
Proceedings of the Seminar 
 

Machine Learning 
in 

Computer Vision 
and 

Natural Language Processing  
 

University of Colorado, Colorado Springs 

August 9, 2019 

 

 
 

Editors: Jugal K. Kalita, Jonathan Ventura and Terrance 
Boult 

Funded by  

National Science Foundation 



 



   

                                                                           

 
 
 
 
 

Preface 
 
It is with great pleasure that we present to you the papers describing the research performed by 
the NSF-funded Research Experience for Undergraduates (REU) students, who spent 10 weeks 
during the summer of 2019 at the University of Colorado, Colorado Springs. Within a very short 
period of time, the students were able to choose cutting-edge projects involving machine learning 
in the areas of computer vision and natural language processing, write proposals, design 
interesting algorithms and approaches, develop code, and write papers describing their work. We 
hope that the students will continue working on these projects and submit papers to conferences 
and journals within the next few months. We also hope that it is the beginning of a fruitful career 
in research and innovation for all our participants.  
 
We thank the National Science Foundation for funding our REU site. We also thank the 
University of Colorado, Colorado Springs, for providing an intellectually stimulating 
environment for research. In particular, we thank Dr. Guy Hagen, who was a faculty advisor for 
several of the REU students. We also thank Alessandra Langfels for working out all the financial 
and administrative details. We also thank our graduate and undergraduate students, in particular, 
Thomas Conley, Ahmed Bensaoud, Brandon Collins and Zanyar Zohourianshahzadi, for helping 
the students with ideas as well as systems and programming issues. Our gratitude to Ginger 
Boult for being the “REU Mom” and having the welfare of the REU interns at her heart all 
through the summer. Justin Johnson, Xian Tan and his team also deserve our sincere gratitude 
for making sure that the computing systems performed reliably during the summer.  
 
Sincerely, 

 
Jugal Kalita 
jkalita@uccs.edu 
Professor  
 
Jonathan Ventura 
jventu09@calpoly.edu 
Assistant Professor 
 
Terrance Boult 
tboult@uccs.edu  
El Pomar Professor of Security and Innovation 
 
August 9, 2019 
 



 



Table of Contents 

Moving Towards Open Set Incremental Learning: Readily Discovering New Authors  
 Justin Leo and Jugal Kalita.……………………………………………………………………..……1 
Injection of Creativity and Emotion-Elicitation in Poetry Generation  
 Brendan Bena and Jugal Kalita..…………..……..……………………………………………..…9 
Enhancing Language Models with Knowledge Graph Embeddings  
 Andrew Conley and Jugal Kalita……..……………… …………………..……………….….….17 
PixelMRF: A Deep Markov Random Field for Image Generation 
 Joshua Frederick and Jonathan Ventura………….…………………..…………………..….22 
Self-supervised Deep Learning for Fluorescence Microscopy Denoising 
 Sonia Rao, Jonathan Ventura and Guy Hagen…………………………….…………….…. 29 
Self-Supervised Learning for Single-Molecule Localization Microscopy Denoising  
 Clare Minnerath, Jonathan Ventura and Guy Hagen…….…………………………….…35 
I-MOVE: Independent Moving Objects for Velocity Estimation  
 Jonathan Schwan, Akshay Dhamija and Terrance E. Boult………….…………………42 
A Domain Independent Social Media Depression Detection Model 
 Sven Marnauzs and Jugal Kalita…….…………………………………..……………..……..…50 
Solving Arithmetic Word Problems Automatically Using Transformer and 
Unambiguous Representations 
 Kaden Griffith and Jugal Kalita…………….……………………………………………..………56 
Adversarial Analysis of Natural Language Inference Systems  
 Tiffany Chien and Jugal Kalita……………………………………………………………..……..63 



 



NSF REU Seminar on Machine Learning 
Department of Computer Science 

University of Colorado, Colorado Springs 
Osborne A343 UCCSTeach Room 

             August 9, 2019: Friday 

10:30-10:40 AM: Introduction by Dr. Jugal Kalita, followed by Welcome Remarks by Dr. Donald 
Rabern, Dean of the College of Engineering, University of Colorado, Colorado Springs 

10:40-12:15 AM Session Chair: Dr. Philip Brown, Assistant Professor in Computer Science, 
University of Colorado, Colorado Springs 

10:40-11:05 Justin Leo, University of Colorado, Colorado Springs, CO: Moving Towards 
Open Set Incremental Learning: Readily Discovering New Authors    

11:05-11:30 Brendan Bena, Drury University, Springfield, MO: Injection of Creativity and 
Emotion-Elicitation in Poetry Generation   

11:30-11:55 Andrew Conley, Rensselaer Polytechnic Institute, Troy, NY: Enhancing 
Language Models with Knowledge Graph Embeddings  

12:00-1:15 PM: Lunch with Drs. Thomas Christensen, Provost and Executive Vice Chancellor for 
Academic Affairs and Professor of Physics, and Jessi Smith, Associate Vice Chancellor for 
Research and Research Integrity Officer, both of the University of Colorado, Colorado Springs 

1:10-1:15 PM: Welcome Back Remarks by Dr. Jessi Smith 

1:15-2:55 PM Session Chair: Dr. Yanyan Zhuang, Assistant Professor of Computer Science, 
University of Colorado, Colorado Springs, CO	

1:15-1:40 Joshua Frederick, California Polytechnic State University, San Luis Obispo, CA: 
PixelMRF: A Deep Markov Random Field for Image Generation 

1:40-2:05 Sonia Rao, University of Georgia, Athens, GA: Self-supervised Deep Learning for 
Fluorescence Microscopy Denoising 

2:05-2:30 Clare Minnerath, Providence College, Providence, RI: Self-Supervised Learning 
for Single-Molecule Localization Microscopy Denoising    

2:30-2:55 Jonathan Schwan, University of Colorado, Colorado Springs, CO: I-MOVE: 
Independent Moving Objects for Velocity Estimation 

2:55-3:10 PM: Break 

3:10-4:25 PM Session Chair: Julian Medina, B.S.  in Computer Science and former REU student, 
University of Colorado, Colorado Springs, CO	

3:10-3:35 Sven Marnauzs, Boise State University, Boise, ID: A Domain Independent Social 
Media Depression Detection Model  

3:35-4:00 Kaden Griffith, University of Colorado, Colorado Springs, CO: Solving 
Arithmetic Word Problems Automatically Using Transformer and Unambiguous 
Representations  

4:00-4:25 Tiffany Chien, University of California, Berkeley, CA: Adversarial Analysis of 
Natural Language Understanding Systems  

4:30 PM: Closing Remarks by Dr. Terrance Boult 



Our	Session	Chairs	and	Guests	

Dr.	 Philip	 Brown	 is	 an	 Assistant	 Professor	 in	 the	 department	 of	 Computer	 Science	 at	 the	
University	 of	 Colorado,	 Colorado	 Springs.	 His	 areas	 of	 research	 are	 cyber-social	 systems,	
strategic	aspects	of	security,	and	robust	network	games.		

Dr.	Thomas	M.	Christensen	is	Provost	and	Executive	Vice	Chancellor	for	Academic	Affairs	at	
the	 University	 of	 Colorado	 at	 Colorado	 Springs.	 He	 has	 served	 the	 campus	 as	 a	 faculty	
member,	department	chair,	associate	dean	and	dean.	Dr.	Christensen	has	received	both	the	
College	and	campus	Outstanding	Teaching	Awards	and	the	Chancellor’s	Award	to	recognize	
his	service	and	teaching.	

Julian	Medina	 is	 a	 recent	 BS	 graduate	 of	 the	 University	 of	 Colorado,	 Colorado	 Springs	 in	
Computer	Science.	He	participated	 in	 the	REU	program	at	UCCS	 in	2018.	 Julian	published	
one	 paper	 based	 on	 his	 REU	 research	 at	 the	 IEEE	 International	 Conference	 on	 Machine	
Learning	and	Applications	in	2018.		

Dr.	Donald	Rabern	is	the	new	Dean	of	the	College	of	Engineering	and	Applied	Science	at	the	
University	of	Colorado,	Colorado	Springs.	He	was	a	professor	of	engineering	at	Fort	Lewis	
College	 in	Durango,	Colorado,	dean	of	engineering	and	professor	of	aerospace	engineering	
at	 Embry-Riddle	 Aeronautical	 University	 in	 Prescott,	 Arizona,	 department	 chair	 and	
professor	 of	 civil	 engineering	 and	 engineering	 mechanics	 at	 Montana	 State	 University,	
before	coming	 to	UCCS.	He	 	 also	worked	at	 the	Los	Alamos	National	Laboratory	 for	more	
than	15	years	on	two	occasions.	

Dr.	Jessi	Smith	is	a	Professor	of	Psychology	and	Associate	Vice	Chancellor	for	Research	at	the	
University	of	Colorado,	Colorado	Springs.	Her	areas	of	research	are	motivation,	stereotype,	
gender,	and	research	diversity.	

Dr.	Yanyan	Zhuang	 is	an	Assistant	Profesor	 in	 the	Department	of	Computer	Science	at	 the	
University	of	Colorado,	Colorado	Springs.	Her	areas	of	 research	are	cybersecurity,	privacy,	
computer	 networking	 and	 software	 engineering.	 Yanyan’s	 work	 on	 software	 code	
comprehension	received	an	ACM	SIGSOFT	Distinguished	Paper	Award	in	2018.	



