
2016.

REU Symposium on Machine Learning

University of Colorado, Colorado Springs 11

http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
http://arxiv.org/abs/1502.01852
http://arxiv.org/abs/1502.01852
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735

Computing Semantic Roles Using ANN’s with
External Memory

Christopher Towne
New College of Florida

Email: Christopher.Towne14@ncf.edu

Jugal Kalita
University of Colorado, Colorado Springs

Email: jkalita@uccs.edu

Abstract—Building on recent improvements in neural based
Semantic Role Labeling (SRL) and on some recent improvements
in neural architectures, in this paper we demonstrate a new
memory network based model for SRL. Unlike previous neural
architectures for the task of SRL, our model’s architecture has
the addition of long term memory capabilities and recall. In order
to do so we had to remove the bidirectional capabilities of our
controller and weight the cost function of the model in order to
make it small and sensitive enough to be trained at all. However
despite the working model, due to some of the weaknesses of the
kind of memory network that we used, the Differntiable Neural
Computer (DNC), we are currently unable to demonstrate fully
trained results.

Keywords—Semantic Role Labeling, Frame Semantic Parsing,

FrameNet, Differntiable Neural Computers

I. INTRODUCTION

Semantic Role Labeling (SRL) is a natural language pro-
cessing task that involves the figuring out the different semantic
roles that different words play in a sentence. In all frameworks
of SRL, those roles are defined in reference to something,
either some concept or some verb. In the form of SRL that
this paper is involved in, frame semantic parsing, the roles
that words play are tied to the different semantic frames that
lie within a given sentence. With the same word being able to
belong to multiple frames without any problem. Taken from
the FrameNet project [1] , each semantic frame represents a
kind of event, relation, or entity and their constituent parts.

As an example, if one takes the standard sentence: ”Buffalo
buffalo Buffalo buffalo buffalo buffalo Buffalo buffalo” and
if one were to attempt to parse it in the task of frame
semantic parsing, the task would be to note that the lexical
units, the words that invoke the frame itself, in this case
”Manipulate into doing”, are the 5th and 6th buffalo(s), that
role of Manipulator falls on the 2nd buffalo in the frame
invoked by the 5th buffalo and falls on the 4th buffalo in the
frame invoked by the 6th buffalo, and that the role of Victim
falls upon the 2nd buffalo in the frame invoked by the 5th
buffalo and falls upon the 8th buffalo in the frame invoked by
the 6th buffalo.

Our approach to this task is a neural based approach
similar to those done by Collobert et al. [2], Zhou and Xu
[3], Swayamdipta et al. [4], and He et al. [5] . However the
difference in our approach is the addition of a new recurrent
neural based technique that we have added to our model. As
neural techniques have gotten better and added into new SRL
models, the capabilities of those models have also increased

with them. As such into our model we utilized the recently
publish technology of Differntiable Neural Computers (DNC)
[6] in order to amplify the capabilities of our model.

Unfortunately, like all recently created technologies, while
the DNC system has fixed a number of the kinks that its
predecessor, the Neural Turing Machine [7], had, it still has a
number of issue yet to be worked out. Namely problems with
efficiency of memory access because of the DNC architecture’s
use of soft attention. There are multiple different lines of SRL
setups that have been worked on throughout out the years. The
framework that surrounds neural SRl attempts on datasets of
the PropBank annotations, have developed a standard setup,
however the framework for neural architectures that work on
the FrameNet dataset are much more recent. As such we have
chosen to follow the lead of Swayamdipta et al. [4] and focus
our work on tackling the problem of argument identification in
FrameNet. Our decision was mostly a practical one as a result
of the aforementioned inherent problems that DNC setups have
with efficiency and more namely with the lengths of time spent
in training.

A. Related work

The first work and the pioneering work on the automation
of SRL was done by Gildea and Jurafsky [8]. For a more
recent overview of the task, Màrquez et al. [9] have a detailed
introduction.

The first work on the subject of neural SRL was done by
Collobert et al. [2]. In their paper they built a few end-to-end
neural networks which all undertook a few separate natural
language processing tasks, including the PropBank version of
SRL, with the same instances of time delayed convolutional
neural networks; yet, while the system was competitive within
the three other natural language processing tasks, their system
had some difficulty handling automated SRL.

That difficulty with SRL was later addressed by Zhou and
Xu [3] who made improvements over the Collobert et al.’s
convolutional approach by utilized the memory capacities of
recurrent neural networks with a deep bidirectional LSTM net-
work in order to have the neural network learn and remember
the long term dependency’s through out the sentences. The
addition of short term memory allowed for a neural approach
that was capable of rivaling the other, feature engineered,
methods in SRL.

Recently He et al. [5] modified and improved Zhou and
Xu’s architecture by adding to it highway connections, recur-
rent dropout, decoding with BIO constraints, and ensemble

REU Symposium on Machine Learning

University of Colorado, Colorado Springs 12

methods among other things. They improved upon Zhou and
Xu’s result, and creating the current state of the art system in
the PropBank framework.

Also recently Swayamdipta et al. [4] applied segmental
RNNs with a softmax-margin cost function to frame semantic
parsing and also achieved state of the art performance in
FrameNet’s subsection of SRL.

II. TASK OVERVIEW - FRAME SEMANTIC PARSING

FrameNet’s style of annotating semantic roles is based
around the concept of semantic frames. More specifically
FrameNet maintains a list of semantic frames, also referred
to as just frames, and for each of those frames FrameNet also
maintains a list of lexical units, words that can invoke those
frames, and frame elements, the roles or arguments that make
up the context of each frame.

Within the annotations of FrameNet, annotated sentences
are marked with targets, the instances of lexical units that are
invoking frames in those instances, and the target’s invoked
frame. And for each of those target and frame pairs, phrases
or clusters of words that serve as frame elements are mark
with the identity of the roles they play.

The task in frame semantic parsing is the task of identifying
the location and identities of frame elements that belong to
each frame in a sentence, however the details of the task varies.
Depending, some attempts of the task take a more in depth
route and not only identify the frame elements, but also identify
the frames and targets themselves. That would have been the
preferred route of this work, however due do the limits of
speed of training a DNC model we did not take that route and
instead chose to focus on frame element, argument, prediction.

III. MODEL SUMMARY

The model that we demonstrate in this paper is a instance
of a Differntiable Neural Computers (DNC) [6]. DNCs are a
recent kind of neural network addon that were built upon the
advancements of recurrent neural networks, except that they
take memory a bit further and add to a given network the
additional capabilities of long term memory storage. A DNC
is not a neural network architecture on its own, but is composed
of an external memory matrix, which is gated by a number of
accessing functions, and coupled with a normal neural network
that controls access to the external memory matrix, all of which
is differntiable.

A. Controller Network

The controller of a DNC, or the neural network that is
coupled with the memory matrix, can be any neural network
architecture as the only modification that the DNC does to its
controller is to change the size of the input into its controller.
At the beginning of each timestep, before the controller is run,
the previous output of the DNC’s memory matrix is append
to the input. And after that run of that timestep a portion of
the controller’s output is split off into different vectors that are
passed through the gates of the memory accessing function in
order to dictate the internal on going of the otherwise external
memory.

⇤Taken without permission from Deepmind’s website (deepmind.com)

Fig. 1: An example of the framework of the DNC architecture
⇤.

The model that we used to control the memory matrix is
LSTM stack of 8, where each of those 8 were created with
a hidden size of 300. Around each of the LSTM cells in that
stack highway connections [10], a form of gating that allows
input to either go through the neural network layer or pass
around the layer unchanged, are wrapped around them. In
addition, around the 6 LSTM cells in the middle of the stack,
dropout [11] around their output has been implemented.

B. Input and Output Setup

In our setup there are three main feature in the input, the
untouched words, the lemmas of those words, and the frame
and target identification. Each of those feature is placed into
an embedding and trained. The initial embedding for words
and lemma are taken from pretrained GloVe [12] embeddings
on 840 billion tokens. Any word or lemma that was not found
in GloVe was given an randomly initialized vector for as unk
symbol. The embeddings for frames were randomly initialized.
In addition to those core input features we also gave the DNC
parts of speech, dependency, and syntactic parsings as input
features as well. Those feature were not embedded.

Most other neural models for SRL utilize bidirectional
recurrent neural networks. However because of the addition
of the memory matrix and the soft attention used to access it,
DNCs do not scale well and creating a bidirectional network
with DNC’s was infeasible with our computational limitations.
As a work around to that issue we decided to experiment with
instead giving the network its input twice: once to analysis the
input, and once again to have the network give its predictions.
As such all of the input sequence is doubled except for a binary
sequence used to indicate to the model the valid and unmasked
output locations in the sequence, which is only on during the
second iteration of the input sequence.

C. Cost Function

The output of our model was a sequence of vectors, where
each element in the vector represented a frame element id.
However at most or really all timesteps in the sequence most
of the frame element output markers would be marked off.
As such every every output node tended toward zero using an
unweighted cost function. We used two additional weightings
to reorient the loss.

REU Symposium on Machine Learning

University of Colorado, Colorado Springs 13

The first weight was a basic weighting to balance out the
classes (in this case the frame element identities), and the
second was a simple penalty on the loss of the output nodes
in the timesteps in the sequence where a false negative had
occurred. The weight we settled on for that penalty was a
times 13. Some alternate weight schemes had been try, namely
lowering the cost for all nodes where the label was null.
However that proved to be too finicky to find a hyperparameter
weight value and the scheme was switched to penalizing false
negatives.

IV. DIFFERENTIABLE NEURAL COMPUTERS

Differentiable Neural Computers are in the most recent
iteration of the attempt to augment the already impressive
short term memory capabilities of recurrent neural network
with a form of long term memory storage. Like other kinds
of memory networks, DNCs have a long term component; in
their case, their external memory matrix. Unlike the memory
in something like an LSTM, where memory is split up and
distributed throughout the network, the memory in a DNC’s
memory matrices is external and explicitly accessed.

To access its memory matrix, the DNC utilizes soft at-
tention. The DNC forms read, write, and erase vectors for
both keys and strength. One of the interesting properties of
the DNC is it weighs its reading of the matrix by both an
explicit vector and by a content weighed vector. For a memory
matrix M

t

2 RNxW , the read vectors, [r1
t

, .., rR
t

] where R
is the number of read head, are defined as ri

t

= M|
t

wr,i

t

,
where wr,i

t

is the weighting of that row in the matrix for
that head. Defining the read weights, wr, themselves is a
bit more complicated, but in short it is the sum of temporal
weighting (the time of writing) and the content bases weight,
which itself is a cosine distance based metric multiplied by the
explicitly passed in weight for the strength of reading at that
row location.

Writing in a DNC system has two parts, erasing and
writing. More specifically it is defined as M

t+1 = M
t

�
(E � ww

t

e|
t

) + ww

t

v
t

. Where � denotes an element wise
multiplication, E is a matrix of ones, ww is the write weight,
e 2 [0, 1]W is the erase vector, and lastly v is the write vector,
the actual value to write. Once again the complicated part is
ww, the writing weight. In short, there is a gate that gates
the decision to write, which gates another gate that decides
whether to use a dynamic allocation based writing system or
a content similarity based writing system.

In short the DNC does three main things: it takes read
arguments and returns sums of the rows of the memory matrix,
weighted by both explicitly passed weights and content simi-
larity based weights. It takes a collection of write arguments
and can write to dynamically selected locations or to content
similar locations. And it is differentiable. Once it finishes all
those operations, the read vectors are passed through a weight
matrix and added to the controller output. In addition the read
vector are append to the input of the next time step.

V. EXPERIMENTS

A. Dataset

In our experiments we used data taken from the 1.5 version
of the FrameNet database. More specifically we used the same

training, development, and testing sets as Das and Smith [13].
In addition the non-core features and the lemmas mention in
the Input and Output Setup subsection were all taken from
prior processing done by Das and Smith on the splits. For
some of the data multiple frames with the same target and
frame identities were given, with differing only on the frame
elements addressed. Those frames were merged into one frame
and treated as such in training and testing. In addition one
frame was thrown out of the training set, the frame ’Test35’,
as it could not be located within FrameNet itself and did not
appear in either the development or testing sets.

Furthermore, because FrameNet is setup so that each of its
frames treat their frame elements as separate roles, it is difficult
to compress the number of possible frame elements as they are
unorganized. As such we compressed them by name; so two
frame elements both called Time in two different frames would
be assumed to represent the same semantic role within their
frames an were given one identity within the model.

B. Experimental Setup

As noted above, for practical reasons with the DNC we
have chosen to focus on frame element/argument identification
within this paper. A model for identifying frame identifications
was created, where the prediction of that model could be piped
into the model for frame element identification; however since
training that model on top of the argument identification model
was infeasible and because of the complication it caused with
optimizing hyperparameters it was shelved. In addition the
because of the DNC’s slowness in gradient decent we were
unable to have enough time to run more than about 14 epochs.

C. Evaluation

To evaluate, we used a modified version of the standard
evaluation script from SemEval ’07, where point score for
frame evaluations was set to zero. However we are not an
expert in Perl so that may have broken it, but it likely does as
it is supposed to. That Perl script takes in XML documents to
compare, as such we we developed a pipeline to convert the
output of the neural network into XML. To do so we masked
out any frame elements that could not occur with the frame
that the model was given. We then rounded the output of the
neural network, grouped the output by continuous streams of
the same predicted frame element, and converted those streams
into two start and end tags. The SemEval ’07 script gives three
metrics: recall, precision, and the F score.

D. Results

We will use one other papers in frame semantic parsing as
a base line to compare our work; the work of Swayamdipta et
al. [4]. While there is other work in argument identification
in SRL, there are few other papers the look at argument
identification on its own with the FrameNet database. Most
other argument identification systems have in the past focused
on the PropBank styled datasets.

P R F
Swayamdipta et al. 71.7 66.3 68.9

DNC Model 0.00034 0.00297 0.00062

REU Symposium on Machine Learning

University of Colorado, Colorado Springs 14

In addition, below we provide graphs of our DNC’s per-
formance on the training set in different metrics:

As a note, the precision and recall scores in the graphs
above are not measure in the same way that the precision and
recall scores are generated by the evaluation script. The script
generates its scores by comparing the nodes of trees generated
from the XML, while the scores in the graphs are generated by
directly comparing the predicted sequence to the gold standard
label. Furthermore, because the script is tree based it is possible
that the script looks for more precision in the predicted frame
elements that our training metrics, like exact matching of frame
element locations or similar.

E. Analysis

Unfortunately, the main conclusion that we are able to draw
from this work is that the addition of the DNC’s memory
matrix and operations makes a model really slow. It took
two and a half days to train the model over 14 epoch. To
reach a decent amount of epoch, say 500, it would take 3
months. As a result of of low amount of training, there are
few solid conclusions that we are capable of drawing. We had
intended to run some comparisons of the metrics in terms of the
commonous of frame elements, the distance between targets
and frame elements, and the length of the sentence; however,
with the low accuracy in the XML document, they all drop to
zero, rendering it pointless.

VI. FUTURE WORK

In this paper we have described a working model that
comes with long term memory capabilities, however, unfortu-
nately, describing is the main thing we have done. Upgrading
our DNC model into a fully functional SRL model would likely
take a good bit more work. There is not much of a way to know
with the number of epochs trained over how our setup is. As
such there are a few directions that we can take our work.

The most straight forward path would to be to just run it
for a few months and get the proper result, however doing
so might be ridiculous depending on resources. Another path
would be to shrink the model in either the controller size or in
the size of the memory matrix and to streamline the training
process, however if we did such we would never learn the
true capabilities of the larger DNC models. One last option
would be to, potentially, drop the soft attention of the DNC
model and attempt to train them using reinforcement learning
methods [14] or evolutionary methods [15].

VII. ACKNOWLEDGMENTS

This work was supported by the REU program at the
University of Colorado, Colorado Springs, which is supported
by the NSF grants #1659788 and #1359275 and by professors
Kalita, Ventura, and Boult.

REFERENCES

[1] C. F. Baker, C. J. Fillmore, and J. B. Lowe, “The
berkeley framenet project,” in Proceedings of the 36th
Annual Meeting of the Association for Computational
Linguistics and 17th International Conference on Com-
putational Linguistics-Volume 1, Association for Com-
putational Linguistics, 1998, pp. 86–90.

[2] R. Collobert, J. Weston, L. Bottou, M. Karlen, K.
Kavukcuoglu, and P. Kuksa, “Natural language process-
ing (almost) from scratch,” Journal of Machine Learning
Research, vol. 12, no. Aug, pp. 2493–2537, 2011.

[3] J. Zhou and W. Xu, “End-to-end learning of semantic
role labeling using recurrent neural networks.,” in Asso-
ciation for Computational Linguistics, (Beijing, China),
ACL, Jul. 2015, pp. 1127–1137.

[4] S. Swayamdipta, S. Thomson, C. Dyer, and N. A.
Smith, “Frame-semantic parsing with softmax-margin
segmental rnns and a syntactic scaffold,” arXiv preprint
arXiv:1706.09528, 2017.

[5] L. He, K. Lee, M. Lewis, and L. Zettlemoyer, “Deep
semantic role labeling: What works and what’s next,” in
Proceedings of the Annual Meeting of the Association
for Computational Linguistics, 2017.

[6] A. Graves, G. Wayne, M. Reynolds, T. Harley, I. Dani-
helka, A. Grabska-Barwińska, S. G. Colmenarejo, E.
Grefenstette, T. Ramalho, J. Agapiou, et al., “Hybrid
computing using a neural network with dynamic exter-
nal memory,” Nature, vol. 538, no. 7626, pp. 471–476,
2016.

[7] A. Graves, G. Wayne, and I. Danihelka, “Neural turing
machines,” arXiv preprint arXiv:1410.5401, 2014.

[8] D. Gildea and D. Jurafsky, “Automatic labeling of se-
mantic roles,” Computational linguistics, vol. 28, no. 3,
pp. 245–288, 2002.

[9] L. Màrquez, X. Carreras, K. C. Litkowski, and S.
Stevenson, “Semantic role labeling: An introduction to
the special issue,” Computational linguistics, vol. 34,
no. 2, pp. 145–159, 2008.

[10] R. K. Srivastava, K. Greff, and J. Schmidhuber, “High-
way networks,” arXiv preprint arXiv:1505.00387, 2015.

[11] Y. Gal and Z. Ghahramani, “A theoretically grounded
application of dropout in recurrent neural networks,”
in Advances in neural information processing systems,
2016, pp. 1019–1027.

REU Symposium on Machine Learning

University of Colorado, Colorado Springs 15

[12] J. Pennington, R. Socher, and C. D. Manning, “Glove:
Global vectors for word representation,” in Empirical
Methods in Natural Language Processing (EMNLP),
2014, pp. 1532–1543. [Online]. Available: http://www.
aclweb.org/anthology/D14-1162.

[13] D. Das and N. A. Smith, “Graph-based lexicon expan-
sion with sparsity-inducing penalties,” in Proceedings of
the 2012 conference of the North American chapter of
the Association for Computational Linguistics: human

language technologies, Association for Computational
Linguistics, 2012, pp. 677–687.

[14] W. Zaremba and I. Sutskever, “Reinforcement
learning neural turing machines,” arXiv preprint
arXiv:1505.00521, vol. 419, 2015.

[15] R. B. Greve, E. J. Jacobsen, and S. Risi, “Evolving
neural turing machines for reward-based learning,” in
Proceedings of the 2016 on Genetic and Evolutionary
Computation Conference, ACM, 2016, pp. 117–124.

REU Symposium on Machine Learning

University of Colorado, Colorado Springs 16

Vector Properties of Good Summaries
Adly Templeton
Williams College
at7@williams.edu

Jugal Kalita
University of Colorado, Colorado Springs

jkalita@uccs.edu

Abstract—Vector semantics is used in many areas of Natural

Language Processing. We explore the application of vector

semantics to the problem of automatic summarization. We

demonstrate several properties of vector semantics useful for this

purpose. In particular, we show that cosine similarity between

sentence vectors and document vectors is strongly correlated

with sentence importance and that vector semantics can identify

and correct gaps between the sentences chosen so far and the

document. In addition, we identify specific dimensions which

are linked to effective summaries. To our knowledge, this is the

first time specific dimensions of sentence embeddings have been

connected to sentence properties. We also compare the features of

different methods of sentence embeddings. Many of these insights

have applications in uses of sentence embeddings far beyond

summarization.

Index Terms—Vector Semantics, Automatic Summarization,

Extractive Summarization, Sentence Embeddings

I. INTRODUCTION

The large volume of news articles published every day
motivates effective forms of automatic summarization. The
most basic and most well-studied form of automatic sum-
marization is sentence extraction, in which entire unmodified
sentences are selected from the original document. These
selected sentences are concatenated to form a short summary,
which ideally contains the most important information from
the original document while avoiding redundancy.

While a variety of successful models have been proposed
for sentence extraction, these models often rely on various
metrics, such as term frequency, which are based on the
occurrence of individual words. For instance, a state-of-the-
art graph-based summarization model by Parveen et al. uses
the words shared between sentences for all three of their major
metrics (importance, redundancy, and coherence) [1]. However
metrics based on the occurrence of specific words, and not the
meaning of these words, may perform sub-optimally in certain
situations (such as dealing with synonyms).

Meanwhile, vector semantics have been growing in popu-
larity for many other natural language processing applications.
Vector semantics attempt to represent words as vectors in
a high-dimensional space, where vectors which are close to
each other have similar meanings. Various models of vector
semantics have been proposed, such as LSA [2], word2vec
[3], and GLOVE [4], and these models have proved to be
successful in other natural language processing applications.
While these models work well for individual words, producing
equivalent vectors for sentences or documents has proven to
be more difficult.

