Proceedings of the Seminar

Machine Learning
in
Computer Vision
and
Natural Language Processing

University of Colorado, Colorado Springs
August 3, 2018

Editor: Jugal K. Kalita and Jonathan Ventura
Funded by

National Science Foundation






Preface

It is with great pleasure that we present to you the papers describing the research performed by
the NSF-funded Research Experience for Undergraduates (REU) students, who spent 10 weeks
during the summer of 2018 at the University of Colorado, Colorado Springs. Within a very short
period of time, the students were able to choose cutting-edge projects involving machine learning
in the areas of computer vision and natural language processing, write proposals, design
interesting algorithms and approaches, develop code, and write papers describing their work. We
hope that the students will continue working on these projects and submit papers to conferences
and journals within the next few months. We also hope that it is the beginning of a fruitful career
in research and innovation for all our participants.

We thank the National Science Foundation for funding our REU site. We also thank the
University of Colorado, Colorado Springs, for providing an intellectually stimulating
environment for research. In particular, we thank Drs. Terrance Boult and Guy Hagen, who were
faculty advisors for the REU students. We also thank Alessandra Langfels and Salma Kazemi for
working out all the financial and administrative details. We also thank our graduate and
undergraduate students, in particular, Vinodini Venkataram and Tom Conley, for helping the
students with ideas as well as systems and programming issues. Xian Tan and his team also
deserve our sincere gratitude for making sure that the computing systems performed reliably
during the summer. Our thanks also go to Dr. Robert Carlson of Mathematics for being a
constant well-wisher and for stimulating discussions.

Sincerely,

Jugal Kalita
jkalita@uccs.edu
Professor

Jonathan Ventura
jventura@uccs.edu
Assistant Professor

August 3, 2018






Table of Contents

Speech Coding and Audio Preprocessing for Mitigating and Detecting Audio
Adversarial Examples on Automatic Speech Recognition

Krishan Rajaratnam, Basemah Alshemali, Kunal Shah and Jugal Kalita............. 1
Towards a Universal Document Encoder for Authorship Attribution

Kieran Sagar Parikh, Vinodini Venkataram and Jugal Kalita.............cccceevueennenne 8
Parallel Attention Mechanisms in Neural Machine Translation

Julian Median and Jugal Kalita..........cccceeevuieieiiiiiiiieeceeeceeceee e 16
Abstractive Summarizaiton Using Attentive Neural Techniques

Jacob Krantz and Jugal Kalita..........cccceeeviiieiiiiniiiecceecceecee e 23
Hierarchical Text Generation using and Outline

Mehdi Drissi and Jugal Kalita..........ccccccueeeiiiiieiiiecciieeceeeeee e 30
Impact of Auxiliary Loss Functions on Dialogue Generation Using Mutual Information

Jack St. Clair, Thomas Conley and Jugal Kalita.........coeeevurereiiieeeiniiiniisiiiieieeeeeeeeeeeenns 36
Engagement Based Mood Prediction

Gia Zhuang and Terrance E. BOUIE........coooiiiiniiin e ceceiirreeeeeeee e ceeeees 44
PixelMRF: A Convolutional Markov Random Field for Image Generation

Kayleigh Migdol and Jonathan VENtura............eeeeeeriiiirereiiiiieiereeeeeeeseessssesienneeeeees 51
Video Frame Interpolation via Pixel Polynomial Modeling

Chance Hamilton and Jonathan Ventura..........c..ccccceeeeeeeieeeeiciieeeeeeeeeeeee e 57
Deep Learning for Denoising of Fluorescence Microscopy Images

Tram-Anh Nguyen, Guy Hagen and Jonathan Ventura............ccccecovvireiveenneennnnen. 64

Estimating Depth in Cylindrical Panoramas
Lee Sharma and Jonathan Ventura..........cccoecveveeeeiiiveeiieceiieee e 70






NSF REU Proposal Presentation Meeting
Department of Computer Science
m University of Colorado, Colorado Springs
Engineering Building, Room 105
June 7, 2018: Friday

1:30-1:35 PM: Welcome Remarks by xx, College of Engineering and Applied
Science

1:40-2:40 PM
Session Chair: Dr. Jonathan Ventura, Department of Computer Science, University of
Colorado, Colorado Springs

Julian Medina, University of Colorado, Colorado Springs, CO: Varied and Parallel Attention
Mechanics in Neural Machine Translation

Jacob Krantz, Gonzaga University, Spokane, WA: Abstractive Summarization Using Attentive
Neural Techniques

Mehdi Drissi, Harvey Mudd College, Claremont, CA: Hierarchical Text Generation using
GANSs

Jack St. Clair, Haverford College, Haverford, PA: Reinforcement Learning and Attention
Models for Multi Response Dialogue Generation

2:55-3:55 PM
Session Chair: Dr. Manuel Gunther, Department of Computer Science, University of
Colorado, Colorado Springs

Krishan Rajaratnam, The University of Chicago, Chicago, IL: Defense Against Adversarial
Attacks on Automatic Speech Recognition

Kieran Parikh, Middlebury College, Middlebury, VT: Distributed Representations of
Authorship Style

Chance Hamilton, Florida Gulf Coast University, Fort Myers, FL: Video Frame Interpolation
via Pixel Polynomial Modeling

Kayleigh Migdol, Humboldt State University, Arcata, CA and Carnegie Mellon University,
Pittsburg, PA: PixelMRF: Deep Markov Random Field for Image Modeling

4:05-4:50 PM
Session Chair: Dr. Terrance Boult, University of Colorado, Colorado Springs

Alisha Sharma, University of Maryland University College, Adelphi, MD: Estimating Depth
in Cylindrical Panoramic Images

Tram-Anh Nguyen, George Mason University, Fairfax, VA: Deep Learning for Denoising of
Fluorescence Microscopy Images

Gia Zhuang, University of Colorado, Colorado Springs, CO: Mood Prediction from
Engagement




Our Session Chairs

Dr. Jonathan Ventura is an assistant professor in the Department of Computer Science at the
University of Colorado, Colorado Springs. His areas of expertise are computer vision, geometric
problems such as 3D modeling and camera localization, medical image analysis, and mobile
augmented reality. Dr. Ventura has a PhD from the University of California at Santa Barbara, and
has published 35 papers. As an undergraduate, he was in an REU program himself at the UCSB.

Dr. Manuel Gunther received his PhD in Computer Science from the Ruhr-University Bochum,
Germany in 2011, following which, he spent four years as a post-doc in Switzerland at the Idiap
Research Institute. In 2015, he joined the VAST Lab at UCCS as a research associate under the
supervision of Dr. Terrance Boult. His research interests include automatic face recognition, and
other face processing tasks such as face detection or facial attribute prediction, as well as open
source software development.

Dr. Terrance Boult is an El Pomar Endowed Chair of Communication and Computation in the
Department of Computer Science at the University of Colorado, Colorado Springs. He runs the
Vision and Security Technology Lab (VAST Lab), focused on projects in Security including machine
learning, surveillance, biometrics, sensor networks, and distributed steganalaysis and general
projects in computer vision. He also works with The El Pomar Institute for Innovation and
Commercialization through which he works with many local companies.



NSF REU Seminar on Machine Learning
mq*& Department of Computer Science
University of Colorado, Colorado Springs
Osborne A206
August 3, 2018: Friday

10:30-10:40 AM: Introduction by Dr. Jonathan Ventura, followed by Welcome Remarks by Dr.
Thomas Christensen, Provost and Executive Vice Chancellor for Academic Affairs and Professor
of Physics, University of Colorado, Colorado Springs, CO

10:40-12:15 AM Session Chair: Thomas Conley, Information Security Officer and Ph.D. student
in Computer Science, Colorado Springs, CO
10: 40 11 05 Krlshan RaJaratnam The Umver51ty of Chlcago Chlcago IL: S_p_QQCh_QO_d.lllg

11:05-11:30 Kieran Parikh, Middlebury College, Middlebury, VT: Towards a Universal
D Encoder horshi buti

11:30-11:55 Julian Medina, University of Colorado, Colorado Springs, CO: Parallel
Attention Mechanisms in Neural Machine Translation

11:55-12:20 Jacob Krantz, Gonzaga University, Spokane, WA: Abstractive Summarization
Ui ve Neural Techn

12:20-1:15 PM: Lunch

1:15-2:55 PM Session Chair: Dr. Janet Burge, Associate Professor of Computer Science,
Colorado College, Colorado Springs, CO

1:15-1:40 Mehdi Drissi, Harvey Mudd College, Claremont, CA: Hierarchical Text Generation
. Dutli

1:40-2:05 Jack St. Clair, Haverford College, Haverford, PA: Impact of Auxiliary Loss
Functions on Dialogue Generation using Mutual Information

2:05-2:30 Gia Zhuang, University of Colorado, Colorado Springs, CO: Engagement Based
M Prediction

2:30-2:55 Kayleigh Migdol, Humboldt State University, Arcata, CA and Carnegie Mellon
University, Pittsburgh, PA: El&dMRE._A_C_QnmluIlQnal_Ma.IKOLRande_Elﬁld_fQleagﬁ
Generation

2:55-3:10 PM: Break

3:10-4:25 PM Session Chair: Vinodini Venkataram, M.S. Student in Computer Science,
University of Colorado, Colorado Springs, CO
3:10-3:35 Chance Hamilton, Florida Gulf Coast University, Fort Myers FL: Video Frame
I lati 2 Pixel Pol 2] Model;

3:35-4:00 Tram-Anh Nguyen, George Mason University, Fairfax, VA: Deep Learning for
Signal to Noise Enhancement of Fluorescence Microscopy Images

4:00-4:25 Alisha Sharma, University of Maryland University College, Adelphi, MD:
Estimating Depth in Cylindrical Panoramic Im

4:30 PM: Closing Remarks by Dr. Terrance Boult



Our Session Chairs and Guests

Dr. Thomas M. Christensen is Provost and Executive Vice Chancellor for Academic Affairs at
the University of Colorado at Colorado Springs. Tom Christensen joined the faculty of the
University of Colorado at Colorado Springs Department of Physics and Energy Science in
1989. He has served the campus as a faculty member, department chair, associate dean and
dean. Dr. Christensen has received both the College (1993) and campus (1996) Outstanding
Teaching Awards and the Chancellor’'s Award (2003) to recognize his service and teaching.
Dr. Christensen’s research in experimental surface physics has led to 21 published papers in
international science journals and over 90 presentations at scientific meetings. He has been
the principal investigator on over $0.5 million in research grants and contracts for work in
surface physics and in science education. In his spare time, Dr. Christensen plays string bass
with the Pikes Peak Philharmonic orchestra and bass guitar with the Physics Classic Rock
and Roll Orchestra.

Dr. Janet Burge is an Associate Professor of Computer Science at Colorado College. Her
research area is in Design Rationale, methods for capturing and using the reasons behind
decisions made when designing software or any other artifact. She is interested in this area
because successful software systems often outlast the tenure of their developers, which
means critical knowledge can be lost forever if there is no way to retrieve and use it. Dr.
Burge was awarded the NSF CAREER Award in 2009. She had taught at Wesleyan University
and Miami University in Ohio, before moving to Colorado College in 2017.

Thomas Conley has been a computer programmer for more than 25 years and has worked in
many domains. For the last 15 years he has specialized in Information Security at Ohio
University and UCCS. He has been an instructor in CS here UCCS and has recently entered
the PhD program in Computer Science where he will concentrate on computational
linguistics.

Vinodini Venkataram is an M.S. student at the University of Colorado, Colorado Springs.
currently working on her M.S. thesis. She presented a paper titled "Open set Text
Classification using Convolutional Neural Networks" at ICON (International Conference on
Natural Language Processing) held in Dec 2017 (India).



NSF REU Midsummer Meeting
Department of Computer Science
m University of Colorado, Colorado Springs
UCCSTeach Room, A343, Osborne Building
July 6, 2018: Friday

1:30-1:35 PM: Welcome Remarks

1:40-2:40 PM
Session Chair: Steve Cruz, Department of Computer Science, University of Colorado,
Colorado Springs

Gia Zhuang, University of Colorado, Colorado Springs, CO: Engagement Based Mood
Prediction

Tram-Anh Nguyen, George Mason University, Fairfax, VA: Deep Learning for Signal to Noise
Enhancement of Fluorescence Microscopy Images

Alisha Sharma, University of Maryland University College, Adelphi, MD: Estimating Depth
in Cylindrical Panoramic Images

Kayleigh Migdol, Humboldt State University, Arcata, CA and Carnegie Mellon University,
Pittsburgh , PA: PixelMRF: Modeling Markov Random Fields with Convolutional Neural
Networks

2:55-3:40 PM
Session Chair: Marc Moreno Lopez, Department of Computer Science, University of
Colorado, Colorado Springs

Jack St. Clair, Haverford College, Haverford, PA: Dialogue Generation with Reinforcement
Learning and Attention

Kieran Parikh, Middlebury College, Middlebury, VT: Distributed Representations of
Authorship Style

Krishan Rajaratnam, The University of Chicago, Chicago, IL: Audio Adversarial Examples
and Voice over IP Compression: Mitigation through Speech Coding

3:55-4:55 PM
Session Chair: Joseph Worsham, Department of Computer Science, University of
Colorado, Colorado Springs

Julian Medina, University of Colorado, Colorado Springs, CO: Parallel Attention Mechanisms
in Neural Machine Translation

Jacob Krantz, Gonzaga University, Spokane, WA: Abstractive Summarization Using Attentive
Neural Techniques

Mehdi Drissi, Harvey Mudd College, Claremont, CA: Hierarchical Text Generation based on
an Outline

Chance Hamilton, Florida Gulf Coast University, Fort Myers FL: Video Frame Interpolation
via Pixel PolyNet




Our Session Chairs

Steve Cruz is a doctoral student at the University of Colorado, Colorado Springs. Steve received his
Bachelor of Innovation degree in Computer Security from the University of Colorado, Colorado
Springs in 2017. His research interests sare in Computer Vision and Machine Learning. Specific
areas include Open-Set Recognition, Face Recognition, and Incremental Learning. He has
published 3 papers in the past two years.

Marc Moreno Lopez is a Ph.D. student at the University of Colorado, Colorado Springs. Marc
received his BS in Computer Engineering from Universitat Politecnica de Catalunya in 2015, and
his MS in Computer Science from the University of Colorado, Colorado Springs in 2017. Marc has
published one paper in the last year, "Dilated convolutions for brain tumor segmentation in MRI
scans" at the International MICCAI Brainlesion Workshop (Quebec City, Canada)

Joseph Worsham is working on his MS thesis at the University of Colorado, Colorado Springs. He
will present a paper titled “Genre Identification and the Compositional Effect of Genre in
Literature” at the prestigious COLING Conference to be held in Santa Fe, New Mexico, in August
2018. He received his BS in Computer Science from the University of Colorado, Colorado Springs
in 2014 and is a full-time employee in Lockheed Martin, doing research in machine learning.



REU Symposium on Machine Learning

Speech Coding and Audio Preprocessing for Mitigating and Detecting Audio
Adversarial Examples on Automatic Speech Recognition

Kunal Shah Jugal Kalita
The College Department of Computer Science  Department of Biology  Department of Computer Science
The University of Chicago University of Colorado University of Florida University of Colorado
Chicago, Illinois, USA  Colorado Springs, Colorado, USA Gainesville, Florida, USA Colorado Springs, Colorado, USA
Email: krajaratnam @uchicago.edu Email: balshema@uccs.edu Email: kshah1997 @ufl.edu Email: jkalita@uccs.edu
Department of Computer Science

Krishan Rajaratnam Basemah Alshemali

Taibah University
Al-Medina, KSA

Abstract

An adversarial attack is an exploitative process in which
minute changes are made to a natural input, causing that
input to be misclassified by a neural model. Due to recent
trends in speech processing, this has become a noticeable
issue in speech recognition models. In late 2017, an at-
tack was shown to be quite effective against the Speech
Commands classification model. Limited-vocabulary classi-
fiers, such as the Speech Commands model, are used quite
frequently for managing automated attendants in traditional
telephony and voice over IP (VoIP) contexts. As such, this
research examines the effectiveness of VoIP speech coding
in mitigating audio adversarial attacks when compared to
more primitive forms of audio preprocessing and shows
that an ensemble defense in tandem with speech coding is
more robust than other forms of preprocessing defenses in
mitigating adversarial examples. This research also proposes
a new metric for evaluating preprocessing defenses against
adversarial attacks. Additionally, this research explores using
speech coding and various other forms of preprocessing for
detecting adversarial examples.

Index Terms—adversarial attack, speech recognition, deep
learning, audio compression, speech coding

Introduction

The growing use of deep learning models necessitates that
those models be accurate, robust, and secure. However,
these models are not without exploitable flaws. Initially
applied to computer vision systems (Szegedy et al. 2014),
the generation of adversarial examples is a process in
which seemingly imperceptible changes are made to an
image, with the purpose of inducing a deep learning based
classifier to misclassify the image. The effectiveness of
such attacks is quite high, often resulting in misclassifica-
tion rates of above 90% in image classifiers (Goodfellow,
Shlens, and Szegedy 2015). Due to the exploitative nature
of these attacks, it can be difficult to defend against
adversarial examples while maintaining general accuracy.

The generation of adversarial examples is not just limited
to image recognition. Although speech recognition tradi-
tionally relied heavily on signal processing and hidden
Markov models, the gradual growth of computer hard-
ware capabilities and available data has enabled end-to-
end neural models to become more popular and even state

of the art. As such, speech recognizers that rely heavily
on deep learning models are susceptible to adversarial
attacks. Recent work has been done on the generation of
targeted adversarial examples against a convolutional neural
network trained on the widely used Speech Commands
dataset (Alzantot, Balaji, and Srivastava 2017) and against
Mozilla’s implementation of the DeepSpeech end-to-end
model (Carlini and Wagner 2018), in both cases generating
highly potent and effective adversarial examples that were
able to achieve up to a 100% misclassification rate. Due
to this trend, the reliability of deep learning models for
automatic speech recognition is compromised; there is
an urgent need for adequate defense against adversarial
examples.

Related Work

The attack against Speech Commands described by Alzan-
tot et al. (Alzantot, Balaji, and Srivastava 2017) is particu-
larly relevant within the realm of telephony, as it could be
adapted to fool limited-vocabulary speech classifiers used
for automated attendants. This attack produces adversarial
examples using a gradient-free genetic algorithm, allowing
the attack to penetrate the non-differentiable layers of pre-
processing typically used in automatic speech recognition.

Methods of defense against adversarial examples can be
divided into two categories: mitigation (i.e. retrieving the
original label of an adversarial example) and detection (i.e.
declaring a given example as adversarial or benign). This
section will discuss audio preprocessing mitigation meth-
ods and draw attention to a preprocessing-based ensemble
detection method used for detecting adversarial examples
in the image space.

Audio Preprocessing Defenses

Recent work within computer vision classifiers has shown
that some preprocessing, such as JPEG and JPEG2000
image compression (Aydemir, Temizel, and Temizel 2018),
cropping and resizing (Graese, Rozsa, and Boult 2016), and
pixel deflection (Prakash et al. 2018) have a certain degree
of success in defending against adversarial attacks. In a
similar vain, preprocessing defenses have also been used
for defending against adversarial attacks on speech recog-
nition. Work has shown that using local smoothing, down-
sampling, and quantization can be somewhat effective in
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disrupting adversarial examples produced by the attack of
Alzantot et al. (Yang et al. 2018). While quantizing with
g = 256, Yang et al. were able to achieve their best
result of correctly retrieving the original label of 63.8%
of the adversarial examples, with a low cost to general
model accuracy. As quantization causes the amplitudes of
sampled data to be rounded to the closest integer multiple
of g, adversarial perturbations with small amplitudes can
be disrupted.

Work has also been done in employing audio com-
pression, Hertz shifting, noise reduction, and a low-pass
filter (Lemmond and Fitzgibbons 2018) to defend against
Carlini and Wagner’s attack (Carlini and Wagner 2018)
on the DeepSpeech model. The results of Lemmond and
Fitzgibbons show that the most promising preprocessing
defense tested was the low-pass filter, which achieved a
90.11% success rate in defeating Carlini and Wagner’s
adversarial examples while maintaining a relatively high
general accuracy of 90.91%. This high rate of success
may be attributed to the fact that audio samples from
human speech are found within relatively lower frequen-
cies, allowing for many of the high-frequency adversarial
perturbations to be removed while largely preserving the
quality of human speech.

Speech Coding

Although the results of Lemmond and Fitzgibbons seem to
suggest that audio compression is outclassed by methods
such as low-pass filtering for mitigating adversarial exam-
ples, only the Advanced Audio Coding (AAC) and MP3 au-
dio coding standards were discussed. While these compres-
sion standards are quite popular and are used in a variety of
commercial situations, they are not necessarily optimal for
destroying adversarial examples on speech recognition. For
teleconferencing and VoIP purposes, speech codecs such as
Speex (Valin 2006) and Opus (Valin, Vos, and Terriberry
2012) are more commonly used, as they are able to preserve
human speech even through very lossy compression and
low bitrates.

In 2002, Valin (Valin 2006) began the Speex project with
the goal of providing “a free codec for free speech.” Over
time, Speex began to grow in popularity, being adopted
for many practical VoIP applications, such as TeamSpeak!
and Twinkle?. The codec is based off of the Code Excited
Linear Prediction (CELP) algorithm (Schroeder and Atal
1985), which (in a simplified sense) models the vocal
tract using a linear prediction model while minimizing the
difference with the uncompressed source within a “percep-
tually weighted domain.” In particular, this minimization is
accomplished by applying the following weighting filter to
the input:

A(z/m)
W(z) = ————= (1)

) = A/
where A is a linear prediction filter with ; and - control-
ling the shape of the filter. This filter allows for different

"https://teamspeak.com/en/features/overview
“https://www.linuxlinks.com/Twinkle/

levels of noise at various frequencies, and seems to be quite
useful for destroying adversarial perturbations while pre-
serving human speech. Speex also includes many additional
features, such as voice activity detection, denoising, and
support of various bandwidths. As this compression seems
to exhibit many similar properties to audio preprocessing
methods that have shown to be moderately successful in
mitigating perturbations, it seems much more suited to the
task of defending against adversarial attacks than MP3 or
AAC compression.

In 2012, the Opus codec, which is currently used by
the widely-used proprietary VoIP application Discord®, was
released as a successor to the Speex codec (Valin, Vos, and
Terriberry 2012). It combines the CELT algorithm with
SILK, a linear predictive coding algorithm developed by
Skype Technologies in 2009*. As this is widely considered
an improvement to Speex for speech coding, the perfor-
mance of Opus compression against adversarial attacks is
also worth testing.

Ensemble Detection

Preprocessing defenses against adversarial examples can
only be effective and practical if they are able to mitigate
adversarial examples without greatly compromising general
model accuracy. A viable form of preprocessing would
disrupt the predictions of adversarial examples more than
it would disrupt the predictions of benign examples. In
particular, there should ideally be a small difference be-
tween the output vectors produced by passing the raw input
and preprocessed input through a neural network when the
input is benign, but that same difference should be much
larger if the input is adversarial. This core idea can be
used to apply preprocessing methods to detect adversarial
examples, rather than simply mitigating or neutralizing
perturbations.

Within the field of computer vision, ensembles of prepro-
cessing methods have been used for detecting adversarial
examples (Xu, Evans, and Qi 2018). Xu et al. proposed the
feature squeezing method for detecting adversarial exam-
ples. This method combines smaller “squeezing” methods
into an ensemble, and calculates an L score from of the
maximum L; distance between any pair of output prob-
ability vectors produced by passing the raw and squeezed
inputs through a deep neural network (DNN). Using feature
squeezing, Xu et al. were able to consistently detect over
80% of adversarial examples produced from a variety of
attacks.

Methods and Evaluation

The aim of this research can be divided into two parts:
using Speex and Opus compression as isolated forms
of preprocessing for mitigating adversarial examples, and
integrating voice compression with an ensemble defense.
The adversarial examples are produced using the gradient-
free attack of Alzantot et al., against the same pre-trained

3http://discordapp.com/features
“http://www.h-online.com/open/news/item/Skype-publishes-
SILK-audio-codec-source-code-955264.html
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Speech Commands model (Alzantot, Balaji, and Srivastava
2017).

Speech Commands Dataset and Model

The Speech Commands dataset was first released in 2017
and contains 105,829 labeled utterances of 32 words from
2,618 speakers (Warden 2018). The Speech Commands
model is a light-weight model based on a keyword spotting
convolutional neural network (CNN) (Sainath and Parada
2015) that achieves a 90% classification accuracy on this
dataset. For the purposes of this research, a subset of
only 30,799 labeled utterances of 10 words are used, for
consistency with previous work regarding the adversarial
examples of Alzantot, et al. From this subset, 20 adversarial
examples are generated for each nontrivial source-target
word pair, for a total of 1800 examples. Each example is
generated by implementing the attack with a maximum of
500 iterations.

Voice Compression as a Preprocessing Mitigation
Defense

The performance of Opus and Speex compression in
destroying adversarial examples are compared with the
following forms of preprocessing:

o MP3 Compression,

o AAC Compression,

« Band-pass Filtering, and

o Audio Panning and Lengthening.

While the MP3 and AAC compressions correspond directly
to preprocessing defenses in related work described earlier,
two of the above preprocessing defenses have not yet
been directly tested against audio adversarial examples. The
band-pass filter combines the low-pass filter of Lemmond
and Fitzgibbons with a high-pass filter, with the purpose of
eliminating more adversarial perturbations outside of the
frequency range for natural human speech. Audio panning
is a form of preprocessing typically used in audio mix-
ing that distributes a signal across stereophonic channels,
distorting the channel volumes to mimic the perception
of audio coming from an off-centered position. The audio
panning and lengthening defense lengthens the audio by 1%
after panning to increase the spatial distortion of adversarial
perturbations in the signal.

Ensemble Mitigation Defense

Despite the apparent success of isolated preprocessing
against certain adversarial examples, it has been shown
that attacks aware of the preprocessing defense can op-
timize examples robust to this(Carlini and Wagner 2018).
As such, the use of speech coding alone for mitigating
adversarial examples would render the model more insecure
and vulnerable to smarter attacks. Therefore, an ensemble
of preprocessing methods deployed in tandem with speech
coding may be able to provide a more secure defense.

The proposed ensemble involves computing three dis-
tinct probability vectors produced by passing the following
signals through the pre-trained Speech Commands model
after speech coding:

o The decoded signal without additional preprocessing,

o The decoded signal passed through a band-pass filter,
and

o The decoded signal panned and lengthened by 1%.

These methods of preprocessing were chosen due to their
fundamental differences in how they distort the signal; this
may allow for more robust mitigation of adversarial per-
turbations. The three resultant probability vectors are then
added together, with the maximum class being returned as
the prediction.

Isolated Preprocessing for Detection

A simple method for using preprocessing to detect ad-
versarial examples is by checking to see if the prediction
produced by the model changes if the input is preprocessed;
if the model’s prediction of the raw input does not match
the prediction of the preprocessed input, it is declared
adversarial.

The following preprocessing methods are used in isola-
tion for detecting adversarial examples:
MP3 Compression,
AAC Compression,
Speex Compression,
Opus Compression,
Band-pass Filtering, and
Audio Panning and Lengthening.
These are the same methods of preprocessing that are tested
as isolated preprocessing mitigation defenses, as described
earlier.

Ensemble Detection Methods

Similarly to the motivation behind incorporating speech
coding into a larger preprocessing ensemble mitigation
defense, it may be more secure to add some extra com-
plexity to the detection methods discussed earlier. The
aforementioned isolated preprocessing detection methods
can be combined into larger and more secure ensemble
detection methods. This research explores and compares
various configurations for combining the isolated prepro-
cessing detection methods into an ensemble.

Majority Voting Ensemble:  The simplest method of
combining the preprocessing methods together would be by
assigning each preprocessing method a vote, and declaring
an audio signal as adversarial if a majority of the ensemble
declares the signal adversarial. As there are six prepro-
cessing methods that are combined into an ensemble, ties
with this discrete voting scheme are possible. To err on
the side of security, this procedure will declare a signal as
adversarial in the event of a tie.

Learned Threshold Voting Ensemble: The majority
voting ensemble declares an audio signal as adversarial if
there are at least three votes in favor of it being adversarial.
This threshold for deciding how many votes are needed to
declare an audio signal as adversarial is arbitrary, and can
adapt to different circumstances. A low threshold would
result in a high recall in detecting adversarial examples, but
would sacrifice precision. A high threshold would result in
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a lower recall in detecting adversarial examples, but would
yield a higher precision. This ensemble method experi-
ments with using various voting thresholds for detecting
adversarial examples on a labeled training set, and chooses
the threshold that results in the best precision and recall.
To balance both precision and recall, F; scores are used
for selecting the best threshold, although in practice, one
could adjust the F'-measure to reflect one’s attitude on the
relative importances of precision and recall.

L, scoring:  The previously discussed ensemble voting
methods are relatively simple, as they simply examine the
model’s discrete prediction of the raw and preprocessed
inputs for each preprocessing method. Additionally, the
voting methods above are indiscriminate and treat each
member of the ensemble equally. A more nuanced approach
for measuring the differences in predictions between raw
and preprocessed inputs is by L; scoring the different
output logit vectors, similar to how Xu et al. integrated
the multiple squeezing methods in their feature squeezing
defense. In this method, an ideal threshold L score is
learned from training data by finding the threshold of
maximum information gain, and test examples that surpass
this threshold are declared adversarial. This method uses
the maximum L, distance to calculate the score, implic-
itly assigning more importance to preprocessing methods
that produce output vectors that are highly different than
the output vectors produced by predicting raw signal. As
such, this method would theoretically be more sensitive in
detecting adversarial examples, but it may also be quite
aggressive in declaring signals as adversarial at the risk of
falsely declaring benign examples as adversarial.

Tree-based Classification Algorithms: The above en-
semble methods discard information of the class-specific
variation in the output vector for each preprocessing
method, relative to the raw input. In order to preserve this
information, a multidimensional vector can be used, with
each dimension accounting for the output vector variation
for that class. For the tree-based detection methods dis-
cussed in this research, a multidimensional vector com-
posed of the summed absolute class-specific differences
between the raw input’s resultant probability vector and the
preprocessed input’s resultant probability vector over each
method of preprocessing. In particular, the ¢th dimension
of this summed absolute difference (SAD) vector S is
calculated as follows:

Si=Y|ri—pil )

pEP

where P corresponds to the set of output probability vectors
yielded by the methods of preprocessing in the ensemble,
and r corresponds to the output probability vector produced
by passing the raw signal through the Speech Commands
model without any preprocessing.

This vector will preserve information about class-specific
variation between the predictions, and will reduce the
number of features of the vector inputted to the tree-based
classifier down to 12 (which is the same as the number of
classes). Considering the relatively small training dataset

size (which is discussed in Section 3.4), having less features
for tree-based classification may improve performance.
However, the 84dimensional vector formed by simply con-
catenating each output probability vector together would
preserve the most amount of information. As such, the
use of this concatenated probability (CP) vector for tree-
based classification is also tested, even if the dataset isn’t
large enough for the classification algorithms to effectively
handle that large of a vector.

Decision tree-based classification algorithms are well-
suited for classifying vectors of features into discrete
classes. In this research, three tree-based classification
algorithms are employed for using vectors of summed
absolute differences for detecting adversarial examples:
random forest classification, adaptive boosting, and extreme
gradient boosting. Random forest classification functions
by constructing many decision trees in an attempt to stave
off the possibility of overfitting. Adaptive boosting and
extreme gradient boosting are gradient boosting algorithms
which function by building an ensemble of weak learners
in a stagewise fashion. Each of these tree-based algorithms
are used twice in this research: once for using SAD
vectors for classification and once for using CP vectors for
classification. These tree-based algorithms have had quite
high success in applied problems, are possibly well-suited
for detecting adversarial examples.

Evaluation

All of the aforementioned preprocessing mitigation de-
fenses are evaluated by their robustness 7 against the attack
and their effect on the general model accuracy a,. Within
the context of this paper, the measurements are defined as
such:

T = Cadv / Nadv

Qg = Cpen / Npen

3)

where c,4, represents the number of adversarial examples
correctly labeled by the classifier after preprocessing, nqqy,
represents the total number of adversarial examples, cpen
represents the number of benign samples correctly labeled
by the classifier after preprocessing, and n4e, represents
the total number of benign samples.

Lemmond and Fitzgibbons noted a tradeoff between
general model accuracy and robustness in their compari-
son of various preprocessing defenses against Carlini and
Wagner’s attack on DeepSpeech. An inverse correlation
between these two quantities would be troublesome; given
the widespread use of automatic speech recognition, there
is an urgent need for models to be both accurate for overall
usability and secure against potentially malicious attacks.
Therefore, in order to honestly compare the performances
of preprocessing defenses, a metric that acknowledges both
model accuracy and robustness must be used.

The F-measure (Fg) was first proposed in 1979 to bal-
ance the need for both precision and recall measurements
in evaluating binary classifiers (Chinchor 1992). Taking
inspiration from this method of combining two measure-
ments to form a single metric, this research proposes the
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R-measure (Rg) for responsibly evaluating preprocessing
defenses against adversarial examples:
oy @
B%ay + 1

where (3 denotes the relative importance assigned to robust-
ness over general model accuracy. While security against
attacks is crucial, it should not come at great expense to
model usability. As such, § = 1 is used for calculating
R-measures to reflect this attitude of assigning equal im-
portance to both r and ay.

The detection methods are evaluated by calculating their
precision and recall values in detecting adversarial exam-
ples. Although it is important to have a high recall in
detecting adversarial examples for the sake of security,
a low precision in detection would cause the model to
decline in usability. This research takes the stance of
both security and general model accuracy being equally
important. To reflect this attitude, F} scores are used to
combine the precision and recall measurements with equal
consideration.

