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Preface 
 
It is with great pleasure, we present to you papers describing the research performed by the NSF-
funded Research Experience for Undergraduates (REU) students who spent 10 weeks during the 
summer of 2016 at the University of Colorado, Colorado Springs. Within a very short period of 
time, the students were able to choose cutting-edge projects involving machine learning, write 
proposals, design interesting algorithms and approaches, develop code, and write papers 
describing their work. We hope that the students will continue working on these projects and 
submit papers to conferences and journals within the next few months. We also hope that it is the 
beginning of a fruitful career in research and innovation for all our participants.  
 
This year, we were also fortunate to have received supplemental funding to invite three teachers 
from Academy School District 20 in Colorado Springs to join the summer program for six 
weeks, providing them with precious time to perform research, mingle and discuss with other 
researchers, and most importantly, ponder over ideas regarding how topics in machine learning 
or learning from data, can be introduced to K-12 students.  
 
We thank the National Science Foundation for funding our REU project. We also thank the 
University of Colorado, Colorado Springs, for providing an intellectually stimulating 
environment for research. In particular, we thank Drs. Terrance Boult, Rory Lewis, Kristen 
Walcott-Justice, and Qing Yi  who were faculty advisors for the REU students. We also thank 
Alessandra Langfels for working out all the financial details. We also thank our graduate 
students, in particular, Feras AlTarouti, Tri Doan and Ethan Rudd, for helping the students with 
ideas as well as systems and programming issues. Francisco Torres-Reyes and his team also 
deserve our sincere gratitude for making sure that the computing systems performed reliably 
during the summer. 
 
 
Sincerely, 

 
Jugal Kalita 
jkalita@uccs.edu 
Professor  
August 5, 2016 
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Integrating WordNet for Multiple Sense Embeddings in Vector

Semantics

David Foley⇤, Jugal Kalita†
⇤Kutztown University

†University of Colorado Colorado Springs

Abstract—Popular distributional approaches to semantics al-

low for only a single embedding of any particular word. A single

embedding per word conflates the distinct meanings of the word

and their appropriate contexts, irrespective of whether those

usages are related of completely disjoint. We compare models that

use the graph structure of the knowledge base WordNet as a post-

processing step to improve vector-space models with multiple

sense embeddings for each word, and explore the application to

word sense disambiguation.

Index Terms—Computational Linguistics, Vector Semantics,

WordNet, Synonym Selection, Word Sense Disambiguation

I. INTRODUCTION

Vector semantics is a computational model of written lan-
guage that encodes the usage of words in a vector space, which
facilitates performing mathematical manipulations on words
as vectors [7]. These vectors encode the contexts of words
across a corpus, and are learned based on word distributions
throughout the text. Vectors can then be compared by various
distance metrics, usually the cosine function, to determine the
similarity of the underlying words. They also seem to possess
some modest degree of compositionality, in the sense that
the addition and subtraction of vectors can sometimes result
in equations that appear to reflect semantically meaningful
relationships between words [11], [12]. Because it allows for
the use of these well studied techniques from linear algebra
to be brought to bear on the difficult domain of semantics,
vector space models (VSMs) have been the focus of much
recent research in NLP.

While vector representations of word meaning are capa-
ble of capturing important semantic features of words and
performing tasks like meaning comparison and analogizing,
one of their shortcomings is their implicit assumption that
a single written word type has exactly one meaning (or
distribution) in a language. But many words clearly have
different senses corresponding to distinct appropriate contexts.
Building distributional vector space models that account for
this polysemous behavior would allow for better performance
on tasks involving context-sensitive words, most obviously
word sense disambiguation. Previous research that attempted
to resolve this issue is discussed at length in the next section.
Most common methods either use clustering or introduce
knowledge from an ontology. The goal of the present research
is to develop or improve upon methods that take advantage of
the semantic groups and relations codified in WordNet, and
specifically to focus on the downstream WSD task, which

is often neglected in favor of less useful similarity judgment
evaluations.

The algorithm we examine in depth can in principle be
implemented with any ontology, but in the present paper we
focus exclusively on WordNet. WordNet (WN) is a knowledge
base for English language semantics [15]. It consists of small
collections of synonymous words called synsets, intercon-
nected with labeled links corresponding to different forms of
semantic or lexical relations. We will be particularly interested
in the synset relation of hypernymy/hyponymy. Hyponyms
can be thought of as semantic subsets: If A is a hyponym
of B, then x is A implies x is B, but the converse is not
true. WordNet is also equipped with a dictionary definition for
each synset, along with example sentences featuring varying
synonymous words. Often implementations that use WordNet’s
graph structure fail to make use of these other features, which
we will show can improve performance on several tasks.

II. RELATED WORK

Our work is based primarily on that of Jauhar et al’s
RETROFIT algorithm [6], which is discussed at greater length
in Section 3. Below we discuss previous models for building
sense embeddings.

A. Clustering-Based Methods

Reisinger and Mooney [16] learn a fixed number of sense
vectors per word by clustering context vectors corresponding
to individual occurrences of a word in a large corpus, then
calculating the cluster centroids. These centroids are the sense
vectors.

Huang et al. [5] build a similar model using k-means
clustering, but also incorporate global textual features into
initial context vectors. They compile the Stanford Contextual
Word Similarity dataset (SCWS), which consists of over two
thousand word pairs in their sentential context, along with a
similarity score based on human judgments from zero to ten.

Neelakantan et al. [13] introduce an unsupervised mod-
ification of the skip-gram model [9] to calculate multiple
sense embeddings online, by maintaining clusters of context
vectors and forming new word sense vectors when a context
under consideration is sufficiently far from any of the word’s
known clusters. The advantage of the method is that it is
capable of detecting different numbers of senses for different
words, unlike the previous implementations of Huang et al.
and Reisinger and Mooney.
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B. Ontology-Based Methods

Chen et al. [3] first learn general word embeddings from
the skip-gram model, then initialize sense embeddings based
on the synsets and glosses of WN. These embeddings are then
used to identify relevant occurrences of each sense in a training
corpus using simple-to-complex words-sense disambiguation
(S2C WSD). The skip-gram model is then trained directly on
the disambiguated corpus.

Rothe and Shutze [17] build a neural-network post-
processing system called AutoExtend that takes word embed-
dings and learns embeddings for synsets and lexemes. Their
model is an autoencoder neural net with lexeme and synset
embeddings as hidden layers, based on the intuition that a
word is the sum of its lexemes and synset is the sum of its
lexemes.

Our intuitions are most similar to those of Jauhar et al [6]
and we will be building on one of their approaches. Their
RETROFIT algorithm learns embeddings for different word
senses from WN by iteratively combining general embeddings
according to the graph structure of WN. The approach is
discussed in more detail below.

III. IMPLEMENTATION

A. RETROFIT

Because our work follows so directly from [6], we repeat
the essential details of the RETROFIT algorithm here. Let ⌦ =

(S⌦, E⌦) be an undirected graph. We call ⌦ an ontology when
the set of vertices S⌦ represent semantic objects of some kind
and the set of edges E⌦ represent relationships between those
objects. In the case of WN, S⌦ is the set of synsets and E⌦ are
the semantic links (notably hypernyms and hyponyms). Given
a set of sense-agnostic word embeddings ˆ

V and an ontology
⌦, RETROFIT infers a set of sense embeddings ˆ

S that is
maximally ”consistent” with both ˆ

V and ⌦. By ”consistency”
we refer to the minimization of the objective function

D(

ˆ

S) =

X

ij

↵ kŵi � ~sijk2

+

X

ij

X

i0j02Nij

�r k~sij � ~si0j0k2

where Nij is the set of neighbors of sij defined in E⌦ and
↵ and � are hyperparameters controlling the importance of
intial sense-agnositc embeddings and various ontological rela-
tionships, respectively. Essentially RETROFIT aims to make
a sense embedding as similar to its sense-agnostic embedding
as possible, while also reducing the distance between related
senses as defined by ⌦. It achieves this by iteratively updating
sense embeddings according to

~sij =

↵ŵi +

X

i0j02Nij

�r~si0j0

↵+

X

i0j02Nij

�r

(2)

until convergence. The RETROFIT implementation discussed
in [6] defines only synonym, hypernym and hyponym re-
lations, with respective weights of �r = 1.0, 0.5 and 0.5

Below we discuss several of the limitations associated with
this RETROFIT implementation and possible improvements.

1) Impoverished Synsets: Many word senses are relatively
isolated in the WordNet structure. They occur in synsets with
few or no synonyms or semantic relations. In the case that the
word has only one meaning, this isn’t problem, because the
sense-agnostic embedding is in that case unambiguous. But in
the case that the word has one or more other semantically
rich senses (ie, senses with synonyms and hyper/hyponym
relations), the impoverished sense is unduly influenced by the
general embedding and its unique meaning is not distinguish-
able. In the extreme case both senses are identical.

2) Compound Words and Multi-word Lemmas: The original
RETROFIT implementation discards multi-word lemmas (and
entire synsets if they consist only of multi-word lemmas.) But
there exist synsets for whom most or all of the related WN
synsets contain only multi-word lemmas. (E.g. In the case of
brass.n.01, the hyponyms are almost all compound words for
types of brass.) Adjusting the RETROFIT algorithm to allow
for embeddings of the multi-word lemmas that appear in WN
would greatly reduce the number of impoverished synsets.

3) Underrepresented Senses: The general embedding pro-
duced by word2vec conflates all usages of a word. If a
particular sense of a word is significantly less common than
others, the word2vec embedding will not be a good rep-
resentation of the sense. RETROFIT indiscriminately tries
to minimize the distance from any particular sense and its
word2vec embedding.

For these reasons we make the following modifications to
RETROFIT:

1) Regardless of the position of a word sense in WordNet,
it will be equipped with a descriptive gloss that clarifies its
usage. We incorporate content words from each synset’s gloss
in the RETROFIT algorithm’s objective function.

2) We implement a naive model to handle a compound word
by simply representing its sense-agnostic embedding as the
average of the sense-agnostic embeddings of its constituent
words. Although this is obviously inadequate for many com-
pound words, we find it is already an improvement.

3) The sense-agnostic embedding of a word is assumed to
be the weighted average of its sense embeddings, proportional
to how common a particular word sense is. We calculate the
sense-frequencies from the SemCor corpus, which consists of
around 300,000 words tagged with their WordNet 3.0 synsets
[10].

B. Weighted RETROFIT
Let M = (V,

ˆ

V , S,

ˆ

S, P,⌦) be a model consisting of a
vocabulary V and sense-agnostic embeddings ˆ

V , a set of
word senses S and sense-embeddings ˆ

S, a discrete probability
density function P : V ⇥S ! R, and an ontology ⌦. We seek
the set ˆ

S that minimizes the new objective function for the
weighted RETROFIT algorithm
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D(M) =

X

i

↵

���ŵi �
P

j pij~sij

���
2

+

X

ij

X

i0j02Nij

�r k~sij � ~si0j0k2 (3)

+

X

ij

X

i02Gij

� kŵi0 � ~sijk2

by iteratively updating embeddings according to

s̄ij =

↵pijŵi � ↵pij

X

k 6=j

pik~sik +

X

i0j02Nij

�r~si0j0 + �

X

i02Gij

ŵi0

↵p

2
ij +

X

i0j02Nij

�r +

X

i02Gij

�

(4)

where ŵi 2 ˆ

V , ~sij 2 ˆ

S, pij = P (sij |wi), Nij is the set of
neighbor indices of the jth sense of the ith word defined in ⌦,
Gij = {i : wi 2 ˆ

V is in the gloss of sij} and ↵, �r and � are
the parameters controlling the weights of sense-agnostic word
embeddings, relations and gloss words respectively. Note that
iteratively updating the sense embeddings via Eqs. 2 or 4 is
equivalent to optimizing their respective objective functions
via coordinate descent.

IV. EVALUATION

We train three variations of the RETROFIT algorithm on
the 50-dimensional global context vectors produced by Huang
et al [5]: the unmodified RETROFIT, RETROFIT with gloss
words and multi-word lemmas, and RETROFIT with weighted
senses as discussed above. Training time is similar between the
first two; weighted RETROFIT takes about twice as long. All
converge to a solution within 0.01 within fifteen iterations.

The models are evaluated on two different tasks: Synonym
Selection and Word Sense Disambiguation. We first include
and discuss results from some similarity judgment tasks, but
these serve more as stepping stone than an as a rigorous mea-
sure of model quality. Faruqui et al. [4] give a comprehensive
assessment of the inadequacies of evaluating the quality of
embeddings on word similarity tasks. In general, these tasks
are fairly subjective and a model’s performance on them does
not correlate with performance on downstream NLP tasks.

A. Similarity Judgments

We evaluate the models on two word-similarity tasks: RG-
65 and SCWS. The RG-65 dataset [18] consists of sixty-five
pairs of words and an average human judgment of similarity
scaled from one to four. The Stanford Contextual Word
Similarity dataset [5] consists of over two thousand word pairs
in their respective sentential contexts and an average human
evaluation of similarity from one to ten.

Evaluation on the RG-65 dataset is a straightforward cal-
culation of the average cosine similarity of each pair of
sense embeddings, as used by Jauhar et al. [6] and originally
proposed by Reisinger and Mooney [17]. As an exploration,

Similarity Judgments
RG-65 SCWS

AVG MAX CXT AVG
RETROFIT 0.73 0.79 0.50 0.58
gloss + multi RETROFIT 0.72 0.85 ?? ??
Weighted RETROFIT 0.69 0.84 ?? ??

TABLE I
PERFORMANCE ON RG-65 AND SCWS WORD SIMILARITY DATASETS.

SCORES ARE SPEARMAN’S RANK CORRELATION.

Synonym Selection
ESL-50 TOEFL

RETROFIT 64.0 68.75
gloss + multi RETROFIT 62.0 81.25

Weighted RETROFIT 60.0 75.0
TABLE II

PERCENT ACCURACY ON ESL-50 AND TOEFL SYNONYM SELECTION
USING MAXSIM COMPARISON

we also consider the results of using the maximum cosine
similarity.

We evaluate performance on SCWS by first disambiguating
the words in their contexts, then comparing the cosine simi-
larity of the chosen sense vectors. Words are disambiguated
using the simple-to-complex algorithm (S2C) described by
Chen et al. in [3]. S2C disambiguates every word in a
sentence in increasing order of ambiguity, where a word is
considered more ambiguous if it has more senses defined in
WN. First, a context vector is initialized by averaging the
general embeddings of each word, then the least ambiguous
word is assigned a sense from WN based on which sense
embedding has the greatest cosine similarity with the context
embedding. The context embedding is then updated as the
average of the general embeddings of the ambiguous words
and the sense embeddings of the disambiguated words. The
only parameter of the model is a confidence threshold. At
each disambiguation, if the difference between the rating of
two candidate senses for a word are within the confidence
threshold of each other, we choose not to disambiguate the
word and continue to use its general embedding as the context
in subsequent iterations.

Our results are displayed in Table 1.

B. Synonym Selection
We test the models on two synonym selection datasets: ESL-

50 [19] and TOEFL [8]. ESL-50 is a set of fifty English
sentences with a target word for which a synonym must be
selected from four candidate words. TOEFL consists of eighty
context-independent words and four potential candidates for
each. For both datasets, we use the same maxSim selection
criteria as Jauhar et al [6]. We select the sense vector ~sij that
corresponds to:

maxSim(wi, wi0) = max

j,j0
cos(~sij ,~si0j0)

Our results are presented in Table 2.

C. Word Sense Disambiguation
We use Semeval 2015 task 13 [9] as our English WSD

test. The corpus for the task consists of four documents taken
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Word Sense Disambiguation
Nouns Verbs Adjectives Adverbs All

MFS 45.8 49.9 67.5 70.6 53.5

RETROFIT 49.1 57.0 67.3 75.3 56.2
Modified

RETROFIT 50.6 50.0 69.2 76.5 57.0

Weighted
RETROFIT 50.0 52.8 65.4 76.5 56.8

TABLE III
SEMEVAL 2015 TASK 13 F1 SCORES OF THE MODELS USING THE

CONTEXTMAX DISAMBIGUATION FUNCTION.

Word Sense Disambiguation
Nouns Verbs Adjectives Adverbs All

RETROFIT 52.5 57.2 77.3 77.8 61.1
Modified

RETROFIT 53.6 56.4 76.0 79.0 61.6

Weighted
RETROFIT 53.9 59.2 75.4 77.8 62.1

TABLE IV
SEMEVAL 2015 TASK 13 F1 SCORES OF THE MODELS USING THE

CONTEXTMAX DISAMBIGUATION FUNCTION, RESTRICTED TO CORRECT
POS

from the biomedical, mathematical and social issues domains,
annotated with part of speech information. The task also
includes named entity recognition, which we do not handle,
except in the incidental case where there is a WN synset for
a named entity. We explore two different methods for WSD.
The first chooses a word sense by identifying a word that co-
occurs in the sentence and has a sense that is closest to a sense
of our target word. The intuition of the model is that although
particular words may be totally unrelated to the sense of the
target word, there should exists somewhere in the sentence
a word pertaining to the subject described by the ambiguous
word. Formally, this method is described as the contextMax
function:

contextMax(w, c) = argmax

s2Si

( max

c2
S

k 6=i
Sk

cos(~s,~c) · p(s|w))

where Si is the set of senses of the ith word of the context
sentence.

The second WSD method incorporates both local and global
context in equal parts. The intuition is that nearby words
in a particular sentence will capture information about the
particular usage of a word, while words that appear over the
course of a passage will characterize the subject matter being
discussed. Both of these component are essential to human
understanding and should aid WSD algorithms, as discussed
in [20]. Formally, we define the localGlobal WSD function as

localGlobal(w, c) = argmax

s2Wij

(cos(~s,~cij) · p(s|w))

where the context vector ~cij for the jth word of the ith sentence
is given by

~cij =

~

lij

|~lij |
+

~gi

|~gi|

Nouns Verbs Adjectives Adverbs All
RETROFIT 49.5 49.2 64.2 79.0 55.7

Modified
RETROFIT 54.8 50.0 67.9 77.8 59.5

Weighted
RETROFIT 53.0 52.4 62.3 74.1 57.9

TABLE V
SEMEVAL 2015 TASK 13 F1 SCORES OF THE MODELS USING THE

LOCALGLOBAL DISAMBIGUATION FUNCTION

Nouns Verbs Adjectives Adverbs All
RETROFIT 52.2 55.6 73.5 80.2 60.2

Modified
RETROFIT 56.6 57.6 74.1 80.2 63.4

Weighted
RETROFIT 55.6 59.2 72.9 76.5 62.1

TABLE VI
SEMEVAL 2015 TASK 13 F1 SCORES OF THE MODELS USING THE

LOCALGLOBAL DISAMBIGUATION FUNCTION, RESTRICTED TO CORRECT
POS

and
~

lij =

X

k 6=j

1

|j � k| ŵik

~gi =

i+2X

n=i�2

X

k

ŵnk

As a baseline we compare against the most-frequent sense
tagger (MFS) trained on the Semcor corpus [9], defined simply
as

mfs(w) = argmax

s2Sw

(p(s|w))

Tables 3 and 4 display results for our models when unre-
stricted. Tables 5 and 6 show results when the search is
restricted by part of speech information. Results are ranked
by F1 score, the harmonic mean of precision and recall.

By all measures, the various RETROFIT implementations
outperform the MFS baseline. Weighted RETROFIT and Mod-
ified RETROFIT both improve the initial model. The best
performing systems on the Semeval 2015 task 13 English
corpus are LIMSI and SUDOKU [9], which achieve F1
scores of 65.8 and 61.6 respectively. This would position both
Weighted RETROFIT and RETROFIT with compound words
and gloss words as second only to the top system.

V. DISCUSSION

Results on similarity judgment are mixed, although it should
be noted that despite the fact that in principle average similar-
ity appears to be a good measure of word relatedness, in our
trials the maximum similarity between two words is a better
predictor of human judgments on RG-65 with all algorithms.
It’s possible that in the absence of disambiguating context hu-
man judges are not actually good at combining the relatedness
of different senses of words and instead specifically search
for related meanings when evaluating similarity. It’s worth
noting that the metric by which our modifications provide the
largest improvements is the metric which RETROFIT itself
also performs best by. But, as discussed above and in [4], even
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human judges often do not score particularly well similarity
tasks, and in fact there may be no real ”gold standard” on such
a task.

The results of the synonym selection task are also mixed.
On the ESL-50 dataset our modifications slightly underper-
form, while on the TOEFL dataset they provide an enormous
improvement. We have no investigated the particulars of the
datasets enough to see if there are anomolous features (over
or under-representation of certain parts of speech, rare word
senses, etc), or if these performance gaps are due more to the
small sample size of the test data. Testing on a wider array of
larger synonym selection datasets could yield insight into the
models’ shortcomings.

Our models are a noticeable improvement on WSD. Inter-
estingly, the Weighted RETROFIT algorithm achieves the best
scores on verbs across all metrics. Again, whether this is a
quirk of the specific corpus is unclear. If not, it may indicate
that homophonous verbs in English tend to be more distinct
from each other than other parts of speech, perhaps because of
more common metaphorical language use. We at least can say
confidently that utilizing more features from WN is an across
the board improvement.

FUTURE WORK

As mentioned above, the limited size and scope of the test
sets leaves room for doubt about the models’ performance
on new datasets, especially when two datasets for the same
task yield strikingly different results, like synonym selection.
A useful exploration would be looking at domain-specific
datasets and significantly larger datasets to identify which
features of the models are most driving the performance.

We also use only a crude model of compound word vectors.
An investigation of better compositional semantic models
could greatly benefit the algorithm, as a large percentage of
WN synsets contain compound words.

Our models are all trained on the relatively low dimensional
global feature vectors produced by Huang et al [5], but
significantly richer embeddings exist, such as the GoogleNews
vectors, which are 300 dimensional and were trained on a
100 billion word corpus using CBOW [10]. We expect that
the quality of the embeddings produced by the RETROFIT
algorithms will scale with the quality of the underlying em-
beddings, and can hope for continual improvement as larger
and better datasets become available.
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Abstract—The use of distributional semantics to represent the
meaning of a single word has proven to be very effective, but there
still is difficulty representing the meaning of larger constituents,
such as a noun phrase. In general, it is unclear how to find a
representation of phrases that preserves syntactic distinctions and
the relationship between a compound’s constituents. This paper is
an attempt to find the best representation of nominal compounds
in Spanish and English, and evaluates the performance of
different compositional models by using correlations with human
similarity judgments and by using compositional representations
as input into an SVM classifying the semantic relation between
nouns within a compound. This paper also evaluates the utility of
different function’s compositional representations, which give our
model a slight advantage in accuracy over other state-of-the-art
semantic relation classifiers.

Index Terms—compositional distributional semantics, nominal
compounds, compound noun relation classification, Spanish word
embeddings, nominal compounds in Spanish, SVM

I. INTRODUCTION

THE use of distributional semantics has become increas-
ingly popular due to its effectiveness in a range of NLP

tasks. The vector-based representation is computed by looking
at the context of every instance of a specific word within a
large corpus, which is based on the idea that the meaning
of a word is determined by its associations with other words
[17]. This idea has a theoretical backing in linguistics and
psychology, since humans can often guess what a word means
solely by looking at its context in a specific sentence [17].
Despite the success of vector-based representation in a wide
variety on contexts, this method still has difficulty handling
larger phrase structures and function words, as opposed to
just isolated content words [13]. Vectors for larger phrases
cannot be reliably used due to the sparseness of data [17].
Distributional semantics also has problems distinguishing parts
of speech [12], [13]. In contrast, formal semantics is able to
capture the syntactic structure of a phrase but lacks the ability
to identify related words and ideas.

Recently there have been efforts to build compositional
models that utilize distributional semantics. They have relied
primarily on either adding or multiplying the vectors, which
does a poor job of capturing the hierarchical, ordered structure
of natural language [18], [13]. Ways of representing con-
stituents larger than a single word that preserve the lexical and

K. Yee is participating in a Research Experience for Undergraduates (REU)
with the Department of Computer Science, CO 80918 USA

syntactic function of a word in a phrase and best represent the
relation between the constituents of a phrase is the next desired
step in creating a more general and powerful framework for
natural language semantics. One of the first steps towards
that goal would be creating a more effective framework for
representing and analyzing nominal compounds. Mitchell and
Lapata [13], Mitchell and Lapata [12], and Guevara [18]
have compared and empirically tested the effectiveness of
different mathematical compositions in representing adjective-
noun, verb-object, and noun-noun compounds, but there has
been little research into representing nominal compounds that
are longer than two words, and the vast majority of research
has been in English, without cross-linguistic inquiries[12].

II. COMPOUNDING IN ENGLISH AND SPANISH

What constitutes a nominal compound is contested between
linguists [2], [8]. For our purposes, we will use the definition
given by Finin [8]:

A nominal compound is the concatenation of two or more
nominal concepts which functions as a third nominal concept.

We will not consider the more theoretical qualifications for
compounds nouns, such as structural fixity, and the exclusion
of phrases with functional words, which are qualifications
proposed by Moyna [2] for a more linguistically rigorous
definition for Spanish compound nouns. The structure N N
in English is productive, recursive, and compositional [3].
In Spanish, N N compounds are rarely productive, rarely
contain more than two elements and are highly stylistic [3],
[2].The process is that of lexical word-formation, as opposed
to English,which has syntactic word-formation for N N com-
pounds [3]. In Spanish, the creation of N N compounds more
closely resembles the invention of a new morpheme,[3] which
is reflected by the fact that only 2% of N N constructions
are written as two words or a hyphenated word without one-
word alternates [2]. Because of the limitations of N N con-
structions in Spanish, many consider the Spanish equivalent
to the English N N structure to be the N P N structure,
with a semantically empty preposition. This structure, similar
to the English N N structure, is productive, recursive, and
compositional [3].

Restricting our attention to compounds only consisting of
two nouns in English, analyzing the meaning of nominal
compounds computationally has proven to be a difficult task
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because the listener must discern the relationship between the
two words, which must be inferred contextually without any
syntactic clues[8]. Consider the cases of “meeting room”, “salt
water” and “aircraft engine”. “Room” defines the location for
“meeting”, “engine” is a part of the “aircraft”, and “salt” is
dissolved in “water”[8]. This problem of determining relations
between the constituent nouns becomes even more difficult
for longer phrases, because we now must determine the
parse of the compound using contextual clues. In the phrase
“computer science department”, “computer science” modifies
“department”, instead of having “computer” modify “science
department”. These factors pose challenges to vector-based
representations of longer compound noun phrases.

In Spanish N P N constructions, despite the presence of
a preposition or potentially determiners, is it still difficult to
discern the relation between the constituent nouns. Spanish
definite determiners are used in a much wider context than
their English counterparts, so they do not provide much useful
insight into the relation between the two nouns. In the majority
of cases, the preposition is “de”, which is semantically empty
in this construction[3], and is used to represent a multitude or
relations, as seen from Table I (taken from Valle [1]).

English Spanish Meaning Implied

leather shoes zapatos de
piel shoes made of leather

sports shoes zapatos de
deporte shoes used to play sports with

winter shoes zapatos de
invierno shoes to be worn in winter time

high-heel
shoes

zapatos de
tacón shoes with high heels

display
shoes

zapatos de
muestra shoes on display

Gucci shoes zapatos de
Gucci shoes designed by Gucci

Table I
SPANISH SEMANTIC RELATIONS.

Thus the Spanish N P N construction poses similar chal-
lenges to the English N N construction. Our goal is to analyze
compound nouns in English (which take on the form of N N)
and semantically equivalent structures in Spanish, which take
on the form N P N [4].

III. PREVIOUS WORK

A. Word Embeddings

A variety of methods for generating word embeddings
have been proposed, most famously the GloVe and word2vec
embeddings. The word2vec model, proposed by Mikolov and
Dean [25], is a continuous skip-gram model that utilizes
deep learning, which is able to capture precise syntactic and
semantic word relationships to generate a vector representation
of a word. The GloVe model [26] is a global bilinear regression
model which combines the advantages of global matrix factor-
ization and local context window methods. It utilizes statistical
information by training on “non-zero elements in a word-word
cooccurrence matrix, rather than on the entire sparse matrix
or on individual context windows in a large corpus” [26].
The CW model, proposed by [23], implements a multilayer

neural network, where the first layer extracts features for each
word and the second layer extracts features from a window of
words. The model is refined using a supervised training step
utilizing data from part-of-speech tagging, chunking, named
entity recognition and semantic role labeling [23], [20]. The
HPCA model [24] is generated by applying Hellinger PCA to
a word co-occurance matrix, which has the advantage of being
much faster than training a neural net, and yields comparable
results on a number of natural language processing tasks.

B. Compositional Models

Very little work has been done in distributional semantics
for Spanish. Some studies have been done on the effectiveness
of vector-based representations on Spanish [6], [7], but none
have considered compositional models. Many studies have
been done in English studying compositional models, [12],
[13], [11], [14], [16], [18], [19], [15] but none have considered
three or four word compound nouns.

There have been many functions suggested for how to
compose two vectors. The general class of models representing
the vector composition is defined by:

p = f(u, v, R,K) (1)

Where u and v are the constituent vectors, R represents their
syntactic relation, and K represents any additional information
required to interpret the semantics of p.[12] Since we are only
considering the composition of compound nominals, we can
hold R fixed. We can also ignore K for simplicity, attempting
to glean as accurate of a meaning as possible without further
pragmatic context [12]. From these assumptions, we arrive at
several more common potential functions: additive, multiplica-
tive, and tensor product, respectively [12].

pi = ui + vi (2)

pi = ui · vi (3)

pij = ui ⊗ vj (4)

The tensor product has interested some researchers since it
does a better job of encoding syntactic information (the tensor
product is not commutative, so it is seen as a representation
that can distinguish “blood donor” from “donor blood”).
However, the tensor product becomes very computationally
expensive, as the number of dimensions grows exponentially
as more constituents are composed [12], [15]. To account for
this, lower dimensional approximations of tensors have been
proposed [15]. The effectiveness of each of these equations,
especially between the additive and multiplicative model, is
still contested. There is evidence pointing to advantages of
each model, so there is still much work to be done to
determine the utility of each function for different applications
in different contexts[16]. Another well-known function is the
weighted additive function, which is regarded as being better
at representing the syntactic relation between its constituents:

pi = αui + βvi (5)
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With regard to nominal compounds, one study showed that the
influence of the modifier noun has a much greater influence on
the overall meaning of the compound than the head noun in
German, with respect to both human ratings and vector-space
models[14]. In contrast, another study determined that the
semantic contribution of the modifier and head to a compound
noun are approximately equal in English[10].That being said,
it could be the case that the average contribution of the
modifier and head varies between languages, so determining a
weighting for Spanish and English could yield different results
to obtain the optimal weighted additive model. An extreme
form of this formula would be to only use the vector from
either the head or modifying noun:

pi = ui (6)

pi = vi (7)

It is also possible to combine the weighted additive and
multiplicative model:

pi = αui + βvi + γuivi (8)

One major disadvantage to the multiplicative model is that the
presence of a zero in either two component vectors will lead to
a zero in the resulting vector, essentially meaning information
from the noun-zero entries multiplied by zero was thrown
away [12] Combining these two models could help alleviate
that effect [12].