This material is based upon work supported by the National Science
Foundation under Grant No. 1659788 and 1359275

II. PROBLEM DESCRIPTION

For our purposes, extractive summarization is essentially
reducible to sentence selection. That is, we want to select a
subset of sentences from the set of all sentences in the original
document, which maximizes the quality of the summary while
remaining under some word limit. Note that this problem is
more complex than text classification: The quality of each
individual sentence depends of the other sentences in the
summary. In particular, a good summary should contain mini-
mal redundancy. This trade off between sentence salience and
redundancy is the basis for many summarization algorithms,
including some in our work.

Any practical summarization system would likely include
other steps after sentence selection, such as sentence reorder-

ing or text-simplification. However, effective algorithms for
these tasks already exist, and we are primarily concerned with
sentence selection in this paper.

We are primarily concerned with multi-document summa-
rization algorithms, which summarize a cluster of related doc-
uments. However, all our algorithms disregard the document-
by-document information and treat the document cluster.

III. RELATED WORK

Particular attention should be given to the method of
combining word embeddings into sentence embeddings, a
very difficult problem. However, news summarization may not
require some of the nuances in meaning to be represented, as
we are primarily concerned with the topic, not the meaning,
of a sentence. In particular, news articles will rarely contain
sentences expressing contradictory views on the same subject.
For instance, our algorithm will rarely need to differentiate
between the sentence embeddings for sentences such as “John
loves Mary” and “Mary loves John”, which have divergent
meanings but the same words. This is in sharp contrast to
typical testing cases for sentence embeddings, such as the
detection of paraphrased sentences. Then, summarization gives
us an opportunity to compare the effectiveness of different
sentence embeddings in practice.

In recent years, a number of techniques for sentence embed-
dings have emerged. One promising method is paragraph vec-

tors (Also known as Doc2Vec), described by Le and Mikolov
[5]. The model behind paragraph vectors resembles that behind
word2vec, except that a classifier uses an additional ‘para-
graph vector’ to predict words in a Skip-Gram model. When
trained, the paragraph vectors capture the meanings of their
paragraphs.

REU Symposium on Machine Learning

University of Colorado, Colorado Springs 17

Another model, skip-thoughts, attempts to extend the
word2vec model in a different way [6]. The center of the
skip-thought model is an encoder-decoder neural network
which, given a sentence, attempts to predict the surrounding
sentences. The result, skip-thought vectors, achieve good per-
formance on a wide variety of natural language tasks.

Li et al. used a LSTM-based auto encoder, where the
encoding in the middle of the autoencoder is taken as a vector
representation of a sentence. In addition, a hierarchical version
of the autoencoder can also be used to form vectors for whole
paragraphs or documents. [7]

Despite the complexity of these neural network approaches,
simpler approaches based on linear combinations of the word
vectors have managed to achieve state-of-the-art results for
non-domain-specific tasks [8]. Arora et al. [9] offer one
particularly promising such approach. First, this model finds
the weighted average of the word vectors (less frequent words
weighted higher). This weighting is achieved through the
smooth inverse function w =

a

a+f

, where w is the weight of a
word’s vector, f is the estimated frequency of that word, and
a is a hyperparameter (a ⇡ 0.0001). Note that this weighting
is roughly analogous to weighting by tfidf. The second step
is to subtract the projection along a specific vector, c0. c0 is
the “common discourse vector”, correlated with words such
as “the” or “and” which appear consistently in all English
contexts. c0 is found by taking the first principal component
of a representative sample of text vectors. This simple method
was found to achieve equal or greater performance in some
tasks than more complicated supervised learning methods.

A. Extractive Summarization

State-of-the-art extractive summarization techniques have
been achieved with a wide variety of methods. Here, we
provide a short overview of some recent successful techniques
techniques.

Cao et al. [10] used a recursive neural network, which
operates on a parsing tree of a sentence, to rank sentences
for summarization.

Cheng and Lapata [11] successfully used a neural-network-
based sentence extractor. This extractor was a recurrent neural
network with a neural attention mechanism. The network
considered the document encodings and the previously se-
lected sentences, as well as the current sentence in making
its decisions.

Parveen et al. [1] used a graph-based approach, modeling
a document as “a bipartite graph consisting of sentence and
entity nodes”, and used various rankings on the graph to
select sentences according to certain criteria (importance,
redundancy, and coherence).

Ren et al. [12] achieved state-of-the-art results through a
regression-based approach. A variety of engineered features
are used as inputs into a regression model, which estimates
the redundancy-aware importance of a sentence given the
sentences already selected. The single highest rated sentence
is selected, and the process is repeated.

B. Previous Embedding-based Approaches

To our knowledge, no one has explored the use of modern
sentence embedding methods, such as Paragraph Vectors or
Skip-Thought vectors, in summarization. However, some work
has been done on summarization using word2vec representa-
tions.

Gong and Liu [13] presented a version of text summariza-
tion based on vector semantics. However, instead of using the
embeddings of a word as determined by a larger corpus, they
attempted to calculate the embedding of a word based off of
analysis only on the document in question. In addition, due
to the age of their work, they used LSA instead of techniques
such as word2vec.

Kageback et al. [14] used cosine similarity between the
sum of word2vec embeddings, as well as a recursive auto-
encoder, to modify another standard summarization algorithm
(sub-modular optimization)

Ren et al. [12] used “Average Word Embedding” as one of
many independent variables in a regression model, but it is
unclear how much that particular variable contributed to the
success of the model.

Cheng and Lapata [11] used word embeddings as the
input to a neural network as part of summarization, but they
did not directly compare embeddings. They used a single-
layer convolutional neural network to encode sentences, and a
LSTM neural network to encode documents.

Nayeem and Chali [15] recently achieved state-of-the-art
results using a modified version of LexRank, using a com-
bination of cosine similarity of weighted averages of vectors
and named entity overlap.

IV. METHODS

To explore potential sentence embeddings, we implement
the four sentence embeddings above as vector functions, which
convert sentences or documents to vectors.

A. Vector Functions

• SIF Average: The most basic sentence embedding is sim-
ply the weighted average of word vectors from Arora et
al. [9], without the common component removal. We use
the Brown corpus [16] for word frequency information.

• Arora: This method is simply the method described in
Arora et al. It is equivalent to the one above, except with
common component removal added. We use the Brown
corpus both to compute the common component vector,
and for word frequency information.

• Paragraph Vectors: The paragraph vector approach de-
scribed above. We used the 300-dimensional DBOW
model pretrained by Lau et al. [17] on the wikipedia
corpus.

• Skip-Thought Vectors The skip-thought vector ap-
proach described above. We used the 4800-dimensional
combined-skip model [6], [18].

All sentence embeddings are normalized to produce unit
vectors

REU Symposium on Machine Learning

University of Colorado, Colorado Springs 18

B. Potential Selector Functions

There are many potential ways to use vector semantics. To
explore the design space, we consider combinations of vector

functions and selector functions, functions which, given vector
representations for sentences, extracts a summary. We present
a large variety of example selector functions in order to allow
us to explore interaction effects between selector functions and
vector functions.

• Near: The most basic selector function, Near, selects the
sentences whose sentence vectors have the highest cosine
similarity with the document vector

• Near Nonredundant: An attempt at balancing redundancy
with salience, Near Nonredundant down-weights the co-
sine similarity scores by their average cosine similarity
the sentences selected so far. Because this redundancy
measure is strongly (quadratically) correlated with cosine
similarity to the document, we fit a regression for redun-
dancy for each vector function, and use the residual on
this regression for the final algorithm.

• LexRank: Our next selector is based off of the classical
LexRank algorithm [19]. The center of this algorithm
is a weighted graph where nodes represent sentences,
and weights are the similarities between sentences, as
determined by cosine similarity between tfidf vectors.
The PageRank algorithm is then used on this graph to
identify the most salient sentences for extraction. We use
a modified version of this algorithm, where the weights
of edges are determined by the cosine similarity between
sentence embeddings.

• Cluster: The basis of this selector is a simple clustering
algorithm in the vector space of sentence embeddings.
We use an Agglomerative Clustering algorithm (using
cosine similarity as its distance metric) to find clusters
in the set of sentence embeddings. We then find the
sentence closest to the average of each cluster and add it
to the summary. To ensure we find summaries which meet
the word-length requirement, we increase the number of
clusters we search for until we have selected sentences
totaling 100 words.

• Greedy: The greedy selector, at each step, selects the sen-
tence such that the cosine similarity of the new summary
(including previously selected sentences) is maximized.
This is subtly different than the Near selector for average-
based vector functions, but significantly different for
Paragraph Vectors.

• Brute Force: Another attempt at optimizing the cosine
similarity between the summary and the document, this
selector creates a pool of the 20 sentences with the highest
cosine similarity. From this pool, every combination of
sentences (with an appropriate word count) is tried, and
the combination with the highest cosine similarity is
selected as the summary.

• Max Similarity: A proof-of-concept selector which com-
putes results for both the Greedy and Brute Force selec-
tors and then selects the result with the highest cosine
similarity to the document vector.

• Near-then-Redundancy: Similar to the Brute Force se-

lector, this selector creates the same pool of sentences
described above, except with a size of 15. From this
pool, this algorithm optimizes via brute force to minimize
redundancy (defined as the average cosine similarity
between pairs of sentences). Note that the size of the sen-
tence pool, which is essentially a computational shortcut
in the Brute Force selector, is now a performance-critical
hyper-parameter.

• PCA: This selector performs Principal Component Anal-
ysis (PCA) on the set of sentence vectors in a document.
Then, the algorithm selects the one sentence closest to
the first component, one sentence closest to the second
component, and so on, until the length capacity is met.

• Random: This selector simply selects sentences at ran-
dom, until the word limit is reached. This provides a
lower-bound on the performance of an effective algo-
rithm, and is used for baseline comparisons

V. PERFORMANCE OF SELECTOR FUNCTIONS

A. Experimental Evaluation

Because evaluation of summarization is fundamentally a
subjective task, human evaluations are ideal. However, human
evaluations are often expensive and time-consuming to obtain.
Luckily, some metrics of automatically evaluating summaries,
by comparison to a human-written summary, have been de-
veloped. Traditionally, various forms of the ROUGE metric,
which compare shared n-grams, have been used. [20]. ROUGE
has been shown to correlate strongly with human judgments
[21], and is our primary metric for evaluating summaries1 We
report ROUGE-1 and ROUGE-2 statistics, which correspond
to unigrams and bigrams, respectively.

We split the document clusters in the DUC 2004 dataset
into a testing set and a validation set of approximately equal
sizes. The pre-defined training set of the DUC 2001 dataset
was used as a training set for some of the graphs and data
analysis presented here.

B. Results

We present results for Multi-Document Summarization on
the DUC 2004 dataset (Table I). A few notes on the results:

• Our results fall far below the state of the art, likely due
to the simplicity of our selector functions as compared
to the state-of-the-art methods. In addition, almost all of
our methods are unsupervised, unlike most of the state-
of-the-art methods.

• The best performing selector, Greedy, is both very simple
and based on fundamental principles of vector semantics.

• Paragraph Vectors work much worse with the Clustering
and Greedy algorithms, and work much better with Near
and SVMs.

• Many combinations of selector function and vector func-
tion do not work above the level of random chance.

• In general, despite their sophistication, Paragraph Vectors
and Skip-Thought vectors perform worse than much more
basic approaches.

1For direct comparison with Hong et al., we trucate summaries to 100
words and use the following parameters, for direct comparison with Hong et
al. [22]: -n 4 -m -a -l 100 -x -c 95 -r 1000 -f A -p 0.5 -t 0.

REU Symposium on Machine Learning

University of Colorado, Colorado Springs 19

SIF Average Arora Paragraph Vectors Skipthought

LexRank 32.6 (6.8) 32.6 (6.8) 32.6 (6.8) 32.6 (6.8)

Near Nonredundant 33.6 (6.1) 34.5 (6.3) 32.6 (5.5) 32.1 (4.9)
Brute Force 32.0 (5.7) 32.2 (6.3) 33.0 (6.6) 31.4 (4.5)
Near-then-Redundancy 33.2 (6.2) 34.2 (6.9) 31.5 (5.4) 33.1(5.3)
PCA 32.9 (5.6) 33.5 (5.6) 32.0 (5.5) NA
Max Similarity 32.0 (5.7) 32.2 (6.3) 33.0 (6.6) NA
Greedy 35.1 (7.0) 33.1 (6.0) NA NA
Near 32.5 (5.4) 32.2 (5.5) 33.1 (6.1) NA
Cluster NA NA NA 32.1 (4.6)
Random 30.1 (4.1)
State-of-the-art (Ren et al.) [12] 40.4 (11.7)

TABLE I: ROUGE-1 Results on the DUC 2004 dataset. ROUGE-2 results in parentheses. All combinations which do not
perform significantly better than random chance (p < .05, using a paired t-test) are replaced with ’NA’ for clarity. SIF Average
with either Max Similarity or Brute Force were included, despite having p=.051. In addition, one combination (Max Similarity
with Skipthought Vectors) are not computed, but are not expected to perform better than chance. Selector Functions are roughly
organized according to the vector functions with which they are effective. For Skipthought vectors, docvec-avg is used (Section
VI-E)

SIF Average Arora Paragraph Vectors Skipthought

Near Nonredundant -1.98 -1.72 -0.734 +3.81
Brute Force -0.323 -0.256 -1.24 +3.42
Near-then-Redundancy +0.739 -0.584 -0.205 +3.46
Max Similarity -0.323 -0.256 -1.24 NA
Greedy +0.254 -0.813 -3.11 NA
Near -0.868 -0.0652 -5.53 +1.76
Total Average -.417 -.614 -2.01 +2.74

TABLE II: A comparison of document vector methods. Numbers represent the difference in ROUGE-1 scores between document
vector methods. Positive numbers represent a gain when using docvec-avg. Selectors which do not use the document vector
have been omitted.

VI. DISCUSSION

Despite the poor performance of our models compared to
the baselines, analyses of the underlying data provide many
useful insights into the behavior of vector semantics in real-
world tasks.

A. Distributions of Cosine Scores

The cosine scores between all sentence vectors and the
corresponding document vectors follow a normal distribution
for all vector functions (Fig. 1), but this effect is most
pronounced for paragraph vectors (r2 = .996). In addition, the
sentence embeddings for paragraph vectors and skip-thought
vectors are far closer to the document embedding than would
be expected from a random distribution, with mean cosine
similarities of .65 and .84, respectively (Unsurprisingly, this
also holds for Average and Arora, though the similarity is
notably lower (.52 for Average, .35 for Arora).

B. Correlation of Cosine Scores with Good Summaries

By identifying the sentences present in an optimal summa-
rization, we show that optimal sentences have higher cosine
scores, and that this effect is increased after adjusting cosine
scores for word length (Fig. 2). However, there is a lot of
overlap, implying that, although this method has some power
to discern good summaries from bad summaries, the power
of this method alone is not high enough to product good
summaries.

(a) SIF Average (b) Arora

(c) Paragraph Vectors (d) Skipthought

Fig. 1: Distribution of cosine similarity scores between each
sentence vector and their corresponding document vector, for
all four vector functions.

C. Regression on Vector Dimensions

We calculated the isolated ROUGE score of each individual
sentence in the training set, and the sentence embeddings
for these sentences on all four vector functions. To partially
eliminate the effects of the sentence’s context, we subtract
the corresponding document vector from all sentence vectors
before regression.

Due to the large number of predictor variables, we use a
Bonferroni correction, considering values significant only if
they have p-values of ↵

n

, which, for ↵ = .05, corresponds

REU Symposium on Machine Learning

University of Colorado, Colorado Springs 20

Fig. 2: Cosine Similarity to the Document Vector for non-
optimal (blue) and optimal (green) sentences. Figure on the
right shows Cosine Similarity adjusted for sentence word
count.

(a) SIF Average (r=.53) (b) Arora (r=.40)

(c) Paragraph Vectors (r=.17) (d) Skipthought (r=.33)

Fig. 3: Correlation of ROUGE scores and Cosine Similar-
ity scores per sentence. ROUGE scores transformed with
r

0
= log(1 + r), to account for zero values. Some high-

leverage points have been excluded for Paragraph Vectors and
Skipthought.

approximately to p < .00001 for the skip-thought vectors,
and p < .00016 for all other vectors.

Three dimensions are significant at this level for SIF Aver-

age vectors. No dimensions are significant at this level for
Arora vectors, though the three values significant for SIF

Average achieve p values of .0021, .0485 and .0006. 29 di-
mensions are significant for Paragraph Vectors. 5 dimensions
are significant, at the much higher threshold, for Skip-Thought

Vectors. It appears that these specific dimensions correspond
to aspects of a sentence that make it somehow more suited for
a summary. Despite the theoretical implications of this result,
the regression models do not have enough predictive power to
create good summaries by themselves.

D. The Performance of the Greedy Algorithm

The Greedy algorithm is the most successful algorithm
we present here. As its name implies, the Greedy algorithm
appears to be simply an attempt at maximizing the following
objective function:

f

cos

(summary) = vector(summary) · vector(document)

(1)
Of course, this objective function can only be an approxi-

mation to the informally-defined criteria for good summaries.

Fig. 4: A histogram of the cosine similarities of sentences
selected by the Greedy algorithm.

Even so, Table I suggests that the performance of the greedy
algorithm is not based on the accuracy of the correspond-
ing objective function. In particular, consider the two other
strategies which try to maximize the same objective function:
Brute force, and Maximum Similarity (which simply selects
Greedy or Brute Force based on which one creates a summary
with a higher cosine similarity). Brute Force consistently and
significantly creates summaries with higher cosine similarity
to the document, outperforming the Greedy selector on its ob-
jective function. By construction, the Max Similarity algorithm
outperforms in cosine similarity to an even greater degree. But
both of these algorithms perform much worse than the Greedy
algorithm.

Deeper analysis into the decisions of the Greedy algorithm
reveals some reasons for this discrepancy. It appears that the
good performance of the Greedy algorithm results not from
the associated objective function, but by the way in which it
maximizes this objective function. In particular, the Greedy
algorithm selects sentences with low cosine similarity scores
in a vacuum, but which increase the cosine similarity of the
overall sentence (Fig. 4).

To understand why this is true, it we consider the step-
by-step behavior of the Greedy algorithm. The first choice of
the greedy algorithm is simple: it chooses the sentence with
maximum cosine similarity to the document vector:

s̄1 = argmax

s̄2S

s̄ · ¯d

(Recall that all vectors have unit-length, so cosine similarity
is equivalent to the dot product).

To select the second vector, the greedy algorithm is maxi-
mizing the following equation:

s̄2 = argmax

s̄2S

0
(

s̄+ s̄1

ks̄+ s̄1k
) · ¯d (2)

= argmax

s̄2S

0

¯

d · s̄1 + ¯

d · s̄p
1 + s̄1 · s̄

(3)

Where S’ is the set of remaining sentences 2

2Note that the results reported above do not represent the Greedy algorithm
averaging together the vectors, though the difference is minimal for SIF
Average and Arora vectors(see Section VI-E for more information)

REU Symposium on Machine Learning

University of Colorado, Colorado Springs 21

Fig. 5: A contour plot of the denominator of Equation 5

Note that this equation consists of three parts: ¯

d· s̄1 (a constant
wrt. s̄), ¯

d · s̄, which is simply the salience of a sentence
measured by cosine similarity, and the denominator, which is
essentially a measure of redundancy. Not only does this simple
metric lead to a ‘natural’ penalty for redundancy, it performs
better than our handcrafted redundancy penalties. The way this
algorithm scales when picking the i

th sentence is particularity
noteworthy:

s̄

i+1 = argmax

s̄2S

0
(

1
i+1 s̄+

i

i+1 s̄p

k 1
i+1 s̄+

i

i+1 s̄pk
) · ¯d (4)

= argmax

s̄2S

0

i(

¯

d · s̄
p

) +

¯

d · s̄p
i

2
+ 1 + 2is̄

p

· s̄
(5)

Where s̄

p

=

P
i

j=0 s̄j

k
P

i

j=0 s̄jk

As shown in Figure 5, the behavior of this function changes
as i increases. In particular, the function becomes more
sensitive to redundancy, and less sensitive to salience, as
the algorithm selects more sentences. In other words, the
algorithm will first try to select important sentences, and then
select sentences to fill in the gaps. This result, and the success
of the resulting algorithm, has implications for balancing
salience and redundancy in future summarization algorithms.

E. Document Vector Computation

In general, there are two ways to compute a document vec-
tor. The most obvious is to pass the entire text of the document
into the vector function. This has two theoretical problems.
The first is that the ’documents’ in our algorithms are really
clusters of documents, and are therefore non-coherent. The
second is that Skip-thought vectors are not designed to handle
text longer than a sentence. However, an alternative document
vector, docvec-avg, is formed by taking the mean of the
(normalized) sentence vectors. This corresponds to treating the
document as a collection of sentences, instead of a collection
of words. We present a comparison of the two methods in
Table II

As expected, Skipthought vectors, which are not designed
for text larger than a sentence, perform significantly better with
the docvec-avg strategy. More notable is the poor performance

of the docvec-avg strategy with Paragraph Vectors. The size
of the performance gap here implies that Paragraph Vectors
can combine information from multiple sentences in a manner
more sophisticated than simple averaging.