Rg = (1+67)

Results
Mitigation Methods

The robustness, general accuracy, and R; scores are evalu-
ated for each of the discussed defenses and are summarized
in Table I. From the results, one can see that all of the meth-
ods of preprocessing are able to noticeably mitigate adver-
sarial examples produced by the attack. These results are
consistent with the findings of Lemmond and Fitzgibbons
that MP3 and AAC compression do not perform as well as
filtering against adversarial examples. However, we see that
Opus and Speex voice compression perform much better
than traditional audio compression. Speex compression, in
particular, yields noticeably higher robustness and a better
R; score than the other forms of individual preprocessing,
including the quantization method described by Yang, et

TABLE 1
PERFORMANCE OF PREPROCESSING DEFENSES

Preprocessing Defense | Robustness | General Ry Score

Model

Accu-

racy
No Defense 7.1% 90.3 % 0.132
MP3 Compression 53.5% 89.4% 0.669
AAC Compression 59.6% 89.6% 0.716
Quantization-256™ 63.8% 89.0% 0.743
Band-Pass Filtering 68.7% 89.7% 0.778
Audio Panning® 69.1% 89.7% 0.781
Opus Compression 65.0% 90.1% 0.755
Speex Compression 76.8% 89.8% 0.828
Ensemble Defense 77.4% 89.7% 0.831

“Taken from Yang et al.
PIncludes a lengthening of 1% after the panning.

al. It is also worth noting that all of the defenses only

Target Label
left right

yes

up

Source Label
left down

right

on

Fig. 1. A heat map depicting the robustness measurements (in
percentages) of the ensemble defense to specific targeted attacks.
The diagonal of zeroes correspond to trivial source-target pairs
for which no adversarial examples were generated.

resulted in a slight decline in general model accuracy, going
against the notion of a major tradeoff between general
model accuracy and robustness conjectured by Lemmond
and Fitzgibbons. A decline in general model accuracy
would perhaps be more noticeable if these preprocessing
defenses were applied on a continuous speech recognition
model.

The ensemble defense achieved better robustness and
brought down the targeted attack success rate to a mere
2.9%. The full defense ultimately incorporated just Speex
as the speech codec, as islolated Speex compression gener-
ally outperformed isolated Opus compression for defending
against adversarial examples and achieved a higher R,
score; additionally, there were no specific targeted examples
where Opus compression outperformed Speex compression.
As Speex compression was able to preserve human voice
quite well, the general model accuracy was not noticeably
compromised when using the ensemble defense. The ro-
bustness of the full mitigation defense is detailed in Fig.
1.

Detection Methods

The results of the isolated preprocessing detection meth-
ods described in summarized in Table II. Measurements
indicate that all of the methods are capable of detecting
adversarial examples produced by the attack with varying
rates of success. These results are also consistent with the
findings of Lemmond and Fitzgibbons in that MP3 com-
pression performs adequately at best when compared with
the other methods. AAC and Opus compression perform
notably better, but are not able to achieve as high of a
recall as Speex compression (which also yields the highest
F} score).
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Although the use of bandpass filtering for detecting
adversarial examples is extremely precise, it yields a
remarkably low recall, which suggests it is a bit too
passive with its declaration of adversariality. As many

TABLE III
PERFORMANCE OF ENSEMBLE DETECTION METHODS

. . A . Ensemble  Detection | Precision Recall F1 Score
of these preprocessing methods distort audio signals in Method
fundamentally different ways, the overall high.pr§c'ision Majority Voting 9%6.1% 33 1% 0919
(and lower. recall) measurements of each of the individual Tearned Threshold | 93.5% 91.2% 0.924
preprocessing suggest that some of the ensemble methods Voting
may be more effective in detecting adversarial examples. L, Scoring 76.9% 92.4% 0.840
Random Forest Classi- | 79.3% 87.0% 0.830
TABLE 11 fication (SAD Vector)
PERFORMANCE OF ISOLATED PREPROCESSING DETECTION Random Forest Classi- | 86.7% 94.4% 0.904
METHODS fication (CP Vector)
Adaptive Boosting | 83.5% 81.8% 0.827
(SAD Vector)
Preprocessing Defense | Precision Recall I Score Adaptive Boosting (CP | 86.7% 93.0% 0.898
MP3 Compression 93.7% 70.7% 0.806 Vector)
AAC Compression 95.0% 81.2% 0.876 Extreme Gradient | 83.0% 84.2% 0.836
Band-Pass Filtering 97.3% 40.6% 0.573 Boosting (SAD Vector)
Audio Panning® 95.8% 82.4% 0.886 Extreme Gradient | 88.3% 94.4% 0.913
Opus Compression 94.5% 81.8% 0.877 Boosting (CP Vector)
Speex Compression 93.7% 88.5% 0.910 #Includes a lengthening of 1% after the panning.

*Includes a lengthening of 1% after the panning.

The results of the ensemble detection methods are sum-
marized in Table III. The voting methods performed quite
well and achieved the two highest Fj scores of all the
methods discussed in this paper. This may be attributed
to the high precisions and low recalls of the individual
preprocessing methods described in Table II; the relatively
strict voting threshold of votes needed for an adversarial
declaration capitalizes on the high precision of each of the
methods and is able to increase recall. The majority voting
method especially benefited from the high precisions of
its constituents and yielded an extremely high precision
of 96.1%. The Learned Threshold Voting method was
able to learn a lower voting threshold of only two votes
needed for an adversarial declaration. As such, this method
was able to yield a notably higher recall than what was
achieved through majority voting, but at a noticeable cost
to precision. As the Learned Threshold Voting method still
retained a fairly high precision, it achieved the overall
highest F} score of any of the other preprocessing methods.

The L, Scoring method was able to achieve higher recall
than either of the two voting methods, perhaps due to its
aggressive nature. However, this was achieved at the cost
of precision, which evidently lowered the F} score.

Although tree-based classification algorithms can be
quite powerful in a variety of situations, the tree-based
methods were not able to perform as well as the voting
methods in detecting adversarial examples using SAD vec-
tors. This may be because the SAD vectors fed into the tree
algorithms discarded important voter-specific information.
In particular, the vector of summed absolute differences
effectively anonymizes the voters in the ensemble; it inher-
ently considers each member of the ensemble equally.

This discarded information proved to be quite crucial for
effectively detecting adversarial examples, as the tree-based
classification methods performed significantly better with

CP vectors (which are highly conservative). In particular,
the extreme gradient boosting and adaptive boosting clas-
sification algorithms were able to yield the highest recall
values for detecting adversarial examples out of all of the
detection methods discussed in this research. Considering
that the tree-based classification methods performed signifi-
cantly better with the voter-specific information available in
the CP vector, it is worth noting that the Learned Threshold
Voting method, which yielded a higher Fj score than
any tree-based classification method, does not use voter-
specific information; each vote carries equal weight towards
breaking the learned threshold. As such, it may be possible
that the tree-based classification methods outperform the
Learned Threshold Voting method on larger datasets, as it
could be that this training dataset was not sufficiently large
enough for learning how to optimally use an 84dimensional
vector for classification. However, given the heavy reliance
of training data that the tree-based classification methods
exhibit, they are likely not as well-suited for flexibly
handling different types of attacks as the voting methods.

Future Work

Although the results suggest that a ensemble defenses
incorporating speech coding are effective in both miti-
gating and detecting adversarial examples produced by
the unmodified algorithm of Alzantot et al., it does not
necessarily show that this defense is secure against more
complex attacks. Although an ensemble defense may pro-
vide marginal security over isolated preprocessing, recent
work has shown adaptive attacks on image classifiers are
able to bypass ensembles of weak defenses (He et al. 2017);
this work could be applied to attack speech recognition
models. Future work can be done to adapt speech coding
into a stronger defense that can withstand these types of
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adaptive adversarial examples, or at least cause the attacks
to become more perceptible.

Additionally, this paper only discusses two speech
codecs, both of which are popular among VoIP applications.
Speech codecs that are used more commonly in cellular
communication applications are generally better equipped
to handle noise; as such, the use of those codecs for
mitigating adversarial perturbations is a realm for future
work.

Furthermore, this paper merely focuses on mitigating
and destroying adversarial examples through preprocessing,
rather than detecting adversarial examples. As such, another
area for future work is incorporating the current defense
with common adversarial detection techniques found in
image processing.

Future Direction of This Research

Although there are many avenues for continue work, the
future direction of this research will likely be towards re-
implementing the attack of Alzantot, et al. to be aware of
the preprocessing defense, and evaluating that new attack
on the defense. While this new attack should be able to
penetrate much of the defense, ideally these aware attacks
would contain more perceptible perturbations. The next
phase of research will focus on analyzing the perceptibility
of the perturbations within examples, and see if it is
true that the preprocessing-aware attacks produce “noisier”
examples to penetrate the defense.

Conclusion

This paper showed that speech coding commonly used in
VoIP applications is currently fairly effective in mitigating
the single-word targeted adversarial attacks of Alzantot,
et al. This paper also proposed a more secure ensemble
defense in tandem with speech coding, and compared this
defense with isolated preprocessing defenses, using a newly
defined metric to balance robustness and general model
accuracy. While these defenses would not be extremely
secure against more adaptive attacks, this research aimed
ultimately to further discussion of defenses against ad-
versarial examples within the audio domain: a field in
desperate need of more literature.
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Abstract

Distributed embeddings of words and sentences have been
successful in representing the semantic and syntactic proper-
ties of text. In this paper, we examine the creation of dis-
tributed document embeddings based on textual style. We
present a supervised training architecture to train an encoder
to produce these embeddings. We explore the viability of
these embeddings for the authorship attribution task, and as-
sess the effects of encoder architecture, text processing, and
classifier architecture on authorship attribution performance.
While our model does not meet or exceed state of the art re-
sults on the same datasets, we are able to confirm our hypoth-
esis that our supervised encoder training method produces an
encoder which embeds texts based on that which unites an au-
thors own work and distinguishes it from others, collectively
speaking.

Introduction

Writing style represents the distinguishing characteristics of
a given author’s writing, and characterizing writing style is
a central topic in literary and forensic scholarship. Writing
style plays a crucial role in authorship analysis tasks.

In this paper, we present the development of a text en-
coder which learns to produce document vectors reflecting
the author-specific (stylistic) qualities of texts. We follow
by exploring the viability of such an encoder for author-
ship attribution. Authorship attribution is the process of
inferring characteristics of multiples authors’ writing styles
from examples of their work, and subsequently using these
inferred characteristics to classify unseen texts by author
(Juola, 2008).

Distributed representations or so-called embeddings are
widely used to represent the semantic properties of words,
sentences, and snippets of text (Mikolov et al., 2013; Kiros
et al., 2015; Le and Mikolov, 2014). Embeddings have also
been shown to be useful in a limited way in capturing the
stylistic qualities of an author for use in authorship attribu-
tion (Koppel, Schler, and Argamon, 2011; Gomez-Adorno et
al., 2018). Most such embeddings have been computed us-
ing unsupervised approaches, based on the context in which
a word or sentence appears. However, Conneau et al. (2017)
have recently taken a supervised approach to teach an en-
coder to create “universal” sentence embeddings.

Our research focuses on evaluating the performance of an

Vinodini Venkataram and Jugal Kalita
Department of Computer Science
University of Colorado
Colorado Springs, Colorado, USA
vvenkata@Quccs.edu, jkalitaQuccs.edu

encoder-classifier model for authorship attribution. We take
a supervised learning approach to create an encoder to effec-
tively map texts to embeddings based on (the stylistic) char-
acteristics of their writing. We use these embeddings with
various classification architectures to perform experiments
in authorship attribution. We believe that our research could
be extended to create a universal encoder to create (style)
embeddings for any texts for later use in classification based
on the encoded (stylistic) properties.

An encoder-classifier model has several advantages over
an end to end model for author attribution. First, embed-
dings produced by such an encoder may be useful in a va-
riety of authorship analysis tasks, such as classifying texts
based by age or gender, or clustering authors based on stylis-
tic similarities. Second, an encoder that maps texts with dif-
ferent styles to distant vectors in a vector space could also
help in open-set author attribution to identify writings of un-
known authors. An open-set classifier could use a thresh-
old maximum distance in the vector space to detect writ-
ing samples of unknown authors. Third, by breaking up the
model into two distinct pieces (encoder and classifier) end-
user flexibility is increased, enabling, for instance, encoding
to happen on a mobile device and classification to happen at
a later point, perhaps on a centralized server. Furthermore,
such an architecture has the added benefit that different clas-
sification algorithms can be used on the same embedding
without having to re-encode the relevant text.

Finally, in the universal case, the encoder needs to be
trained only once to develop a general ability to encode texts,
but then could be used to solve different authorship attribu-
tion problems by training only a classifier on the relevant
dataset after it has been encoded. This could significantly
decrease the time and resources required to solve an author-
ship attribution problem.

Related Work

Koppel, Schler, and Argamon (2011) represented each text
as a vector based on the frequencies of 250,000 unique, but
overlapping, space free character 4-grams. A new text is as-
signed to the author whose texts are closest to it in terms of
cosine similarity in the vector space. The authors addressed
the open-set version of the problem, where an anonymous
text that is not similar enough to any known texts is not as-
signed to any candidate author.
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More recently, the use of word embeddings computed us-
ing Word2Vec (Mikolov et al., 2013) or GloVe (Penning-
ton, Socher, and Manning, 2014) in an unsupervised man-
ner have become commonplace. Word2Vec was further ex-
tended with the introduction of paragraph vectors, which
are learned embeddings of variable-length texts (Le and
Mikolov, 2014). Paragraph vectors are learned at the same
time as the word embeddings to encode the meanings of all
words in the paragraph, thereby preserving an understanding
of the ordering of words within a text.

Kiros et al. (2015) presented an unsupervised approach to
train an encoder to produce generic distributed sentence en-
codings. Adapting the skip-gram model of Mikolov et al.
(2013) to sentences, they used a new objective function to
encode a sentence based on others around it. The chose to
use gated recurrent units (GRUSs) to both encode a sentence
and decode the previous and next sentence from such an em-
bedding.

Conneau et al. (2017) created an encoder to produce uni-
versal sentence embeddings using a supervised approach.
They used a dataset with 570 thousand sentence pairs la-
belled as having one of three semantic relationships: entail-
ment, contradiction or neutral. The training model created
separate embeddings for the two sentences in a pair. Three
matching methods were applied to these two embeddings
and the result was then fed into a 3-class classifier. The qual-
ity of the learned embeddings were evaluated by their per-
formance in transfer tasks, such as sentiment classification,
semantic relatedness, paraphrase detection and semantic tex-
tual similarity. They found that a BiLSTM network with
max pooling produced the best embeddings, outperforming
SkipThought vectors and requiring less training time.

Sari, Vlachos, and Stevenson (2017) adapted the FASText
method to perform text classification (Joulin et al., 2017) for
authorship attribution. They learned custom word and char-
acter n-gram embeddings at classifier training time. The em-
bedding for a text was found by averaging the embeddings
of all its n-grams, and it was fed to a linear classifier. They
achieved state-of-the-art classification accuracy on bench-
mark datasets.

Gomez-Adorno et al. (2018) use paragraph vectors for
authorship attribution. They learn paragraph embeddings
considering character, word, and POS n-grams, inspired by
the knowledge that character n-grams have had considerable
success in authorship attribution. The embeddings are used
with a logistic regression classifier to perform cross-topic
authorship attribution. They find that the best model is em-
beddings created from the concatenation of vectors trained
on POS 1,2,3-grams and Word 1,2,3-grams.

Architecture and Experimental Protocol

There are two main steps in the way we go about authorship
attribution. First, we train a Siamese twin network by pro-
viding it with pairs of documents as input. Once the encoder
has been trained using this architecture, we encode all our
documents using the learned encoder weights. In the sec-
ond step, we use a decoupled machine learning technique to
classify the the documents based on their embeddings.

Binary classification
(same_author)

*

I fully-connected layers |

*

I (u,v, |lu —v|,u*xv) l

P

[ U ] [ U
! f

Text 2 encoder

Text 1 encoder

Figure 1: Siamese encoder training architecture.
Adapted from Conneau et al. (2017).

Siamese Twin Encoder

We adapt the supervised learning approach for sentence em-
beddings used by Conneau et al. (2017) to develop an en-
coder to create embeddings based on authorship style. We
modify their training model to take in two variable length
snippets of text with a binary label indicating whether the
two snippets were written by the same author.

The Siamese encoder training architecture we use is con-
ceptually illustrated in Figure 1. Siamese networks, where
two identical sub-networks are used to train on a pair of in-
puts at the same time have been used successfully for sig-
nature verification (Baldi and Chauvin, 1993; Bromley et
al., 1994), face verification (Hu, Lu, and Tan, 2014) and
other image recognition tasks (Koch, Zemel, and Salakhut-
dinov, 2015) that require learning suitable distance metrics,
adapted to a dataset or domain. However, in practice, we
have only one encoder. During training, the encoder is first
used to obtain an embedding w of the first text of the pair.
The same encoder is next used to obtain the embedding v
of the second text of the pair. Once both embeddings are
in place, three methods are applied to them: concatena-
tion, element-wise product, and absolute element-wise dif-
ference, to produce a vector that combines the embedded
information for the two documents. This resulting vector is
passed to a dense neural network, consisting of two 64-node
hidden layers and a softmax layer, which performs binary
classification. Backpropagation on the weights of the en-
coder is performed based on the errors in pairwise classifi-
cation, i.e., if the pair was judged correctly to be authored
by the same or different authors, as in the input.

We hypothesize that this approach will force the encoder
to learn to make embeddings based on that which unites an
author’s own work and distinguishes it from others’, collec-
tively speaking, ultimately resulting in embeddings of docu-
ments that are grouped by author within the vector space.

Generating Training Pairs for Encoder

The datasets used in this research contain individual texts
labelled by author. It would be computationally expensive
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to attempt to train on the complete set of all possible pairs
given its large size!, and would also likely result in signif-
icant overfitting as the number of training pairs would be
much larger than the number of unique training texts. There-
fore, pairs of texts are created at the start of each training
epoch. In the first training epoch, 100 differing author pairs
and 100 same author pairs are created for each author in the
dataset. Differing author pairs are created by holding con-
stant, the author of the first text and randomly choosing a
second author for each pair. Same author pairs are created
by holding constant the author of both pieces of text in a
pair. For every pair, texts are chosen randomly from among
the relevant author’s works. In subsequent epochs, pairs are
created both randomly and adaptively based on the author
pairs on which the model performed poorly in the previous
epoch. Ten differing author pairs and fifty same author pairs
are created for each author in the dataset. A misclassifica-
tion count from the previous epoch organized by author pair
is used to create ten training pairs for each misclassified pair,
with a maximum of hundred training pairs for any unique
author pair. Pairs created based on previous misclassifica-
tions are created using the same authors as the misclassified
pair, with texts chosen randomly from among the relevant
authors’ works. Pair generation is done in this way to avoid
overfitting to specific pairs in the set of all possible pairs,
and to adaptively focus training on difficult author pairs.

Encoder Models Used

We investigated variation of both the fundamental architec-
ture of the encoder and the way in which an input text is pre-
pared for the encoder. We investigated four encoder archi-
tectures: a bidirectional LSTM (BiLSTM) with max pool-
ing, a biLSTM with mean pooling, a Hierarchical Convo-
Iution Neural Network (ConvNet) with max pooling, and a
ConvNet with mean pooling.

In terms of preparation, three main encoder models were
used. The first model used was a word based model which
fed texts encoded using word embeddings into the LSTM
to create 256 dimensional embeddings. The second was a
character based 3-gram model which encoded texts using
character 3-gram embeddings and used the LSTM to create
256 dimensional embeddings. The third model was a com-
bination of the first two, using two encoders in parallel, one
operating on words and the other on character 3-grams, to
produce 512 dimensional embeddings.

Furthermore, Sari, Vlachos, and Stevenson (2017) found
word and character n-gram embeddings learned directly on
the dataset to be effective in authorship attribution, so our
models were tested using both pretrained GloVe word em-
beddings (Pennington, Socher, and Manning, 2014) and pre-
trained character 3-gram embeddings from Hashimoto et al.
(2016) as well as custom word and character embeddings.
Custom word and character 3-gram embeddings were pro-
duced using the skip-gram model (Mikolov et al., 2013) on
both the train set exclusively and the combined train and test
set of the CCAT-50 dataset.

"For instance, over 3 million unique pairs could be created from
the 2500 training set examples in the CCAT-50 dataset.

Metric Learning

Since our model aims to produce document embeddings
such that documents are grouped by author within the vec-
tor space, the effect of using metric learning techniques to
group classes together and separate them from other classes
was investigated. We used Large Margin Nearest Neigh-
bor (LMNN) (Weinberger and Saul, 2009) metric learning,
which is a metric learning algorithm designed specifically
to improve kNN performance. LMNN learns a Mahalanobis
distance metric in a supervised way where, for a given data
point, it is rewarded if the point’s k nearest neighbors (mea-
sured using the learned metric) are of the same class as the
data point, and is penalized if any of its k neighbors are of a
different class.

Classification Methods

As mentioned earlier, the Siamese twin network has a single
encoder in practice, although it is illustrated as if there are
two parallel encoders. The purpose of training the Siamese
network is to train this encoder to produce document em-
beddings that can discriminate among authors. Thus, after
training, the encoder is used to produce embeddings of all
texts in both the training and test sets. These embeddings
are then fed to various decoupled classifiers for the author-
ship attribution task. All classifiers are trained on the em-
beddings of the training set and tested on the embeddings
of the test set. The first classification algorithm uses SVMs
with RBF kernels in a “one-against-one” (Knerr, Personnaz,
and Dreyfus, 1990) approach to perform multi-class classi-
fication. The second algorithm is k-nearest neighbors (kKNN)
with a k value of 5. The SVM and kNN classifications are
performed using Scikit-learn (Pedregosa et al., 2011). The
third classifier is a cohort algorithm which takes advantage
of the binary classifier learned during encoder training. Each
unknown text is compared to 30 training set texts from each
author using the binary classifier, which predicts whether or
not two texts were written by the same author. When the
binary classifier predicts that two texts were written by the
same author, it is counted as a vote for author of the text to
which the unknown text is being compared. Votes are tallied
for each author and the text is attributed to the author with
the most votes.

Various methods of ensemblizing classifiers were also in-
vestigated. Four basic ensemble architectures were tested.

Discrete Plurality Voting The first is a discrete plurality
voting ensemble. Four classifiers are used in the ensemble:
kNN, SVMs with RBF kernels in a “one-against-one” (Kn-
err, Personnaz, and Dreyfus, 1990) approach, the cohort al-
gorithm described earlier, and a dense neural network with
two 256 node layers, one 64 node layer, and a softmax layer,
trained for 500 epochs. Each classifier votes for one class
and all votes are weighted equally. Ties are broken by choos-
ing kNN.

Meta-Classifier The second ensemble uses an meta-
classifier, which seeks to predict which classifier(s) (kNN,
SVM, etc.) will correctly predict the author of an example
given its embedding. The same four classifiers from the dis-
crete plurality voting ensemble are used. Predictions for the
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Table 1: Multiclass classification accuracy (%) by encoder architecture, classifier type, and dataset.

CCAT-50 CCAT-10 IMDB62
Model SVM | kNN | Cohort SVM | kNN | Cohort SVM | kNN | Cohort
Word 62.9 63.8 61.36 75.4 76.6 68.2 89.9 88.1 78.1
Char 3-grams 48.2 49.3 40.4 66.8 67.2 66.0 47.7 35.1 28.7
Combined 59.6 61.8 55.7 72.6 73.0 67.0 88.5 84.7 71.6

training set from each classifier are used to label each em-
bedding in the training set with the classifier(s) that correctly
predicted it. The meta-classifier is trained using the train-
ing set embeddings and these labels, and is subsequently
used on the test set embeddings to predict which classifiers
will correctly predict this example. For each Various differ-
ent meta-classifiers were tested, including SVMs, decision
trees, naive Bayes, logistic regression, and XGboost (Chen
and Guestrin, 2016).

XGBoost Logits The third ensemble architecture uses
XGboost (Chen and Guestrin, 2016) to predict an example’s
class given the raw logits from each classifier. The same
four classifiers from the discrete plurality voting ensemble
and meta-classifier ensemble are used. XGBoost is trained
using the raw logits and class label for each example in the
training set. It is used with the raw logits from the test set
examples to predict their classes.

Soft Voting The fourth ensemble architecture uses soft
voting, which predicts an example’s class using the max of
the sums of the probabilities for each class from each classi-
fier. Four classifiers are used in the ensemble: kNN, SVMs
with RBF kernels in a “one-versus-rest” approach, Random
Forest, and Logistic Regression.

Experiments, Results, & Analysis

This section describes the datasets used and the experiments
performed along with the results obtained.

Datasets Used

Three datasets were used to evaluate the viability of this ap-
proach for authorship attribution.

CCAT-50 (Houvardas and Stamatatos, 2006) is a set of
5000 news stories, comprised of 50 training texts and 50 test
texts for each of 50 authors. All texts are corporate news
stories to reduce the effect of genre on classification. This
dataset is a subset of the Reuters Corpus Volume 1.

CCAT-10 (Stamatatos, 2008) is a subset of the CCAT-
50 dataset with fewer authors. It contains 50 training texts
and 50 test texts for 10 authors. Like CCAT-50, all texts
are corporate news stories to reduce the effect of genre on
classification.

IMDDb62 (Seroussi, Zukerman, and Bohnert, 2011) is
a set of 62,000 movie reviews from the Internet Movie
Database (IMDb). It contains 1,000 texts from each of 62
authors. This dataset was split into a train and test set by
setting aside 10% of each author’s texts for the test set and
using the remaining 90% as the training set.

Table 2: Multiclass classification accuracy (%) for
word-based model using kNN classifier

CCAT-50 | CCAT-10
kNN 63.8 76.6
kNN w/ LMNN || 62.8 75.6

Preliminary Results

To obtain preliminary results, we trained biLSTM with max
pooling encoders on word, character 3-gram, and combined
models for all three datasets. We used the trained encoders
to produce embeddings for each dataset which were subse-
quently fed to SVM, kNN, and Cohort classifiers. Results
are presented in Table 1. Our word-based model achieved
higher classification accuracy than the other two models on
all datasets.

We also observed that kNN and SVM classifiers had less
than 2% difference in classification accuracy on all three
datasets using the word model, and on CCAT-50 and CCAT-
10 using the character 3-gram and combined models. Nev-
ertheless, all models and classifiers fail to meet state of the
art results on these datasets. A comparison of this research
against the state of the art is provided in Table 3.

As a result, further experimentation was undertaken to
both attempt to improve classification accuracy to state of
the art levels and assess the advantages of this approach. In
the subsections that follow, the effects of metric learning,
variation of encoder architecture, the use of custom word
and n-gram embeddings, and the use of ensemble-ized clas-
sifiers are presented. Finally, a visual representation of the
documents in the CCAT-10 dataset is presented and ana-
lyzed.

Metric Learning

Given the success of kNN classifiers, the effect of applying
the Large Margin Nearest Neighbor (LMNN) (Weinberger
and Saul, 2009) metric learning algorithm to the embeddings
was investigated with a k value of 5. Results from these ex-
periments are presented in Table 2. It was found that the use
of LMNN caused a small decrease in classification accuracy
on both the CCAT-50 and and CCAT-10 datasets.

Custom Embeddings

Custom word and character 3-gram embeddings were pro-
duced using the skip-gram model (Mikolov et al., 2013) on
both the train set and the combined train and test set of the
CCAT-50 dataset. These embeddings were then used to train
biLSTM encoders and perform classification. Results from
these experiments are presented in Table 4.
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Table 3: Comparison against other reported results.

Model CCAT-50 | CCAT-10 | IMDb62
Continuous n-gram words (Sari, Vlachos, and Stevenson, 2017) 70.16 77.80 87.87
Continuous n-gram char (Sari, Vlachos, and Stevenson, 2017) 72.60 74.80 94.80
SVM with affix & punctuation 3-grams (Sapkota et al., 2015) 69.30 78.80 -
D2V words (Posadas-Duran et al., 2017) 71.84 80.80 -
D2V words + 2 + 3-grams (Posadas-Duran et al., 2017) 75.24 82.80 -
D2V words + 2 + 3 + 4 + 5-grams (Posadas-Duran et al., 2017) 74.84 84.60 -
SVM with bag of local histograms (Escalante, Solorio, and Montes-y Gmez, 2011) - 86.40 -
Token SVM (Seroussi, Zukerman, and Bohnert, 2013) - - 92.52
Words - Discrete Plurality Voting Ensemble 64.80 76.20 89.56
Words - Soft Logit Voting Ensemble 65.64 77.00 91.69

Table 4: Multiclass classification accuracy (%) by

embedding type.
CCAT-50
Model SVM | kNN | Cohort
Words (pre-trained) 62.9 | 63.8 61.4
Words (train) 47.8 | 49.6 39.5
Words (train+test) 52.6 | 52.1 44.7
Char 3-grams (pre-trained) || 48.2 | 49.3 404
Char 3-grams (train) 49.5 | 50.6 51.8
Char 3-grams (train-+test) 50.3 | 504 52.6

Interestingly, it was found that custom embeddings in-
creased the accuracy of the character based model but de-
creased the accuracy of the word based model. This indi-
cates that the semantic nature of pretrained GloVe embed-
dings may be important in the production of meaningful
text embeddings, since the custom word embeddings prob-
ably captured less semantic value than the GloVe embed-
dings given the muhc larger training set used to create the
GloVe embeddings. This is further evidenced by the fact
that the char n-grams, which do not have any semantic value,
performed better with custom embeddings. If this is the
case, this would also explain the word model’s better perfor-
mance on IMDb62 compared with CCAT-10 and CCAT-50,
as previous users of these datasets have noted the impor-
tance of text topic for discrimination of authors in IMDb62
(Sari, Vlachos, and Stevenson, 2017; Seroussi, Zukerman,
and Bohnert, 2013), while it is less influential in CCAT-10
and CCAT-50 as these datasets have already been controlled
for topic.

Unsurprisingly, accuracy with both words and characters
was slightly higher using custom embeddings trained on the
combined train and test set when compared with custom em-
beddings trained only on the train set. This gain in accuracy
was larger for the word model, likely because there are more
words in the test set that are not in the train set than there are
character 3-grams that are only in the test set.

Encoder Type

We varied the type of encoder that was used to observe its
effect on classification accuracy. Results from these experi-
ment are presented in Table 5. We found that no new encoder

Table 5: Multiclass classification accuracy (%) by
encoder type.

CCAT-50
Encoder Architecture SVM | kNN | Cohort
biLSTM w/ max pooling 629 | 63.8 | 614
biLSTM w/ mean pooling || 584 | 61.8 | 61.6
ConvNet w/ max pooling 522 | 52.0 | 50.6
ConvNet w/ mean pooling || 35.3 | 56.8 | 53.8

architecture could outperform our previous best classifica-
tion accuracy of 63.8%, obtained using a biLSTM with max
pooling and a kNN classifier.

Ensemble Classifier

Analysis of the test examples misclassified by the various
classifiers revealed that the set of correctly classified exam-
ples from each classifer do not completely overlap. For
the standard word-based biLSTM with max pooling with
the CCAT-50 dataset, it was found that 582 examples—or
23.3% of the dataset—were misclassified by all classifiers.
This shows that ensemble-izing these classifiers could result
in a higher classification accuracy than the current best of
63.8% using only kNN.

The results of these experiments are presented in Table 6,

Table 6: Multiclass classification accuracy (%) for
word-based model using ensemble-ized classifiers

Ensemble Architecture CCAT-50
Discrete Plurality Voting 64.8
Meta-Classifier | SVM 63.9
Meta-Classifier | Decision Tree 64.7
Meta-Classifier | Naive Bayes 64.1
Meta-Classifier | Logistic Regression || 64.6
Meta-Classifier | XGBoost 64.4
XGBoost Logits | max depth =6 60.8
XGBoost Logits | max depth =20 61.84
XGBoost Logits | max depth =50 61.28
XGBoost Logits | max depth = 100 61.2
XGBoost Logits | max depth =256 61.04
Soft Logit Voting Ensemble 65.6
12
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Figure 2: CCAT-10 Train Set

and a comparison against state of the art results is presented
in Table 3. It was ultimately found that the soft voting en-
semble achieved the highest classification accuracy, but still
failed to meet state of the art results on all three datasets.

Visual Analysis of CCAT-10 Documents

The document embeddings produced by our word-based
biLSTM with max pooling encoder for the CCAT-10 dataset
were used to produce visual representations of the distribu-
tion of the encoded texts in the vector space. The vectors
were reduced from 256 to 2 dimensions using tSNE
(Maaten and Hinton, 2008). The training set is represented
in Figure 2, while the test set is represented in Figure 3.

Comparative analysis of the two figures can help to ex-
plain some of our results. Examples from the train set ap-
pear to be clustered by class, with visible margins between
class clusters, few outliers, and little class overlap. Test set
examples, however, appear less tightly clustered and have
significant class overlap for some classes. While each au-
thor class has its own unique cluster in the train set, only
four authors (1, 2, 4, and 7) have their own unique cluster
in the test set. Two large clusters contain examples from the
remaining classes: one with authors 5, 6, and 9, and another
with authors 0, 3, and 8.

The tighter clustering in the train set when compared with
the test set explains the performance of kNN on this dataset.
During kNN, while the train examples to which a test exam-
ple is compared may be clustered closely together by class,
the test examples tend to be less tightly clustered and have
more variance in position. Some may, therefore, be closer
to a different class’s cluster in the train set, resulting in test
example misclassification.