Other models for composition include utilizing a partial
least squares regression [18] or using a recursive neural tensor
network [19]. This paper will compare different models for
the composition of two, three, and four word compounds in
Spanish and English.

C. Automatic Compound Noun Interpretation

A variety of taxonomies have been proposed for the clas-
sification of compound noun relations, some of which consist
of a relatively small number of semantic relations, while
others propose an unbounded number [22]. The taxonomy
created by Tratz and Hovy [22] has been widely used because
of its comparatively high level of inter-annotator agreement
for its relations and the large size of the data set. Kim
and Baldwin[10] use wordnet similarity to classify a set of
2169 compounds into 20 semantic categories, achieving 53%
accuracy. Girju [21] uses cross-linguistic data and an SVM
model to achieve and accuracy of 77.9% on an unseen test
set. Tratz and Hovy [22] use a dataset of 17509 compounds
and a maximum entropy classifier to achieve 79.3% for cross-
validation and 51% accuracy on an unseen test set using a
set of 43 semantic relations, using wordnet, surface level,
thesaurus based, and N-gram features. Girju et al.[27] uses
an SVM to classify nominalized noun phrases. Verhoeven et
al.[28] uses word embeddings to classify Dutch and Afrikaans
compound nouns, achieving 47.8 % and 51.1%, respectively.
Dima and Hinrichs [20] use a neural net on the concatenation
of CW-50, FloVe-300, HPCA-200, and word2vec embeddings
on the tratz dataset to achieve 77.7% accuracy on a ten-fold

cross-validation and 77.12% accuracy on an unseen test set.
Although Dima and Hinrichs [20] and Verhoeven et al.[28]
use word embeddings, none of the previously proposed models
used the composition of word embeddings as input for their
model.

IV. EXPERIMENTAL SETUP

A. Materials and Tools

We will evaluate the performance of each composition
function in two ways: by analyzing its correlation with
human similarity judgments, and also by seeing which
composition function yields the best result for classify-
ing compound noun relations using an SVM for En-
glish two-word compounds. For evaluating human judg-
ments, we used the British National Corpus (http://www.
natcorp.ox.ac.uk/) for English and the most recent wikidump
from July 3, 2016 (https://dumps.wikimedia.org/eswiki/latest/)
for Spanish to train word2vec embeddings. The WikiEx-
tractor was used to extract and clean the wikidump
(https://github.com/attardi/wikiextractor). The gensim package
was used to extract 500 dimensional word2vec vectors, using
the CBOW algorithm. For both corpora, stop-words were
removed, and words that occurred less than 100 times for
English and 50 times for Spanish were excluded from the
model’s vocabulary. The Stanford POS tagger version 3.5.2
was used to extract Spanish nominal compounds,[5] and the
BNC’s tagset was used to extract English compounds. Spanish
and English compounds for the test set were randomly chosen
from looking at the list of compounds that included one of the
top 400 words that occurred in the most compounds. This was
to ensure that for each compound in the test set, there would be
a sufficient number of compounds that share one constituent
word for comparison. There were six test sets: two, three and
four word compounds for Spanish and English. For Spanish,
this is with respect to nouns only, not counting the preposition
or determiners when determining the length of the compound.
25 compounds were chosen for each test set, totaling up to
150 test compounds. For each word in the test compound,
another two-word compound sharing that word was chosen
for comparison. So for the four word-test sets, there were 100
pairs for comparison, for the three-word compound sets, there
were 75 pairs for comparison, and for the two-word compound
sets, there were 50 pairs for comparison.

For example, “periodo de expansión del imperio” was paired
with “expansión del universo”, “embajador del imperio”, and
“periodo de ausencia”. “Bomb squad chief” was paired with
“bomb damage”,“drug squad”, and “police chief”.

The goal of analyzing compound noun relation classification
is twofold; it will serve as another metric for comparing
composition functions, and we will be able to determine if
using the composition vectors as input to a classifier can
improve overall performance of the classifier. We only perform
this experiment in English for two-word compounds due to the
availability of large preexisting annotated data sets. Verhoeven
et al.[28] and Dima and Hinrichs [20] use word embeddings
for semantic classification; however, they simply concatenate
the embeddings for the constituent vectors as input. For
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classifying semantic relations in English, we experimented
with our BNC model, Google News Vectors (available at
https://code.google.com/archive/p/word2vec/), GloVe vectors
[26], CW vectors [23] and HPCA vectors [24]. For the
utilization of word2vec vectors, we found better results with
the Google News Vectors, probably due to the amount of data
used to train them, so we report only classification results
utilizing those here. For each embedding type, we chose the
largest possible dimensions, since that has yielded the best
results in [20]. Table II gives an overview of the information
used to train each set. We used the dataset described in

Method Embedding
Size

Dictionary
Size

Training
Data Size Support Corpora

word2vec 300 3,000,000 100.00
bn Google News

GloVe 300 400,000 42.00 bn Common Crawl

HPCA 200 178,080 1.65 bn enWiki+Reuters
+WSJ

CW 50 130,000 0.85 bn enWiki+Reuters
RCV1

word2vec 500 30,025 100 mn BNC
word2vec 500 19,679 120 mn esWiki

Table II
OVERVIEW OF DIFFERENT EMBEDDINGS

[29] (available at http://www.isi.edu/publications/licensed-sw/
fanseparser/index.html), which consists of 37 relations and
19,158 annotated compound nouns. Compounds with words
that were not included in all of the different model embed-
dings’ vocabularies were not included in the analysis, leaving
a total of 18669 compounds. The set was partitioned into
a training module that was 80% of the original set and a
test set that was 20%. After experimenting with a variety
of different classifiers and architectures, we used the Weka
machine learning software (https://weka.wikispaces.com/) to
implement an SVM with a polykernel, with feature selection
using a gain ratio attribute evaluator and a ranker search.
To create the input features, we concatenated the vectors for
the constituent nouns and the composition function vector.
We experimented with using the different word embeddings
individually and in conjunction, and found the best results
be concatenating the constituent and composition embeddings
from the Google News word2vec, GloVe, HPCA, and CW
sets, similar to the work done by Dima and Hinrichs[20].

B. Collecting Similarity Judgments

Responses were collected using Survey Gizmo (https://
www.surveygizmo.com/), using unpaid volunteers. Subjects
were asked to rate how similar or dissimilar compound noun
pairs were on a Likert scale. Each pair was presented twice,
once as “compound 1, compound 2” and again as “compound
2, compound 1” to account for a asymmetry of human judg-
ments. Pairs were presented in random order. Surveys were self
paced and took approximately fifteen minutes. For the English
survey, there were 7 participants. For the Spanish survey, there
were 4 participants. Participants ranged in age from 15-55, and
were self-reportedly fluent in the language of the survey. One
future direction of this study will be to gather more data from
more people, especially for Spanish. For each pair, the average

similarity was calculated on a scale of 1 to 5, 5 being most
similar and 1 being the most dissimilar. Ratings from each
participant were averaged to use to correlate with the model’s
cosine similarity predictions.

C. Composition Methods
For the human judgment correlation task, for each com-

pound in the test and comparison set, representations were
generated by taking the vector representations from the
word2vec model using the CBOW algorithm trained from the
BNC and esWiki corpora. For entries in the Spanish test set,
only the nouns were considered for composing the phrase.
Since the preposition is largely semantically empty and only
serves to illustrate the syntactic connection between the nouns,
it is ignored. As we have previously seen, the preposition
“de” encodes a wide variety of semantic relations; however,
there is a minority of nominal compounds that use different
prepositions like “por”,“para”, “entre”, etc. We will naively
assume here that the preposition does not encode semantic
information and focus only on compounds using the most
common preposition “de”, which is a bit of a generalization. A
future direction of study would be to incorporate information
from the preposition into the composition vector. Articles were
also ignored, since they also do not provide much semantic
meaning, especially considering their more generalized usage
in Spanish compared to English. The composition of the
constituent words for each compound was then calculated
using the following functions: simple additive (equation (2)),
multiplicative (equation (3)), tensor product (equation (4)),
head only (equation (7) for English, (6) for Spanish), modifier
only(equation (6) for English, (7) for Spanish), weighted
additive(equation (5)), and combined weighted additive and
multiplicative(equation (8)). For three word compounds, data
was parsed by hand into (n1 n2) n3 or n1 (n2 n3) so that
syntactically sensitive functions could be properly applied
recursively. The same method was applied to four-word com-
pounds. For compounds longer than two words, the head only
and modifier only models were not calculated, since there are
multiple modifiers and heads.

D. Determining the Parameters of the Weighted Additive and
Combined Models

The parameters of the weighted additive model were de-
termined in two different ways. First, we considered nine
models, with weights varying from 0.1 to 0.9 in a step size
of 0.1, where the sum of α and β adds to one, where the
model with the highest correlation to the human judgments
was taken as optimal. For the purposes of this experiment, the
magnitude of the vector does not matter, because the cosine
similarity is taken for the final metric, which does not take
magnitude into account. We used a grid search to find the
optimal values for α and β, but without the constraint that
they had to add to one, again maximizing the correlation
to human judgments. Likewise, for the combined model, we
used a similar grid search, without the traditional constraint.
The model parameters are described in Table III, where NWA
stands for normalized weighted additive and OWA stands for
optimized weighted additive.
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Combined Model OWA NWA
α β γ α β α β

two-word
Spanish 0.099 0.101 0.000 0.098 0.098 0.5 0.5

two-word
English 0.267 0.264 9.697 0.874 0.898 0.5 0.5

three-word
Spanish 1.452 1.943 -0.006 1.333 1.749 0.2 0.8

three-word
English 0.842 0.724 0.000 0.821 0.719 0.9 0.1

four-word
Spanish 0.949 1.387 4.422 1.065 1.639 0.1 0.9

four-word
English 0.939 0.869 2.580 0.927 0.869 0.1 0.9

Table III
PARAMETERS FOR THE COMBINED, OPTIMIZED WEIGHTED ADDITIVE,

AND NORMALIZED WEIGHTED ADDTIVE MODELS

In Spanish, the head is the first noun, and would be weighted
with α, whereas the head is the second noun in English, and
would be weighted with β. So we see that heavily weighting
the modifier is a consistent trend across the combined, nor-
malized additive, and optimized additive models in English
and Spanish for compounds longer than two words, with
the exception of the four-word normalized additive English
set. This inconsistency could be due to idiosyncrasies in the
relatively small data set. For two-word compounds in English
and Spanish, an even weight distribution yielded the best
results. This could imply that as the length of the compound
noun grows, the semantic importance of the modifier increases.

V. EVALUATION

For the human similarity judgments, we calculated inter-
subject agreement using Spearman’s ρ, using leave-out one
resampling as employed by [13], with the results given in Table
IV.

2W
Spanish

2W
English

3W
Spanish

3W
English

4W
Spanish

4W
English

0.341 0.441 0.357 0.347 0.170 0.321

Table IV
INTERSUBJECT AGREEMENT FOR HUMAN SIMILARITY JUDGMENTS

For future research, we hope to gather more data from
Spanish-speakers to help improve the accuracy of the data. For
the two-word English set, we see that the similarity judgment
is consistent with previous work [13]. As a general trend, inter-
subject agreement declines as the compounds get longer.

We evaluated the similarity of two compounds by taking
the cosine of their vectors, a commonly used metric [12].
To test if a composition model’s results were consistent with
human judgments, we used Spearman’s correlation, where we
compared the cosine with the average human similarity judg-
ment. Similar to [12], the results indicate that the similarity
judgment task was relatively difficult, but there still was a
descent amount of consistency between participants.

For noun relation classification, we used two metrics. We
performed a ten-fold cross-validation on the training set,
and also tested each model on the unseen test set. For the
parameterized functions, we used the optimized parameter

values from the corresponding human judgment correlation
test. Since the optimal normalized parameters from the 2-word
English set was 0.5 and 0.5, we did not perform a test for the
normalized weighted additive set, since the proportions are the
same as the simplified additive model. We also did not test the
tensor product model, due to constraints in dimensionality.

VI. RESULTS

A. Correlation with Human Similarity Judgments

Table V shows the model’s predictions correlated with the
human judgment using Spearman’s ρ.

2W
Span

2W
Engh

3W
Span

3W
Eng

4W
Span

4W
Eng

simple
additive 0.365 0.617 0.585 0.331 0.230 0.650

multiplicative 0.258 0.624 0.227 -0.057 0.105 0.372
tensor 0.357 0.621 0.040 -0.041 0.266 0.321
head 0.280 0.443
modifier 0.191 0.060
normalized
weighted
additive

0.365 0.617 0.521 0.312 0.289 0.336

optimized
weighted
additive

0.371 0.633 0.690 0.330 0.435 0.654

optimized
combined 0.342 0.670 0.652 0.338 0.434 0.658

Table V
SPEARMAN’S CORRELATION BETWEEN HUMAN SIMILARITY JUDGMENTS

AND COSINE SIMILARITY PREDICTIONS

The simple additive model and the multiplicative model
yield comparable results for two-word compounds, but the
effectiveness of the multiplicative model declines for longer
compounds. This could be due to the previously discussed fact
that zero or low-valued entries in the vector can essentially
“throw away” data in the component vector, leading to poor
results as more vectors are composed. As more and more
vectors are composed, this problem is exacerbated and begins
to affect performance. Likewise, the tensor product performs
well on two-word compounds in comparison with the additive
model, but less so on longer compounds, especially three-word
compounds. This may imply that in addition to dimensionality
challenges, the tensor product may face similar limitations
to the multiplicative model for composing larger phrases.
For both English and Spanish, for two-word compounds, the
head-only model outperforms the modifier-only model. All
other models outperform the head-only and modifier-only
models, indicating the utility of the composition functions.
For the optimized weighted additive and combined models,
the results are very comparable, with the optimized additive
model slightly outperforming the normalized additive model.
The combined and weighted additive models yield the most
promising results, especially since their accuracy is relatively
consistent for handling longer phrases.

B. Compound Noun Relation Classification
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word2vec+HPCA+CW+GloVe word2vec GloVe HPCA CW
CV test set CV test set CV test set CV test set CV test set

no composition
function 76.76 77.3 75.41 76.67 73.35 73.21 71.60 72.39 61.96 62.26

simple additive 76.52 76.95 75.85 76.01 72.63 73.59 71.36 71.59 61.98 62.23
weighted additive 76.47 77.70 74.80 76.76 72.70 73.62 71.37 71.48 62.02 62.31
multiplicative 78.78 78.23 75.82 76.04 73.42 73.30 71.95 72.50 62.52 62.58
combined 78.69 78.09 75.99 76.09 73.38 73.30 71.36 71.59 62.27 62.18

Table VI
CROSS-VALIDATION ACCURACY AND ACCURACY ON AN UNSEEN TEST SET FOR SEMANTIC RELATION CLASSIFICATION

Table VI gives the results for each tested function on the
different word embeddings, including the concatenation of all
the different embeddings. The CV column represents the 10-
fold cross-validation accuracy, and the the test set is comprised
of unseen noun compounds. Input with only the constituent
vector embeddings without the composition function was also
tested to give a baseline. Adding the composition function
improves the performances for every type of embedding,
with the most dramatic improvement in the concatenated
word2vec+HPCA+CW+GloVe model.

We achieved the best results using the concatenation of
the word2vec, HPCA, CW, and GloVe embeddings. Adding
the composition function improves this models performance
by as much as 2.02% using the multiplicative function,
demonstrating the utility of using a compositional function
during classification. The simple additive and weighted addi-
tive models actually perform worse in cross-validation than
using no composition function at all. The combined models γ
parameter was 9.697, so the multiplicative component of the
combined model mostly overpowers the additive components,
which explains why its performance is similar to that of the
multiplicative model. Our model slightly outperforms Dima
and Hinrich [20], with its high cross-validation score being
77.7%, and is comparable to the state of the art model of Tratz
and Hovy[22], achieving 79.3%. However, the model of Tratz
and Hovy[22] only achieves 51% accuracy on an unseen test
set, whereas our model is much more consistent, with 78.23%
accuracy. Again, we narrowly outperform Dima and Hinrich
[20], with its accuracy on an unseen test set, which was
77.12% [20]. Tratz and Hovy [22] use a slightly different set
of relations and data set, but similar to the work of Dima and
Hinrichs[20], the consistency when testing unseen compounds
points to the robustness of our model. It is also clear that
the small performance increase spurred by the addition of the
composition function gives our model its slight increase in
accuracy over the model of Dima and Hinrichs[20], with a
4.84% decrease in relative error for cross-validation and 4.85%
decrease in relative error for an unseen test set.

VII. DISCUSSION

With regards to the effectiveness of the additive and mul-
tiplicative classes of models, which has been contested by
different sources, this paper presents strong evidence that
multiplicative class models do not perform well for longer
phrases. This idea is further supported by the low γ parameters
in the optimized combined model for three and four word

compounds. However, within the context of semantic rela-
tion classification, the multiplicative model is the strongest,
whereas the additive model does not improve performance
significantly, and sometimes even worsens performance. One
interesting direction of future study would be to see which
function performs best for classifying longer compounds, since
the multiplicative model did not perform well for the human
similarity correlation task for longer compounds. This paper
also suggests that the semantic importance of the head noun
diminishes as the compound gets longer, and that the semantic
importance of the modifier becomes greater, as illustrated by
the optimized parameters of the weighted additive models. One
future direction of study would be to implement more complex
composition functions, or to incorporate information from the
prepositions in Spanish compound nouns into the composition
vector. Another direction of study would be to expand the
noun relation classification task to a Spanish data set, and
compare results, or to expand the classification task to three
or four word compounds in English. This study points to the
robustness of the combined model, since it is able to capture
information from both the additive and multiplicative models.
It performs well for three and four word compound human
judgment similarity correlation, and it performs well in the
relation classification task. The flexibility of its parameters,
which can vary between languages and for compound nouns
differing in length, makes it very promising.

VIII. CONCLUSION

The goal of this research is to find the optimal way to
represent compound nouns of length two or greater using a
vector-based representation. We have illustrated the utility of
the multiplicative model in relation classification, but it has
shortcomings in representing larger phrases in comparison to
the additive class of models. Our new classification system,
which incorporates composition vectors into SVMs, is com-
parable to other state-of-the-art models using cross-validation,
or slightly outperforms them using an unseen test set.
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[24] Lebret, Rémi, and Ronan Collobert. “Word embeddings through
hellinger PCA.” (2013).

[25] Mikolov, T., and J. Dean. “Distributed representations of words and
phrases and their compositionality.” Advances in neural information
processing systems (2013). 1-9.

[26] Pennington, Jeffrey, Richard Socher, and Christopher D. Manning.
“Glove: Global Vectors for Word Representation.” EMNLP. Vol. 14.
2014.

[27] Girju, Roxana, et al. “Support vector machines applied to the classifi-
cation of semantic relations in nominalized noun phrases.” Proceedings
of the HLT-NAACL Workshop on Computational Lexical Semantics.
Association for Computational Linguistics, 2004. 73-78.

[28] Verhoeven, Ben, Walter Daelemans, and Gerhard B. Van Huyssteen.
“Classification of noun-noun compound semantics in Dutch and
Afrikaans.” Proceedings of the Twenty-Third Annual Symposium of the
Pattern Recognition Association of South Africa (PRASA 2012). 2012.

[29] Tratz, Stephen. Semantically-enriched parsing for natural language un-
derstanding. University of Southern California, 2011.

REU-RET Symposium on Machine Learning 2016

University of Colorado, Colorado Springs 12



Computation Pattern Classification for Compiler
Optimization

Nathan Harmon∗, Qing Yi† and Jugal Kalita‡
University Of Colorado

at Colorado Springs
Colorado Springs, Colorado 80918

Email: ∗nharmon@uccs.edu, †qyi@uccs.edu, ‡jkalita@uccs.edu

Abstract—The first step towards automated code optimization
is program comprehension. Develops can manually identify
computation patterns, but it consumes more than half of their
time [2]. Once the compiler knows the computation model of a
program, optimizations can be applied that are likely to perform
well. We present an extensible machine learning approach using
dynamic features to determine the computation patterns with
94% accuracy.

I. INTRODUCTION

Different computation models require different types of op-
timizations. Stencil code requires vastly different optimizations
then Sparse Matrix code. In the pursuit of automated opti-
mization, extracting computation patterns such as categories of
code (Stencil, Sparse Matrix, etc.) is the first step. Comprehen-
sion of the code can be done by the developer, but consumes
more than half of the developers time [2]. The introduction
of the human element can also introduce additional errors
from incorrectly tagged code. Once the type of computation
is identified to a compiler, it can select optimizations that will
likely be effective. Code comprehension is the first of many
steps towards automated optimization of code.

Machine learning has been used to solve many difficult
problems. Before machine learning can be used to address
a problem, the problem must first be constructed in a way
that machine learning is suited to solve, such as classification.
To exploit the power of machine learning, we formulated the
problem as a classification problem. We construct a finite
number of classes representing different computation patterns
and an Open Set for all other computation patterns. For the
case study, we focus on separating various types of Stencil
code. The features were extracted at runtime, as a time series.
The uses of dynamic features has not been explored in previous
work. We then use a Dynamic Recurrent Neural Network
(LSTM) to classify different types of stencils. We must use
dynamic networks since the length of the features extracted
from the programs varies for each program. We will show
that this approach has promise for future work in program
compression.

II. RELATED WORK

Machine learning has been used to improve compiler opti-
mization. Much of the past work is focused on heuristics to
improve the selection of optimization. Heuristics created by

hand or typically designed to operate on a particular platform
and do not generalize to other platforms. Machine learning
allows the heretics to be optimized for each platform, so it
selecting better optimizations for that platform.

Monsifrot, et al. [5] used decision trees and boosting to
create new compiler heuristics for loop unrolling. The fea-
tures were the number of statements, number of arithmetic
operations, minimum number of iterations, number of array
accesses, the amount of array element reuses and the number
of if statements. Using the features they constructed a tree with
the probability of loop unrolling speeding up the computation.
The decision tree was used to replace the existing heuristic.

Stephenson et al. [6] used genetic programming to learn
priority functions – cost function describing the efficacy of
a heuristic. The priority function must be learned for each
application. The genetic algorithm creates a priority function
that selects the heuristic that will choose the best optimization
for the application. They show that new heuristic can be
created from the result of the genetic algorithm.

Cavazos, et al. [1] also used machine learning (logistic
regression) to select the best optimizations at compile time.
Rather than using static features, as most others works did,
they used performance counters as inputs to the model. They
determined that the performance counters gave more informa-
tion on the behavior of a program then static code features.

Fursin et al. [3] created a machine learning based compiler.
Which reduced the number of iterative compilation, needed to
select good optimizations for unknown platforms. They used
static program features (variables, types, instructions, basic
blocks, temporary variables, etc.) along with runtime behavior
to train various machine learning models.

III. FEATURE SELECTION

Many past approaches used static features including variable
names, comments, and documentation. Variable names and
comments contain meaningful information, yet they depend on
the programmer. They do not generalize well across programs,
reducing their usefulness as features. In contrast, we collect
runtime features and only characteristics that are present in
all programs. The goal of the feature is to encapsulate the
inherent pattern in the computation. We do this by focusing
on the memory reference in the program. For each memory
reference, we create a feature containing six elements. The
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items are: read or write, data type, dependents, modification,
scope, and relative distance from last access (arrays only).

A. Read or Write

Knowing whether the reference is being read or written to,
is essential for understanding what role a reference plays in the
computation. If a memory reference is being read, it indicates
that the value will be used to calculate a value yet to be seen.
Whereas a write is the result of computation.

B. Data type

Secondly, the data type. The data type limits how a memory
reference is used, which in turn limits how the reference is
used in the computation. Often structures such as loops can
be identified by examing the alternation is the data types.

C. Dependents

Variable dependents lends information about the computa-
tion while remaining general across different types of compu-
tation.

D. Modification

We define modification as any arithmetic operation (+, -, /,
*). The modification directly captures the computation that is
occurring.

E. Scope

The scope is crucial since it affects what can be accessed.
The representation of the scope is only the changes in the
scope, not a particular block. Each time the scope changes
a boolean is negated, creating an alteration of 0 and 1. The
change in scope generalizes better across different programs,
then indicating a particular block.

F. Relative Distance

If the reference was to an array, then the relative distance
from the last access to that array is included in the feature.
The relative offset captures the array access pattern.

IV. FEATURE CREATION

The programs are instrumented to output the above features
at runtime. The test programs for this paper are input inde-
pendent. If the program is input dependent, then it should be
run multiple time with different inputs to collect a variety of
possible outputs. The features that are output by the programs
are time series data. Each feature by itself includes limited in-
formation about the computation, but the sequence of features
encapsulates essential characteristics of the computation.

V. DATA SET

The data set consists of 9565 unique generated stencil codes.
The stencil code contains 1-point through 11-point stencils.
Each of the stencils was instrumented to output the features.
Then run and the features were collected.

Fig. 1. Example Feature

VI. PROGRAM CLASSIFICATION

To take advantage of the power of machine learning, we
constructed a classification problem. There are an infinite
number of possible computation patterns, so the classes will
never cover all possibilities. With that said it is feasible to
cover all possibilities that have known optimizations. In this
case study, we will separate stencil code into classes. The
classes will represent the number of points in each stencil.
There will also be an Open Set for stencil code that we do
not have a class for. Since we have a good sampling of the
types of stencil code that belong in the Open Set, we did not
do any additional work in the Open Set filed.

VII. NEURAL NETWORK

Since the features make variable length time series, we
use a standard implementation of a Dynamic Recurrent Neu-
ral Network (LSTM)[4]. We use a dynamic version of the
networks since the number of features from each program
varies. The numbers that represent each element in are features
do not hold meaning, so we found that we obtained better
results when we used learned embeddings of the features.
The features are input to the network using one-hot encoding,
and the learned embedding is looked up for the feature. The
current implementation requires a minimum of 25 features in
each series and tunicates the series if more than 100 features
exist. The network has six outputs; the first five outputs are
for a 1-point stencil, 8-point stencil, 9-point stencil, 10-point
stencil and 11 point stencil. These are the most common types
of stencil code in the test set. The network has also been
evaluated with different configurations of output classes with
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Fig. 2. Network Outputs

similar results. The last class is an Open Set for all other types
of stencils.

TABLE I
NETWORK RESULTS

Learned Embeddings Accuracy
No 74%
Yes 94%

VIII. EVALUATION

We evaluated the network using tenfold validation across
the data set. Without the learned embeddings, the accuracy
of the network was 74%. Next, we tested the network using
learned embeddings which obtaining 94% accuracy. Changing
which classes of stencil code we classified and which belonged
to the Open Set did not change the accuracy. This result
shows promise of this being a valid approach to identifying
computation patterns in code. For this case study, we had good
training data for the types of computation that belonged in the
Open Set. In an actual application, we would not have good
examples of what belongs in the Open Set. When randomly
generated features were input into to the network to simulate
unseen data, which should be classified into the Open Set,
we saw poor accuracy. This is expected since there was no
designed to ensure the unseen data would be classified as Open
Set.

IX. FUTURE WORK

Additional effort will be put into classifying unseen com-
putation patterns as Open Set. This will make this approach
valid for use in the selection of optimization. More evaluation

will be done with additional types of computation outside of
stencil code.
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Abstract—Computational software programs, such as Maple
and Mathematica, heavily rely on superfunctions and meta-
algorithms to select the optimal algorithm for a given task. These
meta-algorithms may require intensive mathematical proof to
formulate, incur large computational overhead, or fail to consis-
tently select the best algorithm. Machine learning demonstrates
a promising alternative for automatic algorithm selection by
easing the design process and overhead while also attaining
high accuracy in selection. Two case studies are selected to
demonstrate this hypothesis, namely the resultant superfunction,
which computes the pairwise difference between roots of any
two polynomials, and the shortest tour superfunction, which
finds the least weight Hamiltonian cycle in a graph. These
functions have multiple algorithms available for their computa-
tion in many mathematical software programs. Neural networks,
random forests, k-nearest neighbors, and linear and RBF kernel
SVMs are each trained as automatic algorithm selection tools.
For the resultant superfunction, the models are trained to select
algorithms based on which will give the lowest runtime for a given
input. In this case, neural networks perform the best, correctly
selecting the optimal algorithm out of the four available 86%
of the time in Maple and 78% of the time in Mathematica.
When used as a replacement for pre-existing meta-algorithms,
the neural network brings about a 68% runtime improvement in
Maple and a 49% improvement in Mathematica. For the shortest
tour superfunction, the machine learning models are trained to
minimize both runtime and approximation error subject to user
specified weights on how important each aspect of performance
is. Random forests outperform other machine models, attaining
a 99% accuracy in selecting the optimal algorithm. When
Mathematica’s meta-algorithm is replaced with the random forest
model, not only is the model able to select the algorithms that give
the shortest tour (zero approximation error) in a given graph,
but it does so while lowering the runtime by 75% compared to
Mathematica’s meta-algorithm.

Index Terms—Resultant, Shortest Tour, Traveling Salesman
Problem, Machine Learning, Meta-algorithms, Superfunctions,
Algorithm Selection, AAS, Maple, Mathematica, Computational,
Software

I. INTRODUCTION

The algorithm selection problem was first formalized by
Rice [1] and is stated as follows:

Given the space of all problems P , along with an algorithm
space A which contains all known algorithms to solve the
problems in P , determine a selection mapping S : P ! A
that maximizes performance for each problem x 2 P .

That is, if we measure performance in Rn, where there are
n dimensions of performance to take into consideration (e.g.

runtime, memory usage, error), and if we define a performance
measure p : A ⇥P ! Rn that maps an algorithm applied to a
problem instance to its performance in Rn, we wish to find the
aforementioned selection mapping S such that for any x 2 P ,
it holds that ||p(S(x), x)|| � ||p(a, x)|| for each a 2 A . In
essence, S finds the algorithm that offers the best performance
for any problem instance.

A robust solution to the algorithm selection problem is
especially important for NP-Hard problems, where the algo-
rithm runtimes can be highly variable based on the inputs
to the problem. Mathematical and scientific computational
software, such as Matlab, Mathematica, Maple, Sage, and
NumPy, have largely resorted to employing superfunctions and
meta-algorithms as a solution to this problem. Superfunctions
are methods that encapsulate function calls to more specific
methods to compute what the user desires. For example, the
superfunction dsolve can be called by a Maple user to solve
a system of ordinary differential equations, but it does so by,
in turn, calling more specific subroutines that are available to
solve such systems, such as the Taylor series method or the
Rosenbrock method. To determine which specific method to
call, these superfunctions use a meta-algorithm, which is re-
sponsible for making an educated choice as to which algorithm
will perform the best, usually with regards to runtime.