More interesting is the performance for SIF Average and
Arora vectors. For these vector functions, which are based on
taking the average of words, docvec-avg very closely resem-
bles the simple strategy. And yet there is a small but significant
performance gap. The difference between the two document
vectors is the weighting. Docvec-avg, which normalizes vec-
tors before adding them together, removes some weighting
information present in the simple strategy. In particular, the
simple strategy assigns more weight to sentences with a lot of
highly-weighted words. Presumably, docvec-avg, by ignoring
this weighting, leaves out useful information. This hypothesis
is supported by the greater performance gap for Arora vectors,
which effectively downweights certain common words and
therefore could be expected to carry more information in
word weightings. Similar, but much smaller, gaps exist when
computing the vectors for summaries at each step in the greedy
algorithm.

F. Properties of Different Sentence Embeddings

Based on the interactions between selector functions and
vector functions, as well as a variety of other pieces of data
in the proceeding sections, we present a broad comparison of
the properties of different sentence embedding schemes.

1) SIF Average/Arora Vectors: Three selector functions
perform better with both SIF Average and Arora vectors: Near
Nonredundant, Greedy, and PCA. These functions seem to be
united in their comparisons between the vectors of sentence
embeddings (implicitly, in the case of the greedy algorithm).
These selector functions correspond to the most basic test for
sentence embeddings: Judging the similarity of two sentences.

The exact difference the common component removal
makes is less clear. Arora vectors hold a slight performance
edge for all selectors except for Near and Greedy (the Greedy
algorithm loses a full 2 points).

2) Paragraph Vectors: Two selector functions perform bet-
ter with Paragraph Vectors: Near and Brute Force. Both
of these are very similar: They require comparing sentence
vectors to the document vector. The poor performance on
algorithms such as Near Nonredundant suggests that Paragraph
Vectors are especially poor at comparing sentence vectors to
each other. These results suggest that Paragraph Vectors are
especially good at computing document vectors, a hypothesis
also implied by the results of Section VI-E.

The other distinguishing property of Paragraph Vectors is
their very high correlation when regressing on the individual
features.

3) Skipthought Vectors: It is hard to disentangle the prop-
erties of Skipthought vectors from the high dimensionality
of the pretrained vectors we used. In general, Skipthought
vectors performed poorly. They only performed better than
other vector functions with one selector, Clustering, although
their performance with this selector was significant.

REU Symposium on Machine Learning

University of Colorado, Colorado Springs 22

In general, these results suggest that different sentence em-
bedding methods are suited for different tasks, often drastically
so, and the choice should be made carefully.

REFERENCES

[1] D. Parveen and M. Strube, “Integrating importance, non-redundancy and
coherence in graph-based extractive summarization.” in IJCAI, 2015, pp.
1298–1304.

[2] T. K. Landauer and S. T. Dumais, “A solution to plato’s problem: The
latent semantic analysis theory of acquisition, induction, and represen-
tation of knowledge.” Psychological Review, vol. 104, no. 2, p. 211,
1997.

[3] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

[4] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation.” in EMNLP, vol. 14, 2014, pp. 1532–1543.

[5] Q. Le and T. Mikolov, “Distributed representations of sentences and
documents,” in Proceedings of the 31st International Conference on

Machine Learning (ICML-14), 2014, pp. 1188–1196.
[6] R. Kiros, Y. Zhu, R. R. Salakhutdinov, R. Zemel, R. Urtasun, A. Tor-

ralba, and S. Fidler, “Skip-thought vectors,” 2015, pp. 3294–3302.
[7] J. Li, M.-T. Luong, and D. Jurafsky, “A hierarchical neural autoencoder

for paragraphs and documents,” arXiv preprint arXiv:1506.01057, 2015.
[8] J. Wieting, M. Bansal, K. Gimpel, and K. Livescu, “Towards universal

paraphrastic sentence embeddings,” arXiv preprint arXiv:1511.08198,
2015.

[9] S. Arora, Y. Liang, and T. Ma, “A simple but tough-to-beat baseline for
sentence embeddings,” ICLR, 2016.

[10] Z. Cao, F. Wei, L. Dong, S. Li, and M. Zhou, “Ranking with recursive
neural networks and its application to multi-document summarization.”
in AAAI, 2015, pp. 2153–2159.

[11] J. Cheng and M. Lapata, “Neural summarization by extracting sentences
and words,” arXiv preprint arXiv:1603.07252, 2016.

[12] P. Ren, F. Wei, Z. Chen, J. Ma, and M. Zhou, “A redundancy-aware
sentence regression framework for extractive summarization.”

[13] Y. Gong and X. Liu, “Generic text summarization using relevance
measure and latent semantic analysis,” in Proceedings of the 24th annual

international ACM SIGIR conference on Research and development in

information retrieval. ACM, 2001, pp. 19–25.
[14] M. Kågebäck, O. Mogren, N. Tahmasebi, and D. Dubhashi, “Extractive

summarization using continuous vector space models,” in Proceedings

of the 2nd Workshop on Continuous Vector Space Models and their

Compositionality (CVSC)@ EACL, 2014, pp. 31–39.
[15] M. T. Nayeem and Y. Chali, “Extract with order for coherent multi-

document summarization,” arXiv preprint arXiv:1706.06542, 2017.
[16] W. N. Francis and H. Kucera, “The Brown Corpus: A Standard Corpus

of Present-Day Edited American English,” 1979, brown University
Liguistics Department.

[17] J. H. Lau and T. Baldwin, “An empirical evaluation of doc2vec with
practical insights into document embedding generation,” arXiv preprint

arXiv:1607.05368, 2016.
[18] R. Al-Rfou, G. Alain, A. Almahairi, C. Angermueller, D. Bahdanau,

N. Ballas, F. Bastien, J. Bayer, A. Belikov, A. Belopolsky et al.,
“Theano: A python framework for fast computation of mathematical
expressions,” arXiv preprint, 2016.

[19] G. Erkan and D. R. Radev, “Lexrank: Graph-based lexical centrality
as salience in text summarization,” Journal of Artificial Intelligence

Research, vol. 22, pp. 457–479, 2004.
[20] C.-Y. Lin, “Rouge: A package for automatic evaluation of summaries,” in

Text summarization branches out: Proceedings of the ACL-04 workshop,
vol. 8. Barcelona, Spain, 2004.

[21] P. A. Rankel, J. M. Conroy, H. T. Dang, and A. Nenkova, “A decade of
automatic content evaluation of news summaries: Reassessing the state
of the art.” in ACL (2), 2013, pp. 131–136.

[22] K. Hong, J. M. Conroy, B. Favre, A. Kulesza, H. Lin, and A. Nenkova,
“A repository of state of the art and competitive baseline summaries for
generic news summarization.” 2014, pp. 1608–1616.

REU Symposium on Machine Learning

University of Colorado, Colorado Springs 23

Image Splicing Detection

Ryan Griebenow
University of Colorado, Colorado Springs

Colorado Springs, CO 80915
Email: rgrieben@uccs.edu

Abstract—Thus far, most research in Image Forgery Detection

has concentrated on the detection and localization of specific

methods of forgery using methods like patch-matching, anomaly

detection, and examining residual-based local descriptors. Recent

research has shown that sufficiently trained Convolutional Neural

Networks can learn functions similar to those of networks trained

on handcrafted features. This research focuses on combining

this new knowledge with various preprocessing methods to

demonstrate a proof-of-concept model.

Keywords—Image Forensics, Splicing, Machine Learning, Con-

volutional Neural Networks, Autoencoders

I. INTRODUCTION

Increasingly, members of society rely on digital imagery
to make decisions and form opinions in the digital world.
Images are used everywhere: in courtrooms as evidence of a
crime, by car insurance agencies to evaluate damage after an
accident, in magazines to sell products or brands. Naturally,
as reliance on digital imagery grows, so, too, does the use of
photo editing software such as Adobe Photoshop or the GNU
Image Manipulation Program (GIMP). Using such software,
users are capable of drastically changing the content of an
image. Manipulations range from removing red-eye in a family
portrait to completely removing people or objects. Object
removal is typically done by copying some content that already
exists in the image over the pixels that contain the object.
The process is called Copy-Move. It is also possible to add in
content from one image (or several) to another in a process
called Splicing.

With free access to tools like GIMP and an internet full
of free resources, the use and abuse of photo editing software
has exploded. Humorously doctored images are spread across
image boards and email inboxes while politically charged
forgeries get blasted as news article headlines. With images
being used to make decisions with heavy consequences, there
exists a clear need for reliable forgery detection methods.

Within the realm of digital image forgery detection there
exist many methods [1–4] for detection and localization. Some
focus on emphasizing unique noise patterns within images to
create a “fingerprint” of the camera that captured the image [5]
while other methods attempt to identify copy-move forgeries
using block-matching/PatchMatch [6]. These solutions utilize
supervised machine learning on existing, labeled datasets to
train a machine so that it may classify images as Pristine or
Forgery. Localization of the manipulations takes place after an
image is determined to be forged. With Copy-Move forgeries,
patches of pixel that are copied can be found within the image
and highlighted. Splicing localization can be done by detecting
and highlighting a break in a boundary between the host
image’s content and the foreign spliced content.

Fig. 1. Classification of image forgery detection techniques. From [4]

Typically, splicing detection involves the use of handcrafted
filters and features within a neural network or other machine
learning system. These features are difficult to produce with
much research being done to develop newer, state-of-the-art
features. It has been shown in [7] that residual-based local
descriptor features can be replaced by CNNs with equal or
better performance. This removes the complexity and difficulty
of detecting forgeries based on handcrafted features.

Recent research by Cozzolino et al. has shown that an
Autoencoder network is capable of localizing forgeries within
a forged image by classifying portions of the image as pristine
or forged and selectively training the network only on the cor-
rectly determined pristine portions [8]. Thus, over iterations,
the network learns to reliably reproduce the pristine data while
giving rise to large errors when reproducing forged data. This
network was trained using a selection of handcrafted features.

It is the goal of this research to further investigate the use
of a CNN in classifying spliced images by training a deep
residual learning network similar to ResNET [9] but much
smaller in depth. Deeper networks with many layers require
proportionally large amounts of data to train on. While many
image forensics datasets exist, large set are often produced
automatically as in [10]. This research into splicing detection is
motivated by a need for a forgery detector capable of working
on realistic, high quality forgeries. Datasets containing high
quality, realistic forgeries are harder to create and, in the
cases of the DSO-1 and DSI-1 datasets in [11, 12], contain
a scarce few examples, 200 and 50 respectively. By dividing
images into patches, the number of available training samples
increases significantly. These datasets are much smaller than
other well known sets such as the IFS-TC dataset in [13] with
1818 images or the ImageNet database of [14] with 14,197,122
images.

Attaching an Autoencoder network to a Residual CNN will
allow the Autoencoder to make use of the CNNs extracted
features. Allowing the backpropagation from the Autoencoder
training through to the CNN may further increase the effec-

REU Symposium on Machine Learning

University of Colorado, Colorado Springs 24

tiveness of the network in classifying digital images.

II. EXISTING METHODS

Much research has been conducted in the Image Forgery
field. Because of this, there exist many methods for detecting
and localizing multiple different forms of image manipulation.
Some, [2, 5, 6, 15] focus on splicing and copy-move detection.
Other methods are more general. Fig 1. shows a brief overview
of detection methods.

A. Detectable Manipulations

What follows is a general list of detectable manipulations.
Many more methods exist for many more manipulations than
are listed here.

1) Splicing: Cozzolino et al. have heavily investigated
splicing detection and Copy Move forgery. Using an Au-
toencoder, Cozzolino and his team were able to localize
anomalies within an image to detect the presence and location
of splicing [8]. This work builds upon their research in [1].
Additional splicing research exists in [15]. Typically, splicing
is found by identifying broken patterns within an image. These
patterns are usually emphasized using complex, handcrafted
data transformations on images prior to processing them in a
neural network. By highlighting these patterns and features,
networks can focus on the features that matter most when
training and optimizing without having learn what to ignore.

2) Copy-Move: As mentioned, Cozzolino et al have re-
searched Copy-Move detection and localization [2, 6]. The
primary method involves analyzing small patches of an input
image and scanning for duplications that are present elsewhere
in the image–though perhaps rotated or scaled. Copy-Move
forgeries differ significantly from splicing forgeries in that
copy-move manipulations use image data from the same host
image whereas splicing forgeries paste in data from other
donor images. [15] also presents some research on copy-move
detection.

3) Inpainting: Inpainting refers to the process of filling
in portions of an image whose content has been erased.
Unlike Copy-Move forgeries, which are large patches of data
that are duplicated elsewhere, inpainting takes small samples
from multiple locations within the same host image to fill
in deleted data. These patches are much smaller than typical
copy-move forgery patches and can easily fool PatchMatch
algorithms. However, Liu et al. have demonstrated Discrete
Cosine Transforms and ensemble learning techniques that can
classify JPEG inpainting [16].

4) Seam Carving and Scaling: Seam Carving is a content-
aware image resizing algorithm that involves identifying the
least import ”seams” of an image that can be removed for
scaling purposes. Seam Carving can be used to maintain ratios
and proportions within the image that are otherwise lost with
basic stretching or shrinking along an image’s axis. It is also
possible to completely remove objects from images using seam
carving techniques. Fillion, et al. have used an SVM classifier
to detect the presence of content adaptive scaling in an image
[17] while others use Discrete Cosine Transforms to aide in
classifying input, [18].

5) Blur: Due to the nature of camera lens photography,
blurring on objects out of focus is a common phenomenon.
Clever forgery artists can attempt to take advantage of this
by manually blurring selected sections or objects in an image.
Wang, et al. have shown in [19] that it is possible to detect
manually blurred edges within an image using an SVM clas-
sifier.

B. Multiple Method Manipulations

It is important to state that manipulation detection methods
rely heavily on the type of manipulation present in the image.
For instance, a splicing detection algorithm or network might
have trouble finding Copy-Move forgeries or vice versa. For
example, look at the images present in Fig. 2, where a patch-
match algorithm successfully found duplicated tile images but
failed to detect the obvious splicing present in the image.
This image is an example forgery collected from an online
Photoshop community as part of an effort to build a new
dataset containing the output of multiple forgery methods and
artists. This endeavour is discussed further in section III.

Fig. 2. An example of a patch-match algorithm used in [10] failing to
detect and localize splicing within an image. Top: The input image. Middle:
Generated ground truth. Bottom: Output image

C. Localization

Localization of manipulated data also depends on the type
of detection and the method of forgery. For instance, Copy-
Move forgeries can be detected using PatchMatch. As stated

REU Symposium on Machine Learning

University of Colorado, Colorado Springs 25

Fig. 3. An example of the Autoencoder Anomaly Detection method over several epochs. The top layer show the “heat map” of image reproduction errors. The
localization of anomalies becomes more reliable as discriminative learning takes place.

previously, PatchMatch algorithms can locate patches of the
data that have been copied (and perhaps rotated, or scaled) to
different sections of the image and then highlight the duplicate
patches in the image [6].

Splicing localization is a harder task. One method is by
finding broken patterns, like broken noise residuals as in
[5]. Methods like this typical involve applying some form
of transformation or alteration to the data before sending it
to a network in order to emphasize important features. In
many cases, very specific data transformations are the key to
unlocking higher accuracy in detection and localization.

Another recently proposed method [8] shows that an Au-
toencoder network can localize forgeries without prior training
on labeled data. The Autoencoder network instead learns how
to differentiate pristine pixels from forged or manipulated
pixels from the image itself. By discriminatively training the
Autoencoder on pristine data, it learns to reliably reproduce
clean portions of the image while forged areas give rise to high
errors. The pixels that give rise to high errors are considered
forged. Over iteration, the Autoencoder reliably learns which
pixels are original and which are likely to be forged. Fig. 3
shows an example of this process. It is important to note that
the Autoencoder localization assumes forgery detection has
already taken place and that the image is determined to be
a forgery. The Autoencoder network itself is not capable of
making such a classification.

D. Convolutional Neural Networks

Convolutional Neural Networks use convolutional layers
to reduce an image down to a smaller number of features.
A convolutional layer scans the entirety of and input image
using a sliding window that compares small windows of the
image with several different filter patterns. The values returned
correlate with the likeness of the image window data to the
filter patterns. CNNs usually make use of several convolutional
layers where initial layers reduce input images to more general
features while deeper layers learn more complex, descriptive
features. We note that in [7], it has been shown that Convolu-
tional Neural Networks can learn functions similar to many
handcrafted features used in previous research experiments
in computer vision. This replaces the need for newer, more
targeted data transformations by relying on a neural network
to learn its own functions based on the data provided.

E. ResNET

Google Inc’s ResNET architecture is a deep convolutional
network that incorporates residual learning. By providing a
prior layers input to a later layer, without applying any
transformations, latter layers can learn residual features. He
et al. in [9] claim that such networks are easier to optimize
and benefit from added depth.

Fig. 4. An example residual learning layer from [9]. The input to the F(x) +
x layer includes the previous layer’s input x. The F(x) + x layer then learns
residual features

III. INSOLUBLES

Over the 10 week term of the REU program, many so-
lutions were proposed for problems centered around image
forgery detection and localization. As time was invested, many
of these proposed solutions began to show signs of future
complications or otherwise proved themselves to be improper
solutions under the small time constraint. This section contains
a brief summary for each attempted research focus and some
analysis including some insight into the decisions to change
focus. Each topic also offers a discussion of what future
research in that topic might benefit from using or avoiding.

A. Realistic Dataset

Initially, we had focused on collecting a new dataset for
training and testing. It was our opinion that existing image
forgery datasets such as the IEEE IFS-TC Image Forensics
Challenge dataset used in [20] and Image Manipulation Dataset
[10] did not contain a broad enough range of manipulations
that accurately represent what can be encountered in real

REU Symposium on Machine Learning

University of Colorado, Colorado Springs 26

Fig. 5. Pictured are the three best submissions as determined by the author. The forgeries in the first two images proved difficult to detect using the CMFD-
Framework while the last image (an example of splicing) appeared to be the most deceptive in our visual analysis. Top: Original. Bottom: Forgery

forgery cases. For example, the dataset used in [10] was
automatically generated by software to create a large set of
copy-move forgeries. We reasoned that because it is computer
generated, it cannot possibly contain examples of all Copy-
Move forgery methods. Likewise, the IEEE IFS-TC splicing
dataset in [20] is comprised of images constrained to a single
technique (Alpha matting) with various degrees of photoreal-
ism. Our research focus is on the detection of many different
forms of splicing. Using a CNN on a dataset containing only
examples of a single splicing method will result in a CNN that
learns features related exclusively to that particular splicing
method. It was clear that a better, more realistic dataset was
needed for the CNN to learn a general set of features rather
than features that describe a single forgery method.

In order to obtain a more diverse dataset, we asked several
online image forgery communities to submit forgeries together
with their pristine hosts. We added a financial incentive for
those who where able to create a forgery that fooled current
detection methods—like the CMFD-Framework software pro-
vided by the authors of [10]. A deadline for submission was
set so that participants had two weeks (specifically including
two weekends) from initial posting to create their forgeries.
Unfortunately, by the submission deadline, we had only re-
ceived a small handful of forgeries. In total, 24 forgeries were
submitted by 8 unique participants over the two week period.
Using the CMFD-Framework, we were partially able to detect

many of the forgeries but not all. This is in part due to a lack
of familiarity with the software.

Regardless, the number of submitted forgeries is not
anywhere close to the number needed for our experiments,
especially not for deep learning which would require a dataset
several orders of magnitude larger. The submissions will
instead be used in experiments on the proposed solution to
gauge both the quality of forgery (difficulty in detection) and
the accuracy of the trained model. More effort could be spent
attempting to better incentivize the members of a wider array
of forgery communities, but we deemed this an inefficient use
of time and resources. In addition, the thought of writing a 6-
10 page paper on the creation of a new dataset was troubling
enough to stop any further work in this area.

With a longer time frame for submissions, it is likely
that we would have received more submissions for review. To
create an adequately sized dataset would take much longer and
would require a restructuring of incentives used. By rewarding
the first twenty submissions that meet the requirements, we
found ourselves incentivising the speed of forgery production
rather than the quality. Instead, comparing the prediction
confidence between submissions or the accuracy of localization
using a network might have served as a better metric of ”qual-
ity forgery” and properly incentivised participants to create
quality forgeries rather than fight against the clock. Future
dataset creation attempts might also benefit from involving a

REU Symposium on Machine Learning

University of Colorado, Colorado Springs 27

wider and more diverse set of online communities. A wider
variation in applicants likely also leads to more variance in data
and forgery techniques which can lead to interesting insights.

B. A Quicker Dataset

During the request period, we also attempted to scrape
data from an online Photoshop community. The goal was
to have a reasonably sized dataset made up of a large vari-
ety of forgery techniques and forgery artists. The subreddit,
r/PhotoshopBattles, (a subreddit is a user created and moder-
ated community within the larger Reddit website that is usually
focussed on a topic, theme, or idea) hosts threads where the
thread “topic” is a host image and all replies in the thread are
doctored versions of the host image.

The image scraper successfully scrapes and organizes im-
ages by thread such that the pristine host image is associated
with all forgeries and can be used to create a ground truth
label. But, the scraped forgeries are not high quality nor are
they necessarily representative of the types of manipulations
malicious forgers might use. They consist mostly of hastily
pasted splicings of the host image into humorous settings.
This endeavour was abandoned shortly after the realization
that collected images did not provide any benefits to a neural
network over those in other currently existing networks.

It is likely that other online communities would serve as
better targets of a web scraping script. A community focussed
less on humor and more on the creation of high quality images
would yield more appropriate data for use in forgery detection
research. Finding such a community (or several) is simply a
matter of exploration, discovery, and time.