This also explains the poor performance of metric learn-
ing techniques: examples in the training set were already
clustered by class with margins between clusters, so it is un-
likely that any metric could be learned from this train data
that would bring closer the test examples which are far from
their classes’ clusters in the train set.

Despite the tighter clustering of train set examples when
compared with test set examples, the encoder still manages
to embed unseen examples to the same general area as the
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Figure 3: CCAT-10 Test Set

train examples of the same class, even if it does not manage
to embed them precisely enough to achieve better authorship
attribution performance. For instance, the large overlapping
cluster in the test set containing authors 5, 6, and 9 occupies
roughly the same space as the three individual clusters for
authors 5, 6, and 9, in the train set. A similar phenomenon
can also be observed with the other overlapping cluster in
the test set. This indicates that the encoder is learning to
embed documents based on the stylistic characteristics that
distinguish the authors in a way that does generalize to un-
seen texts, if only to a limited extent. This confirms our
hypothesis that this training model would force the encoder
to learn to make embeddings based on that which unites an
author’s own work and distinguishes it from others’, collec-
tively speaking.

Nevertheless, this analysis reveals that the encoder could
generalize better to unseen texts. To improve performance
of this model for authorship attribution, the encoder needs
to be modified so that the distribution of train text embed-
dings in the vector space is more similar to the distribution
of test texts in the vector space. This could be achieved by
producing embeddings of unseen texts that are more tightly
clustered together by author or by producing embeddings of
train texts that are less tightly clustered. Furthermore, given
the tight clusters, it is possible the encoder may be overfit-
ting to the training texts, enabling it to cluster these texts
together more tightly at the expense of the quality of the
embeddings of unseen texts, thereby explaining the general
difference in the distribution of train and test embeddings.

Conclusion

In this research, we presented the development of a text
encoder which learns to produce document vectors reflect-
ing the author-specific (stylistic) qualities of texts. We
subsequently assessed the viability of such an encoder
for authorship attribution and found that the use of a bi-
directional LSTM encoder with a soft voting ensemble clas-
sifier achieves a classification accuracy that surpasses all our
other encoder-classifier approaches, but still fails to meet
state of the art results on the same datasets.

While we failed to achieve state of the art performance,
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analysis of the embeddings enabled us to confirm our hy-
pothesis that our architecture for encoder training would
produce an encoder which embeds texts based on that which
unites an authors own work and distinguishes it from others,
collectively speaking.

As a result, in future work, we would like to continue to
improve this encoder so that it may achieve state of the art
authorship attribution results. First, we would like to de-
crease the effect of encoder overfitting to the train set texts.
This will be accomplished by modifying the training pair
generation to produce significantly fewer training pairs per
epoch. Furthermore, we would like to test our model on a
dataset that has many training examples per author, as the
CCAT-50 and CCAT-10 have only 50 examples per author,
which also could have contributed to overfitting.

Second, we would like to implement and test an encoder
architecture based on Transformer (Vaswani et al., 2017), to
see if attention based encoder models can achieve competi-
tive performance when dealing with textual style.

Finally, working towards our goal of creating a universal
encoder, we would like to investigate the effect of training
the encoder on a very large and diverse dataset, of which
any potential authorship attribution dataset would be only a
small subset.
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Abstract

Recent papers in neural machine translation have proposed
the strict use of attention mechanisms over previous stan-
dards such as recurrent and convolutional neural networks
(RNNs and CNNs). We propose that by running traditionally
stacked encoding branches from encoder-decoder attention-
focused architectures in parallel, that even more sequential
operations can be removed from the model and thereby de-
crease training time. In particular, we modify the recently
published attention-based architecture called Transformer by
Google, by replacing sequential attention modules with par-
allel ones, reducing the amount of training time and substan-
tially improving BLEU scores at the same time. Experiments
over the English to German and English to French translation
tasks show that our model establishes a new state of the art.

Introduction

Historically, statistical machine translation involved exten-
sive work in the alignment of words and phrases devel-
oped by linguistic experts working with computer scientists
(Jurafsky 2000). Deep Learning surpasses these historically
used methods and has primarily replaced these with the re-
cent use of neural machine translation (NMT). The predom-
inant design of the state of the art is the encoder-decoder
model. The encoder takes sequential text, turning it into an
internal representation. The decoder then takes this inter-
nal representation and generates a subsequent output. Since
their emergence, attention mechanisms (Bahdanau, Cho, and
Bengio 2014) have been at the forefront of machine transla-
tion.

Attention mechanisms help the neural system focus on
parts of the input, and possibly the output as it learns to
translate. This concentration facilitates the capturing of de-
pendencies between parts of the input and the output. After
training the network, the attention mechanism enables the
system to perform translations that can handle issues such
as the movement of words and phrases, and fertility. How-
ever, even with these attention mechanisms, traditional NMT
models have their drawbacks, which include long training
time and high computational requirements.

Recent papers (Vaswani et al. 2017; Ahmed, Keskar, and
Socher 2017) in neural machine translation have proposed
the strict use of attention mechanisms in such networks as
the Transformer over previous approaches such as recurrent

neural networks (RNNs) (Elman 1990) and convolutional
neural networks (CNNs) (LeCun et al. 1998). In other words,
these approaches dispense with recurrences and convolu-
tions entirely. In practice, attention mechanisms have mostly
been used with recurrent architectures, and removing the re-
current nature of the architecture makes the training more
efficient by the removal of necessary sequential steps.

This paper contributes by continuing to pursue the re-
moval of sequential operations within encoder-decoder
models. These operations are removed through the paral-
lelization of previously stacked encoder layers. This new
parallelized model can obtain a new state of the art in ma-
chine translation after being trained on one NVIDIA GTX
1070 for as little as three hours.

The paper includes the following: a discussion of related
work in the field of machine translation including encoder-
decoder models and attention mechanisms; an explanation
of the proposed novel architecture and its motivations; and
an examination of used methodology and evaluation includ-
ing data sets, hardware, hyper-parameters, and metrics. This
paper concludes with results and possible avenues for future
research.

Related Work

There has been a plethora of work in the past several years
on end-to-end neural translation. ByteNet (Kalchbrenner et
al. 2016) uses CNNs with dilated convolutions for both
encoding and decoding. Zhou et al. (2016) use stacked
interleaved bi-directional LSTM layers (up to 16 layers)
with skipped connections; ensembling gives the best results.
Google’s earlier and path-breaking end-to-end translation
approach (Wu et al. 2016) uses 16 LSTM layers with at-
tention; once again, ensembling produces the best results.
Facebook’s end-to-end translation approach (Gehring et al.
2017) depends entirely on CNNs with attention mechanism.

Our work reported in this paper is based on another trans-
lation work by Google. Google’s Vaswani et al. (2017) pro-
posed the reduction of sequential steps seen in CNNs and
RNNs. The sole use of attention mechanisms and feed-
forward networks within the common encoder-decoder se-
quential model replaces the necessity of deep convolutions
for distant dependent relationships, and the memory and
computation intensive operations required within recurrent
networks. Original training and testing were over both the
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WMT 2014 English-French (EN-FE) and English-German
(EN-DE) data sets, while this paper only uses the WMT
2014 EN-DE set and the IWSLT 2014 EN-DE and EN-FR
data sets. This model will continue to be discussed later in
the paper.

Works in the field of NMT recommend a particular focus
on the encoder. Analysis by Domhan (2018) poses two ques-
tions: what type of attention is needed, and where. In this
analysis, self-attention had a higher correspondence with ac-
curacy when placed in the encoder section of the architecture
than the decoder, even claiming that the decoder, when re-
placed with a CNN or RNN, retained the same accuracy with
little to no loss in robustness. Imamura, Fujita, and Sumita’s
(2018) study shows that the current paradigm of using high-
volume sets of parallel corpora are sufficient for decoders
but are unreliable for the encoder. These conclusions encour-
age further research in the manipulation of position and de-
sign of the encoder and these attention mechanisms within
them.

Architecture

The Transformer architectures proposed by Vaswani et al.
(2017), seen in Figure 1, inspires this paper’s work. We have
made modifications to this architecture, to make it more ef-
ficient. However, our modifications can be applied to any
encoder-decoder based model and is architecture-agnostic.
These alterations follow from the proceeding two hypothe-
ses.

1. Reduction in the number of required sequential operations
throughout the encoder section is likely to reduce training
time without reducing performance.

2. Replacing the subsequent encoder attention stack is ex-
pected to result in discarding of inter-dependencies,
and possibly incorrect, assumptions of encoder attention
mechanisms and layers, improving performance.

For simplification, but without loss of generalization,
this paper discusses the use and modification of such
Transformer based-models. The original Transformer model
is composed of stacked self-attention layers. These self-
attention mechanisms compare and relate multiple positions
of one sequence in order to find a representation of itself.
In Figure 1, we see such attention layers, one working on
the input embedding, another on the output embedding, and
the third on the both the input and the output embeddings.
Each of these layers contains two main sub-layers including
multi-head self attention, which feeds a simple feed-forward
network, and a final layer of normalization. Around each of
the main sub-layers, a skip or residual connection (He et al.
2016) is also used. This same structure is used in the decoder
with an attention mask to avoid attending to subsequent po-
sitions.

The attention mechanism used by Vaswani et al. (2017)
can be thought of as a function that maps a query and set
of key-value pairs to an output. The query, keys, values and
output are all vectors. The output is obtained as a weighted
sum of the values. The weight given to a value is learned by
the system by considering how compatible the query is to the
corresponding key. The particular form of attention used is
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Figure 1: Transformer model as proposed by Vaswani et. al
(2017).

called scaled dot-product attention. This is due to the mech-
anism being homologous to a scaled version of the multi-
plicative attention proposed by Luong, Pham, and Manning
(2015). Several attention layers used in parallel constitute
what is called multi-head attention.

A brief description the proposed modifications of this ar-
chitecture is discussed below.

Parallel Encoding Branches

A motivation for creating the Transformer model was the
sluggish training and generation time of other common
sequence-to-sequence models such as RNNs and CNNs
(Vaswani et al. 2017). This was done by simplifying and lim-
iting sequential operations and computational requirements
while also increasing the model’s ability to exploit current
hardware architecture. This paper proposes that removal of
the previously stacked branches of the encoder (there is a
stack of N encoder and other blocks on the left side of
Figure 1), parallelizing these separate encoder ‘trees’, and
incorporating their learned results for the decoder, which
will further eliminate sequential steps and accelerate learn-
ing within current sequence-to-sequence models. The archi-
tectures discussed are modeled in Figure 2.

Alterations to this parallel transformer model were made
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Figure 2: From left to right we present three models. 1) APA: Parallel encoded Transformer where homologous stacks of en-
coding trees through random initialization add their learned attention. 2) ACPA: Attended Parallel encoding where the branches
concatenate learned results, a feed-forward network reduces dimensionality, and a final encoder branch encodes the results. 3)
AAPA: Attended Parallel Encoding Branches where a final encoding attention branch attends the added learned results.

and the following models were trained, tested, and are dis-
cussed in this paper:

e Additive Parallel Attention (APA),

e Attended Concatenated Parallel Attention (ACPA),
and

e Attended Additive Parallel Attention (AAPA).

Model Variations

Additive Parallel Attention (APA): We replace the entire
stack of (multi-head attention, add and normalize, feed for-
ward, add and normalize) repeated N times on the original
Transformer architecture on the left column, on the input
side. We instead have several such attention sub-networks
in parallel. The output layers of these networks contain at-
tention embeddings for the input. The values at the output
layers among the stacks are added. This model is seen to the
left in Fig. 2.

Attended Concatenated Parallel Attention (ACPA): This
approach is similar to APA and AAPA, but the values at the
output layers of the attention sub-networks are concatenated
instead of being added. This model is seen in the middle of
Fig. 2.

Attended Additive Parallel Attention (AAPA): This model
is built similarly to the APA model. However, it removes one
of the parallel stacks and uses it as a final sequential attention
mechanism over the additive results. This model is seen to
the right in Fig. 2.

When incorporating the results of the parallel encoding
branches, two models of thought are pursued: additive and
concatenation. The APA and AAPA models directly add the

University of Colorado, Colorado Springs

results of all encoding branches, whereas the ACPA mod-
els concatenate all encoding results and use a simple non-
linear layer to learn a dimension-reduction among all at-
tention branches. The attended parts of both the ACPA and
AAPA models incorporate a final attention layer over all en-
coding branches before they are sent to the decoding layers.

Experiments and Evaluation

All proposed architectures including the base Transformer
model (Vaswani et al. 2017) are trained over the Interna-
tional Workshop on Spoken Language Translation (IWSLT)
2016 corpus and tested similarly over the IWSLT 2014 test
corpus (Mauro, Christian, and Marcello 2012). The training
corpus includes over 200,000 parallel sentence pairs, and 4
million tokens for each language. The testing set contains
1,250 sentences, and 20-30 thousand tokens for French and
German. This paper also performed experiments over the
larger WMT data set including 4.5 and 36 million training
sentence pairs for the EN-DE and EN-FR tasks respectively.
The testing set for these experiments was the standard New-
stest 2014 test set including around 3000 sentence pairs for
each language task. These statistics can be noted in Table 1.
The sentence pairs range in length from one to sixty tokens
to get a full measure of the tested models and robustness to
both short and long input.

Across all models, a greedy-decoding function for both
training and testing time, the Kullback-Leibler divergence
loss function, the Adam optimizer (Kingma and Ba 2014),
and the number of training epochs (10) were kept constant.
The training and testing were done using the NMT task of
English to German (EN-DE) and IWSLT English to French
and English to German translation and each network was
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Figure 3: Visualization of multi-head attention weights in encoder branches 0, 2, and 4. Although each receives the same input
embedding, through random initialization, each learns different focuses.

trained using one graphics processing unit (GPU). The uti-
lized machine GPU configuration was one NVIDIA GTX
1070.

For the assessment of each model and translation task this
paper uses the bilingual evaluation understudy (BLEU) met-
ric (Papineni et al. 2002). This is a modified precision cal-
culation using n-grams such as unigram, grouped unigrams,
and bigrams. The BLEU metric claims to have a high cor-
relation to translation quality judgments made by humans.
BLEU computes scores for individual sentences by compar-
ing them with good quality reference translations. The indi-
vidual scores are averaged over the the entire corpus, with-
out taking intelligibility or grammatical correctness into ac-
count.

Results
Attention Visualization

One concern during early hypothesis testing was that if each
attention branch looks at the same input, that each one would
learn to focus on the same properties of the original em-

bedding. However, through visualization of each attention
layer, it is obvious that regardless of the same input, the
encoder branches through random initialization learn differ-
ent focuses as seen in Figure 3. The final branch for the at-
tended models however would learn very light to no atten-
tion weights as seen in Figure 4. This is one area of research
this group wishes to pursue in the future.

Machine Translation

Experimentation shows in Table 2 that the AAPA model
consistently performed on average nearly ten points higher
in the BLEU metric on the English to German translation
task on the IWSLT 2014 test set. It also performed very well
on the English to French translation task. On the much larger
WMT English-German test set, all our models achieve bet-
ter results then Vaswani et al. (2017). Our model with five
parallel encoding branches has a BLEU score of 62.69 com-
pared to 60.95 and 61.00 for the two Transformers shown in
Table 3. Our approach also takes considerably less time than
the large Transformer model with a stack of eight encoder
attention heads, although it is a little slower than the smaller
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Figure 4: Visualization of the weights for the final encoder that attends over all other encoding branches. This encoder’s weights
are relatively light, abstract, and have less obvious patterns when compared to the individual encoding branches.

Data Set No. Training Sentence Pairs No. Testing Sentence Pairs

EN-DE EN-FR EN-DE EN-FR
IWSLT (Mauro, Christian, and Marcello 2012) 197K 220K 628 622
WMT 4.5M 36M 3000 3000

Table 1: Data sets comparisons of training and testing sentence pairs for the translation tasks of English-German and English-
French. The English-French statistics were included for the WMT data set although it is not directly used in the paper, as it will

be included in future work.

Loss

Epoch

Figure 5: This plot shows validation loss for both the Trans-
former model (blue) and our modified model (orange) over
the IWSLT EN-DE task. The parallel encoder shows a con-
sistently lower starting and end-training loss.

Transformer model reported by Vaswani et al. (2017). In
terms of the BLEU metric, we establish state-of-the-art per-
formance for both EN-DE and EN-FR translation consider-
ing both IWSLT 2014 and WMT data sets. Since our results
came up very good, surpassing state of the art, we ran our
experiments multiple times to ensure the results are correct.
During the Transformer and attended parallel model’s train-
ing lifetime, it can be seen that loss was consistently lower
for our modified parallel model with five parallel stacks as
seen in Figure 5. In this task, loss doesn’t always correspond
to a higher metric, in this case our model also shows a con-
tinuous higher score in the BLEU metric over the validation
set while the Transformer shows signs of plateauing early on
Figure 6.

However, our parallelized model did have a slightly
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Figure 6: This plot shows validation BLEU metric score for
both the Transformer model (blue) and our modified model
(orange) over the IWSLT EN-DE task. The parallel encoder
shows a consistently higher BLEU score and shows linear
increase while the Transformer shows some plateauing in
later epochs.

higher training time over a single GPU. One final experi-
ment conducted to improve this drawback, also seen in the
same table, is the reduction of number of parallel branches
in the encoder. By reducing the number incrementally, our
BLEU score stays equivalent to higher perplexity layers, but
linearly reduces the run-time.

Conclusions

In step with the goals of the original Transformer, this work
continued to pursue the removal of sequential operations
within attention-based translation models. Further work in
this model requires increasing diversification of the encoder
attention branches and thereby insuring varied focuses and
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Model BLEU Single GPU Run-Time (s)

EN-DE EN-FR EN-DE EN-FR
Transformer as proposed by Vaswani et al.(Vaswani et al. 2017) 4757 +£497 56.15£042 8052.19 9480.70
Attended Additive Parallel Attention 5 Parallel Branches (AAPA) 57.05 £ 0.45 63.26 + 0.43 8158.26 9596.08
Attended Additive Parallel Attention 4 Branches 56.22 £0.63 62.68 +0.25 7805.73 9114.84
Attended Additive Parallel Attention 3 Branches 56.68 £0.47 62.754+0.35 7412.81 8686.92
Attended Additive Parallel Attention 2 Branches 55.94 £0.01 61.244+0.53 6998.18 8228.14
Attended Concatenated Parallel Attention (ACPA) 48.67 +4.47 6231 +£0.21 8186.77 9710.70

Table 2: Model comparison for test results over the IWSLT 2014 test set. The BLEU score is given as an average of the final
epoch over multiple runs where also a standard deviation (SD) is also given. By reducing the number of parallel branches in the
encoder, the model can maintain a high accuracy and reduce run-time.

Model

BLEU Single GPU Run-Time (s)

Transformer Large

Attended Additive Parallel Attention Large 7 Parallel Branches (AAPA)  61.98

Transformer

Attended Additive Parallel Attention 5 Parallel Branches

Attended Additive Parallel Attention 4 Branches
Attended Additive Parallel Attention 3 Branches
Attended Additive Parallel Attention 2 Branches
Attended Concatenated Parallel Attention (ACPA)

60.95 168,806.61

173,163.03
61.00 138,032.33
62.69 141,041.74
62.77 133,374.33
62.07 123,929.10
62.59 116,450.75
60.32 142,363.06

Table 3: Model comparison for test results over the larger NMT English-German test set.

a more robust encoder. This new parallelized Transformer
model reaches a new state-of-the-art in machine translation
and provides multiple new directions for future research.
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Abstract

In a world of proliferating data, the ability to rapidly
summarize text is growing in importance. Automatic
summarization of text can be thought of as a sequence
to sequence problem. Another area of natural language
processing that solves a sequence to sequence problem
is machine translation, which is rapidly evolving due
to the development of attention-based encoder-decoder
networks. This work applies these modern techniques to
abstractive summarization. We perform analysis on var-
ious attention mechanisms for summarization with the
goal of developing an approach and architecture aimed
at improving the state of the art. In particular, we mod-
ify and optimize a translation model with self-attention
for generating abstractive sentence summaries. The ef-
fectiveness of this base model along with attention vari-
ants is compared and analyzed in the context of stan-
dardized evaluation sets and test metrics. However, we
show that these metrics are limited in their ability to
effectively score abstractive summaries, and propose a
new approach based on the intuition that an abstractive
model requires an abstractive evaluation.

Introduction

The goal of summarization is to take a textual document
and distill it into a more concise form while preserving
the most important information and meaning. To this end,
two approaches have historically been taken; extractive and
abstractive. Extractive summarization selects the most im-
portant words of a given document and combines and re-
arranges them to form a final summarization (Nallapati,
Zhai, and Zhou 2017). This approach is restricted to using
words directly from the source document and so is unable
to paraphrase. Abstractive algorithms generate a summary
from an attempt to understand a document’s meaning, allow-
ing for paraphrasing much like a human may do. Abstrac-
tive approaches are more difficult to develop than extractive
ones because an intermediate representation of knowledge
is required. As such, dominant techniques of summarization
have been extractive in nature, with wide-ranging solutions
utilizing statistical, topic-based, graph-based, and machine
learning approaches (Gambhir and Gupta 2017). With the
potential for generating more coherent and insightful sum-
maries, abstractive approaches are gaining in popularity fu-
eled by novel deep learning techniques (See, Liu, and Man-

Jugal Kalita
University of Colorado, Colorado Springs
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jkalita@uccs.edu

ning 2017). The abstractive summarization pipeline includes
converting words to their respective embeddings, comput-
ing a document representation, and generating output words.
Neural networks have recently been shown to perform well
for every step (Dong 2018).

In deep learning models, attention allows a decoder to fo-
cus on different segments of an input while stepping through
output regions. In the related sequence to sequence task of
machine translation, attention was introduced to the existing
encoder-decoder model (Bahdanau, Cho, and Bengio 2014).
This resulted in large improvements over past systems due
to the ability to consider a larger window of context dur-
ing the output generation. Progressing this further, Vaswani
et al. (2017) showed that multi-headed self-attention can re-
place recurrence and convolutions entirely. As the areas of
machine translation and abstractive summarization are re-
lated both structurally and semantically, the developments
in machine translation may inform the direction of research
in abstractive summarization. In this paper, we apply these
advancements and develop them further in pursuit of sen-
tence summarization. In any attempt at summarization, the
resulting text must be much more condensed than the origi-
nal. In this task, all generated summaries are constrained to a
fixed maximum length so that tested models must learn how
to decide what information should be reproduced.

Related Work

Successful sentence summarization approaches have clas-
sically used statistical methods. TOPIARY (Zajic, Dorr,
and Schwartz 2004) detected salient topics that guided sen-
tence compression while using linguistic transformations.
MOSES, a statistical machine translation system, also per-
formed well when directly used for summarization (Koehn
et al. 2007). Attention mechanisms have been shown to
improve the results of abstractive summarization. Rush,
Chopra, and Weston (2015) improved over classic statisti-
cal results by using a neural language model with a minimal
contextual attention encoder. After the primary model train-
ing, an extractive tuning step was performed on an adjacent
dataset. A related extension of this used a convolutional at-
tentive encoder and experimented with replacing the decoder
language model with RNN variants. LSTM cells and RNN-
Elman both showed improved ROUGE scores (Chopra,
Auli, and Rush 2016). An attentive encoder-decoder was
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Figure 1: Transformer-based network architecture. The
multi-headed attention mechanisms contain various recall
options similar to and that expand upon Vaswani et al.
(2017).

also employed by Zeng et al. (2016) with one RNN architec-
ture to re-weight another to improve context across the input
sequence. Their decoder used attention with a copy mech-
anism that differentiated between out of vocabulary words
based on their usage in the input. Nallapati et al. (2016)
continued progress on encoder-decoder architectures by em-
ploying a bidirectional GRU-RNN encoder with a unidirec-
tional GRU-RNN decoder. Imposing dynamic vocabulary
restrictions also improved results while reducing the dimen-
sionality of the softmax output layer. Pointer-Generator net-
works encode with a bidirectional LSTM and decode with
attention restriction. A coverage vector that limits the atten-
tion of words previously attended over is maintained (See,
Liu, and Manning 2017).

Recently, summarization has made progress at the para-
graph level due to reinforcement learning. A recurrent ab-
stractive summarization model used teacher forcing and a
similarity metric that compared the generated summary with
the target summary (Paulus, Xiong, and Socher 2017). The
architecture contained a bi-directional LSTM with intra-
attention. Actor-critic reinforcement learning was used by
Li, Bing, and Lam (2018) to produce the highest scores for
sentence summarization. One important consideration when
optimizing purely on the test metric is that while overall re-
call is improved, higher ROUGE scores do not necessarily
correlate with the readability of summaries.

Models

Encoder-decoder architectures provide an adaptable struc-
ture for the development of systems that solve sequence to
sequence problems. The encoder maps the input sequence to
a latent vector representation. The decoder takes this repre-
sentation, called the context vector, and generates the out-
put sequence. The models and their variants that follow are
structured as such. We select a base architecture that pro-
vides a strong foundation on which to analyze the effect of
self-attention variants.

The Transformer

The Transformer architecture as proposed by Vaswani et
al. (2017) is notable for performing state of the art Ma-
chine Translation, and is more efficient to train than past
systems by orders of magnitude. This is made possible by
replacing sequence aligned recurrence with self-attention.
The sequence order is preserved in the self-attention mod-
ules by including positional embeddings. Instead of incre-
mental values, the positional embeddings are determined by
position on a sinusoidal time series curve. Further, masking
of the decoder self-attention is performed, making the out-
put of the next token dependent on that which has already
been generated. Multi-headed self-attention is used in both
the encoder and decoder. These mechanisms map a query
vector to a key-value vector pair which results in an out-
put vector. Tying together the encoder and decoder is a third
multi-headed attention mechanism. The query comes from
the self-attentional output of the decoder, and the keys and
values from the self-attentional output of the encoder. In the
work done by Vaswani et al. (2017), all attention heads used
scaled dot-product attention, which is computationally effi-
cient as multiple query, key, and value vectors can be imple-
mented as a combined matrices. Scaled dot-product atten-
tion also defines the structure for the self-attention mecha-
nisms we present below.

QKT
Vd

Many other attention mechanisms exist beyond the base
dot-product attention. We analyze the performance of these
mechanisms in the context of abstractive summarization.
Changing the way the query, key, and value vectors interact
allows an attention mechanism to learn different relation-
ships between sequence elements.

Relative dot-product attention uses scaled dot product at-
tention, but instead of using absolute positional encodings,
uses a relative positional encoding. These relative encodings
learn to relate the elements of the query to both the elements
of the keys and values (Gehring et al. 2017). The encodings
can be distance-limited to a context window in the vector
sequences.

Local attention divides the key-value vectors into local-
ized blocks (Liu et al. 2018). Each query is strided over a
corresponding block with a given filter size. Blocks can con-
tain positions both prior to and following a given position,
thereby not masking any element based on absolute position.
Self-attention is performed over each block in isolation.

Local masked attention adds a mask to the blocks of local
attention. Blocks in a future sequential position are masked
from the query but all elements within a block remain vis-
ible to a given query position. Intuitively, masking future
positions forces a mechanism to attend to current and past
positions, which may be an important restriction of the at-
tention distribution.

Local block masked attention masks both previous blocks
and future blocks for a query position. Further, future posi-
tions within individual blocks are masked.

Dilated attention also divides the key-value vectors into
blocks, but introduces a gap in between each block. Each

attention = softmax(

WV )
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Target

Endeavour astronauts join two segments of International Space Station.
Genl | Endeavour astronauts join two sections of International Space Station.
Gen2 | Endeavour astronauts remove two segments of International Space Station.
Gen3 | Endeavour astronauts join two segments of International Space Station.

| Sentence | ROUGE-1 [ ROUGE-2 [ ROUGE-I [ Cos-Sim | WMD [ VERT |

Genl 88.89 75.00
Gen2 88.89 75.00
Gen3 100.00 100.00

88.89 0979 | 0418 | 94.77
88.89 0.924 | 0512 | 91.08
100.00 1.000 | 0.000 | 100.00

Table 1: Highlighted differences between ROUGE and VERT scoring. Notice that an incorrect word replacement (Gen2) scores
the same as a reasonable word replacement (Gen/) in ROUGE. VERT discounts the score of Gen2 accordingly. Gen3 is included

to show the perfect scores for an identical summary.

query position is limited to a context window of a specified
number of blocks both preceding and following the memory
position.

Dilated masked attention performs the same operations as
dilated attention and masks future memory positions within
each block.

Evaluation

The standard test metric for automatic summary generation
is ROUGE, or Recall-Oriented Understudy for Gisting Eval-
uation (Lin 2004). Before the ROUGE metrics were intro-
duced, human judges were used for summary evaluation.
Human judges provide an ideal evaluation, but are impracti-
cal for regular use. ROUGE allows for easy comparison of
generated summaries to target summaries, where target sum-
maries are human-generated. Limited-length recall is com-
monly reported using ROUGE-1, ROUGE-2, and ROUGE-
L. ROUGE-1 and ROUGE-2 compare unigram and bigram
overlap, respectively. This generalizes to ROUGE-N for n-
gram overlap. ROUGE-L determines the longest common
subsequence (LCS). Evaluation quality of summarization
models can be directly compared to previous work because
the same metrics were reported for past models by Rush,
Chopra, and Weston (2015), Zeng et al. (2016), Nallapati et
al. (2016), Li, Bing, and Lam (2018), and others. These met-
rics allow for reasonably accurate comparison of summary
generation models, but inherent problems exist. One critical
limitation is that ROUGE does not consider reasonable para-
phrasing or synonymous concepts. Since ROUGE works at
the word level, meaning can only be captured and compared
in a binary manner; either a word appears in the generated
summary or it does not.

ROUGE 2.0 was proposed to alleviate this problem as
well as remove the expectation that generated summaries
need to be identical to the target summary (Ganesan 2015).
As pointed out by Rush, Chopra, and Weston (2015), even
the best human evaluator scored just 31.7 ROUGE-1 on the
DUC2004 dataset. This illustrates the idea that two sum-
maries do not need to be the same in order for both to be
of high quality. Thus, a more appropriate approach to sum-
mary comparison may be to evaluate the semantic similar-
ity between the generated and target summaries instead of

using isolated word counts. ROUGE 2.0 captures semantic
similarity using a synonym dictionary while still evaluating

n-grams and LCS. While this addresses the word-level short-

coming of the original ROUGE metrics, similarity is still
fixed to a discrete list of acceptable alternatives, which does
not fully capture phrase substitution. A further improvement
could be to evaluate the semantic similarity between two en-
tities on a continuous scale.

VERT Metric

To improve the quality of summary evaluation, we introduce
the VERT metric!, an evaluation tool that scores the quality
of a generated hypothesis summary as compared to a ref-
erence target summary. VERT stands for Versatile Evalua-
tion of Reduced Texts. VERT compares summaries on their
underlying semantics rather than word count ratios. To cal-
culate a VERT score for a summary pair, a similarity sub-
score and dissimilarity sub-score are calculated and func-
tionally combined. Naturally, a higher similarity score and
a lower dissimilarity score leads to a higher, better VERT
score. The similarity sub-score considers the semantics of
each summary taken at the document level. A sentence em-
bedding vector is synthesized for both generated and tar-
get summaries, and the cosine similarity between these two
vectors provides the similarity score. The sentence embed-
dings are generated using InferSent, an open-source neural
encoder trained on natural language inference tasks (Con-
neau et al. 2017). InferSent was chosen because it has been
shown to generalize well for use in various problems requir-
ing sentence representations. The dissimilarity sub-score op-
erates at the individual word level rather than at the sentence
level. An aggregate Euclidean distance is calculated between
the words of the generated summary and the words of the
target summary. This is done using word mover’s distance
(WMD), a measure of how far document A must travel to
match document B within the word vector space (Kusner et
al. 2015). Stop words are discarded prior to the distance cal-
culation as their effect on the distance between documents is
negligible.

Sub-Score Motivations

A consideration would be to use just one of the two sub-
scores as they are independent calculations. However, both
the InferSent cosine similarity and WMD are made more
robust by the presence of the other score. WMD is unaf-
fected by word ordering, whereas the encoder of InferSent
1. Our VERT implementation is made publicly available at: https://
github.com/Jjacobkrantz/VertMetric
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| Metric | Pearson [ P-Value |
ROUGE-1 0.3039 0.0319
ROUGE-2 | 0.2577 0.0708
ROUGE-L | 0.3071 0.0300
VERT 0.3681 0.0085

Table 3: Pearson correlation coefficient between automatic
metrics and human evaluation of responsiveness.

| WMD [ Summary Count |

0—1 74
1—2 860
23 2858
3—4 2150
4—5 58
5+ 0

Table 2: WMD among human summaries on DUC2004. For
each article, every human summary was held out as the tar-
get to compare the other human summaries to resulting in
6000 comparisons.

maintains sequential input. To illustrate, suppose the target
sentence is “go right and then left” and the generated sen-
tence switches the order, stating “go left and then right.”
WMD gives this a perfect distance of 0.0 but the InferSent
similarity more accurately discounts the score by 4.3%. On
the other hand, when longer summaries are compared, In-
ferSent embeddings begin to lose the effect of individual
words because the word embeddings are replaced with a sin-
gular embedding. This is less of a problem for WMD. Fi-
nally, the similarity sub-score uses GloVe embeddings? pre-
trained on Common Crawl while the dissimilarity sub-score
uses Word2Vec? trained on the Google News dataset. Using
different word embeddings provides resistance to potential
learned representation biases.