NSF REU Proposal Presentation Meeting 
Department of Computer Science 

University of Colorado, Colorado Springs 
Engineering Building, Room 103 

June 12, 2019: Wednesday 

 

1:30-1:35 PM: Welcome Remarks by Dr. Thottam Kalkur, Professor of Electrical 
Engineering and Associate Dean, College of Engineering and Applied Science 
 
1:40-2:40 PM  
Session Chair: Dr. Terrance Boult, Department of Computer Science, University of 
Colorado, Colorado Springs, CO 
 

Jonathan Schwan, University of Colorado, Colorado Springs, CO: Estimating Motion 
Parameters from Unconstrained Video  

Sonia Rao, University of Georgia, Athens, GA: Self-supervised Deep Learning for 
Fluorescence Microscopy Denoising 

Clare Minnerath, Providence College, Providence, RI: Self-supervised Learning for Single-
molecule Localization Microscopy Denoising  

Joshua Frederick, California Polytechnic State University, San Luis Obispo, CA: PixelMRF: A 
Deep Markov Random Field for Image Generation 

 
2:55-3:55 PM 
Session Chair: Steve Cruz, Department of Computer Science, University of Colorado, 
Colorado Springs, CO 
 

Tiffany Chien, University of California, Berkeley, CA: Adversarial Analysis of Natural 
Language Understanding Systems  

Kaden Griffith, University of Colorado, Colorado Springs, CO: Using Unambiguous 
Intermediate Representation to Solve Arithmetic Word Problems  

Sven Marnauzs, Boise State University, Boise, ID: A Domain Independent Social Media 
Depression Detection Model  

 
4:05-4:50 PM  
Session Chair: Akshay Dhamija, University of Colorado, Colorado Springs, CO 

Andrew Conley, Rensselaer Polytechnic Institute, Troy, NY: Using Graph Embedding for 
Natural Language Inference  

Brendan Bena, Drury University, Springfield, MO: Emotion Eliciting Poetry Generation  
Justin Leo, University of Colorado, Colorado Springs, CO: Moving Towards an Incremental 

Learning Model  
 
 

 
 



Our Session Chairs 
 

Dr. Terrance Boult is an El Pomar Endowed Chair of Communication and Computation in the 
Department of Computer Science at the University of Colorado, Colorado Springs. He runs the 
Vision and Security Technology Lab (VAST Lab), focused on projects in Security including machine 
learning, surveillance, biometrics, sensor networks, and distributed steganalaysis and general 
projects in computer vision. He also works with The El Pomar Institute for Innovation and 
Commercialization through which he works with many local companies.  
 
Steve Cruz is a doctoral student at the University of Colorado, Colorado Springs. Steve received his 
Bachelor of Innovation degree in Computer Security from the University of Colorado, Colorado 
Springs in 2017. His research interests are in Computer Vision and Machine Learning, specific 
areas include Open-Set Recognition, Face Recognition, Image Forensics, and Incremental 
Learning. He has been an author on 2 published papers within the last year and has 1 under review. 
Something interesting - he has taught at UCCS and enjoys snowboarding. 
 
Akshay Dhamija is a PhD student at the University of Colorado, Colorado Springs. His research 
focuses on Deep Learning for Computer Vision. Akshay is keenly interested in applications of 
computer vision algorithms to real world scenarios.  
 
 
 

 
 
 



NSF REU Midsummer Meeting 
Department of Computer Science 

University of Colorado, Colorado Springs 
Engineering Building, Room 103 

July 12, 2019: Wednesday 

 

1:30-1:35 PM: Welcome Remarks by Dr. Xiaobo Zhou, Interim Dean of the College 
of Engineering and Applied Science, University of Colorado, Colorado Springs.  
 
1:40-2:40 PM  
Session Chair: Thomas Conley, Department of Computer Science, University of 
Colorado, Colorado Springs, CO 
 

Brendan Bena, Drury University, Springfield, MO: Emotion Eliciting Poetry Generation  
Kaden Griffith, University of Colorado, Colorado Springs, CO: Using Unambiguous 

Intermediate Representation to Solve Arithmetic Word Problems  
Andrew Conley, Rensselaer Polytechnic Institute, Troy, NY: Using Graph Embedding for 

Natural Language Inference  
Tiffany Chien, University of California, Berkeley, CA: Adversarial Analysis of Natural 

Language Understanding Systems  
 
2:55-3:40 PM 
Session Chair: Dr. Yanyan Zhuang, Department of Computer Science, University of 
Colorado, Colorado Springs, CO 
 

Sven Marnauzs, Boise State University, Boise, ID: A Domain Independent Social Media 
Depression Detection Model  

Justin Leo, University of Colorado, Colorado Springs, CO: Moving Towards an Incremental 
Learning Model  

Joshua Frederick, California Polytechnic State University, San Luis Obispo, CA: PixelMRF: A 
Deep Markov Random Field for Image Generation 

 
3:55-4:40 PM  
Session Chair: Joseph Worsham, University of Colorado, Colorado Springs, CO 

 
Jonathan Schwan, University of Colorado, Colorado Springs, CO: Estimating Motion 

Parameters from RGB-D Video  
Sonia Rao, University of Georgia, Athens, GA: Self-supervised Deep Learning for 

Fluorescence Microscopy Denoising 
Clare Minnerath, Providence College, Providence, RI: Self-supervised Learning for Single-

molecule Localization Microscopy Denoising  
 
 

 



 
Our Session Chairs 

 
Thomas Conley has been a computer programmer for more than 30 years and has worked in many 
domains including computational linguistics and bioinformatics.  He is currently the Information 
Security Officer at UCCS.  He has been an instructor at UCCS and has recently entered the PhD 
program in Computer Science where he will concentrate on computational linguistics. Tom co-
authored a paper titled “Improving Computer Generated Dialog with Auxiliary Loss Functions and 
Custom Evaluation Metrics” with an REU student at the International Conference on Machine 
Learning in 2018.  
 
Dr. Yanyan Zhuang is an Assistant Profesor in the Department of Computer Science at the 
University of Colorado, Colorado Springs. Her areas of research are cybersecurity, privacy, 
computer networking and software engineering. Yanyan’s work on software code comprehension 
received an ACM SIGSOFT Distinguished Paper Award in 2018. 
 
Joseph Worsham received his BS and MS in Computer Science from the University of Colorado, 
Colorado Spring, and currently is a PhD student in Computer Science. He is a full-time employee 
at Lockheed Martin. Joe  presented a paper titled “Genre Identification and the Compositional 
Effect of Genre in Literature” at the prestigious COLING conference held in Santa Fe, New Mexico, 
in August 2018.  
 
 
 
 

 
 
 



Moving Towards Open Set Incremental Learning: Readily Discovering New

Authors

Justin Leo Jugal Kalita

Department of Computer Science Department of Computer Science
University of Colorado University of Colorado

jleo@uccs.edu jkalita@uccs.edu

Abstract

The classification of textual data often yields important
information. Most classifiers work in a closed world
setting where the classifier is trained on a known cor-
pus, and then it is tested on unseen examples that be-
long to one of the classes seen during training. Despite
the usefulness of this design, often there is a need to
classify unseen examples that do not belong to any of
the classes on which the classifier was trained. This pa-
per describes the open set scenario where unseen exam-
ples from previously unseen classes are handled while
testing. We examine a process of enhanced open set
classification with a deep neural network that discov-
ers new classes by clustering the examples identified as
belonging to unknown classes, followed by a process of
retraining the classifier with newly recognized classes
Through this process we move to an incremental learn-
ing model where we continuously find and learn from
novel classes of data that have been identified automati-
cally. We also develop a new metric that measures mul-
tiple attributes of clustering open set data. Multiple ex-
periments across two author attribution data sets show
we are able to create an incremental model that pro-
duces excellent results.

Introduction

Formal as well as informal textual data are over-abundant in
this Internet-connected era of democratized publishing and
writing. These textual information sources are in multiple
forms such as news articles, electronic books and social me-
dia posts. The use of text classification allows us to deter-
mine important information about the texts that can often be
used to connect to the respective authors, naturally leading
to the concept of Authorship Attribution. Authorship Attri-
bution is seen as the process of accurately finding the author
of a piece of text based on its stylistic characteristics (Rocha
et al. 2016). Authorship Attribution is useful in scenarios
such as identification of the author of malicious texts or the
analysis of historical works with unknown authors.

Typically, text classification has a few well-established
stages. The words in the text corpus are transformed using
an embedding algorithm, and a classifier is trained with doc-
uments labeled with associated classes. In Authorship At-
tribution, the text samples tend to be books such as nov-
els, transcribed speeches, or Internet-mediated social media

posts, where each sample is labeled with the corresponding
author. The trained text classifier is given testing data that
is usually unseen text samples from the same set of trained
authors. This process describes a closed set approach be-
cause the tested samples are associated with the same trained
classes. A problem with this process of classification arises
if the testing data includes samples from unfamiliar authors.
In these cases, the classifier typically and erroneously as-
sociates the piece of text with a wrong author—an author
on which it was trained. To remedy this problem, a new
approach called open set classification has been proposed.
Open set classification enables the classifier to discriminate
among the known classes, but additionally and importantly,
to identify if some test example is not associated with any of
the classes on which it was trained (Scheirer et al. 2012).

There has been some recent work on open set classifica-
tion using convolution neural networks (CNN) and recurrent
neural networks (RNN). Prior work on open set classifica-
tion has often been in areas such as computer vision (Ben-
dale and Boult 2015), speech processing (Dahl et al. 2011),
and natural language processing (Higashinaka et al. 2014).
In this paper, we utilize open set recognition to identify the
presence of test examples from novel classes, and incorpo-
rate these new classes to those already known to create an
incremental class-learning model.