C. Finetuning Pretrained Model

Many popular and effective neural network architectures
are available for use online in a variety of machine learning
frameworks. These models often come pretrained and ready
to work, having been trained on high end graphics cards and
large datasets for weeks. It was thought that a pretrained
ResNET model could be fine-tuned on the submitted forgeries
or on other well known datasets such as the DSO-1 and DSI-1
datasets in [11, 12].

Fine-tuning, also known as Transfer Learning, is the pro-
cess of retraining a network on new data. The pretrained
network weights can be used as either a fixed feature extractor
or as the initialization of a new training session. A fixed feature
extractor is in essence a trained CNN with the final layer, the
one that produces a classification, removed or replaced. Thus,
the trained network produces a high dimension vector that can
then be fed to a new linear classifier. Using the pretrained
network as an initializer for a new network then allowing
backpropagation to continue from the classification layer all
the way (or part of the way) through the CNN.

Fine-tuning saves an immense amount of time. Modern
Convolutional networks can take weeks across multiple high
end GPUs to fully train on a sufficiently large enough dataset.
Often, fully training a new network is unnecessary if pretrained
checkpoints are available for the same architecture trained on
a related dataset.

After a lengthy amount of time, the team was able to
successfully fine-tune a small number of models (ResNET,
Google’s Inception, and an InceptionResNET) on a few dif-
ferent datasets. It was hoped that fine-tuning the final layer of
these networks might yield some meaningful results as well as
offer a comparison between network architectures and between
datasets. The highest accuracy reported was by an Inception
ResNET V2 architecture trained on the IFS-TC dataset that
achieved 74 percent accuracy. Unfortunately, the same model
fine-tuned on the scraped forgeries (which were previously
determined to be of no use) yielded similar results of 71
percent accuracy. If the network was having the same difficulty
in detecting forgeries within two datasets of wildly contrasting
forgery skill levels, the network certainly wasn’t learning much
that was helpful or meaningful during its fine-tuning. This
discovery prompted us to reevaluate and pivot towards fully
training a smaller network.

One possible reason for the poor performance of the fine-
tuned networks is that the original networks were trained for
1000-way image classification. The weights and biases learned
by such networks are very capable of determining the general
features of, say, a dog versus a cat after sufficient training
on an appropriately labeled dataset. They are not, however,
trained to detect small perturbations in pixel data patterns
which would require training on forged and pristine data. It
is likely that the pretrained feature weights did not aide the
network much during fine-tuning and did not serve as ideal
initialization weights for transfer learning.

Future research in this area using transfer learning might
benefit from using features extracted in earlier layers of the
network. These features are more general and are less specific
to the task being trained for. In the future, models pretrained
for the purposes of image forensics might be available for use
publicly like those available for classification.

IV. PROPOSED SOLUTION

Our current research focus proposes combining the findings
of [7]—that properly trained CNNs can replace the need
for complicated, handcrafted features—with the localization
powers of an Autoencoder as seen in [8] We hypothesize
that the combined network would be capable of state-of-the-
art performance after training on properly labeled data. By
back-propagating the errors in the final reproduction step of
the Autoencoder network all the way through the ResNET, we
suspected that the proposed network will be able to learn more
descriptive features than those learned in existing network
architectures.

A. Meaningful Features with Patches

In [7], the authors show that a class of residual-based
local descriptors can be thought of as a constrained CNN.
The authors were able to train and fine-tune their network
on a smaller dataset and achieve high accuracy in testing.
We plan to extend this insight by feeding the network a set
of image patches rather than the whole image. Patches can
be compared with a identical cropping of their ground truth
images to determine if the patch hosts any manipulated pixels.
If any pixels within the ground truth mask are manipulated,
the whole patch is considered forged.

REU Symposium on Machine Learning

University of Colorado, Colorado Springs 28

With smaller inputs, the network has less of a need to
convolve the data down to less dimensionality. This preserves
more of the original structure and content of the data from the
patch which we predict will aide the network in learning more
meaningful features.

B. Fed to an Autoencoder

As stated, an Autoencoder architecture will be connected to
the end of a CNN architecture. This way, the Autoencoder will
be fed the convolved features extracted by the CNN portion
of the network. The Autoencoder will encode and compress
the features down into a bottleneck of neural nodes and then
attempt to rebuild and decode the compressed features back
into the full patches that were fed as input into the CNN. The
deepest layer of the Autoencoder, once trained, can be fed
to a classification layer to predict whether an input patch is
forged or not. The loss function will be the squared error of the
predictions. If the network predicts that the patch is a forgery,
we plan to experiment with the decoding layers to localize
the manipulations within the patch in a fashion similar to [8].
We predict that the features extracted by the CNN portion of
the network will be more meaningful to the Autoencoder and
allow for faster, easier optimization on the patches than the
handcrafted features used previously. It is also suspected that
the features extracted by a CNN will decrease the number
of iterations needed by an Autoencoder to localize splicing
forgeries.

V. CONCLUSION

This paper has presented a number of research focuses
and an analysis of why these focuses were not producing or
were not likely to produce quality results. It was shown how
existing datasets do not contain within them enough examples
of common forgery techniques and consequently how difficult
and time consuming it is to crowd source the creation of
a new dataset. It has also been shown that quickly scraped
forgeries from the web also lack high forgery quality, though
it is possible to create a large dataset rather quickly and easily.
An overview of fine tuning has been provided along with a
discussion on why the fine-tuning attempted in this research
was not likely to be beneficial as our research focus, image
forgery detection, is not aligned with the pre-existing networks
trained for 1000-way classification. In each of these topics,
suggestions were given for future research conducted in the
field based on what we learned and our analysis.

Building off of the accumulated knowledge, a solution
was proposed that aims to combine the feature extraction
capabilities of deep learning, Convolutional Neural Networks
with the localization powers of an Autoencoder. The proposed
network is likely to learn features general to many types
of splicing forgery when trained on an appropriately various
dataset.

The final goal of this research is to demonstrate the use
of a CNN and Autoencoder in image forgery detection. By
using residual learning, the proposed network will hopefully be
capable of detecting more meaningful and descriptive features
than the handcrafted features used currently. A network of
smaller than usual depth will preserve more content from
the original input and hopefully allow for more meaningful

Fig. 6. A visual depiction of the proposed network. On the left, a section
of a residual network is condensed into a “Residual Stack”. On the right,
an example combination of Residual Stacks feeding into an Autoencoder
network (in green) after classification. The Autoencoder network then produces
a localization map.

associations between datapoint inside both the CNN and the
Autoencoder. A smaller sized network also benefits from a
reduction in the size of dataset required to train and reach
optimization. The proposed residual CNN will be combined
with an Autoencoder for the detection and localization of
image forgery. By combining multiple architectures, it is hoped
that the proposed network will be capable of state-of-the-art
performance.

VI. ACKNOWLEDGEMENT

This material is based upon work supported by the National
Science Foundation under Grant No. 1359275 and 1659788.

REU Symposium on Machine Learning

University of Colorado, Colorado Springs 29

REFERENCES

[1] D. Cozzolino, G. Poggi, and L. Verdoliva, “Splicebuster:
a new blind image splicing detector,” in 2015 IEEE

International Workshop on Information Forensics and

Security (WIFS), Nov. 2015, pp. 1–6. DOI: 10 . 1109 /
WIFS.2015.7368565.

[2] D. Cozzolino, D. Gragnaniello, and L. Verdoliva, “Im-
age forgery detection through residual-based local de-
scriptors and block-matching,” in 2014 IEEE Interna-

tional Conference on Image Processing (ICIP), Oct.
2014, pp. 5297–5301. DOI: 10.1109/ICIP.2014.7026072.

[3] M. A. Qureshi and M. Deriche, “A bibliography of
pixel-based blind image forgery detection techniques,”
Signal Processing: Image Communication, vol. 39, Part
A, pp. 46–74, 2015, ISSN: 0923-5965. DOI: https://doi.
org/10.1016/j.image.2015.08.008. [Online]. Available:
http : / / www . sciencedirect . com / science / article / pii /
S0923596515001393.

[4] K. Asghar, Z. Habib, and M. Hussain, “Copy-move
and splicing image forgery detection and localization
techniques: a review,” Australian Journal of Forensic

Sciences, vol. 49, no. 3, pp. 281–307, 2017. DOI: 10.
1080/00450618.2016.1153711. eprint: http://dx.doi.org/
10.1080/00450618.2016.1153711. [Online]. Available:
http://dx.doi.org/10.1080/00450618.2016.1153711.

[5] M. Chen, J. Fridrich, M. Goljan, and J. Lukas, “Deter-
mining image origin and integrity using sensor noise,”
IEEE Transactions on Information Forensics and Secu-

rity, vol. 3, no. 1, pp. 74–90, Mar. 2008, ISSN: 1556-
6013. DOI: 10.1109/TIFS.2007.916285.

[6] D. Cozzolino, D. Gragnaniello, and L. Verdoliva, “Im-
age forgery detection based on the fusion of ma-
chine learning and block-matching methods,” CoRR,
vol. abs/1311.6934, 2013. [Online]. Available: http : / /
arxiv.org/abs/1311.6934.

[7] D. Cozzolino, G. Poggi, and L. Verdoliva, Recasting

residual-based local descriptors as convolutional neural

networks: an application to image forgery detection,
2017. eprint: arXiv:1703.04615.

[8] D. Cozzolino and L. Verdoliva, “Single-image splicing
localization through autoencoder-based anomaly detec-
tion,” in 2016 IEEE International Workshop on Informa-

tion Forensics and Security (WIFS), Dec. 2016, pp. 1–6.
DOI: 10.1109/WIFS.2016.7823921.

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” in The IEEE Con-

ference on Computer Vision and Pattern Recognition

(CVPR), Jun. 2016.
[10] V. Christlein, C. Riess, J. Jordan, C. Riess, and E.

Angelopoulou, “An evaluation of popular copy-move
forgery detection approaches,” IEEE Transactions on

Information Forensics and Security, vol. 7, no. 6,
pp. 1841–1854, Dec. 2012, ISSN: 1556-6013. DOI: 10.
1109/TIFS.2012.2218597.

[11] T. J. d. Carvalho, C. Riess, E. Angelopoulou, H. Pedrini,
and A. d. R. Rocha, “Exposing digital image forgeries
by illumination color classification,” IEEE Transactions

on Information Forensics and Security, vol. 8, no. 7,
pp. 1182–1194, Jul. 2013, ISSN: 1556-6013. DOI: 10.
1109/TIFS.2013.2265677.

[12] T. Carvalho, F. A. Faria, H. Pedrini, R. da S. Torres,
and A. Rocha, “Illuminant-based transformed spaces
for image forensics,” IEEE Transactions on Information

Forensics and Security, vol. 11, no. 4, pp. 720–733,
Apr. 2016, ISSN: 1556-6013. DOI: 10.1109/TIFS.2015.
2506548.

[13] L. Verdoliva, D. Cozzolino, and G. Poggi, “A feature-
based approach for image tampering detection and lo-
calization,” in 2014 IEEE International Workshop on

Information Forensics and Security (WIFS), Dec. 2014,
pp. 149–154. DOI: 10.1109/WIFS.2014.7084319.

[14] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei, “ImageNet Large Scale
Visual Recognition Challenge,” International Journal of

Computer Vision (IJCV), vol. 115, no. 3, pp. 211–252,
2015. DOI: 10.1007/s11263-015-0816-y.

[15] Y. Rao and J. Ni, “A deep learning approach to detection
of splicing and copy-move forgeries in images,” in 2016

IEEE International Workshop on Information Forensics

and Security (WIFS), Dec. 2016, pp. 1–6. DOI: 10.1109/
WIFS.2016.7823911.

[16] Q. Liu, A. H. Sung, B. Zhou, and M. Qiao, “Exposing
inpainting forgery in jpeg images under recompression
attacks,” in 2016 15th IEEE International Conference

on Machine Learning and Applications (ICMLA), Dec.
2016, pp. 164–169. DOI: 10.1109/ICMLA.2016.0035.

[17] C. Fillion and G. Sharma, “Detecting content adap-
tive scaling of images for forensic applications,” in
IS&T/SPIE Electronic Imaging, International Society for
Optics and Photonics, 2010, 75410Z–75410Z.

[18] A. Sarkar, L. Nataraj, and B. S. Manjunath, “Detection
of seam carving and localization of seam insertions in
digital images,” in Proceedings of the 11th ACM Work-

shop on Multimedia and Security, ser. MM&Sec
’09, Princeton, New Jersey, USA: ACM, 2009, pp. 107–
116, ISBN: 978-1-60558-492-8. DOI: 10.1145/1597817.
1597837. [Online]. Available: http : / /doi .acm.org/10.
1145/1597817.1597837.

[19] J. Wang, G. Liu, B. Xu, H. Li, Y. Dai, and Z. Wang,
“Image forgery forensics based on manual blurred edge
detection,” in 2010 International Conference on Multi-

media Information Networking and Security, Nov. 2010,
pp. 907–911. DOI: 10.1109/MINES.2010.193.

[20] D. Cozzolino, D. Gragnaniello, and L. Verdoliva, “Im-
age forgery localization through the fusion of camera-
based, feature-based and pixel-based techniques,” in
2014 IEEE International Conference on Image Process-

ing (ICIP), Oct. 2014, pp. 5302–5306. DOI: 10.1109/
ICIP.2014.7026073.

REU Symposium on Machine Learning

University of Colorado, Colorado Springs 30

Learning to Detect and Classify Forgeries of Digital
Images in Open-Set Recognition

Sina Masoumzadeh
Computer Science

University of Colorado Colorado Springs
Email: smasoumz@uccs.edu

Abstract—In this era that software’s are getting more ad-

vanced that are being used to edit images. Applications Like

Adobe Photoshop have a lot of benefits for modifying personal

photographs, the downside of this kind of applications performed

for forgery.There are copy/move and splicing that is used most

often to make forged images.This research we want to try to

merge two of the specific techniques that are for detecting

copy/move and splicing and trying to apply that to machine

learning in an image to make the probability higher and to make

sure the detection has a higher reliability. In addition to that, we

also want to add and classifications, benign in this research.

Keywords—Digital Images, Forgery, Fusion, Machine Learning,

Benign, Forensic

I. INTRODUCTION

Images can have a high impact in different categories of
daily needs like in social media, military, crime, historical
events, machine learning. The originality of images is nec-
essary trying to use them as examples that do define above.
Images can be a critical evidence to identifying the truth of a
claim or even a crime.

In this digital era, it is harder to detect forgery because
tracking them might not be comfortable with naked eyes or
the fingerprint left behind it is impossible was traced with all
these techniques.There are also some techniques to identify
what camera was used to detect if the pattern of the image
matches the pattern of that picture.[1]

In this era that we are living, there are a lot of advanced
applications that can modify images with different kind of
methods, for example, an advanced cloning or splicing that
can make it impossible to detect with naked eyes.There are
some ways to help us identify if based on that analysis,
for example, Discrete Cosine Transform(DCT), Error Level
Analysis(ELA), Gio Metric distortion, Photo Response Non-
uniformity(PRNU).[2] In most of the research that has issued,
they have used fusion to add some of these techniques trying
to merge their result to have a better probability to find better
ways to add them to the learnings. One of the classifications
were not mentioned often in previous studies, benign in
images. forensic.[3]

II. PROBLEM DEFINITION

The previous works have their errors or vulnerabilities.
When we look at the algorithms, they are not as reliable as the
ones that have few techniques fused will make the detection
more accurate than the individual aspect of them. In the past,

Fig. 1. It is an image of a stamp that the forged one is on the left, and the
original image is on the right.It is not easy to detect with naked eyes.

Fig. 2. This figure contains three images the original, forged,forged in ELA
.Like you can see the forged area in the ELA is easy to detect for machines.[4]

there is not much of research in classifying benign, a class that
has changes in the image like resizing or changing its contrast.
Moreover, these pictures are still in its original condition;
unspoiled.[5] The absence of this classification can make our
techniques to consider them as a class of forgery that will
cause it not to have the original condition as evidence. The
definition of the original condition that we are using as benign

Fig. 3. This figure contains three images the original, forged, forged in ELA.It
is hard for the machines to detect the forged parts because of the high-level
spatial characteristics of the image such as vegetation increase error in the
entire image.[4]

REU Symposium on Machine Learning

University of Colorado, Colorado Springs 31

Fig. 4. This is a diagram of the techniques that were used to detect a different
kind of digital image forgery in past and present.

[2]

means an digital image that can define as an image that still
holds its content.

If it is forged or not, show the results as unknown rather
a weak decision, giving an answer that has a low reliability
but the machine will give a precise answer about its detection
can bring a lot of confusion and miss leading in the future.[6]
An open set is critical in other fields like medicine that needs
it gives a very accurate output or if the detection does not
reliably provide an output of unknown. Machines should learn
the scope of what they learned, so that helps them to answer
”I do not know” if they have not seen an example related to
the Supervised Learning. Learning.[7]

III. RELATED WORK

There is a research about using ELA features and try to
detect if this features can utilize for image forgery detec-
tion.Their work had the result that based on the difference
of the error level related to the original pixel.[8] The errors
were related to compression loss. If the difference is small
that means the chance of forgery was low.[9] The difference
was significant, the chance that that image will be considered
as forged.There were few Voluntaries in this research paper.
There were not any numeric values mentioned in the article for
comparison.[4] Some works tried to use linear BitMap image
format(LBM) for encoding the micro-edge pattern and DCT
which is used to encode the frequency content.[10] Applying
and them to detect copy/move and splicing together to have
a more useful technique beside implementing it with Support
Vector Machine(SVM).[11]

IV. PROPOSED SOLUTION

In this Research, we want to add a class called benign
based on ELA features and try to use it in digital image
forgery detection. ELA is Error Level Analysis is the analysis
of compression artifacts in digital data with lossy compression
such as JPEG. Fuse the discovered algorithm for benign class

Fig. 5. There are two images the one on the left is the original image and
the one on the left it is the transformation of original to ELA.

Fig. 6. The left image is the original image; the right image has been the
modified in the size of the image that will be one of our sub-classes of benign
class.

with the previous forgery detection for splicing, to get a forgery
detection technique for the three class.1)Original 2)Forged
3)Benign.

A. Benign

Based on the definition of benign a gentle disposition, The
term benign is mostly relevant in medical fields, like detecting
if a tumor is cancerous or not. [12] There is not much of
a definition in Image forgery field.When an image possesses
some changes will not include as forged because it contains its
values as evidence. We can use some tools to modify the size
of the image or even modify the contrast of it, and it still keeps
its values as an original image. We want to add this class that
how to use learning methods so that the machine can detect
the difference between a forged and a benign Image.

B. Unknown

Images with classifications that were not in the scope of
the learning are going to identify as unknown classification.So
this is going to be an algorithm of open-set that does not have
boundaries after it is out of the scope of the defined classes.
[13]

C. Technique

First of all, we want to add the benign class to the
previous techniques. We want to use some other researched
technique using the fusion method so we can get a more
accurate result and use each technique based on their
unique modification.[14][15] For the open-set algorithm, we
will use the suggested version of Learning Support Vector
Machine(SVM) that is Weibull-calibrated Support Vector

REU Symposium on Machine Learning

University of Colorado, Colorado Springs 32

Fig. 7. The left image is the original image; the right image has been the
modified in the level color of the image that will be one of our sub-classes
of benign class.

Fig. 8. There are four plots from top left; the original image top right is the
forged image and left down is the benign modified color image and the last
image right down is the benign re-sized image. These plots show the number
of features and the length of them based on the scale between -1 and 1 ([-1,1]).

Machine(W-SVM). W-SVM combines the useful properties
of statistical extreme value theory for score calibration with
one-class and binary support vector machines.[16]

V. RESULTS

We have added a benign class with two sub classes 1) Re-
size 2) Color level adjustment to a previous data set that is
50 images, that include original and forged images. The most
major algorithms are for detecting copy/move and splicing in
digital images.They only look at pieces of the image and try
to find an algorithm that can detect those changes in the image
that mostly don’t cover the whole image. The reason why we
cannot use those algorithms is that we need an algorithm that
looks at the entire image and analyzes it instead of parts of
interest. So we were seeking to find some algorithm that can
distinguish the class original and benign.The short period for
this research paper left a lot of tests that were not finished to
be part of the future work. [17]

Fig. 9. This is a graph of the data set of original images that (x,y), the x is
the observed average, the y predicted probability based on the features.

Fig. 10. This is a graph of the data set of forged images that (x,y), the x is
the observed average, the y predicted probability based on the features.

Fig. 11. This is a graph of the data set of benign images that (x,y), the x is
the observed average, the y predicted probability based on the features.

REU Symposium on Machine Learning

University of Colorado, Colorado Springs 33

Fig. 12. Four plots are based on Sign of Laplace-Gaussian from top left;
the original image top right is the forged image and left down is the benign
re-sized, and the last image right down is the benign modified color image.
scale between -1 and 1 ([-1,1]).

After extracting three classes feature individually then tried
Laplace-Gaussian Operator(LOG) that is edge detector for
edge detection for image forgery and tried to make some
comparison based on the LOG of these three classes.[18]
Trying a different kind of image feature extraction to compare,
if those features can be used for defining our classes for ma-
chine learning digital image forgery detection. After training
the machine and getting models and testing them using k-
fold cross validation the results were not reliable based on
the variations. The most recent ones are in figures 14,15,16.
In figure 16 we can see that there are three classes and the
predictions for detecting the benign are 28.9 percent also
showing benign as forged 40 percent and benign as original
31.1 percent. It gives us the understanding that based the
extracted features and ten fold cross validation the benign is
mostly comprising detected as forged image. The short period
a lot of testings was not done, and that will be part of the
future work.