Formula Specification

The similarity sub-score is defined as sim(si,s2) =
cos(encode(sy),encode(s2)) and the dissimilarity sub-
score is defined as dis(s1,s2) = min(wmd(sy, s2), ).
The maximum dissimilarity value « is the default distance
when all of the generated words are out of vocabulary.
Without this default, summaries with no words to com-
pare would have an infinite distance and too strongly in-
fluence VERT score averages. Resulting sub-score values
range as such: 0.0 < sim(sy,s2) € R < 1.0, and 0.0 <
dis(s1,s2) € R < . We seek to combine these scores such
that the final VERT score can be treated as a percentage:
0.0 < VERT(s1,s2) € R < 1.0. Further, sim(s1, s2) and
dis(s1, s2) should be given equal weight in the final VERT
score. To satisfy both criteria, we present the VERT equa-
tion:
VERT(S1, 82) =

1 1 2

5(1 + (sim(s1, 82) — adiS(Sl,SQ))) @
where o = 5.0. The dissimilarity is normalized by « and
the outer linearity, as multiplied by %, shifts the range from

[—1.0,1.0] to [0.0, 1.0]. For the choice of «, we observe an
empirical distance ceiling of 5.0 in Table 2. Incorporating
this ceiling gives both sub-scores equal precedence while
removing the necessity of a nonlinearity, such as normal-
ization by the hyperbolic tangent.

Hyperparameters and Baseline

The similarity sub-score uses a pre-trained InferSent en-
coder for reproducibility, and thus needs no hyperparameter
adjustments. The dissimilarity requires just the hyperparam-
eter « to specify the maximum threshold of WMD and can
stay at the default value of 5.0. With the same value used
to normalize the dissimilarity, VERT is straightforward to
use with just this single hyperparameter. To provide a scor-
ing reference, we test each human summary of DUC2004
on VERT using the same holdout process as done in Table
2. The average similarity sub-score is 0.74875, the average
dissimilarity sub-score is 2.71700, and combined the aver-
age VERT score is 0.60268.

Comparison to Human Evaluation

To evaluate the effectiveness of VERT, we calculate the cor-
relation between VERT scores and scores given by human
judges. Using the relative dot product attention model, 50
summaries are generated on the DUC2004 dataset and eval-
uated with the VERT metric by averaging the VERT scores
between the four target summaries. We then conduct an ex-
periment in which two human evaluators score the 50 gen-
erated summaries based on the DUC 2006 Responsiveness
Assessment*. The primary consideration of responsiveness
is the amount of information in the summary that relates to
the original sentence. The evaluators score the level or re-
sponsiveness on a 5-point Likert scale, with 5 being the best
possible. Table 3 shows that VERT correlates with human
judgment of responsiveness stronger than all three standard
ROUGE metrics.

Experiments
Experiment Setup

The environment and evaluation of all models strictly fol-
low the precedent set by Rush, Chopra, and Weston (2015).
For both training and testing, we extract sentence-summary
pairs from news articles. The first sentence of each article is
treated as the sentence to be summarized, while the headline
of the article acts as the target summary.

Datasets

The training data comes from the Gigaword dataset, which
is a collection of about 4 million news articles (Graff et
al. 2003). It is necessary to discard certain article-headline
pairs as some news articles open with a sentence that poorly
relates to the headline, such as a question. Preprocessing
tasks includes filtering, PTB tokenization, lower-casing, re-
placing digit characters with #, and replacing low-frequency
words with UNK. Evaluation for hyperparameter tuning is

2. https://nlp.stanford.edu/projects/glove/

3. https://code.google.com/archive/p/word2vec/

4. https://duc.nist.gov/duc2007/responsiveness.
assessment.instructions
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[ Mechanism | RG-1 | RG-2 [ RG-L [ VERT-S [ VERT-D [ VERT |
s-dot-prod 25772 | 851 | 23.08 | 0.73523 | 2.76307 | 59.13
rel-s-dot-prod | 27.05 | 9.54 | 24.44 | 0.73876 | 2.73907 | 59.55
local 1.93 | 0.00 1.93 | 0.02084 | 5.00000 1.04
local-mask 25772 | 854 | 23.30 | 0.73361 | 2.77857 | 58.89
local-blk-mask | 14.13 | 2.75 | 12.63 | 0.67226 | 3.18881 | 51.73
dilated 0.01 | 0.00 | 0.01 | 0.09509 | 3.66543 | 18.10
dilated-mask 19.06 | 523 | 17.45 | 0.68682 | 3.04922 | 53.85

Table 4: Comparison of attention mechanisms using DUC2004. RG represents ROUGE-Recall, VERT-S is the InferSent cosine
similarity sub-score, and VERT-D is the average word mover’s distance.

| Dataset | #Articles | Sent Len | Sum Len |

Gigaword | 3803957 314 8.300
DUC2003 624 32.7 11.242
DUC2004 500 31.3 11.710

Table 5: Comparison of general dataset details. Sentence and
summary lengths are reported as the average word count. Gi-
gaword has noticeably shorter target summaries than either
DUC dataset. To counteract the models generating too short
of summaries, we augment the beam search decoding prob-
abilities to encourage longer summaries.

performed on the DUC2003 dataset®. Testing is done on
the DUC2004 dataset® where the summaries are capped at a
length of 75 bytes. For both DUC2003 and DUC2004, each
article has four target summaries to be compared against.
For processing Gigaword, we used the same data provided
by Rush, Chopra, and Weston (2015), but both DUC datasets
had to be preprocessed according to the tasks specified. Cer-
tain sentence-summary pairs within DUC 2004 poorly re-
late to each other due to the fact that the human-generated
summaries used the context of the entire DUC article to
decide on an adequate summary. Since this shortcoming is
present across all models attempting sentence summariza-
tion on DUC, we made no effort to remove these difficult
pairings from the test set.

Base Implementation

For the hyperparemeter specification, every model used § at-
tention heads and dense feed forward layers had dimensions
of 2048. Cross entropy was used for the loss function, and
optimization was performed with the Adam optimizer us-
ing a variable learning rate to encourage final convergence.
Training required approximately 25 epochs. A promising
feature of using an attention-based architecture is that the
models used here are capable of being trained in approxi-
mately 4 hours on a single GPU, whereas recent state of the
art recurrent summarization models have been mentioned
to take 4 days (Rush, Chopra, and Weston 2015). We im-
plemented these models using the Tensor2Tensor’ library
backed by TensorFlow. A strong local minimum exists when
training, which closely relates to extracting the first n words
of the input text up to 75 bytes. Such a trivial approach pro-
duces relatively high ROUGE scores simply due to the natu-

ral similarity between target summaries and input sentences.
Visualization of the attention heads showed that each head

attended directly across to the corresponding word in the

input sequence during decoding. Diversity of attention can
be encouraged by varying the learning rate and modifying
the attention mechanism itself. For the decoding step, beam
search is used with a beam size of 8. This results in ROUGE
scores that are higher than a more simple greedy inference.
Decoding to a fixed length of 75 bytes does not align eas-
ily with word-level decoding, so for the implementation we
approximate the cutoff by limiting the summary sequence to
14 words.

Results
Attention Comparisons

For each of the attention mechanisms described above, we
performed a full scale analysis of their performance by train-
ing each model on the Gigaword dataset and evaluating on
DUC2004. For each experiment, the foundational architec-
ture was held constant. We modified both the encoder self-
attention and decoder self-attention to perform as specified
by the given attention mechanism. In Table 4, the model
that used scaled dot product attention acted as the baseline
(s-dot-prod). The highest performing mechanism was rela-
tive scaled dot product attention, showing that relative posi-
tional encodings can be more insightful than absolute encod-
ings. This demonstrates that token generation may rely more
heavily on the relationships between surrounding words than
relationships at a global sequential level. Local masked at-
tention attained identical ROUGE-1 scores to scaled dot-
product attention with marginally higher ROUGE-2 and
ROUGE-L scores. However, scaled dot-product attention
scored noticeably higher with VERT, primarily due to the
similarity sub-score. This suggests the scaled dot-product
model is better than the local-mask model when consid-
ering the summary semantics across the full length of se-
quences. Both local and dilated attention mechanisms per-
formed poorly, repeating the same words regardless of input
sentence; both masked counterparts did not have this prob-
lem.

An interesting observation during the training process of
the attention models was the high dependence on batch size.
Models would not converge when batch sizes were at or be-
low 2000 tokens per batch. The batch size used to train the
above models was 8192 tokens. Some attention models, di-
lated attention and dilated-mask attention, had higher mem-

5. https://duc.nist.gov/duc2003/tasks.html
6. https://duc.nist.gov/duc2004/
7. https://github.com/tensorflow/tensor2tensor
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| Model

[RG-1 [ RG2 [ RG-L [ VERT |

MOSES+ (Koehn et al. 2007)

RA-C-LSTM (Zeng et al. 2016)

S-ATT-REL (ours)
AC-ABS (Li, Bing, and Lam 2018)

TOPIARY (Zajic, Dorr, and Schwartz 2004) | 25.12 6.46 | 20.12
ABS (Rush, Chopra, and Weston 2015)
RAS-LSTM (Chopra, Auli, and Rush 2016) | 27.41 7.69 | 23.06 -

RAS-Elman (Chopra, Auli, and Rush 2016) | 28.97 8.26 | 24.06
ABS+ (Rush, Chopra, and Weston 2015)

words-1vtSk-1sen (Nallapati et al. 2016)

26.55 | 7.06 | 22.05 | 58.49
26.50 | 8.13 | 22.85 -

28.18 | 8.49 | 23.81 | 59.05
29.89 | 937 | 2593 -
28.61 | 9.42 | 25.24 -
27.05 | 9.54 | 24.44 | 59.55
32.03 | 10.99 | 27.86 -

Table 6: ROUGE-recall scores of compared models on DUC2004. Sorted by ROUGE-2 score. VERT scores for ABS and ABS+
were calculated using generated summaries provided by Rush, Chopra, and Weston (2015). Other authors were contacted for

summaries from their models but did not respond.

S(1): exxon corp. and mobil corp. have held discussions
about combining their business operations , a person involved
in the talks said wednesday .

Target: exxon corp. and mobil corp. may combine business
operations

S-ATT-REL: exxon and mobil discuss merger

S(2): prime minister rafik hariri , the business tycoon who
launched lebanon ’s multibillion dollar reconstruction from
the devastation of civil war , said monday he was bowing out
as premier following a dispute with the new president .
Target: prime minister hariri , claiming constitution violation
, bows out

S-ATT-REL: lebanese prime minister resigns after dispute
with new president

S(3): organizers of december ’s asian games have dismissed
press reports that a sports complex would not be completed on
time , saying preparations are well in hand , a local newspaper
said friday .

Target: bangkok says sports complex will be completed in
time for asian games

S-ATT-REL: asian games organizers say sports complex will
not be completed on time

S(4): a struggle for control of the house is under way , with
rep. robert livingston conducting a telephone campaign that
could lead to him running against newt gingrich as speaker .
Target: election of gingrich as house speaker in doubt as
small group opposes him

S-ATT-REL: house speaker ’s phone campaign could lead to
gingrich

S(5): premier romano prodi battled tuesday for any votes
freed up from a split in a far-left party , but said he will resign
if he loses a confidence vote expected later this week .
Target: italian premier to resign if he loses pending confi-
dence vote

S-ATT-REL: italy ’s prodi says he will resign if he loses con-
fidence vote

Figure 2: Examples of generated summaries by the relative
dot-product self-attention model.

ory requirements and had to be trained at lower batch sizes.
This may have negatively effected their results.

Model Comparisons

We compare our best model with past work by compar-
ing published ROUGE scores. Slight variances may be
present in the reported metrics due to potential differences
in data preprocessing routines. In Table 6, we compare
our best model with that of published results. The rela-
tive dot-product self-attention model (S-ATT-REL) beats
all ROUGE scores of ABS, but has a lower ROUGE-1
when ABS is tuned with an extractive routine on DUC2003
(ABS+). S-ATT-REL is comparable to but lower than most
models when it comes to ROUGE-1 scores. However, over
the longer subsequence comparisons of ROUGE-2 and
ROUGE-L, S-ATT-REL performs very well. This can be at-
tributed to the ability of self-attention mechanisms to retain
a strong memory over past elements of both the input and
decoded sequences. Only the actor-critic method (AC-ABS)
beats S-ATT-REL in all ROUGE categories.

Qualitative Discussion

The summaries generated by our best model are strongly ab-
stractive, illustrated by Example S(/) in Figure 2. Example
S(2) showcases the ability to utilize long range recall. From
the appositive phrase, the model determined that Hariri was
the prime minister of Lebanon and adjusted the morphology
of the country for succinctness. The model also determined
Hariri was resigning based on the words “bowing out”. Oc-
casionally, attention heads are misdirected and attend to
words or phrases that do not contain the primary meaning.
This occurred in Example S3 with was incorrectly modified
by the inclusion of “not”. The generated summaries exhibit
information beyond what was directly in the input sentence;
Example S5 correctly identifies Premier Romano as Italian
which greatly improves the informedness of the summary. A
primary strength of the self-attentive model is incorporating
abstract information from all segments of the input sentence.
This is suggested in the long subsequence ROUGE scores
above, and seen clearly in qualitative analysis.
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An assessment of linguistic quality® was performed
alongside the DUC Responsiveness Assessment. This fol-

lowed the same procedure detailed in Section . Ques-
tions pertained to grammaticality, non-redundancy, refer-
ential clarity, and structure and coherence. Grammaticality
scored 4.48, non-redundancy scored 4.95, referential clar-
ity scored 4.7, and structure and coherence scored 4.53. All
scores averaged between “Good” and “Very Good”. Non-
redundancy is nearly perfect, likely because the summaries
are too short for redundancy to likely be of issue. The ref-
erential clarity scored high as well, which can be associated
with the performance of the self-attention over the the words
already decoded.

Conclusion

The effect of modern attention mechanisms as applied to
sentence summarization has been tested and analyzed. We
have shown that a self-attentional encoder-decoder can per-
form the sentence summarization task without the use of
recurrence or convolutions, which are the primary mecha-
nisms in state of the art summarization approaches today.
An inherent limitation of these systems is the computational
cost of training associated with recurrence. The models pre-
sented can be trained on the full Gigaword dataset in just
4 hours on a single GPU. Our relative dot-product self-
attention model generated the highest quality summaries
among tested models and displayed the ability of abstracting
and reducing complex dependencies. We also have shown
that n-gram evaluation using ROUGE metrics falls short in
judging the quality of abstractive summaries. The VERT
metric has been proposed as an alternative to evaluate fu-
ture automatic summarization based on the premise that an
abstractive summary should be judged in an abstractive man-
ner. For future directions of research, reinforcement learning
could be applied to the core self-attention model. Also the
models presented should be tested with longer summaries as
they displayed strong recall over long subsequences.
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Abstract

Many problems in natural language processing require
generating text. This includes problems like language
translation, dialogue generation, and speech recogni-
tion. For all of these problems, text generation becomes
more difficult as the text becomes longer. One difficulty
with current language models is they often struggle to
keep track of coherence for long pieces of text. Here, we
attempt to have the model construct and use an outline
of the text it generates to keep it focused. We find that
the usage of an outline improves perplexity. For initial
experiments, we do not find that using the outline im-
proves human evaluation over a simpler baseline. Simi-
larly, hierarchical generation is not found to improve in
human evaluation.

Introduction

Recurrent neural networks have been successfully used for
a variety of tasks in dealing with natural language. Suc-
cesses include language translation (Sutskever, Vinyals, and
Le 2014), speech recognition (Graves 2012), and text to
speech (Kalchbrenner et al. 2018). They all learn to model
the conditional probability of a sequence. They are usually
approached by sequence to sequence models. These mod-
els have the advantage that their negative log likelihood is
differentiable allowing them to be directly trained through
gradient descent.

A similar task is language modeling. Here the goal is to
determine the probability of a sequence of words. Being able
to model text is important for natural language understand-
ing. These models can be used for detecting possible errors
in sentences, determining possible ways to extend a piece
of writing, and generating text. Language modeling is also
commonly done with recurrent neural networks by directly
optimizing the negative log likelihood.

One shared difficulty in all of these problems is although
in theory a recurrent model can preserve information for ar-
bitrarily long sequences, in practice recurrent models tend to
struggle to keep track of context as the sequence length be-
comes high. Models for tasks like language translation tend
to avoid translating entire paragraphs and instead focus on
only generating a sentence at a time. Similarly, when you
generate multiple sentences of text from language models,
they tend to be locally coherent, but not globally coherent.

The difficulty of generating large samples also arises in
generating images. In the realm of images though, a differ-
ent technique is commonly used for generation. Here, gen-
erative adversarial networks (Goodfellow et al. 2014) have
been successfully used to generate images directly. Similar
to text, initially these models only worked well for gener-
ating small images. Generating large images (like 1024 by
1024) was difficult for these models. In some recent work,
the issue of large images was dealt with by generating im-
ages in a hierarchical manner. Instead of directly learning
to generate the desired image, lower resolution images were
first generated and then improved upon (Zhang et al. 2016).
Initially, this was done by generating one lower resolution
image and then directly the final image. More recently, this
has been extended to starting off with generating a small im-
age and iteratively increasing its resolution by double until
reaching the desired size (Karras et al. 2017).

Inspired by the idea of generating images in a hierarchi-
cal manner, here we will explore generating text in a hier-
archical manner. Similar to (Zhang et al. 2016), we will ap-
proach this by generating in two steps. One difficulty with
hierarchical text generation, is meaningfully down sampling
text is more difficult than down sampling images. The tex-
tual equivalent of decreasing resolution is summarization,
which is a difficult problem in itself. To side step this issue
we will use a simple extractive summarization approach to
get an outline. Using an extractive summarization approach
to acquire information to build upon has been done previ-
ously in generating Wikipedia articles (Liu et al. 2018). The
difference is there they used the summarization to extract
relevant information from references to generate the article,
while here we are applying the summarization to the target
text to acquire an outline of the text. The hierarchical aspect
will be also having a separate model component to directly
generate the outline. That way when we want to generate a
complete document, we first generate the outline, and then
condition upon the outline to generate the entire document.

Our main contribution will be to explore generating text in
a hierarchical manner by separating text generation into two
phases. The first phase generates an outline of the text, while
the second phase uses the outline to generate the complete
document.
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Background

The general framework of sequence to sequence models is to
have an encoder and decoder model (Sutskever, Vinyals, and
Le 2014). For our purposes, we will be using convolutional
sequence to sequence models (Gehring et al. ). The encoder
model’s purpose is to take in an input sequence and construct
representations of each of the token in the sequence. The
decoder’s hidden state is initialized based upon the encoder’s
final hidden state. At each step the decoder predicts the next
token until it predicts an end of sequence token.

As it is difficult to encode an entire sequence into one
vector, generally the decoder is allowed to look back at the
representations of the tokens the encoder created through an
attention mechanism (Bahdanau, Cho, and Bengio 2014). In
an attention mechanism the decoder’s hidden state is scored
against the encodings of all the tokens in the input sentence.
Those scores are converted to probabilities and then each of
the encodings is weighted by its probability to be focused
upon to determine the context vector. This context vector
is then fed in to the decoder to aid it in keeping track of
information from the entire sentence.

One weakness of conventional attention is it only allows
focusing on words in the source sequence and not in the tar-
get sequence. Self-attention (Vaswani et al. 2017) is a mod-
ification that attends on both words in the source and prior
words in the target. This is especially important for mod-
els that generate long sequences to be able to keep track of
what has been made. A second weakness of conventional at-
tention is it only operates at the word level. This ignores that
for the outlines we condition upon they are built from sen-
tences. An extension of attention to account for both word
level and sentence level information is hierarchical attention
(Ling and Rush 2017).

For summarization, approaches fall into two primary cat-
egories. Extractive summarization focuses on choosing the
main sentences/words from the document and then having
the summary consist of directly copying those words. Ab-
stractive summarization focuses on having a model generate
the words directly for the summary. As our goal is to sim-
ply have an outline of the text extractive summarization is
sufficient. It would be interesting future work to see how
different methods of generating an outline affect document
generation.

The summarization algorithm that will be used is called
SumBasic (Nenkova and Vanderwende 2005). This algo-
rithm is based upon choosing sentences with words that are
frequent in the document and after choosing a sentence,
down-weighting those words to avoid choosing sentences
that are too similar.

Methods

The main idea is to generate text in a hierarchical manner by
generating the topic sentences of the document first and then
generating the entire paragraph by conditioning on the topic
sentence.

Summarization

As the primary focus of this work is not on new methods
of summarization, prior text summarization methods will be
used. SumBasic (Nenkova and Vanderwende 2005) is one
frequency based method for determining the topic sentence.
It tries to find sentences whose words are common in the
document. One way to avoid overweighting common words
like *the’ is to penalize words that are common across many
articles. TFIDF (Term Frequency Inverse Document Fre-
quency) does this by multiplying by the negative log proba-
bility of a word appearing in a document. SumBasic is often
tweaked to use TFIDF instead of directly using word fre-
quencies (Allahyari et al. 2017).

As the outline is intended to contain information about
each section of the text instead of directly applying to Sum-
Basic to the full document, it will be applied at the meta-
paragraph level. Here, meta-paragraph does not refer to the
actual paragraphs in the text because their lengths are very
inconsistent. For many of the documents in the training data,
the paragraphs only contain one or two sentences. Extracting
a topic sentence from each of these paragraphs as an outline
would be problematic as we would effectively be letting the
outline contain too much of the document. To avoid this is-
sue, the actual paragraphs will be aggregated together using
the rule that any paragraph under a threshold number of sen-
tences k will be combined with the next paragraph to form
a meta-paragraph. As a side effect every meta-paragraph ex-
cept for possibly the last one will end up having at least &
sentences.

Lastly, some preprocessing is done before directly apply-
ing SumBasic. Stop words are removed using a list of nltk’s
English stop words, numbers are removed, punctuation is
removed, and words are stemmed using Porter stemming
(Porter 1980).

Model

The model will be an extension of the model used in Neural
Story Generation (Fan, Lewis, and Dauphin 2018). In that
work, a sequence to sequence model was used to convert
that prompt into a complete document. Our main extension
is dividing the sequence to sequence model into two com-
ponents to assist in the coherence for the generated text.
The overview of the two components is there will be one
for generating topic sentences and one for expanding topic
sentences into complete paragraphs.

For generating the document from the prompt we will first
generate the outline associated to the document. This com-
ponent will be trained using almost the same type of archi-
tecture as the sequence to sequence model used by (Fan,
Lewis, and Dauphin 2018). The one difference is we did
not use the cold fusion mechanism, mainly to lower needed
training time.

The second component will use the outline to generate
the entire document. It will also be based upon the sequence
to sequence model used by (Fan, Lewis, and Dauphin 2018)
and similarly will not include cold fusion. It will be extended
in one way. The self attention heads in the decoder will re-
main the same, but the attention over the encoded outline
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will be replaced by a hierarchical attention. The sentence
vectors will be obtained by summing the encoded word vec-
tors for each word in the corresponding sentence. The sen-
tence vectors then serve as the key and value for the atten-
tion, while the query is the decoder’s activation at the layer
the attention is used. Similar to how the prior decoder at-
tention was gated, the hierarchical attention is also gated
and uses the same gating. The gating used is a sequence of
layers consisting of a linear layer, GLU (gated linear unit)
(Dauphin et al. 2016), linear layer, GLU, and a final linear
layer. Both model components will be trained separately by
directly optimizing the negative log likelihood.

Lastly, strictly speaking the probability of an entire doc-
ument can only now be obtained by marginalizing over all
possible outlines. A lower bound for the probability can be
obtained by instead generating the most likely outline for a
given prompt and then finding the probability of the docu-
ment conditioned on that outline. This lower bound however
is intractable to compute as it involves generating many out-
lines and due to the long length of the sequences and the
relatively slow generation time, even only using 10 outlines
for the approximation it would take approximately 100 days
just to evaluate on the validation/test set on one 1080 Ti. It
also turns out to be intractable as the memory needed to do
a beam search with such long sequences is too high and it
runs out of memory if you increase the beam size beyond 2.

As the two components are trained separately, this simi-
larly leads to the overall training loss not corresponding to
the actual story negative log likelihood. As using that loss
properly would require being able to efficiently compute the
probability of a document, this is intractable for the reasons
given in the prior paragraph.

A second discrepancy that arises in the model is that due
to training the components separately, the second compo-
nent is only trained on good outlines. It’s never trained to
deal with poorly generated outlines, so if the first component
generates a bad outline, the second component is unlikely to
be able to recover from the mistake. This is unlike the train-
ing for StackGAN (Zhang et al. 2016) where the second part
of the model was trained using the output of the first part of
the model. The primary difficulty from using this training
for the current model is the slow generation time that would
end up increase the training time by a factor of roughly 30
(the value partly depends on the dataset used).

Evaluation Approach
Datasets

The main dataset that will be used is the Wikitext-103
dataset described in (Merity et al. 2016). It consists of a large
collection of preprocessed wikipedia articles. As this dataset
does not come with prompts, the prompt used will simply
be the first sentence of the article with the goal being gener-
ating the entire article. This dataset also had preprocessing
done primarily to eliminate tables (which were difficult to
distinguish from paragraphs), to canonicalize numbers, and
to lowercase everything.

A second relevant dataset for story generation was a col-
lected from a subreddit called WritingPrompts. Here, top-

ics were created with an story prompt and users responded
with stories (Fan, Lewis, and Dauphin 2018). This dataset is
available on github', and mostly the same text preprocessing
will be used. The main difference is that quotation marks and
numbers were canonicalized, markup was removed, and the
text was lowercased. To still be able to compare against them
we will re-train the models they used. Due to the length of
training time on this dataset experiments on this dataset will
primarily be done in future work.

Possible Evaluation Metrics

The two automated evaluation metrics used for previously
for the story dataset are perplexity and prompt relevance.
Both are problematic for the hierarchical model as they in-
volve computing the probability of a story. Due to the pre-
viously discussed computational intractability of computing
story probabilities neither can be used for the hierarchical
model. For the non-hierarchical models and the components
of the hierarchical model we can still measure the perplexity
to see how well the model captures the text distribution.

Recently, (Semeniuta, Severyn, and Gelly 2018) explored
various evaluation metrics for language models. Two auto-
mated metrics they explored are the Frechet Infersent Dis-
tance (FID) and Reverse Language Model Score. The FID
metric is based on encoding all of the generated and real
documents as vectors and then comparing the distributions
of these vectors by approximating them as Gaussian. The
FID metric is problematic as it requires a model that can en-
code the meaning of a document well. In their work, they
only focused on sentence level generation and were able to
use a model that could create sentence vectors. A second is-
sue with the FID metric is that they did not find it sensitive
to word order which indicates it not correlating well with
human perception of quality. The Reverse Language Model
score is based on the idea that if the generated texts are sim-
ilar enough to the real texts, than a language model trained
on the generated texts should then have a low perplexity on
the real texts. The main issue is it involves generating many
texts. Due to the slow generation time of our current model,
this metric is expensive to compute.

One, method we can use on any model and have ini-
tial results for is human evaluation. The way human eval-
uation was done was that each model being analyzed had
about 30 stories generated. Then, a group of native English
speakers were found and each had to evaluate ten stories on
both global coherence and overall quality on a 5 point Likert
Scale.

Models

The models that will be compared are a model from source
= outline, outline = story, outline = story + hierarchical
attention (h.a.), source = story, hierarchical source = story
+ h.a..

'nttps://github.com/pytorch/fairseq/tree/
master/examples/stories
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Table 1: Model Perplexity

Model Validation Perplexity
source = outline 45.63
outline = story 21.08
outline = story + h.a. | 20.49
source = story 30.96

Evaluation Results
Perplexity Evaluation

There are a couple interesting things from the model per-
plexity experiments. The biggest one is that the perplexity
of source = story is lower than the perplexity of source =
outline indicating it is easier on average word wise to gen-
erate the full article than just the outline. One possible ex-
planation for this is that in generating the outline there are
much more abrupt shifts in topic when compared to gener-
ating the article and as each word is conditional on the prior
words, the topic flowing more smoothly may make it easier
to guess the next word.

The other interesting result is that hierarchical attention
led to a small improvement in perplexity. In the prior work
by (Ling and Rush 2017) involving hierarchical attention,
it was mainly motivated by trying to have a more compu-
tationally efficient attention mechanism over long sequence
and was not found to be helpful otherwise. The improve-
ment however is small enough that it would be necessary to
do multiple experiments to tell if it was an improvement due
to noise or a genuine improvement.

Human Evaluation

The results can be found in table 2 on the next page. Cur-
rently, the number of stories evaluated total is only 70. For
the three models, only one pair is significantly different in
global coherence. That pair is hierarchical model vs source
= story where the latter is better (p = 0.005). The hierar-
chical model is also significantly different in quality from
both of the other two models (for both p = 0.049). The
worst model is still within a standard deviation evaluation
wise of the best model in both metrics indicating how noisy
the quality of the stories are and the reviews.

If the mean and standard deviations where to continue to
look the same as the sample size grows that would lead to
a weird result of the source to story model performing bet-
ter in human evaluation on global coherence than the out-
line to story model. Considering the outline is intended to
have more information the model should be able to extract
more content. It would also be weird given that the outline to
story model heavily outperformed the source to story model
when it comes to perplexity and would mean perplexity and
human evaluation do not correlate well for article genera-
tion. Lastly, overall quality and global coherence correlate
strongly (r = 0.74, p < 0.001).

Failure Cases

Here, we will examine two of the worst generated stories.
Worst is defined as being rated as a 1 in both global co-

herence and overall quality. The first is from the outline =
story and the second was from the hierarchical model with
attention. As a note for reasons of space stories were trun-
cated to two paragraphs while outlines were truncated to five
lines. unk was used for unknown tokens, num was used for
numbers, and newline was used to keep track of paragraph
breaks. The text each model was conditioned on will also be
shown.

Outline 1: after thurstan ’s death , osbert was opposed to
one of the candidates for the archbishopric , william fitzher-
bert , and worked to secure fitzherbert ’s deposition and re-
placement by henry murdac . newline this document lists
him as ” osbert archdeacon ” , which means that he proba-
bly held the archdeaconry of richmond . newline originally ,
osbert had supported elias unk , murdac ’s choice for abbot
, but then changed his stance and helped with the deposi-
tion . newline unk obtained a hearing on the charges at a
royal council presided over by king stephen of england at
michaelmas in num , but stephen ’s subsequent death pre-
vented a resolution . newline he also acted as a steward for
hugh de tilly .

Story 1: leofric or unk ( unk or unk ; ¢ . num num july
num ) was the son of king philip iii of scotland . in num , he
was crowned king , but after num , a short time spent on eng-
land , and his death in num , he was deposed by king stephen
i of scotland . the marriage was short - lived ; however , the
death is unknown . newline leofric was born about num :
num to unk de unk , one of the brothers of the great unk . he
took up a good education and was taught by william of unk
, who had studied there until num . he also studied a variety
of clerical and mathematics , particularly as a tutor , and was
taught to study at the royal royal library . in december num
, he became archbishop in england . he wrote his last letter
to unk , a latin text , and was a member of a group of royal
royal clerks . newline

Prompt 2: the portage to san cristobal of ajdot;hjdot; is
a num literary and philosophical novella by george steiner
, in which jewish nazi hunters find a fictional adolf hitler (
ajdot;hjdot; ) alive in the amazon jungle thirty years after
the end of world war ii .

Outline 2: he began work as a unk at the age of num .
newline during world war ii , unk joined the unk unk ( royal
society ) in the united states where he made his world de-
but in the world . newline unk ’s first name was unk unk .
newline he was promoted to unk ’s unk unk - unk in num .
newline unk became the new man ’s second - oldest student
, unk unk - unk , as a student from unk - unk . newline unk
was one of the founding members of the unk unk - unk , the
first to be called unk . newline

Story 2: unk unk (unk ,” young woman ’s sister , the unk
,”to the unk ) is unk (unk , ” young woman ’s sister , the
unk ), ” girl ’s son , and the unk ” . the name unk is from
the greek unk or ” woman ’s mother unk ” , referring to her
marriage to unk . after the marriage , her son , ila, is the only
person to be killed in the world . newline during world war
ii , il began work as a unk at the age of num . she was the
first female woman to be a unk (unk ) . after being married ,
ila became the new man ’s second - oldest student ; however
, her marriage to unk was interrupted in num . newline
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Table 2: Initial Human Evaluation Results

Model 1-Global Coherence  o-Global Coherence  p-Quality  o-Quality
source = story 3.36 1.00 291 1.07
hierarchical source = story + h.a. 2.54 0.96 2.26 0.89
outline = story + h.a. 3.14 1.31 2.90 1.22

The first example does not actually look particularly bad,
so that points to unreliable human evaluation scores. Espe-
cially not when a score of 2 would still be considered poor
and 1 meant very poor. For future human evaluation, less
people will be used to try and have the scores be more con-
sistent. It did interestingly not seem to be very related to the
outline. While king stephen and scotland are present, a lot of
the rest of the details are not very related. Admittingly, that
may partly be due to uncommon names likely having been
fed to the model as unknown so the many early names in the
outline were likely not really read by the model.

The second example looks to be a case where the first
component of the hierarchical model did poorly leading to
the model struggling to generate a story from that outline. It
is not the only example where too many unknown word to-
kens end up leading to poor stories and while repetition oc-
curs more broadly, unknown tokens have the worst tendency
to lead the story to become too repetitive. This issue may
also be helped by training the second component of the hi-
erarchical model on not just good outlines, but also sampled
outlines so it can learn to not be too reliant on the outline.

More broadly, the main type of error found in generated
stories is too much redundancy. Often individual sentences
would not be too bad, but a very similar sentence would ap-
pear a bit later in the paragraph. Story quality also generally
becomes worse near the end of the story.