Algorithm selection ultimately relies on properties of the
inputs. Some inputs simply just won’t work with certain
algorithms, and other algorithms are able to provide perfor-
mance enhancements and error reductions if the input is well
conditioned. The latter opens up an opportunity for machine
learning to be the ultimate selector of which algorithm to
employ. Meta-algorithms rely on preconceived notions and
rules of thumb about which algorithm should be the best in
a given situation, rather than on statistical data about what
has been the best approach. Designing meta-algorithms can be
extremely complicated, especially to take in as many features
of the inputs as possible. It is very likely some features are
missed or will have to be ignored for the sake of computation.
The difficulty of design is escalated when multiple aspects
of the output are important, such as when both runtime and
error reduction need to be taken into account instead of just
one or the other. In addition, the complicated design of meta-
algorithms can add large overhead to what may seem to be a
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simple task. Sometimes, this overhead is more than that of the
ultimate algorithm selected [2].

Machine learning can be used in practice to replace meta-
algorithms by acting as a classifier to analyze important
features of the input and then classify the input into which
algorithm would be appropriate for it. This approach allows
the program to make use of a wider feature set to make
more precise decisions, compared to the smaller feature set
the designers of meta-algorithms are usually forced to focus
on. This added precision brings about a higher accuracy in the
proportion of times the best algorithm is selected. Machine
learning also avoids the need to create rules of thumb based
on each feature and eases the design process needed to create
an algorithm selection tool. Such an approach can be applied
to any superfunction with performance dependence on inputs.
For each superfunction, the important input features that affect
performance need to be extracted to train the model, a general
process which does not require significant tailoring to any
specific problem as meta-algorithm generally do. Additionally,
the problem of adding newly implemented algorithms to the
pool of ones to select from becomes trivial; the machine
learning model need only be retrained to account for these
new algorithms, which takes a matter of seconds, compared to
a total rewrite and overhauled design of meta-algorithm code.
Lastly, machine learning can take into account multiple facets
of runtime when choosing an algorithm, such as runtime,
memory usage, and error, whereas meta-algorithms typically
have to focus on only one of these aspects.

This paper aims to make headway by using machine learn-
ing as a tool for automatic algorithm selection (AAS) in com-
putational software. Two case studies are used to providence
evidence for this hypothesis: the resultant superfunction and
the shortest tour superfunction. The resultant superfunction
is available in most symbolic computation programs (e.g.
Mathematica, Maple, Sage), and others with greater support
for graph objects typically have a shortest tour function imple-
mented (e.g. Mathematica, SAS). For these case studies, Maple
and Mathematica are used to evaluate the results of machine
learning and compare them to their corresponding meta-
algorithm implementations. The main technical contributions
of this paper are

• Developing a general approach and necessary formula-
tions for using machine learning to automate the selection
of algorithms in computational software

• Demonstrating, through the resultant and shortest tour
superfunctions, the success of machine learning as a tool
for AAS

• Empirically comparing the performance of machine
learning models to that of Maple’s and Mathematica’s
meta-algorithms

The rest of the paper is organized as follows. Section 2
discusses related work. Section 3 introduces the mathematical
background of the resultant and the algorithms used for its
computation. Maple’s meta-algorithm for choosing amongst
these algorithms is also discussed, as well as the features and

datasets used for training multiple machine learning models.
Section 4 does the same for the shortest tour superfunction.
Section 5 evaluates the accuracy of different machine learning
approaches and compares these results to those of Maple and
Mathematica, the main ideas of which are again summarized
in Section 6.

II. RELATED WORK

Meta-algorithms are not the only approach to the algorithm
selection problem. The algorithm portfolio paradigm [3] was
an early attempt at a solution, which, in effect, selects a
portion of all available algorithms and runs them in parallel
until one of them finishes. The parallel computation causes a
large resulting overhead, but nevertheless, this method shines
for certain problem classes with heavy-tailed runtime distribu-
tions. In these cases, the algorithm portfolio paradigm is more
advantageous than running a single algorithm [4]. Dynamic
algorithm portfolios [5] provide a step forward from traditional
algorithm portfolios by running a set of algorithm in parallel,
but then iteratively updating the priority of each process by
how well each is performing. The biggest problem here,
however, is developing and implementing a measure in each
algorithm that allows one to judge the current progress made.
More importantly, this measure needs to designed such that it
allows for a fair comparison between different algorithms.

For many end users in scientific and mathematical software,
these parallel computing approaches are not feasible given
their large overhead. Although these approaches minimize
runtime, no regard is given to the resource management aspect
of performance. Because of this, meta-algorithms have been
selected as the preferred tool in computational software.

The idea of using statistical and machine learning tech-
niques for the selection of algorithms is not unheard of. Brewer
[6][7] brought about the idea of using regression for perfor-
mance predictions by using linear fitting to predict the runtime
of different implementations of multiprocessor libraries on
unseen architectures. In the field of meta-learning, Bradzil et
al. [8] applied this technique using an Instance-Based Learning
approach to select appropriate learning algorithms for different
sets of problems. Similarly, the study in this paper continues to
build upon this idea in the context of computational software.

III. THE RESULTANT CASE STUDY

To demonstrate the overarching hypothesis that machine
learning can be a better alternative to meta-algorithms for use
in computational software, a popular superfunction was chosen
as the first case study, namely the resultant. The resultant
is a fundamental tool used in computer algebra, algebraic
geometry, algebraic cryptography, and elimination theory, and
it finds higher level use in algorithms for integration, solving
systems of nonlinear equations, computing the discriminant of
two polynomials, analyzing greatest common divisors, and so
forth.
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A. The Resultant

Given two polynomials a, b 2 F[x
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], where F
denotes an integral domain, of degree n and m respectively,
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The resultant turns out to be of interest because computing
the determinant of the Sylvester’s matrix is equivalent to the
following :

Res

xl(a, b) = det(S
xl(a, b)) = a

m

n

b

n

m

Y

(ra,rb):

a(ra)=b(rb)=0
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For monic polynomials, this is the product of the pairwise
difference in the roots r
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]
of each polynomial. This becomes especially important for
handling the roots of polynomials in an algebraic fashion, that
is, without actually having to explicitly compute their value.
Thus, in computation, the roots are never solved for, because
that is a problem in and of itself and defeats the purpose of
handling the roots algebraically.

Although more exist, four algorithms are generally used
to compute the resultant: Sylvester’s matrix, Bezout’s matrix
[11], Collin’s modular resultant [12], and Brown’s subresultant
pseudo-remainder sequences [13]. All four of these algorithms
are available in Mathematica and Maple.

The computation of the resultant via Bezout’s matrix is
quite similar to doing so with Sylvester’s matrix, given above.
Bezout’s matrix is defined as B(a, b) = (b

ij

)
i,j=1,...,max[n,m]

with elements b
ij

=
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min[i,n+1�j]

k=1
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.
The determinant of this matrix is a multiple of the resultant
of a and b.

Collin’s modular resultant algorithm derives from the idea
that taking the determinant of a matrix, such as Sylvester’s
matrix, only requires addition and multiplication operations.
Thus, it makes sense to take advantage a homomorphism
� : X ! Y , where it holds �(x
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+ x
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) = �(x
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) + �(x
2

)
and �(x
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) for any x
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2 X . In this
case, it also holds then for a matrix Q = (q

ij

) with elements
q

ij

2 X that �(det(Q)) = det(�(Q)). Collin originally
applied this result to the domain of integers Z using the
mapping � : Z ! Z

p

, where p is a prime integer, to take

advantage of the fact that if |det(Q)| < p

2

, then �(det(Q)) =
det(Q), and thus, by the previous homomorphic equality,
det(�(Q)) = det(Q). Typically, to make use of smaller
primes, several primes and homomorphic mappings are used
to do the reduced calculations, the results of which can then
be recombined using the Chinese remainder theorem.

Brown’s subresultant algorithm is a generalization of the
Euclidean algorithm [14] for computing the greatest common
divisor of two integers or polynomials. For polynomials a, b 2
F[x

1

, x

2

, . . . , x

k

], assume, without loss of generality, that
deg(a) � deg(b). When the division algorithm holds, a can be
written as a = b ·q+r, where q, r 2 F[x
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, x

2

, . . . , x

k

] and are
called the quotient and remainder, respectively. If the division
algorithm does not hold, pseudo-remainders are used instead
by introducing a constant multiplier to a. The Euclidean
algorithm makes use of the fact that gcd(a, b) = gcd(b, r),
so we can recursively apply this reduction until the remainder
is 0. The subresultant algorithm uses a similar equality but
applied to subresultants, which come from submatrices of
Sylvester’s matrix. These are denoted Res

j

xl
(a, b) as the j-

th order subresultant, which effectively eliminates j rows and
columns from Sylvester’s matrix. The following equality then
holds:
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(a, b) = (�1)(n�j)(m�j)

b

n�deg(r)

m

Res

j

xl
(b, r)

This allows us to iteratively simply the problem, just like the
Euclidean algorithm.

B. Meta-algorithms

Mathematica’s meta-algorithm to select among the four
available algorithms is hidden, but Maple’s is available in the
documentation on the resultant superfunction and by using the
showstat command to view the source code. For univariate
and bivariate polynomials with rational coefficients (including
integral coefficients, even though the two are stored in memory
differently), Maple uses modular methods for high degree
polynomials, whereas the subresultant algorithm is used for
those with lower degrees. In all other cases, Bezout’s matrix
is used. It’s worth noting that, even though Maple offers
Sylvester’s matrix as an option, it is never considered by the
meta-algorithm. Without a doubt, this is because, in most
cases, taking the determinant of a smaller matrix, such as
Bezout’s matrix, is faster than taking the determinant of
a larger matrix, such as Sylvester’s matrix. However, this
assumption ignores important factors, such as the computation
of the elements in Bezout’s matrix, whether any elements
are zero, whether floating point numbers are being used,
the kernel of the program, and so on. These factors can
regularly make Sylvester’s matrix a more viable method; in
fact, for randomly sampled polynomials, the proportion of
times Sylvester’s matrix outperforms all other algorithms is
close to the same proportion of times Bezout’s matrix does so
too.
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C. Machine Learning Formulations

Machine learning can be applied to the algorithm selection
problem by using classification to categorize a pair of input
polynomials into which algorithm will work for best for them.
This classification relies only on a set of attributes or features
that are taken from a quick analysis of the two polynomials
a and b passed in as arguments during the function call
resultant(a, b, x

l

), the resultant of a and b with respect to
the variable x

l

. Feature engineering can be completed by
analyzing the source code for implemented algorithms or by
having a general understanding of each algorithm and then
determining the fundamental features of the inputs on which
the runtime complexity depends.

The basic features on which to classify are generally easy
to spot. For example, it is clear to see that all four available
algorithms to compute the resultant depend on the degrees of
the input polynomials, although in different manners; the di-
mensions of Bezout’s and Sylvester’s matrices directly depend
on the degrees of the polynomials, and the coefficient bounds
of Collin’s modular method changes with the degrees of the
polynomials, as well as the number of iterations that occur in
the subresultant algorithm.

It is usually the case that algorithms scale differently with
regards to changes in any given feature. For example, the
cost to take the determinant of Sylvester’s matrix scales
polynomially with the degrees of the inputs, whereas the
coefficient bound in the modular resultant algorithm scales
factorially. It’s also possible that an algorithm’s runtime may
change with a given feature, whereas another algorithm’s may
not change at all, as might happen with the fact that Sylvester’s
matrix could care less about the polynomial ring, whereas the
modular method’s runtime may change significantly.

After enumerating many of these features, the list was nar-
rowed down using the ReliefF algorithm [15] to 18 attributes
from an initial size of 30. The ReliefF algorithm iteratively
takes a random feature vector from the training data and
creates a weight for each feature by analyzing the k nearest-
hits, which are the closest feature vectors under the L1 norm
with the same classification, and the k nearest-misses from
each different class, which are the closest feature vectors with
a different classification. The full list of attributes used for the
resultant case study, along with their descriptions, is given in
Table I.

As for labeling, there were four target classes for each of
the four available algorithms. Classification into one of these
categories means the resultant algorithm corresponding to that
class gives the best performance in terms of runtime.

The dataset consisted of 18,346 randomly generated poly-
nomials, which were randomly paired into 9,173 inputs, as
the resultant function takes two polynomials as a single input.
Since the learning was supervised, the output class for each
input in the dataset was obtained by running each of the
four algorithms, which are already implemented in Maple and
Mathematica, and selecting the resultant algorithm that gave
the least runtime over an average of thirty runs.

Neural networks, random forests, k-nearest neighbors, and
SVMs with linear and RBF kernels were trained on the given
data. The neural network was built with Matlab’s pattern
recognition tool and consisted of a single hidden layer with
10 sigmoid hidden neurons and a softmax output layer. These
formed a feed-forward network that was trained with scaled
conjugate gradient backpropogation. The data for the neural
network was split into 70% training, 15% validation, and 15%
testing.

The random forest model was built based off the model in
[16] with 50 random trees that, at each node, split on a random
selection of five features. Forests with more trees did not
offer significant gains in accuracy compared to the associated
cost in runtime, and splitting among less than five features
caused a loss in accuracy. For the k-nearest neighbors model,
classification was done based solely on the nearest neighbor,
since using multiple neighbors caused the accuracy to drop off
steeply. A linear search with the Euclidean distance norm was
used to find the nearest neighbor. Both the random forest and
the k-nearest neighbors model were trained with 10-fold cross
validation. Lastly, the SVM model was trained with both a
linear and a RBF kernel through libsvm’s interface. For these
three methods, data was divided into 80% training and 20%
testing.

IV. THE SHORTEST TOUR CASE STUDY

The second case study chosen to evaluate machine learn-
ing’s capabilities as an automatic algorithm selection tool was
the shortest tour superfunction, which chooses amongst several
algorithms to solve the traveling salesman problem.

A. The Traveling Salesman Problem

Given an undirected, weighted graph G, the traveling sales-
man problem (TSP) asks for the route with the least weight
that visits each vertex once and returns to the starting vertex.
G is often taken to be a simple graph, since any parallel edges
can be eliminated to the one with the least weight and loops
are never used in the final tour. Often, the problem may take a
set of points as an input, with the goal now attempting to find
the shortest route that visits each point given that the distance
between any two points is determined by some metric, such as
the Euclidean norm or the Manhattan distance. This is just the
original problem applied to a complete graph, where any two
points are connected with edge weights determined by their
physical distance from each other.

Mathematica provides implementations of the following
algorithms to solve the traveling salesman problem for graph
objects, which are available through its FindShortestTour su-
perfunction:

• Greedy [17]
• Greedy Cycle [17]
• Integer Linear Programming (ILP) [18]
• Simulated Annealing [19]
• Or-Opt [20]
• Two-Opt [20]
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TABLE I
POLYNOMIAL FEATURES

No. Feature Description
1. True/False: a, b 2 Z[x1, . . . , xk] Whether or not polynomials have all integer coefficients
2. True/False: a, b 2 Q[x1, . . . , xk] Whether or not polynomials have all rational coefficients
3. True/False: a or b has floating point coefficients Whether or not computations will require floating point precision
4. Number of indeterminants Number of variables in both polynomials combined
5. deg(a) Degree of a with respect to xl
6. deg(b) Degree of b with respect to xl
7. Number of terms in a Self explanatory
8. Number of terms in b Self explanatory
9. Sparsity rating of a (Number of nonzero coefficients of a)/(deg(a) + 1)

10. Sparsity rating of b (Number of nonzero coefficients of b)/(deg(b) + 1)
11. Number of algebraic coefficients in a The number of terms that consist of a variable besides xl
12. Number of algebraic coefficients in b The number of terms that consist of a variable besides xl
13. Proportion of algebraic coefficients in a What portion of coefficients are purely algebraic in a

14. Proportion of algebraic coefficients in b What portion of coefficeints are purely algebraic in b

15. lcoeff(a) The numeric coefficient of the highest order term in a

16. lcoeff(b) The numeric coefficient of the highest order term in b

17. Numeric coefficient with smallest magnitude out of a and b Self explanatory
18. Numeric coefficient with largest magnitude out of a and b Self explanatory

More algorithms are available that are specialized for sets of
points instead of graph objects. However, the results in this
paper only focus on these six algorithms; that is, they only
focus on graph inputs. The same machine learning approach
can be applied to classify sets of points into which algorithm
is most appropriate for them.

Mathematica’s documentation does not make clear which
greedy heuristics it employs in its greedy and greedy cycle al-
gorithms. However, it is likely the greedy approach is simplest
the nearest neighbors approach that, at each vertex, selects the
nearest neighbor as the next point in the tour to proceed to.
The greedy cycle algorithm is likely an insertion algorithm
that starts with tour consisting of a randomly selected vertex
and its nearest neighbor and then iteratively inserting a new
vertex k into the tour between two adjacent nodes i, j that
already exist in the tour such that the cost of the sum of edges
īk and k̄j are minimized.

ILP formulates the TSP problem as a minimization problem.
[?] describes the problem as follows: For each edge e 2 E(G),
we define x

e

as taking the value 1 if e is part of the tour and
0 otherwise. In addition, c

e

2 R defines the cost of e. Letting
�(S) = {īj 2 E(G) | i 2 S, j 62 S} for any set S ⇢ E(G),
we have the following optimization to perform:
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e
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Simulated annealing also treats the TSP problem as a
minimization problem. It begins with a random tour through
all vertices and then moves on to selecting a new tour from
the neighbors of the existing tour. If the new tour is better
than the old tour, it is chosen as the preferred tour and the
process continues. If it is not better, then it is accepted as the

new tour with a probability dependent on both the difference
between tour lengths of the new and old tours as well as
the temperature or energy of the annealing process; higher
temperatures correspond to a higher probability of acceptance.
This temperature is then lowered a bit and the process repeated
until a minimum is reached. This process can often result in
local minimums rather than global minimums.

Or-opt and Two-opt are both heuristics that begin with an
attempted solution, a Hamiltonian cycle that may or may not
be the least cost tour. Or-opt is a chain exchange method
that repeatedly moves chains of three consecutive vertices to
different locations until such movements can no longer provide
cost improvements. This then continues with two vertices and
then a single vertex. Two-opt is an edge exchange method that
iteratively removes two edges from the initial tour and then
attempts to reconnect the two remaining chains in a way that
lowers the total cost from the previous tour.

B. Meta-algorithm

Like with the resultant superfunction, Mathematica’s meta-
algorithm implementation is not described in the documen-
tation and is not available as source code. However, it is
known that the meta-algorithm guarantees the shortest tour,
not an approximation of the shortest tour. However, it is
not likely that Mathematica simply defaults to using integer
linear programming. The disparity between the time it takes
Mathematica’s meta-algorithm to compute the shortest tour
and the time it takes a direct call to integer linear programming
varies too widely for such a statement to be true. What is
more likely is that Mathematica makes use of running several
algorithms as an attempt to find a solution or opts to run an
approximation algorithm in a situation where it is guaranteed
it will find the shortest tour.

C. Machine Learning Formulations

As previously mentioned, the greedy, greedy cycle, Or-Opt,
Two-Opt, and simulated annealing algorithms all approximate
solutions that come with the benefit of a faster runtime than

REU-RET Symposium on Machine Learning 2016

University of Colorado, Colorado Springs 20



integer linear programming, which gives an exact solution.
However, it is possible for some of the methods to fail to find
any solution to the problem at all while the others succeed.
Mathematica immediately makes this known to the user.

Since both approximation and exact algorithms are available
to choose from in Mathematica, it would not make sense to
consider only runtime or approximation error as the sole per-
formance measure on which to base the choice in algorithm.
If runtime was the only consideration, the nearest neighbors
approach would be the choice every time, just with the cost
of large approximation error. Likewise, if approximation error
was the only factor of importance, then ILP would be the
best choice with zero approximation error but a hefty runtime,
assuming it is able to generate a solution. Therefore, it is
important to consider both of these factors when deciding what
algorithm should be deemed the best algorithm.

To solve this issue, a user specified parameter was used
that would allow a user to define how important runtime and
approximation error should weigh against each other when
the shortest tour superfunction was called. This weight factor,
denoted �, holds a value between 0 and 1, 0 meaning all
consideration should be given to minimizing runtime and
1 meaning all consideration should be given to minimizing
approximation error. A value of 0.5 would mean both factors
should be equally weighted against each other. Machine learn-
ing can use this parameter to select an algorithm based on how
important runtime and approximation error are to the user, a
naive approach to multi-objective classification.

2332 randomly generated graphs, consisting of up to 50
vertices, edge weights between 1 to 100, and all guaranteed
of having a Hamiltonian cycle, were used as a training
set. Each of the six algorithms were run on each of the
2332 inputs, and their runtimes and approximation errors
were recorded. For each algorithm, the percent difference
from the best runtime out of all algorithms was noted, as
well as the percent difference from the best approximation
error out of all algorithms. Then for any algorithm that
produced a solution, it’s performance would be defined by
�⇥(% Diff. Approx. Err.) + (1-�) ⇥ (% Diff. Runtime). The
optimal algorithm for a given weight factor is the one that has
the smallest value of this measure.

For different values of �, the optimal algorithm often
changes. To train machine learning to learn this pattern, the
2332 randomly generated graphs were each analyzed with
values of � in the set {0, 0.1, 0.2, . . . , 1}. In this sense, � forms
a feature of the input that is used for classification because
the same graph with different values of � leads to different
classifications. This process ultimately creates a dataset of
25,652 examples on which to train and test.

In addition to the weight factor �, the features used in
classification are described in Table II. In total, there were
21 features to describe a given input. It is highly likely some
of the features are repetitive (have information that are given
by other features) or are not necessary, as this list of features
has yet to be narrowed down by a feature selection process.

Like the resultant superfunction, neural networks, random

forests, k-nearest neighbors, and linear and RBF SVMs were
all trained on the given data. All setups for these machine
learning models were exactly the same as for the resultant
case study, except the neural network had 50 hidden neurons
instead of 10 for increased performance.

V. EXPERIMENTAL RESULTS

To train and test the machine learning models, all computa-
tion was done on a build with an Xeon E5-2420 CPU, Matrox
G200eR2 video controller, and 16 GB of RAM, running 64
bit CentOS 6.8 with an installation of Maple 2015.1 and
Mathematica 10.0.2.

A. The Resultant

1) Setup: The performance of machine learning as an auto-
matic algorithm selection tool for the resultant superfunction
was compared to Maple’s and Mathematica’s meta-algorithms.
More tools for comparison exist, such as Sage, but these tend
to default to simply computing the determinant of Sylvester’s
matrix instead of choosing amongst the different algorithms
available. To test the benefits of machine learning, neural
networks, random forests, k-nearest neighbors, and SVMs
were each trained, and the two most accurate of which,
namely neural networks and random forests, were used to
replace Maple’s and Mathematica’s meta-algorithm to select
the ultimate resultant algorithm used. These two were then
run and timed over several thousand problem inputs. Note,
however, that the output class for a pair of inputs was obtained
by running all algorithms implemented by the given program
and taking the one that gave the least runtime. Since Maple
and Mathematica have different kernels which are optimized
for different operations, the best algorithm when run under
Maple may not be the same as the best algorithm when
run under Mathematica for a given input. Thus, it would
not be wise to use the machine learning model trained on
the best algorithms determined by Maple’s runtimes as a
replacement for Mathematica’s meta-algorithm. Keeping with
this paradigm, two datasets were generated, one of which
based its output classes on the best algorithm when run under
Maple and the other when run under Mathematica.

2) Accuracy: The accuracies, or proportions of the time
when the algorithm with the least runtime out of all four
available resultant algorithms was correctly chosen, for each
machine learning approach used are given in Table III. For
training on the data generated under the best algorithm choices
determined by runtimes in Maple, neural networks outper-
formed the other machine learning models, correctly selecting
the best algorithm 86.63% of the time on the testing data
(86.17% and 85.54% for training and validation respectively).
Random forests managed to attain 80.71% accuracy, but k-
nearest neighbors, RBF kernel SVMs, and linear kernel SVMs
all lagged behind at 77.46%, 76.68%, and 76.63% accuracy,
respectively.

However, these accuracies indicate that the associated ma-
chine learning models are vast improvements over the use
of meta-algorithms. Maple’s meta-algorithm selects the best
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TABLE II
GRAPH FEATURES

No. Feature Description
1. � Weight factor - how important runtime or approximation error is for selecting an algorithm
2. |V (G)| Number of vertices
3. |E(G)| Number of edges
4. Max[cost(e) | e 2 E(G)] Maximum edge weight in G

5. Min[cost(e) | e 2 E(G)] Minimum edge weight in G

6. |E(G)|/
�|V (G)|

2

�
The proportion of edges used compared to the complete graph on |V (G)| vertices

7.
P

e2E(G) cost(e) Sum of weights in G

8. Average[cost(e) |e 2 E(G)] Average edge weight
9. StandardDeviation[cost(e) |e 2 E(G)] Standard Deviation of edge weights
10. Median[cost(e) |e 2 E(G)] Median edge weight
11.

⇣P
e2E(G) cost(e)

⌘
/

⇣
100 ·

�|V (G)|
2

�⌘
Density of edges, where 100 is the maximum possible edge weight

12. Max[deg(v) | v 2 V (G)] Maximum degree in G

13. Min[deg(v) | v 2 V (G)] Minimum degree in G

14. Average[deg(v) | v 2 V (G)] Average degree of a vertex
15. StandardDeviation[deg(v) | v 2 V (G)] Standard deviation of the degrees of vertices in G

16. Median[deg(v) | v 2 V (G)] Median vertex degree
17. Max[

P
e2N(v) cost(e) | v 2 V (G)] Maximum sum of costs of incident edges for any vertex

18. Min[
P

e2N(v) cost(e) | v 2 V (G)] Minimum sum of costs of incident edges for any vertex
19. Average[

P
e2N(v) cost(e) | v 2 V (G)] Average sum of costs of incident edges for any vertex

20. StandardDeviation[
P

e2N(v) cost(e) | v 2 V (G)] Standard deviation of costs of incident edges for any vertex
21. Median[

P
e2N(v) cost(e) | v 2 V (G)] Median of costs of incident edges for any vertex

TABLE III
ACCURACIES FOR VARIOUS MACHINE LEARNING MODELS FOR THE

RESULTANT

Model Accuracy on
Maple data

Accuracy on
Mathematica data

Neural Networks 86.63% 78.24%
Random Forests 80.71% 75.97%

KNN 77.46% 69.03%
RBF SVM 76.68% 70%

Linear SVM 76.63% 67%

algorithm out of all four available only 58% of the time.
(The accuracy of the meta-algorithm can be determined by
looking at the source code or the userinfo output to see when
a specific algorithm has been called.) However, as previously
discussed, considering the meta-algorithm only ever opts for
three out of the four available (namely, it ignores Sylvester’s
matrix), the accuracy in choosing the best out of three is 72%.
Unfortunately, in close to 15% of cases, Sylvester’s matrix
proves to be the best choice, so although Maple can select
amongst the modular, subresultant, and Bezout algorithms
with a 72% accuracy, this choice is still not the best 15%
of the time. Nevertheless, in either accuracy measurement, all
tested machine learning models outperformed Maple’s meta-
algorithm.

Machine learning’s performance dropped significantly when
tested against the data generated under Mathematica. Neural
networks only attained a 78.24% accuracy, and random forests
came close with a 75.97% accuracy. K-nearest neighbors, RBF
SVMs, and linear SVMs all underperformed at 69.03%, 70%,
and 67% accuracy respectively. Unfortunately, Mathematica
hides the implementation of its meta-algorithm and provides
no way to see which algorithm was ultimately selected by
its meta-algorithm, so the accuracy of Mathematica’s choices

remain unknown.
3) Time Speedup: Although there are obvious differences

in accuracies between machine learning models and meta-
algorithms, these differences are compounded by significantly
faster runtimes when machine learning models are used to
replace meta-algorithms during the selection of algorithms
stage. When applied to a random sample of several thousand
inputs, Maple was able to compute the resultant of all inputs
in 37,783 seconds with its original meta-algorithm, whereas
using the neural network as the selection tool when the
resultant superfunction was called yielded a total runtime of
only 12,097 seconds, a 68% decrease in runtime. Similarly,
in Mathematica, the neural network brought about a 49%
decrease in runtime. Random forests, on the other hand, only
brought a 46% decrease in runtime to the same sample in
Maple and a 37% decrease in Mathematica. Since neural
networks have such a better runtime improvement compared
to random forests, even though their accuracies only differ by
close to 6%, it appears as though when the neural network
made an incorrect algorithm choice, the decision it did make
was not as bad as when the same situation occurred for random
forests. In the case of random forests, the incorrectly chosen
algorithm was typically also not the second best algorithm
choice. Nevertheless, the high accuracies still resulted in
significant performance gains. Since running these tests takes
large amounts of server time and resources, the runtime results
are limited to just neural networks and random forests and are
summarized in Table IV.

It serves to note that there is evidence that Mathemat-
ica’s meta-algorithm uses pre-processing to speed up the
computation of the ultimately selected algorithms, whereas
a direct call to a specific resultant algorithm does not use
this pre-processing. This claim comes from the fact that, in
occasional instances in the dataset, a call to Mathematica’s
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TABLE IV
RUNTIME IMPROVEMENTS USING MACHINE LEARNING IN PLACE OF

META-ALGORITHMS FOR THE RESULTANT

Model Runtime Improvement
in Maple

Runtime Improvement
in Mathematica

Neural Networks 68% 49%
Random Forests 46% 37%

meta-algorithm yields a faster runtime than single-handedly
calling any one of the four algorithms directly. Yet, despite this
disadvantage, using machine learning as an automatic algo-
rithm selection tool still manages to outperform Mathematica’s
meta-algorithm by a significant factor.

B. Shortest Tour

1) Setup: Mathematica was used as a tool for comparison
against the machine learning models trained on the TSP prob-
lem. For each input and each value of � 2 {0, 0.1, 0.2, . . . , 1},
the timings of each of the six algorithms available to compute
the shortest tour of a graph were recorded as well as the length
of the tour the generated. Each algorithm’s performance was
gauged with the previously discussed performance measure
� ⇥ (% Diff. Approx. Err.) + (1-�) ⇥ (% Diff. Runtime),
where the percent differences are measured with respect to
the best approximation errors and runtimes provided out of
all the algorithms. The algorithm with the least value given
by this measure was deemed the optimal algorithm for the
given graph input and value of �. This process resulted in
25,652 examples to train and test against.

For the value of � = 1, there were often multiple algorithms
that have the same performance measure. That is, in this
particular case, they all returned the shortest possible tour, as
runtime is not considered when � = 1. When this happened,
ties were broken according in the following order, from the
highest preferences to lowest: Greedy, Greedy Cycle, Two-
Opt, Integer Linear Programming, Or-Opt, Simulated Anneal-
ing. The reason for this is that the former algorithms give
better runtimes compared to the latter algorithms.

2) Accuracy: The proportions of times different machine
learning models were able to select the optimal algorithm
based on the features of the input graph and the value of
�are given Table V. All machine learning models except
for linear SVMs demonstrated exceedingly high accuracies.
Random forests and k-nearest neighbors reached 99.6% and
99.62% accuracies, and neural networks and RBF SVMs
lagged slightly behind at 96.81% and 95.61% accuracies,
respectively. A linear kernel for SVMs, on the other hand, did
not sufficiently separate the data and resulted in an accuracy
of 38.3%.