VI. FUTURE WORK

For the next period of this research, we are going to
experiment more with these features and try to find a technique
in classifying the benign class. The next step is to add open-
set algorithm by using W-SVM. Try to fuse two technique to
get more accurate result in forgery detection. Finally, apply all
these steps for our supervised machine learning.

VII. CONCLUSION

A. Benign Detection

If adding the benign class in image forgery detection that
has not discussed in previously researched scope will give us
results with high accuracy sometimes can save time or even
help to identify what has changed but still good as its original
version.

Fig. 13. This is a graph of the three class based on different features.The
light orange line is the original class, the other orange line is forged class,
and the blue line is benign class.

B. Unknown

Also, predict the results as unknown because it was not
in the scale of its supervised learning.In that case, we expect
the machine to print ”I do not know” for the image forgery
detection.

C. Fusion Result

We want to see if the result of the two previous techniques
Error Level Analysis(ELA) and (Singular Value Decomposi-
tion)SVD can give more accurate results in detecting the four
classes, Original, Forged, Benign, Unknown.

VIII. ACKNOWLEDGEMENT

A. Founder of this program

I want to thank the National Science Foundation for fund-
ing Research Experience for Undergraduate(REU) program
with award number:1359275 and 1658788.Thanks to Program
Manager William Bainbridge and Wendy Nilsen.

B. Team of REU

Thanks to Dr.Jugal Kalita as the Principal Investigator.
Thanks to my mentor in this research Dr.Terry Boult.I have
learned a lot from the REU team specially Dr.Terry Boult.

REFERENCES

[1] M. Chen, J. Fridrich, M. Goljan, and J. Lukás, “Deter-
mining image origin and integrity using sensor noise,”
IEEE Transactions on Information Forensics and Secu-

rity, vol. 3, no. 1, pp. 74–90, 2008.
[2] Y. Zhang, L. L. Win, J. Goh, and V. L. Thing, “Image

region forgery detection: A deep learning approach,” in
Proceedings of the Singapore Cyber-Security Confer-

ence (SG-CRC) 2016: Cyber-Security by Design, IOS
Press, vol. 14, 2016, p. 1.

REU Symposium on Machine Learning

University of Colorado, Colorado Springs 34

Fig. 14. This is results from data with four cross validation with the result
of three clusters, five iterations with a different prediction for each cluster.

Fig. 15. This is a diagram that how did the trained model do based on
the extracted feature and labeling the data with three classes. 1) Original, 2)
Forged, 3) Benign.

[3] T. Huang and H. Koller, “Coding of multilevel graph-
ics,” IEEE Transactions on Communications, vol. 23,
no. 6, pp. 598–606, Jun. 1975, ISSN: 0090-6778. DOI:
10.1109/TCOM.1975.1092857.

[4] D. C. Jeronymo, Y. C. C. Borges, and L. dos San-
tos Coelho, “Image forgery detection by semi-automatic
wavelet soft-thresholding with error level analysis,” Ex-

pert Systems with Applications, 2017.
[5] H. Li, W. Luo, X. Qiu, and J. Huang, “Image forgery

localization via integrating tampering possibility maps,”
IEEE Transactions on Information Forensics and Secu-

rity, vol. 12, no. 5, pp. 1240–1252, 2017.
[6] M. C. Stamm and K. R. Liu, “Forensic detection of

image manipulation using statistical intrinsic finger-
prints,” IEEE Transactions on Information Forensics

and Security, vol. 5, no. 3, pp. 492–506, 2010.
[7] A. Kashyap, R. S. Parmar, M. Agrawal, and H. Gupta,

“An evaluation of digital image forgery detection ap-
proaches,” arXiv preprint arXiv:1703.09968, 2017.

[8] V. Schetinger, M. Iuliani, A. Piva, and M. M. Oliveira,
“Digital image forensics vs. image composition: An
indirect arms race,” arXiv preprint arXiv:1601.03239,
2016.

[9] T. S. Gunawan, S. A. M. Hanafiah, M. Kartiwi, N.
Ismail, N. F. Za’bah, and A. N. Nordin, “Development
of photo forensics algorithm by detecting photoshop
manipulation using error level analysis,” Indonesian

Journal of Electrical Engineering and Computer Sci-

ence, vol. 7, no. 1, 2017.
[10] K. Asghar, Z. Habib, and M. Hussain, “Copy-move

and splicing image forgery detection and localization
techniques: A review,” Australian Journal of Forensic

Sciences, vol. 49, no. 3, pp. 281–307, 2017.
[11] A. Alahmadi, M. Hussain, H. Aboalsamh, G. Muham-

mad, G. Bebis, and H. Mathkour, “Passive detection
of image forgery using dct and local binary pattern,”
Signal, Image and Video Processing, vol. 11, no. 1,
pp. 81–88, 2017.

[12] N. A. Ofei-Tenkorang, R. V. Kanj, and L. L. Breech,
“Benign tumors masquerading as malignant: A case of
sclerosing stromal tumor of the ovary in an adolescent,”
Journal of Pediatric and Adolescent Gynecology, vol.
30, no. 2, p. 316, 2017.

[13] W. J. Scheirer, L. P. Jain, and T. E. Boult, “Probability
models for open set recognition,” IEEE Transactions

on Pattern Analysis and Machine Intelligence (T-PAMI),
vol. 36, 11 Nov. 2014.

[14] W. J. Scheirer, L. P. Jain, and T. E. Boult, “Probability
models for open set recognition,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 36, no.
11, pp. 2317–2324, Nov. 2014, ISSN: 0162-8828. DOI:
10.1109/TPAMI.2014.2321392.

[15] B. Bigdeli and P. Pahlavani, “Quad-polarized synthetic
aperture radar and multispectral data classification using
classification and regression tree and support vector
machine–based data fusion system,” Journal of Applied

Remote Sensing, vol. 11, no. 1, pp. 016 007–016 007,
2017.

[16] N. Bonneel, B. Kovacs, S. Paris, and K. Bala, “In-
trinsic decompositions for image editing,” in Computer

Graphics Forum, Wiley Online Library, vol. 36, 2017,
pp. 593–609.

REU Symposium on Machine Learning

University of Colorado, Colorado Springs 35

[17] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool,
“Speeded-up robust features (surf),” Computer vision

and image understanding, vol. 110, no. 3, pp. 346–359,
2008.

[18] Z. Zhang, Z. Yu, and B. Su, “Detection of composite
forged image,” in 2010 International Conference on

Computer Application and System Modeling (ICCASM

2010), vol. 11, Oct. 2010, pp. V11-572-V11-576. DOI:
10.1109/ICCASM.2010.5623140.

REU Symposium on Machine Learning

University of Colorado, Colorado Springs 36

Handling Unbalanced Data in Deep Image Segmentation

Harriet Small
Brown University

harriet small@brown.edu

Jonathan Ventura
University of Colorado, Colorado Springs

jventura@uccs.edu

Abstract— We approach the problem of training Convolu-
tional Neural Networks (CNNs) for image segmentation tasks
that involve unbalanced data—meaning that some of those
classes we seek to identify and label occur with significantly
less frequency than other classes represented in the dataset.
We investigate alternative sampling strategies intended to in-
crease the accuracy of the learned model itself and neutralize
misclassifications arising from the unbalanced nature of the
training data, and examine their efficacy in comparison to
random sampling.

Keywords: class imbalance, image segmentation, convolutional

neural networks, machine learning

I. INTRODUCTION

One pervasive challenge in the field of deep image seg-
mentation is the unbalanced distribution of classes in much
training data [7], [8]. If pixels corresponding to a particular
“majority” label are far more numerous than pixels of one
or more “minority” class, the rarity of the “minority” class
in the training data inhibits accurate learning and labeling,
as the learned model will tend to classify most pixels as
members of the “majority” class. As class imbalance in a
data set increases, the performance of a neural net trained
on that data has been shown to decrease dramatically [6].

The segmentation of MRI images is one notable applica-
tion of deep learning in which such a class imbalance exists;
in a typical MRI image of a brain tumor, the volume of
healthy brain tissue is significantly greater than the volume
of cancerous tissue [4]. For the purposes of this paper, we
trained our neural networks on the BraTS Challenges 2013
dataset, which is comprised of MRI images of brain tumors.

Using these MRI images, we explore techniques for
surmounting learning obstacles introduced by unbalanced
training data. In particular, our focus is on modifying the pro-
cedure by which we sample batches to train a Convolutional
Neural Network (CNN) intended to classify unbalanced data.
We compare the performance of random sampling with
two alternatives: a sampling protocol that generates batches
containing each class in equal proportion, and a second
protocol which re-introduces incorrectly classified (and bor-
derline correctly-classified) samples from prior epochs into
the batches for the current epoch. We evaluate the efficacy of
these three methods by examining their effect on the correct
labeling of small tumor substructures.

II. PRIOR RESEARCH

A variety of attempts to rectify the class imbalance prob-
lem have been made. In a survey study, López et al. identified

Fig. 1. A typical example of a balanced data distribution. Note that
there are approximately the same number of examples of the red and
blue classes. Compare with unbalanced distribution in next image. Source:
https://svds.com/learning-imbalanced-classes/

Fig. 2. An unbalanced data distribution; note that the vast majority of
samples are of the blue class, and that there are comparatively few red
examples. Source: https://svds.com/learning-imbalanced-classes/

REU Symposium on Machine Learning

University of Colorado, Colorado Springs 37

Fig. 3. A brain tumor image from BraTS annotated with four types of
diseased tissue. Note that the number of pixels representing tumor tissue is
much smaller than the total number of pixels [3].

three notable types of solutions: modification of data prior to
learning via oversampling or undersampling, modification of
the learning process itself, and application of cost-sensitive
learning techniques, which weigh the relative “costs” of
misclassification for each class against each other [8].

One notable approach—which falls into the first of the
above categories—is the Synthetic Minority Over-Sampling
Technique, or SMOTE. This technique involves generating
synthetic samples of the minority class to train on, thus
reducing the class imbalance by artificially inflating the size
of the minority class itself [9]. This strategy, when tested
alongside undersampling of the majority class, was shown to
improve the performance of the trained model. Our method-
ology also focuses on modifying the class distribution in the
dataset, although we will use only data from the original set
rather than replicating additional minority samples.

A considerable amount of prior research has focused
on the application of cost-sensitive learning techniques to
the class imbalance problem. Often, the real-world mis-
classification cost of a minority sample is greater than the
misclassification cost of a majority sample; when identifying
a rare disease, for example, a false positive has the potential
to be less damaging to the patient than a false negative.
Researchers have incorporated this concern into learning
algorithms by modifying the loss function at the center of
the learning process to overvalue classification mistakes on
the minority class, thus emphasizing the correct classifica-
tion of minority samples at the expense of identifying the
majority class. This type of cost-sensitive technique, while
not a part of our approach, is certainly relevant in the area
of tumor segmentation; the misclassification of cancerous
tissue as healthy is far more costly to a patient than the
misclassification of healthy tissue as cancerous [8].

One sampling-based attempt to counteract the negative
effects of an imbalanced dataset was presented by Felzen-
szwalb et al. in their work on object detection [1]. Their
dataset consisted of images with large amounts of negative
space with interspersed objects; the relative rarity of the
objects themselves demanded a nuanced approach. Their
technique, “hard negative mining”, involved identifying those
examples of the majority class—the background—which the
current classifier was not correctly labeling, and reintro-
ducing those examples for further training. Focusing on
“harder” negative examples in this manner allowed them

Fig. 4. A small subset of the MRI images from the BraTS 2013 Challenge
Dataset, with expert annotations of the four tumor substructures shown in
purple and blue. Image from [3].

to increase the fraction of minority samples used during
the training process without sacrificing performance on the
majority class.

Initially, our intent was to bring “hard negative mining” to
bear on our own classifier, but experimentation revealed that
increasing the fraction of minority class samples in training
batches did not reduce accuracy on the majority class, and
thus this corrective process was not required. However, we
did attempt a modified version of the strategy (targeting
minority classes rather than simply the majority class), an
approach which is described in more detail in a later section
of this paper.

III. EXPERIMENTAL DATA
For the purposes of our experimentation, we use the non-

synthetic data from the 2013 edition of the Multimodal Brain
Tumor Image Segmentation (BraTS) Challenge. This data set
is a series of 65 MRI images of brain tumors which must
be segmented into healthy tissue and four differing types of
cancerous tissue herein referred to as tumor substructures.
The substructures labeled in the training data are as follows:

• Edema
• Non-Enhancing (Solid) Core
• Necrotic (Fluid-Filled) Core
• Non-Enhancing Core

REU Symposium on Machine Learning

University of Colorado, Colorado Springs 38

The challenge dataset is a typical example of an unbal-
anced class problem; the images in it contain a dispropor-
tionate number of healthy tissue examples and only small
areas of cancerous tissue. See Fig. 4 for the subset of the
challenge images themselves. A more detailed description
of the dataset can be found in Havaei et al. [4].

IV. METHODOLOGY

In order to determine the optimal sampling method for this
unbalanced dataset, we trained three separate convolutional
neural networks with consistent architecture. The first was
trained using random sampling, and the second and third
using our modified sampling techniques. We then compared
their performance on the identification and segmentation of
minority classes to evaluate the sampling methods them-
selves.

During each training epoch, we refined the parameters of
our CNNs using a series of batches of the training data,
each consisting of a number of square sections from training
images, herein referred to as patches. This type of mini-
batch sampling—taking a few pixels (or, in our case, patches)
from each of a diverse set of training images—has been
demonstrated effective in pixel-labeling problems such as
edge-detection and image segmentation [5]. This strategy
reduces the computational load of processing each batch by
taking advantage of the dependencies between neighboring
pixels; adjacent pixels tend to have similar surroundings
and therefore including many neighboring pixels in a batch
is redundant [5]. Each of the networks discussed below
was trained for exactly 50 epochs, each consisting of 1000
individual batches of training data, each containing 120
image patches that were 64 pixels square.

V. EVALUATION OF RESULTS

Metrics for evaluating the correctness of models trained
and tested on unbalanced data using can yield misleading
results [7], [8]. A model which is well-attuned to the features
of a majority class but has poor performance when labeling a
minority class, for example, might have high overall accuracy
as the test set contains mostly pixels of the majority class.
However, such a model cannot be considered successful.

Several alternative metrics sensitive to data imbalance have
been proposed and used to evaluate models of unbalanced
data. For the purposes of this project, we adopt the measuring
scheme used for the BRATS challenge [3], which uses the
Dice score to quantify the overlap between the ground-truth
area of a particular tissue type and the area labeled as that
type by our classifier. For some tissue class c, let P be a
binary map of every pixel in the image to 1 if it is a member
of class c, 0 otherwise. Furthermore, let T be the ground-
truth binary mapping. Let P1 and T1 be the sets of all pixels
mapped to 1 by P and T respectively. The Dice score is
calculated thus:

Dice(P, T) =
|P1 [T1|

(|P1|+ |T1|)/2

Fig. 5. The top two images are the ground truth labelings for two brain
scans, the second row contains the segmentations done by the balanced-
sampling model.

That is, the score for a particular class c is the size of the
overlap between the predicted region and its true counterpart,
normalized by the averaged size of the two regions.

The BRATS benchmark adapts the binary Dice score to
the multi-class segmentation problem by choosing a subset of
the set of minority classes and treating all tissue types in that
subset as a single class. The three subsets under consideration
are the entire tumor (containing all four cancerous tissue
types), the tumor excluding edema, and the enhancing core
region, which consists of a single tissue class [3].

VI. EXPERIMENTS IN BALANCED SAMPLING
Initially, we investigated the impact of forcing each batch

of training data to contain the same number of examples
of each class represented in the dataset. Fig. 2 contains
segmentations performed by this model alongside the ground
truth labeling and segmentations produced by our baseline
random-sampling model.

Note that the random model’s segmentations tend to
underestimate the amount of cancerous tissue contained in
the scan, especially tissue of the rarest substructure types
(those with the lightest pigmentation in the segmentations).
That is, this model displays a typical failing of a classifier
trained on unbalanced data: a tendency to overclassify the
majority class at the expense of one or more minority classes.
The balanced model does not display this tendency; instead,
segmentations produced through balanced sampling tend to
overestimate the area covered by the rare cancerous tissue
types.

The overclassification vs. underclassification problem de-
scribed above is evident in quantitative as well as qualitative

REU Symposium on Machine Learning

University of Colorado, Colorado Springs 39

Fig. 6. The top two images are the ground truth labelings for two brain
scans, the second row contains the segmentations done by the random
sampling model.

evaluation of the generated segmentations. Below are the
Dice Scores of the models trained using random and balanced
sampling techniques.

Whole Tumor Core Active Region
Random 0.863 0.776 0.786
Balanced 0.833 0.845 0.862

Note that although the average dice score of the random
model over the entire area of the tumor is greater than the
same score for the balanced model, the core and active-
region scores for the balanced model are significantly higher.
That is, those two scores most heavily dependent on the
rarest tumor substructures are higher for the balanced model.
However, this increased facility in identifying rare classes is
coupled with a loss of facility in identifying more common
classes. In an attempt to preserve the advantages of the
balanced-sampling model and further improve its score on
the full tumor region, we investigated the strategy of hard
example mining.

VII. EXPERIMENTS IN HARD EXAMPLE MINING

In an attempt to improve upon the balanced sampling
approach, we incorporated the concept of hard example
mining. This technique was introduced by Felzenszwalb et
al., who combat class imbalance in object detection with
a technique they termed “hard negative mining” [1]. This
technique involves constructing each training batch such that
it contains a disproportionately large number of minority-
class samples alongside a small subset of the majority-class

samples that are deemed “hard” for the current classifier. A
sample is considered “hard” with respect to a classifier if
it was misclassified or only correctly classified by a small
margin by that classifier in the previous epoch. The intent is
to reduce the proportion of majority class examples without
sacrificing the classifier’s ability to identify the majority class
by emphasizing those examples it fails to classify correctly.

However, our focus was on identifying and reintroducing
hard samples of all classes rather than just hard majority
samples. Adopting a balanced sampling approach (and thus
necessarily reducing the frequency of the majority class) did
not substantially reduce our classifier’s ability to identify
the majority class. The Dice score for healthy tissue in the
model trained on balanced batches of patches was greater
than 0.99 and only marginally less than that of the model
trained on randomly selected batches. That is, capping the
fraction of majority class samples per batch at just 20% of
the batch size didn’t negatively impact the model’s ability to
recognize that class. Therefore, Felzenszwalb et al.’s “hard
negative” approach was not appropriate for our problem,
because performance on the majority class did not need
improvement. Instead, we brought their technique to bear on
each of the minority classes—our rare tumor substructures—
in hopes that it would further increase our classifier’s ability
to identify those classes.

To evaluate the efficacy of this hard example strategy, we
trained a third CNN. Between each training epoch, we ran the
current classifier on a randomly selected subset of each class
and stored the indices of all samples in this subset which
were misclassified, or correctly classified by a small margin
(with less than 75% confidence). When generating batches
for the following epoch, we drew first from these “hard”
examples to fill out each batch. We continued to balance the
proportions of each class in each batch, gathering a number
of samples from each class equal to 20% of the overall batch
size.

Ultimately, this approach proved less effective than simply
using balanced sampling methods alone. The table below
displays the comparative Dice scores for the three sampling
strategies.

Whole Tumor Core Active Region
Random 0.863 0.776 0.786
Balanced 0.833 0.845 0.862

Hard Example 0.810 0.801 0.835

Note that hard example mining fails to perform as well as
balanced sampling at segmentation all of the three tumor
categories. The segmentations themselves (images below)
display the problem visually. Evidently, the model trained
primarily on hard data has the tendency to overdraw the
tumor region. Although the locality of the tumor itself is
correct, this classifier exaggerates its size and fails to recog-
nize its boundaries. Perhaps reintroducing hard examples to
the learning process overemphasizes the those characteristics
which result in a class being confused for another class,

REU Symposium on Machine Learning

University of Colorado, Colorado Springs 40

Fig. 7. The two bottom images are segmentations produced by the classifier
trained on hard examples. Their corresponding ground truths are above.

ultimately blurring the boundary between the five classes in
the dataset.

Although our experimentation with hard example mining
failed to improve our classifier, the technique may merit
further research, as discussed in the final section of this
paper.

VIII. AREAS OF FURTHER EXPLORATION
Given the semi-promising results yielded by our hard ex-

ample mining, I believe further exploration of this technique
is certainly worthwhile. Further experiments could investi-
gate the potential of hard example mining with differing
ratios of majority and minority classes in training batches;
for example, we could attempt to mimic the distribution of
the minority classes in relation to each other in each training
batch, while continuing to artificially skew the number of
minority class samples in relation to the majority class,
and combine this approach with hard example mining on
those minority classes. It is also worth investigating whether
this sampling technique is more effective in training on
other datasets displaying the imbalance problem. If so, what
characteristics of a dataset predict how useful the technique
will prove in training a classifier for that data?

There is also further experimentation to be done in find-
ing the ideal confidence threshold for identifying a “hard”
example. It is possible that this sampling strategy proves
more effective if only those samples which are actually
misclassified are labeled hard, or, alternatively, when every
sample not assigned to the correct class with 99% confidence
is considered “hard.”

A second promising further area of research is in mit-
igating the multi-class imbalance problem by training two
separate classifiers, one for the majority class and another for
the minority classes. The former would be trained to segment
images into instances of the majority class and instances of
any other class. The latter would be trained only on examples
of the rarer classes and could then be used to further segment
the non-majority pixels identified by the former into those
rarer classes. In the context of the BraTS dataset, the first
classifier would make a binary determination of whether each
pixel represented healthy or diseased tissue, and the second
classifier would identify the tumor substructures contained
in the diseased patches identified by the first. Ideally, the
second classifier would not be subject to the problem of
class imbalance, as the diseased subset of the data has a
much more balanced class distribution than the dataset as a
whole.