Best Cases

Here are two of the best stories based on achieving a 5 in
global coherence and a 4 in overall quality. The first is from
the source = story model and the second is from the outline
= story model. The text each model was conditioned in is
also shown.

Prompt 3: the zrinski battalion ( croatian : unk zrinski )
was a special forces unit of the croatian national guard ( zbor
narodne garde zng ) and later of the croatian army ( hrvatska
vojska hv ) established in kumrovec on num may num ,
during the croatian war of independence .

Story 3: the croatian battalion ( croatian : unk unk ) was a
special forces unit of the croatian national guard ( zbor nar-
odne garde zng ) and later of the croatian army ( hrvatska
vojska hv ) established in unk on num may num , during the
croatian war of independence . the battalion was formed dur-
ing the croatian campaign of the croatian jna alliance and
the croatian police , and was responsible for the yugoslav
military ’s first military operation , which was to be located
in the unk , a small village . its main role in operation came
from the croatian military ’s , as well as other croatian forces
. newline in the early days of the war in croatia , the battal-
ion deployed a number of special forces , which were the
most heavily defended the yugoslav army . the unit com-
prised three battalions of four companies . a number of the

battalion ’s personnel were deployed for the first time dur-
ing the croatian campaign . during the war , a number of jna
operations and training depots had been deployed to croa-
tia in the nums . newline after being handed over on num
may num by the croatian national guard , the battalion was
reorganised into the croatian national guard ( zbor narodne
garde zng ) and was reorganised as the military ’s military
’s (‘unk ) battalion in the unk ( sao krajina ) . the battalion
’s operations and operations were transferred to the newly
created unk . the battalion ’s activities were mainly limited
by the majority of the battalion ’s personnel , including num
officers who participated in the num yugoslav campaign of
the croatian war of independence . in june num , the regi-
ment was transferred from its subordinate units , with the re-
maining members being the croatian - croatian police ( unk
republike ) . the battalion ’s activities in croatia were largely
subordinated to the government of croatia and a small num-
ber of other battalions from other countries . newline

Outline 4: he was previously the head coach at butler uni-
versity in indianapolis . newline on april num , num , he
became the head coach after todd unk left to coach the iowa
hawkeyes . newline in july num , he signed a six - year ,
num million dollar contract to become the head coach of the
boston celtics in the nba . newline bradley kent stevens grew
up in unk , indiana , where he developed his love for basket-
ball . newline he wore no. num in high school in honor of
indiana pacers guard reggie miller . newline he earned three
letters in basketball , three in track , and one in baseball dur-
ing his days at unk . newline the more success you had at
lilly , the harder it would be to leave . ” newline

Story 4: walter george stevens ( may num , num october
num , num ) was an american major league baseball ( mlb )
outfielder who played for the boston red sox ( num num ,
num num ) and the yankees ( num num ) . stevens was an
outfielder , placekicker and punter , and had played with the
boston indians and boston red sox from num to num . he was
previously the head coach at butler university in indianapolis
. he played num seasons in major league baseball ( mlb ) for
the boston red sox , and in num played on the chicago red
sox from num to num . newline stevens played num major
league baseball ( mlb ) all - star team in num , and led the
league to five consecutive national champions with a num
num conference record , the longest streak in career history
. he was also the only player to reach the major division i ’s
num playoffs . the num and num seasons have taken place
in the central division ( num num ) . newline at the time of
the num mlb draft , he was known for the right to handle a
hit . he was one to only two players . in num , the red sox
traded him in minor league organization with the red sox .
the red sox promoted him with the numth overall pick in the
num mlb draft , while the red sox traded him to the cleveland
indians . newline
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In both cases we see that the text conditioned upon was
very informative. Doing a better job of preprocessing would
likely help in some cases as some of the other prompts end
up being truncated too heavily (mainly due to difficulty de-
termining where a sentence ends). The main topic is pre-
served although a lot of the details can change. For the sec-
ond story, originally the player was a basketball player, but
morphed into a baseball player.

Conclusion

Thus far, we have tried generating text in a hierarchical man-
ner for generating wikipedia articles. Most automated met-
rics for measuring overall story generation quality are in-
applicable due to being computationally intractable. When
it comes to human evaluation metrics, the collection of that
data is still ongoing, but currently it appears that the hier-
archical model is statistically significantly worse than the
prompt =

For future work, the most important thing is to simplify
the model to reduce the heavy computational time associated
with it, as this would open up a lot more options that are
currently blocked by it would take weeks or months to do.
In particular, the current hierarchical model is only trained
on true outlines which makes it likely to do poorly if the
outline it initially generates is flawed. If the model was faster
at generating text, it would also become feasible to evaluate
the model using reverse language model score.

Two other possible directions is to make better usage of
the outlines. Specifically, for ideal outlines we know that the
sentences present in the outline should also be present in
the target text. Allowing the model to copy an entire sen-
tence would be beneficial and make it more likely it fully
uses the outline. This does come with the downside that a
poor sentence in a generated outline being copied would be
problematic. That could hopefully be dealt with by training
on a mixture of generated and real outlines. A second is-
sue is currently the model is not forced to attend to different
parts of the outline. Considering that different parts of the
story should correspond to different parts of the outline it
should be pushed to examine the entire outline. This could
be achieved by adding a term to the loss that pushes it to
attend to each sentence at some point. This type of loss has
been used successfully before to promote diversity of atten-
tion weights in (Kiddon, Zettlemoyer, and Choi 2016).
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Abstract

Dialogue generation involves teaching a program to generate
natural conversation. Assuming there are two participants, it
requires developing a program that can converse with a hu-
man being or another program, and do so coherently and flu-
ently. This paper presents the development of a dialog gener-
ating program, popularly called a chatbot, that learns from a
corpus of conversations, using a basic sequence to sequence
(Seq2Seq) model with a variety of auxiliary loss functions.
Auxiliary loss functions are similar to loss functions used
during training, but are instead used during generation and
do not have to be differentiable. The auxiliary loss functions
developed for this chatbot are variants of mutual information
between the utterances of one speaker and those of the other,
because the objective is to couple these utterances tightly.
We demonstrate that using different forms of mutual infor-
mation leads to developments of chatbots of varying quality.
The research shows that when these different chatbots chat
with themselves, it is not a sufficient replacement for a hu-
man.

Keywords: dialogue generation, Seq2Seq model, maximum
mutual information

Introduction

To be able to participate in a dialog, or simply chat with
others is a natural human ability. Certain people are good
chatters and other people are drawn to them. In other words,
such individuals are able to steer the conversation onto top-
ics that are of interest to other participants, follow a topic
of conversation for an extended duration, and add details
as necessary. There are many books in the market that pro-
vide guidelines for interesting and engaging conversation,
e.g., (Fine 2005) and (Wadsworth 2017). We focus here on
what is called small talk in general parlance. Webster’s Dic-
tionary defines small talk as “light or casual conversation:
chitchat”.! The Urban Dictionary defines small talk as “use-
less and unnecessary conversation attempted to fill the si-
lence in an awkward situation™?.

Computer scientists have tried to build chatbots for a long
time, starting from the initial attempt at building an artifi-
cial psycho-therapist called Eliza (Weizenbaum 1966). Be-
cause of the nature of psychotherapy, even with its limited

Uhttps://www.merriam-webster.com
“https://www.urbandictionary.com/
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abilities, Eliza was able to impress the populace at large,
in addition to the research community. Eliza worked simply
by pattern matching, and produced inane responses when
pattern matching failed to produce a meaningful response.
The frame-based architecture for conversation making, in-
troduced by (Bobrow et al. 1977) in the GUS system, en-
sconced itself as the predominant approach to building dia-
log agents for several decades. Apple’s SIRI and other dig-
ital assistants were built using this architecture (Bellegarda
2013; 2014; Jurafsky and Martin 2018). Such speech-based
conversational agents used Partially Observable Markov De-
cision Process (Sondik 1971) in the context of the frame-
based architecture, maintaining a system of beliefs and up-
dating them using Bayesian inference. They also used rein-
forcement learning (Sutton and Barto 1998).

Recently, researchers had started building chatbots by
training machine learning programs on transcripts of conver-
sations. Ritter, Cherry, and Dolan (2011) presented a data-
driven approach to generating responses to Twitter status
posts, using statistical machine translation, treating a sta-
tus post as a question and the response as its “translation”.
Of late, researchers have built chatbots using Artificial Neu-
ral Networks or Deep Learning. Such research usually uses
Seq2Seq models (Cho et al. 2014; Sutskever, Vinyals, and
Le 2014). Seq2Seq models have been used by many re-
cent chatbots (Vinyals and Le 2015; Li et al. 2016b; 2016a;
Shao et al. 2017; Wu, Martinez, and Klyen 2018). Although
the Seq2Seq framework has shown good results in dialogue
generation, we believe that the evaluation of the dialogues
can be better measured. Most approaches are composed of
two Recurrent Neural Networks (RNN) or Long Short-Term
Memory (LSTM) units, with the first encoding from words
into vectors. The second then decodes these vectors back
into words to create the output. The chatbot can thus create
a response relevant to the input.

The research presented in this paper aims to examine the
role that the use of various auxiliary loss functions plays in
the quality of dialog generated when trained on several con-
versational corpora. Our contribution lies in detailed anal-
ysis of the dialogs at various levels of granularity, using
a number or metrics. We believe that this is the first time
such detailed analysis of automatically generated dialogs has
been carried out. We use a simple RNN model for train-
ing the conversational agents in small talk since our focus
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is more on the auxiliary loss functions. We believe that these
loss functions are likely to behave in similar ways with other
agent architectures as well.

Problem Statement

Consider a dialog with two participatnts () and A. () initiates
the conversation with a question, statement or comment g;,
and A follows with a response or a follow-up statement or
comment a,. Thus, a conversation is a sequence of textual
elements

<< q1,a1 >,< Q2,02 >, , <G, 0 > -0, < Gk, 0 >> .

ey

In this paper, we discuss the development of a conversa-
tional agent that can be either ) or A or both. We develop
this agent by training a machine learning model (Seq2Seq)
on a corpus of dialog.

In other words, we give a training sequence 7' of conversa-
tions, ideally between two agents, to a Seq2Seq learner that
learns the association between ¢; and a;. This is done by op-
timizing an Artificial Neural Network (ANN) model, so that
given an unseen ¢, the model can generate an appropriate a
based on the learned associations. Once it has been trained, it
presumably becomes a “competent” small-talk chatter. Dur-
ing testing, the learned chatbot is given a previously unseen
sentence ¢ and it responds with a sentence a. The conversa-
tion may continue for a while, and ends when a conversation
end indicator is produced.

Conversational ability acquired through training using a
Seq2Seq neural model depends on the “loss function” used
during training. But, it is also possible to manipulate a
trained network’s outputs during usage or testing to produce
a variety of outputs as seen in this paper. When produc-
ing output, the final sentences are generated by searching
through a set of candidates, and some candidates may turn
out to be more appropriate based on additional processing.

Related Work

Using Seq2Seq models for dialogue generation has become
commonplace in recent years. Ritter, Cherry, and Dolan
(2011) were the first to use a model used for Statistical Ma-
chine Translation (SMT) to generate responses to queries by
training on a corpus of query-response pairs. Sordoni et al.
(2015) improved Ritter et al.’s work by re-scoring the out-
put of the SMT-based response generation system with a
Seq2Seq model that took context into account.

Vinyals and Le (2015) used an RNN-based Seq2Seq
model using the cross-entropy auxiliary loss function and
a greedy search at the output end. Wen et al. (2015) used
LSTMs for joint planning of sentences and surface real-
ization by adding an extra cell to the standard LSTM ar-
chitecture (Hochreiter and Schmidhuber 1997), and using
the cross-entropy loss. They produced sentence variations
by sampling from sentence candidates. Li et al. (2016a)
used Maximum Mutual Information (MMI) as the objective
function to produce diverse, interesting and appropriate re-
sponses. This objective function was not used in the training
of the network, but to find the best among candidates pro-

duced by the model at the output end during generation of
responses. Our paper is substantially inspired by this work.

Li et al. (2016b) applied deep reinforcement learning us-
ing policy gradient methods to punish sequences that dis-
played certain unwanted properties of conversation: lack of
informativity, incoherence and responding inanely. Lack of
informativity was measured in terms of high semantic simi-
larity between consecutive turns of the same agent. Seman-
tic coherence was measured in terms of mutual information,
and low values were used to penalize ungrammatical or inco-
herent responses. The approach also gave negative rewards
for inane responses that belong to one of a number of inane
responses such as “I don’t know”.

Su et al. (2018) use a hierarchical multi-layered decod-
ing network to generate complex sentences. The layers are
GRU-based (Cho et al. 2014), and each layer generates
words associated with a specific Part-Of-Speech (POS) set.
In particular, the first layer of the decoder generates nouns
and pronouns; the second layer generates verbs, the third
layer adjectives and adverbs; and the fourth layer, words be-
longing to other POSes. They also use a technique called
teacher forcing (Williams and Zipser 1989) to train RNNs
using the output from the prior step as an input.

In spite of the complex approaches that are being pro-
posed to generate text in the context of question-answering,
dialog generation or otherwise, the evaluation of the dialogs
have been primarily being in terms of the BLEU (Bilingual
Evaluation Understudy) score (Papineni et al. 2002), a met-
ric that was designed for evaluation of SMT. BLEU scores
are highly correlated with human judgments of quality for
SMT at the corpus level. BLEU computes scores for indi-
vidual translated sentences by comparing overlaps in terms
of n-grams with a set of good quality reference translations.
Those scores are then averaged over the whole corpus to
reach an estimate of the translation’s overall quality. It does
not take into account intelligibility or grammatical correct-
ness, and is not a good measure of translations of individual
sentences. BLEU score shines as a metric for SMT, however
we believe that using BLEU scores alone for evaluating di-
alogs is limiting. Li et al. (2016b) used two additional com-
putable metrics: the length of the dialog generated, and di-
versity by calculating the the number of distinct unigrams
and bigrams. These two are good additions to the BLEU
metric, but we believe that it can be further expanded. Coh-
Metrix (Graesser et al. 2004) is a Web-based tool that ana-
lyzes texts on over 200 measures of cohesion, language, and
readability. We use Coh-Metrix in the evaluation of dialogs
in this paper to provide a rich understanding of their quality.

Loss Function

Our training model employs a softmax cross entropy cal-
culation on the logits as provided by TensorFlow. We ex-
perimented with hinge and sigmoid cross-entropy functions
as an alternative loss measurement during training. Results
with these other training functions were inconclusive and
since we had no logical reasoning for trying alternate losses
without a ground truth for comparison, we leave this area of
research for future work.
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Instead, we concentrate on the auxiliary loss function
needed during sentence generation. These functions operate
on partially generated sequenced of states in a beam search.
The measure of loss when evaluating these solution states
used to find consensus among a number of choices equal to
the beam width. We tested extensively using a beam width
of 2 using four auxiliary loss functions

We begin with a test using NET loss; by using no loss
function at all we predict subsequent characters using only
the probabilities predicted by the network.

Another function which uses MMI measurements as loss
is shown in equation 2 where S represents the current set
of states during sentence generation in the beam search; T'
represents the set of possible next states. This function is
modeled after work conducted by (Li et al. 2016a) and is
shown in Equation 2.

Taraer = arg;nax {logp(T|S) — Aogp(T)} (2

We further develop this MMI approach by including En-
tropy normalization. This approach is inspired by (Estévez et
al. 2009) who used Normalized MMI for feature selection.
We calculate entropy from predicted network probabilities
as shown in equations 3 and 4.

5|
Hg =Y —P(S;) x log(P(S})) 3)
t=0
||
Hyp =Y —P(T}) x log((T}) 4
t=0

The minimum of these values is used to normalize our MMI
value as in Equation 5.

Trvimr

min(Hg, Hr) )

I'norm =
Finally we experiment with MMI Entropy normalization
where entropy is not calculated but measured directly from
the training corpus in terms of character frequencies. Opti-
mizing based on this function should affect the uniqueness
of generated sentences.

Architecture

The core of our model is a stack of dense layers comprised
of gated recurrent unit (GRUs) cells. We performed tests on
a configuration with 3 layers, each divided into 3 blocks,
where each block contained 2048 GRUs. This architecture
is based on a prior implementation available at on-line>.
The GRU stack is initialized with the previous state (s;—1)
and the current character encoding (x;) at each time step
t in the character sequence. The GRU output (Y;) and the
weights from the final stack layer (W;) are combined with
a bias (b) to produce logits at time ¢. We define logits as
the raw output of the GRU stack which can be normalized
and passed to a softmax function to produce probabilities.
In this scheme, we update the logits by applying weights

*https://github.com/pender/chatbot-rnn

and biases from the last GRU layer as shown in Equation 6.
The logits are then passed to a loss function for back prop-
agation within the GRU stack. We do not limit or pad the
length of the input sequence but perform back propagation
through time (BBTT), relying on TensorFlow’s default trun-
cated back-propagation capabilities.

Logits = (Output x Weights) + Biases (6)

Note that, output sequences (yo, ..., %) are not generated
during the training phase where only the logits are used for
back-propagation. It is after training, during testing or dialog
generation, that the logits are converted to probability using
softmax. Finally, probabilities are converted to character se-
quences using a beam search.

Our beam search employs custom loss functions based on
Maximum Mutual Information (MMI) as described in (Li
et al. 2016b). We extend this concept to include entropy-
normalized MMI, which has been used for feature selection
by (Trinh et al. 2018), and is used in this research to select
the optimal path in our beam search.

Figure 1 illustrates a single time-step ¢ in sequence pro-
cessing by our recurrent neural network.

Generation

Beam Search
, — Yt
MMI Loss
1
Training ‘

Probabilities
PO . -Pn

|

GRU Stack
St—1 Back-Propagation Sta1
Logit Loss

Xt

Figure 1: Custom Loss Model

The model accepts a (one-hot) binary vector X and a pre-
vious state vector, S, as inputs and produces a state vector,
S and a predicted probability distribution vector P, for the
(one-hot) binary vector Y;.

Evaluation Metrics

The responses of the chatbot are impacted by the auxiliary
loss function used. That is why we vary the loss function
to examine how the choices of auxiliary loss functions and
datasets change the nature and quality of the generated con-
versation.

Evaluating the responses automatically is difficult be-
cause as of yet, there is no good and agreed-upon way to
evaluate a responses created by a chatbot (Liu et al. 2016).
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Word-overlap metrics such as BLEU (Papineni et al. 2002),
METEOR (Banerjee and Lavie 2005) and ROUGE (Lin
2004) have been commonly used in the past, but we believe
that high word overlap between a question and a response
does not always make for good conversation, although some
overlap shows continuity of topic and thus, coherence. The
metrics used here are from a rich discourse evaluation suite
called Coh-Metrix (Graesser et al. 2004), as mentioned ear-
lier. Coh-Metrix is an online tool with over 100 different
metrics that determine semantic and syntactic features of a
given text. These metrics help determine how different loss
functions and datasets differ in the output that the model
generates. Whether the learning regimen imposed by the loss
function and the processing of the output candidates using
the MMI criterion help generate syntactically, semantically
and discourse-wise effective conversations will be measured
by a choice of Coh-Metrix metrics. We use the following
metrics in this paper, although all of Coh-Metrix metrics for
the conversations are available in Supplementary Material.

o Mean Words per Sentence: This metric calculates the
number of words in each sentence and then gives the mean
of their lengths.

e Narrativity: This is a complex metric that measures the
narrative or story telling qualities of a text. A narrative text
has characters, places, events and chronology of events
in it*. Narrativity is higher on texts with reoccurring peo-
ple, places and things. Novels and dramas are examples of
narrative text, whereas informational texts are not unless
they are written deliberately in a narrative manner. How-
ever, every text has some elements of narrativity in it , and
Coh-Metrix combines 17 simple metrics and computes a
single narrativity number (Graesser, McNamara, and Ku-
likowich 2011). Making a text narrative makes it easier
to follow. Good conversation usually follows a narrative
genre. Its value is in the range 0-100.

o Syntactic Simplicity: Texts with fewer words and simple
sentence structures will receive high scores. Sentences
with a lot of words and complex syntax will receive low
scores. The value is between 0 and 100.

o Referential Cohesion: Texts with words that continue to
be mentioned throughout the text receive high referential
cohesion scores. This is a simple measure of cohesion that
measures the overlap of nouns, pronouns, content words,
etc., in adjacent sentences (question-answer pairs, in our
case) as well as in the entire text. The value ranges from
0-100. Higher cohesion means the discourse is easier to
follow.

o Sentence Semantic Similarity: This metric is calculated by
latent semantic analysis and does this for all sentences. It
looks at the meaning of each sentence and sees if there are
any similar themes within adjacent sentences. The value
is between 0 and 1. Latent Semantic Analysis (Deerwester
et al. 1990; Landauer et al. 2013) can be used to measure
semantic overlap among sentences and paragraphs. LSA
creates word co-occurrence matrix for words in the docu-
ment or a smaller unit of the document, performs matrix

*http://wikis.sub.uni-hamburg.de/lhn/index.php/Narrativity

decomposition and size reduction to obtain representa-
tional vectors for individual words. Coh-Metrix computes
8 LSA metrics: LSA cosines between adjacent sentences
(in our case, question-answer pairs), sentences in a para-
graph, sentences in adjacent paragraphs, their means and
standard deviations, etc. We present only one of these in
our results.

Lexical Diversity: Lexical diversity calculates the type-
token ratio for all words in a text. Type-token ratio (TTR)
is defined as “the number of unique words divided by the
number of tokens of these words” (Templin 1957). Each
unique word is called a type, and each occurrence a to-
ken. When TTR is around 1, each word occurs only once,
making comprehension difficult since each word needs to
be integrated with the conversation. When TTR is lower,
words are repeated in the conversation, and it is easier to
process. TTR is computed for content words only.

Connective Word Occurrence: This calculates the diver-
sity of words throughout the text, higher lexical diversity
means a higher score.

Modifiers per Noun Phrase: This metric calculates the
number of modifiers in all noun phrases in the text and
then takes the mean of those values.

Sentence Syntax Similarity: This metric takes the syntax
trees of all sentences in the text and compares them, cal-
culating the number of similar nodes between the trees.

Content Word Frequency: This metric calculates the aver-
age occurrence of content words. Content words include
nouns that refer to objects of conversation, lexical or non-
auxiliary verbs that describe what can be done with or
to these objects, adjectives and adverbs describing qual-
ities of the objects. Although there are only about 150
non-content of function words, they are used heavily in
conversation or text. The high presence of content words
in a conversation is likely to indicate that the conversa-
tion regards something substantial, rather that something
meaningless.

Word Familiarity: A piece of text is scored based on the
average familiarity of all the words in it. The metric uses
familiarity scores assigned to 3488 words in a database
(Coltheart 1981) of words that were rated on a 7-point
scale by adult raters, 1 being given to words previously
unseen, and 7 to words that are seen almost daily. The
ratings are multiplied by 100. Sentences with more famil-
iar words can be processed and understood quickly. In a
small-talk situation, high familiarity is important, but not
so in formal or academic exchanges.

Reading Ease: This metric provides the Flesch reading
score for the entire text where a higher score means that
the text is easier to read. The formula used is given below
(Flesch 1948).

r = 206.835 — (1.015 % s1) — (84.6 * 5pw)

where 7 is Reading Ease, sl is the average sentence
length, and spw is the average number of syllables per
word. A Flesch score of 90-100 signifies that the text is
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at the 5th grade level, easily understood by a typical 11-
year old. A score of 0-30 indicates readability at college
graduate level, signifying high difficulty.

Experiments and Results

Our model is trained on data from multiple locations:
over 2 GBs of conversations in the comments of Reddit
posts, and data from proceedings in the Supreme Court of
the United States (SCOTUS). The model is also trained
on two other datasets; the Cornell movie corpus(Danescu-
Niculescu-Mizil and Lee 2011), a corpus of the scripts from
over 600 movies and also on Shakespeare’s Romeo and
Juliet®. These datasets are used for training and then by run-
ning the trained model, one can converse with the chatbot.

Metrics Results

Multiple tests were run using Coh-Metrix and the Reddit
trained neural network as well as the four distinct auxiliary
loss functions NET, MMI, NORM and ENT described in this
research. All generated conversations consist of 15 question
and answer pairs generated by two different chatbots. From
this data, some interesting trends can be observed.
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Figure 2: Number of sentences as a measure of sophistica-
tion for 4 auxiliary loss functions.

NET MMI NORM ENT

Mean Words per Sentence 10.070  3.200 1.550 51.389
Narrativity 99.910  98.170 57.140  78.810
Syntactic Simplicity 58.320  41.680 99.930  0.160
Referential Cohesion 90.820  64.800 100 100
Sentence Semantic Similarity 0.363 0.359  0.167 0.624
Lexical Diversity 0.366 0.594  0.333 0.096
Connective Word Occurrence  48.499 0 0 57.297
Modifiers per Noun Phrase 0.408 0.231 0 0.908
Sentence Syntax Similarity 0.114 0.158  0.593 0.040
Content Word Frequency 2.813 4580  2.358 2.835
Word Familiarity 589.115 572 591.5 583.183
Reading Ease 90.526 100 08.835  63.476

Table 1: Coh-Metrix values for different generated texts

Shttps://github.com/ravexina/shakespeare-plays-dataset-
scraper
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Figure 3: Coh-Metrix results, the blue dotted line is Narra-
tivity, the orange dashed line is Referential Cohesion and the
green dotted and dashed line is Reading Ease.
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Figure 4: Coh-Metrix results, the blue dotted line is Narra-
tivity, the orange dashed line is Referential Cohesion and the
green dotted and dashed line is Reading Ease.

Parts (a) and (b) in Figure 2 show conversations between
two chatbots where one is generated using MMI and the
other is generated using NET. These figures may suggest
that the information the MMI is based on, namely the se-
mantics of the sentence could be harder to decipher using the
MMI model instead of the simpler way that the NET model
looks at the semantics. Due to the plethora of things that the
MMI is calculating, the MMI predictions for characters may
be more directed towards simplicity due to the overflow of
information the generator is being sent. The simpler NET
model may not be able to get as much information but be-
cause it gets less information it is able to create a constant
dialogue between two chatbots that are simpler in their re-
sponses.

In contrast, looking at parts (c) and (d) in Figure 2, the
number of sentences in the ENT and NORM generated dia-
logues are almost identical. The more complex NORM cal-
culation is actually able to barely hold the conversation for
longer that the simpler ENT model. NORM is almost the
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exact same model as the MMI model, but it includes a nor-
malization of the probabilities that the MMI model does not.
It would then make sense that this normalization makes the
complex probabilities from the MMI generator into simpler
probabilities. The MMI probabilities that are too complex
for the chatbots to hold a longer conversation, are made sim-
pler by the normalization. This makes the NORM generator
understand more about the conversation and relevant infor-
mation than the ENT and NET models, but it seems that it is
still able to generate at similar rates to them.

However, the graphs alone do not tell the whole story.
As can be seen in Table 1, there is a mean of 1.550 words
per sentence when generating using the NORM loss func-
tion. That means that although sentences are being gener-
ated, these generated sentences are without much substance.
The fact that the NORM model also has a 0.593 sentence
syntax similarity, which is 0.435 more than the next model
(MMI with a 0.158 sentence syntax similarity) shows the
monotony of the NORM generated dialog. The same conclu-
sion can be taken from the 0.167 value for NORM sentence
semantic similarity, which is the lowest of all the models.
This is interesting because MMI models were found to im-
prove the output of chatbots in (Li et al. 2016b).

After more tests generating sets of 15 question-response
pairs, the reasons for the failure of the NORM generator
trained on Reddit data are revealed. On all other datasets,
the two chatbots chatting are able to create 15 pairs of di-
alogue. The most probable reason for this is the huge dis-
parity in the size of the datasets, the data other than Reddit
were trained on 10,000 lines of dialogue (other than Romeo
and Juliet which is only 840 lines). As can be seen in Figure
3, the Reddit dataset stands out as having low narrativity,
but high reading ease. This happens because when it does
not generate sentences, there is no story, yet the lack of sen-
tences is easy to read. Figure 4 shows this same fact, only
the NET model shows high narrativity and reading ease, it
was also the only model to complete the dialogue. It now
seems obvious, that the less data that is present and the fewer
hoops to jump through in generation, the fewer probabili-
ties the generator has to consider. This could show that more
data may only be better with chatbots conversing with hu-
mans, because when chatbots are chatting with each other,
the dialogue needs to create long enough sentences to keep
the flow of information. Thus the less information passed to
each chatbot, and the more information they have in com-
mon, the easier it will be for them to converse. With human
input however, more data is required because the human can
ask anything and will expect a coherent response from the
chatbot. This is only possible if the chatbot has seen data
similar to the input, those chances are of course higher with
more data.

Figure 5 shows the results of comparing similarity be-
tween network generated responses to randomly selected
questions in the corpus. We measure similarity between
question and answer with four commonly used metrics.
Greater sentence similarity is expected from an intelligent
system when compared with a random response from the
training corpus. This is shown to be true as generated an-
swers show greater similarity than random answers in three

of the four selected metrics.

Sentence Generation Metrics by Auxiliary Loss Function
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Figure 5: Comparison of auxiliary loss functions by 4
string distance measurements including comparison with
randomly selected questions and answers.

Generation Results

Table 2 illustrates a number of things about generated dia-
logue. First of all, we suppose that the capital letters at the
beginning of the sequence are the chatbot’s best attempt at
writing the name of a supreme court justice as each sentence
in the training corpus is labeled thus. The example in this
example is most likely "JUSTICE SCALIA:” as represented
in the 100 corpus records. While the poorly trained model
did not generate the actual name of a justice we admire the
attempt considering it is based on only 100 lines of data.

This dialogue in Table 2 is pretty good, but this trained
model does not create very coherent dialogue between par-
ticipants and it also often reaches the character limit for a re-
sponse which makes the dialogue end abruptly. The chatbot
trained on 10,000 lines of the Cornell movie corpus does not
give very relevant answers and some of the answers them-
selves are hard to decipher:

”You know you’ve got to go to ask you telling you, I'm
afraid of yourself.”

Although this is not a grammatical sentence we observe that
it does seem to flow somewhat naturally. This begs the ques-
tion, what is the best kind of dialogue to generate? Is mean-
ing the most important part, or should it flow well?

Conclusion and Future Work

This paper took a Seq2Seq model chatbot and trained it on
multiple datasets and used different auxiliary loss functions
to see what would generate the best dialogue between two
chatbots. Unexpectedly, the MMI and NORM auxiliary loss
functions preformed the poorest when trained on the largest
dataset. This suggests that MMI based functions get con-
fused with too much data, slowly degrading the dialogue.
This concludes that trying to create a chatbot by testing it in
a conversation with itself does not reveal whether or not a
chatbot is inteligent.
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Trained on 100 sentences from SCOTUS

”JMTM SLIE :unt the the aoe the co satiii as 10 aoe toos con
is tuue te the cat ot tian toite on te tcte an ao the ean to ar
anert ao the the so tnnt cot aorey sae thot ao the to cait ar te
teat oa that ens ae ao thos wo toe ton fe the contits te see tun
tee aoe tont cots sh the ian se tee an thar tonttis the uant aae
tin an tha oita cntte io on tae se the oan toe tot ton as por aor
iie cot ao thl bid the san thee the oo to the tce fortte ior an
aar sos aont te talt oh uortee innt aoit cors ite 0”

Trained on 10,0000 sentences from SCOTUS

”MR. COLE: I think we’re talking about the district court to
review it does, Your Honor. I believe that’s correct, Justice
Ginsburg. It’s — it’s in navigation. If you have the distinction
between aliens who we collect taxes. They’re — they’re con-
tested, would be able to read the restatement of the landown-
ers — or — or that decision. In that instance, I think that was
referred to the issue before this Court that have standing
alone and then have set forth in these kinds of prosecutions,
when i’

Table 2: Samples of generated text using the NET model
showing improved coherence and cohesion with a larger
training corpus (10,000) as compared with a very small cor-
pus (100).

Dialogue generation still has a long way to go in creating
chatbots that can fluently converse in the same sophisticated
natural language of humans. In future work, some easy ways
to create better dialogue would be to add a reinforcement
learning and attention model to the Seq2Seq model from
this research. These models would help the chatbot create
relevant responses. Other future additions that could help
create a more comprehensive chatbot include some larger
and more sophisticated datasets which would allow for more
testing on the model and may create responses even more
like that of humans than the implementation in this research.
Furthermore, advancements in neural networks may bring
about faster and more complex neural networks that could
also help create even more human like responses. There is
also potential for great strides in the ability of evaluation
models. With better evaluation models, the dialogue genera-
tion model can learn more from itself. Additionally, as men-
tioned in (Wu, Martinez, and Klyen 2018), there is poten-
tial to differentiate the responses of the multiple participants
and potentially allow for more than two contributors to the
conversation. As of now the best metric available is human
evaluation, this was not used in this paper, but it would shed
more light on the competency of chatbot dialogue and would
be a very useful metric in further work. All of these possi-
ble future topics could bring human level computer dialogue
generation closer to reality.
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Abstract

To interpret the engagement of an individual using var-
ious features such as facial affects or mood has been
an important research problem in many fields such as
academia and human-robot interactions. While much
research has been focused on predicting engagement
from a wide variety of features, the use of engage-
ment in predicting a feature such as mood is a rela-
tively unexplored area. In this work, we attempt to ver-
ify whether any correlation may exist between mood
sub-scale scores and self-reported engagement. We also
attempt to verify correlations for engagement with the
total mood disturbance scores of the mood-states from
our dataset and the change in mood in our dataset from
before and after a web session. We use Support Vec-
tor Machine (SVM) regression in order to analyze to
what degree, if any, these mood scores are related to en-
gagement. Furthermore, we model mood as a sequence
learning problem using facial Action Units (AUs) and
engagement as input into a Long Short-Term Memory
(LSTM) Recurrent Neural Network (RNN) in order to
analyze to what degree engagement may aid in predict-
ing mood. We evaluate our work on a rich dataset with
many features comprising of 110 subjects who partic-
ipated in a trauma recovery web-intervention. Our ex-
periments using SVM regression indicate the correla-
tion between mood and engagement is not significant.
Furthermore, our results from testing with AUs and en-
gagement as input to our LSTM were inconclusive due
to not attaining results as good as or better than the work
this builds on: Dhamija, S., and Boult, T. E. 2017a. Au-
tomated mood aware engagement prediction. In 2017
Seventh International Conference on, Affective Com-
puting and Intelligent Interaction (ACII), 18. IEEE.