The rest of the paper is organized as follows. After de-
scribing related work in the the next section, we present our
approach to identifying new classes and instantiating them.
Then, we discuss our evaluation metrics for assessing in-
cremental learning, followed by experimental results using
authorship attribution datasets and analysis. We conclude
by reiterating our accomplishments and thoughts on future
work.

Related Work

We discuss related work in terms of four topics: deep net-
works for open set classification, metrics for open set classi-
fication, open set text classification, and recent proposals to
use loss functions for open set classification in the context
of computer vision.

Open Set Deep Networks

Using deep neural networks for open set classification often
requires a change in the network model. Modern neural net-

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 1



works have multiple layers connected in various ways, de-
pending on the classifier architecture being used. Most mod-
els eventually include a softmax layer that classifies the data
to the known classes, with an associated confidence level or
probability for each class. A test example is considered to
belong to the class which has the highest probability among
all the classes. To adapt this model to the open set scenario,
the softmax layer was replaced by a unique layer named the
OpenMax layer (Bendale and Boult 2016). This layer es-
timates the probability of an input being from one of the
known classes as well as an “unknown” class, which lumps
together all classes unseen during training. Thus, the net-
work is able to recognize examples belonging to unknown
classes, enhancing the ability of the closed set classifier it
starts with.

Metric for Evaluating Open Set Classification

The process of open set class recognition leads to new chal-
lenges during the evaluation process. There are multiple
sources of error that could be present including: misclassi-
fication of known or unknown classes and determination of
novel classes. Bendale and Boult (2015) proposed a metric
to evaluate how individual examples are classified. Although
they proposed it for use in computer vision, we think it is ap-
plicable in author attribution as well.

Deep Open Set Text Classification

Prakhya, Venkataram, and Kalita (2017) modify the single
OpenMax layer proposed by (Bendale and Boult 2016) to
replace the softmax layer in a multi-layer convolution neu-
ral networks with an ensemble of several outlier detectors
to obtain high accuracy scores for open set textual classi-
fication. The ensemble of classifiers uses a voting model
between three different approaches: Mahalanobis Weibull,
Local Outlier Factor (Kriegel et al. 2009), and Isolation For-
est (Liu, Ting, and Zhou 2008). The average voting method
produced results that are more accurate in detecting outliers,
making detection of unknown classes better.

Loss Functions for Open Set Classification

A problem that often occurs in open set classification is the
classifier labeling known class data as unknown. This prob-
lem typically occurs if there are some similar features in
the examples of the pre-trained classes and unknown classes
encountered during testing. In the context of computer vi-
sion, Dhamija, Günther, and Boult (2018) introduce what
is called the Entropic Open-Set loss function that increases
the entropy of the softmax scores for background training
samples and improves the handling of background and un-
known inputs. They introduce another loss function called
the Objectosphere loss, which further increases softmax en-
tropy and performance by reducing the vector magnitudes
of examples of unknown classes in comparison with those
from the known classes, lowering the erroneous classifica-
tion of known class data as unknown. Since this approach
squishes the magnitudes of all examples that belong to all
unknown classes, it makes later separation of individual un-
known classes difficult.

Approach

Figure 1: Protocol for Open Set Classification and Incremen-
tal Class Learning

Figure 2: Ensemble Model and Testing Classifier Diagram.
This diagram more clearly describes the ‘Ensemble Outlier
Detector’ component from Figure 1.

This paper explores open set classification and the process
of moving towards incremental learning of new classes. The
objective is to create a classifier framework that can incre-
mentally learn and expand its knowledge base as additional
data is presented as shown in Figure 1. The approach is also
outlined in Algorithm 1.

In prior work on open set classification, authors have fo-
cused on recognizing test samples as belonging to classes
unknown during training. To the best of our knowledge, we

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 2



are the first ones to instantiate new classes iteratively, ex-
tending prior work to real incremental class learning. We
first summarize our approach to provide a easily comprehen-
sible sketch, before moving on to details. We seed our clas-
sifier framework by training it with examples from a small
number of selected classes. We then expose the trained clas-
sifier to a mix of examples from the already-known classes
as well unknown classes, during testing. At a certain point,
we stop the testing of the current-classifier and cluster all ex-
amples recognized as belonging to unknown classes. Clus-
tering allows for the grouping of similar data and visually
represents the differences between unique clusters. Our hy-
pothesis is that, if the clustering is good, one or more of
the clusters of unknown examples can be thought of as new
classes the current-classifier has not seen and these clusters
are instantiated as new classes, by making up new unique
labels for them. At this point, the current-classifier is up-
dated by retraining it with all examples of the old known
classes as well the newly instantiated classes. This process—
of training, accumulating of outliers, clustering, and instan-
tiating selected new classes out of the clusters—is repeated
repeated a number of times, as long as the error of the entire
learning process remains acceptable.

In particular, the classifier is a multi-layer CNN struc-
ture for training purposes. During testing, the softmax layer
at the very end replaced by an outlier ensemble, following
the work of (Prakhya, Venkataram, and Kalita 2017). The
outlier detector ensemble consists of a Mahalanobis model,
Local Outlier Factor model, and an Isolation Forest model,
like (Prakhya, Venkataram, and Kalita 2017). The classifier
model, as used in training is shown in Figure 2. Initially
the model is created by training a classifier Ecurrent with
a given kseed number of classes found in the entire train-
ing data set D. Then we create a derived dataset Dtest

current

for testing the model by mixing examples of kunknown un-
known classes with the previously trained kseed classes. We
always add knew classes to the number of known classes.
Thus, at the end of the ith iteration of class-learning, the
classifier knows kseed + (i� 1)knew classes. We instantiate
“new” classes by choosing dominant clusters, and then re-
train the model with these new classes. The classes are then
removed from the set of all classes and new ones are selected
for the incremental addition.

We experiment with multiple clustering techniques in-
cluding K-Means (Hartigan and Wong 1979), Birch (Zhang,
Ramakrishnan, and Livny 1996), DBScan (Ester et al. 1996),
and Spectral (Stella and Shi 2003), to determine the most
suitable one for author attribution. We also experiment with
various values of the parameters: kseed, kunknown and �.

Evaluation Methods

Since we use clustering as well as classification in our proto-
col for incremental classification, we need to evaluate both.
Below, we first outline how clusters obtained from examples
classified as unknown are evaluated, and then we describe
how the incremental classifier is evaluated.

Evaluation of Clustering

There are a variety of clustering algorithms, and we need
to choose one that works well in the domain of author at-
tribution. The test samples that are deemed to be outliers
are clustered, with the hypothesis that some of these clus-
ters correspond to actual classes in the original dataset. We
use the Davies-Bouldin Index as shown in Equation (1) to
evaluate clustering (Davies and Bouldin 1979).

DB =
1

n

nX

i=1

maxj 6=i

✓
�i + �j

d(ci, cj)

◆
(1)

In this formula, n is the number of clusters produced, �i is
the average distance between the points in cluster i and its
centroid, d(ci, cj) is the Euclidean distance between the cen-
troids of clusters indexed i and j. Typically lower Davies-
Bouldin Index scores indicate better clustering. Another
clustering evaluation metric that we use is the V-Measure
as shown in Equation (2), which has been widely used in
clustering in natural language processing tasks when ground
truth is known, i.e., we know samples and the classes they
belong to. This metric computes the harmonic mean between
homogeneity and completeness (Rosenberg and Hirschberg
2007). Homogeneity measures how close the clustering is
such that each cluster contains samples from one class only.
Completeness measures how close the clustering is such that
samples of a given class are assigned to the same cluster.
Typically scores close to 1 indicate better clustering. Here �
is a parameter used to weigh between the two components—
a higher value of � weighs completeness more heavily over
homogeneity, and vice versa.

V =
(1 + �) ⇤ homogeneity ⇤ completeness

� ⇤ homogeneity + completeness
(2)

Evaluation of Open Set Misclassification Error

Assuming there are n known classes, multi-class classifica-
tion using a classifier En(), trained on n classes, can be eval-
uated using the misclassification error:

✏n =
1

N

NX

i=1

⇥
En(x

(i)) 6= y
(i)
⇤

(3)

where N is the total number of samples in the dataset. When
we test the same classifier En() in the context of open set
classification, we need to keep track of errors due that oc-
cur between known and unknown classes. When we test this
classifier on N samples from n known classes and N

0 sam-
ples from u unknown classes, we test a total of N + N

0

samples over n+u classes. The open set classification error
✏OS for classifier En is given as (Bendale and Boult 2015):

✏OS = ✏n +
1

N 0

N
0X

j=N+1

⇥
En(x

(i)) 6= unknown
⇤

(4)

Evaluation of Incremental Class Learning

Accuracy

For our research we are using clustering in order to obtain
new classes after we perform open set recognition. This way

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 3



Input: Training Set D =
⌦
x
(i)
, y

(i)
↵
, i = 1 · · ·N , samples from all known classes

Output: An incrementally trained classifier E on examples from a number of classes in D

1 Call  
�
C1, · · ·Cn

 
, set of all known classes

2 Ctrain
current

 (randomly) pick kseed classes from Call
3 D

train
current

 
�⌦

x
(i)
, y

(i)
↵
| y(i) 2 Ctrain

current

 
, samples from classes in Ctrain

current

4 repeat

5 Cunknown
current

 (randomly) pick kunknown classes from Call � Ctrain
current

6 D
test
current

! D
train
current

S�⌦
x
(i)
, y

(i)
↵
| y(i) 2 Cunknown

current

 