Although much scholarship on the class imbalance prob-
lem exists already, the multitude of applications for powerful
machine learning-based classifiers that can be trained on
unbalanced data render further research and exploration in
the area absolutely indispensable.

ACKNOWLEDGMENT
This material is based upon work supported by the Na-

tional Science Foundation under Grant No. 1659788 and
Grant No. 1359275.

REFERENCES

[1] Felzenszwalb, Pedro, David McAllester, and Deva Ramanan. “A dis-
criminatively trained, multiscale, deformable part model.” In Computer
Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference
on, pp. 1-8. IEEE, 2008.

[2] Zhou, Zhi-Hua, and Xu-Ying Liu. “Training cost-sensitive neural
networks with methods addressing the class imbalance problem.” IEEE
Transactions on Knowledge and Data Engineering 18, no. 1 (2006):
63-77.

[3] Menze, Bjoern H., Andras Jakab, Stefan Bauer, Jayashree Kalpathy-
Cramer, Keyvan Farahani, Justin Kirby, Yuliya Burren et al. “The
multimodal brain tumor image segmentation benchmark (BRATS).”
IEEE transactions on medical imaging 34, no. 10 (2015): 1993-2024.

[4] Havaei, Mohammad, Axel Davy, David Warde-Farley, Antoine Biard,
Aaron Courville, Yoshua Bengio, Chris Pal, Pierre-Marc Jodoin,
and Hugo Larochelle. “Brain tumor segmentation with deep neural
networks.” Medical image analysis 35 (2017): 18-31.

[5] Bansal, Aayush, Xinlei Chen, Bryan Russell, Abhinav Gupta, and
Deva Ramanan. “Pixelnet: Towards a general pixel-level architecture.”
arXiv preprint arXiv:1609.06694 (2016).

[6] Mazurowski, Maciej A., Piotr A. Habas, Jacek M. Zurada, Joseph Y.
Lo, Jay A. Baker, and Georgia D. Tourassi. “Training neural network
classifiers for medical decision making: The effects of imbalanced
datasets on classification performance.” Neural networks 21, no. 2
(2008): 427-436.

[7] He, Haibo, and Edwardo A. Garcia. “Learning from imbalanced data.”
IEEE Transactions on knowledge and data engineering 21, no. 9
(2009): 1263-1284.

[8] López, Victoria, Alberto Fernández, Salvador Garca, Vasile Palade,
and Francisco Herrera. “An insight into classification with imbalanced
data: Empirical results and current trends on using data intrinsic
characteristics.” Information Sciences 250 (2013): 113-141.

[9] Chawla, Nitesh V., Kevin W. Bowyer, Lawrence O. Hall, and W. Philip
Kegelmeyer. ”SMOTE: synthetic minority over-sampling technique.”
Journal of artificial intelligence research 16 (2002): 321-357.

REU Symposium on Machine Learning

University of Colorado, Colorado Springs 41

Localizing Fluorescent Proteins Using
Super-Resolution Neural Networks

Kyle Yee
Swarthmore College

kyee1@swarthmore.edu

Guy Hagen
University of Colorado

Colorado Springs

ghagen@uccs.edu

Jonathan Ventura
University of Colorado

Colorado Springs

jventura@uccs.edu

Abstract—Recent advances in microscopy and data analysis

have allowed for the resolution of photoactivatable fluorescent

protein (PA-FP) samples past the theoretical diffraction limit

of 200 nm. To do this, several techniques have been developed

which perform well on low density protein samples, but which

have more difficulty resolving high density PA-FP images. This

project seeks to super-resolve PA-FP samples using Convolutional

Neural Networks (CNNs) by combining super-resolution and

localization techniques. This implementation achieves good results

on existing contest datasets and acts as a generalizable model to

other protein samples. Notably, the neural network significantly

outperforms other easily-accessible algorithms. Results from these

experiments suggest that convolutional neural networks are a very

promising method for single-molecule localization in a wide array

of situations, with evaluation times much faster than existing

methods.

Keywords—Computational and artificial intelligence, Neural
networks, Image processing, Machine vision, Object recognition

I. INTRODUCTION

In conventional optics, the resolution achievable by an
optical instrument is limited by the effects of light diffraction
at small scales. In microscopy, this limit occurs around 200
nm, where objects or features smaller than this scale are not
resolvable by the instrument alone. However, Betzig et al.
[1] introduced a new technique for super-resolving images of
photoactivatable fluorescent proteins (PA-FPs). These proteins
are on the order of 10 nm and can be made to fluoresce at
random intervals through exposure to laser light. The density
of proteins flashing at one time can be varied by changing the
frequency of laser pulses. By recording a signal from active
PA-FPs, techniques such as PALM [1] and STORM [2] fit these
signals with a single point-spread function (PSF). Through this
process, PALM and STORM achieve good results in locating
the position of a given PA-FP up to 20 nm, a factor of ten past
the diffraction limit.

Despite this success of PALM and STORM, these methods
have difficulty resolving PA-FP high-density fluorescence sig-
nals where diffraction patters occur simultaneously in close
proximity. Instead, these techniques are limited to “sparse
fields” where the majority of the sample is inactive at a given
time [1]. However, when limited to sparse fields, sampling
times must be long (on the order of 10 seconds) in order to
capture an occurrence of each individual protein fluorescence,
and such a limitation poses challenges to imaging living
samples. Currently, there is an active area of research on
developing techniques which can handle these high-density

situations in the hope of decreasing the imaging time required
for individual PA-FP samples. With this in mind, this research
project seeks to use CNNs to resolve microscopic images
through a machine learning approach, which has not yet been
thoroughly explored.

II. RELATED WORK

There are many algorithms which seek to accomplish the
task of high-density localization microscopy. While none of the
current leading algorithms use machine learning techniques,
there are quite a few which improve on the original PALM and
STORM methods. Some notable techniques are listed below.

Holden et al. [4] introduce DAOSTORM, an improvement
on single PSF methods which is capable of fitting multiple
PSFs to locations of high-density PA-FP signals. By doing
this, DAOSTORM processes high-density signals with better
precision than STORM and PALM methods. DAOSTORM
achieves some of the best results to date on localization tasks
involving high-density data.

Zhu et al. [5] build Compressed Sensing STORM
(CSSTORM), which achieves higher density results than
DAOSTORM and improves sampling time to 3 seconds.
CSSTORM models PSFs as linear transformations on protein
position data, and divides the output space into grid locations
as small as one-eighth pixel size.

In the same year, Mukamel et al. [6] create deconvolutional
STORM (deconSTORM). This technique also treats PSFs as
reversible transformations on an original image, referred to
as convolutions (distinct from convolutional neural networks).
However, Mukamel et al. introduce non-linearity to this trans-
formation to achieve good high-density results. By performing
deconvolutions, deconSTORM is able to reconstruct super-
resolution images.

In 2014, Ovensky et al. introduce ThunderSTORM [7], an
ImageJ plugin which acts as a culmination of several different
methods used to super-resolve proteins. ThunderSTORM has
high performance in a variety of localization tasks, and is
extremely accessible. Along with performing analysis, Thun-
derSTORM includes a realistic simulator of PA-FP data as well
as an evaluator to analyze the performance of other methods.

Most recently, Min et al. [8] design the FAst Localization
algorithm based on a CONtinuous-space formulation (FAL-
CON). As opposed to previous methods, FALCON achieves
continuous output space by fitting PA-FP signals using Taylor

REU Symposium on Machine Learning

University of Colorado, Colorado Springs 42

Fig. 1: Efficient implementation of the subpixel convolution layer (image taken without permission from Shi et al. [3]). This
diagram shows two initial convolution layers followed by the subpixel convolution layer, which outputs a single-channel image
by rearranging the channels in the subpixel layer to increase resolution.

approximations of PSFs. Thus, as compared to other meth-
ods, FALCON is able to achieve higher-precision localization
without significantly increasing computation complexity. Com-
pared to CSSTORM, FALCON also reduces sample time to 2.5
second temporal resolution. Along with DAOSTORM, FAL-
CON performs very well in high-density localization tasks.

III. METHODS

A. Super-Resolution

Recently, CNNs have achieved state-of-the-art results for
super-resolution tasks [3], [9], [10]. In particular, Shi et al.
[3] introduce an efficient method for learning super-resolution
by upscaling in the network directly, rather than relying on
other external upscaling methods. This particular architecture
is based on the idea of subpixel convolutions, where a normal
convolutional layer is used with fractional stride size in order
to upscale the resulting output. However, as noted by Shi et
al., subpixel convolution exponentially increases training time.
Thus, they introduce a novel, efficient method for computing
an output equivalent to that of subpixel convolutions. This is
achieved by convolving a normal filter with r⇤r⇤c channels and
a stride of 1⇥1, where r is the upscaling factor. The resulting
image has size w⇥h⇥ r ⇤ r ⇤ c, and is then rearranged into an
image of size w ⇤ r ⇥ h ⇤ r ⇥ c. This operation is represented
by Figure 1.

Our network architecture implements this technique in or-
der to map low-resolution microscope data to a high-resolution
label space. By using this convolutional layer, we can train
an end-to-end super-resolution network for localization with
arbitrarily-large output resolution, thus increasing our local-
ization accuracy.

B. Distance Transform Regression

The task of localization is closely related to the well-
studied problem of counting. The current best methods for
counting are based on the work of Lempitsky and Zisserman.
[11], where regression models are trained to map objects
to density maps. These density maps represent objects as
Gaussian distributions, and are designed in such a way such
that the discrete integral of the map is equal to the count of
objects in the given image. While this technique has achieved

state-of-the-art results for the task of counting on various
datasets [12], it does not provide a good method for accurately
localizing objects in these images.

However, density-map regression can be slightly altered
in order to better-localize proteins. Rather than learning re-
gression model from objects to Gaussians, we attempt to
map a pixel to its distance from the nearest protein location,
as proposed by Kainz et al. [13]. Each pixel in a label
sample is assigned a value d based on its Euclidean distance
to the nearest localization. Then, the following operation is
performed on the label data:

f(d) =

(
e↵(1�

d

d

max

) � 1 0 d < d
max

0 d � d
max

(1)

Through this operation, called the distance transform, each
protein is assigned an exact peak with the value e↵. After
training our model to regress protein images to this function,
we can find local maxima of the network output, thresholded
at some lower-bound. These maxima correspond to protein
locations and are accurate up to the resolution of the output
image. Furthermore, these locations can be refined slightly by
fitting a quadratic to a small neighborhood about any local
maxima, thus producing a continuous output space.

IV. EXPERIMENTS

A. Datasets

Test data for this experiment comes from the Single-
Molecule Localization Microscopy (SMLM) Symposium chal-
lenges from 2013 and 2016. These challenge datasets provide
simulated PA-FP microscope samples at varying densities as
well as ground-truth locations for these simulated proteins.
These simulations are designed to model proteins in various
tubulin structures.

The SMLM challenges provide leaderboards showing re-
sults from a number of existing techniques (including those
mentioned above) on contest datasets. While the ground truth
localizations for these datasets are not provided, our results
may be sent in for evaluation, allowing us to make general
comparisons between our method and various state-of-the-art
algorithms.

REU Symposium on Machine Learning

University of Colorado, Colorado Springs 43

Fig. 2: Results from the 2013 SMLM dataset using the distance transform. The top row shows the 2013 dataset averaged over
all frames (left), the ground-truth protein positions (middle), and a histogram of our network protein location predictions (right),
where a brighter value signifies more-frequent occurrences of protein locations. The bottom row contains a sample testing image
(left), its label data using the distance transform (middle), and our network prediction (right)

1) 2013: The 2013 challenge is focused on high-density
localization. From this challenge, we use the “Bundled Tubes
High Density” dataset, which models 8 tubulins with a diame-
ter of 30 nm, in a 100 nm thick microscope slide. This dataset
has 81049 fluorophores contained in 168 frames, making it the
highest density dataset used in our experiments.

2) 2016: The primary focus of the 2016 challenge is on
3D localization. However, the challenge contains multiple 2D
training datasets. In order to distinguish these datasets from
those in the 2013 challenge, these 2D localization datasets
simulate a thicker microscope slide of 1500 nm, meaning that
approximately half of the proteins appear out of focus. From
the 2016 challenge, we use the MT0.N1.HD and MT0.N2.HD
datasets, both of which represent high-density samples. Pro-
teins in these datasets occur at a slightly lower density than the
2013 samples, modeling three microtubules over 2500 frames
and a total of 11172 flashes. These datasets simulate identical
protein flashes and locations within each frame, differing only
in signal-to-noise (SNR) ratios. The MT0.N1.HD dataset has a
high peak SNR average of 22.597, while the MT0.N2.HD has
a lower peak SNR average of 19.425. We will refer to these

datasets as high-SNR and low-SNR 2016 datasets respectively.

3) Evaluation: Training data is generated using Thun-
derSTORM’s simulator, which creates artificial microscopic
images together with ground-truth locations. This simulator
incorporates a number of parameters which specify the back-
ground noise, density of proteins, and camera detector settings.
In order to evaluate the neural network performance, we use
ThunderSTORM’s built-in evaluation program. This program
computes statistics such as the precision, recall, Jaccard Index,
F1-Measure, and root-mean-squared (RMS) error of a result
compared to ground-truth data. In this evaluation, one spec-
ifies the maximum distance allowed for a localization to be
considered correct, which we refer to as the tolerance. Our
neural network predictions are generated using the methods
described in the following subsection.

B. 2013 Experiments

For the 2013 dataset, we use an architecture of 9 convolu-
tional layers with 3 ⇥ 3 filter-size and 32 feature-detectors, 1
subpixel layer with an upscaling factor r = 7 and 32 feature

REU Symposium on Machine Learning

University of Colorado, Colorado Springs 44

Fig. 3: Jaccard Index (top) and RMSE (bottom) for our 2013
neural network predictions at a range of tolerances. These plots
show our neural network results with and without dropout
layers, as well as the results from ThunderSTORM’s analysis

detectors, and a 1⇥ 1 filter size flattening convolutional layer
which outputs gray scale image. We train this network on 1000
64⇥ 64 images with a pixel-size of 100⇥ 100 nm generated
with ThunderSTORM. These images are designed to have
density and background noise similar to that found in the 2013
SMLM HD dataset, but with completely random distribution
rather than tubulin structure. For the distance transformation,
we set ↵ = 7 and d = 35 pixels. We experiment with this
configuration using a network with no dropout as well as one
with a dropout rate of .5%. Visual results of the resulting
regression map are shown in Figure 2.

When evaluating these results, we choose a threshold of
300 for local-maxima. After evaluating the Jaccard Index and
RMS error of our results at various tolerances between 10
and 250 nm, we also analyze the 2013 dataset using Thunder-
STORM’s built-in protein localization software. A comparison
between these methods is shown in Figure 3, which includes
both dropout and non-dropout network architectures.

Fig. 4: Jaccard Index (top) and RMSE (bottom) on the 2016
high-SNR SMLM dataset. Here, we show results when training
the CNN on data simulated from ThunderSTORM and on
SMLM contest data. We also show ThunderSTORM results.

C. 2016 Experiments

Due to the thicker nature of the 2016 SMLM datasets,
not all protein flashes are in focus in the SMLM training
datasets. Because of this, our training method for the 2016
data differ slightly from those in the 2013 experiments. For
both low- and high-SNR datasets, we train on 4000 simulated
ThunderSTORM images. These simulated images are made
using gradient density masks, which increase protein density
from top to bottom of the image, as well as gradient noise
masks, which increase the noise signal in the simulations from
the left to the right. During preprocessing, we flip and rotate
these images in cycles of 8 to achieve all possible orientations
of these density and noise masks. In both datasets, we use an
a model with 11 convolutional layers (32 feature detectors), 1
subpixel layer with a factor r = 7 and 10 feature detectors,
and a final 1⇥ 1 convolutional layer. In both of these models,
we use a value of ↵ = 7 and d = 42.

We compare these results to the ThunderSTORM evalua-
tion of these datasets. We also train our model on low-SNR
and high-SNR training sets directly in order to compare against
the performance using simulated training data. Before training

REU Symposium on Machine Learning

University of Colorado, Colorado Springs 45

on these datasets directly, we set aside the first 500 frames
of both datasets for validation. The results from all of these
experiments are shown in Figures 4 and 5, all tested on the
500 validation frames.

D. Results

In many of these experiments, we see that our super-
resolving CNN outperforms ThunderSTORM in both Jaccard
Index and RMS error. The exception to this is in the 2016
low-SNR RMS error, where ThunderSTORM obtains a slightly
lower value. Despite this, our implementation improves signif-
icantly on ThunderSTORM’s results in terms of Jaccard Index
(see Tables I and II)

From these experiments, we see that our network learns
a generalizable model for protein localization. After training
on stochastically-placed protein signals and testing on data
with a tubulin structure, our network achieves good results
in localizing high-density proteins. Furthermore, in the 2016
experiments, there is no significant difference between CNN
performance when trained on ThunderSTORM-simulated data
as opposed to contest data directly. Thus, our experiments

Fig. 5: Jaccard Index (top) and RMSE (bottom) on the 2016
low-SNR SMLM dataset. As in Figure 4, we show Thunder-
STORM analysis as well as results when training the network
on ThunderSTORM simulated data and on SMLM data.

ThunderSTORM CNN (dropout) CNN (no dropout)

Jaccard Index .280 .644 .588
RMSE [nm] 44.0 43.7 41.3

TABLE I: 2013 results

ThunderSTORM Simulated Data SMLM Data

Jaccard Index .597/.487 .672/.594 .669/.597

RMSE [nm] 39.5/48.4 35.7/52.4 39.2/52.2

TABLE II: 2016 results (high-SNR/low-SNR)

suggest that this network can be applied to a wide array of
microscope data, by simply changing the parameters of the
ThunderSTORM simulations used for training.

Finally, note that evaluation times are significantly reduced
in the neural network method when compared to methods such
as ThunderSTORM. After training, our network evaluates the
500-frame 2016 validation sets in approximately 90 seconds,
where the majority of this time is spent loading the images
and writing out the results. This time itself could be improved
significantly by using a solid-state drive

V. CONCLUSION

Our network achieves very promising results on high-
density datasets. With further refinement, we expect our results
to be competitive with other top methods aimed at localizing
high-density proteins. Although CNNs have not been thor-
oughly explored in this context, initial results from this project
indicate their applicability to the field of nanometer-scale
microscopy. By implementing techniques such as subpixel
super-resolution and distance transform regression, we have
shown that neural networks are a fast and accurate method
for imaging living samples beyond the diffraction limit of 200
nanometers.

VI. FUTURE WORK

In the upcoming months, we propose further modifications
to our model. Currently, our architecture only uses one scaling
layer in order to upscale the image. We propose to experiment
with multiple scaling layers with smaller scale factors, thus
introducing non-linearities between phases of scaling. One
example architecture consists of three scaling layers with a
scale-factor r = 2, thus resulting in a total upscaling of
8. Furthermore, we have up until now chosen to focus on
2D localization tasks. However, the 2016 SMLM Challenge
primarily focuses on 3D localization, and thus has several 3D
datasets available. In the coming months, we propose to extend
our model to 3D localization tasks. Finally, we plan to submit
our results to the SMLM 2016 Challenge in order to more-
directly compare our method against current state-of-the-art
algorithms.

VII. ACKNOWLEDGEMENTS

This material is based upon work supported by the National
Science Foundation under Grant No. 1359275 and 1659788.
Furthermore, we acknowledge Diptotip Deb and Sridhama
Prakhya for their helpful conversations and insights during the
research process.

REU Symposium on Machine Learning

University of Colorado, Colorado Springs 46

Fig. 6: Results from the 2016 low- and high-SNR datasets. The top row shows average histograms from the network predictions,
where the center shows the ground truth, the left shows high-SNR results and the right shows low-SNR results. The bottom row
displays a high-SNR testing image (left), the high-SNR network prediction (left-middle), the ground-truth label (middle), the
low-SNR network prediction (right-middle), and the low-SNR testing image (right)

REFERENCES

[1] E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych,
J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and
H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer
Resolution,” Science, vol. 313, no. 5793, 2006. [Online]. Available:
http://science.sciencemag.org/content/313/5793/1642

[2] M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit
imaging by stochastic optical reconstruction microscopy (storm),” Nat

Meth, vol. 3, no. 10, pp. 793–796, 10 2006. [Online]. Available:
http://dx.doi.org/10.1038/nmeth929

[3] W. Shi, J. Caballero, F. Huszar, J. Totz, A. P. Aitken, R. Bishop,
D. Rueckert, and Z. Wang, “Real-Time Single Image and Video
Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural
Network,” 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pp. 1874–1883, 2016. [Online]. Available:
http://ieeexplore.ieee.org/document/7780576/

[4] S. J. Holden, S. Uphoff, and A. N. Kapanidis, “DAOSTORM:
an algorithm for high- density super-resolution microscopy,” Nature

Methods, vol. 8, no. 4, pp. 279–280, 2011. [Online]. Available:
http://www.nature.com/doifinder/10.1038/nmeth0411-279

[5] L. Zhu, W. Zhang, D. Elnatan, and B. Huang,
“Faster STORM using compressed sensing,” Nature Methods,
vol. 9, no. 7, pp. 721–723, 2012. [Online]. Available:
http://www.nature.com/doifinder/10.1038/nmeth.1978

[6] E. A. Mukamel, H. Babcock, and X. Zhuang, “Statistical deconvolution
for superresolution fluorescence microscopy,” Biophysical Journal,
vol. 102, no. 10, pp. 2391–2400, 2012. [Online]. Available:
http://dx.doi.org/10.1016/j.bpj.2012.03.070

[7] M. Ovesný, P. Kı́žek, J. Borkovec, Z. Švindrych, and G. M. Hagen,
“ThunderSTORM: A comprehensive ImageJ plug-in for PALM and

STORM data analysis and super-resolution imaging,” Bioinformatics,
vol. 30, no. 16, pp. 2389–2390, 2014.