Introduction

Mood significantly influences our daily lives, affecting mul-
tiple aspects of our cognition including behavior, perception,
and communication. As user-focused services continually
grow in demand, so too does the importance of enhancing
affective computing for use in various applications. Mood
prediction has particular importance in fields such as clini-
cal psychology and trauma recovery, in which predicting the
mood-states of an individual will relieve the need to take
extensive psychological assessments for a population which
may already be burdened. In addition to the psychological

Terrance E. Boult
University of Colorado, Colorado Springs
Colorado Springs, Colorado, USA
Email: tboult@vast.uccs.edu

benefits, the ability to interpret mood-states can also result
in improvements to many of our current technologies which
emphasize such implementations as the personalization of
interactive features to the user. Being able to predict moods
can lead to such implementations in the future as being able
to correspond to the mood of the user in the field of advertis-
ing (Lee and Hsieh 2009) and enhance other such interactive
technology to the user. Predicting moods can also be used to
develop on the field of human-robot interaction (Salam et
al. 2017) to eventually create robots which are able to adapt
themselves to the mood of the people they interact with.

Like mood, research into determining and classifying
engagement based on a person’s affects has also been
well established and is an area of interest for many fields
such as academics (Fredricks, Blumenfeld, and Paris 2004;
Whitehill et al. 2014), mental health (Dhamija and Boult
2017b), and human-technology interactions (O’Brien and
Toms 2008). Various research has been conducted into
classifying the engagement level of an individual based
on multiple factors such as context and facial affects de-
termined through computer vision (Whitehill et al. 2014;
Dhamija and Boult 2017b; Grafsgaard et al. 2013). O’Brien
and Toms (2008) has defined engagement to be determined
based on the experience of the interaction between the user
and the attributes of the system that he or she is involved
with. Based on this interaction, engagement can be observed
to a relatively high accuracy through facial data (Grafsgaard
et al. 2013) and can be augmented through the addition of
mood data (Dhamija and Boult 2017a).

Despite these continual advancements in determining en-
gagement, determining the mood of an individual from his
or her engagement has yet to be explored in-depth. This
work explores this novel concept of predicting mood from
engagement and verifies whether any such correlation be-
tween engagement and mood exists. We will be aiming to
answer these questions:

e If a correlation between engagement and mood exists, to
what degree is engagement able to determine the mood-
state of an individual?

e Would engagement better predict the change in mood
from pre-session to post-session?

e Will adding in other mood-states of different categories
from the mood-state we are trying to output aid in pre-
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dicting mood from engagement?

e Additionally, if no correlation exists, then would engage-
ment aid in the prediction of mood using AUs?

Background Information

Moods and Mood Assessments: Wilhelm and Schoebi
(2007) have defined moods as affective states that influence
the cognition, experience, and behavior of an individual.
This is differentiated from emotions which are more short-
term reaction to stimuli or events. The mood of an individual
can typically be determined through the use of one or more
assessment tests. Each assessment has its own advantages
and may interpret a person’s mood in different ways depend-
ing on the type of test taken. Wilhelm and Schoebi (2007)
describes some assessments including the UWIST Mood
Adjective Checklist, the Multidimensional mood question-
naire, the Profile of Mood States (POMS), and the Positive
and Negative Affect Schedule (PANAS) when detailing the
types which have been used before. A shortened version of
the POMS, referred to as the POMS-Short Form (POMS-
SF), has also been introduced by Shacham (1983) and works
just as well as the POMS for determining the mood state
of an individual. As POMS-SF was the assessment used to
gather the data with which we will be working with, its re-
sults will be the one used with our mood prediction model.

Forecasting Engagement: Prior research has worked on
interpreting and forecasting the level of engagement based
on facial affects and the context of the user. Grafsgaard et al.
(2013) identified the engagement towards and effectiveness
of tutoring by identifying facial expressions. Whitehill et al.
(2014) also conducted research in academic engagement by
defining the engagement level of a group of participants with
binary classification and determining the academic effect of
high versus low engagement. They utilized three different
machine classifiers to determine the engagement of each of
the participants: GentleBoost with Box Filter features, SVM
with Gabor features, and Multinomial logistic regression
from the Computer Expression Recognition Toolbox. Based
on their results, they were able to determine the engagement
to a relatively high accuracy. Monkaresi et al. (2017) worked
on the automatic detection of engagement based upon sev-
eral components such as the facial expressions and heart rate
of the participants. From their research, the Kinetic Face
Tracker produced the highest correlation data to the actual
engagement in a task when compared against their other in-
dependent tests such as monitoring the heart rate. This was
accentuated by the participants’ task of writing which would
mostly obscure the facial features when they were looking
down while writing and had limited facial expressiveness.

Mood Prediction in a Different Context: Research has
also been conducted on predicting and classifying the mood
of an individual. In particular, researchers have proposed
various types of emotion and mood aware models for clas-
sifying or predicting the mood or emotion of a user based
on different methods including recognizing mood from key-
board and mouse interactions (Khan, Brinkman, and Hi-
erons 2013), recognizing mood from smartphone usage

(LiKamWa et al. 2013), gathering mood data by extracting
daily human behavior patterns and analyzing them (Ma et
al. 2012), and determining mood from a segment of a mu-
sic track (Lu, Liu, and Zhang 2006). Likewise, in the do-
main of emotion-aware models, similar research has been
done on recognizing emotions from speech (Koolagudi and
Rao 2012) and recognizing emotions from a combination of
cues from audio and visual data (Sebe et al. 2006). Appli-
cations of such models span a wide variety of fields includ-
ing online learning (Mao and Li 2009), expressing affective
states through an interface (Lisetti and Nasoz 2002), and
e-commerce recommender systems (Shi and Marini 2016).
Dhamija and Boult (2017a) attempted to automate the pro-
cess of detecting moods by using LSTM to assess using
automated mood from video segments to aid in predict-
ing engagement. Based on their results, the mood predic-
tion from their visual estimates performed as good as or
better than the self-reported total mood disturbance of the
participants. LSTM has also been used in other applications
such as speech recognition (Graves, Mohamed, and Hinton
2013) and classifying high-resolution images (Krizhevsky,
Sutskever, and Hinton 2012).

Engagement Arousal Self-Efficacy (EASE)
Dataset

We used the EASE dataset which consisted of a wide
variety of data including the self-reported engagement
and the POMS-SF mood assessment of a user during
a trauma recovery web session on the recovery website
http://ease.vast.uccs.edu/. This is the same dataset used by
Dhamija and Boult (2017a) and further described by them
in their paper. For this work, we will simply provide a brief
summary of the dataset and what parts we used from it.

In this dataset, each session consisted of two modules,
with the first two sessions being controlled sessions re-
stricted to the Relaxation (RX) and Trigger (TR) modules,
and the last session allowing the user to choose whichever of
the four remaining modules he or she wants to take. Due to
lost data from system errors or data corruption, some partici-
pants only have either their first or second sessions recorded,
but not both. The participants of this dataset were recruited
from various clinical centers mainly focused on health and
trauma. This dataset consisted of 110 participants of which,
88 were female, 17 were male, and 5 did not specify. 80%
were below the age of 46. To reduce the burden on the partic-
ipant’s who took the mood assessment, the original POMS-
SF questionnaire was reduced from 37 questions down to
24.

The POMS-SF mood assessment was taken before and
after each session in which their engagement was also
recorded through self-reports. Both the mood assessments
and the self-reported engagement were rated on a five-point
scale. The engagement was reported about 3 times over the
course of a session. From the assessments, the scores for
each mood were split into positive and negative sentiments,
of which only vigor represented the positive sentiment while
all the other mood sub-categories were negative sentiments.
A Total Mood Disturbance (TMD) score was then calculated

University of Colorado, Colorado Springs 45



REU Symposium on Machine Learning

as the difference of the sum of negative sentiments n(x) and
positive sentiments p(x):

TMD = Z

T Enegative sentiments

x Epositive sentiments

p(x). (1)

Due to the some missing data in our dataset and a mis-
match of sessions and modules recorded for our mood-state
scores and our self-reported engagement, we cut down the
number of participants to 69. From these participants, their
scores from each of their sessions and modules were used
as input features for our prediction model. We used 3 differ-
ent features from this dataset to predict mood and compare
against our results for ground truth. In these features, our in-
put data included the associated action units (AU), which are
the calculated facial features from the participants’ videos,
and their self-reported engagement. Their mood-state scores
from their pre-session and post-session POMS-SF assess-
ments were used as ground truth. A delta mood was also cal-
culated from these scores as the change in mood score from
pre-session to post-session mood assessments. Not all the
mood-states could be scored the same however, with each
having a different amount of questions, e.g., tension: 5 ques-
tions, depression: 6 questions, anger: 5 questions, fatigue:
2 questions, confusion: 2 questions and vigor: 4 questions.
Similarly with the self-reported engagement, while usually
each module and session would have 3 self-reported engage-
ment scores, some of the participants either had more than
or less than 3 reported scores. Of these scores, we would
get rid of the extraneous engagement scores from our data
and only use the first 3 scores if more than 3 self-reported
engagement scored were available, or we would cut out the
participants who only had 1 or 2 self-reported engagement
scores.

Experimental Results

We started experimenting with a SVM regression model for
each category of mood, regressing the pre-session and post-
session mood scores individually rather than appending one
to another, to try to find some pattern in our data. Due to
engagement being recorded multiple times over a session
and module, to make it a simple input for our initial tests,
we took the average of the engagement scores and used
that as our input. Additionally, we also did a regression for
change in scores from pre-session to post-session of each of
the moods. We then compared these delta mood score re-
gressions to the results of the regression for the pre-session
and post-session moods to analyze which one would have a
higher correlation. Furthermore, we expanded on these mod-
els to regress along multiple input features in addition to en-
gagement to lower the rate of error in our data. For our tests,
we modeled a regression along moods of different categories
in addition to engagement to verify whether we could lower
the error from our results or not. Furthermore, we also set
up a basic LSTM to predict mood based on facial AUs and
engagement to determine whether or not we could lower the
loss of our model by adding in engagement on top of the
AUs to predict mood. For determining the accuracy of our
model, we compare our results to the true values from our

data and compute a rate of error for our dataset. For comput-
ing our error, we calculated the mean squared error (MSE)
of our predicted values from the ground truth of the actual
values in our dataset. In addition, we used a 2-sided paired
t-test to calculate the statistical significance of our data.

SVR Engagement Based Mood Prediction
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Figure 1: A scatter plot of the test data from the fatigue
mood score calculated in the pre-session mood assessment
set against engagement. No pattern can seen in this data due
to the wide distribution of points across the entire plot. Ad-
ditionally, from having only been scored by 2 questions, the
scatter plot for fatigue shows a noticeable gap from the mood
score points only being plotted out every 0.5 points. While
not as randomly scattered as fatigue, all the other mood state
categories still lack any real pattern in their data distribution,

SVR Regression Results In the process of training our
model, we optimized the parameters of our SVM with Grid-
SearchCV. Because of the limited data we have available for
training and testing, we used the cross-validation to ensure
our model was optimized to predict in a more generalizable
nature so as to avoid overfitting. From our initial regression
tests on the dataset, we have found little to no correlation
for any of our regressed models. This is due to the highly
scattered nature of our data when setting mood against en-
gagement, showing only as loosely clustered points over a
section of the graph. This caused the MSE to result in a fairly
high rate of error for all of our regression models which were
used to predict the individual mood-state scores and the delta
mood-state scores. Fatigue in particular (as shown in Fig-
ure 1) showed a high variation in levels of engagement for
each mood score making calculating a regression line much
harder. This is likely also because of the different amount of
questions per mood-state which resulted in the scoring for
each also being different.

SVR Regression Results against Simpler Models Al-
though there was no pattern to be found in the data, the pos-
sibility of other, simpler models having better results was
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MSE

Mood SVR Ridge Elastic Net
TMD: 1.57 1.02 0.97
Vigor: 1.06 1.06 1.09
Anger: 0.81 0.81 0.81
Tension: 0.95 1.01 0.99
Fatigue: 1.01 1.2 1.19
Confusion: 1.05 1.11 1.05
Depression: 1.21 1.02 0.94
All Moods Av- || 1.09 1.03 1.00
erage MSE:

Table 1: Simpler regression models occasionally may per-
form better compared to more complex regression models
such as SVR. We compare SVR to two simpler models, Elas-
tic Net regression and Ridge regression, to evaluate the per-
formance between models in predicting mood from engage-
ment.

also a possibility, so we also tested on Ridge regression and
Elastic Net regression to verify if maybe a simpler model
would train better in comparison to SVR. As shown by Table
1, the results of simpler regression models were not much
better either. While using Elastic Net regression, the line of
regression was simply a straight line through the middle of
the data which demonstrates the lack of pattern in the over-
all data. As can be shown from Table 1, all of the moods
had a high MSE, with the simpler regression models neither
performing significantly better than or worse than the SVR.
The 2-sided paired t-test also showed a lack of any signifi-
cance in the performance of each of the models as demon-
strated by the p values being generally in a range from 0.2
to 0.8. Since no real pattern existed inside the data, none of
the regressions performed much better in comparison to one
another, showing in how the average rate of error was about
equal for all of the regression models. When calculating the
delta mood-state scores as the change in mood from before a
session to after a session, a slightly higher correlation could
be seen with the engagement during said session, although
the lack of any pattern still applies to the delta moods as it
did to the pre-session and post-session moods.

Multiple Regression Results By adding in one more in-
put feature into the SVM regression, we were able to reduce
the mean squared error of our data overall. From our ini-
tial regression models in which we only regressed a single
mood against the average engagement over a web session,
we found our MSE to be generally high in the range of 0.9 to
1.8, illustrating the lack of suitability for prediction in those
models. By adding in additional features such as moods of
different categories however, the MSE of some of the mood
prediction models decreased down to around the range of
0.4 to 0.6 by adding in moods of other categories as input
features.

Due to some mood scores lacking any significant change
pre-session to post-session, using the pre-mood of the same
category as additional input to predict the post-mood would
not have resulted in much of a problem. Therefore, for the

input, we compared each and every one of the mood-states
from separate categories in order to see if any mood-states
from separate categories could lower the rate of error in pre-
dicting any single mood. Generally, the error did appear to
lessen with an additional mood input; however, some moods
were obviously very poor indicators of each other and ac-
tually made the MSE higher, even if just by a small mar-
gin. On the other hand, a not statistically significant low-
ered MSE could also be found by moods which seemed
like they would affect each other to a larger degree. Anger
and tension appeared to have a higher correlation compared
to the other moods which anger was regressed with along-
side engagement. In the pre-session, POMS anger regressed
against POMS tension and engagement resulted in a MSE of
0.44, although it was not statistically significant (p = 0.36).
Similarly during the post-session, POMS anger regressed
against POMS tension and engagement resulted in a MSE
of 0.40, although this was also not statistically significant (p
= 0.278). On the other hand, post-session POMS anger re-
gressed against pre-session POMS tension and engagement
resulted in a MSE of 1.00, with these results actually statisti-
cally significant (p = 0.026). The possibility exists that some
of these correlations, or lack of correlations, occur because
of the biases contained in the data (referring to the different
number of questions for scoring per mood).

For the most part however, although these results were
not statistically significant, moods from the same assess-
ment (either the pre-session mood assessment or the post-
session mood assessment) had an apparently lower MSE
as compared to when predicting the mood from the other
assessment. As moods from assessments taken at separate
times would have less relevance to each other as com-
pared to moods taken from the same assessment, theoret-
ically, these results are to be expected. A few exceptions
did exist however, although the difference was not too big.
E.g., post-session POMS depression regressed against post-
session POMS confusion and engagement resulted in a MSE
of 0.73, although these results were not statistically signif-
icant (p = 0.665). Then post-session POMS depression re-
gressed against pre-session POMS confusion and engage-
ment resulted in a MSE of 0.69, although these results were
also not statistically significant (p = 0.495).

Interestingly enough, although the correlation between
any one mood and the rest were generally not good across
every one of the mood-state categories (with no improve-
ment or barely any when predicting with an additional mood
minus the exception of a few as mentioned before), using
the TMD based on the scores of a participant’s mood assess-
ment resulted in a lowered rate of error across every single
mood category. Except for vigor, every other mood category
regressed with TMD as an additional input had a relatively
lowered error rate, dropping to a MSE as low as in the range
of 0.3 to 0.4 for the moods from the associated assessment
(Although the results from the paired t-test indicated that
there was no statistical significance for these values with p
usually being in a range from 0.1 to 0.8). As the TMD was
calculated off of all the separate mood categories with only
vigor as a positive sentiment being subtracted from the rest,
these results appear to theoretically have some significance.
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Based on these results, although most of them were not
statistically significant, a good possibility exists that predict-
ing a mood based on the moods of other categories (or at
least based on the TMD score) in addition to engagement,
depending on the mood, could have a decently high correla-
tion with each other.

LSTM Mood Prediction

While attempting to predict mood from engagement and
with other categories of mood was interesting, more evi-
dence exists to support the prediction of mood with facial
AUs (Dhamija and Boult 2017a). In order to predict mood
with AUs, we will need to model mood as a sequence learn-
ing problem. LSTMs are able to better handle longer se-
quences with long-term dependencies of AUs as opposed
to SVMs. For this reason, a sequence learning model such
as LSTM is better for adding in the sequences of associ-
ated AUs from the videos of each session and module in our
dataset. So in this section of our work, we turn to building a
LSTM which will be used to predict mood with facial AUs
in addition to engagement. We utilize the automated mood
prediction method from facial AUs done by Dhamija and
Boult (2017a) as a baseline for building our LSTM model
to use in our training. Their implementation was based on
Tensorflow, which was in turn based on Zaremba, Sutskever,
and Vinyals (2014) and Graves (2013). For our work, we
use Keras as a base to build our mood prediction LSTM
model. For the training and testing of our model, we used
the precomputed AUs provided by Dhamija. These AUs
were calculated using the work on OpenFace proposed by
BaltruSaitis, Robinson, and Morency(2016). OpenFace is an
open-source tool for detecting features such as gaze, head
pose, and AUs. Our work uses the same AUs as Dhamija and
Boult (2017a), e.g. Inner Brow Raiser, Outer Brow Raiser,
Brow Lowerer (intensity), Upper Lid Raiser, Cheek Raiser,
Nose Wrinkler, Upper Lip Raiser, Lip Corner Puller (in-
tensity), Dimpler, Lip Corner Depressor (intensity), Chin
Raiser, Lip Stretched, Lips Part, Jaw Drop, Brow Lowerer
(presence), Lip Corner Puller (presence), Lip Corner De-
pressor (presence), Lip Tightner, Lip Suck, and Blink. In
total, 20 AUs were tracked across the videos in our dataset.
The total number of frames the AUs were tracked over was
6126581 from all of the videos of the sessions and modules
we used from our data. We used as input segments of 30
seconds from each of our videos with the AUs having been
calculated at 30 frames per second for a total of 900 frames
per session and module.

Predicting Mood using AUs and Engagement Our re-
sults for predicting mood using AUs was inconclusive as
when predicting with both individual AUs and the entire set
of AUs, neither gave usable results. Due to our model mainly
predicting around the mean of our dataset, our results pro-
duced a MSE of over 1, with some results also exceeding a
MSE of 2. These high rates of error can be attributed to our
model not training well however. Better training will be nec-
essary to actually predict mood based on AUs as was simi-
larly done by Dhamija and Boult (2017a). After conducting
proper optimization of our model and cross-validating our

data to avoid overfitting, the rate of error should become
smaller and the model should fit better during training. In
addition, as we had overall poor results, we could not de-
termine whether adding in engagement as an input on top
of the facial AUs actually aided in predicting mood or not.
Although our work has not produced substantial results for
predicting mood from engagement with facial AUs, the re-
sults of automated mood predictors done by Dhamija and
Boult (2017a) does show a strong indication of being able to
predict moods based on AUs at the very minimum. As our
results could not match up to theirs, more research will need
to be done in order to verify whether predicting mood from
AUs with engagement will actually produce better or worse
results.

Future Work

Future work in engagement based mood prediction may fo-
cus on whether using more time segments or less as input
may enhance the prediction capabilities of the LSTM. In our
work, we focused on predicting mood using 30 second time
segments from videos to predict mood with the aid of en-
gagement. As our work did not produce useful results from
using facial AUs as input to predict mood, first optimizing
our LSTM model would be necessary to perform as good as
or better than Dhamija and Boult (2017a). After finally hav-
ing a working model, shortening the time segments down
to 15 seconds may still be enough to provide results or it is
also possible extending the time segment to 45 seconds may
give better results in predicting mood. In addition, using the
trigger and relaxation modules to predict moods in context
would also be a good test to identify how much context may
affect mood scores or change in mood scores. Similarly, de-
tecting which AUs correlate to which mood-state scores the
highest may also be a good test to identify whether certain
AU features, such as inner brow raiser or outer brow raiser,
may affect certain mood-states more than others. In addition,
the statistical significance of most of our results were not
significant enough to decide whether our data was good or
not. As a consequence, we could only, at most, form conjec-
tures based on the results of our data. In future work, further
testing of the significance of our results can be conducted
using bonferroni corrections.

Conclusion

Most prior work has focused on identifying and classify-
ing engagement using computer vision, occasionally with
the use of the acquired mood data of the individual to aug-
ment the results. Mood on the other hand has been predicted
using visual, audio, or other such data, but not engagement.
We work on a novel problem which has yet to be explored by
anyone to the best of our knowledge by attempting to predict
mood from engagement. The ability to predict moods from
engagement has many possible applications in a wide vari-
ety of fields such as robot-human interactions, clinical psy-
chology and advertising. In correspondence with this work,
trauma recovery could also be improved to minimize the
need of taking mood assessments by just predicting their
mood from some other data instead. Based on our current
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results, regression for a mood with just engagement as an
input does not produce any patterns which can be used for
predicting mood. On the other hand, adding in more input
features, depending on what input feature is used, can either
positively influence, or negatively influence the rate of er-
ror. From attempting to regress mood along moods of differ-
ent categories, while some moods showed a decrease in the
MSE, others actually increased it. Only the calculated TMD
score of the mood set actually decreased the error for all of
the moods, although some moods decreased from the TMD
input more than others. Due to a flaw in our model, our work
using a LSTM for predicting mood from facial AUs was un-
able to produce results comparable to Dhamija and Boult
(2017a). As we could not obtain results as good as or bet-
ter than them, we were unable to verify at the current time
whether or not adding in engagement would aid the model
during training or not.
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Abstract

Generative models have been rising in popularity within
the past several years. They have been used for a wide
range of applications, especially in art (Gatys, Ecker,
and Bethge 2015; Elgammal et al. 2017). Many of these
models, however, are directed. This creates restrains on
how the model can be used along with the potential ac-
curacy. One of these models is the Pixel CNN. While it
and its successors are state-of-the-art, they fail to look at
the whole picture. Meanwhile, many of the commonly
used undirected models, such as Restricted Boltzmann
Machines, are limited in their flexibility due to the need
for discretization. We propose a undirected model, the
PixelMREF, in response to these concerns.

Introduction

Over the past several years, generative models have become
more and more popular. With the introduction of structures
such as GANs, VAEs and the PixelCNN, there have been
more and more options for the approach. That being said,
many of the models being used are directed. In the Pixel-
CNN, for example, each pixel is dependent only on those
before it. However, this potentially ignores the entire image!
While this is an elegant solution and makes it relatively easy
to sample, it is creating restraints on its potential accuracy.
In addition, it forces known pixels to be before those being
sampled. This keeps the models from being used in applica-
tions that require more flexibility such as inpainting.
Meanwhile, past attempts at undirected models have been
limited in scope. The deep markov random field, wa recur-
rent neural network, is too focused on local structure, need-
ing additional help to create coherent samples (Wu, Lin, and
Tang 2016). Restricted Boltzmann Machines, on the other
hand, force discretization of the input and output. Because
of this, it is less robust than those that use a continuous dis-
tribution. These issues lead to our proposal of the PixeIMRF,
a convolutional markov random field.
Our contributions are as follows:

1. We propose our new model, the PixeIMRF, which is com-
prised of two PixelCNNs working in parallel: one looking
at prior pixels and one looking at succeeding ones.

2. We discuss some of the roadblocks that come up when
working with a markov random field. These include train-
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ing, comparison against other networks, and sample gen-
eration. We discuss our solutions to these issues as well.

(a) We show the accuracy of annealed importance sam-
pling, a technique to estimate the partition function, by
testing it on a toy network.

3. We demonstrate our network’s ability to produce global
structure through generating samples from the MNIST
and Frey datasets.

Pixel CNN

The auto regressive network, PixelCNN, is a convolutional
neural network (CNN) based off of the idea of representing
an image x’s probability as

p(z) = Hp(xi|9€1---$i—1) (1
i=1

where the image is n x n. Because of this view, each pixel is
only dependent on the ones before it which prevents the en-
tire context from being considered. Given an image, the net-
work outputs a discrete probability distribution for the red,
green, and blue values of a specific pixel. The network itself
is a series of convolutional layers with residual connections
that include a mask to block the current pixel from seeing
the following pixels (Oord, Kalchbrenner, and Kavukcuoglu
2016).

Improvements Previously Made

Since the PixelCNN was released, there has been two ma-
jor improvements. The first one being the Gated Pixel CNN,
which improved the architecture within the layers (van den
Oord et al. 2016). The second is Pixel CNN++, which made
various smaller improvements to the Gated PixelCNN (Sali-
mans et al. 2016). One of the most notable improvements is
the use of using a logistic distribution vs the softmax distri-
bution used in the original Pixel CNNs. We will be basing the
PixeIMREF off of the Gated PixelCNN except we are using
the logistic distribution of the PixelCNN++. We are using a
modified version of this for grey scale.

Drawbacks

While the PixelCNN and its successors are very powerful
tools, they has one major drawback. Because in the proba-
bility model each pixel is only dependent on those before it,
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the pixels after it are ignored. This prohibits it from taking
into consideration the full context of the image. In addition,
known pixels must be before the pixels whose probability
distribution will be calculated. This restricts how the net-
work can be trained and utilized. One example of this is in
inpainting. The PixelCNN is unable to properly inpaint as it
only takes the prior pixels into account.

PixeIMRF

We wish to solve this issue and take the entire picture into
account. That is, we wish to have the unnormalized proba-
bility represented as:

plz) = [ [ pxilz—) )

i=1

where x_; is the set of all pixels in an image x except x;.

Implementation

We call our network PixeIMRF due to the fact that the prob-
abilistic model is a markov random field. We are using two
variations of the gated PixelCNN simultaneously with the
first one being identical to the original, taking only the pre-
vious pixels into account. The second one is the opposite,
taking only the following pixels into account. This is done
by flipping the input, first left-right then up-down, feeding
it into the network, then flipping it back. We then com-
bine them together at the end through concatination and then
feeding them into a layer of 1x1 convolutions. This is shown
in Figure 1. We have also attempted using the PixelCNN++
instead of the gated Pixel CNN. However, the downsampling
included in the Pixel CNN++ led to incoherent sample gen-
eration.

Drawbacks

The Partition Function The issue with our model, how-
ever, is that, in order to calculate the normalized probability

1

p(l‘) - Zp(‘r)v (3)
where p(x) is the unnormalized probability, we need Z, the
partition function. This is near impossible for us to do due
to the computational resources required. For us, this creates
a lot of challenges. First, we are unable to train using the
log likelihood. As our true goal is to optimize this value, it
would be best if we could train using the function. Another
issue with this is that log likelihood is the standard metric of
generative models. We are unable to do a proper compari-
son of the PixeIMRF against other models without it. As the
models output the probability density that is then sampled
using some technique, it would be improper of us to com-
pare samples as this is partially determined on the technique
used for sampling. Thus, we need to compare log likelihood
directly.

Sampling Another issue we have with using a markov ran-
dom field is that it makes sampling quite complicated. With
the PixelCNN, sampling is quite simple as it is a directed
model and so it is possible to use ancestral sampling. On the

other hand, with the PixelMREF, because all pixels are depen-
dent on all the other pixels both before and after, there is a
need to cycle through.

Proposed Solutions
Psuedolikelihood
Optimally, we would use the log-likelihood for training:

n2
> logp(wila_i) - logZ )
i=1

However, Z, the partition function, is something that we are
unable to calculate. Therefore, we must find an alternate so-
lution. Thus, for our training, we are using the pseudolikeli-
hood (Besag 1975):

Z log p(wilz—;) o)
=1

The idea behind using pseudolikelihood is that the likeli-
hood distribution is still the same despite the partition being
ignored when it comes to the locations of optima. As the
pseudolikelihood and log likelihood have about the same
optima, while this won’t be as accurate as using the log
likelihood, it serves as a good approximation. In this case,
you are still able to find good weights for the log-likelihood.
An alternative to this is using contrastive divergence (Hinton
2002). This is something to look into in the future.

Annealed Importance Sampling

Algorithm 1 AIS on Toy Model

for k =1...K do:

Sample ;) ~ po ()

Sample ) ~ T, (a4 |x11)

. o
Sample x,(7 1) ~T, (551(771)|$£;,,L),1)

end for

w(k) = P (T’(Ji)) Py (Tg;)) ﬁl(TE,I:L))

~ k ~ k e k
B0z ) By (@) B,y (@)

Zy o, 1 K (k)
Zo K D1 W

For our testing, we need to be able to calculate an approx-
imate of the log likelihood so that we are able to compare
against other models. For this, we need an approximation of
Z. In order to do that, we can use a technique called An-
nealed Importance Sampling, or AIS (Neal 2001). The goal
of the algorithm is to calculate 7, /Zy. If Zy comes from
a simple enough distribution that you are able to calculate
Z by hand, you are able to find Z;. The idea is to progress
through a series of intermediate distributions that are closely
related in order to approximate the ratio. The algorithm is
described in Algorithm 1.

For our starting distribution, we are having the network
with the weights (but not biases) set to zero. Because of this,
the output is completely independent of the input, meaning
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Network A

Dense
Layer

Network B

Figure 1: In this case, the current pixel is the one in the center. Network A considers only pixels before and Network B only
considers pixels after. Combined, they take all of the pixels (besides the current one) into consideration

that there are no relationships between the pixels. Thus it
becomes a Bayesian network (vs a markov random field).
As it is a directed network, the partition, Zj, is one.

The goal of the intermediate distributions, p,, through
Dn,.» 18 10 serve as a bridge between pg and p;. For these,
we are using an arithmetic mean:

Py, =15 %1+ (1 —n;) * po. (6)

For our transitions functions, we are using gibbs sampling
with the probability distribution of T}, being p;,. Due to
time restraints, we were unable to use the AIS on the Pix-
elMRF. However, we were able to test it on a small, toy net-
work as described below.

Gibbs Sampling

In order to sample from the PixeIMRF, we have used gibbs
sampling. In this, we go through and sample each pixel in-
dividually, updating the image and thus the input as we go.
This repeats several times.

Experiments

As we are unable to calculate the log-likelihood without the
AIS, we are unable to do a comparison of it against other
models. Still, we are able to show the accuracy of our ver-
sion of AIS on a toy model. We are also able to look at the
model’s ability to generate samples.

Annealed Importance Sampling

While we did not have time to run the AIS on the PixeIMREF,
we were able to test it on a smaller toy model. In this case,
we initialized a random single-layer feed forward network

with binary inputs and a softmax distribution for the output.
While the model is much more simple than the PixeIMREF, it
is still representing a markov random field. By using a small
number of binary units for the input, we are able to calcu-
late the true partition by hand. Through this, we are able to
show that our intermediate distributions and transitions are
valid and accurate. In this, we used an increasing number of
hidden nodes (25, 50, 500). In all cases, we had 500 runs,
15,000 steps, and five binary inputs. Our results are in Table
1.

Sample Generation

We were able to generate samples using gibbs sampling,
starting from random noise.

Frey For the Frey dataset, our PixelCNNs had 16 filters
and two Resnet layers. Our samples are in Figure 2. As the
Frey dataset doesn’t have much variation, it was quite easy
for the network to learn the dataset and produce good sam-
ples.

MNIST When generating samples from the MNIST
dataset, the PixelCNNs had 32 filters along with five Resnet
layers. Our results are in Figure 3. The greater diversity
along with the introduction of class labels led to the sam-
ples being not quite as nice as Frey’s. However, the network
is still able to establish a global structure when generating
the samples.

Discussion

While our results are not quite state-of-the-art, our primary
contribution comes from the development of this new model,
along with the ability to sample from it. Although there have
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Number of Hidden Units TrueZ Estimated Z True Average NLL  Est. Average NLL  Percent Error

25 -0.2017 -0.2520 10.7860 10.7357 0.4663 %
50 -0.4385 -0.7674 6.6094 6.2805 4.931 %
500 0.2786 0.2484 29.7789 29.7487 0.1014 %

Table 1: Results of AIS test on the toy network. It is a one layer feed forward network with five binary inputs and a softmax
output. NLL stands for negative log likelihood.
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Figure 2: Samples generated by the PixeIMRF after being trained on the Frey dataset
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Figure 3: Samples generated by the PixeIMRF after being trained on the MNIST dataset
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been variations of a deep MRF in the past (Wu, Lin, and
Tang 2016), they had to combine their model with others
in order to successfully generate samples. With markov ran-
dom fields, it can be difficult to determine global structure,
as was the case in Wu, Lin, and Tang. In our case, however,
we are able to determine it due to the use of convolutions in
the network. This is what allows us to use the PixeIMRF to
generate samples without assistance.