7 Ecurrent  (CNN) classifier trained on D
train
currrent

8 O outlier samples detected by ensemble outlier detector when tested on D
test
current

9 L set of clusters produced from O using a selected clustering algorithm
10 Ldominant ! pick knew dominant clusters from L, call these clusters new classes by making up new labels for them
11 Ctrain

current
 Ctrain

current

S
Ldominant, increase the number of “known” classes

12 D
train
current

 D
train
current

S�⌦
x, y
↵
2 Lj | Lj 2 Ldominant

 

13 until too low accuracy or n times;
14 E ! Ecurrent

15 return E

Algorithm 1: Algorithm for Incremental Class-Learning

the new data identified for the novel classes can be used to
incrementally train the model. For the evaluation of these
clusters we present a new metric ICA (Incremental Class Ac-
curacy) which takes into account the specific data from an
identified cluster and averages calculations of homogeneity,
completeness, and unknown identification accuracy of the
cluster. We define homogeneity as the ratio of the number of
data samples of the predominant class c in the cluster k (nc|k)
and the total number of values in the cluster (Nk). We define
completeness as the ratio of the number of data samples of
the predominant class c in the cluster k (nc|k) and the total
number of tested samples of the same class Nc. We define
unknown identification accuracy as ratio of the number of
unknown u data samples in the cluster k (nu|k) and the to-
tal number on values in the cluster Nk. The equation used
for ICA assumes only one cluster is being evaluated, but the
equation can be adapted for multiple clustering by finding
multiple ICA scores for each cluster and averaging.

Homogeneity =
max(nc|k)

N k
(5)

Completeness =
max(nc|k)

N c
(6)

Unknown Identification Accuracy =
(nu|k)

N k
(7)

ICA =

 
max(nc|k)

N k
+

max(nc|k)

N c
+

(nu|k)

N k

!
⇤ 1
3

(8)

Other metrics that will be used to determine the perfor-
mance of the model will be accuracy and F-score, these fig-
ures inherently show the accuracy of the classifier as well as
novel data detection.

Experiments and Results

In this section we discuss the data sets used, the experiments
performed, and the results with analysis.

Datasets

Since our objective is on open set author attribution, we use
two datasets each of which contains 50 authors.

• Victorian Era Literature Data Set (Gungor 2018): This
dataset is a collection of writing excerpts from 50 Vic-
torian authors chosen from the GDELT database. The
text has been pre-processed to remove specific words that
identify the individual piece of text or author (names,
author made words, etc.). Each author has hundreds of
unique text pieces with 1000 words each.

• CCAT-50 (Houvardas and Stamatatos 2006): This data
set is a collection of 50 authors each with 50 unique text
pieces divided for both training and testing. These texts
are collections of corporate and industrial company news
stories. This data is a subset of Reuters Corpus Volume 1.

Preliminary Clustering Results

After experimental comparison of the different clustering
techniques, we decided to use Spectral Clustering (Stella
and Shi 2003) as this typically produces the highest accu-
racy results as seen in Figure 3 and Figure 4, the clustering
evaluation scores are also used for comparison. We use the
pre-trained model word2vec (Mikolov et al. 2013) to obtain
the word embeddings to pass into the multi-layer CNN struc-
ture.

Incremental Classification Results

For the first experiment our objective was to see if we could
use our method to improve our classification accuracy and
to also decide which clustering algorithm would work best.
We run both data sets individually with five known training
classes and then with ten known training classes, then we in-
troduce three unknown classes during the testing phase for
each of the tests. Our results include the comparison with
accuracy and F1-Score as found on Table 1; a significant

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 4



Figure 3: Clustering Plots for Victorian Literature Data with Accuracy Score, 5 Trained Classes and 8 Tested Classes

Figure 4: Clustering Plots for CCAT-50 Data with Accuracy Score, 5 Trained Classes and 8 Tested Classes

increase of these values is observed after the classifier is re-
trained with the identified novel classes. Our clustering eval-
uation metrics are found on Table 2. V-Measure scores prove
to be more useful because the Davies-Bouldin scores do not
always indicate the highest accuracy of clustering, this is
because the best formed clusters does not necessarily mean
higher accuracy. Even though our chosen data sets have not
been used for open set classification in prior research we can
compare our open set classification scores with the state of
the art closed set classification scores. As far as we know,
the best classification F1-Score from prior work for the Vic-
torian Literature data set using only few classes is 0.808
(Gungor 2018) and our model has a similar score. Also as
far as we know, the best classification accuracy score for the
CCAT-50 data set for using only few classes is 86.5% and we
are obtaining similar results. Our clustering models seem to
have the most error for both data sets (especially the CCAT-
50 data), thus presumably better clustering models or would
produce greater results.

Dataset Pre-Trained Post-OpenSet
Acc F1 Acc F1

Victorian 5class 56.29% 0.592 85.43% 0.855
CCAT-50 5class 54.75% 0.565 83.00% 0.825
Victorian 10class 61.29% 0.644 71.38% 0.706
CCAT-50 10class 62.50% 0.727 86.77% 0.866

Table 1: Pre-Trained Class Scores and Post-Open Set Clas-
sification Scores, Either 5 or 10 initial trained classes and 3
unknown added during testing

For the second experiment we initially train with a fixed
amount of classes kseed and then incrementally add a
kunknown amount of classes for testing. We repeat this pro-
cess to demonstrate the model incrementally learns as the
learning and open set classification cycle is repeated. We run
this test by adding classes for multiple iterations and record
the change in the F1-Score for the overall classification and
generation of new classes; we attempt to run each test until

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 5



Davies-Bouldin V-Measure
Data Set Vic-5 CCAT-5 Vic-10 CCAT-10 Vic-5 CCAT-5 Vic-10 CCAT-10
K-Means 2.739 2.045 1.989 0.876 0.078 0.039 0.147 0.082
Birch 2.670 2.237 4.193 3.654 0.165 0.075 0.147 0.083
Spectral 4.457 2.550 4.841 0.807 0.319 0.242 0.328 0.258
DBScan 4.031 2.432 4.783 4.349 0.065 0.101 0.158 0.149

Table 2: Davies Bouldin Index and V-Measure Score for Clustering methods evaluated, Either 5 or 10 trained classes and 3
unknown added during testing.

the results drop significantly or until we have reached a max
value of classes. From Figure 5 we notice the results of the
incremental cycle and we notice that we achieve better re-
sults when fewer classes are added at a time. We run tests for
adding 1, 2, and 3 classes at a time. We also keep track of the
open set error shown in Equation 4; this metric shows error
of unknown data identification but not novel class genera-
tion. The problem we notice with the experiment is that error
will propagate through the process so as error accumulates
the results deter. We also notice based on the results from
both data sets, adding one class incrementally each iteration
has better results because this limits the clustering error. We
also notice that the Victorian Literature does worse than the
CCAT-50 data and we think this is because of the text sam-
ples; the Victorian text includes words with slurs and accent
mark symbols and word2vec is not pre-trained with these
new features. The CCAT-50 data tends to have very distinct
authors and the pieces of text tend to also tend to be more
unique. Overall based on the results, we notice that most of
this error can be attributed to the clustering process.

Form the previous experiments we realized the cluster-
ing process tends to have the most variance, this is evident
from the low clustering accuracy due to the lack of fully
distinct clusters. Thus, there needs to be a way to evaluate
the clustering. Using our Incremental Class Accuracy (ICA)
metric shown from Equation 5 we will be able to evaluate
the clustering in regards to homogeneity, completeness, and
unknown identification accuracy. From the previous exper-
iment we also notice that adding one class at a time incre-
mentally tends to produce the best results, so we calculate
the ICA score when one class is added and instantiated. The
results for both data sets is shown in Table 3. From these
results we notice having a fewer amount of initial trained
kseed classes produces better results and this is expected as
the kunknown classes are more easily identified.

Initial Training Victorian CCAT-50
5 Classes 0.687 0.875
10 Classes 0.593 0.754
15 Classes 0.529 0.764
20 Classes 0.387 0.681

Table 3: ICA Scores for 1 added class/cluster evaluation.
Scores based on Equation 5.

Conclusion

This research works with open set classification regarding
NLP text analysis in the area of Authorship Attribution. The
model created will be to determine the originating author
for a piece of text based on textual characteristics. We also
move towards a novel incremental learning approach where
unknown authors are identified and then the data is labeled
so the classifier expands on its knowledge. Through this pro-
cess we expand upon the state of the art implementation by
creating a full cycle model by training on given data and then
expanding the trained knowledge based on new data found
for future testing.

Text based Authorship Attribution can be applied to re-
search involving security and linguistic analysis. Some sim-
ilar developing work using similar research methods involv-
ing image recognition (Rebuffi et al. 2017), this can be ap-
plied to facial recognition tasks and video surveillance appli-
cations. This model can also be further improved by devel-
oping a more precise way of distinguishing different pieces
of text. Another method for future research is using back-
propagation. Once novel classes are identified, the model
should be then able to modify the already trained classifier
with the D

train
current

data. Then the model can be tested with
the D

test
current

to determine if the model can recognize pre-
viously unknown classes. Backpropagation of a neural net-
work requires a fully inter connected set of layers that al-
low the processing of data through either side of the model
(Hecht-Nielsen 1992). This process would save the step of
fully retraining the classifier model. A similar approach to
this can also be to add new ”neurons” to a deep neural net-
work to allow for an extension of a trained model (Draelos
et al. 2017). With these new future improvements our model
can be further improved and potentially obtain better results.