[8] J. Min, C. Vonesch, H. Kirshner, L. Carlini, N. Olivier, S. Holden,
S. Manley, J. C. Ye, and M. Unser, “FALCON: fast and unbiased
reconstruction of high-density super-resolution microscopy data,”
Scientific Reports, vol. 4, no. 1, p. 4577, 2015. [Online]. Available:
http://www.nature.com/articles/srep04577

[9] C. Dong, C. C. Loy, K. He, and X. Tang, “Learning a deep
convolutional network for image super-resolution,” in European

Conference on Computer Vision, vol. 8689, 2014, pp. 184–199.
[Online]. Available: http://link.springer.com/10.1007/978-3-319-10593-
2 13

[10] J. Kim, J. K. Lee, and K. M. Lee, “Accurate Image Super-Resolution
Using Very Deep Convolutional Networks,” in Proceedings of the

IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, 2016, pp. 1646–1654.
[11] V. Lempitsky and A. Zisserman, “Learning To Count Objects in

Images,” Advances in Neural Information Processing Systems, pp.
1324–1332, 2010. [Online]. Available: http://papers.nips.cc/paper/4043-
learning-to-count-objects-in-images.pdf

[12] D. Onoro-Rubio and R. J. Lopez-Sastre, “Towards Perspective-Free
Object Counting with Deep Learning,” in ECCV 2016: 14th European

Conference, Amsterdam, The Netherlands, B. Leibe, J. Matas, N. Sebe,
and M. Welling, Eds. Springer International Publishing, 2016,
pp. 615–629. [Online]. Available: http://dx.doi.org/10.1007/978-3-319-
46478-7 38

[13] P. Kainz, M. Urschler, S. Schulter, P. Wohlhart, and V. Lepetit, “You
Should Use Regression to Detect Cells,” Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), vol. 9351, pp. 276–283, 2015.

REU Symposium on Machine Learning

University of Colorado, Colorado Springs 47

Segmenting Images with a Deep Auto-encoder and
K-Means Clustering

Adia Meyers
Clayton State University

Email: ameyers3@student.clayton.edu

Abstract—The purpose of this research is to improve some of

the current methods of image segmentation, thereby allowing for

more accurate results when categorizing images. By specifically

venturing into image segmentation and neural networks, we

hope to find a collaborative and beneficial correlation between

convolutional neural networks and categorizing images. This

research combines various segmentation methods and evaluation

methods in hopes of creating a robust algorithm. By performing a

particular technique of image segmentation, the desired product

is to be capable of classifying local, global, and multi class images.

In turn, this will constitute for an improved and more accurate

way of segmenting images.

Keywords—Image segmentation, convolutional neural network

I. INTRODUCTION

Image segmentation is the process of isolating an image
into a number of sections which are known as segments
[5,6,7,8] so that the image can be classified. Image segmenta-
tion plays a large role in: classifying terrains in satellite im-
ages, medical image analysis, character recognition, and more.
There are a variety of image segmentation techniques, such
as thresholding, clustering, edge detection, implementing a
watershed transform, using artificial intelligence for segmenta-
tion, and many more methods. Thresholding segments images
by looking at the intensity values of pixels [8]. Clustering
groups images with similar characteristics [4,14], and edge
detection detects discontinues between objects in an image
[12], therefore finding the boundaries of each object in an
image. Watershed algorithms transform a grayscale image by
acting as a topographic map, with the brightness of each
point representing its height [2]. Artificial intelligence based
classification has recently begun to play a larger role in image
segmentation in the form of neural networks, in particular
convolutional neural networks [5,6,10].

A neural network is an artificial intelligence system mod-
eled after our very own human brains and is made of layers
of nodes. Every nodes incoming connection has a weight
associated with it. This weight is multiplied by the input.
Neural networks consist of at least three layers. A input layer,
hidden layer and an output layer. Neural networks learn by
first evaluating training images. Then test images, usually of
the same object type as the training images are evaluated.
Convolutional neural networks are very similar to ordinary
neural networks, meaning that they are made up of neurons
that have learn-able weights and biases [1,10,16]. The main
differences between the two being that convolutional neural
networks do not make use of every feature in an input
image and they are capable of conductiong dimensionality
reduction. Convolutional neural network architectures make

the explicit assumption that the inputs are images, which
allows us to encode certain properties into the architecture
[12]. The Convolutional neural network processes the input and
output data. Any data that is given after the dataset is classified
appropriately. What makes neural networks so unique, is that
they do not require pre-made categories in order to classify
images.

II. RELATED WORK

Segmenting a multi-class image as well as a large scale
image can be some of the most difficult aspects of image
classification. In 1987, auto-encoders were first proposed as a
means of aiding in image segmentation [1]. An auto-encoder
is a unsupervised convolutional neural network that applies
back-propagation, meaning that the output is the same as the
input [10]. An auto-encoder is made of two parts, an encoder
and a decoder. The encoder portion breaks down the input
into a vector, and the decoder builds the vector back up into
the original input image. In a paper entitled Image Restora-
tion Using Convolutional Auto-encoders with Symmetric Skip
Connections, Mao et la. use a deep auto-encoder for image
restoration. Auto-encoders pose as useful attributes for image
segmentation due to their ability to perform dimensionality
reduction and extract important features of an image [3,9,15].

Although auto-encoders aide in image segmentation, they
do not actually classify an image. For this research project, a
clustering algorithm will be implemented in order to segment
the images. K-means clustering is an unsupervised clustering
algorithm. The k means algorithm takes in the input as well as
a required parameter (k) which will determine the number of
clusters. The desired result is for the points in a similar cluster
to have a minimized distance and for the distance between
clusters to be maximized. Duan et al. implement a simple k
means algorithm for the purpose of classifying fish images.
It divides data into a predetermined classes on the basis of
minimizing the error function.

III. PROBLEM DEFINITION

When implementing certain image segmentation methods
such as using a watershed transform or thresholding algorithm,
there always the constant needed requirement of pre-made cat-
egories. Using a convolutional neural network eliminates this
prerequisite. Despite the fact that there are implementations of
convolutional neural networks and image segmentation, there
is still much room for improvement. For example, Meyer et
la. establish a convolutional radial basis function solver paired
with k means clustering to perform image segmentation [11].
Their experiment yielded accurate results, however, they still

REU Symposium on Machine Learning

University of Colorado, Colorado Springs 48

had an accuracy loss of about twenty percent on average.
By replacing the radial basis function solver with a different
convolutional neural network, we may be able to generate even
more accurate results. This will also grant us the opportunity
to create another method of image segmentation that could
potentially outperform other segmentation methods as well.

IV. PROPOSED RESOLUTION

Our proposed resolution is to implement a model with
a high accuracy for image segmentation. We will combine
the methods of a conolutional neural network and a k-means
clustering algorithm. The type of convolutional neural network
to be implemented will be an auto-encoder. Refer to figure 1
for a representation of our network.

A. The Auto-encoder: The auto-encoder we developed
mainly served as a means of extracting important features and
reducing dimensions of images. Our auto-encoder is made of
convolutions and deconvolutions. The encoder portion of the
auto-encoder takes in a patch from the image as its input and
break the input down into a vector known as the embedding of
the auto-encoder. Then the rELU activation function is applied
to the embedding and the decoder builds the vector back up
to the original image. Lastly the L2 loss function will be
calculated for the sole purpose of determining how well the
output image matches the input image. This will measure the
robustness of the auto-encoder.

B. T-SNE The vector from the embedding of the auto-
encoder is extracted and the t-Distributed Stochastic Neighbor
Embedding is applied to that vector in order to transform
the vector points into two dimensional points. Ergo making
it easier to plot the points for our k means resulting cluster
graph.

C. The K-means clustering algorithm: In the second pro-
cess, the two-dimensional vector points from the T-SNE re-
place the color values in the cluster vector. This will allow us
to use distance instead of a color based vector as our cluster
input vector. The K means algorithm has one parameter, which
is the desired number of clusters (k).

D. Lastly, we plan to use the recall @ K method to
determine the accuracy of our network. Recall @ K relies on
the number of tests made [11]. R represents the total tests done
and N represents the amount of test which were correct. N is
divided by R and that determines the accuracy. The larger N
is, constitutes for a better accuracy representation.

V. EXPERIMENT RESULTS

The first step in our experiment was to train the auto-
encoder. There were 2 data sets which were run on the auto-
encoder, mnist and cifar. There are 60,000 images in each of
these data sets. 50,000 were used for training and 10,000 were
used for testing. The cifar data set consists of random colored
objects such as animals and cars. The mnist data set consisted
of black and white images of handwritten numbers. The cifar
images were 32x32 pixels and the mnist data set were images
of 28x28 pixels. Each data set was trained for 6,000 epochs
and a batch size of 1 due to their small sizes. The output results
for the mnist data set is shown in figure 2 and the results for
the cifar data set is shown in figure 3.

Fig. 1. A representation of our future image segmentation model.

Fig. 2. Images from mnist datanset after being processed through our auto-
encoder.

During the development of the k means algorithm, all of
the figures 4 - 9 were developed from the mnist data set
points. Figure 4 shows our graph results after applying the
t-SNE to our data points without performing any k means on
our data. As of right now, we are attempting to fix our t-
SNE code, due to the fact that there should be much more
data points in figure 4. Ergo indicating that our code needs
improvement. Before resulting to the recall @K technique, we
tried another evaluating technique that looked at the predicted
labels vs actual labels on a graph. However we unable to
get that functioning and decided to move on to a different
method. Figure 6 was the first real plot that showed any sort
of clustering, we initialized our k clusters to three for this
trial. Despite the small milestone figure 6 signified, it still
did not display all the points as we wanted. Figure 7 was an
unsuccessful plot, which did not plot the clusters individually.
Figures 8 and 9 are from our most recent results and we
initialized our number of cluster classes to ten for both of
these experiments. Figure 8 is graph of our most recent k
means code without applying t-SNE to our data points before
clustering them. Figure 9 is a graph of our data points after
having the t-SNE applied to them and running our k means
code. Despite being unable to get the recall @K to work, we
were able to see that the points in figure 8 were closer together
and therefore more clustered.

Fig. 3. Images from mnist dataset after being processed through our auto-
encoder.

REU Symposium on Machine Learning

University of Colorado, Colorado Springs 49

Fig. 4. Plot of points after applying t-SNE.

Fig. 5. A plot that was supposed to show our predicted vs actual training
labels.

Fig. 6. Plot of the one of our trial k means algorithms using mnist data set.

Fig. 7. Plot of the one of our trial k means algorithms using mnist data set.

Fig. 8. K means cluster of our data before applying the t-SNE component
to our data points

VI. FUTURE WORK

There are several objectives which need to be completed for
this research project. The matter of highest concern is to make
a more robust k means algorithm. As of right now our clusters
are all quite close together with quite a few outliers, which
means that our results need to be improved. In order to get
more uniform clusters, our accuracy measurement code needs
to be properly implemented. We hope to have our recall @ K
evaluator working soon, however, as of right now, our code
does not properly measure accuracy. In addition, the radial
basis function solver needs to created so that we are actually
able to compare its performance against our very own auto-
encoder based model. There are three main data sets which we
will be working with. Currently, we have used the mnist data

REU Symposium on Machine Learning

University of Colorado, Colorado Springs 50

Fig. 9. K means cluster of our data before applying the t-SNE component
to our data points

set of handwritten digits on our auto-encoder model. Once our
model is fully up and running with the mnist data set, then we
will run the cifar data set and the mass buildings data set on
our model and the radial basis function solver. Lastly, we will
explore the possibility of increasing our auto-encoder channels.
This in turn may allow for better quality of our training images,
making it easier to cluster and classify testing images.

VII. CONCLUSION

The objective of this task is to establish a mechanism that
will provide for optimal image segmentation. By breaking
down images into layers using an auto-encoder and then
applying a k-means clustering algorithm to the dimensionally
reduced images, we aspire to strengthen the link between
neural networks and image segmentation. If this experiment
is successful, the outcome will produce well defined clusters
and highly accurate classification of images. In turn, this
would become another way to improve current knowledge and
procedures for future and present problems dealing with image
segmentation.

ACKNOWLEDGMENT

This research was primarily funded and supported by
the Research Experience for Undergraduates program at the
University of Colorado Colorado Springs Machine Learning in
Natural Language Processing and Computer Vision department
under grant No. 1659788 from the NSF and grant No. 1359275
from the NSF.

REFERENCES

[1] Bengio, Yoshua. Learning Deep Architectures for AI. Now Publishers
Inc, 2009.

[2] Benson, C. C., V. L. Lajish, and Kumar Rajamani. ”Brain tumor extrac-
tion from MRI brain images using marker based watershed algorithm.”
In Advances in Computing, Communications and Informatics (ICACCI),
2015 International Conference on, pp. 318-323. IEEE, 2015.

[3] Gatys, Leon A., Alexander S. Ecker, and Matthias Bethge. ”Image style
transfer using convolutional neural networks.” In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016.

[4] Gong, Maoguo, Linzhi Su, Meng Jia, and Weisheng Chen. ”Fuzzy
clustering with a modified MRF energy function for change detection in
synthetic aperture radar images.” IEEE Transactions on Fuzzy Systems
22, no. 1 (2014):

[5] Kapoor, Dimple, and R. Kashyap. ”Segmentation of Brain Tumor from
MRI Using Skull Stripping and Neural Network.” (2016).

[6] Kim, Jiwon, Jung Kwon Lee, and Kyoung Mu Lee. ”Accurate image
super-resolution using very deep convolutional networks.” In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2016.

[7] Koltun, Philipp Krhenbhl Vladlen. ”Efficient Inference in Fully Con-
nected CRFs with Gaussian Edge Potentials.” (2011).

[8] Kumar, S., et al.: Skull stripping and automatic segmentation of brain
MRI using seed growth and threshold techniques pp. 422426 (2007)

[9] Le, Quoc V. ”A Tutorial on Deep Learning Part 2: Autoencoders,
Convolutional Neural Networks and Recurrent Neural Networks.” Google
Brain (2015).

[10] Mao, Xiao-Jiao, Chunhua Shen, and Yu-Bin Yang. ”Image restoration
using convolutional auto-encoders with symmetric skip connections.”
arXiv preprint arXiv:1606.08921 (2016).

[11] Meyer, Benjamin J., Ben Harwood, and Tom Drummond. ”Nearest
Neighbour Radial Basis Function Solvers for Deep Neural Networks.”
arXiv preprint arXiv:1705.09780 (2017).

[12] Perona, P., Malik, J.: Scale-space and edge detection using anisotropic
diffusion. Pattern Analysis and Machine Intelligence, IEEE Transactions
on 12(7), 629639 (1990)

[13] Radhakrishna, Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S.
Susstrunk. ”Slic superpixels.” Technical Report 149300, EPFL (2010).

[14] Ray, Siddheswar, and Rose H. Turi. ”Determination of number of clus-
ters in k-means clustering and application in colour image segmentation.”
In Proceedings of the 4th international conference on advances in pattern
recognition and digital techniques, pp. 137-143. 1999.

[15] Schmidhuber, Jrgen. ”Deep learning in neural networks: An overview.”
Neural networks 61 (2015)

[16] Stutz, David. ”Understanding convolutional neural networks.” In Sem-
inar Report, Fakultt fr Mathematik, Informatik und Naturwissenschaften
Lehr-und Forschungsgebiet Informatik VIII Computer Vision. 2014.

REU Symposium on Machine Learning

University of Colorado, Colorado Springs 51

Learning perspective-free counting
via dilated convolutions

Diptodip Deb
College of Computing

Georgia Institute of Technology
Atlanta, Georgia, USA

Email: diptodipdeb@gatech.edu

Jonathan Ventura
Department of Computer Science

University of Colorado
Colorado Springs, Colorado, USA

Email: jventura@uccs.edu

Abstract—We propose the use of dilated convolutions as
a simpler approach to the perspective-free counting problem.
Counting is a common problem in computer vision (e.g. cells in a
microscope image or pedestrians in a crowd). Modern approaches
to the counting problem involve the production of a density
map via regression whose integral is equal to the number of
objects in the image. This method of counting can also be used
to locate objects in the image if the regressor used has enough
accuracy and precision. However, objects in the image can occur
at different scales (e.g. due to perspective effects) which can
make it difficult for a neural network to learn the proper density
map. A recent result for multiscale counting involves the use
of a complicated pyramid of image patches. However, dilated
convolutions have been shown to allow for the incorporation
of multiscale information without such a complicated design in
segmentation problems. We see that our dilated convolutional
regression network obtains results comparable to and occasionally
superior to the current state of the art.

Keywords—Computational and artificial intelligence, neural

networks, machine vision.

I. INTRODUCTION

Many computer vision problems involve dense prediction
[1]. Generally, these problems can involve discrete or con-
tinuous labeling of images. Counting objects in an image is
a specific sub-problem of this sort. Specifically, the problem
involves enumerating the number of objects in a given still
image or video frame [2]. We have seen that good performance
on counting tasks can be achieved without learning to detect
and localize dense objects in images through the regression of
a density map [2].

This means we can focus on the specific case in which each
object has been labeled with a dot (one dot per object). In this

Fig. 1. UCSD pedestrian traffic data (left) and simulated microscopy image of
biological cells (right). These are example images that can be used in counting
tasks.

case, the supervised learning agent simply learns a regression
function to produce the density map such that the integral of
the density map is equal to the number of objects in the image
[2].

Indeed, we see that in many natural counting problems (such
as those involving cells in a microscopy image, pedestrians in
a crowd, or a traffic jam), individual detectors are not reliable
[3]. This is due to a variety of challenges including overlap of
objects, perspective shifts causing variance in shapes and sizes
of objects, etc. [3].

A recent result in counting achieves state-of-the-art perfor-
mance on counting objects that might be transformed by such
perspective shifts [3]. This approach involves the regression
of a density map as in [2], however their approach involves a
complex convolutional neural network architecture that samples
re-sized patches of different scales in order to incorporate
multiscale information [3].

Indeed, convolutional neural networks have proven to
provide state-of-the-art performance on a variety of dense
prediction computer vision tasks [4], [5]. However, it is not
clear whether the approach of sampling patches of varying
scale is necessary for incorporating multiscale information [1].

Dilated convolutions, a simple modification to the structure
of traditional, straightforward convolutional neural network
designs, have proven to provide competitive performance in
the dense, multiscale segmentation problem in which objects
of different sizes in an image must be segmented [1]. We
propose the use of such a network for the problem of regression
of a density map for the purposes of counting rather than
classification and segmentation. Such a network would have a
much simpler architecture than that of [3], bypassing the need
to sample multiscale patches of an image.

II. RELATED WORK

Counting using a supervised regressor to formulate a density
map was first shown by [2]. In this paper, Lempitsky et al.
show that the minimal annotation of a single dot blurred by a
Gaussian kernel produces a sufficient density map to train a
network to count. All of the counting methods that we examine
as well as the method we use in our paper follow this method
of producing a density map via regression. This is particularly
advantageous because a sufficiently accurate regressor can also
locate the objects in the image via this method. However,

REU Symposium on Machine Learning

University of Colorado, Colorado Springs 52

image I
(C channels)

3x3
convolution

3x3
convolution

3x3
convolution
dilation = 2

3x3
convolution
dilation = 4

3x3
convolution
dilation = 8

3x3
convolution
dilation = 16

3x3
convolution

density map D
(C channels)

Fig. 2. Visualization of the dilated convolution regression network architecture. All layers are activated using the ReLU function.

the Lempitsky paper ignores the issue of perspective scaling
and other scaling issues. The work of [6] introduces CNNs
(convolutional neural networks) for the purposes of crowd
counting, but performs regression on similarly scaled image
patches.

These issues are addressed by the work of [3]. Rubio et al.
show that a fully convolutional neural network can be used to
produce a supervised regressor that produces density maps as
in [2]. They further demonstrate a method dubbed HydraCNN
which essentially combines multiple convolutional networks that
take in differently scaled image patches in order to incorporate
multiscale, global information from the image. The premise
of this method is that a single regressor will fail to accurately
represent the difference in values of the features of an image
caused by perspective shifts (scaling effects) [3].

However, the architectures of both [3] and [6] are compli-
cated due to requiring multiple image patches and, as discussed
in [1], the experiments of [7], [8] and [9]–[11] leave it unclear
as to whether rescaling patches of the image is truly necessary
in order to solve dense prediction problems via convolutional
neural networks. In [7], [8], upsampling is used to recover
scale information from downsampled layers, which puts into
question the necessity of downsampling scaled layers in the
first place. Further, it is also unclear in [9]–[11] as to whether
separate inputs of rescaled patches of the image are necessary.
The work of [1] proposes the use of dilated convolutions as a
simpler alternative that does not require sampling of rescaled
image patches to provide global, scale-aware information to
the network.

It should be noted that other methods of counting exist,
including training a network to recognize deep object features
via only providing the counts of the objects of interest in an
image [12] and using CNNs (convolutional neural networks)
along with boosting in order to improve the results of regression
for production of density maps [13]. In the same spirit, [14]
combines deep and shallow convolutions within the same
network, providing accurate counting of dense objects (e.g.
the UCF50 crowd dataset).