It could be argued to use a Restricted Boltzmann Machine
instead, as it is a simpler model that is achieves the same
goal. The main difference between the two is the use of the
energy function in the RBM. We use a logistic distribution
instead. As the logistic distribution is continuous with re-
spect to pixel values, this allows us more flexibly and ro-
bustness in our predictions. However, as the two have similar
challenges, such as when it comes to calculating likelihood,
one possible research path is seeing how exactly they com-
pare.

Future Work

In the future, we plan to look into using contrastive diver-
gance for training opposed to pseudolikelihood. By taking
the gradient of log Z into account, the network will be able to
train faster and be more accurate. We also plan to do a com-
parison of the PixeIMRF to Restricted Boltzmann Machines
as discussed before. Through the comparison, we hope to
gain new insight into the PixelMRF along with its pitfalls.
Something else to look into is variations of PixelMRF’s ar-
chitecture. One of these posible compositions is having four
PixelCNNss, one for each corner.

AIS Testing and Use

We plan to test our version of AIS on the Pixel CNN to con-
firm that it does indeed work on larger networks. Once we
are able to do this verification, we will use the annealed
importance sampling to estimate the partition function of
the PixeIMRF. Then, we will be able to compare the esti-
mated log likelihood of the PixeIMRF to the (estimated or
bounded) log likelihood of other generative models.

Applications of PixelMRF

There are many datasets we hope to apply the PixelMRF
to in the future. These include CIFAR-10, ImageNet, and
LFW. From looking at these datasets which are larger in
both number of images along with image size, we hope to
see whether the network will be able to determine global
structure for them. Another application we are interested in
is using the PixeIMRF for inpainting. As one of the bene-
fits that the model has over the PixelCNN is it’s flexibility,
which allows it to inpaint, it will be interesting to see how it
turns out.

We also hope to compare the PixelMRF against other
MRF-based networks such as the recurrent neural network
based one in (Wu, Lin, and Tang 2016). One quantitative
method for doing this is using the network for image su-
per resolution, and then using the resulting PSNR for com-
parison. Qualitatively, we could train the model on the Bro-
datz and/or VisTex datasets and use it for texture generation.

Another qualitative approach is using a version of the Pix-
eIMRF modified to match the network in (Wu, Lin, and Tang
2016) for natural image generation.

One additional application that the PixeIMRF could be
for image segmentation. For this, it can be compared against
(Rother, Kolmogorov, and Blake 2004) or (Chen et al. 2018).

Conclusion

As an undirected model, the PixeIMRF includes more flex-
ibility and power than its directed counterparts such as the
PixelCNN. However, this does come at a price. The struc-
ture of the model leads to several challenges, including with
training, comparison against other networks, and sample
generation. That being said, there are many solutions to all
of these problems as described earlier. The PixelMRF has
huge potential in terms of its future applications. It could
potentially be used for image restoration, inpainting, and so
much more.
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Abstract

Video frame interpolation (VFI) is the practice of gener-
ating intermediate video frames given two consecutive
frames. We propose a novel VFI algorithm that uses a
polynomial to model the change in pixel values for each
pixel with respect to time. We have use a neural net-
work to predict the coefficients of each of the polyno-
mials and use the nice mathematical properties of poly-
nomials to generate a parametric generative model. We
have created a novel parametric generative model that
can quickly synthesize multiple video frames between
two consecutive frames.

Introduction

Video Frame Interpolation (VFI), as seen in Fig. 1, is a
well-studied problem in image and video processing. VFI
algorithms have numerous applications, such as temporal
upsampling for generating slow motion video (Jiang et al.
2017), virtual view synthesis (Martinian et al. 2006), and
most importantly frame rate conversion (e.g., converting be-
tween broadcast standards) (Niklaus, Mai, and Liu 2017a).
The demand for high-quality video streaming has skyrock-
eted due to the popularity of streaming application such as
Youtube, Netflix, and Hulu, and as a result, the demand for
quality and efficient video frame rate conversion algorithms
has increased exponentially. Generally speaking, the devel-
opment of efficient frame rate-up algorithms is challenging
due to the fact that in this process the algorithm must gen-
erate intermediate frames that are visually appealing while
still maintaining benchmark performance. One avenue of re-
search for scaling up temporal resolution is VFI, and in re-
cent years VFI algorithms have set state-of-the-art standards
(Meyer et al. 2015; Niklaus, Mai, and Liu 2017a).

Related Work
Block Based Modeling and Prediction

Traditionally, researchers utilized a block-based segmen-
tation approach to analyze and synthesize the intermedi-
ate frames block-by-block using various machine learning
techniques (Jeon et al. 2003; Schutten and De Haan 1998;
Ishwar and Moulin 2000). However, this method often in-
troduce holes in the segmentation as well as overlapping
blocks that may cause the interpolated frames to be blurry

Jonathan Ventura
Department of Computer Science
University of Colorado, Colorado Springs
Colorado Springs, Colorado, USA
Email: jventura@uccs.edu

Figure 1: Example of a VFI problem. Given frames F} and
F5 the goal is to interpolate frame [/

and inconsistent with the frame sequences. These problems
have been addressed in order to improve interpolated frame
quality; however, overlapping and hole processing methods
introduce complexity to the algorithm as well as performing
poorly on videos with non static viewpoints (e.g. videos with
camera movement or panning) (Schutten and De Haan 1998;
Jeon et al. 2003; Ishwar and Moulin 2000). The question
then arises, "How do we overcome the pitfalls that are in-
herent in block based interpolation?”

CNNs to Synthesize Individual Pixels

More recently, the use of Convolution Neural Networks
(CNNs) to synthesize pixels of intermediate video frames
have set state-of-the-art standards (Niklaus, Mai, and Liu
2017a; Ren et al. 2017; Meyer et al. 2015; Niklaus, Mai,
and Liu 2017b; Karani et al. 2018; Wadhwa et al. 2013;
Ascenso, Brites, and Pereira 2005; Fuchs et al. 2010; Baker
etal. 2011). A pixel based approach circumvents the pitfalls
of the block based approach because interpolated frames
are synthesized on a pixel bases and thus has no overlap-
ping or holes in the segmentation. One of the most promis-
ing pixel based approach to VFI was done by Niklaus et al.
in 2017, where they developed a deep convolutional neural
network to estimate a proper convolutional kernel to syn-
thesize each output pixel in the interpolated video frames.
When compared quantitatively to more than one hundred
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methods reported in the Middlebury benchmark, their al-
gorithm was found to be the best on two of the four real-
world datasets and placing 2nd and 3rd on the remain-
ing two sets; however, they found that their method pre-
formed poorly on synthetic datasets, because their network
was only trained on real-world scenes (Baker et al. 2011;
Niklaus, Mai, and Liu 2017a). Qualitatively speaking, the
phase based method developed by Myers et al. in 2015 and
the convolutional kernel method mentioned above were both
found to handle challenging scenarios, such as blurry re-
gions and abrupt brightness changes, better than the opti-
cal flow estimations that were reported in the Middlebury
benchmark (Niklaus, Mai, and Liu 2017a; Meyer et al. 2015;
Baker et al. 2011). However, these models both fail to gen-
erate multiple frames.

We have developed a similar pixel based approach to this
problem; more specifically, we are using a CNN to learn a
parametric generative model that interpolates any number of
immediate frames. Our parametric generative model is uti-
lize polynomials to model the change in pixel values on each
channel with respect to time. Our solution is novel since no
one, has used polynomials to model pixel values over time in
order to generate intermediate frames. Our goal is to create a
model that will maintain benchmark performance when dou-
bling (or even tripling) the temporal resolution of any given
video.

Research Questions and Hypothesis

Our research is primarily focused on answering the follow-
ing questions:

Q1 How does our method compare to state-of-the-art meth-
ods, like those reported in the Middlebury benchmark
when generating a single frame between two input
frames?

Q2 How well does our model produce multiple frames and
quantitatively how do they compare to ground truth?

Q3 What type of video content can our method handle the
best/worst?

From the questions above we are able to form the follow-
ing hypothesis:

HI1 Given any type of video content, our method will produce
interpolated frames that are both quantitatively and quali-
tatively comparable to state-of-the-art methods.

H2 Given any video frame sequence, our method will be able
to triple or even quadruple the temporal resolution.

H3 Our model will be able to handle challenging scenarios
such as non-static backgrounds and frame sequences with
large movements.

Implementation Overview

We have built a CNN model that takes the frames F and
F}, as input and returns a polynomial for each pixel on each
channel that calculates the pixel value at time ¢. For example,
the polynomial from Eq. 1 calculates the pixel value x(t) at
time ¢.

z(t) = et +en 1tV + o (D

Our model predicts the coefficients ¢y, . . . , ¢, when given
the two frames F{y and F},. We will train our network on full
frame sequences (i.e., Fy, ..., Fi). The coefficients are used
to calculate the absolute difference between actual pixel val-
ues and the predicted pixel values, as well as the absolute
difference between the approximate derivative of ground
truth and the derivative of the polynomials. We explain this
in further detail in the section entitled Loss Function.

The Models
Foundational Model: DispNet

DispNet is modeled after an encoder-decoder design which
utilizes a process known as skip layer connections (Zhou et
al. 2017). This process uses layers on the encoder side and
concatenates them with layers on the decoder side so that
the model can regain some of the information that the layers
may have lost during the encoding process. More specifi-
cally, by concatenating the layers from the encoder side to
the layers of the decoder side the model should produce clear
and crisp output.

DispNet has multi-scaled side predictions that are used
to compare the model’s output and ground truths at vary-
ing scales. By comparing the multi-scaled side predictions
and the corresponding scaled ground truths we can make our
loss function more robust which should help combat overfit-
ting. The encoder-decoder architect of DispNet is ideal for
dealing with video frame sequences that contain large move-
ments since the model scales down the input by a factor of
sixteen. This process reduces the larger movement to smaller
movements and makes them more readily detected by the
kernels of each of the convolution layers. For these rea-
sons we have chosen to adopt the dispNet architecture as the
foundation for our VFI model. We will refer to our model,
described herein, as PolyNet on account that our model will
learn the coefficients for a video frame’s pixel polynomials.

PolyNet’s Architecture

PolyNet, as seen in Fig. 2, is a thirteen layer CNN (not in-
cluding the input layer). The first 4 conv layers have a kernel
size of 7,7, 5, and 5 respectively with the remaining layers
each having a kernel size of 3.

Polynet’s Output

The Poly;s (seen in fig. 2) can be thought of as a two di-
mensional matrix whose dimensions match the scaled spa-
tial dimensions of the input frames. Each element of this two
dimensional matrix correspond to a pixel. For each pixel el-
ement in the two dimensional matrix, the model learns three
coefficient vectors (one for each channel). More specifically,
each of the coefficient vectors consists of n + 1 elements
where n is the degree of the polynomial used to model that
pixel’s specific RGB value with respect to time. This is vi-
sualized in Fig. 3.
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Figure 2: (PolyNet) Note that each increase/reduction in block size indicates a spatial dimension change of factor 2. PolyNet
produces four predictions (three side predictions at smaller spatial scales and one final prediction that matches the spatial

dimensions of the input frames) which are labeled as the Poly;s.

Evaluationattimet

Figure 3: Here we see a break down of the predictions of
polyNet. Note that p,, ,, corresponds to the pixel located at
m, n. For each p,, ,, there are three coefficient vectors (one
for each channel). These vectors are used to form the pixel
polynomials that are evaluated at time ¢ to predict the pixel
values for all three channels.

Loss Function Our model is trained using a custom loss
function that consist of three separate terms L, Ly, and L.
Our loss functions are primarily geared towards minimiz-
ing the absolute pixel loss £,, (see Eq. 2) between all of the
ground truth frames and the corresponding predictions (this
can be seen in Fig. 4).

k
L, => |fr—pt) @)
t=0

Note that in Eq. 2, the f; denote actual pixel values and
the p(t) denote polynomial outputs at time ¢.

Early testing on the validation sets showed us that the
model learns how to produce the coefficients that accurately
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Minimize the pixel loss

Figure 4: The frame on the far left is the ground truth and
the frame in the middle is the model’s prediction. On the far
right, we see the absolute difference between the two frames.

model the colors of the pixel; however, the structure of mov-
ing objects were often blurry and contained ghosting and
artifact effects present in the predictions (refer to Fig. 5).

In order to deal with this blurring issue we needed a way
to train the model on the structural information in the frame
sequences. We were able to accomplish this in two different
ways: derivatives with respect to the x and y dimensions,
also known as image gradients, and derivatives with respect
to time. Image gradients are calculated using the image gra-
dient method from the TensorFlow image library. Once we
obtain the image gradients from the input frames and the
predicted frames, we take the absolute difference between
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Figure 5: The frames on the left are the ground truth and the
frames on the right our the model’s prediction. We see on
the top right prediction the image has a ghosting effect and
the bottom right prediction has artifact effects.

the two and add this term to our loss function (refer to Eq.
3). By adding this term our model should learn how to de-
tect the edges of objects and thus learn how to maintain the
edges of the objects as we interpolate frames.

d

@Pi | 3

b d d d
Ly = ;|%fz - %pﬂ + |d7yfl —

Note that in Eq. 3 the f; denotes the input frame at time
i, and p; denotes the predicted frame at time 7. Here we
are summing over 0,. ..,k since we assuming there are k
frames in the sequence.

When tested on the validation sets, the addition of the £,
term to the loss function improved the performance of the
model; however, it was still not on par with what the state
of the art was reporting for their validation metrics. In order
to close the gap between our model and the state of the art,
we added a term that represented the absolute difference be-
tween approximate derivative of input frames with respect
to time and the derivatives of the pixel polynomials with
respect to time. To approximate the derivative of an input
frame, say f;, with respect to time we calculate the differ-
ence between the frame after (f; 1) and before (f;_1), and
then divide by the change in time. Since the approximation
of the derivative requires there to be a frame before and after
the frame in consideration, we can only calculate this term
for the frames in the middle of the first and last frames of the
input sequence. This derivative can be expressed mathemat-
ically as Eq. 4.

= fk+1-;fk71 @

Note that in Eq. 4 the f; denotes the derivative of the
frame fj, at time k. Also note that we divide by two since

we are always approximating the derivative by comparing
the average rate of change of the frames before and after the
frame we are interested in, and gives us a time change of
two.

Once we calculate f,;, we need to compare this derivative
to the derivative of the pixel polynomials evaluated at the
same time k. We calculate the derivative of the pixel poly-
nomials very simulare to how we calculated the predicted
frames; this can be seen in Fig 6.
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Figure 6: Here we see how we use the predictions of polyNet
to calculate the derivative with respect to time. Just like in
Fig. 3, we use matrix multiplication to differentiate with re-
spect to time ¢ for all three color channels.

Finally, we can add the absolute difference between the
approximation and the predicted derivatives to the loss func-
tion. Mathematically this is represented as Eq. 5.

k—1
La=>_|fl -7l ©)
i=1

Note that in Eq. 5, the f/ denotes the approximate deriva-
tive for the input frame f; and pj is the derivative of the
predicted frame p; evaluated at time .

In the Experimentation section, we will break down how
each of these terms are combined in the loss function and
also report how these combinations preformed on our vali-
dation sets.

Training Procedure and Training Data We are currently
training PolyNet on frame sequences consisting of three
frames. PolyNet takes the first and last frame of the sequence
as input and learns the coefficients needed to predict all three
of the frames. As the model is training, the predicted frames
are compared to the ground truth and the £,,, £, and L4 are
calculated using the methods described above. Again, the
primary goal of the model is to produce the coefficients that
minimize the pixel loss as much a possible for all scaled pre-
dictions. Fig. 7 is a schematic of the training procedure that
is currently implemented by PolyNet.

For training, we have adopted the UCF101 dataset devel-
oped by Soomro, Zamir, Shah in 2012 (Soomro, Zamir, and
Shah 2012). This data set is composed of 101 action classes,
over 13k clips, and 27 hours of video data. The database con-
sists of realistic user uploaded videos containing camera mo-
tion and cluttered background. We converted the video into
frame sequences of length three. After converting the videos
into frame sequences we randomly set aside ~ 10% for val-
idation and trained on the rest. The frames are 416 x 128,
and are used in their entirety for training. Since our model
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Figure 7: Our model takes in the first and last frame of a
sequence and fits the pixel polynomials to model all the
frames. The model is subjected to minimize the loss terms
Ly, Ly, and Ly.

learns the information from the frames before and after the
target frame, we do not have implement boundary handling
procedures and our model can readily predict the pixels on
the edges of the frames without the need for padding.

Experimentation

For experimentation we developed the following three loss
functions:

Ly =L, (6)
£2 = Ep + ACg (7)
Ls=Ly+Ly+La ®)

Where L, L4, and L are those loss terms that we defined
in the Loss Function section. We trained the our model sub-
ject to these different loss functions with third degree pixel
polynomial. When we ran our model on our validation set,
we were able to obtain the results reported in the table below.

Loss Function | MAE SSIM  PSNR RMSE
Ly 0.02 091 2826 0.04
Lo 0.02 092 29.69 0.04
Ls 0.01 0.97  35.10 .01
Table 2: Extensive quantitative evaluation of the validation
set

In the Fig. 8, we see difference in interpolated frames
when the model was trained on L5 and L3 respectively.

Benchmark Evaluation

In order to compare our model with those of state of the
art, we tested our model on the Middlebury testing set and
reported the average interpolation error, which is the met-
ric used in the Middlebury benchmark (Baker et al. 2011).
These results can be found in Table 1 located in Appendix A.
We can see from the results that qualitatively our model does
not surpass those reported from Niklaus et al. nor Myers
et al. (Niklaus, Mai, and Liu 2017a). In fact, at first glance

Ground Truth Lz Ls

Figure 8: This showcases the differences in the interpolated
frames when the model was trained subjected to Lo and L3.

some may say our model failed miserably. However, we en-
courage the reader to remember one important fact, the qual-
ity of the training data greatly influences the quality of the
of the trained model. Niklaus et al. was using videos that are
rated as high quality (Niklaus, Mai, and Liu 2017a). We on
the other hand are using videos of poor quality, to which we
contribute our poor performance on the Middlebury Bench-
mark. However, we have shown through cross validation that
our model can learn to handle very challenging video quality
and still produce visually coherent frames. Our model may
prove to have applications in the video surveillance industry,
which is notorious for having poor video quality.

Project Novelty

Despite our model poor performance on the Middlebury
Benchmark, our model has the novel ability to generate mul-
tiple frames between the input. In most cases, the state of
the art fails to produce more than a single frame between
input frames. Since our model uses parameterized polyno-
mials to model the pixels in a frame we can generate mul-
tiple frames in between the input frames by evaluating the
pixel polynomials at different time ¢. Fig. 9, located in Ap-
pendix A, showcases a few examples of the series of frames
we generated from a given input sequence. One last aspect
of our project that sets it apart from other VFI models is the
training time. Our model was trained using a single GeForce
GTX 1080ti GPU and was able to train on the entirety of our
dataset in 5 hours and 15 minuets. This is faster than the con-
volutional kernel method developed by Niklaus et al. which
was reported to takes 20 hours to train using four Nvidia
Titan X (Pascal) GPUs.

Current Limitations and Future Works

As you can see in Fig. 8§ and 9, our model does a decent
job at interpolating frames. However, some of the interpo-
lated frames blur the object in motion and have artifacts and
ghosting effects. Although these are common short comings
in VFI algorithms, we still wish to address these issues in
our future work. One possible solution is to implement a su-
pervisor to our model architecture. An optical flow supervi-
sor would be ideal for learning the flow from frame to frame,
which would help the model produce polynomials that main-
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Loss Function | Mequon Schefflera Urban Backyard Basketball Dumptruck Evergreen | AVERAGE
Our £, 16.6 16.8 12.7 18.6 14.9 22.93 16.7 17.0
Our L3 10.7 11.7 8.91 12.4 9.58 11.85 11.0 10.9

Niklaus £, 2.52 3.56 4.17 10.2 5.47 6.88 6.63 5.61
Niklaus L r 2.60 3.87 4.38 10.1 5.98 6.85 6.90 5.81
MDF-Flow2 2.89 3.47 3.66 10.2 6.13 7.36 7.75 5.82
DeepFlow2 2.99 3.88 3.62 11.0 5.83 7.60 7.82 6.02

AdaConv 3.57 4.34 5.00 10.2 5.33 7.30 6.94 6.20

Table 1: Results from the Middelbury benchmark evaluation. The table reports the Average Interpolation Error, also known as

root-mean-error.
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Figure 9: Our model was able to to produce seven intermediate frames between the input frames. The top three frame sequences
were generated from our validation set and the bottom 2 are from the Middlebury test set.

tain the flow in the frames, de-blurring the objects in motion.
Another option would be to feed the output of our model into
an image reconstruction and image synthesis model such as
the one developed by Chuan Li and Michael Wand in 2016
where they used a dCNN that utilized a Markov random field
to synthesize 2D images (Li and Wand 2016). This model
could be used to reconstruct the parts of the frame that seem
blurry using the information learned from the input frames.

We also would like to explore how training on different

data sets might effect the outcome of the experiments. The
UCF101 data set is a nice well rounded video data set. How-
ever, the videos are not what we would call high quality in
terms of today’s standards. The YouTube 8M data set, for
example, might prove to be a great data set to train on since
the data set contains many videos with 4k resolution. This
may result in our model producing more clear and crisp in-
terpolated frames and possibly put us at state of the art or at
the very least greatly improve our performance on the Mid-
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dlebury evaluation.

One last avenue that we are interested in exploring is
changing the training procedure slightly so that it resemble
a residual learning algorithm. In order to do this, we will
eliminate the constant coefficient in the pixel polynomials
and replace these with the pixel values of the first frame in
the sequence. In doing this we hope to ease the training of
PolyNet and shift the importance of learning coefficients that
more accurately models the intermediate frames rather than
the input frames.

Conclusion

We have proposed a novel method to synthesize the pixel of
interpolated frames by training a CNN to predict polynomi-
als that model the pixel values on each channel with respect
to time. We have adapted our model from the DispNet ar-
chitecture that was implemented in 2017 by Zhou et al. for
an unsupervised model to predict depth and pose from video
frames (Zhou et al. 2017). Our model was trained using the
UCF101 dataset and was shown to be able to train faster
than state of the art and was able to produce multiple inter-
polated frames, unlike the state of the art models. Although
our model preformed poorly on the Middlebury Benchmark,
we have shown that our model can learn to handle challeng-
ing video quality and still produce interpolated frames that
are visually coherent. In short our model can be summed up
by the following phrase: ”Quantity over Quality”! Yet, there
is still hope to change ”Quantity over Quality” to ”Quan-
tity and Quality”. We discussed future directions to address
the short comings of our model and hope to implement these
ideas so that we can run the experiments to see how we com-
pare to state of the art. Overall we have shown that polyno-
mials are decent interpolaters and given the right training
data may prove to be great interpolaters.
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Abstract

Fluorescence microscopy images are often taken at low
light and short exposure times to preserve the integrity
of cell samples. However, imaging under these condi-
tions leads to severely degraded images with low sig-
nal to noise ratios. To computationally restore these im-
ages, we introduce novel loss functions to denoise mi-
croscopy images. These loss functions will be folded
into the CARE algorithm. The results produced by this
modification will be evaluated against traditional TV fil-
tering and NL means techniques. The modified model
will also be compared against its CARE predecessor us-
ing standard image quality metrics.

Introduction

Fluorescence microscopy is vital for understanding pro-
cesses and structures at the cellular level. Because imaging
at the cellular level under strong lighting conditions or long
exposure times may damage the cell sample through pho-
totoxicity, fluorescence microscopy images need to be re-
stored. A safe way to image a cell is to use low light condi-
tions and/or low exposure times, which unfortunately lowers
the signal to noise ratio (Xing et al. 2017).

Figure 1: Fluorescence microscopy images taken of actin
under high light (left) and low light conditions (right)

Noise in an image depends on a combination of factors,
including exposure time and physical experimental condi-
tions. In fluorescence microscopy, noise is typically de-
scribed by a Poison-Gaussian model. There has been extens-
ive work done in image restoration through filtering noise
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from microscopy images. These filtering techniques have
limitations, which call for a more generalized solution.
Deep learning methods have been successful in restoring
corrupted images, as well as in other image processing tasks
such as classification, segmentation, and object detection. A
widely used deep learning architecture in image processing
is a convolutional neural network (CNN). A CNN consists
of an input layer, hidden layers, and an output layer. Another
popular network in image processing is an autoencoder. Typ-
ically, autoencoders are used for denoising and reducing the
number of dimensions of input data (Xing et al. 2017).

Related Work

Deep learning approaches to image deblurring may involve
blind and non-blind image deconvolution. There are a wealth
of studies devoted to the non-blind image deconvolution ap-
proach, but these networks are limited, as they rely on in-
formation about the non-blurry image beforehand. By con-
trast, blind deblurring models are more flexible since in-
formation about the non-blurry image is not required for the
network to deblur an input image.

In 2014, Xu et al. introduced a natural image deconvo-
Iution that is data-driven and does not rely on traditional
assumptions. For example, generative models tend to as-
sume that noise in an image is identically and independ-
ently distributed, even if this assumption is not necessarily
true. Instead, this CNN was trained on images that were not
deblurred ahead of time and the network learned the decon-
volution operation without requiring information about the
original image. The main contribution of Xu et al. was devel-
oping this deep convolutional neural network (DCNN) that
consisted of two sub models—one for deconvolution and the
other for denoising. The models perform inverse filtering us-
ing large 1D kernels and the former sub model is pre-trained
to mimic Weiner deconvolution (Xu et al. 2014).

A major drawback of the previously discussed blind
DCNN was that it failed if the original image was not blurry.
To address this shortcoming, Conti et.al introduced a con-
volutional neural network that consisted of a regularization
term in the cost function. This improved model was able
to denoise a blurry image and maintain the quality of im-
ages that are not noisy. The major modifications made by
Conti et al. were that they used single 2D convolutional lay-
ers rather than 1D kernels for deblurring. The regularized
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cost function was built using the results of a classification
network trained to distinguish blurry and non-blurry images
that had roughly 80 percent accuracy when evaluated(Conti,
Minucci, and Derakhshan 2017).

More recently, Weigert et al. published a series of image
restoration methods that succeeded in restoring seven im-
ages of various organisms (i.e. planaria flatworm, fruit fly
wings). The major contributions of this work include: gener-
ating training data without requiring manual labeling, replic-
ating live imaging for organisms in which live imaging had
once been near-impossible, and restoring microscopy im-
ages even when lighting conditions are reduced by 60-fold.
Weigert et al. demonstrated high quality results with restor-
ations of images containing Tribolium castaneum (red flour
beetle) and Schmidtea mediterranea (a flatworm commonly
known as planaria). This Content-Aware Image Restoration
(CARE) network is based on the U-Net network, which con-
sists of an encoder-decoder architecture. The only difference
between the CARE network and the U-net algorithm is that
the former outputs a per-pixel Laplace distribution whereas
the latter outputs one value per pixel. Although these res-
toration methods are promising, each pair of image content
and corruption requires a unique data set. Each model must
be retrained for an image of that particular content and cor-
ruption to be successfully restored (Weigert et al. 2017).

Modifying network architecture is a popular strategy to
achieve better performance. Another widely used approach
to this goal is data augmentation. Data augmentation is
widely used for image classification(Paulin et al. 2014), as
applying random transformations to training data effectively
provides more data for a network to learn from. Not sur-
prisingly, training with large data sets produces high-quality
image restorations (Burger, Schuler, and Harmeling 2012).
Typical transformations for data augmentation include trans-
lation, rotation, and scaling. Augmenting data is a manual
process in which these image transformations are specified
by humans. To automate this process, Jain et al. developed
an unsupervised learning procedure that generated training
samples using different noise models (Jain and Seung 2009).
Likewise, Hauberg et al. developed a learned augmentation
scheme that outperforms manual augmentation of MNIST
data when used as training for a multilayer perceptron and a
CNN (Hauberg et al. 2016).

Lastly, altering the loss function is a viable strategy,
though this approach tends to be overlooked (Zhao et al.
2017). Typically, the mean absolute error and mean squared
error loss functions are employed in image processing net-
works (Zhao et al. 2017; Burger, Schuler, and Harmeling
2012; Agostinelli, Anderson, and Lee 2013; Chen et al.
2018).In 2017, Zhao et al. introduced a new loss function for
image restoration that combined the multi-scale SSIM (MS-
SSIM) metric with L; loss. Without changing network ar-
chitecture, Zhao et al. demonstrated that by using this mixed
loss function, their fully convolutional neural network out-
performed state-of-the-art networks on tasks such as joint
denoising and demosaicking (Zhao et al. 2017). Drawing in-
spiration from this approach, we will replace the existing
Laplace loss function of the CARE network with a novel
loss function that enhances edge restoration in fluorescence

microscopy images.

Research Questions and Hypothesis
The questions we will address in this study are:

1. How well does the CARE network perform on our micro-
scopy data set?

2. How can we produce image restorations that are sharper
than those produced by CARE?

3. How does the network perform when it is trained on one
kind of sample and tested on a different kind of sample?

4. Can we reliably restore live cell images?

We hypothesize that our improvement on the method of Wei-
gert et al. will restore microscopy images that are less blurry
and more detailed than the restorations of the original CARE
model. Thus, our model will be a more faithful solution
compared to the denoising approach of Weigert et al.

Proposed Implementation

We modified the loss function of the CARE network in
hopes of producing restorations that are more faithful to
ground truth images. Ultimately, the objective of this study
is to restore microscopy images free of artifacts and without
loss of fine details.

Experimental Setup

The data set we used to train the standard CARE model is
High Low, which consists of over 400 fluorescent images of
actin and mitochondria, in addition to 170 images of dendra.
All images in the High Low data set were taken using an
Olympus IX83 with 60X/1.3NA objective lens. The Andor
Zyla CMOS camera was used to image cell organelles.

For all of our experiments, we first observed the beha-
vior of the network and assessed the quality of the network
without loss function modifications. These results were then
compared to results produced by training the CARE network
using our FFT and bandpass cost functions. These experi-
ments include restorations of actin imaged at 1 millisecond
and 10 milliseconds, restorations of mitochondria imaged
at 1 millisecond, model mismatch experiments, and restora-
tions of dendra imaged at 10 milliseconds. We use the term
model mismatch to indicate experiments in which images
of one type of cell content are used for training while im-
ages of another type of cell content are used for testing. For
example, we used images of mitochondria as training data
for the CARE algorithm, and subsequently tested the model
using noisy images of actin. Our most recent experiments in-
volved restorations of dendra imaged at 10 milliseconds us-
ing dendra imaged at 10 and 400 milliseconds as the training
set. The results of these experiments were evaluated using
peak signal to noise (PSNR) and structural similarity (SSIM)
image quality metrics.

To conduct our experiments, we used the default config-
urations of the standard CARE model. The training batch
size was 16 images, the number of training epochs was 100,
the initial learning rate was 0.0004, and the iterations per
epoch (training steps) was 400. The training images were
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2048 pixels wide, and 2048 pixels high, with 1 grayscale
channel. In sampling the training images, 800 patches per
image of size 64 pixels by 64 pixels were used to train the
CARE model. In all experiments, images were split accord-
ing to the ratio 4:1 for training and validation respectively.
Nine or ten images were used for testing in all experiments.
Table 1 provides an overview of the experiments we per-
formed along with their abbreviations.
table

Method

The denoising method of Weigert et al. is successful when
restoring images with up to 60-fold reduction in light ex-
posure. Beyond that range, however, we found the CARE
algorithm is not able to restore images with fine details. In

Figure 2: Ground truth image of actin (left) and CARE res-
toration of actin using Laplace loss (right)

the CARE network, the popular stochastic gradient descent
Adam optimizer is used to minimize a Laplace loss function.
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where T 1ndicates the number of training images, N in-

dicates the number of pixels per image, y' corresponds to
the ground truth pixel value, and 2" corresponds to the input
pixel. 1 and o correspond to the mean and variance of the
predicted pixel distribution.

Llaplace(

Loss function modification

The restored images produced by this algorithm suffered
from blurriness and lack of fine details. In response to this
issue, we tested various loss functions tailored to preserve
edges. Despite the strong performance of the combined MS-
SSIM and L4 loss function introduced by Zhao et al. (2017),
we found a similar combined MS-SSIM and L loss func-
tion yielded poor results when applied to the CARE net-
work. Incorporating the SSIM metric into the loss func-
tion resulted in slightly better performance according to the
SSIM metric, which was expected. In addition to SSIM-
based loss functions, edge detection techniques were applied
to the loss function. We obtained poor results by using the
Sobel operator in the loss function. The loss functions that
we introduce in this study are the FFT and bandpass loss
functions. So far, these two loss functions have produced the
most faithful results for denoising images in our High Low
data set compared to other loss functions we designed.

The FFT loss function is similar to mean absolute er-
ror with one key difference. Instead of taking differences
between corresponding pixel values, the FFT loss function
considers differences between per-pixel frequencies repres-
ented in the 2D Fourier transforms of the restored image and
its corresponding ground-truth image.