3) Time Speedups: To test how well machine learning
fares at automatic algorithm selection, the total runtimes and
path lengths were analyzed from a random sample of 1500
graphs using the algorithm choices decided upon by neural
networks, random forests, and Mathematica’s meta-algorithm.
These runtimes are given in Table VI. For neural networks
and random forests, the percentage by which they improve

TABLE V
ACCURACIES FOR VARIOUS MACHINE LEARNING MODELS FOR THE

SHORTEST TOUR

Model Accuracy
Neural Networks 96.81%
Random Forests 99.6%

KNN 99.62%
RBF SVM 95.61%

Linear SVM 38.3%

upon the meta-algorithm’s runtime is also given. The sum of
the all the tour lengths generated by the choice of algorithms
from each tool is recorded in Table VII. Note that shortest
possible sum of tour lengths is 73,076, which Mathematica
attains in all possible cases at the cost of a higher runtime.
Since Mathematica’s meta-algorithm has no dependence on �,
the runtimes and sum of tour lengths remain constant for each
value of �.

As expected, as the value of � increases, the runtimes
using machine learning increase while the approximation error
decreases. A clear benefit from using a weight factor is that
it allows the user to control which is more important in
the computation: the runtime, the approximation error, or a
combination of both. However, the benefits of using machine
learning as a tool for AAS is best demonstrated in the case
where � = 1. In this case, no explicit attention is given to
runtime; rather, the machine learning models have been trained
to solely focus specifically on minimizing approximation error.
As seen in Table VII, random forests attain the shortest possi-
ble tour length in every case when � = 1, corresponding to a
zero approximation error. This matches Mathematica’s meta-
algorithm’s approximation error; however, because of the way
machine learning breaks ties between candidate algorithms,
random forests also offer a 75.02% improvement in runtime,
as seen in Table VI. Not only is the random forest getting the
exact solution like Mathematica’s meta-algorithm does, but
it is doing so significantly faster. Whereas Mathematica can
only manage to focus on one aspect of performance, machine
learning is able to balance both runtime and approximation
error and see performance improvements at the same time.

VI. CONCLUSION

The results in this paper support the hypothesis that ma-
chine learning provides a better alternative for automatic
algorithm selection in computational software. When used
as a replacement for the resultant meta-algorithms in Maple
and Mathematica, neural networks bring about 68% and 49%
runtime improvements, respectively. When used in the context
of the traveling salesman problem, random forests can weigh
multiple facets of performance, specifically runtime and ap-
proximation error, against each other using a user specified
parameter in order to choose an appropriate algorithm. Ma-
chine learning thus allows algorithm selection tools to take
into account multiple objectives, whereas meta-algorithms can
typically only focus on one performance aspect. However,
even when minimizing approximation error in the traveling
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TABLE VI
RUNTIMES FOR DIFFERENT VALUES OF �

�

Runtime Under
Mathematica

(s)

Runtime Under
Neural Networks

(s)

Percent Improvement
Under

Neural Networks

Runtime Under
Random Forests

(s)

Percent Improvement
Under

Random Forests
0 1797.67 47.989 97.33% 47.871 97.34%

0.1 1797.67 48.080 97.33% 47.871 97.34%
0.2 1797.67 48.025 97.33% 47.876 97.34%
0.3 1797.67 48.026 97.33% 48.655 97.29%
0.4 1797.67 48.822 97.28% 47.893 97.34%
0.5 1797.67 124.897 93.05% 125.579 93.01%
0.6 1797.67 372.427 79.28% 373.926 79.2%
0.7 1797.67 400.618 77.7% 400.429 77.73%
0.8 1797.67 410.127 77.19% 603.909 66.41%
0.9 1797.67 449.523 75% 448.865 75.03%
1 1797.67 449.739 74.98% 448.991 75.02%

TABLE VII
SUM OF TOUR LENGTHS FOR DIFFERENT VALUES OF �

�

Sum of Tour Lengths
Under

Mathematica
(s)

Sum of Tour Lengths
Neural Networks

(s)

Percent Error
Under

Neural Networks

Sum of Tour Lengths
Random Forests

(s)

Percent Error
Under

Random Forests

0 73076 164127 124.6% 164127 124.6%
0.1 73076 164127 124.6% 164127 124.6%
0.2 73076 164127 124.6% 164351 124.9%
0.3 73076 164127 124.6% 164299 124.83%
0.4 73076 164299 124.83% 163998 124.42%
0.5 73076 150199 105.43% 149776 104.96%
0.6 73076 92635 26.77% 92855 27.07%
0.7 73076 82738 13.22% 82738 13.22%
0.8 73076 81407 11.40% 97766 33.8%
0.9 73076 73439 0.5% 73084 0.01%
1 73076 73451 0.51% 73076 0%

salesman problem is the only focus, machine learning can
still output the shortest possible tour (zero approximation
error) just like Mathematica’s meta-algorithm, but with a
75% decrease in runtime as a bonus side-effect. Even larger
decreases in runtime are observed when larger approximation
errors are allowed by the user.

The overall methodology developed in this paper empha-
sizes the fact that the process of using machine learning as a
tool for automatic algorithm selection is not only straightfor-
ward but highly effective. As an example, since most resultant
applications require the computation of the resultant dozens or
hundreds of times, the runtime improvement would be quite
noticeable. In fact, even for a single pair of input polynomials
of which to compute the resultant, it is not uncommon for the
possible runtimes to range from several seconds to a couple
minutes depending on which algorithm is selected. The same
situations appear for traveling salesman problems. The high
accuracy achieved by machine learning avoids such excessive
runtimes.

What remains in the works is to expand this approach
to more case studies and explore better formulated multi-
objective machine learning models that would allow the opti-
mization of different facets of performance. This would enable
an algorithm selection model that can more effectively select
the best algorithm based on not only runtime performance, but

also based on memory constraints, least error, and so on. For
instance, evolutionary multi-objective optimization algorithms,
such as NSGA-II [21] and SPEA-II [22], may be easily used
to perform such computation, although the time required to
do so may not be acceptable but needs to be empirically
determined. All in all, the results in this paper have built a
foothold for further exploration into the benefits of machine
learning as a tool for automatic algorithm selection, especially
in computational software.
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Abstract—Causality is a topic of philosophical and technical debate in

scientific fields relating to multivariate systems. Sugihara Causality is a

new model for describing causality. We investigate how this model can

be applied to highly dimensional neuronal networks where epilepsy is

induced. Different brain states will be classified using a neuroclustering

algorithm. The time indecies of the clustered brain states will be used to

discretize the original EEG signal into different epileptic seizures stages. A

causality network will be created for each stage from the discretized EEG

signal, and analysis on the network will be conducted to find predictive

structural patterns in epileptic seizures.

Index Terms—Epilepsy Localization, Brain State Clustering, Informa-

tion Flow, Neuroclustering, Sugihara Causality

I. INTRODUCTION

The concepts of abstract correspondence, correlation and interpret-
ing causation has been discussed in philosophical literature at least
as early as Berkley’s and Locke’s arguments on human perception
[1] [2]. Until now, the debate focused on what constitutes a causative
effect and how such an effect might be discerned. From philosophy,
the debate has moved to empirical science, where different models of
causality have been proposed, none of which has been declared the
true standard. A particular causality model, Granger Causality (GC),
has been widely used in application in the econometric fields [3], and
has been the de facto model when causality is concerned. However,
while GC behaves best in linear, stochastic systems, it carries its
own limitations. Even with extensions to non-linear systems, GC has
generally not been seen capable of inferring causality in deterministic
systems where feedback loops and nonlinearity are a defining feature.
New models of causality have been introduced to attempt to rectify
these limitations. Dynamic Bayesian Netowrks and, more recently,
the Convergent Cross Mapping (CCM) are some such models.

The CCM model relies convergence of distance of nearest neigh-
bors in the shadow manifold of pairs of variables [4]. A shadow
manifold of variable ! is an E dimensional reconstruction of E
delayed signals of !. Each of these signals is delayed by a scalar
multiple of E⌧ such that shadow the manifold of !, M! is described
as

M! = f
⇣
!(t),!(t� ⌧),!(t� 2⌧), . . . ,!(t� (E � 1)⌧)

⌘

. Applying Takens’ embedding theorem, it can be shown that each
shadow manifold of a variable is a projection of the dynamic system’s
manifold, M , that preserves the topology of M [5], [6], [7]. For
example, in a dynamic system like the Lorenz Attractor where the
dynamics of each variable is affected by the other variables in the
system, it can be said that each variable subscribes to the overall
dynamic of the system. Therefore, the state of one variable could be
used to infer the state of another variable if they are dynamically
linked.

Using this feature of dynamic systems, the CCM model infers
causality from the convergence of prediction of one variable’s state
based on another’s as L increases, where L is the length of data
points considered in the prediction. This implies that L needs to be
sufficiently large to allow an observation of convergence. This con-
vergence is the test used to determine Sugihara Causality, named after
its author who describes it as a required but not complete definition of
causality [4]. This approach is the first step towards more general and
applicable causality models since GC. Since the introduction of CCM,
it has been shown to be successfully predictive in biological [8],
[9], [4], [10], [11] and cosmological [12] applications while showing
weaknesses in others [13].

Extensions to and amalgamations of the CCM model are beginning
to surface in literature. Clark et al. proposed an extension to CCM that
relies on measuring the smoothness of the mapping (also called flow)
function �, thereby reducing the L length requirement[14]. Wismller
et al. proposed a Mutual Connectivity Analysis framework for the
”analysis and visualization of non-linear functionalconnectivity in
the human brain from resting state functional MRI” [15] which relies
heavily on CCM. Tajima et al. use the fundamental idea of state space
reconstruction to find two measures. The first is Complexity which
is the best embedding dimension for a certain signal (embedding
dimension at which the cross mapping is saturated). The second
is directionality, the difference in cross map skill or embeddedness
between two a pair of signals. With those two measures, they show
that the brain exhibits different complexities during conscious and
unconscious states. Here, we explore the application of CCM in
estimating the causality between neuronal regions by constructing
a network of pairwise causality. We then analyser features of such
networks during normal and epileptic seizure periods. We attempt to
localize the origin of seizures as well as predict their occurance by
using the properties of causal networks.

II. PROBLEM DEFINITION

Given multiple spiking signals from a set of interconnected neu-
ronal regions, can the CCM model identify structural patterns in
causal relationships between those regions? Can the patterns and
properties of the causality graph resulting from the CCM model be
clustered into brain states that represent different stages of epilepsy
in the brain? In other words, can a machine learning algorithm be
applied to the causal network properties, the model of which could
be able to correctly classify epileptic brain states.

III. METHODS

A. Data Collection

EEG data was collected from an 4x8 endodermal electrode array
(31 channels, one channel malfunctioned, Fig. 1, 2). During the
experiment epileptic seizures were evoked using 4-aminopyridine and
EEG data was recorded from the electrode array. The spiking voltage
of each recorded electrode is used as a signal and is referred to as a
channel.

B. Data Preprocessing

Kernal Current Source Density (kCSD) method was used on the
grid of channels to account for possible electrical interference with
the direct measurement [16]. The measured potentials produced by
kCSD arise as the linear combination of the transmembrane currents,
which is a more direct and localized quantity to measure the neural
activity. Therefore current source density distribution was calculated
by the kCSD method and used for the analysis.

Afterwards, in order to reduce the data size that is operated on, we
lumped channels from the same regions together by averaging them
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(Fig. 3). In addition to reducing dimensionality, this process also puts
emphasis of causality on functional brain regions instead of a local
cluster of neurons.

C. Experiments

Using the preprocessed data, a pairwise analysis of the signals will
be carried using CCM. For each pair of regions, two directions of
cauaslity will be considered. Since there are 12 regions, 12⇤11 = 132
unique causality relationships were analyzed. The causality measures
were recorded on sliding windows of time segments. The time seg-
ment lengths were chosen though a heuristic that focused on attaining
multiple causality measures within a second. Once the causality
measures were attained for each time segment, a combination of
heuristic and and statistical measures were used to analyze the
significance of the causality measures (see section III-D).

From the causality measures, a graph was constructed for each
time segment (Fig. 8).

Fig. 1: A composite drawing showing the brain in the scull. The
3D reconstruction of the brain has been made using the maps of the
Paxinos atlas, and the localization of cortical areas are indicated by
different colors. White points indicate the position of the recording
sites of the membrane electrode. Names for the cortical areas are also
shown (based on Hjornevik et al. and Paxinos et al. [17] [18]).

D. Significant Causality Measures

Since every CCM computation returns a real number in the range
[0, 1] that represents a relative causality measure, 132 causality
measures for each time segement will be returned. Therefore, an
important question to consider is how exactly should a causality
measure be defined to be significant. Although Sugihara et al. [4]
and Nes et al. [11] carry out a significance test based on altering
the signals by random shuffling and Fourier transformation on Phase
shift [19], this method has not been implemented on EEG data when
applying the CCM model. Therefore, we do not rely on it completely,
and take into account several heuristic conditions.

1) Most Causal Relationship Method: In this method, a simplistic
approach is taken whereby for each region only the highest incoming
⇢ is considered. While this approach is reductionist by definition, and
most likely does not reflect the true causal relationship in the brain,
it achieves simplicity in the network, and affords us the possibility
of examining which regions could be the most causal in the network.
Such regions would have a large out degree which would imply it
being a center of causality in the network.

Another important property of this measure is that it could alleviate
the problem of downstream causality sensitivity. As shown by Ye
et al. [20], the CCM algorithm can detect downstream causality,
which means that if ↵ causes � and � causes , then if ⇢↵!�

Fig. 2: Photograph of a membrane electrode shows the construction
on the top, the numbering (bottom right) and the surgical implanta-
tion (bottom left) is also shown. Electrode 1 mulfunctioned during
recording.

Fig. 3: The distribution and lumping of the brain regions in the brain.
A total of 12 region channels were constructed from the initial 31
local channels. The schematic is based on rat brain atlas mapping.

is a significant causality measure from ↵ to �, there can also be
a causality measure ⇢↵! detected to be significant such that the
indirect causality is less than the direct causality ⇢↵! < ⇢↵!� . This
can be an undesired consequence of the model, since we are interested
only in the direct relationships, and not necessarily the indirect ones.
Indirect relationships could be extrapolated from direct ones. If we
assume that all downstream causality measures are evaluated to be
less than their direct counterparts, then we expect that taking the
most causal relationship would rid of all the indirect relationships
that could otherwise be detected, with the expense of also ridding of
other direct relationships.

2) Threshold Method: In this method, only causality measure over
a certain threshold ⇢th will be counted as significant. As this is a
heuristic measure, the data must first be examined to clarify what
is meant by a significant ⇢th. With this heuristic comes unavoidable
human bias towards refusing generated data. Since the true causality
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relationships are not yet uncovered, almost any threshold is certain to
be wrong. For example, if the brain was highly connected and regions
are highly causal to one another, a neuroscientist who disregards such
a possibility would be inclined to choose a high ⇢th as to filter many
of the causal relationships that could in fact be present. Alternatively,
if the brain regions were minimally causal to one another and a
neuroscientist disregards that possibility, they would be inclined to
choose a low ⇢th as to allow for more causal relationships for the
model. However biased this method is, if implemented correctly it
could provide a list of the most causal relationships to each region,
while excluding most indirect relationships.

3) Fourier Transform and Random shuffling Method: For a more
mathematically grounded significance measure, we also use a boot-
strap test where a signal for both channels in a pair is created from
the original signal, and the causality measure is significant if it is
above a specified ↵ threshold. Another statistical method used to
calculate significance is randomizing the data based on bootstraping
the frequency distribution of the signal calculated from the signal’s
Fourier transform as used by Nes et al. [11][7].

IV. RESULTS

By running the CCM algorithm through every pair of channels, we
collected 132 causality measures (Fig. 4). To increase the efficiency
of our calculations, we also observed the variance of the causality
strengths as we decreased the sample size for each calculation
(Fig. 5). Most of the causality measures appear to be of high
values, suggesting high connectivity between brain regions (Fig. 4).
Furthermore, we also notice that many of the pair causality measures
appear to be similar within the pair (Fig. 7). For example, when
looking at regions 1 and 2 within the first 200 ms, they appear to be
equally causal to one another (Fig. 4).
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Fig. 4: A sample graph plotting the convergent cross mapping skill
(⇢) between region 1 and 2 during the first 200 ms of the experiment.
The skill mapping channel 1 to channel 2 is very similar to the one
mapping channel 2 to channel 1. This might infer either bidirectional
causality or unidirectional forcing. A similar pattern (close ⇢ value
between pairs) was found for most of the pairs. Cross mapping was
done with random library samples.

V. DISCUSSION

Initial analysis shows that the causality network is very dense with
highly weighted edges. The high density of the graph could have
been a side effect of Sugihara’s model ability to detect downstream
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Fig. 5: Difference of rho scores between shown sample size and
100 samples. Decreasing sample size from the default 100 when
calculating Sugihara Causality does not have a drastic affect on the
acquired result. This shows that the data and method used are robust.
Using this analysis, we conduct all further tests on a sample size of
20. Data shown is from the first 5 seconds of the experiment, using
a library size of 80. Sliding windows of 200 ms were used, with a
sliding step of 50 ms.
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Fig. 6: The distribution of CCM skill (⇢) during the entire experiment.
Many relationships appear to be causal in the brain, with equally
as many being non-causal throughout the experiment. Causality was
calculated from signals of lumped regions after calculating the CSD.
Cross mapping was done on every pair of regions with library size
of 80, and each pair has two causality directions. Sliding windows
of 200 ms were used, with a sliding step of 50 ms.

causality. If that is the case, then many of the causal connections
detected are in fact residuals of upstream interactions in the network.

Downstream causality measures can be detected by observing both
the magnitude of the cross map skill as well as the time lag that
produces the greatest cross map skill (Fig. 3 in [20]). Following the
assumption that downstream causality decreases in magnitude as it
travels downstream in the network, we can use this to traverse the
graph and rid of any paths that decreases in causality as it goes
downstream.

Concerning the high possibility of the presence of unidirectional
forcing, Ye et al. showed unidirectional forcing can be untangled by
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(b) Absolute difference of ⇢ between pair both of which is at least 0.2

Fig. 7: Difference of causality values within a pair is small, even
when accounting for non-existing relationships where both causalities
are below 0.2. This similarity between directions of causality in a
pair could imply a bidirectional relationship between most regions,
or could alternatively imply a unidirectional forcing (synchrony)
phenomenon. Sliding windows of 200 ms were used, with a sliding
step of 50 ms. A library size of 80 was used.

inspecting the greatest time lag of the two that produces the highest
causality measure (Fig. 2 in [20]). In order to allay the problem of
unidirectional forcing, the best lag of each pair is considered. This is
a tricky problem because there is no clear range for which to test the
lag. This is because the time delay for neuronal activity is yet studied,
and how that translates to EEG data could be tricky. We reserve the
use of this method due to its computational complexity which would
add to the already high time complexity of the analysis.

The theoretical implications of this model could present a novel
representation of information flow in the brain and determining
causality within the brain. If the graph output of this method id
reliable, it could help outline information flow within the brain, much
like one would observe in a magnetic wave flowing through an fMRI
recording.

VI. FUTURE WORK

Future work will focus on verifying this model through controlled
experiments. Such experiments could be in the form of stimulating

Fig. 8: Sample graph constructed from calculating the sugihara
causality between brain regions through CCM. Lumped brain regions
correspond to the gray circular mapping in Fig. 3. Edge colors
represent the strength of the causal relationship. From weakest to
strongest: Yellow, Green, Blue, Red.

a part of the brain (e.g. shining strong light on an the eye to excite
the visual cortex) and observing the model’s behavior. One would
expect a high value of out degrees from the specific region during
such an experiment, as it attempts to convey a considerable portion
of information to the rest of the brain. Moreover, a clear proof should
be presented as to what the most reliable time window and step size
ought to be when producing the causality graphs. Such a task can be
done by measuring graph similarity of the same time segment as the
time window gets shortened incrementally.

Continuing our efforts, we would like to integrate the neuro-
clustering algorithm developed by Lewis and Mello into this work
[21]. This would allow us to discretize the EEG data into frames
of epileptic seizure stages. Once these stages are identified and
compartmentalized, the kCSD method will be applied to account for
experimental design errors. A pairwise causality network will then
be constructed using the Sugihara causality model, and the origin of
the epilepsy will be localized during the initiation of the seizure.

Furthermore, the feature set of the neuroclustering algorithm could
be augmented with the information of edge weights of the pairwise
causation graph. The effect of such an integration could be tested to
see if it improves classification metrics. Similarly, the neuroclustering
algorithm could be used to label seizures in neural data which then
our pairwise causality algorithm could be tested against to see if the
clustering of edge weights clusters epilepsy segments separately.

VII. CONCLUSION

The paper shows promising initial results using the Sugihara CCM
model to construct causality graphs between brain regions. We find
that the brain network for this experiment is highly causal with
a range of time windows. This, however, could be due in part to
experimental design limitations, where the electrodes were 1 mm
apart which might have caused electrical interference. To to limit
this phenomenon we used kCSD to preprocess the data. Initial results
show a time varying graph in which information flow can be tracked.
At the moment, more analysis is required to make a conclusions on
the capabilities of the pairwise causality graph model. Some of most
incurring difficulties to overcome are the running complexity of the
kCSD preprocessing and CCM algorithm required for the analysis
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of the amount of pairs in a large network, and the mathematical
representation of information flow within the time-dependent graph.
We plan on using the Neuroclustering algorithm to discretize the EEG
data into epileptic seizures, extract causal network features from the
stages, and train a k-means learning algorithm on the created feature
set. The implications of these findings could relate more generally to
discoverability of causality in modeling scalable natural phenomena.
Real world applications manifest in localization of epilepsy in the
brain. Furthermore, if the technique of distinguishing causal networks
in systems and clustering their properties is successful, it could be a
clear indications that the Sugihara causality model is able to detect
causation in extremely complex systems comparable to the human
brain..
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Optimization of Neural Network Architecture for
Biomechanic Classification Tasks with

Electromyogram Inputs
Alayna Kennedy, Pennsylvania State University , Rory Lewis, University of Colorado at Colorado Springs

Abstract—Electromyogram signals (EMGs) contain valuable information that can be used in man-machine interfacing between human
users and myoelectric prosthetic devices. However, EMG signals are complicated and prove difficult to analyze due to physiological
noise and other issues. Computational intelligence and machine learning techniques, such as artificial neural networks (ANNs), serve
as powerful tools for analyzing EMG signals and creating optimal myoelectric control schemes for prostheses. This research examines
the performance of four different neural network architectures (feedforward, recurrent, counter propagation, and self organizing map)
that were tasked with classifying walking speed when given EMG inputs from 14 different leg muscles. Experiments conducted on the
data set suggest that self organizing map neural networks are capable of classifying walking speed with greater than 99% accuracy.

Index Terms—Electromyogram, prostheses, neural networks, biomechanical analysis, machine learning, myoelectric control schemes,
self organizing maps, pattern recognition algorithm

F

1 INTRODUCTION

MODERN assistive prosthetic devices commonly use
a myoelectric control scheme, which adjusts the

function of a prosthetic device given electromyogram
(EMG) inputs, and which has been proven an effec-
tive method of man-machine interfacing between user
and prosthetic [1]-[4]. However, despite the significant
development of the prosthetic industry over the past
decade, high-accuracy commercial prostheses remain too
expensive for the average middle-class amputee to afford
[5], [6]. Even the most accurate devices possess multiple
issues, including difficulty actuating multiple degrees of
freedom and low accuracy without a high number of
electrodes [7]. Within academia, computational intelli-
gence pattern recognition techniques of EMG analysis
provide accurate results, but are often computation-
ally expensive [8]. Therefore, academic models result
in limited real-world improvements in the control of
prosthetic devices, since available cheap prostheses do
not possess the computation power necessary to run
complex pattern recognition algorithms. An ideal pros-
thetic control scheme would be able to achieve accuracy
in classification tasks while remaining simple enough to
be implemented in inexpensive devices [6], [8].

Among the common electrophysiological signals,
EMG recordings are used most extensively in man-
machine interfacing because of their non-invasiveness,
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relatively easy application, and richness of neural in-
formation [3], [8]. While other biosignals like electroen-
cephalograms (EEGs) and electrooculograms (EOGs) can
be used to predict human movement, EMG signals have
become the standard biosignal for myoelectric prostheses
because they directly transmit electrical signals from the
muscle during periods of contraction or relaxation [3],
[9], [10]. In addition, EMG signals have been shown
to precede muscle kinematics by 100ms; therefore, they
can be used to predict human movements to create a
prosthetic device that would analyze EMG signals and
transmit them to a prosthetic, which would then move
as if it were the amputees biological limb [1], [2].

The EMG signal is the sum of the electrical activity
of the muscle fibers, as triggered by the impulses of
activation of the innervating motor neurons [3], [8], [10].
Surface EMGs are obtained by convolution of each motor
neuron spike train by the motor unit action potential
(MUAP) and have mathematically the same expression
as the neural efferent signal [10].

Equation 1 shows a simple model of the EMG signal:

x(n) =
NX

r=0

h(r)e(n� r) + w(n)

where x(n) is the modeled EMG signal, e(n) represents
the firing impulse, h(r) represents the MUAP, w(n) is the
zero mean additive white Gaussian noise, and N is the
number of motor unit firings [8].

Despite the rather direct relation between a motion
and the expressed EMG signal, however, there remain
several open issues before the control of prostheses
by EMG will reach the ideal characteristics needed for
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widespread acceptance by patients [4], [8]. Raw EMG
data alone provides very valuable information about
human biomechanics in a fairly useless form, since the
amount of noise in the data require it to be processed,
quantified, cleared of noise, and decomposed into in-
dividuals MUAPs (Fig 1.) before it can be used in any
significant way [7], [10], [11]. While difficult, the effec-
tive analysis of EMG signals can be achieved through
wavelet analysis, artificial neural networks (ANNs), and
different clustering algorithms [10].

Fig. 1: Decomposition of EMG signals into individual MUAPs

While many studies have been done on the continu-
ous analysis of EMG data using neural networks and
complex pattern recognition algorithms, little work has
been done on less computationally expensive classifica-
tion tasks [4]. While regression tasks provide detailed
information in the form of bodily spatial coordinates,
they also require more electrodes and achieve a lower
degree of accuracy than many classification tasks [7].
Although classification tasks only output a discrete cat-
egory, they can also provide a great deal of information
about future movement. For example, walking speed
can determine multiple factors about human gait [12].
Other applications of classification tasks to prosthetic
technology can be found in Gandolla and Gehani’s
studies, where trained ANNs classified distinct hand
movements, resulting in a hand prosthetic performing
the movement [1], [3].

This study aims to find a network architecture that
can accurately classify kinematic information from EMG
signals while remaining simple enough for application in
affordable prostheses, since one of the most significant
applications of EMG analysis technology is within the
field of orthotics and prosthetics [5].

This study aims to find the best way to use ANNs to
classify human movement from EMG data, by measur-
ing the performance of multiple neural network architec-
tures when tasked with classification tasks. The different
ANN architectures will attempt to classify walking speed
into one of five categories given surface EMG inputs
from 14 different leg muscles [13].

2 PREVIOUS WORK

The parallel computation power and nonlinear opera-
tions performed by the human brain inspired the original
ANNs, so when creating biomimetic control schemes
for prosthetics, many researchers turned to these net-
works to create efficient myoelectric devices that worked
with the human body [2]. While some of the earliest
attempts to create myoelectric prostheses date back to
the 1970s, advanced pattern recognition techniques did
not emerge until the 1990s with the rise of more accurate
machine learning techniques like neural network back-
propagation and time-series analysis of inputs [3], [14].
One of these developments in myoelectric control was
a dynamic recurrent neural network which accurately
predicted spatial coordinates of arm trajectory [15]. The
development of recurrent networks, in which all neurons
are interconnected, resulted in a marked improvement in
the accuracy of spatial coordinate prediction of the body
given EMG inputs. Networks like Drayes and Cherons
also implemented time-series backpropagation, which
took into account the previous values of EMG input
instead of just the immediate input channel [14], [15].

Other networks modeled EMG inputs with an auto-
regressive (AR) model, and then passed them through
an ANN to control the movements of a virtual prosthetic
[3]. The results from these studies have shown that
controlling prostheses through an ANN recognition of
EMG patterns can optimize the number of electrodes,
provide greater degrees of freedom for the device, and
accurately predict user intent before muscle movements
[1], [7], [20]. Two important network architectures for
classification of EMG data are the Kohonen Network,
and a cascade architecture network with a preprocessing
step involving Kohonen maps.

2.1 Kohonen Map:
Also referred to as a self-organizing map (SOM), this net-
work implements unsupervised learning, which maps
points in the input space to points in the output space
while preserving the topology [16]. Normally, the input
space is of high dimension while the output is usually
two dimensional. The network identifies the spatial con-
centration of the network activity that is best tuned to
the present input [3], [16].

Fig. 2: Detailed view of a Kohonen self organizing map network
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The following six steps explain the algorithm for
producing Kohonen maps:

Step one: Select network topology: The arrangement
of the clusters for the network can be square, circular,
etc.

Step Two: Initialize weights to random values: The
weight matrix represents the connections between the
neurons of the network, and it is randomized to ini-
tial values which are subsequently modified during the
learning phase

Step Three: Select a pattern: Chooses an input pat-
tern, x, from the input examples.

Step Four: Find best matching unit: The node with
the weight vector most similar to the input vector, de-
fined as the node with the smallest Euclidean distance
to the input weights, is selected as the matching node.

Step Five: Update weights to all nodes: The winning
node and its topological neighborhood are updated by
the SOM algorithm according to the equation:

mi(t+ 1) =

(
mi(t) + ↵(t)[x(t)�mi(t)] if i 2 Nc(t)

mt(t) if i 3 Nc(t)

Where m

i

(t+1) is the new weight, and m

i

(t) is the old
weight, ↵(t) is the learning rate factor (0<↵(t)<1), and
t = 0,1,2... is an integer representing the discrete time
coordinate.

Step Six: Iteration: Repeat steps 1 to 5 for all input
patterns and the repeat for a pre-determined number of
iterations [3], [16].

SOMs have been used widely in many applications,
including in EMG clustering classification. This network
can be used as a preprocessing stage for other ANN ar-
chitectures such as a Cascade Architecture with Feature
Maps (CANFM).

2.2 Cascade Architecture with Feature Maps
(CANFMs):
The CANFM network implements a cascaded architec-
ture of neural networks with feature maps (CANFM)
[17]. This network first passes the data through an un-
supervised Kohonen self-organizing map, outputting 2D
coordinates onto the x and y axes of the 2D topological
net, which both reduces the input dimensions of the
EMG data channels and removes some noisy data from
the original inputs [16], [17].