Acknowledgement

The work reported in this paper is supported by the Na-
tional Science Foundation under Grant No. 1659788. Any
opinions, findings and conclusions or recommendations ex-
pressed in this work are those of the author(s) and do not
necessarily reflect the views of the National Science Foun-
dation.

References

Bendale, A., and Boult, T. 2015. Towards open world recog-
nition. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 1893–1902.

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 6



Figure 5: Incremental Learning Plots. Initially trained with 5, 10, 15, and 20 initial classes then tested by incrementally adding
1, 2, and 3 Classes. These plots show the final F1-Scores and Open Set Error from Equation 4.

Bendale, A., and Boult, T. E. 2016. Towards open set deep
networks. In Proceedings of the IEEE conference on com-

puter vision and pattern recognition, 1563–1572.
Dahl, G. E.; Yu, D.; Deng, L.; and Acero, A. 2011.
Context-dependent pre-trained deep neural networks for
large-vocabulary speech recognition. IEEE Transactions on

audio, speech, and language processing 20(1):30–42.
Davies, D. L., and Bouldin, D. W. 1979. A cluster sepa-
ration measure. IEEE transactions on pattern analysis and

machine intelligence (2):224–227.
Dhamija, A. R.; Günther, M.; and Boult, T. 2018. Reducing
network agnostophobia. In Advances in Neural Information

Processing Systems, 9157–9168.
Draelos, T. J.; Miner, N. E.; Lamb, C. C.; Cox, J. A.; Vine-
yard, C. M.; Carlson, K. D.; Severa, W. M.; James, C. D.;
and Aimone, J. B. 2017. Neurogenesis deep learning: Ex-
tending deep networks to accommodate new classes. In
2017 International Joint Conference on Neural Networks

(IJCNN), 526–533. IEEE.
Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X.; et al. 1996.
A density-based algorithm for discovering clusters in large
spatial databases with noise. In Kdd, volume 96, 226–231.
Gungor, A. 2018. Benchmarking authorship attribution

techniques using over a thousand books by fifty Victorian

era novelists. Ph.D. Dissertation.
Hartigan, J. A., and Wong, M. A. 1979. Algorithm as 136:
A k-means clustering algorithm. Journal of the Royal Sta-

tistical Society. Series C (Applied Statistics) 28(1):100–108.

Hecht-Nielsen, R. 1992. Theory of the backpropagation
neural network. In Neural networks for perception. Elsevier.
65–93.
Higashinaka, R.; Imamura, K.; Meguro, T.; Miyazaki, C.;
Kobayashi, N.; Sugiyama, H.; Hirano, T.; Makino, T.; and
Matsuo, Y. 2014. Towards an open-domain conversational
system fully based on natural language processing. In Pro-

ceedings of COLING 2014, the 25th International Confer-

ence on Computational Linguistics: Technical Papers, 928–
939.
Houvardas, J., and Stamatatos, E. 2006. N-gram feature
selection for authorship identification. In International con-

ference on artificial intelligence: Methodology, systems, and

applications, 77–86. Springer.
Kriegel, H.-P.; Kröger, P.; Schubert, E.; and Zimek, A. 2009.
Loop: local outlier probabilities. In Proceedings of the 18th

ACM conference on Information and knowledge manage-

ment, 1649–1652. ACM.
Liu, F. T.; Ting, K. M.; and Zhou, Z.-H. 2008. Isolation
forest. In 2008 Eighth IEEE International Conference on

Data Mining, 413–422. IEEE.
Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and
Dean, J. 2013. Distributed representations of words and
phrases and their compositionality. In Advances in neural

information processing systems, 3111–3119.
Prakhya, S.; Venkataram, V.; and Kalita, J. 2017. Open set
text classification using convolutional neural networks. In
International Conference on Natural Language Processing,

2017.

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 7



Rebuffi, S.-A.; Kolesnikov, A.; Sperl, G.; and Lampert, C. H.
2017. icarl: Incremental classifier and representation learn-
ing. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2001–2010.
Rocha, A.; Scheirer, W. J.; Forstall, C. W.; Cavalcante, T.;
Theophilo, A.; Shen, B.; Carvalho, A. R.; and Stamatatos,
E. 2016. Authorship attribution for social media forensics.
IEEE Transactions on Information Forensics and Security

12(1):5–33.
Rosenberg, A., and Hirschberg, J. 2007. V-measure: A con-
ditional entropy-based external cluster evaluation measure.
In Proceedings of the 2007 joint conference on empirical

methods in natural language processing and computational

natural language learning (EMNLP-CoNLL), 410–420.
Scheirer, W. J.; de Rezende Rocha, A.; Sapkota, A.; and
Boult, T. E. 2012. Toward open set recognition. IEEE

transactions on pattern analysis and machine intelligence

35(7):1757–1772.
Stella, X. Y., and Shi, J. 2003. Multiclass spectral clustering.
In null, 313. IEEE.
Zhang, T.; Ramakrishnan, R.; and Livny, M. 1996. Birch:
an efficient data clustering method for very large databases.
In ACM Sigmod Record, volume 25, 103–114. ACM.

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 8



Injection of Creativity and Emotion-Elicitation in Poetry Generation

Brendan Bena
Drury University

900 N. Benton Ave.
Springfield, Missouri 65109

Jugal Kalita
UC-Colorado Springs

1420 Austin Bluffs Pkwy.
Colorado Springs, Colorado 80918

Abstract

Poetry Generation, in the context of Natural Language Gen-
eration (NLG), involves teaching systems to automatically
generate text that resembles poetic work. A system learns
to recreate poetry through training on a corpus of poems
and modeling the particular style of language. In this pa-
per, we propose taking an approach of fine-tuning GPT-2, a
pre-trained language model, to our downstream task of po-
etry generation. Specifically, we attempt to create emotion-
eliciting poetry and dream poetry. Our first goal is to elicit
emotions within the reader through the automatically gener-
ated text, so we believe a crowdsourced human-evaluation is
the proper form of metric. Our model for the emotions of sad-
ness and joy produced poems that correctly elicited emotions
87.5 and 85 percent of the time, respectively. Our second goal
is to apply transfer learning to inject creativity and produce
dreamlike poetry. Poems from this model are shown to cap-
ture elements of dream poetry with scores of no less than 3.2
on the Likert scale. For further quantitative evaluation, we
make use of the Coh-Metrix tool, outlining certain metrics
we use to gauge the quality of text generated.

Introduction
Many natural language processing tasks require the genera-
tion of human-like language. Some tasks, such as image and
video captioning and automatic weather and sports report-
ing, convert non-textual data to text. Some others, such as
summarization and machine translation, convert one text to
another. There are additional tasks that aim to produce text,
given a topic or a few keywords. These tasks include story
generation, joke generation, and poetry generation, among
others.

Poetry generation produces creative content, and delivers
the content in an aesthetically pleasing manner, usually fol-
lowing a specific structure. Thus, in addition to generating
text as if in a story, the lines produced usually have a cer-
tain length, quite frequently there is a rhyming scheme as
well as rhythm, and organization into structures such as cou-
plets, quatrains, quintets, and stanzas. Among other things,
creativity comes from unusual usage of words through ef-
fects such as alliteration, assonance, and elision; use of
metaphors, symbolism, and other linguistic devices; licens-
ing of underlying imagery with expressed feelings, senti-
ments and emotions.

Work in natural language generation can be traced to
pioneering rule-based simulations of chatbots such as the
“psychotherapist” Eliza (Weizenbaum and others 1966)
and paranoid schizophrenia-suffering PARRY (Colby 1981).
Surveys such as (Hovy 1990; Reiter and Dale 2000; Gatt and
Krahmer 2018; Santhanam and Shaikh 2019) have described
the progress in natural language generation over 50 years. Of
late, the use of deep learning has produced enviable progress
in natural language generation, especially in topics such
as machine translation (Bahdanau, Cho, and Bengio 2014;
Wu et al. 2016), image captioning (Mao et al. 2014) and di-
alogue generation (Li et al. 2016).

This paper discusses an attempt to generate natural-
sounding poems that are creative and can potentially evoke
a response from the readers or hearers in terms of emotions
and feelings they generate. We choose dreams as our form of
creative expression due to its long standing history in poetry.
Dream poetry is dated back to medieval times where famous
14th century authors, like Chaucer, experiment using dreams
as the structure for an image or picture they wish to paint
with a poem (Spearing 1976). A dream poem is said to be
characterized by the ’I’ of the poem and its substances of a
dream or a vision included (Lynch 1998). To the best of our
knowledge, prior work on poetry generation, whether using
deep learning or not, has not explored the incorporation of
emotion-eliciting phraseology or elements of creativity like
dream poetry as we do in this paper.

Our research provides the following contributions:
• The use of GPT-2 for poetry generation
• Leveraging a word-level emotion lexicon to categorize

emotion-based text
• Exploration of injecting creativity in poetry through the

use of dream data
This paper is organized in the following way. Section

2 presents related work. Next, section 3 discusses our ap-
proach to creative text generation including pre-processing
steps and architecture used. Section 4 talks about our exper-
iments and results. Finally, section 5 gives an evaluation of
our research.