In this paper, however, we aim to apply the dilated
convolution method of [1], which has shown to be able to
incorporate multiscale information without using multiple inputs
or a complicated network architecture, to the counting problem.

III. METHOD

A. Dilated Convolutions

We propose the use of dilated convolutions as an attrac-
tive alternative to the more complicated architecture of the

HydraCNN [3]. We largely keep the architecture shown in [1],
making a simple modification in order to produce a regression
network rather than a segmentation (classification) network
which is described below. Dilated convolutions, as discussed
in [1], allow for the exponential increase of the receptive field
with a linear increase in the number of parameters with respect
to each hidden layer.

In a traditional 2D convolution, we define a real valued
function F : Z2 ! R, an input ⌦r = [�r, r]2 2 Z2, and a filter
function k : ⌦r ! R. In this case, a convolution operation as
defined in [1] is given by

(F ⇤ k)(p) =
X

s+t=p

F (s)k(t).

A dilated convolution is essentially a generalization of the
traditional 2D convolution that allows the operation to skip
some inputs. This enables an increase in the size of the filter
(i.e. the size of the receptive field) without losing resolution.
Formally, we define from [1] the dilated convolution as

(F ⇤l k)(p) =
X

s+lt=p

F (s)k(t)

where l is the index of the current layer of the convolution.

We mostly keep the architecture of the network in [1] in
terms of the dilated convolution filters. Because we have a
regression problem as opposed to a segmentation problem, we
do not implement the front end to extract features, leaving
this to the dilated convolutions themselves. Furthermore, we
use a ReLU activation for all the layers in order to facilitate
regression of floating point 32-bit pixel-values (which have
a range of 0 to 1). We refer to this network as the dilated
convolutional regression network, henceforth shortened as the
DCR network.

B. Experiments

We evaluated the performance of dilated convolutions
against the HydraCNN on a variety of common counting
datasets: UCF50 crowd data, UCSD crowd data, and TRAN-
COS traffic data [3] and [15]. For each of these data sets, we
used labels given by the corresponding density map for each
image. An example of this is shown in Figure III-A. Currently,
we have performed experiments on the four different splits of
the UCSD data as defined in [3] and the split of the UCSD data
as defined in [15] (which we call the Shanghai split). We also
evaluated the performance of our network on the TRANCOS
traffic dataset [16]. We have also experimented with testing on
small patches from the UCF data (discussed in section IV-C).

REU Symposium on Machine Learning

University of Colorado, Colorado Springs 53

(a) UCSD dilation network sample.

(b) TRANCOS dilation network sample.

(c) UCF dilation network sample.

Fig. 3. Left: input counting image. Middle: Generated ground truth density map. Right: Dilated convolutional network prediction of density map on test image.
The network never saw these images during training. All images and density maps were one channel only (i.e. grayscale), but may be colored here for clarity.
Note the gridding pattern in (a). This is mitigated somewhat in (b), though the actual values are overall worse in (b) than in (a).

We have so far observed that dilated convolutions produce
density maps (and therefore counts) that are on par with or
better than those of HydraCNN [3]. We measure density map
regression loss via L1 loss. We compare accuracy of the counts
via mean absolute error for the crowd datasets and the GAME

metric in the TRANCOS dataset as explained in Section IV-A3.
Beyond the comparison to HydraCNN, we will also compare to
other recent convolutional counting methods, especially those
of [15], [12], [13], and [14]. Further experiments in counting
could involve testing the effect of increasing dilation size and

REU Symposium on Machine Learning

University of Colorado, Colorado Springs 54

deepening the network (which effectively increases the size of
the receptive field) on the size of images the network is able
to take in.

IV. RESULTS

We perform experiments on various data sets. For all
datasets, we use patched input images and ground truth density
maps produced by summing a Gaussian of a fixed size (�)
for each object. This size varies from dataset to dataset,
but remains constant within a dataset. We do not take any
perspective information into account for training our network.
All experiments were performed using Keras with the Adam
optimizer at its default learning rate [17].

A. Datasets

1) UCSD: The UCSD crowd counting dataset consists of
frames of video of a sidewalk. There are relatively few people
in view at any given time (approximately 25 on average).
Furthermore, because the dataset comes from a video, there are
many nearly identical images in the dataset. For this dataset,
there have been two different ways to split the data into train
and test sets. Therefore, we report results using both methods
of splitting the data. The first method consists of four different
splits: maximal, downscale, upscale, and minimal. Minimal
is particularly challenging as the train set contains only 10
images. Moreover, upscale appears to be the easiest for the
majority of methods [3]. The second method of splitting this
data is much simpler, leaving 1200 images in the testing set
and 800 images in the training set [15].

2) UCF: UCF is a particularly challenging dataset. The
difficulty is due not only to the very low number of images
in the dataset, but also to the fact that the images are all of
varying scenes. Furthermore, perspective effects are particularly
noticeable for particular images in this dataset. The average
image has on the order of 1000 people in a crowd in this
dataset.

3) TRANCOS: TRANCOS is a traffic counting dataset that
comes with its own metric [16]. This metric is known as
GAME, which stands for Grid Average Mean absolute Error.
GAME splits a given density map into 4L grids, or subarrays,
and obtains a mean absolute error within each grid separately.
The value of L is a parameter chosen by the user. These
individual errors are summed to obtain the final error for a
particular image. The intuition behind this metric is that it is
desirable to penalize a density map whose overall count might
match the ground truth, but whose shape does not match the
ground truth [16]. More formally, we define

GAME(L) =
1

N
·

NX

n=1

0

@
4LX

l=1

|eln � tln|

1

A

where N refers to the number of images, L is the level
parameter for GAME, eln is the predicted or estimated count
in region l of image n and tln is the ground truth count in
region l of image n [16].

B. UCSD Crowd Counting

For this dataset, each object is annotated with a Gaussian
of size � = 8. The ground truth map is produced by summing
these. There are two different ways to split the dataset. We
have experimented on the split that gave [3] the best results as
well as the split used in [15].

We note that training this method using the symmetric
dilation method as introduced in [18] results in density maps
that are better in terms of the shape produced, but worse in terms
of the actual count values. This can be seen in Figure IV-B. At
best, symmetric dilations are approximately equivalent to the
standard dilated regression network and at worst symmetric
dilations are unable to learn anything at all on the same training
set that was used to train the standard dilated regression network.
Hence, we have proceeded with the standard dilation regression
network.

1) Upscale Split: We see that the “upscale” split as defined
in [3] gives us very good results on counting for this dataset.
For this experiment, we sampled 1600 random patches of size
119⇥ 79 pixels (width and height respectively) for the training
set and split the test set images into 119⇥ 79 quadrants that
could be easily reconstructed by simply piecing them together
without overlap. Results appeared consistent over multiple
trainings.

2) Shanghai Split: We see that the “Shanghai” split as
defined in [15] gives us somewhat worse results for counting
on this dataset. For this experiment, we again sampled 1600
random patches of size 119 ⇥ 79 pixels (width and height
respectively) for the training set and split the test set images
into 119⇥ 79 quadrants that could be easily reconstructed by
simply piecing them together without overlap. Results appeared
consistent over multiple trainings. While the performance of the
network was not as good, i.e. the network does not achieve state
of the art performance, we see that the results are comparable
to the state of the art and the previous state of the art. This
is compelling because the purpose of the dilated regression
network is to show that perspective-free counting can be learned
without creating image pyramids or combining multiple CNNs
learning features at different scales.

C. UCF Crowd Counting

For this dataset, we initially did not fully test the images.
Instead, for this dataset we also test on random image patches
of the same size as the training patches. We take 1600 random
patches of size 100 ⇥ 100 for training. We do the same for
testing. Ground truth density maps are produced by annotating
each object with a Gaussian of � = 15. We see that because the
UCF dataset has over 1000 people on average in each image,
the shapes output by the network in the density map are not
as well defined or separated as in the UCSD dataset. This can
be seen in Figure 3c. While the average error when testing on
patches seems to be quite low as indicated by Table II, when
we test on 5 cross validation folds of the data as defined in [3],
we find that the error increases to an average of approximately
1000, which is far higher than the state of the art. The low
average error on the patches is misleading because the average
error of the patches is summed over the number of patches
for each image. However, modifications to the DCR network
could yield significantly better results for these dense images.

REU Symposium on Machine Learning

University of Colorado, Colorado Springs 55

Fig. 4. Left: input counting image. Middle: Generated ground truth density map. Right: Dilated convolutional network prediction of density map on test image.
Note the grid pattern in Figure 3a. The symmetric dilation network does somewhat mitigate this grid pattern as shown here, but it ultimately performs worse for
obtaining an actual count.

(a) UCSD upscale split. (b) UCSD Shanghai split.

Fig. 5. Both plots show a comparison of the predicted and ground truth counts as time (the current frame) progresses. We see that while the DCR network does
not do as well on the Shanghai split as on the upscale split and is not state of the art, the predictions still follow the true counts reasonably.

For example, taking an average of overlapping patches of the
image during testing, i.e. densely scanning using a stride of
64 pixels, yielded a mean absolute error on the first fold of
approximately 640.

D. TRANCOS Traffic Counting

Our network performs very well on the TRANCOS dataset.
We see that although the shapes in the density map no longer
match as closely to the ground truth density maps, the counts
are significantly more accurate than other methods. For training
this dataset, we take 80 ⇥ 80 patches which we can stitch
back together into the full-sized 640⇥ 480 images. As seen in

Table III, we achieve state of the art results as measured by
the GAME metric [16]. We trained the DCR network with
density maps produced with a Gaussian of � = 15 as specified
in [3].

V. CONCLUSION

A. Summary

We have proposed the use of dilated convolutions as an
alternative to the complicated HydraCNN [3] or Multicolumn
CNN [15] for the vision task of counting objects in images.
While we largely keep the structure of the dilated convolutions
the same as in [1], we use ReLU activations for the purposes

REU Symposium on Machine Learning

University of Colorado, Colorado Springs 56

Method maximal downscale upscale minimal Shanghai

DCR (without perspective information) 1.63 1.43 0.70 2.72 1.64
[3] (with perspective information) 1.65 1.79 1.11 1.50 -
[3] (without perspective information) 2.22 1.93 1.37 2.38 -
[2] 1.70 1.28 1.59 2.02 -
[19] 1.70 2.16 1.61 2.20 -
[20] 1.43 1.30 1.59 1.62 -
[21] 1.24 1.31 1.69 1.49 -
[6] 1.70 1.26 1.59 1.52 1.60
[15] - - - - 1.07
[15] - - - - 2.16
[15] - - - - 2.25
[15] - - - - 2.24
[15] - - - - 2.07

TABLE I. MEAN ABSOLUTE ERROR OF VARIOUS METHODS ON UCSD CROWDS

Network Mean Absolute Error
DCR (on 100 ⇥ 100 patches) 9.94
Multicolumn CNN (on whole images) [15] 377.4
HydraCNN (on whole images) [3] 337.4

TABLE II. COMPARING PERFORMANCE ON THE FIRST FOLD OF UCF DATASET

Method GAME(L = 0) GAME(L = 1) GAME(L = 2) GAME(L = 3)
DCR 9.05 15.53 17.25 17.90
[3] 10.99 13.75 16.69 19.32
[2] + SIFT from [16] 13.76 16.72 20.72 24.36
[19] + RGB Norm + Filters

from [16]
17.68 19.97 23.54 25.84

HOG-2 from [16] 13.29 18.05 23.65 28.41

TABLE III. MEAN ABSOLUTE ERROR OF VARIOUS METHODS ON TRANCOS TRAFFIC

of regression. We have performed experiments on two different
splits of the UCSD crowd counting dataset, the UCF crowd
counting dataset, as well as the TRANCOS dataset. We obtain
comparable or better results in two of three of these datasets
as compared to [3]. In fact, the DCR network, which never
uses perspective information in our experiments, occasionally
outperformed HydraCNN with perspective information. These
results show that the DCR network performs surprisingly well
and is also robust to scale effects (the sizes of the cells in the
images were varied randomly). Further, the DCR network shows
promising results not only on the relatively low density UCSD
dataset, but also on the higher density TRANCOS dataset.
However, it performs rather poorly on the extremely dense and
varied UCF dataset.

B. Future Work

We would like to compare this procedure on other large
crowd datasets, specifically those of [6] and [22] for the World-
Expo crowd dataset as well as [15] for the Shanghaitech crowd
dataset. Further, we would like to attempt other techniques for
training the UCF dataset to possibly improve results on highly
dense images.

In addition to an analysis of performance on counting, we
also plan to examine the ability of these different approaches to
locate the objects in the image. As mentioned previously, if the
regressor is accurate and precise enough, the resulting density
map can be used to locate the objects in the image (and we
expect this to outperform more traditional feature/localization-
based methods for dense images where features may be difficult
to extract). We expect that in order to do this, we will have
to regress each object to a single point rather than a region

specified by a Gaussian. Perhaps this might be accomplished
by thresholding the activations of the final layer. Moreover, we
might examine the effect of increasing the depth of the DCR
network along with the size of its dilations on the resulting
regressed density maps.

Because the results of the dilated convolution network are
promising, we might consider extending this work to the case
where perspective effects occur in such a way that objects
“behind” the current plane of focus should have the same density
shape, but a lower density value. This situation arises when
looking at smFISH confocal microscopy, which results in a
3D stack of images representing slices of a cell going down in
vertical space. If the regressor is able to accurately label the
densities in these images, we could potentially use the dilated
convolution regression network to feed features to a recurrent
neural network and obtain accurate counts of these densely
packed 3D single molecules.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under Grant No. 1359275 and 1659788.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.
Furthermore, we acknowledge Kyle Yee and Sridhama Prakhya
for their helpful conversations and insights during the research
process.

REFERENCES

[1] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated
convolutions,” arXiv preprint arXiv:1511.07122, 2015.

REU Symposium on Machine Learning

University of Colorado, Colorado Springs 57

[2] V. Lempitsky and A. Zisserman, “Learning to count objects in images,”
in Advances in Neural Information Processing Systems, 2010, pp. 1324–
1332.

[3] D. Onoro-Rubio and R. J. López-Sastre, “Towards perspective-free object
counting with deep learning,” in European Conference on Computer
Vision. Springer, 2016, pp. 615–629.

[4] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel, “Backpropagation applied to handwritten
zip code recognition,” Neural computation, vol. 1, no. 4, pp. 541–551,
1989.

[5] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2015, pp. 3431–3440.

[6] C. Zhang, H. Li, X. Wang, and X. Yang, “Cross-scene crowd counting
via deep convolutional neural networks,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2015, pp.
833–841.

[7] H. Noh, S. Hong, and B. Han, “Learning deconvolution network for
semantic segmentation,” in Proceedings of the IEEE International
Conference on Computer Vision, 2015, pp. 1520–1528.

[8] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov,
P. van der Smagt, D. Cremers, and T. Brox, “Flownet: Learning
optical flow with convolutional networks,” in Proceedings of the IEEE
International Conference on Computer Vision, 2015, pp. 2758–2766.

[9] C. Farabet, C. Couprie, L. Najman, and Y. LeCun, “Learning hierarchical
features for scene labeling,” IEEE transactions on pattern analysis and
machine intelligence, vol. 35, no. 8, pp. 1915–1929, 2013.

[10] G. Lin, C. Shen, A. van den Hengel, and I. Reid, “Efficient piecewise
training of deep structured models for semantic segmentation,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 3194–3203.

[11] L.-C. Chen, Y. Yang, J. Wang, W. Xu, and A. L. Yuille, “Attention to
scale: Scale-aware semantic image segmentation,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2016,

pp. 3640–3649.
[12] S. Seguı́, O. Pujol, and J. Vitria, “Learning to count with deep object

features,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops, 2015, pp. 90–96.

[13] E. Walach and L. Wolf, “Learning to count with cnn boosting,” in
European Conference on Computer Vision. Springer, 2016, pp. 660–
676.

[14] L. Boominathan, S. S. Kruthiventi, and R. V. Babu, “Crowdnet: A deep
convolutional network for dense crowd counting,” in Proceedings of the
2016 ACM on Multimedia Conference. ACM, 2016, pp. 640–644.

[15] Y. Zhang, D. Zhou, S. Chen, S. Gao, and Y. Ma, “Single-image crowd
counting via multi-column convolutional neural network,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 589–597.

[16] R. L.-S. S. M. B. Ricardo Guerrero-Gmez-Olmedo, Beatriz Torre-Jimnez
and D. Ooro-Rubio, “Extremely overlapping vehicle counting,” in Iberian
Conference on Pattern Recognition and Image Analysis (IbPRIA), 2015.

[17] F. Chollet et al., “Keras,” https://github.com/fchollet/keras, 2015.
[18] F. Yu, V. Koltun, and T. Funkhouser, “Dilated residual networks,” arXiv

preprint arXiv:1705.09914, 2017.
[19] L. Fiaschi, U. Köthe, R. Nair, and F. A. Hamprecht, “Learning to count

with regression forest and structured labels,” in Pattern Recognition
(ICPR), 2012 21st International Conference on. IEEE, 2012, pp. 2685–
2688.

[20] V.-Q. Pham, T. Kozakaya, O. Yamaguchi, and R. Okada, “Count forest:
Co-voting uncertain number of targets using random forest for crowd
density estimation,” in Proceedings of the IEEE International Conference
on Computer Vision, 2015, pp. 3253–3261.

[21] C. Arteta, V. Lempitsky, J. A. Noble, and A. Zisserman, “Interactive
object counting,” in European Conference on Computer Vision. Springer,
2014, pp. 504–518.

[22] C. Zhang, K. Kang, H. Li, X. Wang, R. Xie, and X. Yang, “Data-driven
crowd understanding: a baseline for a large-scale crowd dataset,” IEEE
Transactions on Multimedia, vol. 18, no. 6, pp. 1048–1061, 2016.

REU Symposium on Machine Learning

University of Colorado, Colorado Springs 58

Author Index
Boult, Terrence………………………………………………………………………………………..…….…24,31
Deb, Diptodeb………………………………………………………………………………………………………52
Griebenow, Ryan………………………………………………………………………………………………….24
Hagen, Guy…….42
Kalita, Jugal………………………………………………………………………………………………1, 7, 12, 17
Masoumzadeh, Seyed.…………………………………………………………………………..……………….31
Meyers, Adia…………………………………………………………………………………….……………….…48
Prijatelj, Derek…………………………………………………………………………………………………..…..7
Prakhya, Sridhama……………………………………………………………………………………….…………1
Small, Harriet.……………………………………………………………………………………..……………….37
Templeton, Adly……………………………………………………….……………………………………..……17
Towne, Christopher……………………………………………………………………………………..……..…12
Venkataram, Vinodini …………………………………………………………………………………..………..1
Ventura, Jonathan……………………………………………………..……………………….…..37,42,48,52
Yee, Kyle……42

Keyword Index
Autoencoders………………………………………………………………………………………………………..24
Automatic Summarization…………………………………………………………………….………………..17
Class Imbalance…………………………………………………………..………………….……………………….……37	
Compositional Distributional Semantics…………………………………….……….………………….…7
Computational and Artificial Intelligence…………………………………………………..……….42,52	
Convolutional Neural Networks……………………………………………………………….…1,24,37,48
Deep Learning……………………………………………………………………………………………..………….1
Differentiable Neural Computers…………………………………………………………………….………12
Digital Images………………………………………………………………………..…………………….……….31
Extractive Summarization…………………………………………………………………………….……..…17
Forgery………………………………………………………………………………………………..……………….31
Forensics…………………………………………………………………………..…………………….……………31
FrameNet…………………………………………………………………………..………….…………..…………12
Frame Semantic Parsing………………………………………………………………..…………….…………12
Fusion……..…31
Image Forensics……………………………………………………….…………………….……………..……24
Image Processing……………………………………………………….…………………….………………..…42
Image Segmentation…………………………………………………………………………………………37,48
Isolation Forest……………………………………………………………………………………………………….1
Machine Learning…………………………………………………………………………..……….……24,31,37
Machine Vision……………………………………………………………………………………………..…42,52
Neural Networks…………………………………………………………………………….….……….24,42,52
Object Recognition………………………………………………………………………………………..….….42
Open-set Classification………………………………………………………………………………………..….1
Outlier Ensembles……………………………………………………………………………………………….….1
Semantic Matching……………………………………………………………………………….……………..…7
Semantic Role Labeling……………………………………………………………………………….…………12
Semantic Textual Similarity……………………………………………………………….………………….…7
Sentence Embeddings…………………………………………………………………………….………….….17
Splicing……….…24
Text classification.………………………………………………………………………………………………….1
Vector Semantics…………………..…………………………….……………………………….…….……..…17
Weibull	Distribution……………………………………..…………………………………………….….…….…1

	01Cover
	02Preface
	03TableOfContents
	04NSFREUFinalMeeting
	05ProposalPresentationSchedule
	06MidtermPresentationSchedule
	10Sridhama
	11Prijatelj
	Introduction
	Related Work
	Semantic Representation
	Semantic Matching

	Examined Models
	Pre-Trained Word Vectors
	Sentence Embedding
	Smooth Inverse Frequency (SIF)
	LSTM
	Stacked LSTMs

	Comparator
	Perceptron
	LSTM
	Stacked LSTMs

	Simplified MV-LSTM: L2-LSTM

	Current Implementation
	Evaluation Process
	Results
	LSTM
	Stacked LSTMs
	Simplified MV-LSTM: L2-LSTM

	Further Research
	Conclusion

	12Towne
	13Templeton
	14Griebenow
	15Masoumzadeh
	16Small
	17Yee
	18Meyers
	19Deb
	30AuthorIndex
	31KeywordIndex