This network first randomizes the initial weights of
the network, then passes the values through a self-
organizing map (SOM) where the EMG values are clus-
tered. The unsupervised SOM can find a winning neu-
ron on the 2-D topology map to represent the original
pattern, and the x and y coordinate of this winning neu-
ron yc become the input values for a back-propagation
neural network (BPNN) [17], [18]. After reduction of the
input space using Kohonen’s SOM, the three sets of 2-
D coordinates (six newly condensed features) are fed
into the BPNN for further classification. Huang chose

the BPNN as the post-classifier of CANFM because of
its learning ability and fast recall speed. In the case of
Huang’s study, there are eight postures to he classified,
so the BPNN has eight output nodes (Fig. 3) [17].

Fig. 3: Detailed information of CANFM

3 ACQUISITION OF EMG DATA

The EMG data for this study was collected by Hof et.
al and made available to the public via the Clinical Gait
Analysis Database [13].

3.1 Collecting Data
Surface EMGs of 14 leg muscles were recorded from
two homogeneous groups (n=9 and 11, respectively) of
young healthy male subjects (mean age 22 years (S.D.
1.5), stature 1.85 m (S.D. 0.05), leg length 0.98 m (S.D.
0.04), body mass 73 kg S.D. 8). The average personal
data of both groups was matched to compensate for the
division in the two groups. Subjects walked barefoot on
a 10 m indoor walkway at speeds of 0.75, 1.00, 1.25, 1.50,
and 1.75 m s -1.

3.2 Pre-processing: Filtering and Blocking
Compared to other biosignals, EMG signals are difficult
to analyze due to their small amplitude, which makes
them highly subject to both internal and external electri-
cal noise. Internal noise occurs when an electrode picks
up signals from more than one MUAP and overlaps
their signals, while external noise can result from equip-
ment noise, electromagnetic radiation, or motion arti-
facts. Therefore, preprocessing and filtering is essential
to obtain reliable raw EMG data [3], [10], [13].

In this study, the EMGs were high-pass filtered at 20
Hz, rectified and smoothed with a 25 Hz third order But-
terworth low-pass filter. Smoothed rectified EMGs were,
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after A/D conversion with a sample frequency of 100 Hz,
linearly interpolated to 100 points per stride, triggered
by heel contact of the leg of interest. The recorded steps
were screened to exclude those with obvious artefacts or
incorrect foot contacts. In this way for every individual i,
normalized speed v, and muscle m, average individual
profiles e(p, m, v, i) were determined from at least 10
steps over p=1-100% of the gait cycle [13].

Fig. 4:Average EMG profiles of vastus medialis muscle after
normalizing. Also shows low and high limits. Time is given as a

percentage of stride, starting at heel contact, but in a scale running
0-100-50%, in order to represent better the activity around heel strike.

4 NEURAL NETWORK CREATION

The EMG data taken from the Hof study was split into
training, validation, and testing data in a 2-1-1 ratio, as is
considered best practice when training neural networks
[19]. The data was then normalized to a range of values
between 0 and 1 using the following equation [12].

f(x) =
(x� dL)(nH � nL)

(dH � dL)
+ nL

where x is the value to be normalized, d represents the
high and low values of the data, and n represents the
high and low normalization range desired [20].

Four different neural networks architectures were cre-
ated, a multilayer feedforward perceptron network, a
recurrent neural network, a self organizing map (SOM),
and a counter propagation neural network (CPN). Each
network performed classification tasks on the EMG data,
and their performance was recorded. In the first type
of architecture, feedforward perceptrons, the networks
all had a single hidden layer and were tested with four
different combinations of activation functions: linear, ra-
dial basis function (RBF), sigmoid (SIG), and hyperbolic
tangent function (TANH) [21]. The TANH activation
function uses the hyperbolic tangent function

f(x) =
e

2x � 1

e

2x + 1
(1)

and has proved a powerful tool for classification tasks
[20]. However, in the analysis of EMG data with neural
networks, the SIG function

f(x) =
1

1 + e

�x
(2)

is more typically used [15], [19]. The feedforward net-
works were also tested with varying numbers of hidden
layer neurons to ascertain the optimal number for both
speed and accuracy of classification. All of the feedfor-
ward networks implemented a resilient backpropagation
(RPROP) learning algorithm, which is a gradient-based
optimization technique similar to the more common
regular backpropagation. RPROP is often faster than
training with backpropagation and does not require any
free parameter values to be specified. RPROP works
similarly to traditional backpropagation, except an in-
dividual delta value is calculated for each connection.
These delta values are gradually changed until the neu-
ral network weight matrix converges on a potentially
ideal weight matrix [19], [20], [22].

In each iteration of RPROP, the new weights are given
by [22]:

w

(t+1)
ij = w

(t)
ij +�w

(t)
ij

The second type of architecture tested was a recurrent
neural network (RNN) architecture. RNNs are a subset of
ANNs where connections between units form a directed
cycle. This allows the internal state of the network to
exhibit dynamic temporal behavior, using their internal
memory to process sequences of inputs. The two types
of RNNs tested were a three-layer Elman network and a
Jordan network. In the Elman simple recurrent network,
context units connected to the hidden layer maintain a
copy of the previous values of the hidden units, allowing
the network to maintain a memory of the previous time
step [23]. Jordan networks are similar, but the context
units are fed from the output layer instead of the hidden
layer [24].

Fig. 5: A structure of the trained Elman-Jordan neural network

The third type of architecture tested were SOM neural
networks. This network, unlike the previous two, was
trained using unsupervised learning to produce a two-
dimensional discretized representation of the input space
of the training samples, called a topology map. In addi-
tion, the SOM applied competitive learning techniques to
improve the network. The SOM architecture was tested
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with two different training algorithms: K-means nearest
neighbor training and cluster copy training.

The fourth network type, counter propagation net-
works (CPNs) are similar to CANFM networks, con-
sisting of an outstar network and a competitive filter
network. Each neuron in the input layer is processed
through a Kohonen network which categorizes the input
pattern, serving as the hidden layer for the network
[25]. The outputs of the Kohonen map are then filtered
through an outstar array which reproduces the correct
output pattern for the category. Training is done in two
stages; first the hidden layer learns to categorize the
patterns and then the weights for that layer become
fixed. Then the output layer is trained. One of the advan-
tages of CPN and Kohonen networks is that the training
phase requires a relatively small number of epochs,
usually several hundred, which is considered a tiny
number compared to other ANNs, such as convolutional
and deep neural networks which require thousands of
iterations of training [3].

For each of the four network architectures chosen,
all of the networks were trained, tested, and evaluated
for error four times, then the error results over each of
the four runs were averaged. Each network was trained
using the training and validation, then the method was
evaluated using the testing data. When training the
network, a maximum error percentage of 1%, max step
of 50 and initial update of 0.1 were used [26].

5 RESULTS FROM THE COMPARISON OF NET-
WORK ARCHITECTURES

Initial results on optimal classification for multiple neu-
ral network architectures corroborated results from pre-
vious studies, showing that in feedforward networks,
the number of neurons in the hidden layer does not
significantly affect accuracy of classification, but a higher
number of hidden neurons allows the network to train
faster. The feedforward networks tested all had 14 in-
puts, corresponding to the 14 EMG channels, and used
a TANH function for both the hidden and output layer
activation.

First, the network was tested with 7 hidden layer neu-
rons, half the number of input neurons, which resulted in
a 4.782% error in 102 seconds of training time. The num-
ber of hidden layers was increased by two during each
subsequent experiment, and both the error and training
time recorded, with the final test consisting of a network
with 30 hidden layer neurons. While error decreased
slightly with a greater number of hidden neurons, the
more significant change was the decrease in training
time with more hidden layer nodes. Both the error and
the training time leveled off at around 28 hidden layer
neurons, with an error value of 4.4% and a training time
of 0.35 seconds. Therefore, we can state generally that
the optimal number of hidden neurons to minimize both
training time and error for this experiment is about twice

the number of input neurons, a result which has been
produced in several previous studies [25].

Fig. 6: Graph of training time and percent error of feedforward
network vs the number of hidden neurons in the hidden layer of the

perceptron.

In analyzing the performance of the feedforward neu-
ral network architecture, we can see that using the
TANH activation function for both the hidden layer and
the output layer activation provides the most accurate
results for classification tasks, with an average error of
0.99%. Using the SIG activation function in the hidden
layer and output layer activation resulted in an error
of 12%, a result which is surprising since most neural
networks with EMG inputs use the sigmoid activation
function with relative success. However, most studies
using the SIG function utilize networks which perform
regression tasks to output spatial coordinates, while our
network classified the EMG data into 5 discrete walking
speeds.

Furthermore, both the feedforward network with
TANH activation for the hidden layer and linear outputs
and the feedforward network with an RBF activation
function performed poorly when classifying EMG data,
with average errors of 15%. While the TANH & linear
network was included primarily to serve as a control
for the TANH & TANH network, the RBF function has
been shown to perform well in networks that classify
numerical data. However, these results suggest that RBF
networks do not perform well on classification tasks with
small-amplitude EMG data.

Fig. 7: Average error percentages of four feedforward networks with
varying activation functions and two SOM with different training
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techniques.

The performance of recurrent neural networks on clas-
sification tasks was comparable to the TANH and linear
feedforward neural network, with the Jordan recurrent
network producing an error of 15.3% and the Elman
recurrent network producing an error of 13.7%. While
dynamic recurrent neural networks have previously per-
formed accurate classifications of EMG data when di-
agnosing neuromuscular diseases or prehensile human
postures, they do not appear to perform well when
given normalized EMG inputs to classify walking speed
[17][24]. This result could be due to the generalized
normalization of the data to values between 0 and 1,
which has been shown to improve results in feedforward
networks, but is often not used with recurrent systems
[23].

Fig. 8: Average error percentages of four feedforward networks with
varying activation functions and two SOM with different training

techniques.

Although the TANH feedforward network classified
walking speed with an error of less than 1%, the most
effective networks for classifying EMG data were SOM
neural networks. Both SOM networks had an average
error rate of under 2.5%, and the SOM network trained
with a cluster copy training algorithm had an error rate
of 0.27%. These results give the cluster copy trained SOM
in this study an average accuracy percentage of 99.73%,
a result which improves upon many machine learning
techniques of EMG classification.

Fig. 9: Comparison of the accuracy percentages obtained from
multiple machine learning techniques, including the cluster copy

training SOM created in this study.

Table 2 compares the results obtained in this study
from the cluster copy training (CCT) SOM with results
from different machine learning techniques of EMG
classification [6][17][27]. Most of the studies cited in

this table classified gestures or movements, not walking
speed. For example, the adaptive neuro-fuzzy inference
system (ANFIS), classified input EMG data into one
of four different hand movements [6]. Although the
classification tasks differ slightly from those in this study,
the techniques are similar enough for a comparison to be
made between the results.

The results displayed in Table 2 show that the CCT
SOM outperforms the other machine learning methods
by as much as 10.83%. We can conclude that in creating
an algorithm for the classification of walking speed given
EMG inputs, a CCT SOM provides the most accurate
results, with an equal amount of computational expense
as most other machine learning pattern classification
algorithms.

Fig. 10: Visualization of the two-dimensional topology map outputted
by the SOM. This visualization does not reflect the exact CCT SOM
created in this study, but simply serves for visualization purposes.

6 CONCLUSION

The final goal of this research project is to further
research on a more optimal myoelectric prosthetic con-
trol scheme that would be able to achieve accuracy in
classification tasks while remaining simple enough to be
implemented in inexpensive devices. Results from this
preliminary study suggest that self organizing maps can
be used to accurately classify human movement given
EMG input data. Given their promising accuracy in
walking speed classification, low computational expense
compared to networks that output spatial coordinates,
and fast training time, SOMs could potentially form the
basis for a more optimal myoelectric control scheme for
prosthetics. However, this study utilized a limited data
set and did not assess every method of EMG analysis
for prosthetics.

Therefore; further work should include a more com-
prehensive study to cover a wider range of movements
with high performance data acquisition and better sta-
tistical significance. In addition, the possibility of test-
ing EMG data with different neuroclustering techniques
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should be considered, with the ultimate goal of creat-
ing a myoelectric control scheme that can successfully
integrate machine learning techniques to create a com-
putationally inexpensive and accurate prosthetic device.
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Improving performance of automatic program repair using learned

heuristics

Liam Schramm, Jugal Kalita

Abstract— Automatic program repair offers the promise of

significant reduction in debugging time. Early generate-and-test

systems, such as the genetic programming method GenProg,

have had problems creating high-quality patches due to over-

fitting to the test suite. Recent efforts such as SPR and Prophet

demonstrate that including external knowledge about the nature

of correct repairs dramatically improves results. SearchRepair

demonstrates that including semantic constraints can greatly

improve patch quality, but has a high computational cost.

Combining Prophet’s learning techniques with SearchRepair’s

semantic constraints allows for a method that is both fast and

accurate. This paper proposes a modification to SearchRepair

that uses a fast classifier to quickly identify good candidate

patches. We use a random forest to quickly classify whether

two pieces of code are similar, allowing the search to focus only

on the best patch candidates. We report 96% accuracy on this

classification task, which is enough to greatly improve search

speed. We then train another forest on data of whether or not

patches were correct, and use this to filter for patches with a

high likelihood of success.

Keywords– Automatic program repair, Machine learning,

Semantic search.

I. INTRODUCTION

Software debugging is a tedious, expensive, and manual
process. The majority of the cost of most software projects
is spent on software maintenance, and the majority of the
cost of software maintenance is debugging [3]. Automated
program repair offers the promise of dramatically lowering
or even eliminating these costs. However, the fledgling field
still struggles with making tools that are practical enough to
reach the level of popular usage. For an automated repair tool
to be successful, it must be meet certain criteria of efficiency,
accuracy, and generality.

• Efficiency: The ability to create and validate a patch
for a given bug in a reasonable amount of time. An
automated program repair tool must be fast enough
that it is cheaper and more convenient to fix the bug
automatically than it is to fix it by hand

• Accuracy: The probability that the patch proposed for
a given bug is correct. Although we would like to be
confident enough in the algorithms recommendations
that they would not need human oversight, this goal
seems far off. At present, a more reasonable goal is
that a correct patch is high enough on the list of
recommended patches that a human can easily pick it
out.

• Generality: The range of bugs a repair algorithm is able
to address. While tools that address specific types of
bugs may be adept in their particular field, there are
simply too many different types of bugs for addressing

them with individual programs to be practical. Methods
that use certain preset types of modifications report
that no one modification ever accounts for a large
fraction of total repairs [10], [12], [4]. For automated
program repair to become highly useful in a real-world
environment, it must be general enough to fix a wide
range of bugs

Several methods exist for automatic program repair, but all
of them encounter problems with at least one of the above
criteria. Semantic algorithms like DirectFix or Angelix are
limited in the bugs they are able to address and sometimes
scale poorly [1]. Search-based algorithms such as GenProg
and SPR offer the possibility of a wider range of patches,
but also are very likely to create patches which pass the test
suite, but are ultimately incorrect [1], [4] [3]. One reason that
search-based methods have this problem is that the search
space is effectively infinite, and within this space, there are
many more patches that pass all tests (plausible patches) and
are incorrect than there are correct patches [5]. One solution
to this problem is to use a fast, learned heuristic to focus
the search on patches that look like human-written patches,
which are more likely to be correct [2]. Another approach is
to introduce semantic constraints and use theorem proving to
ensure that undertested functionality is not deleted [8], [13].

In this paper, we combine this fast heuristic search
with more rigorous theorem-proving techniques to create a
method that is both fast and reliable.

II. BACKGROUND

Automated program repair is the process of patching bugs
in a program given a test suite for that program. Currently,
there are two common approaches to this problem: generate-
and-validate, and semantic analysis. Generate-and-validate
solutions create a large number of candidate patches, and
then evaluate them one-at-a-time until an optimal candidate
has been chosen. This candidate is then tested against the
test suite, and if it passes, is accepted. If it is not accepted,
a new patch is chosen, and the process is repeated until an
acceptable patch is chosen, the search space is exhausted,
or the time limit is reached. Semantic analysis works by
extracting a repair constraint through symbolic execution.
These constraints are then fed to theorem provers that infer
a correct patch, which is then inserted.

In 2009, GenProg became the first algorithm to success-
fully perform automated program repair on large-scale real-
world problems. It uses genetic programming to encode pos-
sible patches as variations to the source code. Its algorithm
works approximately as follows:
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1) Randomly generate a population of potential patches.
2) Run a subset of the test suite on each member of the

population. The number of tests each member passes
serves as the fitness function.

3) Breed the members of the population with the highest
fitness.

In the months after GenProg’s publishing, however, it
became apparent that the method was not as effective as
it had first seemed. Several studies found that GenProg
frequently “fixed” bugs by deleting functionality. This is
because its fitness function is defined solely by the test suite.
Any functionality not covered by the test suite is likely to
be deleted if any part of it contributes to buggy behavior
[7]. Since the GenProg stops searching once it has found a
patch that passes all the tests in the test suite, this pattern of
functionality-deletion often contributes to GenProg failing to
find patches that are within its search space [5].

This problem can also be viewed as an issue of overfitting.
In a sense, GenProg overfit to the test suite by using it as
the sole determinant of whether a patch was correct. Thus,
it created patches which performed well on the test suite
but poorly fit the actual function of the code. Most of the
work done in the field since this discovery can be seen as
an attempt to avoid overfitting.

Within the generate-and-validate framework, two methods
have emerged for improving the quality of patches. The first
approach was taken by Prophet and SPR. Although both still
create incorrect patches about half the time, they reduce the
likelihood of this happening by trying to produce a small
number of patches that obey a collection of hand-coded
rules rules[4] [2]. Each hand-coded rule, or schema, covers
a specific type of repair. SPR and Prophet first use a target
value search to check whether each schema is capable of
generating a patch for the given bug. If it is not, the schema
is discarded. They then generate a search space of patches
from the remaining schemas, and test each of those

Since correct patches are sparse in the space of plausible
patches, randomly generating solutions is more likely to
produce plausible, incorrect patches than correct patches
[5]. The authors believe that their careful construction of
patches is less likely to produce incorrect patches because it
utilizes more information about the program. Prophet also
uses machine learning to select for patches with similar
qualities to human patches[2]. This has several advantages.
Firstly, it allows Prophet to rank patches without using the
test suite, reducing the threat of overfitting. Since applying
the learner is also much faster than running the test suite, it
also serves a a useful search heuristic. This allows Prophet
to focus its search significantly by looking for patches that
share features with the correct patches.

The other approach, which was taken by SearchRepair,
uses an algorithm that combines the search and the semantic
analysis paradigms[8].

1) Encode a database of human-written code fragments
as satisfiability modulo theories (SMT)

2) Locate the bug

3) Build a functional description of each fragment that
describes its input-output profile

4) Search the database for a code fragment that matches
the desired input-output profile

5) Insert the code fragment and run the test suite
While still being somewhat similar to its ancestor Gen-

Prog, SearchRepair has a few changes that help it combat
overfitting. Firstly, it copies and pastes larger sections of
code. The intuition is that while a single line may behave
very differently out of context, a multiline block of code
is less likely to do so. It would replace the entire buggy
section with a correctly implemented version written by
another human developer. Since this replacement block was
not overfit to the test suite when it was written, there is less
risk of it being overfit here. In addition, SearchRepair using
theorem proving to speed up this search. Although theorem
proving is very slow, it is still much faster than running the
test suite for every patch.

SearchRepair generated patches with much higher quality
than its purely random counterparts, passing 97.3% of tests
in an independent test suite as opposed to GenProg’s 68.7%.
Although SearchRepair did not fix as many bugs as GenProg,
RSRepair, or AE, this may be because these other methods
might have fixed a large number of bugs simply by deleting
functionality [8], [7].

SearchRepair has major issues with scalability [13]. It
was almost two orders of magnitude slower than the second
slowest method run on the Introclass benchmark, and three
orders of magnitude slower than all other methods. One
of the main reasons for this is the way its theorem prover
works. Because SearchRepair uses pieces of code from other
applications as its patches, it must rename the variables to
insert the code. However, it has no a priori way of knowing
what the correct variable mapping is, so it must run theorem
proving on each possible mapping [13]. This means that the
theorem prover must run n! times on each patch, where n is
the number of variables. Since SMT satisfiability is already
an NP-Hard problem, SearchRepair effectively tries to brute-
force an NP-Hard problem (variable mapping) that involves
solving another NP-Hard problem (SMT satisfiability) on
every iteration. This is, needless to say, very inefficient.

Amazingly, while this process is prohibitively expensive
for large numbers of patches, the time taken to test a single
patch is not terribly high. Since most code fragments used by
SearchRepair have no more than 4 or 5 variables, a single
patch can often be tested in less than a second. It is only
when large databases of code fragments must be searched
that problems arise.

III. METHODS

As stated earlier, both SearchRepair and SPR/Prophet have
drawbacks, either in their scalability or in their accuracy.
For automatic program repair to become practically viable,
a system must both create high-quality patches and be able
to run in a reasonable amount of time.

One way to avoid the large computational cost associated
with SearchRepair’s semantic search while maintaining high
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accuracy is to use a fast heuristic to eliminate poor candi-
dates. Using a heuristic to iterate over all the possible patches
in a database lets us pick out those with a high likelihood of
success, avoiding the majority of the computation previously
required. This heuristic must be independent of variable
mappings in order keep its cost from becoming prohibitively
expensive. The theorem prover would then run on these
selected candidates, ensuring that each proposed patch is
indeed of high quality.

Since the cost of using theorem proving is much higher
than the cost of using the learner, a high false negative rate is
much more acceptable than a high false positive rate. If, for
instance, there was a false negative of 80%, we could simply
try five times as many patches at fairly low cost. However, if
we evaluate 1000 patches and have even a 10% false positive
rate, this means we must evaluate 100 patches with theorem
proving. Given SearchRepair’s current speed, this would take
about a minute. However, since the learner has been able to
evaluate around 50,000 patches per second, it would be more
efficient to take a much larger database of patches and use a
learner with a very low false positive rate. Even if the learner
has a false negative rate of over 50 percent, we can easily
replace these these cases by just searching more patches.

To create such a heuristic, we begin with the feature
extractor proposed by Long and Rinard in their Prophet
paper [2]. This method creates a list of atoms (vari-
ables or constants) and what operations the program uses
on them. For instance, if a program checks if(a > c
&& a < b), then assigns median = a, the feature ex-
tractor would record a: lessthan, greaterthan, <
assign, R>. The fact the a was on the right side of the
assignment is recorded because assigning and being assigned
to are very different operations.

The complete list of features is enumerated below.
1) var: True if the atom is a variable
2) const0: True if the atom is a constant equal to 0
3) constn0: True if the atom is a constant not equal to 0
4) cond: True if the atom is in a conditional
5) iff: True if the atom is in the body or the conditional

of an if statement
6) prt: True if the atom is printed
7) loop: True if the atom is in the body or the conditional

of a loop
8) EQ: True if the atom is in a statement with a ==
9) NEQ: True if the atom is in a statement with a !=

10) ret: True if the atom is returned
11) plus: True if the atom is in an addition statement
12) times: True if the atom is in a multiplication statement
13) minus l: True if the atom is on the left side of a

subtraction operator
14) divided l: True if the atom is on the left side of a

division operator
15) minus r: True if the atom is on the right side of a

subtraction operator
16) divided r: True if the atom is on the right side of a

division operator
17) increment: True if the atom is incremented

18) decrement: True if the atom is decremented
19) ASSIGN L: True if a value is assigned to the atom
20) ASSIGN R: True if the atom is assigned to another

variable
21) LESS THAN: True if the atom is in a statement with

a <
22) GREATER THAN: True if the atom is in a statement

with a >
23) LESS EQ: True if the atom is in a statement with a

<=
24) GREATER EQ: True if the atom is in a statement with

a >=
These features are calculated for a given line(C), the

three lines above it(P), and the three lines below it(N). The
complete feature vector for a line in a program includes the
set of features for C, P, and N for each atom in C.

Since the goal is to evaluate whether a given patch will
work for given buggy section, we append the feature vectors
of the buggy code and the proposed patch to create a new
vector, and feed this vector to the learner. However, this
gives rise again to the issue of variable mappings. In the
Prophet feature extractor, the features of an atom in the
buggy program are explicitly encoded alongside the features
of the corresponding variable in the patched program. Since
encoding this mapping, even implicitly, would defeat the
point of a mapping-free heuristic, we randomize the order in
which atoms are encoded for every set of features, preventing
the learner from finding mapping-dependent patterns.

We train a random forest to classify patches as either
correct or incorrect. Then, we use this classifier as a filter
for what patches should be evaluated by the theorem prover.
The modified algorithm is as follows.

1) Encode a database of human-written code fragments
as satisfiability modulo theories (SMT)

2) Locate the bug
3) Build a functional description of each fragment that

describes its input-output profile
4) Extract features of the buggy code
5) Extract features of each fragment in the database
6) Combine the buggy features and the fragment’s fea-

tures into a single patch feature vector
7) Apply the learner to each patch feature vector in the

database. If the patch feature vector is classified as
correct, add the corresponding code fragment to a
second database

8) Search the new, filtered database for a code fragment
that matches the desired input-output profile

9) Insert the code fragment and run the test suite
The following example serves to demonstrate the new

algorithm. Suppose we have the following bug from the
IntroClass benchmark.

/**/
#include <stdio.h>
#include <math.h>
int main(void)
{

int int1, int2, int3, med;
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printf("Please enter 3 numbers separated
by spaces > ");

scanf("%d %d %d", &int1, &int2, &int3);

if (((int1 < int2) && (int1 > int3)) ||
((int1 < int2) && (int1 > int3)))

med = int1;
else if ((((int2 < int1)) && (int2 >

int3)) || ((int2 < int3) && (int2 >
int1)))
med = int2;

else if (((int3 < int1) && (int3 > int2))
|| ((int3 < int2) && (int3 > int1)))
med = int3;

printf("%d is the median\n", med);
return 0;

}

Since this program uses ¿ and ¡ operators instead of ¿=
and ¡= operators, it will fail in the case that two or more of
the numbers are equal.

Suppose then, that the modified SearchRepair’s search
space includes the following three patches

Patch 1

while ((status = scanf("%c", &it)) != EOF &&
it != ’\n’)

sum = (sum + (long) it) % 64;
sum = sum + (long) ’ ’;
printf("Check sum is %c\n", (char) sum);

Patch 2

for(i=flag1-1; i>=flag2; i--)
{

if(flag2==1 && i==1)
printf("-");
printf("%c\n", digit[i]);

}

Patch 3

if((a >= b && a <= c) || (a >= c && a <= b))
median = a;

if((b >= a && b <= c) || (b >= c && b <= a))
median = b;

else
median = c;

printf("%d is the median\n", median);

Once the database has been constructed, the bug located,
and the functional descriptions constructed, the algorithm
begins the machine learning section. First, it constructs the
feature vector for buggy section of code and for each of
the patches. Then, it concatenates the two vectors into a
single vector which is fed to the learner. In this case, let’s
presume that the learner classifies patch 2 and patch 3 as
viable, but patch 1 as not viable. Patches 2 and 3 are added
to the temporary database. SearchRepair then fetches patch
2 from the database and runs the theorem prover on it. Since
it doesn’t match the functional specifications given by the
test suite, it is discarded. SearchRepair fetches patch 3 from

the database and applies the theorem prover to it as well.
Since patch 3 fits the semantic constraints, it is accepted,
and its variables are replaced with the variables from the
buggy program. Finallly it is tested against the test suite. It
passes, and the final patch is returned.

/**/
#include <stdio.h>
#include <math.h>
int main(void)
{

int int1, int2, int3;
printf("Please enter 3 numbers separated

by spaces > ");
scanf("%d %d %d", &int1, &int2, &int3);

if((int1 >= int2 && int1 <= int3) || (int1
>= int3 && int1 <= int2))

med = int1;
if((int2 >= int1 && int2 <= int3) ||

(int2 >= int3 && int2 <= int1))
med = int2;

else
med = int3;

printf("%d is the median\n", med);
return 0;

}

IV. EVALUATION

Using these feature vectors, we trained a random forest to
classify pairs code snippets based on whether they were from
programs that were trying to do the same thing. The intuition
is that a program with similar functionality is far more likely
to provide a correct patch than a program with very different
functionality. These code snippets were sampled from the
IntroClass benchmark. A pair was counted as a positive case
if the two snippets were from programs submitted for the
same assignment. Otherwise, they were counted as a negative
case. The positive cases were sampled at a higher rate to
make up for the asymmetry in the size of the classes.

To evaluate how effective different machine learning meth-
ods were for this set of features, we took a subset of the
data and tried an array of machine learning techniques to
see which produced the best results

Algorithm Training Time Accuracy
SGD 13.96 s 51.297%
Naive Bayes .21 s 55.951%
Bayes Net .76 s 56.002%
Random Forest 14.07 s 86.165%
J48 27.22 s 75.534%
AdaBoost 6.58 s 56.738%
K-nearest neighbors n/a 81.587%
SMO 540.51 54.9593

TABLE I: Learner results

Based on these results, we concluded that a Random Forest
would be the most effective learner for this application. For
this reason, the rest of our experiments are conducted using
a random forest.
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Using the full dataset, we train a random forest with
100 trees, run for 100 iterations, and test it using 10-fold
cross-validation. The forest was correctly able to classify
96.17% of the test cases. The false positive rate (classified
as being from the same assignment, but really from different
assignments) was 5.4%. The false negative rate (classified
as being from different assignments, but really from the
same assignment) was 2.4%. For this application, this is
a very satisfactory result. Since the vast majority of the
patches are from programs with a different purpose than
the buggy program, being able to rule out almost 95% of
these obviously bad candidates will significantly increase the
search speed.

Once it was demonstrated that this method was effective
at the code similarity task, it was applied to the patch
recognition task as well. For this, we used a random forest
and the same training data as Prophet [2]. We classify a
patch as correct if and only it it is the developer-written
patch. Although this is not necessary correct, very few copy-
pasted code segments will produce correct results, whereas
copying and pasting the developer patch into the buggy
section always will. We did not use actual SearchRepair
patches because it would be computationally infeasible to
create a large database of patch data using such a method.
Thus, pairs of bugs and their respective developer-written
patches are considered positive cases, and other pairs are
considered negative cases.

We found that the learner had a 66% false negative rate
and a 0.11% false positive rate. It was able to evaluate
a set of 118,000 proposed patches in four seconds (Not
including time to write the file). Of the patches classified as
correct by the learner, 20 out of 139, or about one in seven
were in fact the developer patches. This is a huge increase
in the density of correct patches. The space of potential
patches generated for the learner contained about 1.6 correct
patches per thousand. Filtering to one in seven is a dramatic
improvement. Although most of the correct patches were
discarded, the fact that the learner was able to search the
space so quickly allows us to increase the total number of
correct patches simply by expanding the state space.