Related Work
Early methods for poetry generation made use of template
oriented and rule-based techniques. These approaches often

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 9



required a large amount of feature picking and knowledge of
syntactic and semantic rules in a language (Oliveira 2009;
Oliveira 2012). Other methods treated poetry generation as
special cases of machine translation or summarization tasks
(Yan et al. 2013; He, Zhou, and Jiang 2012). Such methods
did not have the ability to learn any aspects of the language
in which the poems were written, and thus we feel that they
were incapable of any injection of creativity in the gener-
ation process. Forcing a model to adhere to specific rules
or templates, or summarizing or translating a given text to
generate new poetry was unlikely to lead to artistically ex-
pressive quality we seek to create.

More recently, deep learning methods have become preva-
lent in natural language generation, including poetry gener-
ation. Zhang and Lapata (2014) used Convolutional (CNN)
and Recurrent Neural Networks (RNN) to generate Chinese
Poetry. RNNs allow for short-term memory of the language
to be maintained by inputting the generated output of a net-
work cell back into itself, essentially building context.

Ghazvininejad et al. (2017) used Long Short-Term Mem-
ory (LSTM) units, which are advanced gated versions of
RNNs, to the task of poetry generation. Wei, Zhou, and Cai
(2018) attempted to address the style issue by training the
networks using particular poets and controlling for style in
Chinese poetry. They found that with enough training data,
adequate results could be achieved. The structure problem
was addressed by (Hopkins and Kiela 2017). They generated
rhythmic poetry by focusing on training the network on only
a single type of poetry to ensure produced poems adhered to
a single rhythmic structure. It was found in human evalu-
ations that while the poems produced were rated to be of
lower quality than human produced poems, they were indis-
tinguishable from human produced poems. Lau et al. (2018)
took the LSTM approach one step further with the Deeps-
peare model by employing an attention mechanism to model
interactions among generated words. They also use three
neural networks, one for rhythm, one for rhyming and an-
other for word choice in their quest to generate Shakespeare-
like sonnets.

Vaswani et al. (2017) developed a deep neural architecture
called the Transformer that did away with any sort of need
for recurrence. The Transformer also employed an elaborate
attention mechanism that has been shown to be useful in nat-
ural language tasks. Radford et al. (2019) used this architec-
ture in their Generative Pretrained Transformer 2 (GPT-2)
model. GPT-2 is capable of many downstream tasks like text
generation, but to our knowledge research has not been pub-
lished using the GPT-2 model specifically for poetry gener-
ation.

On a slightly different but related note, natural language
generation influenced by multi-modal input was attempted
by (Vechtomova et al. 2018) to generate song lyrics in the
style of specific artists by fusing outputs coming from lyri-
cal inputs processed by an RNN and audio clips processed
by a CNN. Text generation has also been influenced, in a
cross domain manner, through images. The works of (Liu et
al. 2018) have shown that coupled visual-poetic embeddings
can be used to pick out poetic clues in images, which in turn
can be used to inspire the generated text. Though influenced

natural language generation in and of itself is not a novel
idea, we feel our attempt to style text with the intent of elic-
iting particular emotions provides a creative way to explore
this subtask.

Approach
Our work involves a preliminary step of scoring a corpus of
downloaded poems for emotion to produce subsets of po-
ems that express one of eight different identified emotions.
This step is followed by the actual generation of poems by
finetuning the pre-trained GPT-2 natural language model.
Emotion poem generation involves training eight separate
models, one on each type of emotion poem, to learn how to
model a poetic style of language. These poems are evaluated
using automated techniques as well as humans for the emo-
tions they express or elicit in a reader. Finally, we describe
how we attempt to introduce aspects of what is deemed as
creativity in poetry into poems that are composed automat-
ically. To do so, we gather dream data and apply transfer
learning by finetuning on dreams, then again on poetry. A
high-level overview of the emotion elicitation portion of our
project is shown in Figure 1.

Figure 1: A high-level overview of our project implementa-
tion for emotion eliciting poetry

Poem Emotion Scoring
To decipher text depending on the emotions they elicit, we
make use of the EmoLex dictionary (Mohammad and Tur-
ney 2013). EmoLex is a word-level emotion lexicon that as-
sociates English words with the 8 different emotion cate-
gories we wish to explore. Each poem (or book of poems) in
our dataset is given a score that is the total of the associated

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 10



emotion scores in EmoLex for each word. The maximum
emotion word score is taken and the poem is labeled under
that emotion category. This classification method allows us
to train multiple models on our split dataset.

Currently, the emotions of joy, anticipation, trust, anger,
and sadness represent a large portion of our data while the
emotions of surprise, disgust, and fear are severely under-
represented. Table 1 shows key differences in models includ-
ing the number of tokens in the text and the final average loss
during training.

GPT Architecture
To create a model for poetic language, we propose finetun-
ing OpenAI’s GPT-2 architecture. GPT-2 is a Transformer-
based model that was trained simply to predict the next word
in a 40GB text corpus (Radford et al. 2019). This 40GB
dataset, WebText, was scraped from the internet with certain
heuristics that aimed to gather only quality text (i.e. only
outbound Reddit links from posts with a karma rating of 3
stars or better). By training on such a largely encompassing
corpus of text, the architecture has proven to model the En-
glish language well and has obtained state-of-the-art results
on downstream text-based tasks such as machine translation,
question answering, and summarization. We leverage GPT-
2’s pre-trained knowledge of language for our downstream
task of peotry generation.

Figure 2: GPT Architecture. Adapted from (Radford et al.
2018; Radford et al. 2019)

GPT-2 (Radford et al. 2019) is the successor of OpenAI’s
first Transformer-based architecture, GPT (Radford et al.
2018), with a few changes to the structure. The medium ver-
sion of GPT-2 we use contains 345M parameters and is a 24
layer, decoder-only Transformer architecture. GPT-2 moves
layer normalization to the input of each sub-block, adds an-
other layer normalization after the final self-attention block

Data Model Size # of Tokens Final Loss
anger 345M 1,292,457 0.27

anticipation 345M 2,314,637 1.30
joy 345M 11,668,792 3.19

sadness 345M 2,090,915 1.03
trust 345M 16,667,178 3.39

Table 1: Comparison of 5 emotion models trained.

and increases context size from 512 to 1024 tokens. This
architecture allows for long term dependencies to be cap-
tured better in language modeling. GPT-2’s attention mech-
anism is referred to as a masked multi self-attention head.
This technique allows for a relationship to be modeled for
all words in an input sequence. Words that have multiple
meanings can then be represented based on the context they
appear in. Higher attention scores from surrounding words
relate to a larger contribution to the representation of a word.
GPT-2 makes use of byte-pair encoding (BPE) like its pre-
decessor GPT but on UTF-8 byte sequences (Sennrich, Had-
dow, and Birch 2015). GPT-2’s encoding is somewhere in
between character level and word level. The model also pre-
vents different versions of common words from being dupli-
cated (i.e. fate!, fate?, and fate would not be joined). This
technique improves the quality of the final byte segmenta-
tion. GPT-2’s encoding rids the need for pre-processing or
tokenization of data and is able to assign a probability to
any Unicode string.

The task-agnostic nature of GPT-2 allows us to employ
what we claim to be a semi-supervised fine-tuning approach
to our downstream task of poetry generation. Though the
GPT-2 model learns in an unsupervised manner, our poetry
data is split into categories, so that we can train already pre-
trained GPT-2 on a sub-corpus of poems that demonstrate a
certain emotion or dream-like text without explicitly being
told to do so.

Text Generation and Sampling
As stated by Radford (2019), the core approach of GPT-2
is language modeling. A language model can be thought of
as a probability distribution over a sequence of words in the
form:

p(w1, ..., wn) (1)
Likewise, natural language tends to have a sequential or-

der so it can be modeled as the probability of word given
preceding words in the form (Bengio et al. 2003):

p(wn|w1, ..., wn�1) (2)

We make use of the probabilistic style of language mod-
eling by sampling from the distribution in a semi-random
fashion. Just as the GPT-2 paper does for its text genera-
tion, we make use of Top K sampling, limiting the possible
guesses of words to 40. In addition to Top K, we make use of
a temperature constant of 0.75 which controls randomness
in the distribution. A temperature closer to 0 correlates to
less randomness and a temperature of 1 relates to more ran-
domness. Finally, at the end of the generation process, we

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 11



employ a simple text cleaning algorithm that allows poems
to end more naturally and not trail off as they do sometimes.

Experiments and Results

Datasets and Resources

In order to classify emotion-eliciting poems or books, we
use the NRC Word-Emotion Association Lexicon (EmoLex)
resource. EmoLex was created by the National Research
Council of Canada and includes 14,182 English words that
are associated with different emotions and positive or neg-
ative sentiment (Mohammad and Turney 2013). Words in
EmoLex have been manually annotated via crowd-sourcing
and emotions fall into one or more categories of eight ba-
sic emotions: joy, trust, fear, surprise, sadness, anticipation,
anger, and disgust (Plutchik 2014). This resource provides
us with a way to fabricate a ground truth in the types of
emotion-infused texts we wish to use for training data.

Figure 3: American pyschologist Robert Plutchik’s Wheel
of Emotions

To handle the training and generation portions of the
project, we draw data from the Project Gutenberg website.
Project Gutenberg is a massive online database containing
over 59,000 eBooks. We limit this corpus to a smaller sub-
corpus using an adaptation of the GutenTag tool (Brooke,
Hammond, and Hirst 2015). This tool allows us to place con-
straints on the amount of literature we choose to use in our
work. Our final dataset includes approximately three mil-
lion lines of poetic text from the Gutenberg database and is
further divided by poem/book into our eight emotion cate-
gories.