, M
Lrpr = mzz | £ — fi,5°]

j=1i=1

where f represents the frequency at the (i,j) pixel in the
Fourier transforms of the restored and ground truth images
(represented by r and ¢, respectively). M and N represent
the M x N pixels in an image. To preserve edges, the band-
pass loss function was designed to emphasize high frequen-
cies. This loss function (L) consists of taking a difference
of Gaussians, with o1 = 0.5 and o9 = 5. These sigma val-
ues were chosen arbitrarily, and may be adjusted through
trial and error. In the equation below, G j,on denotes Gaus-
sian blur applied to the ground truth image with standard de-
viation o and Gl .o, denotes Gaussian blur applied to the
ground truth image with standard deviation o,. Likewise,
G} ; », denotes Gaussian blur applied to the restored im-
age w1th standard deviation o1 and G ; ,, denotes Gaussian
blur applied to the restored image with standard deviation o

T T
jal ZjO'Q) (G2]a'1 _Gi
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Results
Restoration of actin

To restore actin imaged using 1 millisecond of exposure
time, the CARE algorithm was trained using sixty pairs of
actin images taken using 1 millisecond and 100 milliseconds
of exposure time. After the model was trained, nine testing
images of actin taken at 1 millisecond of exposure time were
restored using the CARE prediction function. The follow-
ing table displays peak signal to noise ratios and structural
similarity measurements of the initial input images and the
corresponding restored images. In the following tables, the
PSNR and SSIM values of the input image are displayed
in the Input column , with the rest of the column headings
indicating the loss function used (Laplace, FFT, and band-
pass).

H Actin  Input Laplace  FFT BP H
0 26.690 35.869 35.676 35.304
1 28.322 35256  33.500 35.559
2 29.074 39915 39.747 39.833
3 33.395 42284 42140 43.218
4 31.766  39.827 40.741 40.657
5 32.937 39.892 40.534 40.406
6 31.452  38.235 36.589 38.297
7 27.677 36458 33.306 35.642
8 32.679 41.278 39.607 40.980

Mean 30.444  38.779 37982 38.877

Table 2: PSNR values produced by loss functions (AA)
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Encoding Training Set (Exposure Time) Input Ground Truth (Exposure Time)
Low SNR High SNR

MM Mitochondria (1 ms) Mitochondria (100 ms) Mitochondria (1 ms) Mitochondria (100 ms)

AA Actin (1 ms) Actin (100 ms) Actin (1 ms) Actin (100 ms)

MA Mitochondria (1 ms) Mitochondria (100 ms) Actin (1 ms) Actin (100 ms)

AM Actin (1 ms) Actin (100 ms) Mitochondria (1 ms) Mitochondria (100 ms)

DDS Dendra (10 ms) Dendra (400 ms) Dendra (10 ms) Dendra (400 ms)

AAS Actin (10 ms) Actin (400 ms) Actin (10 ms) Actin (400 ms)

AAE Actin (1 ms) Actin (100 ms) Actin (1 ms) Actin (100 ms)

Table 1: Summary of experiments

H Actin  Input Laplace FFT  BP H

0447  0.895 0907 0.914
0.838 0951 0947 0.954
0.707  0.967 0970 0.966
0.829 0976 0981 0.979
0.831 0976 0978 0.977
0.870 0977 0980 0.979
0.895 0972 0968 0.977
0.846 0.956 0930 0.953
0.889 0980 0979 0.977
Mean 0.795 0.961 0.960 0.964

0| A O\ N[ K| W 9| = O

Table 3: SSIM values produced by loss functions (AA)

Restoration of mitochondria

An identical experiment was performed to restore mitochon-
dria images taken with 1 millisecond of exposure time. Sixty
pairs of mitochondria were used for training and validation
while ten pairs of mitochondria images were used for test-
ing. The following tables display results of this experiment.

H Mitochondria  Input  Laplace  FFT BP H

0 32073 41.059 40.644 40.213
1 31.624 34233 34474 36.011
2 32.167 39.965 40.171 39.937
3 27757 35261 36.709 35.068
4 34548 41.057 41.583 40.292
5 31.943 35940 36.585 35.206
6 32995 40.704 41.148 39.873
7 34.169 39.387 40.401 39.163
8 33.385 40.702  40.773  39.253
Mean 32296 38.701 39.165 38.335

Table 4: PSNR values produced by loss functions (MM)

H Mitochondria Input Laplace FFT  BP H

0 0.805 0983  0.985 0.985
1 0907 0981 0.985 0.977
2 0.797 0981 0983 0.984
3 0.605 0957 0.965 0.961
4 0.886 0988  0.989 0.988
5 0.844 0977 0977 0978
6 0.830 0985 0.983 0.985
7 0.895 0984 0.986 0.983
8 0.844 0987 0984 0.986
Mean 0.824 0980 0.982 0.981

Table 5: SSIM values produced by loss functions (MM)

Model mismatch to restore actin

Actin imaged at 1 millisecond was restored using the stand-
ard CARE model trained with mitochondria images. As
CARE is a content-aware network, the PSNR and SSIM val-
ues produced by the algorithm were less faithful to ground
truth images compared to previous experiments (MM and
AA). The following tables display results of this model mis-
match experiment.

H Actin  Input Laplace  FFT BP H

26.690 36.666 36.060 35.363
28.322  30.095 30.557 30.661
29.074  37.591 38.431 36.413
33395 38911 40.440 37.258
31.766  36.436 38.631 36.627
32937 36.125 39.027 35.660
31.452  33.647 34.482 33.029
27.677 28.937 29.406 27.911
32.679 35.851 36.631 35.440
Mean 30.444 34918 35963 34.262

R0 | O\ N[ K| W —=O

Table 6: PSNR values produced by loss functions (MA)

University of Colorado, Colorado Springs 67



REU Symposium on Machine Learning

H Actin  Input Laplace FFI  BP H
0 0.448 0936 0930 0.937
1 0.838 0937 0954 0.941
2 0.707 0.957 0.963 0.958
3 0.829 0967 0974 0.962
4 0.831 0.958 0972 0.962
5 0.870  0.959 0.975 0.956
6 0.895 0964 0974 0.962
7 0.846 0919 0939 0.895
8 0.889 0.971 0.976 0.967
Mean 0.795 0.952 0962 0.949

Table 7: SSIM values produced by loss functions (MA)

Model mismatch to restore mitochondria

Mitochondria imaged at 1 millisecond were restored using
the standard CARE model trained with actin images. The
following tables display results of the second model mis-
match experiment.

H Mitochondria  Input  Laplace  FFT BP H
0 32.073  39.803 40.825 40.779
1 31.624 35938 34370 35.862
2 32.167 39.416 39.808 39.666
3 27757 34.052 35.616 35.641
4 34548 40.982 40.920 41.938
5 31.943  36.055 36.485 36.923
6 32995 38.463 40.084 39.956
7 34169 40.389 40.016 41.037
8 33.385  39.696 40.299 40.401
Mean 32396 38.311 38.714 39.134

Table 8: PSNR values produced by loss functions (AM)

H Mitochondria Input Laplace FFT  BP H
0 0.805 0.977 0.982 0.983
1 0.907 0978 0984 0.977
2 0.797 0977 0981 0.980
3 0.605 0.942 0953 0.955
4 0.886 0985  0.987 0.987
5 0.844 0974 0977 0.978
6 0.830 0971 0.982 0.980
7 0.895 0983  0.985 0.984
8 0.844 0974  0.983 0.982
Mean 0.824 0973 0.979 0.979

Table 9: SSIM values produced by loss functions (AM)

Restoration of dendra

Dendra imaged at 10 milliseconds were restored using the
standard CARE model trained with dendra images. The
dendra samples were imaged at 200 timesteps, with each
timestep lasting 400 milliseconds. The following table dis-
plays average PSNR and SSIM results of denoising using
the Laplace, FFT, and bandpass loss functions.

Input | Laplace | FFT BP
PSNR | 26.639 | 32.691 | 28.534 | 32.758
SSIM | 0.570 0.897 0.846 | 0.909

Restoration of actin sequence

Actin imaged at 10 milliseconds were restored using the
standard CARE model trained with actin images. The
actin samples were imaged at 200 timesteps, with each
timestep lasting 400 milliseconds. Due to the large number
of samples restored (200 images), the following table dis-
plays average PSNR and SSIM results of denoising using
the Laplace, FFT, and bandpass loss functions.

Input | Laplace FFT BP
PSNR | 25.672 | 25.917 | 26.023 | 26.002
SSIM | 0.837 0.872 0.874 | 0.874

Table 10: Average PSNR and SSIM values produced by loss
functions (AAS)

Restoration of extremely noisy actin

In our AAE experiment, actin imaged at 1 millisecond were
restored using the standard CARE model trained with actin
images. Microscope settings were altered prior to imaging
these actin samples to induce significant noise in these im-
ages (taken with 1 millisecond of exposure). The accompa-
nying table that displays these results will be included in a
future revision.

Discussion

The results of our study were analyzed using paired sample
t-tests with an alpha significance value of 0.05. We demon-
strate statistically significant results with respect to SSIM
measurements, particularly in model mismatch experiments.
The sequence of actin restorations (AAS) also demonstrated
statistically significant results. The table below summarizes
t-test results (p-values) for each experiment. The PSNR and
SSIM values obtained using the FFT and bandpass loss func-
tions were each evaluated against PSNR and SSIM values
obtained by the original Laplace loss function.

Experiment FFT/Laplace BP/Laplace
PSNR SSIM PSNR SSIM
MM 0.03 0.150 0.264 0.426
AA 0.110 0.201 0.640 0.710
MA 0.016 0.007 0.311 0.311
AM 0.260 0.0008 0.002 0.008
DDS — — — —
AAS 1.509e-232  5.811e-205 4.055e-232  5.458e-199
AAE — — — —

The following table summarizes the average change in
PSNR and SSIM values organized by experiment descrip-
tion and loss function.
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Metric Loss MM AA MA AM DD
Laplace | 6.405 8.336 4474 6.015 DD

APSNR FFT 6.870 7.539 5519 6.418 -
BP 6.039 8.434 3819 6.838 -

Laplace | 0.157 0.166 0.157 0.150 DD

ASSIM FFT 0.158 0.165 0.167 0.156 —
BP 0.157 0.169 0.154 0.155 -

Table 11: Average Increase in PSNR and SSIM

Further Research

To further evaluate our deep learning approach, we will em-
ploy traditional filtering techniques (total variation and non-
local means) and compare our results with these conven-
tional practices using standard metrics (PSNR and SSIM).
The total variation minimization (TV) technique restores
images by minimizing a cost function. The TV method
smooths excess details while maintaining sharp edges. The
non-local means (NL means) filtering technique finds the
average of all pixels in an image, and makes each pixel a
linear combination of patches. Similar patches are weighted
more heavily than dissimilar patches (Buades, Coll, and Mo-
rel 2005).

In the near future, we will train the CARE network while
varying the patch size of the training images to 32 x 32 and
128 x 128. By introducing different patch sizes for training,
the CARE network performance may improve. We would
also like to implement combined loss functions (FFT loss
combined with bandpass loss). Perhaps an adaptive, GAN-
based loss function may better outperform the current state-
of-the-art. To test the limits of our computational restoration
method, we will conduct future studies to determine what is
the lowest amount of light that can be used when imaging a
sample such that the image can successfully be restored by
our implementation?

Conclusion

The purpose and major contribution of this research is to
modify and improve existing restoration methods for fluor-
escence microscopy imaging. Compared to the Laplace loss
function, the results of this study indicate that there were
statistically significant improvements in image denoising us-
ing FFT loss and bandpass loss to train the CARE network.
Our model mismatch and actin sequence restoration exper-
iments yielded the most prominent statistically significant
results, which confirms that the CARE model generalizes
poorly when it is content-unaware. By developing ways to
denoise fluorescence microscopy images faithfully, signific-
antly less time and resources will be required to image 2D
structures.
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Abstract

Predicting 3D scene structure from a single image is a sig-
nificant obstacle in fields such as autonomous robotic navi-
gation, entertainment, and 3D modelling. In the past several
years, researchers have made promising strides in predicting
3D scenes from flat perspective images; however, little work
has been done towards applying this to panoramic imagery.
In this project, we develop a model for estimating depth and
ego-motion from single cylindrical panoramic images.

Introduction

Understanding the structure of a 3D scene is an important
problem in many fields, from autonomous vehicle naviga-
tion to 3D filming. Unfortunately, predicting 3D structure
from a single image is extremely challenging. The number
of confounding factors (e.g. varied texture, lighting, occlu-
sions, and object movement) make it an ill-posed problem:
a single image could represent many possible 3D scenes.

Early attempts at estimating scene structure from motion
(also known as SfM) focused on directly analyzing factors
such as the geometry and flow of the image (Bergen et al.
1992; Mur-Artal, Montiel, and Tardos 2015; Saxena, Sun,
and Ng 2009). However, these models were often fragile in
the face of occlusions, object motion, and other inconsistent
(but real-world) conditions. In the past several years, many
exciting advances have been made in estimating scene struc-
ture and ego-motion—motion of the observer—using deep
neural networks.

Early research relied on labelled data for training (Eigen,
Puhrsch, and Fergus 2014; Liu et al. 2016). Unfortunately,
labelled 3D footage is expensive to create, limiting the quan-
tity and diversity of available training data. This limitation
has triggered a promising new area of research: unsuper-
vised SfM models, which figure out scene attributes such
as depth and ego-motion without requiring labelled data. In
the past few years, several unsupervised models have been
proposed with comparable performance to the supervised
state-of-the-art (Godard, Mac Aodha, and Brostow 2017;
Zhou et al. 2017; Vijayanarasimhan et al. 2017; Mahjourian,
Wicke, and Angelova 2018; Wang et al. 2018), lowering
the cost and expanding the diversity of potential training
datasets.

While much progress has been made for “’standard” pin-
hole perspective images, little work has been done for other

Jonathan Ventura
University of Colorado, Colorado Springs
Colorado Springs, CO
jventura@uccs.edu

Figure 1: An example of extracting 3D depth information
from a 2D image.

projection models. There are many compelling applica-
tions for computer vision with non-pinhole projection im-
ages, such as robotic vision with omnidirectional cameras.
Spherical panoramas are particularly interesting, but the pro-
jection model introduces distortions that prevent a naive
approach (Cohen et al. 2018). Cylindrical panoramas of-
fer many of the same benefits as spherical, but the projec-
tion model is much more straightforward. However, to our
knowledge, deep networks for depth prediction have not yet
been applied to cylindrical panoramic imagery.

In this paper, we tackle that gap by proposing an unsu-
pervised convolutional model that estimates depth and ego-
motion from cylindrical panoramas.

This research was motivated by the following two ques-
tions:

1. How can existing convolutional neural networks (CNNs)
designed for pinhole images be adapted to take cylindrical
input?

2. Can cylindrical input improve the performance in unsu-
pervised structure-from-motion models?

Major Contributions
This work has two major contributions:

1. We present CylindricalSfMLearner, an unsupervised
model for estimating structure from motion given cylin-
drical panoramic input, and
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2. We present a library and techniques for extending other
CNN:s to take cylindrical panoramic input.

We hope that our work here will provide a solid base for
future research into CNNs and panoramic input.

Related Work and Background
Supervised Monocular Depth Prediction

Early research focused on detecting structure from stereo—
or multi-source—imagery. Stereo SfM is much more con-
strained than detecting structure from monocular—single-
source—input, but the stereo input requirements limits the
model’s flexibility. Eigen, Puhrsch, and Fergus (2014)
proposed a different approach using deep neural networks.
They presented a supervised model for estimating depth
maps from monocular input images. Their model was com-
posed of two stacks, one for coarse estimation and one
for fine estimation, and joined the two predictions (Eigen,
Puhrsch, and Fergus 2014).

Supervised to Unsupervised Models

While this progress in supervised models was exciting, col-
lecting labelled footage is very expensive, increasing train-
ing cost and limiting the size and diversity of datasets. This
limitation triggered a number of researcher to turn towards
unsupervised models. Godard, Mac Aodha, and Brostow
(2017), taking inspiration from previous stereo techniques,
proposed a model that was trained on unlabelled stereo
footage. Their trained model outperformed the previous
supervised state-of-the-art on urban scenes and reasonably
well on unrelated datasets (Godard, Mac Aodha, and Bros-
tow 2017).

Zhou et al. (2017) removed the constraint of stereo train-
ing footage. They proposed an unsupervised model com-
posed of jointly-trained depth and pose CNNs using a loss
function tied to novel view synthesis. They found that
their unsupervised model performed comparably to super-
vised models on the known datasets and reasonably well
when tested against a completely unknown data set. Un-
fortunately, while the model could be trained on monocu-
lar footage, it assumes a given camera calibration, which
prevents random footage from the web from being used as
training data (Zhou et al. 2017).

Further Enhancements

In a concurrent study, Vijayanarasimhan et al. (2017) ad-
dressed this shortcoming by explicitly modelling scene ge-
ometry. Inspired by geometrically-constrained Simultane-
ous Localization and Mapping (SLAM) models and Go-
dard, Mac Aodha, and Brostow’s work on left-right con-
sistency, they proposed a model capable of detecting both
ego-motion and object motion—as well as depth and object
segmentation—from uncalibrated monocular images (Vi-
jayanarasimhan et al. 2017). Building upon Zhou’s and
Vijayanarasimhan’s models, Mahjourian, Wicke, and An-
gelova (2018) proposed a completely unsupervised model
with explicit geometric scene modelling the following year.
Their model introduced a new 3D loss function and added

Source Image

Predicted Target

Figure 2: SfMLearner uses view synthesis as a supervisor:
the source image, depth, and pose transformation are used to
synthesize a target view, and the loss depends on the dispar-
ity. As the synthesized view improves, the depth and pose
predictions improve.

a new principled mask for handling unexplainable input
(Mahjourian, Wicke, and Angelova 2018).

Methods

In this project, we present an unsupervised convolutional
model that estimates (a) the depth map from a single cylin-
drical panoramic image and (b) ego-motion from image se-
quences.

Model Architecture

Our architecture is based off of SfMLearner (Zhou et al.,
2017), an unsupervised model designed to predict depth and
ego-motion in monocular pinhole images. The architecture,
illustrated in Figure 3, is a convolutional network consisting
of two jointly-trained stacks: (a) a depth network to estimate
the depth map, (b) a pose network/explainability mask to es-
timate the change in pose in image sequences and handle
unexplainable input. The depth network follows the Disp-
Net (Mayer et al. 2016) skip-layer architecture, with seven
contracting layers and seven expanding layers, outputting a
multi-scale depth prediction. The pose network (PoseEx-
pNet) consists of five contracting convolutional layers and
three pose layers, outputting the predicted translation and
rotation between source and target views. The explainabil-
ity network consists of a final five upconvolution layers and
returns a multi-scale explainability mask, which masks ~un-
explainable” motion.

StMLearner works using view synthesis—the prediction
of a target frame given source frames—as an internal super-
visor. At each step, the joint DispNet and PoseExpNet stacks
predict the depth of a target frame and the pose difference
between the target and source frames. The depth and pose
are then used for synthesizing a target view: as the predicted
view improves the depth and pose predictions also improve
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Depth Network

(a) The depth network consists of a seven layer encoder followed by a seven layer decoder with a
skip-layer architecture. The network returns the multi-scale disparity predictions, which can then

be converted to depth predictions.

Pose Network Explainability Network

(b) The pose network consists of a
five-layer encoder followed by two
pose layers and returns the pose as
a six element vector. The explain-
ability network adds a five-layer
decoder and returns the multi-scale
explainability mask.

Figure 3: The StMLearner model consists of two jointly-trained CNN stacks. The left diagram shows the depth CNN, and the

right diagram shows the pose/explainability CNN.

(Zhou et al. 2017). This process is illustrated in Figure 2.

For this model, we use a three-part objective function.
The main component is the photometric loss (Lyixe1), which
minimizes the difference between synthesized views and the
target view, which, in turn, improves the depth and pose pre-
dictions. This is regularized by the smooth loss (Lsmooth)s
which minimizes the second derivatives with respect to the
depth and the explainability loss (Lexp), Which makes the
model more resilient to anomalous input (e.g. moving ob-
jects). If A\; and A, represent the smooth and explainability
weights, the total loss can be written as follows:

L= Z ( Z »Cpixel + Asﬁsmooth + Z >\e£exp> (1)

scales sources sources

If 7 is an RGB image, D is the depth prediction, and e
is the explainability mask, the three loss components can be
written as follows:

Z € |Iproj - Itarget'
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Two major modifications were required to allow for cylin-
drical input: (a) the intrinsics and view synthesis functions
were modified to account for cylindrical projection, and
(b) the convolutional layers, resampling functions, and loss
were modified to preserve horizontal wrapping.

Camera Projection and Cylindrical Panoramas Our
view synthesis function works by (a) projecting a source im-
age onto the 3D sensor coordinate system, (b) inverse warp-
ing the points from the source pose to target pose, and (c)
projecting the warped points back onto a 2D image plane. To
adapt this process to work with cylindrical input, we mod-
ified the projection functions between the pixel and camera
coordinate systems as well as the expected camera intrinsics.

Most structure-from-motion systems expect pinhole pro-
Jection images as input. Pinhole projection images project a
3D scene from the world coordinate system onto a flat im-
age plane; this process can be described by the focal length
f, principle point c, the image plan height H, and the image
plane width W, as shown in Figure 4.

In contrast, cylindrical projection projects the 3D world
onto a curved cylindrical surface, as seen in Figure 5. The
goal of this process is to take a 3D point in the world co-
ordinate system and project it onto a rectangular cylindrical
panorama. This requires projecting the 3D point onto the
cylindrical image surface and converting the image surface
into a Cartesian coordinate system.

The transformation between the sensor and pixel coordi-
nate systems can be described by the following equations:
let P = (w4, ys, 25) represent a point in the 3D sensor coor-
dinate system X Y, Z,. We can find point Q) = (r, 0, h), the
point where P is projected onto a unit cylinder around the
origin, with the following formula:
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Figure 4: Pinhole projection model. The 3D world (on the
world coordinate system) is projected on a flat image plane;
the image plane is a focal length f away from the projective
center along the Z; axis (on the sensor coordinate system).
The result is an H x W rectangular image.
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r
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This can be represented by the 2D point ¢ = (6, h).

To “unroll” this cylinder into a rectangular image with the
Cartesian system xy, we must use some camera intrinsics:
scaling factor f; output width W; output height H; principle
point (cg,c,). The following equations will convert ¢ =
(0,h) into p = (,y):

Tl %W—kcm
e ©
The final panoramic image has a fixed height H and a
width of W (representing the full 360° view), as seen in
Figure 5.
The reverse projection (P = (x5, ys, 25) given ¢ = (6, h)
and some scaling factor d) can be described as follows:

Ty dsin
H :[ i ] »
2 dcosf

The cylindrical intrinsics K can be represented by the fol-
lowing matrix:

fo 0. «co
=10. fh Ch] (8)
0. 0. 1.

Let 6 represent the field of view, = represent the horizontal
pixel position, h represent the height coverage, and y repre-
sent the vertical pixel position. Then we can find the intrin-
sics values with the following formulas:
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Figure 5: Cylindrical projection model. In contrast with pin-
hole projection, this projects an image onto a curved cylin-
drical surface. The final result is a rectangular image with
height H and a width representing the full 360°.

Lo — X1

= — 1
A (10)
hoy1 — yoh1
Iu ho — I Y
Yo — 1
. 12)

Horizontal Wrapping In order to extend the model for
cylindrical panoramic images, we needed to modify the con-
volutional layers, smooth loss function, and 2D projection to
account for horizontal wrapping.

In a cylindrical image, the left and right side of the input
image are adjacent. For a convolutional layer to work with
cylindrical input, it must preserve this horizontal wrapping
property. This can be done by padding the right side of the
tensor with columns from the left and vice-versa. An exam-
ple of a standard convolutional operation vs. a cylindrical
convolutional operation can be seen in Figure 6.

We accomplished this by writing a library extending
tensorflow.contrib.slim—a tensorflow library
providing convenience functions for common operations—
for cylindrical input. Our library is intended as a drop-in
replacement for s1im, so our functions follow the same
interface as their corresponding s1im functions. We also
added simple wrapping functions to the smooth gradient
loss, ensuring the depth is smooth between the two sides
of the unwrapped depth image, and the bilinear sampler,
ensuring that the synthesized views take the full 360° into
account.
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(b) An example standard convolutional (c) A horizontally-wrapping convolution
layer (3x3 filter, uniform padding). This with the same properties (3x3 filter,
convolution will result in “faded” edges uniform padding). The horizontal padding

(due to the zero padding), and there is no
notion of wrapping.

uses the opposite-side columns to preserve
the adjacency.

Figure 6: An example of a standard convolutional layer vs.
horizontal wrapping convolutional layer. This figure shows
an 8 x 8 matrix with a 3 x 3 kernel. To represent horizon-
tal wrapping, the leftmost column is appended to the right
side of the matrix during the convolution and vice-versa.
Adapted from chess.com.

Experiments
Datasets

SYNTHIA-Seq We use the SYNTHIA-Seq dataset as our
primary experimental dataset. SYNTHIA-Seq is a large syn-
thetic dataset of driving scenes in a virtual city designed to
be comparable to KITTI or CityScapes—the major bench-
marks for structure-from-motion problems (Ros et al. 2016).
SYNTHIA-Seqs contains both groundtruth depth informa-
tion and sufficient sensor information to construct 360°
cylindrical panoramas, making it a good fit for this research.
Some sample frames can be seen in Figure 7.

To prepare the dataset, we first stitched the pinhole images
and depth groundtruths from each camera into 360° panora-
mas and calculated the modified camera intrinsics. The im-
ages were finally formatted into three-image sequences us-
ing the same technique as Zhou et al. (2017). For these ex-
periments, we used a subset of SEQS-02 (summer city driv-
ing scenes) consisting of 2,042 frames with a 90/10 training-
testing split.

Headcam One of the strongest motivations for unsuper-
vised structure-from-motion research is the availability and
diversity of amateur footage online. In order to evaluate our
model’s performance on these informal datasets, we created
our own panoramic dataset consisting of several hours of
footage around Colorado Springs. Footage was collected
with a Samsung Gear 360 (2016) camera mounted on a stan-

dard bicycle helmet. Some sample frames from this dataset
can be seen in Figure 8.

We prepared this dataset by first stitched the footage into
a spherical panorama using Samsung software, then splitting
the footage into frames at 10 fps, and finally unwarping the
images into cylindrical panoramas.

Finally, frames were concatenated into 3-frame sequences
using a similar technique as Zhou et al. (2017). For the
experiments in this paper, we used a subset of this dataset
from the University of Colorado: Colorado Springs campus
consisting of 5,202 frame sequences (90/10 training-testing
split).

Original Ground Truth

Figure 7: A sample of depth predictions and groundtruth
depth for SYNTHIA-Seq (testing split).

Evaluation of Cylindrical Depth Prediction

We trained and evaluated CylindricalSfMLearner’s perfor-
mance on the SYNTHIA-Seq dataset to determine the basic
effectiveness of our model; a sample of our predicted depth
compared with the groundtruth can be found in Figure 7.
To the best of our knowledge, there are no other attempts at
depth prediction for cylindrical panoramic imagery, so we
have elected to report on the same metrics common in pin-
hole depth prediction (Zhou et al. 2017; Garg et al. 2016;
Mahjourian, Wicke, and Angelova 2018; Eigen, Puhrsch,
and Fergus 2014). Table 1 shows our model’s disparity and
accuracy results; we also include recent results for pinhole
depth prediction models on the KITTI dataset for context,
reprinted from Mahjourian, Wicke, and Angelova (2018).

While our model is able to successfully handle scenery
such as buildings, trees, and the overall scene depth, it often
made mistakes on empty sections of road and moving vehi-
cles. While we were not able to address these problems in
the scope of this project, we suspect that this issue could be
mitigated by altering smoothing and explainability weights,
and we hope to resolve this in future work.

Evaluation on the Headcam Dataset

In order to evaluate CylindricalSfMLearner’s performance
on informal datasets, we trained our model on Headcam data
and generated depth predictions for our test split. A visual
comparison of the input RGB image and the predicted depth
can be seen in Figure 8. The visible helmet and the rider’s
shadow cause some visible distortion, but objects such as
buildings, trees, lightpoles, and statues are recognizable in
the depth predictions.
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Disparity (lower is better)

Accuracy (higher is better)

Method Supervision | Dataset | Cap || AbsRel | SqRel | RMSE | RMSElog || 6§ <1.25 [ § < 1.25% | § < 1.25%
Ours (full 360°) - S 80m 0.425 3.115 5.754 0.467 0.540 0.808 0.9052
Eigen et al. Coarse Depth K 80m 0.214 1.605 6.563 0.292 0.673 0.884 0.957
Eigen et al. Fine Depth K 80m 0.203 1.548 6.307 0.282 0.702 0.890 0.958
Liu et al. Depth K 80m 0.201 1.584 6.471 0.273 0.68 0.898 0.967
Zhou et al. - K 80m 0.208 1.768 6.856 0.283 0.678 0.885 0.957
Mabhjourian et al. - K 80m 0.163 1.240 6.220 0.250 0.762 0916 0.968

Table 1: Our depth prediction performance on SYNTHIA-Seq (bolded) shown alongside the state-of-the-art results on KITTI
using pinhole projection. In the dataset column, S means SYNTHIA-Seq (Ros et al. 2016) and K means KITTI (Geiger, Lenz,
and Urtasun 2012). Results reprinted from Mahjourian, Wicke, and Angelova; Zhou et al.; Liu et al.; Eigen, Puhrsch, and

Fergus (2018; 2017; 2016; 2014)

iy B o
.:.. .

43

Figure 8: A sample of depth predictions for our self-collected headcam dataset (testing split).

Disparity (lower is better)

Method Abs Rel | SqRel | RMSE | RMSE log

Wrapping 0.425 3.115 5.754 0.467

No wrapping 0.430 2.988 5.960 0.476
Accuracy (higher is better)

Method §<125[5<1.25% [ § <1.25°

Wrapping 0.540 0.809 0.905

No wrapping 0.517 0.793 0.898

Table 2: Comparison between the model trained with and
without horizontal wrapping. The models were trained for
50,000 steps with the following settings: learning rate o =
0.0001, batch size = 8, smooth weight A\; = 0.4, explain-
ability weight A, = 0.1, and sequence length = 3. The
model with wrapping performs consistently better than the
model without.

Evaluation of Horizontal Wrapping

Finally, in order to demonstrate the significance of our mod-
ifications, we evaluated two models with and without hori-
zontal wrapping. Each model was trained for 50,000 steps
on our training subset of the SYNTHIA-Seqs dataset; the
results can be seen in Table 2 and Figure 9. The model
with horizontal wrapping outperformed the model without
on nearly every metric.

Conclusion

In this paper, we have demonstrated that an existing unsu-
pervised structure-from-motion architecture can be adapted
for cylindrical panoramic imagery by altering the projection
model and implementing cylindrical wrapping.

Original Ground Truth

Figure 9: Comparison of depth predictions with and without
wrapping (testing split).

Ours (wrap) Ours (no wrap)

Challenges and Limitations

The novelty of this project is also its biggest obstacle: there
is very little structure from motion research using cylindri-
cal input. Unlike with pinhole projection input, there is no
standard structure-from-motion dataset like KITTI (Geiger,
Lenz, and Urtasun 2012) or CityScapes (Cordts et al. 2016).
As a result, it has been challenging to find datasets with all
of the required features: 360° panoramic frame sequences,
depth ground truth, relevance to the expected application do-
mains, and an acceptable quality and measurement accuracy.

A related challenge is contextualizing our results. Since
(to our knowledge) no other research has attempted to esti-
mate general structure from motion in cylindrical imagery,
it is difficult to benchmark against previous research.

Further Research

While we have answered our first research question, our
second—"Can cylindrical input improve the performance
in unsupervised structure-from-motion models?”—remains
unanswered. Our current model serves as a proof-of-
concept: the results demonstrate that CNNs can be modified
for cylindrical input; however, there are numerous pinhole
projection SfM models that report better performance.
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With that in mind, we have several goals for future work:
(a) we would like to tune our model and experiments to
better evaluate the strengths/weaknesses of cylindrical im-
agery for depth estimation, and (b) we would like to to
fine-tune our hyperparameters and implement some new
state-of-the-art techniques. Specifically, we would like to
explore ways in which traditional SLAM and SfM meth-
ods could be used to improve performance, such as the
geometric loss and refined smooth loss implemented by
Mahjourian, Wicke, and Angelova; Yin and Shi (2018;
2018) and the direct pose methods implemented by Wang et
al. (2018). Aside from our base performance, benchmarking
was a major challenge in this project. We hope to improve
our experiments to better evaluate the strengths and limita-
tions of cylindrical input.

It would also be interesting to experiment with chang-
ing the model architecture, such as the ResNet architecture
proposed by Yin and Shi (2018) or the multi-scale attention
back-end proposed by Xu et al. (2018); a different architec-
ture may show better performance with the cylindrical pro-
jection model. Finally, we hope to apply our techniques for
converting from perspective to cylindrical panoramic input
to another convolutional model (e.g. object detection or ob-
ject motion).

Beyond our immediate goals, there are many interesting
applications for cylindrical SfM models. One exciting ap-
plication could be to generate stereo binocular images from
panoramic input. There are thousands of hours of monoc-
ular panoramic footage available online from panoramic
phone cameras, VR video cameras, and other similar de-
vices; stereo footage generation would allow people to expe-
rience this in 3D though VR headsets, which could be use-
ful in videoconferencing, entertainment, and training. An-
other possibility is adapting the model to handle spherical
panoramic images. This is a more challenging problem (Co-
hen et al. 2018), but it has major implications for problems
such as self-driving cars.
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