V. FUTURE WORK

Now that the learner has been shown to be effective, the
next step would be to make the database adaptive as well.
In the current implementation of SearchRepair, the patch
database is scavenged more or less at random from a parent
application or applications. Some of these patches are likely
to be much more successful. For instance, a code snippet with
an if statement checking whether or not an integer is equal
to zero will likely be a far more useful patch than a section
of code implementing a complex mathematical formula. If
the formula code is used infrequently enough, then the cost
of checking its relevance for every bug will outweigh the
benefits of keeping it stored. If such a snippet is repeatedly
not used, then it should be deleted from the database and
replaced with another snippet with a better likelihood of
repairing patches. Similarly, highly redundant snippets are

possible in the current implementation. By keeping track
of both how often a given snippet fails and how much
its fixes overlap with those of other snippets, the database
itself can be made adaptive. This would allow the possibility
of establishing a general set of patches that cover a wide
range of bugs. Other authors have tried similar techniques
with good results. For instance, in History Driven Program
Repair, the authors use a graph-based learner to learn general
patch types from developer patches of real programs [12].
This learner is used to guide the creation of future patches,
just like here the success of code snippets would guide their
future use.

VI. CONCLUSIONS

Automated program repair holds a great deal of promise,
but it is rapidly becoming apparent that purely random
methods are not sufficient for high-quality patches. Both
patch synthesis methods like SPR and Prophet, and semantic
constraint search-based methods such as SearchRepair have
proven effective, but each has drawbacks as well. Combin-
ing Prophet’s fast feature-based search with SearchRepair’s
slower, more reliable constraint-solving allows us to produce
a method that is both fast and accurate.
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Abstract—Confidently distinguishing a malicious intrusion over
a network is an important challenge. Most intrusion detection
system evaluations have been performed in a closed set protocol
in which only classes seen during training are considered
during classification. Thus far, there has been no realistic
application in which novel types of behaviors unseen at training
– unknown classes as it were – must be recognized for manual
categorization. This paper comparatively evaluates malware
classification using both closed set and open set protocols
for intrusion recognition on the KDD’99 dataset. In contrast
to much of the previous work, we employ a fine-grained
recognition protocol, in which the dataset is loosely open set –
i.e., recognizing individual intrusion types – e.g., “sendmail”,
“snmp guess”, ..., etc., rather than more general attack cate-
gories (e.g., “DoS”,“Probe”,“R2L”,“U2R”,“Normal”). We also
employ two different classifier types – Gaussian RBF kernel
SVMs, which are not theoretically guaranteed to bound open
space risk, and W-SVMs, which are theoretically guaranteed
to bound open space risk. We find that the W-SVM offers
superior performance under the open set regime, particularly
as the cost of misclassifying unknown classes at test (i.e.,
classes not present in the training set) increases. Results of
performance tradeoff with respect to cost of unknown as
well as discussion of the ramifications of these findings in an
operational setting are presented.

Index Terms—Intrusion Detection, Open Set, Malware, Recog-
nition, Machine Learning, Support Vector MachinesIntrusion
Detection, Open Set, Malware, Recognition, Machine Learning,
Support Vector Machines

1. Introduction
Intrusion detection systems (IDS) seek to recognize

anomalies and attacks in networks. Thus far, the problem of
distinguishing between normal and malicious activities has
approached classification with a closed world assumption.
A closed world can consider at classification time only
instances from classes that were available in the training
set [1]. Applications to a real world environment where
both pre-seen known classes must be recognized and novel
classes must be labeled as “unknown”, have heretofore
not been taken into consideration. Although some authors

Closed 
Space

Open Space

argmin

f�H
{Ro(f) + �rR�((�̂ � �̂))}

Ro(f)
�r

R�((�̂ � �̂))}
is the open space risk, is the regularization constant, and 

is the empirical risk function.

Where

Figure 1. In contrast to unrealistic closed-set benchmark settings,
this paper tackles the open set intrusion recognition problem. Con-
sider three types of intrusive behavior shown as green, blue, and
purple classes, with decision boundaries shown as linear classifiers.
These classifiers partition the hypothesis space such that each
class of data has unbounded support; thus a sample from a novel
unknown class – i.e., far from known data (shown as a question
mark) is classified as belonging to one of the three classes under
this regime. Instead it should be brought to the attention of the
system operator by marking it with an “unknown” label. Open
set recognition seeks to bound the classification decisions by the
support of known data (shown by the red square). In this closed
space, the classification decision is reasonable, and the decision
made by the classifier is used as the classification decision. Beyond
this bound (e.g., in open space), an effective open set classifier
recognizes that samples are not supported by known training data
and the classification is marked as “unknown”.

defend a testing methodology in real environments, most
advocate an evaluation procedure in experimental bench-
mark settings [2]. Both techniques have benefits and con-
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sequences. One advantage of evaluating real environments
is that the traffic is amply realistic and unknown attacks
are present, but the effectiveness of the system can only be
evaluated in a post-mortem sense, due to the risk of po-
tential attacks: some form of benchmarking is required, but
evaluation protocols to date are highly artificial, often with
unrealistic distributions of attack and normal data. Moreover,
benchmark evaluations are almost always constructed under
the premise that all classes of attack and normal behavior
present in test will have been seen in train.

This benchmark assumption is unrealistic. Often, novel
classes of attacks will emerge precisely to defeat the in-
trusion detection system. The best recourse that the system
can have is to mark these attacks as unseen and flag them
for human inspection and training of a newer version of the
classifier (or performing dynamic updates in the incremental
context).In this paper, we provide the first open set intrusion
detection analysis by performing fine-grained recognition
of attack types within the KDD’99 dataset, wherein not all
classes in the test set are seen at training.

This dataset is mostly closed-set, where all instances are
classified as either normal or malicious.

Research in intrusion detection has been mostly fo-
cused on anomaly-based and misuse-based detection tech-
niques [3]. Misuse-detection is generally favored in com-
mercial products due to its high accuracy. On the other
hand, anomaly-detection is conceived as the more powerful
method in academic research, due to its theoretical poten-
tial for detecting novel attack types. Developing a robust
intrusion detection system follows performing either form
of misuse or anomaly detection, or a combination of them
on network traffic data, which can involve employing a cus-
tomized machine learning algorithm – the algorithm’s goal
being to learn the general behavior of the data set so as to be
able to distinguish between normal and malicious activities.
The novel open-set approach to intrusion recognition that
we present in this paper combines both anomaly detection
and discriminative misuse-detection via one unified open set
classifier (the W-SVM).

Malware classification can illuminate how malicious
software attacks devices, the level of threat it poses to those
devices, and how to defend against it. Most intrusion recog-
nition techniques, as surveyed in [2], [4], and [5], assume
that all classes seen at classification time are also present in
the training set and yield recognition accuracy only for a de-
termined closed set of classes. Realistically, recognition has
to consider three basic categories of classes: known classes,
known unknown classes, and unknown unknown classes [6].
Known classes are those with distinctly labeled positive
training examples, which also serve as negative examples for
other known classes. Known unknown classes are those with
labeled negative examples. Known unknowns are not nec-
essarily grouped into meaningful categories. The inclusion
of known unknown classes results in models generated with
an explicit “other class,” or a detector that is trained with
unclassified negatives. Finally, unknown unknown classes
are classes unseen in training.

We seek to show how multi-class recognition of un-

known data points can be extended to malware classifica-
tion through an evaluation comparison of support vector
machines (SVM). We chose the KDD’99 dataset as our
benchmark to perform malware classification using a Ra-
dial Basis Function (RBF) kernel SVM and the Weibull-
calibrated SVM (W-SVM) algorithm. By classifying on fine-
grained attack types within th KDD’99 dataset, we implicitly
transform the problem to an open set one, which we evaluate
under two protocols: a closed set evaluation protocol and
an open set evaluation protocol. While the RBF SVM is
not mathematically guaranteed to bound open-space risk
(amount of unsupported unknown hypothesis space labeled
as a class in training), we can attempt to do so by performing
thresholding on Platt-calibrated probability estimates; the
W-SVM by contrast is mathematically guaranteed to bound
open space risk, but the tightness of the bound can vary. In
analogous contexts in object recognition and OCR, Scheirer
et al. found that the W-SVM performs significantly better in
an open set regime than other state-of-the-art for the same
tasks [6].

Our contributions are as follows:

• We evaluate the KDD’99 dataset under an open set
framework and demonstrate how open set classifiers
can yield gains in accuracy.

• We introduce a novel analysis on the cost of
unknown misclassifications that illustrates how a
choice for an open set or closed set classifier when
evaluating the data can impact the cost.

• We perform fine-grained classification on the
KDD’99 dataset as opposed to using the four rough
categories most other evaluations have followed.

• We analyze dataset balance and evaluate its effects
on classification.

2. Related Work

Although the KDD’99 dataset is not the best dataset
for intrusion detection evaluation, the ubiquitous nature
of the KDD’99 dataset in intrusion detection research is
our motivation for selecting it. A year-wise distribution of
datasets used for intrusion detection experiments can be
found in [4]. Among them, and ranked as the the most
widely used, is the KDD’99 dataset. This demonstrates how
widely-used the KDD’99 dataset is for intrusion detection,
despite its limitations. KDD’99 was constructed based on
the data captured in the DARPA’98 IDS evaluation program.
The dataset is composed of 4 gigabytes of compressed raw
(binary) tcpdump data collected from 7 weeks of simulated
attacks on network traffic. The training dataset contains
about 4,900,000 single connection vectors, each of which
contains 41 features and is labeled either as “normal” or
an “attack.” The attacks simulated on the network can be
categorized into the following: Denial of Service Attack
(DoS), User to Root Attack (U2R), Remote to Local Attack
(R2L), and Probing Attack.

Important deficiencies in the KDD’99 data set include a
huge number of redundant records. Tavallaee et al. analyzed
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the KDD’99 dataset and discovered that 78% and 75% of
the records are duplicated in the train and test set, respec-
tively [3]. Within the train set, these redundancies will cause
learning algorithms to be biased towards more frequent
records, which in turn hinder it from learning infrequent
records. Infrequent records are typically more harmful to
networks, for example User to Root Attacks (U2R). Within
the test set, redundancies will cause the evaluation results to
be biased towards methods that have better detection rates
on the more frequent records. In the Approach section of
this paper we discuss the procedure we took to normalize
the KDD’99 dataset before conducting our experiments.

2.1. Open Set Recognition

Differentiating intrusion detection and intrusion recog-

nition is important for understanding the applications of
this paper. Detection generally demands the identification
of anomalous behavior, whereas for recognition we assume
there are some classes we can recognize in a much larger
space of things we do not recognize. Open set recognition
can be defined as a real world problem for which unknown
inputs and incomplete knowledge are present in multi-class
recognition. When considering open set recognition, many
of the assumptions behind traditional statistical learning,
Bayesian models, and generative and discriminative models
oftentimes do not hold. Despite this, open set recognition
can be adapted to provide probabilities for thresholding
decisions where those decisions depend on the validity and
shape of those probabilities [6].

In the scope of computer vision, [7] formalized the open
set recognition problem as a risk-minimizing constrained
functional optimization problem. They introduced a novel
“1-vs-Set Machine” that defines a decision space from the
marginal distances of a 1-class or binary SVM using a
linear kernel in order to support better generalization and
specialization in a manner that remains consistent with the
open set problem definition. The experiments performed for
object recognition and face verification reveal that the 1-vs-
Set Machine is highly effective at improving accuracy when
compared to 1-class and multi-class SVMs under the same
test regime.

In 2014, Scheirer et al. addressed the general idea of
open space risk limiting classification in order to accom-
modate non-linear classifiers in a multi-class setting [6].
In examining the problem of open set recognition, they
proposed a model incorporating an open space risk term
that could account for the space beyond the reasonable
support of known classes. Statistical extreme value theory
(EVT) was used to develop a novel approach to probability
estimation for SVMs by observing that the distributions of
score tails near the decision boundary follow EVT distribu-
tions. This novel approach is the Weibull-calibrated SVM
(W-SVM), which combines Compact Abating Probability
(CAP) models in [6] with EVT for improved multi-class
open set recognition. Within a CAP model, probability of
class membership wanes as points move from known data
to open space, which accounts for the unknown unknowns

without the need to explicitly model them. The experimen-
tal results show the strong impact of openness on SVMs,
where applying open set recognition requires thresholding
on estimates that are robust to unknown classes and decay
away from training data. Nevertheless, with very limited
sampling in training for a class with large variation in its
feature space, it may not always be possible to fit a good
Weibull model to the data.

More recently, in 2016 Rudd et al. surveyed malicious
stealth technologies and existing autonomous countermea-
sures [1]. Their findings suggest that while machine learning
has potential for generic and autonomous solutions, several
flawed assumptions fundamental to most recognition algo-
rithms inhibit a direct mapping between the stealth malware
recognition problem and a machine learning solution. The
closed world assumption was the most notable of these
flawed assumptions. Unseen classes at classification time
exist for truthful intrusion recognition tasks, and neither all
variations of malicious code nor all variations of harmless
behaviors can be known apriori. Finally, Rudd et al. intro-
duce an open set recognition framework to be incorporated
into existing intrusion recognition algorithms. The central
point being that there is no need to discard closed set
algorithms in order to manage open space risk, given that
they are combined with open set recognition algorithms.
Closed set techniques are regarded as sufficient solutions
when they are well supported with training data, however,
open set algorithms are necessary to draw meaning from
closed set decisions. Thus, the open set problem can be
approached by using an algorithm that is inherently open set
for novelty detection and that rejects any closed set decision
as unknown if its support is below the open set threshold [1].

3. Approach

Support vector machines (SVMs) were formally pro-
posed in 1992 with a publication by Boser, Guyon, and
Vapnik [8]. SVMs first map the input vector into a feature
space to then obtain the optimal separating hyper-plane in
the feature space. In addition, the decision boundary, i.e., the
separating hyper-plane, is determined by the support vectors
rather than the entirety of training samples and as a result
is extremely resilient to outliers.

SVMs were first designed to perform linear classifica-
tion, fit to a training set of binary labeled data, but they
have been extended to both multiclass problems via one-vs-
one and one-vs-rest formulations, nonlinear problems via
kernelization, and one-class formulations [9].

For a kernelized SVM, the classification decision for
sample x

0 is given by

h(x0) =
MX

i=1

↵iyiK(xi, x
0) + b, (1)

where M is the number of support vectors, ↵i is the La-
grange multiplier and label corresponding to the ith support
vector, xi is the ith support vector in the input space, K is
the kernel function, and b is the bias [9].
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Figure 2. When evaluating the KDD’99 dataset, train and test datasets can be considered at different granularities. Most authors evaluate
either the intrusion detection setting – i.e., binary classification of samples as malicious or benign. While some authors classify different
samples by metatype (DoS,Probe,R2L,U2R,Normal), which is a closed-set protocol, we perform fine-grained evaluation of the KDD’99
dataset, in which novel types of attacks are present in the teset set. Attack classes that are present in the test set that are not present in
the train set for the original KDD’99 dataset are shown in blue (this is prior to changes from pre-processing discussed in Sec. 4.1).

Standard SVMs do not provide a calibrated posterior
probability as the classification output, which limits the post-
processing of the evaluation. Platt empirically found that
training an SVM then performing a maximum likelihood
fit of a sigmoid on distances of training samples from
an SVM’s decision boundary, yields a good discriminative
estimate of probability of inclusion with respect to a class
of interest [10]. The normalization is parameterized as

�(x; c, t) =
1

1 + exp(�c(x � t))
, (2)

where c, the temperature of the sigmoid and t, the
translation parameter, are learnt by Maximum Likelihood
Estimation (MLE). However, Platt calibration this does not
bound open space risk in the binary setting, due to the
infinite extent of a sigmoid. When averaged over multiple
classes in a 1-vs-1 multiclass regime, Platt calibration can

bound open space risk, but there are still no guarantees. Even
with the assumption that all classes are mutually exclusive,
the unknown unknown classes prohibit the use of the law
of total probability that underlies Bayes? theorem [6]. Open
set recognition cannot only use the maximum a posteriori
probability (MAP) estimate over the known classes as the
best solution because MAP estimation requires the full
posterior distribution, and a consideration of all classes. The
relevance of only the known classes is insufficient.

Scheirer et al. note that, while it is well known that
one-class models are typically less effective than binary
machines, the decision score of a binary SVM is not a
canonical sum [6]. However, the decision score can still be
useful because improved probabilities will generally result
in tighter bounds about the class of interest. After collecting
all of the positive coefficients into one sum, and all of the
negatives into a second sum, and splitting the bias between
them, one can view the SVM as applying a decision rule on
whichever is more similar. Effectively, this technique com-
bines both positive and negative evidence. By only working

��

�

W-SVM

�(x; c, t) =
1

(1 + e

�c(x�t))

Figure 3. Let red correspond to the decision boundary. Platt calibra-
tion (sigmoidal) with respect to distance from the decision bound-
ary of an RBF SVM does not bound open space risk because when
thresholded (green), the calibration still labels unbounded space
with approximately 100% probability. Probabilities of inclusion
returned from a Weibull-calibrated W-SVM (e.g., blue) abate to
zero with distance from the actual data, and thus provably bound
open space risk.

with the positive or the negative data, one can obtain a model
for nicely bounded results from a binary SVM that can be
used in addition to the one-class probabilities. This model
is the Weibull-calibrated SVM (W-SVM). To bound open
space risk, the W-SVM uses the decision output from an
EVT-calibrated one-class density estimator RBF SVM. To
bound open space risk, there is a constraint that ↵i be non-
negative 8i; thus not all formulations of one-class SVMs will
do because this constraint is vital to the compact abating

property in Theorem 2 of [6].
For the purposes our experiments, we use a 1-vs-Rest

implementation for the W-SVM from [6], and a 1-vs-1 de-
fault implementation from Scikit-learn for the conventional
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RBF SVM. A Gaussian RBF kernel was selected for all
of the SVMs. Note that Scikit-learn default implementation
uses an averaging of calibrated Platt probabilities, which
make many class pairs (1-vs-1) more resilient to an open
set protocol.

Training

Class Instances
1 53
2 2
4 8
6 1547
7 968
8 7
9 9
12 206
15 3563
20 3
21 3722
22 918
23 5019
24 9
25 30
29 812811
31 4
32 20
33 12
34 893
35 14
36 242149
39 3007
Total 1074974

Testing

Class Instances
1 1302
3 17
4 3
5 744
6 80
7 386
8 18
9 13
10 2
11 359
12 45
13 794
14 2
15 174
16 16
17 145
18 15
19 143
20 2
21 154
22 12
23 860
24 2
25 22
26 308
27 1049
28 360
29 47879
30 13
31 2
32 1002
33 1
35 9
36 20332
37 2
38 9
39 936
40 4
Total 77216

Figure 4. Training and Testing Counts per Class Post Unique
Removal

4. Experimental Evaluation

4.1. Dataset Preprocessing

We took note of [11], [3], and [12] and removed du-
plicate entries from the training set and the test set. This
was also done in the interest of overall computation time. It
is possible that entries between the test and training sets
correspond, however within each respective dataset there
are no identical entries. We reduced the training set from
4898431 entries to 1074974 entries. The test set was reduced
from 311029 entries to 77216 entries. We noticed that
two of the classes within the training set accounted for a
disproportionate amount of the data, so we down sampled
these classes by 100 times. Classes with fewer than 20
samples we removed entirely from the training set. In order
to format the data for learning we normalized each vector
element to a 0-1 range using a linear min-max scaling across
all data on an element-wise basis. For the categorical data,
we assigned integer values corresponding to an index in a
number of categories prior to conducting the scaling. We
hypothesize that a different encoding could yield superior
results e.g., a one-hot encoding. However, this increases the
feature vector length along with computation time and is
orthogonal to the analysis in this paper. We trained both the
RBF SVM and the W-SVM using these chosen parameters.
We used the 1 vs. Rest W-SVM when comparing against
the 1 vs. 1 RBF SVM – the default scikit-learn SVM.
In order to determine a good value for C and � in our
experiments, we first performed a 3-fold cross validated
order of magnitude grid search over the training set. We
used a grid of C, � 2 {10�5, 10�3, . . . , 105}. Based upon
accuracy over this grid search, we selected a C value of
1000 and a � value of 0.1 for training our classifiers.

4.2. Closed Set Protocol Evaluation

We evaluated classification error in terms of both closed
and open set accuracy. For the closed set protocol this
is simply the number of correctly classified test instances
out of the total number of test instances, which does not
account for unknown classes: i.e., all test instances with
labels not present in the training set will be misclassified
under this protocol. For the RBF SVM we obtained a closed
set accuracy of 91.1%. For the W-SVM we obtained a closed
set accuracy of 90.1%. It is not surprising under a closed
set regime that the RBF SVM outperforms the W-SVM.

Despite the fact that out of the classes in the test set
there were 25 classes that were not seen in training, due
to disproportionate sampling that we did not account for,
only about 5% of the test data consists of unknown classes.
This is one of the reasons for the relatively high accuracy
numbers (i.e., >90%) even under the closed set regime. We
also found one label in the training set that was not found in
the test set, which could contribute to misclassification error
in test. Overall, the number of classes in training was 14
and the number of classes in testing was 38. There were 25
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classes found in the testing set that were not in the training
set.

4.3. Open Set Protocol Evaluation

For evaluating under an open set protocol we thresh-
olded probabilities returned by both W-SVM and the Platt-
calibration on the RBF SVM by a variety of different thresh-
olds. We do not address threshold selection in this paper,
although this has been discussed in several other works
including [7] and [6]. Instead, we inspected results under
a variety of thresholds from 0.1 to 0.3. For 0.1 the W-SVM
scored an accuracy of 91.3% and for 0.3 scored 90.8%. For
0.1 the RBF SVM scored 91.1% and for 0.3 it scored 91.5%.
This suggests that generally, even for an open set protocol on
the testing set, while using an open set classifier closes the
accuracy gap, the thresholded RBF SVM generally achieves
slightly superior classification performance.

This discrepancy is due to the fact that despite having a
large number of unknown classes, the majority of the sam-
ples in the test partition are still from the common 13 classes
seen in the training set. With a large proportion of these
corresponding to “normal” behavior. Thus, although the
KDD’99 dataset has open set characteristics, it is still mostly
closed set in nature. However, when we independently eval-
uate open set performance on known and unknown classes
within the test set, we find a telling insight: namely, for only
known classes the classification performance of the RBF
SVM is 96.2% and the W-SVM is 95.1% under threshold
0. For the RBF SVM it is 96.2% under 0.1 and the W-SVM
is 94.6%. Under a threshold value of 0.3, the RBF SVM
exhibits accuracy of 96.2% and W-SVM of 93.7%. This
suggests that RBF SVM predictions are highly confident. On
the other hand, the W-SVM suffers performance decrease
in the purely closed set regime when classifying sparse
instances. However, for the unknown samples in the test set
we see a much different trend. For the unknown instances
in the testing set, for RBF SVM at a threshold of 0.1 no
samples are rejected and at a threshold of 0.3 only 6% of
the samples are rejected (correctly classified as unknown).
For the open set classifier on the other hand, at a threshold
of 0.1, 30% of the unknown samples are correctly rejected.
At a threshold of 0.3, 39% of the samples are correctly
rejected. Thus, the open set classifiers serve better to reject
unknowns, although there does appear to be significant data
overlap between known and unknown classes due to the fact
that a minority of the unknown samples are rejected. This
could be due to an insufficiently expressed feature space.
Perhaps a one-hot vectorization of categorical data would
be better for future work.

4.4. Applying Open Set Classifiers: Quantifying
Cost of Unknown

An important question to address is what is the number
of unknowns samples that one would expect to see in a real
network traffic environment? This is not simple to ascer-
tain; also, even quantifying “unknown” is difficult because

Figure 5. This figure depicts decay in accuracy as we up-weight the
cost of labeling an unknown instance as coming from a known class
for both open-set and closed-set classifiers. When attributing no
cost to making classification errors on an unknown class depicts, an
unthresholded RBF SVM is superior to the W-SVM. The situation
quickly changes, however, as we upweight the cost of unknowns.
This is because, for an open set classifier with thresholds 0.1 and
0.3, unknowns are better rejected (0.1: 30% and 0.3: 39%) than
with a closed set classifier (0.1: 0% and 0.3: 6%).

different classes of data are often ill-defined – e.g., should

a previously unseen form of novel “normal” behavior be
labeled as unknown. According to our open set protocol
the answer is no, because we only have labels of finite
granularity, but in a realistic operational setting, the story
may be different.

In Sec. 4.3, we saw that the closed set classifier per-
formed comparably to the open set classifier on the KDD’99
dataset open set protocol, when considering both known and
unknown classes, closing the performance gap in the purely
closed set regime. However, it is important to consider that
the majority of the KDD’99 test partition is dominated with
“known” benign samples, which may well be anomalous
with respect to the support of the training data. With that
in mind, amidst a sea of non-malicious traffic are anoma-
lies that can compromise the secure state of the network.
Thus, the cost of mislabeling an unknown sample is highly
dependent on the operational constraints.

In Fig. 5, we evaluate the impact on perceived accuracy
with respect to number of unknown samples, or equivalently,
“cost of unknown”. Weighting the relative importance of
accuracy on known and unknown partitions of the test data.
When accuracy on unknown samples is given no weight,
the RBF-SVM dominates, but as we sligtly upweight the
cost of unknown to just 7%, (i.e., accurate classification of
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unknown is given 7% weight, whereas accurate classifica-
tion of known is given 93%) the W-SVM’s performance
quickly eclipses that of the RBF SVM, with an increasing
performance gap as cost of unknown increases.

Thus, open set recognition has tremendous potential in
the intrusion recognition realm depending on the applica-
tion. Curves like in Fig. 5 can serve to choose between
open-set and closed-set classifier for the application at hand.

5. Discussion

Within our training set we had an extra label (34) that
was not present at test time for our fine-grained experimen-
tal protocol. This likely contributed to misclassifications,
resulting in reduced accuracy. Also, while we performed
rebalancing on our training set, in terms of reducing over-
represented samples, the only processing that we did on
our test set was to remove duplicates. Thus, this also likely
reduced classification accuracy because the training set bias
no longer matched the test set bias.

To thoroughly evaluate closed-vs-open set classification
within the inrusion and malware recognition domain, more
datasets are required, our experiments have offered the first
experimental proof points that suggest that using an open-
set approach open has previously untapped potential for
distinguishing novel types of behaviors. For the purposes
of malware classification, this problem space had yet to be
applied in an experimental evaluation until now.

The KDD’99 dataset is ripe with flaws and, as we
discussed in the previous section is still very closed. This
presents limitations with the approach and the degree to
which we can extrapolate from our results to real intrusion
detection settings. A more realistic dataset would allow
for more thorough evaluation of our open set protocol.
Moreover, operational considerations, including the cost of
unknown with respect to a particular system and the degree
of troubleshooting expertise of system/network operators
plays an important role when considering system design.
As our experiments show, assuming low “cost of unknown”,
running experiments on the raw KDD’99 dataset, open set
recognition provides little benefit due to the closed nature
of the dataset; we have to open the dataset to get serious
benefit. The degree to which open set recognition works well
is largely a function of the dataset. KDD’99 is extremely
closed, because it was designed as a closed set benchmark.
This is why we had to, contrary to the conventional KDD’99
protocol, perform evaluation on fine-grained individual at-
tack types, not just attack meta-types (cf. Fig. 2), for which
the KDD’99 dataset is not closed set, there is likely notice-
able overlap between malware categories, so the KDD’99
dataset may be more closed than our open set protocol
suggests. Despite this, we were still able to demonstrate
performance gains offered by an open set classifier.

Overall, the RBF SVM outperformed the W-SVM on a
purely closed set evaluation of the data, but we saw a shift in
applying an increasingly open set evaluation where the W-
SVM took the lead in performance accuracy. In the future,
these techniques should be extended to a better dataset and

therein re-evaluated. We demonstrated that When the cost
of unknown increases, however, by applying an open set
protocol, we were able to garner useful results that closed
set classifiers cannot deliver. A similar protocol can easily
be applied to a more realistic dataset in the future.
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Abstract— In today’s world, biometrics are becoming more

and more popular for the levels of security and convenience they

provide to users. Apple has been including fingerprint scanners

on their most recent iPhones, and a variety of other big names in

technology are moving in the same direction. With the increased

use of fingerprints, the need to have better and smaller scanners

is increasing. With that need comes an urgency to develop forms

of authentication using smaller amounts of information. The

ability to use partial fingerprints effectively would be incredibly

beneficial moving forward. This approach would require finding

a balance between user security and program efficiency. This

work proposes an approach to finding that balance through the

use of SIFT features.

Index Terms— fingerprints, partial fingerprints, SIFT fea-

tures, fingerprint analysis

I. INTRODUCTION

The rise2 of biometrics as a means of security has been a
long time coming. It has helped redefine user authentication
procedures by antiquating the use of passwords and PIN
numbers. Passwords and PINs can be stolen with relative
ease, but fingerprints on the other hand are unique and fairly
difficult to fake. Fingerprints provide added security with
the promise of making sure no one can access an account
or device that does not belong to them. Fingerprinting
is far from a new concept, but one that has encountered
and continues to encounter many challenges throughout the
course of its development.

Maltoni et al. [1] pointed out that the adoption rate of
biometrics has been slower than what was expected due to a
general lack of awareness of its potential. For a long time, the
use of biometrics has been greeted with hesitation. This has
all been changing over the past few years now that cell phone
manufacturers are placing fingerprint scanners in everyone’s
hands. The recent incorporation of fingerprint verification
systems in cell phones has eased a lot of public concern
leading to an increase in the popularity of biometrics in the
commercial world. In this commercial world, the ability to
reduce production costs is valuable, and one way to do that
is by creating smaller products. So the ability to effectively
use smaller scanners escalates in value. Smaller scanners

1 A. Costas is participating in a Research Experience for Undergraduates
(REU) with the Department of Computer Science, University of Colorado
Colorado Springs, CO, 80918 USE under NSF Award No. 1359275

2http://www.csoonline.com/article/2891475/identity-access/biometric-
security-is-on-the-rise.html

3The term ”partial fingerprints” is used to mean small fingerprint regions
as technically speaking, all fingerprints are partial fingerprints.

4http://zwipe.com/news/zwipe-introduces-genuine-hid-technology-
biometric-cards/

mean smaller fingerprint regions which increases the need for
programs that can authenticate users working with relatively
small pieces of information while also ensuring that other
users are not incorrectly authenticated.

There exist fingerprint matching algorithms already, how-
ever, none of them has proved very effective working with
small prints. This work consists of testing current, widely-
used matching procedures and then some that are not as
widely-used to see what proves most effective and promising.

II. PROBLEM DEFINITION

Improving the means of working with partial fingerprints
would have significant implications for the uses of biomet-
rics, more specifically, the uses of fingerprints in commerce.
There have already been applications of partials in con-
sumer products such as cell phones, but there is potential
for expansion into other products and fields. Fingerprint
protected credit cards, USB drives, and more are all feasible
through effective uses of partial fingerprints. But in order
to use them, there must be ways to confidently authenticate
them. Therefore, current authentication procedures must be
assessed for their effectiveness, and then a new method may
be necessary in order to see any actual improvement.