We attempt to create dream poetry by making use of
the DreamBank dataset. The DreamBank was created by
Schneider & Domhoff at UC-Santa Cruz. The dataset con-
tains a collection of over 20,000 dreams from users age 7
to 74. We scraped this dataset from the website assuring
that dreams collected were recorded only in English. The
DreamBank allows us to attempt transfer learning by fine-
tuning on the dream dataset first, then further finetuning on
our poetry dataset.

Amidst the chaos throng’d, with angry voices each
His rival’s mockery; loud their scorn was fill’d;

So fierce their rage, and in their eager power
Met on the walls of Troy, were fill’d with dismay.

Figure 4: A hand-picked poem from the anger model

Heard I a song of joy,
A song of happy sound,
Fills all the air I breathe,

To him I sing, to him
I sing the happy song.

All night long on the steep green grass
I ride and sing

Figure 5: A hand-picked poem from the joy model

1 2 3 4

Initially, we have retrained 6 GPT-2 based models. De-
fault training parameters were used each of the 5 different
emotion datasets and our dream dataset. All were trained for
12,000 steps (other than our dream model that was trained
for 12k steps on both dreams then poetry) with a learning
rate of 0.0001. When generating text, we do not input con-
text and allow the model to write the poem entirely through
the sampling of conditional probability from the language it
has modeled.

Figures 4 through 8 give examples of 5 poems that we
have hand-picked to illustrate the quality of poems gener-
ated. A cursory glance at the poems shows that the quality
of the text in terms of lexical choice, grammatically, and se-
mantic cohesion is high. We discuss how we quantitatively
assess the poems below.

1https://saifmohammad.com/WebPages/
NRC-Emotion-Lexicon.htm

2https://www.gutenberg.org/
3https://www.dreambank.net/
4https://github.com/nshepperd/gpt-2

We have reached the peak of the highest mountain in the world
The mountain of dreams.

This is the view
Across the valley,

One hour’s journey back,
We crossed it on the way between
A band of beautiful young women.

There was

Figure 6: A hand-picked poem from the anticipation model

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 12

https://saifmohammad.com/WebPages/NRC-Emotion-Lexicon.htm
https://saifmohammad.com/WebPages/NRC-Emotion-Lexicon.htm
https://www.gutenberg.org/
https://www.dreambank.net/
https://github.com/nshepperd/gpt-2


A long trail of falling mist
Had made its way here, and now
Aerily it seemed, as if to drown
The discordant thunder clang.

It seemed to drown the music of the rain;
In this lost place of sorrow

Far off

Figure 7: A hand-picked poem from the sadness model

The other, who with one accord
Wrote my essay, in that he was dear

And good, and knew well, how we ought to treat
A man of such renown, and such love?

He’s a good honest man, no doubt

Figure 8: A hand-picked poem from the trust model

A thousand stars at once,
An hundred thousand stars!

The sun was low,
And the stars were bright,

My heart would do the same.
A thousand stars at once,
A hundred thousand stars!

The night had begun,
And the stars were all the same.

When I came back from the dead,
I saw the stars

Figure 9: A hand-picked poem from the dream model

For she was mine.
I was the only one

She had,
And a thousand other friends,

And a hundred more
She held me dear.

Her eyes were clear, her cheeks were bright,
Her heart was like a rose,

Her mouth was full of music,
Her lips were white

As snow,
And the music she sang

Figure 10: A hand-picked poem from the dream model

Emotion Anger Antic. Joy Sadness Trust
% 65 40 85 87.5 32.5

Table 2: Average percentage of correctly elicited emotion
across four poems in each category

Poem 1 2 3 4
Qual 1 5 4.9 4.8 4.5
Qual 2 3.5 4.1 3.2 3.3
Qual 3 3.9 4.2 3.7 3.7

Table 3: Average Likert score of users for each poem

Evaluation
In the first crowd-sourced analysis of our emotion-eliciting
poetry we presented 4 poems, of the five data-represented
emotion categories, to ten human reviewers of undergrad-
uate level educational backgrounds. These reviewers were
asked to rate each poem based on the emotions elicited
within them after reading. Table 2 illustrates the results from
our evaluation. When taking the average percentage of cor-
rectly emotion-eliciting poems, the models of joy, sadness,
and anger produced the most promising results while the
trust and anticipation models were less than satisfactory.

To preserve consistency in our experiments, we evaluate
our dream model poetry in a similar manner to the emotion
poems. 4 poems from the model are presented to the same
ten judges and they were asked to assess the poems based
on qualities of dream poetry. A dream poem is said to have
these qualities:

• The poem is generally a first-person expression

• The poem main substance is dream or vision like

• The poem recounts or foretells an experience or event

Analysis of results show that poems are able to capture the
first person perspective well, achieving between 4.5 and 5
average Likert scores. The poems also appear to retell a story
or an event often, scoring between 3.7 and 4.2 average Likert
scores. The nature of poetry and dream recounts that make
up our data is often narrative so this result stands to reason.
However, Quality 2 scores of the poem substance containing
a dream or vision are questionable. We suspect the Quality
2 score is lower due to the ambiguity in ascertaining dream
text from regular text. Table 3 highlights our results for the
dream model.

Currently, there exists no widely available standard for
evaluating poetry generation. Scores like BLEU, ROUGE,
METEOR, etc. are more suited for Machine Translation
(MT) tasks (Zhang et al. 2019). For example, they compare
how similar sentence P is to translated-sentence P̂. Instead,
we outline some metrics from the Coh-Metrix web tool that
helps us further quantitatively evaluate the quality of text
generated. With the goal in mind of eliciting emotions, we
claim that subjective analysis of generated poetry will be su-
perior to any available objective metrics.

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 13



Model RDFRE RDFKGL WRDIMGc WRDCNCc LDTTRa PCREFp PCSYNp PCNARp
anger 93.073 2.011 445.914 407.159 0.527 0.680 80.780 53.190

anticipation 100 0.832 440.931 403.104 0.404 7.780 83.650 81.860
joy 100 0.394 446.231 403.072 0.389 11.900 91.310 78.520

sadness 98.200 1.180 444.963 403.252 0.444 1.880 88.690 72.910
trust 100 0.156 434.664 412.717 0.334 18.140 84.610 91.310

dream 100 0 427.363 377.476 0.238 99.900 65.170 70.880

Table 4: Average Coh-Metrix evaluations across 25 randomly selected poems from each model.

Coh-Metrix

To provide a quantitative calculation of the caliber of text our
models produce, we outline relevant metrics from the Uni-
versity of Memphis Coh-Metrix tool (Graesser et al. 2004).
Coh-Metrix is a text evaluation software kit and from it, we
have chosen 8 forms of assessment. The first two, Flesch-
Kincaid Grade Level (RDFKGL) and Flesch Reading Ease
(RDFRE), are two standard measures that deal with text
readability and ease (Klare 1974). The RDFKGL scores a
text from grade level 0 to 18, while the RDFRE score is a 0-
100 index with 100 being an easily readable text. We aim to
produce text that is readable by all, so a low RDFKGL score
and high RDFRE score would be ideal. The next metrics we
use evaluate at the word level. The word the imageability
(WRDIMGc) and word concreteness (WRDCNCc) scores
measure content words on their ability to create an image in
the reader’s mind and their ability to appeal to a reader’s
senses, respectively (Coltheart 1981). We aim for our art
to create a connection between the reader and poem, so we
believe imageability and concreteness of content words are
two good measures with this in mind. We also make use of
three text easibility principal component scores in narrativ-
ity (PCNARp), referential cohesion (PCREFp), and syntac-
tic simplicity (PCSYNp) (Graesser et al. 2004). All text ea-
sibility PC scores are percentile scales, and thus we aim for
higher numbers for these scores. Finally, we make use of the
Lexical Diversity Type:Token Ratio score (LDTTRa) for all
words. LDTTRa measures the ratio of type (unique) words
to all tokens in the text. Because our text is relatively short,
we aim for a middle ground in the LDTTRa ratio, meaning
there is uniqueness in the word choice of the text, but cohe-
sion is still upheld.

Inspection of our Coh-Metrix results show that randomly
selected poems from all models fall at or below the 2nd-
grade reading level in RDFKGL scores and are greater than
93 on the RDFRE scale. This suggests generated poems
are easily readable by the majority of viewers. Looking at
the WRDIMGc and WRDCNCc, we see our poems, except
for the dream model concreteness, fall in the 400s. Words
with higher imageability and concreteness fall around the
low 600s while words that are lower fall around the upper
200s on this scale. These scores reveal that our models are
creating text that is both concrete in word choice and paint
a picture. Our dream model scoring lower in the concrete-
ness is reasonable as the word choice of dreams tends to
be more abstract. Lastly, percentile scores of PCSYNp and
PCNARp show that the majority of models are producing

poems that are both syntactically simplistic and narrative.
Most PCREFp scores are on the lower end of the scale, but
because the poems are not necessarily related and were all
input at once, we suspect that is the reason these scores
are lower. Table 4 highlights these scores for each poetry
model.

Conclusion & Future Work
In this paper we attempted to influence natural language
generation in the form of poetry generation through the use
of classified emotion poems and dream text. To do so, we
first leveraged a word-level emotion lexicon to construct a
meaning for emotion-eliciting text and used that text to train
separate language models. Next, we gathered data of dream
records and employed transfer learning in attempts to cre-
ate dream-like poetry. This paper seeks to create art in the
form of auto-generated poetry while opening the door to
more projects involving emotion-eliciting text-based tasks
and influenced creative neural generation.