III. PREVIOUS WORK

There has been plenty of research conducted in the past
on fingerprints and fingerprint matching methods and their
challenges. However, most of these methods are unsuitable
when considering the properties (or lack thereof) of partial
fingerprints. Many of the key features within fingerprints
are lacking when working only with a small portion, which
forces the development of a new field of thought when
studying such prints. However, there is still not a lot of
information regarding the best way to approach this.

A. Sensor Sizes

Mainquet et al. [2] studied sweep sensors and reasonable
minimal sizes for those sensors. They used minutia-based
identification software and found that 7mm was the minimum
width for a sweep-type sensor to perform with acceptable
accuracy. It is important to note that sweep sensor prints
are quite different from partial fingerprints as they can often
result with fairly full-sized images. These sensors essentially
take multiple partial images and arrange them together to
create a full, mosaic-like image.

REU-RET Symposium on Machine Learning 2016

University of Colorado, Colorado Springs 51



FINAL, AUGUST 2016 2

B. Single-Chip Sensor and Identifier

Shigematsu et al. [3] researched a chip architecture that
was comprised of both a fingerprint sensor and a fingerprint
identifier. The identifier works with an array of pixels that
are processed in parallel, so each fingerprint is handled and
studied pixel by pixel. Once the print was passed through
the sensor, the chip would store the data of an initial print
scan. Later, when a new finger was placed on the chip, it
would generate an image of the fingerprint by sensing the
shape of it. It proceeded to binarize that image and shift it
around to allow for various finger positions. Finally, it would
compare the two prints and report its result. In testing, the
chip worked correctly 99% of the time. This study focused
more on creating smaller scale fingerprint sensors and did not
test how effective it was when working with partial prints but
the rapid processing it provides makes it an intriguing option
to look into in the future.

C. Multi-pass Matching Algorithm

Jea et al. [4] presented a multi-pass partial fingerprint
matching algorithm that overcomes many of the typical
challenges partials provide such as rotations and distortions
by using localized features. Their algorithm is based on
triangular matching and secondary features/ minutia points. It
accounts for distortions of minutia and different orientations
that could be caused by differences in pressure during the
fingerprinting process. In many matching algorithms, many
matching algorithms work by aligning two fingerprints and
finding a direct correspondence between minutia points.
In this algorithm, however, does not require alignment. It
basically tries to find local matches, and then expand onto a
more global-scale to try to conclude if the prints matched.
This algorithm proved effective and provided tolerance of a
large number of distortions and effective use of secondary
and localized features.

This all sounds great and useful, however, the smallest size
of prints they worked with were a 60% of the original full
sized print. According to their graph, this means that they
had anywhere from 25 to 55 minutia points, so the partials
were still of significant size and much larger than the partials
generated in section V-A.

D. Region of Interest Minutia Matching

Bhargava et al. [5] studied the limitations of image pro-
cessing, particularly fingerprint processing, when it comes
to image quality. They present a solution to this problem
by choosing a Region Of Interest (ROI). ROI is essentially
a segmentation procedure that helps represent the image in
a simpler way. It can make analysis easier by making the
image appear more meaningful. The minutia within the ROI
is first marked, then the locations of those minutia points are
compared for verification. This provides an interesting idea
for if a partial can be considered an ROI and matched as
such, however ROI picks the best possible, most representa-
tive region, and partials are not necessarily representative at
all.

E. Minutia Recognition

There have been a variety of different studies along the
lines of partial fingerprint recognition, but in this one in
particular, Jea and Govindaraju [6] conducted research on
a minutia-based partial fingerprint recognition system. They
developed a system that uses localized secondary features of
minutia and made use of a neural network. They acknowl-
edged that a brute force approach to this problem would be
unfeasible due to how many possibilities the program would
have to consider. They also discarded approaches that make
use of global features seeing as how partial fingerprints can
often have no global features at all. The neural network they
developed was based on a system of similarity scores and
showed that the accuracy of the fingerprint matching im-
proved when working with images larger than 0.32” x 0.46”.
This size is approximately 60% of a full-sized fingerprint.
When the prints were smaller than that, the performance
dropped dramatically.

F. Fingerprint Recognition Using Robust Local Features

Mishra et al. [19] pointed out that there already exist
recognition techniques for fingerprints and that most rely
on minutia matching methods that are not rotation-invariant.
For this reason, they often fail with transformed prints and
partials. They tested SIFT’s performance matching prints
and found that SIFT was effective in matching and feature
extraction, and although they tested on smaller prints, they
did not test on anything similar to the sizes seen in this paper.

G. SIFT Fingerprint Identification

Zhou et al. [20] discussed that the original SIFT algorithm
would not be suitable for fingerprint identification due to
the similar patterns of fingerprint ridges. They proposed a
minutia descriptor based on SIFT in hopes of improving how
quickly prints can be verified. They had good results not only
working with regular prints but also cracked and low quality
prints as well.

IV. PROPOSED SOLUTION

The proposed solution is comprised of a few major steps.
The first pertains to acquiring the data that is to be used
for training and, eventually, testing. The second has to do
with creating a baseline of sorts. This means testing the
performance of pre-existing matching algorithms in order to
have a comparison for performance later. The final step is
dependent on the previous step. If the matching algorithms
perform well, then machine learning can be used to create
a program that automatically chooses the best matching
algorithm for a task depending on the fingerprint. If the
matching algorithms do not perform well, then machine
learning will be used to create a new, more effective way of
matching partial prints to their full-sized counterparts. The
data created in the first step will be used to train a computer
to identify matches and non-matches.
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A. Data Collection

This step is primarily necessary for the training process.
Full sized fingerprints from the 2000, 2002, and 2004 Finger-
print Verification Competitions (FVC) [1] will be the source
of data for this research. Each year has approximately 3,500
different full-sized fingerprints. All of them will be used.
These full-sized prints will be partitioned into a variety of
smaller images of a size that would resemble the partial prints
acquired by a small sensor. In this case, three different sizes
are being generated. The largest size is 192 by 192 pixels.
This is the size on MasterCard and Zwipe’s new biometric
credit cards3. There are also sizes of 128 x 128 and 96 x
96. Although these sizes are not regularly used, they would
provide a useful comparison to possibly gauging how small
is too small. The full-sized fingerprints will also be rotated
and then partitioned in order to provide data on different
transformations of prints that can occur. These prints will be
used later to train a deep neural network to either choose
which is the best matching algorithm to use, or to create a
new network that learns when prints match and when they do
not. Only about 80% of the generated partials will actually
be used in training. The rest will be reserved for testing.

B. Base Line

This steps consists of creating a baseline or, in other
words, testing the performance of existing matching algo-
rithms on generated partial prints. A few different matching
algorithms will be tested. Minutia Cylinder Code (MCC)
[7], Protected Minutia Cylinder Code (PMCC) [8], and
Bozorth3 [9] which is the NIST Biometric Image Software
(NBIS) matching algorithm. These algorithms have proved
as effective on full sized prints, however, they have never
been tested on a smaller scale.

1) Minutia Cylinder Code: Capelli et al. [7] introduced
the Minutia Cylinder Code (MCC) in a paper aiming to
create a fingerprint matching algorithm that would focus
solely on local minutia matching and combine the advantages
of neighbor-based structures and fixed-radius structures while
cutting out the drawbacks of each. The neighbor-based
approach focuses on the K spatially closest neighbors while
focusing on some central minutia point. This method is
tolerant of sparse and missing minutia points. It comes with
a couple of drawbacks such as sophisticated local matching
and problems with the handling of radial angles. The fixed-
radius approach can also lead to mismatch die to local
distortions or location inaccuracy. The basic idea behind
MCC is that a local structure is assigned to each minutia.
These structures represent spatial and directional relation-
ships between that minutia and those in its surrounding
neighborhood. These parameters end up being represented
by a cylinder where the base and height correspond to each
parameter.

2) Protected Minutia Cylinder Code: Protected Minutia
Cylinder Code (PMCC) is based off of the MCC algorithm
but its main purpose is to keep minutia templates from being
acquired from PMCC templates. It still uses the same system

of cylinders to work, however, each cylinder is transformed
permanently in order to provide that ”protection” it promises.

3) Bozorth3: Bozorth3 is NBIS’s minutia matching al-
gorithm [9][10][11]. Essentially, the algorithm computes
relative measurements from each minutia and builds com-
parison and compatibility tables that can combine clusters to
calculate a match score. The higher this score is, the more
likely it is that fingerprints in question came from the same
person.

C. Learning and Moving Forward

The final part depends on the previous part. If the matching
algorithms perform well, then the next step would be to use
machine learning to learn how to choose the best match-
ing algorithm for a given task. If the matching algorithm
performs poorly, this step could consists of searching for
other methods of matching prints and analyzing them or
creating a deep neural network and training it to classify
partial fingerprints as matches or non-matches to a full sized
fingerprint.

Some of the other alternatives to traditional fingerprint
matching would be using and testing feature descriptors for
their performance on prints. Using SIFT would be a good
possibility simply because it has never been tested on prints
as small as the ones studied in this paper. Other papers
have achieved good performance using SIFT descriptors and
matching on large prints.

V. PRELIMINARY RESULTS

A. Data Generation

Each image in the 2000, 2002, and 2004 FVC databases
was passed through an algorithm that simply, after traversing
every few pixels, an image was generated that was 96 x 96
pixels, another that was 128 x 128, and another that was 192
x 192. These sizes represent different portions of a full-sized
print. The 192 x 192 is about 1

4 of a full-sized print. The
128 x 128 is about 1

8 and the 96 x 96 is just a bit bigger
than 1

16 of a full print. To provide some context, an Apple
TouchID scanner uses prints that are 160 x 160 pixels which
means they are approximately 1

6 of a standard full print.
Not all of the generated partials were kept. An analysis

was done to examine the average contrast over each gener-
ated image. This was done to get an estimate as to how much
white space there was in each new partial. If an image had
too much white space, it was discarded. See image . Such
images basically did not have a large enough print portion
on it for them to be worth keeping. They would not provide
substantial information, so they would be essentially useless
in the future when it came to testing and training. See Table
1 for more information on how many images were kept and
how many were discarded on average.

B. Feature Extraction

In order to get the matching algorithms discussed in part
IV-B working, they must be provided with a list of the
minutia in each of the prints to be matched. Regularly, a
full-sized fingerprint could have around 100 minutia points,
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TABLE I
AVERAGE NUMBER OF IMAGES GENERATED AND KEPT FOR A SAMPLING

OF FINGERPRINTS

Images kept with image size and shift size (5)
96 x 96 128 x 128 192 x 192

Generated 5616 4615 3016
Kept 3717 3305 2481

but with the smaller sizes in the generated data set, there are
not nearly that many minutia points. So generally, fingerprint
images must be passed through some kind of minutia ex-
traction algorithm. The minutia extractor originally chosen
was DigitalPersona’s FingerJetFx. When trying to extract
from the generated images, the FingerJetFX extractor failed
completely. It worked excellently on full sized images, but
upon trying it on the partials, it refused to run. It would
not run even on the largest of the partial sizes. Another
minutia extractor was tried, this time it was NBIS MindTCT
extractor. The MindTCT was able to extract minutia. But the
failure of the FingerJetFX raised a red flag.

The matching algorithms most likely had a minimum
number of minutia required to be able to try to match two
prints. If the partials had less minutia than the lower bounds
of the matching algorithms, then it would be impossible to
test the effectiveness of those algorithms in the first place. Or
rather, the algorithms would immediately be deemed to be
ineffective on small prints. Looking into it further, the MCC
is programmed to only run if there are at least 4 minutia
points available. The PMCC requires at least 10 as does the
Bozorth3 algorithm.

With this information on the limits of the matching algo-
rithms, it was time to find out how much minutia could be
extracted on average from the different sized of partial prints.
Figure 1 shows the relationship between how many minutia
points were found on average for partial fingerprints. The
partials of size 96 x 96, generally found between 1 and 5
minutia points per image. The 128 x 128 found about around
6 to 11 minutia points and the 192 x 192 found anywhere
from 20 to 28 minutia points.

When considering how many minutia points were ex-
tracted and the limitations of the different matching algo-
rithms, it seems that creating a neural network to choose
the best matching algorithm for a specific purpose may
be, essentially, useless. None of the matching algorithms
previously discussed would be able to process most of the
96 x 96 partials. The algorithms might be able to process
some of the 128 x 128 partials, but only the MCC would
really be able to work with most of them. This means that
only the 192 x 192 holds good possibilities to be matched
using the different matchers discussed.

The question now becomes what can be done to improve
the matching processes of the smallest fingerprints in the
database?

Fig. 1. Relationship between fingerprint sizes and how many minutia points
were extracted.

C. SIFT Features

Following down the path of some other researchers, testing
SIFT seemed promising. Before matching, partial prints
were put through a contrast normalization algorithm and
they were also blurred. This was done to remove any sort
of randomness and inconsistencies between different print
scans.

Here a couple of prints were compared with partials
generated from seven different scans of the same finger. In
other words, if finger A was scanned eight times, then finger
A-1 is compared with the generated partials of finger A-
2 through finger A-8. Due to limited times, this was only
tested on 2 different fingers, but moving forward with this
project, there will be many more sets of prints tested. But
here are the results for how matching went with different
sizes of partials.

In the first experiment, the threshold was set to 10. This
means that in matching, there had to be at least ten good
matches (where ”good” is defined as matches that perform
well under Lowe’s ratio test []). If there were less matches
than that, then there would not be a conclusive match. See
Figure 2 . Not surprisingly, the size 192 partials matched
best here by matching just over 30 percent of the time. Yet,
the results leave a lot to be desired.

The next experiment tested a lower threshold of 5 in hopes
of getting improved performance on the matches. While the
results improved, it was still not enough to be considered
satisfactory. On average, the size 192 was accurate a little
more than 50% of the time.

The threshold was lowered once more to 1. Only one
match was necessary in order to match a partial to a full
sized print. See Figure 3. Finally, there were better results.

It seemed concerning to lower the threshold so much,
considering that one match is seemingly nothing to prove any
degree of accuracy or security. However, a couple of brief
preliminary tests were conducted with non-matching pairs.
On both of the tests, the threshold was set to 1, the lowest of
all the thresholds previously tested for true matches. When
the results came back, all of them came back negative. That
is to say that no prints or partial prints from different fingers
matched at all. This is promising for the continued testing
of this method, but not enough to prove anything definitely.
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Prints will continue to be tested to be sure that this method
does not pose any serious security risks for users.

Fig. 2. Percentage of partial prints accurately matched per partial size
while under a threshold of 10.

Fig. 3. Percentage of partial prints accurately matched per partial size
while under a threshold of 5.

Fig. 4. Percentage of partial prints accurately matched per partial size
while under a threshold of 1.

VI. CONCLUSION

It is far too soon to have any conclusions other than some
educated guesses as to which path to take moving forward
with this research. Definitively, using only minutia based
matching methods would not be effective for such small
prints, but that does not mean that they cannot serve some
other purpose in the future.

VII. FUTURE WORK AND IMPROVEMENTS

Work is far from over. Despite some challenges with test-
ing, the use of SIFT has probed promising for authenticating
fingerprints so it seems that the next step should be to try
other robust feature transforms. Aside from Scale-Invariant
Feature Transform (SIFT) [21], there is also Speeded Up Ro-
bust Features (SURF) [18], Binary Robust Invariant Scalable
Keypoints (BRISK) [16], KAZE, and Fast Retina Keypoint
(FREAK) [22]. All of these hold potential for improving
partial fingerprint recognition.

Leutenegger et al. [16] proposed BRISK (Binary Robust
Invariant Scalable Keypoints), another method for feature
detection and matching. It primarily uses brightness com-
parisons to form a binary description. It compares well with
SIFT and SURF, so it will be worth looking into in the future,
but if it relies solely on the binary description, it may not be
suitable for fingerprint matching simply because the prints
are already represented in a binary fashion.

Proceeding on-wards, after testing other feature trans-
forms, it may be interesting to combine a few methods. This
could mean either combining a couple of feature transforms
or combining a feature transform with minutia data or both.
Now minutia points and keypoints have been used together
in the past, but not at a scale as small as this one, which
leaves the door open for more research. In the future, the
use of a neural network for this will be considered as well.
The hopes are to see more improvement in the matching of
the smaller prints like the 96 x 96 and the 128 x 128.
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Abstract— Deep neural networks are facing a potential se-

curity threat due to the discovery of adversarial examples,

examples which look normal but cause an incorrect classifi-

cation by the deep neural network. For example, the proposed

threat could result in hand-written digits on check or mail being

incorrectly classified but looking normal when humans see them

resulting in mail being sent to a destination chosen by the

adversary. This research assesses the extent to which adversarial

examples are a major security threat when combined with the

normal image acquisition process. This process is mimicked

by adding small transformations that could be the result of

acquiring the image in a real world application, such as

gathering information for use by an autonomous car with a

camera or using a scanner to acquire digits for a check amount.

These small transformations negate the effect of a large amount

of the perturbations included in adversarial examples, causing

a correct classification by the deep neural network, therefore

decreasing the potential impact of the proposed security threat.

We also show that the already widely used process of averaging

over multiple crops neutralizes most adversarial examples.

I. INTRODUCTION

The solving of classification problems in machine learning
has recently made significant progress through the use of
deep neural networks, or deep learning [7, 8, 11]. Deep
neural networks (DNNs) require supervised learning, which
is the use of a training set that contains known outputs for
the inputs during the training of the DNN. After training is
completed, when presented with unknown inputs, the DNN
is able to classify the inputs with exceptional accuracy.

Although DNNs have a high accuracy rate, images known
as adversarial examples trick the DNN into classifying an
image incorrectly despite humans seeing almost no differ-
ence between the original and adversarial image. Incorrect
classification occurs close to 100% of the time when used
as direct inputs to the DNN the adversarial example was
created for. Recently, researchers have proposed that adver-
sarial examples can “seriously undermine the security of the
system supported by the DNN,” [3] because the incorrect
classification could potentially lead to an incorrect action
with consequences. For example, if a stop sign was crafted
as an adversarial example, an autonomous vehicle could
complete an incorrect classification of the sign and cause
an accident to occur [12].

In real world applications of deep learning however, the
input to a DNN will be coming from an outside source, such
as a picture from a camera or a scanned image. The input

This work was supported by the 2016 Research Experience for Under-
graduates (REU) program at the University of Colorado Colorado Springs
(NSF Award No. 1359275).

Fig. 1: Authentic Examples versus Adversarial Examples

The images on the top row of are legitimate images. The
images on the bottom row of are adversarial examples, and
the numbers below each of those image is the number that the
DNN mistakenly classifies the adversarial examples. Adapted
from [3].

images will always contain slight transformations, such as
shifting or blurring, and perturbations, such as noise, due to
the imperfect capture of the input, which perturbs the input
to the neural network from the intended input slightly.

The validity of a situation where an adversarial example
could be crafted into a real world application input which
then survives the image acquisition process needs to be as-
sessed. This research assesses the extent to which adversarial
examples are handled and classified correctly, simply through
the natural process of acquiring the image, which renders the
input nonadversarial. The acquisition process is mimicked in
this paper by performing small transformations that could be
expected in normal image acquisition.

We also note that all state of the art deep convolutional
neural networks (DCNNs) use multiple crops and often
multiple networks in reaching their final decision. To date no
paper on adversarial examples has examined if they survived
this widely used component of DCNNs. We show that even
with only 5 crops (on non-tranformed), compared to the 10s
to hundreds used in state of the art networks, the majority
of adversarial images will be correctly classified.

By assessing the validity of the extent to which adversarial
examples are a security threat, future applications using
DNNs will be more informed about the extent and effect
of potential security risks facing the networks.

II. RELATED WORK

Deep neural networks are learning models that produce
state-of-the-art results for several types of classification and
recognition problems [7,8]. Szegedy et al. [4] discovered that
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(a)

Fig. 2: FGS Adversarial versus FGV Adversarial The metrics underneath the numbers are the PASS, L2 norm and L1
norm respectively. Image (a) in each row of the figure is the original MNIST image. Images (b)-(f) are FGS adversarial
examples. Image (b) has the minimum perturbation and ✏ required to create an adversarial. Image (c), (d), (e) and (f) have
an ✏ of 0.20, 0.25, 0.30, and 0.50 respectively. For MNIST, the data was scaled to (0,2), so an ✏ of 0.2 means binary sign
image is effectively scaled by 20%, i.e. 51 gray values. Human perception can see deviations of 5-10 gray values when
doing a comparison. Images (g)-(k) are FGV adversarial examples. Image (g) has the minimum perturbation required to
create an adversarial. Image (h)-(k) have 2, 3, 4, and 5 times the minimum perturbations respectively.

there exist perturbations which when included in an image
cause an incorrect classification by the DNN but which are
“imperceptible to humans; these examples were classified as
“adversarial examples.”

Since this discovery, several advancements in the under-
standing and creation of adversarial examples have taken
place. Sabour et al. [16] demonstrated that the existence of
adversarial examples could be the result of the architecture
of DNNs themselves. Goodfellow et al. [5] presented the
fast gradient sign (FGS) method for generating adversarial
examples, which added perturbations ⌘ using the “sign of the
elements of the gradient of [loss] with respect to the input,”
which is defined as

⌘ = ✏sign(r
x

J(✓, x, y) (1)

where x is the input to the model, y is the target of x,
andJ(✓, x, y) is the cost used to train the network.

Rozsa et al. [1] extended upon the FGS approach for
generating adversarial examples to demonstrate two effective
ways to produce more robust adversarial images using fast
gradient value (FGV) and the hot/cold approach. The fast
gradient value (FGV) approach uses “a scaled version of the
raw gradient of loss” to create adversarial examples with
distortions even less perceptible to humans. The direction of
this type of perturbation ⌘grad is defined by

⌘grad = r
x

J(✓, x, y) (2)

where ✓ is the parameters of the model, x is the input of
the network, y is the label of x and J(✓, x, y) is the cost
used to train the network. The hot/cold approach defines a
hot class as the target classification class and a cold class as
the original classification class. This method then uses these
defined classes to create features that cause classification
to move towards the hot or target class. In addition to

the different approaches to generating adversarial examples,
Rozsa et al. also defined a metric for quantifying adversarial
examples by measuring both the element-wise difference and
probability that the image could be a different perspective of
the original input called a Perceptual Adversarial Similarity
Score (PASS). This score is a number between 0 and 1, where
1 denotes an adversarial example with no visible difference
from the original image.

Rozsa et al. [1] also explored the effectiveness of fine tun-
ing a DNN with adversarial examples and showed that such
networks were able to correctly classify 86% of previously
adversarial examples.

Rozsa et al. [2] also contributed to the known information
about adversarial images by defining adversarial examples
that exist in nature as “an image that is misclassified, but
that will be correctly classified when an imperceptible mod-
ification is applied.” Natural adversarial images demonstrate
an additional aspect of the security threat of adversarial
examples that needs to be considered.

In response to the growing interest and research in adver-
sarial examples, Papernot et al. [3] asserted that by using
deep learning algorithms, system designers made security
assumptions about DNNs, specifically in reference to adver-
sarial samples. Papernot et al. [3] addressed the problem by
demonstrating the use of distillation as an alternative form
of training a DNN to increase the percentage of correctly
classified adversarial examples when presented to the DNN
as inputs using the CIFAR-10 [11] and MNIST [9] data sets.
This approach increased correct classification of adversarial
examples with the increase of distillation temperature, reach-
ing a maximum of 99.55% correct classification on MNIST
adversarial examples and 94.89% on CIFAR-10, both with
a distillation temperature of 100. Each set of adversarial
examples were crafted using the approach described in [14].
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In addition to putting forward a new way to conquer
the effect of adversarial examples, Papernot et al. [12] also
demonstrated a method for attacking a DNN with adversarial
examples without prior knowledge of the architecture of
the network itself, and only having access to the targeted
network’s output and some knowledge of the type of input.
To accomplish this, Papernot et al. trained a substitute
DNN on possible inputs for the targeted DNN. After the
network was trained, adversarial examples were crafted with
Goodfellow et al.’s FGS method [5]. These examples were
generated with different values for ✏ as defined in Equation
1. Examples of the FGS adversarial examples generated with
the varied values of ✏ can be seen in Figure 2. The examples
generated for higher values of ✏ do not fit the portion of the
definition of an adversarial example that the perturbations to
the image image is imperceptible to a human.

A different technique for increasing a DNN’s ability to
handle and correctly classify adversarial examples was put
forward by Luo et al. [15]. This technique uses a “trans-
formation of the image that selects a region in which the
convolutional neural network (CNN) is applied, denoted a
foveation, discarding the information from the other regions”
as the input to the CNN. This technique enabled the CNN
to correctly classify over 70% of adversarial examples.

The state-of-the-art [6], already takes crops of the original
input and the average or median of the crops are then used as
the input to the DNN, mimicking perturbations from natural
input. A recent GoogLeNet DNN used 144 crops [18]. Crops
like the ones used in the state-of-the-art predate the discovery
of adversarial examples and are used to improve accuracy
of DNNs. The improvement of accuracy in the DNN also
applies to the increase of accuracy in classifying adversarial
images. By taking crops of images, the accuracy of the DNN
when classifying adversarial examples is greatly increased.
The networks tested by Papernot et al. [3] did not use this
state-of-the-art. This research aims to disprove Papernot et
al.’s assertion that adversarial examples are a major security
threat to DNNs.

III. METHOD

The proposed security threat provided that in a critical sit-
uation, the incorrect classification of an adversarial example
made by the DNN could cause actions, which were taken
based on that classification, with immense repercussions.

The image acquisition process as described above, which
is necessary in all real world applications of classification by
a DNN, is always going to capture an imperfect input.

To assess the extent of the potential security threat that
adversarial examples cause for DNNs after acquisition, it
is proposed that a slight transformation, such as a blur or
a shift that would occur in normal image acquisition, be
applied to images before they are classified by the DNN. In
order to assess the extent to which adversarial images could
survive the natural image acquisition process, a trained deep
neural network, a dataset including adversarial examples, and
transformations are used.

a b c d e f g

Clean

FGS

FGV

Fig. 3: Transformations of Clean, FGS, and FGV Images

The rows show transformations of a clean image, FGS
adversarial and FGV adversarial. Column (a) is the original
image. Column (b has had one column translated to black.
Column (c) has a small amount of noise to it. Column
(d) has the blur kernel of (2,1) applied to it. Column (e)
has been cropped 1 pixel by 1 pixel and then resized to
28 pixels by 28 pixels. Column (f) is a combination of
all previously mentioned transformations. Column (g) is the
result of binarization with Oshu thresholding.

A. The Deep Neural Network

A LeNet [13] deep neural network, trained by the authors
of [1], is used for completing classification experiments on
the chosen dataset for this research. As listed in Table 1,
this network classifies images in a normal test set (with no
adversarial examples) with an accuracy of 98.96%.

B. The Dataset

The DNN is trained on the MNIST dataset of handwritten
digits [9], and will be tested with the MNIST test set. This
dataset provides a basis for a possible security weakness of
the DNN to adversarial examples. If adversarial examples
cause an incorrect classification of a handwritten selection,
such as an amount on a check, it could cause the amount
to be misinterpreted and cause an incorrect amount to be
withdrawn.

In addition to the MNIST test set [9], adversarial examples
generated using the techniques in [1] and [5] are also tested
to initially demonstrate the effectiveness of the adversarial
example, and then to assess the effectiveness of the transfor-
mations, which mimic the acquisition process, at negating the
effect of the perturbations that create an adversarial example.

In initial acquisition, MNIST images were subject to a
pipeline of downsampling to 20x20 pixels, binarization, and
subsequent upsampling to 28x28 pixels. The adversarial
examples used in the following experiments were generated
by the authors of [1] for the network described previously.
When generating FGS adversarial examples, the authors of
[1] stepped ✏, as defined in Equation 1, until the image
was made adversarial, so the entire data set is originally
adversarial for the network described above.

C. Transformations

The aim of this research, is to assess the extent to which
adversarial examples can be handled and classified correctly
simply by the imperfection of the natural image acquisition

REU-RET Symposium on Machine Learning 2016

University of Colorado, Colorado Springs 59



process such as slight transformations and the slight per-
turbations added to the images input for classification and
understanding the impact each of these transformations has
on classification. In order to mimic the image acquisition
process as accurately as possible, an image was printed out,
scanned back in, and analyzed for the types of transformation
needed to closely replicate the effect of the acquisition.
The types of transformations and perturbations that have
been used to complete an experiment thus far and their
justifications are listed below.

1) Translation: The addition of a translation to the images
processed by the DNN replicates an alignment issue that
could occur in the normal image acquisition process. This
was implemented by shifting the image to the right by one
pixel and filling the pixels in the empty column with values
of 0, which in RGB values is black.

2) Noise: In the image acquisition process, it is normal
to see additive noise on an image, such as black dots seen
when an image is scanned in. To replicate the additive noise
on an image, a small amount of computer generated noise
is added to an input image before allowing the image to be
processed and classified by the DNN. The noise mask was
generated with a standard deviation of 0.25, and a mean of
0. The noise mask was then added to a copy of the original
image.

3) Blurring: When acquiring an image in a real world
environment, such as with a camera or scanner, it is virtually
impossible to capture an image without any blurring. To
replicate this, the amount of blurring seen in the image
analyzed for transformations was estimated. This led to the
application of a blur kernel of (2,1) was applied to the input
images, as there was approximately one pixel of blur in the
x direction and one-half pixel of blur in the y direction on
the acquired image, with the asymmetric probably due to the
scanner having a moving linear sensor.

4) Cropping & Resizing: This transformation mimics the
event where when an image is acquired, it is smaller than
the original image. In order to mimic this, input images were
cropped, the cropped image was saved, and then the cropped
image was resized using a cubic interpolation function back
to the image size expected by the DNN of 28 pixels by 28
pixels.

5) Combination: The above transformations each demon-
strate pieces of the whole image acquisition process. In
order to fully synthetically capture this process, the described
transformations must all be applied to the input images.
Transformations were applied in the following order: trans-
lation, noise, blur, crop and resize. This order was chosen to
mimic the order in which the transformations occur in the
natural image acquisition process. After the transformations
were applied, the transformed image was input to the DNN
for classification.

D. Fine Tuning

The described experiments were run both on the raw
LeNet [13] network, and on a fine tuned network. The net-
work was fine tuned because when it was trained, the network

learned from clean images without transformations. When
inputting transformed images for classification, the network
was not robust enough to correctly classify transformed
inputs, even if the inputs were not adversarial examples, with
the same amount of accuracy as with clean images.

In order to fine tune the network, a set of 100,000 images
was taken for training and 20,000 images were used for
validation. The fine tuning sets contained a total of 60,000
clean images and 60,000 transformed images, where the
transformed images were the MNIST training set images
with the combination of all transformations was applied. The
fine tuned network had an accuracy of 99.35% on the chosen
validation set, and 99.09% on the MNIST testing set.

E. Fusion of Crops

In order to more accurately mimic the state of the art deep
neural networks [6], a series of crops was implemented. As
was previously mentioned, crops are used to increase the
accuracy of DNNs. With only a 28x28 image for MNIST,
the number and size of crops is more limited, so we used
only 5 crops: a center crop of 26x26 pixels rescaled to
28x28 and 4 corner crops of size 27x27 rescaled to 28x28.
Each implementation of resizing the image used a cubic
interpolation function. Each crop was used as an input for
classification by the DNN which in turn returned the vector
of a score per digit label The score vectors returned for all
crops were added and the maximum value was used as the
predicted label.

F. Binarization

As is common in hand-written text recognition [19], before
applying the recognition engine the image is subject to
preprocessing including binarization and noise removal. As
mentioned above, the MNIST dataset [9] was subject to such
preprocessing before being compiled into the dataset used
in training and experimentation. The exact preprocessing of
the MNIST images cannot be exactly replicated, due to an
unclear description including lack of details on how down-
sampling, binarization and subsequent up-sampling were
performed. Without details of the rescaling steps, we approx-
imate what we consider the most important step, binarization,
using an OpenCVs [20] version of OTSU thresholding [21].
Binarization is a critical step and takes into account the fact
that machines are trained on basically binary data. When it is
forced to deal with data which is not binary, the machine is
more easily confused. As we shall see, this single assumption
may account for almost all the effectiveness of adversarial,
and proper preprocessing renders them neutralized. Pure
binariation may not be effective on the type of noise in [3],
but the despeckeling/noise removal that is commonly used
for document processing [19][22], would likely remove most
of that noise as well.

IV. EXPERIMENTS & RESULTS

A. Procedure

The experimentation procedure involved three datasets: the
MNIST test set [9], a set of 10,000 randomly chosen FGS [5]
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Accuracy on MNIST Test Set
Transformation Raw Network Fine Tuned Network
None 98.96% 99.09%
Translation of one column 94.95% 99.17%
Noise 98.95% 99.09%
Blur 98.70% 99.14%
Crop and Resize (1px x 1px) 98.35% 99.14%
Combination 97.66% 98.88%
5 crops (on non-tranformed) 98.67% 99.12%
Binarize (on non-transformed) 98.76% 99.04%

TABLE I: This table reports the results of the experiments
done thus far on the MNIST test set. Fine Tuned is the
accuracy of the test set after the DNN was fine tuned on
transformed images. Accuracy is based upon number of
images classified correctly by the DNN.

Accuracy on 10,000 FGS Adversarials
Transformation Raw Network Fine Tuned Network
None 0.00% 56.93%
Translation of one column 65.29% 68.93%
Noise 28.41% 59.84%
Blur 58.60% 59.83%
Crop and Resize (1px x 1px) 78.28% 80.01%
Combination 79.68% 83.98%
5 crops (on non-tranformed) 90.94% 81.66%
Binarize (on non-transformed) 99.24% 99.21%

TABLE II: This table reports the results of the experiments
done thus far on a set of FGS [5] adversarial examples. Fine
Tuned is the accuracy of the test set after the DNN was
fine tuned on transformed images. Accuracy is based upon
number of images classified correctly by the DNN.

adversarial examples, and a set of 10,000 randomly chosen
FGV [1] adversarial examples. All experiments were run on
all three datasets in order to generate a basis of comparison
for results. After running a baseline with no transformations,
experiments consisted of applying a transformation or com-
bination of transformations to input images and then passing
the transformed inputs to the DNN for classification. The
results of the classification were measured by the percentage
of images correctly classified by the DNN.

B. Transformation Results

The specific results of the experiments completed are
detailed in Tables 1, 2, and 3. These results demonstrate that
the image acquisition process, allows the DNN to correctly
classify a large portion of what used to be adversarial
examples.

The transformation which is the most effective at al-
lowing the DNN to compute a correct classification, is
the cropping and subsequent resizing of an input image,
which demonstrated 78.28% and 76.16% accuracy on the
FGS [5] and FGV [1] datasets respectively for the raw
network. This transformation also only slightly altered the
accuracy of the raw DNN on the MNIST test set [9] (from
98.96% to 98.35%). Cropping and resizing also led to the
highest accuracy on the fine tuned network, demonstrating
80.01% and 78.70% accuracy on the FGS [5] and FGV [1]
datasets respectively and 99.14% on the MNIST test set.

Accuracy on 10,000 FGV Adversarials
Transformation Raw Network Fine Tuned Network
None 0.03% 62.14%
Translation of one column 68.26% 73.15%
Noise 57.84% 64.59%
Blur 64.77% 65.54%
Crop and Resize (1px x 1px) 76.16% 78.70%
Combination 71.29% 75.95%
5 crops (on non-tranformed) 81.66% 76.69%
Binarize (on non-transformed) 99.24% 98.88%

TABLE III: This table reports the results of the experiments
done thus far on a set of FGV [1] adversarial examples.
Fine Tuned is the accuracy of the test set after the DNN was
fine tuned on transformed images. Accuracy is based upon
number of images classified correctly by the DNN.

After fine tuning the network, the accuracy of classification
of adversarial examples increased 56.93% and 62.09% on the
FGS [5] and FGV [1] datasets respectively without applying
transformations.

The results of this portion of the research demonstrates that
in the majority of cases, the effect of perturbations added to
make FGV adversarial examples are more easily negated than
the perturbations added to make FGS adversarial examples.
Intuitively, this is the case because the perturbations in
FGS adversarial examples are bigger and more noticeable,
and are therefore more likely to survive the transformations
demonstrated in the natural image acquisition process.

It should be noted, that when transformations are applied,
the performance of the deep neural network decreases on
the MNIST test set. This decrease is the result of the added
transformations essentially creating natural adversarial exam-
ples, as are defined in [2]. These natural adversarial examples
introduce a different problem to the DNN, because when put
in the same situation where an incorrect classification causes
an incorrect action, the natural adversarial examples would
also cause an incorrect action. Although these actions would
not be chosen by an adversary, there would still be actions
with consequences.

Although testing of the other transformations and com-
bination of the transformations have not produced results
where the transformation is completely negating the effect
of the adversarial examples, all of the transformations have
improved upon the accuracy rate of the DNN on adversarial
examples without transformations.

C. Fusion of Crops Results

Doing experiments with the application and fusion of
5 and 10 crops produced the highest number of correctly
classified adversarial images. Applying the crops mimics the
methodology of the state-of-the-art [6] which uses crops to
increase the accuracy of the DNN.

D. Binarization Results

Binarization produced the best results out of any of the
transformations, achieving close to the performance of the
deep neural network on the MNIST test set without any trans-
formations. In the binarization process, more FGS adversar-
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ial examples are correctly classified than FGV adversarial
examples and thus are not surviving the image acquisition
process. This is due to the fact that FGS adversarial examples
depend on bigger and brighter collections of noise to render
the image adversarial in comparison to FGV adversarial
examples.

E. Adversarial Examples on ImageNet

After seeing the modest success of the synthetic image
acquisition process on handling adversarial examples, an
initial experiment was run on a GoogLeNet deep neural
network [18] on a subset of the ImageNet dataset [17],
with 15,000 FGS adversarial examples, all of which were
provided by the authors of [1]. The experiment consisted of
applying the combination of transformations, as is described
above. The results of this experiments demonstrated that
63% of adversarial examples were classified correctly for
top-1 accuracy and 89.95% of adversarial examples were
classified correctly for top-5 accuracy. The fact that the
application of transformations are producing similar results
for the MNIST dataset and a portion of the ImageNet dataset
demonstrates that foveation as described in [15] could be
applied to any place in the image to negate the effect of
adversarial examples.

V. CONCLUSION

The final goals of this project include assessing the extent
to which adversarial examples are a security threat and
demonstrating the effectiveness of simple solutions, such as
slight transformations to the inputs, at mitigating that threat.
This research has demonstrated that slight transformations
do render the majority of input FGS and FGV adversarial
examples as nonadversarial. The best results of this research,
achieved through binarization of the inputs to the DNN,
demonstrated performance near the performance of the deep
neural network on clean images. This demonstrates that
for the MNIST data set [9], the potential security threat
is negligible, as the adversarial examples can be almost
completely mitigated through binarization, which is part of
the acquisition process of the original images.

Outside of the classification of handwritten digits, when
considering an autonomous car, the camera capturing input
for the DNN has the opportunity to capture a traffic sign
hundreds of times, each at a slightly different angle, rotation,
alignment and blur. This makes the chances of an adver-
sary producing an adversarial example that would survive
the image acquisition process significantly smaller than is
suggested in research in related work. If, independently, each
frame correctly classifies 90% of adversarial examples then
to get a majority wrong, say 15 frames in 30 frames (1
second) would only have a

�30
15

�
(0.1)15 ⇡ 1.55x10�6, i.e.

about 1 in a million chance of causing an error.
However, further research should be focused on the effect

of the natural image acquisition process on adversarial exam-
ples on a dataset such as ImageNet [17] in order to formalize
and assess the extent of the possible security threat to deep
neural networks in real world applications.
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 Abstract: 
Machine learning has become widespread in recent years.  It is 
more often discussed on university campuses in computer science 
and engineering classes rather than in elementary schools. In 
studying educational applications of machine learning, the 
research is limited in scope for the elementary level.  We have 
explored and researched this topic in order to develop and create 
both staff presentations and differentiated learning engagements 
for (k-5) students that begin to teach foundational concepts of 
machine learning and create greater excitement for computer 
science amongst elementary-aged children.  It has been our 
intent, with this study, to develop learning engagements using 
some of the basics of the machine learning process in building 
knowledge and skills in young students.  
 
Index Terms: 
machine learning algorithms: a method of organizing data, giving 
computers the ability to learn without being explicitly programmed. 
data mining: computational process of discovering patterns in large 
data sets.  
constructivist learning: students construct understanding and 
knowledge through experiencing & reflecting on those experiences. 
 
I. Introduction 

“Machine learning is a computer’s ability to learn from data, and one 
of the most useful tools we have to develop intelligent systems and 
applications … Data mining extracts information and finds patterns 
that can then be processed and communicated.”  –Geoffrey Gordon, 
Carnegie Mellon University.  

Machine learning is used widely today for all kinds of tasks, from a 
web search, to voice commands, to robotics. It’s hard to find an 
avenue that cannot benefit from machine learning in one way or 
another. Machine learning’s intuitive, versatile, and focused approach 
to finding patterns in available data, and directing responsive 
reactions, makes it an asset for, as of yet, an unlimited number of 
applications.  In today’s world, it is more accessible than ever before, 
thanks to the variety of technology capabilities. Over the past decade, 
machine learning has given us self-driving cars, practical speech 
recognition, effective web search tools, and unique identification 
applications. To consider the information sorting ability it has 
provided for us in our everyday lives includes the benefit of email 
spam filtering, data delivery, preferential advertisements, and pattern/ 
image recognition [Witten, 1999].   

Data mining is the process of discovering patterns in data … patterns 
must be meaningful and lead to an advantage when the data is in 
substantial quantities. “We are overwhelmed with data, every choice 
 
1 Ellis, McGeorge and Puccio teach at Academy International Elementary 
School, in Academy School District 20, Colorado Springs, Colorado, USA. 
This work was supported by the 2016 Research Experience for 
Undergraduates (REU) program at the University of Colorado Colorado 
Springs (NSF Award No. 1359275). 

 
 

we make is recorded (and these are just personal choices … but also 
in commerce and industry choices). People frequently use data 
mining to gain knowledge, and not just predictions.  (Witten et al. 
2005)   

The widespread application of the capabilities of machine learning in 
the educational setting have not yet been fully explored,  nor have the 
responsibilities of these digital explorations been explained in their 
learning.  Additionally, students today, no matter how unaware they 
may be, as to how a search engine is driven by machine learning, 
need to consider the underlying ramifications of soliciting or utilizing 
data derived through computer applications, both academic and those 
of social media. 
 
The “Disinhibition Effect” gives students and adults alike a false 
sense of security, making them both comfortable and disarmed when 
sharing data online. (BBC Radio4 –Technology July, 2016)                        
Our children are riding an implacable wave of technology! Whenever 
they go online, search the internet, send an email, keystroke on their 
computer, or make a phone call, their data can be organized and 
extrapolated to give important information to anyone who needs it, 
and writes code. This gives rise for the need of students to be aware 
of the consequences of their choices, and the reasons for cyber-
security in this technological world of wonder. 

 
II. Motivation 
Introducing computer science at the foundational elementary level 
will bring about computer science awareness, with the long-term aim 
to increase the number of American citizens and permanent resident 
undergraduates who are attracted to careers in research & advanced 
studies in Computer Science.  (Computer and Information Science 
and Engineering RET Supplements REU Sites) 

Machine learning has been growing in importance in our lives and 
more importantly in our children's lives, as the profusion of devices 
increases each school year. It is a pressing issue for our students to 
both learn and be aware of both the benefits of data mining and the 
downsides of what that connection to the virtual world can mean.  
Children need to be aware that when they type data into the 
computer, that data can be analyzed by data mining, revealing more 
information than intended or that they are aware of.  Each lesson will 
include the concept of awareness of the negative effects of data 
mining. 
 
By analyzing Google Trends, it can be determined how often a 
particular search term(s) has been used. Internet searches for the 
terms “data mining” & “machine learning” reveal a trend. Data 
mining had been searched online more consistently than machine 
learning over the past fourteen years.  However, over the last twelve 
months, there has been an increase in machine learning search 
requests, and they have surpassed requests for data mining.  This 
concludes that people’s interest in machine learning is growing as 
concerns for data mining are lessening. The graph below, figure 1, 
shows search requests for these phrases (‘data mining’ -top line, 
‘machine learning’ -bottom line), since Jan 2004 until June 2016. 
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Figure 1. Search Request “Machine Learning & Data Mining 

The Google Trends graph referenced that comparing the popularity of 
the two search terms “machine learning & data mining”, also has the 
ability to display which countries in the world those searches were 
made from. Since 2004 until the present, the top six countries in order 
of search popularity have been for:  

“Data Mining”: Ethiopia, India, Nepal, Sri Lanka, Kenya, 
Singapore, and Hong Kong. See figure 2. 

 

Figure 2. Search Request for “Data Mining” by Country  

“Machine Learning”: South Korea, India, Singapore, Hong Kong, 
Israel, Bangladesh, and Pakistan. See figure 3. 

 

Figure 3. Search Request for “Machine Learning” by Country  

Educational delivery of data mining, as demonstrated through 
computer algorithms, is an area that has been limited to 
individualized linear completion of tasks and assessments, within 
certain curriculum content [Rose& Rush, 2009].   For students to 
embrace the delivery of lesson instruction about computer science, it 
needs to be inviting, provocative, and self-motivating. 

It is these gaps in the development of meaningful, interactive, 
practical applications that need to be investigated and developed to 
assure that students are participating in 21st century learning, and 
ready to embrace their futures. As written previously in this paper, 
educators need to remind students of their vulnerability in searching 
for, and in sharing data about themselves to the world, through the 
internet, regardless of their intent. 

It is our intent, with this project, to develop a framework for learning 
in parallel with current standards of what modern day technology can 
do for students of all ages, and to scaffold instructional modules to 
allow for developing the mindset  in ways that elementary educators 
today can only imagine. It is only now that new classroom 
innovations are being developed to utilize the science in those school 
settings.  
 
The Computer Science Teacher Association Standards (CSTA) last 
revised in 2011 by The CSTA Standards Task Force laid out the 
following:   
a) all students should have access to rigorous and culturally 
meaningful computer science and be held to high expectations for 
interacting with the curriculum.               
b) diverse experiences, beliefs, and ways of knowing computer 
science should be acknowledged, incorporated, and celebrated in the 
classroom.                       
c) the integration of different interpretations, strategies, and solutions 
that are computationally sound enhance classroom discussions and 
deepen understandings.                    
d) the resources needed for teaching and learning computer science 
should be equitably allocated across groups of students, classrooms, 
and schools.                       
e) classroom learning communities should foster an environment in 
which all students are listened to, respected, and viewed as valuable 
contributors to the learning process.              
f) ongoing teacher reflection about belief systems, assumptions, and 
biases support the development of equitable teaching practices. 

The CSTA proposes a three-layer model for K–12 computer science 
that addresses the needs of the present and future by building on the 
lessons of the past. It focuses on fundamental concepts with the 
following five complementary and essential strands: 

1. Computational Thinking 

2, Collaboration 

3, Computing Practice and Programming 

4, Computer and Communications Devices 

5, Community, Global and Ethical Impact 

In figure 4 below, the process is illustrated as a cyclical experience of 
learning as do the learning engagements in the module presented in 
the appendix.  These concepts drove our inquiry and development of 
the ideas featured in these lessons.  Ultimately, these concepts will 
result in lifelong skills that will be applied in the computer science 
world of the students involved, who potentially are our future 
computer science leaders. 
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Figure 4. CSTA :Five Fundamental Concepts of Cyclical Learning 

The CSTA divides up the k-12 continuum into three levels /ages:  
Level 1 (recommended for grades K–6) “Computer Science and Me”. 
Level 2 (recommended for grades 7–9) “Computer Science and the 
Community”.                          
Level 3 (recommended for grades 10-14) is split into three areas of 
importance: ‘Computer Science in the Modern World’, ‘Computer 
Science Concepts and Practices’, and finally ‘Topics in Computer 
Science’.   

The aim of the CSTA is that elementary school students are 
introduced to foundational concepts in computer science by 
integrating basic skills in technology with simple ideas about 
computational thinking. This parallels the educational spectrum of 
learning which students already experience throughout the curricular 
areas of literacy, mathematics, social studies and science. The 
learning experiences created from these standards will be inspiring 
and engaging, in so doing it will help students see computer science 
as an important part of their future world. The module of experiences 
is designed with a focus on active learning, creativity, and 
exploration. elementary, middle and high school.  They have been 
used as a guide 

The levels used by the CSTA gave us the scope and sequence in 
designing the module.  (See appendix) These levels will also be used 
to help guide after school programs that explore computer science 
and machine coding.  The focus of this paper is on the “Level 1” -
elementary students K-6. However it should be pointed out that the 
school where this research will be primarily implemented is a K-5 
institution. 

Although these standards are thorough and were reviewed in 2011, 
they have still not been adopted by all states. This creates an obstacle 
of bringing computer science programs and standards to the k-12 
level.  Although the premise of this paper is to educate at a 
foundational level, for computer science at an elementary level, 
change needs to happen at the state level, so that standards can be 
integrated into the curriculum.   However, events such as the 
upcoming Hour of Code in December, give hope for schools to offer 
meaningful computer science opportunities to the k-12 audience. 

Community, Global, and Ethical Impacts 

The ethical use of computers and networks is a fundamental aspect of 
computer science at all levels and should be seen as an essential 
element of both learning and practice. As soon as students begin 
using the internet, they should learn the norms for its ethical use.  

Academy School District 20, and CSTA talk extensively about the 
principles of personal privacy, network security, software licenses, 
and copyrights that must be taught at an appropriate level in order to 
prepare students to become responsible citizens in the modern world.  

CSTA talks about students being able to make informed and ethical 
choices among various types of software such as proprietary and 
open source and understand the importance of adhering to the 
licensing or user agreements. In an elementary school, the level and 
exposure of computer usage is closely monitored, therefore this 
would become more of a concern at middle school. Students should 
also be able to evaluate the reliability and accuracy of information 
they receive from the internet. Throughout their educational 
experience students are presented with these challenges, and taught 
what best practice is, not just in technology. These standards 
introduce elementary school students to foundational concepts in 
computer science by integrating basic skills in technology with basic 
concepts about computational thinking.  

The learning experiences in this module created from these standards 
are intended to be inspiring and engaging, helping students to become 
enthusiastic about computer science and see computing as an 
important part of their world.  They are designed with a focus on 
active learning, creativity, exploration, inquiry and are typically 
embedded within other curricular areas such as social science, 
literacy, mathematics, and science. 

III. Problem Definition 

As a direct result of many states not adopting the CSTA standards, in 
conducting research of elementary educational models currently in 
use, there appears to be limited curriculum for computer science, 
specifically machine learning. Therefore, the focus of this study has 
been on building an understanding of the basic elements of computer 
concepts and applications for elementary age students in their daily 
lives. 
 
Most recently, under new initiatives, funded through governmental 
agencies (federal, state and local) there has been an increase in both 
public and privately supported program development, with the intent 
of exposing students to,  and providing avenues for, implementation 
of scientific and computer explorations,  intentionally intended for 
younger populations. It is the hope, nationwide, that through these 
engineering based programs, students’ interest will be piqued, and 
potentially open doors for further study.  Admittedly, within the past 
few years, commercial programs have been developed that utilize the 
concept of machine learning and programming to instruct and 
entertain populations of all ages.  However, there is much room left 
to establish a dedicated curriculum to lay the foundation for, and 
leave room for, the creativity embedded in uses of technology for 
elementary students.  Lastly, in reference to initiatives sponsored by 
governmental agencies, (STEM/STEAM/National Science 
Foundation) great gains have been made in bringing the basics of 
science into assorted classrooms around the nation, with the intent to 
reduce the mystery and apprehension of using components of 
computer engineering in commonplace applications, and for all 
populations.   
 
As mentioned earlier in this paper, computer science, more 
specifically machine learning, is a subject area that generally is not 
introduced at the elementary or even the middle school level.  As 
participants and educators in our rapidly developing technological 
world, we are in a position to expose our students to material to help 
them build opportunities to access the global community, and its vast 
opportunities to build knowledge. With machine learning as the basis 
for developing certain science applications and predictors of results 
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in project based learning, we are empowering them to learn of the 
potential that technology holds in driving the future. 

The primary research focus of this study, then, has been to investigate 
applications of technology relevant to the world of an elementary age 
student, and to provoke their curiosity as to, not only how it works, 
but how they could apply these new machine capabilities into their 
world.  

It is also the authors’ objective to insure students understand safety in 
the access and implementation of shared knowledge, within this 
world wide web of data. As teaching models, it is imperative that 
students are reminded to use caution when using their devices at 
school, as well as at home.  Students also need to learn about how 
their digital footprint affects their lives, and to become aware of the 
rights and responsibilities of digital citizens.   

In “Future Innovations in Science and Technology” (2003), Joseph 
Coates comments on the dramatic effect information technology will 
have over the next 25 years.  Included within this broad swathe of a 
category are technologies promoting intelligence in systems and 
devices such as robots and virtual reality machines.  Coates predicts 
that virtual reality (and other technologies) will cause massive 
changes in how we educate our students.  Here we are halfway 
through that time-span and we are researching how best to present 
and teach elementary students about machine learning and data 
mining. (p252, Appendix C: The Concept of Change, “Patterns of 
Change” –College of William and Mary)   

IV. Proposed Solution 
 
By exploring recent developments in information gathering, voice 
controlled devices, and computer generated responses based on the 
premise of artificial intelligence, we’ve developed practical 
instructional modules to introduce students to some of the potential 
embedded in technology today. These lessons begin with building 
student curiosity as to the technological components of the programs 
they are familiar with, allowing hands-on provocation opportunities 
as part of the learning, in consideration of adapting to suit a range of 
elementary ages. 
 
We’ve created a module which will introduce students to computer 
science concepts, specifically machine learning using the pedagogy 
of constructivist learning.  What is meant by constructivist learning 
or constructivism? The term refers to a philosophy of education that 
learners construct knowledge for themselves.  Each learner 
individually (and socially) constructs meaning, as they learn. The 
core ideas expressed by it have been clearly enunciated by John 
Dewey among others. “Constructing meaning is learning; there is no 
other kind. The dramatic consequences of this view are twofold;                                                        
1) We have to focus on the learner in thinking about learning (not on 
the subject/lesson to be taught). 2) There is no knowledge 
independent of the meaning attributed to experience (constructed) by 
the learner, or community of learners.” [Institute for Inquiry, 
Exploratorium, San Francisco]. Constructivism is inquiry-based. If 
the students are asking questions, they are constructing meaning.  It is 
our hope to help the students construct meaning by first connecting 
with their own background experience, which will then be used as a 
springboard for new connections and differentiated learning 
opportunities. 
 
To begin, we gathered and created resources that helped build skills 
and confidence and energize the classroom with learning-by-doing 
opportunities.  One of these was coding.  “You can learn skills at any 
age but why wait when we can teach everyone to code now!” 

(Richard Branson Virgin Group) I. “Hour of Code”, (5th-11th 
December, 2016). The 'Hour of Code' is nationwide initiative by 
Computer Science Education Week [csedweek.org] and Code.org 
[code.org] Its aim is to introduce millions of students to one hour of 
computer science and computer programming. This will allow 
students opportunities to code, including but not limited to: “Star 
Wars: Building a Galaxy with Code”, “Minecraft Hour of Code”, and 
“Code with Anna and Elsa”.  
 
Additional provocations and learning engagements will alert the 
natural curiosity of school age children.  PLTW, Project Lead The 
Way, provides a transformative learning experience for K-12 students 
and teachers across the US. It catalyzes lifelong interest in STEM. 
Through “PLTW Launch” K-5 students & teachers learn and 
discover code together. [pltw.org] (UCCS is an affiliate institution 
PLTW)  
 
Another practical exploration is the MaKey MaKey circuit boards.  
These are products from collaboration between SparkFun and Jay 
Silver/Eric Rosenbaum of the MIT Media Lab.  They are “Invention 
Kits for Everyone.”  They enable the learner to play Mario on Play-
Doh or Piano with Bananas. These circuit boards allow students to 
begin to understand the how and why of the connection of computer 
coding through making actual electrical connections which illustrates 
the way a computer behaves.   
 
Another product in a similar vain is the Raspberry Pi.  It is a series of 
credit card-sized single-board computers developed in the United 
Kingdom by the Raspberry Pi Foundation with the intent to promote 
the teaching of basic computer science in schools and developing 
countries. “Scratch” (is) included as standard with Raspberry Pi and 
it enables anyone to start programming within minutes, without any 
prior knowledge.” (Phil King, The MagPi magazine). Python 
computer coding language is taught for students to program with.  
 
Websites such as Tynker.com, also offer the chance for students to 
build and play their own game. “Tynker is a creative computing 
platform where millions of kids have learned to program and build 
games, Minecraft mods, apps and more. Tynker offers self-paced 
online courses for children to learn coding at home, as well as an 
engaging programming curriculum for schools.”  
(Tynker.com)  
 
Cleverbot and Chatbot apps learn from answers to a “conversation it 
has, using machine learning embedded in its code.” These apps will 
be perfect inquiry for students: 
 
How do they work? 
How do they learn?  
How do they know what to ask?  
What is it going to ask next?  
 
There are also Chatbots using avatars such as –“Eviebot, Boibot, 
Chimpbot & Willbot”.  These apps will be introduced as 
provocations, but will be revisited as assessments at the end of the 
module to evaluate if students can share how these robots relate to 
machine learning. 
 
Another resource which yielded positive insights into machine 
learning was the viewing of TED Talks for machine learning. It 
revealed the work of Prof Vijay Kumar at the University of 
Pennsylvania, his talks on “The Future of Flying Robots”, and 
“Robots that Fly…and…Cooperate” helped demonstrate the extent to 
which this area of study and development has now reached with Prof 
Kumar, where he is the Dean for the School of Engineering and 
Applied Science.  Daniel Ueda at Penn Engineering and the GRASP 
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Lab (General Robotics, Automation, Sensing and Perception Lab), 
helped the research with links and resources that his lab has used for 
similar research projects.  Students are always readily engaged in 
lessons that involve robots.   
 
CSUnplugged.org is another resource that “introduces computer 
science basics in a format that's fun & accessible to the youngest 
learners (grades K-5)” (code.org) “Children in their formative years 
(of elementary school), love learning through play.” [qubizm.co.uk].                                                              
The easy & fun activities in this book, designed for students of all 
ages, introduce you to some of the building blocks of how computers 
work—without using a computer.  “This book can be effectively used 
in enrichment and extension programmes, or even in the regular 
classroom. You don’t have to be a computer expert to enjoy learning 
these principles with your students.” (CSUnplugged). The book 
contains a range of activities, with background information explained 
simply.  We have adapted some concepts and activities from this 
resource to help build our module as well.   
      
The module we created can be found in the appendix.  In the first 
lesson, students are presented with practical applications of machine 
learning they may be familiar with, such as iPads, smartphones, 
robots, drones and AI apps.  Many of us use computers every day, but 
how do they work? How do they think? How can people write 
software that is fast and easy to use? Do machines make mistakes?  
Computer science is a subject that explores these very questions.  
This is the provocation in the first lesson.  After this provocation, we 
have the students try to find patterns in translating words and phrases 
as a means of introducing data mining.   

To introduce decision trees, we’ve designed a lesson that introduces a 
guessing method that predicts what the user is going to type next, as 
in machine learning.  The computer suggests what it thinks the 
students are likely to type next, and they just indicate what they want.  
This sort of system is also used to ‘type’ texts on some cell phones.  
 
Another learning engagement that introduces concepts of networks, 
shows how computers use networks to sort.  This is a kinesthetic 
activity that the children can walk through to understand better.   

We introduce another activity or game, the orange game, to 
demonstrate that sometimes you have to streamline data to make it 
work well in a network.  There are problems in many networks, 
especially when data mining.  Computer scientists spend a lot of time 
figuring out how to solve these problems and how to use networks 
that make the problems easier to solve and patterns easier to detect.  
If you can figure out how to make problems easier, they are more 
efficient. 

The activity “Conversations with Computers” aims to stimulate 
discussion on the question of whether computers can exhibit 
“intelligence,” or are ever likely to do so in the future, which is still a 
controversial topic that can lead to critical thinking and stimulating 
classroom discussions.  Our hope is to convey to the students that 
machines make mistakes and we should always be critical thinkers.   
 
The module culminates with a Vocabulary Jeopardy game, which is a 
review of the concepts and vocabulary taught in the module.  This 
game will function as an assessment as well as an engaging 
culminating lesson.   
 
V. Conclusion 

At the conclusion of this research, developmentally appropriate, and 
somewhat guided instructional materials, have been tailored to 
curriculum appropriate for younger students. In learning the basis of 

computer programming and indeed, how a computer can actually 
perform the functions that it is capable of, the content of our lessons 
introduce basic understandings, and allow students to build their own 
investigations of how this tool of today can extend the capabilities of 
research and science of tomorrow.    

Through the elements of precise and sound instructional design and 
implementation, and in exploring the documented advantages of 
constructivist learning, students today even at a young age, are in a 
position to grasp to some degree, the processes in technology that 
support the world as they know it. It is only with creative and 
provocative delivery that this content will become part of their 
thinking and lay the groundwork for future science based 
developments and inspirations.  

Presently, all curriculums are standards-based and when states adopt 
computer science standards, the students will benefit from our 
original objective of getting more people involved in this movement 
towards computer science in the school.  

Upon conclusion of this module, the students will be aware of 
machine learning and data mining and be able to express the 
implications, both positive and negative of this relatively new area of 
study.   

In addition, we aim to provide meaningful presentations for school 
staff about both machine learning and data mining, so that they too 
can introduce some of these lessons or any of the concepts to their 
students.  The expectation is that these learnings will enhance the 
technological awareness of this primary/intermediate age-group, 
which in turn, will increase the number of American citizens and 
permanent resident undergraduates who are attracted to careers in 
research and advanced studies in computer science.   
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