Future research in this project will involve gathering data
for the underrepresented emotion categories, allowing us to
have a language model for each emotion. We will also con-
sider external crowd-sourced evaluation methods like Ama-
zon Turk for a more expansive judgment of our results. In
addition, we are interested in the exploration of using other
word-level or segment-level emotion lexicons to influence
our text generation. Finally, we wish to seek out additional
forms of replicating creativity that artists incorporate in their
work.

Acknowledgement
The work reported in this paper is supported by the Na-
tional Science Foundation under Grant No. 1659788. Any
opinions, findings and conclusions or recommendations ex-
pressed in this work are those of the author(s) and do not
necessarily reflect the views of the National Science Foun-
dation.

References
[Bahdanau, Cho, and Bengio 2014] Bahdanau, D.; Cho, K.;
and Bengio, Y. 2014. Neural machine translation by
jointly learning to align and translate. arXiv preprint
arXiv:1409.0473.

[Bengio et al. 2003] Bengio, Y.; Ducharme, R.; Vincent, P.;
and Jauvin, C. 2003. A neural probabilistic language model.
Journal of machine learning research 3(Feb):1137–1155.

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 14



[Brooke, Hammond, and Hirst 2015] Brooke, J.; Hammond,
A.; and Hirst, G. 2015. Gutentag: an nlp-driven tool for
digital humanities research in the project gutenberg corpus.
In Proceedings of the Fourth Workshop on Computational
Linguistics for Literature, 42–47.

[Colby 1981] Colby, K. M. 1981. Modeling a paranoid mind.
Behavioral and Brain Sciences 4(4):515–534.

[Coltheart 1981] Coltheart, M. 1981. The mrc psycholin-
guistic database. The Quarterly Journal of Experimental
Psychology Section A 33(4):497–505.

[Gatt and Krahmer 2018] Gatt, A., and Krahmer, E. 2018.
Survey of the state of the art in natural language generation:
Core tasks, applications and evaluation. Journal of Artificial
Intelligence Research 61:65–170.

[Ghazvininejad et al. 2017] Ghazvininejad, M.; Shi, X.;
Priyadarshi, J.; and Knight, K. 2017. Hafez: an interac-
tive poetry generation system. In Proceedings of ACL 2017,
System Demonstrations, 43–48. Vancouver, Canada: Asso-
ciation for Computational Linguistics.

[Graesser et al. 2004] Graesser, A. C.; McNamara, D. S.;
Louwerse, M. M.; and Cai, Z. 2004. Coh-metrix: Analy-
sis of text on cohesion and language. Behavior Research
Methods, Instruments, Computers 36:193–202.

[He, Zhou, and Jiang 2012] He, J.; Zhou, M.; and Jiang, L.
2012. Generating chinese classical poems with statistical
machine translation models. In Twenty-Sixth AAAI Confer-
ence on Artificial Intelligence.

[Hopkins and Kiela 2017] Hopkins, J., and Kiela, D. 2017.
Automatically generating rhythmic verse with neural net-
works. In Proceedings of the 55th Annual Meeting of the
ACL (Volume 1: Long Papers), 168–178.

[Hovy 1990] Hovy, E. H. 1990. Pragmatics and natural lan-
guage generation. Artificial Intelligence 43(2):153–197.

[Klare 1974] Klare, G. R. 1974. Assessing readability. Read-
ing research quarterly 62–102.

[Lau et al. 2018] Lau, J. H.; Cohn, T.; Baldwin, T.; Brooke,
J.; and Hammond, A. 2018. Deep-speare: A joint neu-
ral model of poetic language, meter and rhyme. CoRR
abs/1807.03491.

[Li et al. 2016] Li, J.; Monroe, W.; Ritter, A.; Galley, M.;
Gao, J.; and Jurafsky, D. 2016. Deep reinforcement learning
for dialogue generation. arXiv preprint arXiv:1606.01541.

[Liu et al. 2018] Liu, B.; Fu, J.; Kato, M. P.; and Yoshikawa,
M. 2018. Beyond narrative description: Generating poetry
from images by multi-adversarial training. In Proceedings
of the 26th ACM International Conference on Multimedia,
MM ’18, 783–791. New York, NY, USA: ACM.

[Lynch 1998] Lynch, K. L. 1998. Medieval Dream-Poetry.
Cambridge University Press.

[Mao et al. 2014] Mao, J.; Xu, W.; Yang, Y.; Wang, J.;
Huang, Z.; and Yuille, A. 2014. Deep captioning with mul-
timodal recurrent neural networks (m-rnn). arXiv preprint
arXiv:1412.6632.

[Mohammad and Turney 2013] Mohammad, S. M., and Tur-
ney, P. D. 2013. Crowdsourcing a word-emotion association
lexicon. 29(3):436–465.

[Oliveira 2009] Oliveira, H. 2009. Automatic generation of
poetry: an overview. Universidade de Coimbra.

[Oliveira 2012] Oliveira, H. G. 2012. Poetryme: a versatile
platform for poetry generation. Computational Creativity,
Concept Invention, and General Intelligence 1:21.

[Plutchik 2014] Plutchik, R. 2014. Emotions. Psychology
Press.

[Radford et al. 2018] Radford, A.; Narasimhan, K.;
Salimans, T.; and Sutskever, I. 2018. Improving
language understanding by generative pre-training.
URL https://s3-us-west-2. amazonaws. com/openai-
assets/researchcovers/languageunsupervised/language
understanding paper. pdf.

[Radford et al. 2019] Radford, A.; Wu, J.; Child, R.; Luan,
D.; Amodei, D.; and Sutskever, I. 2019. Language models
are unsupervised multitask learners. OpenAI Blog 1(8).

[Reiter and Dale 2000] Reiter, E., and Dale, R. 2000. Build-
ing natural language generation systems. Cambridge uni-
versity press.

[Santhanam and Shaikh 2019] Santhanam, S., and Shaikh, S.
2019. A survey of natural language generation techniques
with a focus on dialogue systems-past, present and future
directions. arXiv preprint arXiv:1906.00500.

[Sennrich, Haddow, and Birch 2015] Sennrich, R.; Haddow,
B.; and Birch, A. 2015. Neural machine transla-
tion of rare words with subword units. arXiv preprint
arXiv:1508.07909.

[Spearing 1976] Spearing, A. C. 1976. The High Medieval
Dream. Stanford University Press.

[Vaswani et al. 2017] Vaswani, A.; Shazeer, N.; Parmar, N.;
Uszkoreit, J.; Jones, L.; Gomez, A. N.; Kaiser, L. u.; and
Polosukhin, I. 2017. Attention is all you need. In Guyon, I.;
Luxburg, U. V.; Bengio, S.; Wallach, H.; Fergus, R.; Vish-
wanathan, S.; and Garnett, R., eds., Advances in Neural In-
formation Processing Systems 30. Curran Associates, Inc.
5998–6008.

[Vechtomova et al. 2018] Vechtomova, O.; Bahuleyan, H.;
Ghabussi, A.; and John, V. 2018. Generating lyrics with
variational autoencoder and multi-modal artist embeddings.
CoRR abs/1812.08318.

[Wei, Zhou, and Cai 2018] Wei, J.; Zhou, Q.; and Cai, Y.
2018. Poet-based poetry generation: Controlling personal
style with recurrent neural networks. In 2018 International
Conference on Computing, Networking and Communica-
tions (ICNC), 156–160. IEEE.

[Weizenbaum and others 1966] Weizenbaum, J., et al. 1966.
Eliza—a computer program for the study of natural lan-
guage communication between man and machine. Commu-
nications of the ACM 9(1):36–45.

[Wu et al. 2016] Wu, Y.; Schuster, M.; Chen, Z.; Le, Q. V.;
Norouzi, M.; Macherey, W.; Krikun, M.; Cao, Y.; Gao, Q.;
Macherey, K.; et al. 2016. Google’s neural machine transla-
tion system: Bridging the gap between human and machine
translation. arXiv preprint arXiv:1609.08144.

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 15



[Yan et al. 2013] Yan, R.; Jiang, H.; Lapata, M.; Lin, S.-D.;
Lv, X.; and Li, X. 2013. I, poet: automatic chinese poetry
composition through a generative summarization framework
under constrained optimization. In Twenty-Third Interna-
tional Joint Conference on Artificial Intelligence.

[Zhang and Lapata 2014] Zhang, X., and Lapata, M. 2014.

Chinese poetry generation with recurrent neural networks.
In Proceedings of the 2014 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), 670–680.

[Zhang et al. 2019] Zhang, T.; Kishore, V.; Wu, F.; Wein-
berger, K. Q.; and Artzi, Y. 2019. Bertscore: Evaluating
text generation with BERT. CoRR abs/1904.09675.

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 16



Enhancing Language Models with Knowledge Graph Embeddings

Andrew Conley
Rensselaer Polytechnic Institute (RPI)

110 Eighth Street
Troy, NY USA 12180
Email: conlea@rpi.edu

Jugal Kalita
University of Colorado Colorado Springs

1420 Austin Bluffs Pkwy
Colorado Springs, Colorado 80918

Email: jkalita@uccs.edu

Abstract

Most NLP tasks use word embeddings to improve perfor-
mance. Breakthroughs like ELMo (Peters et al. 2018) and
BERT (Devlin et al. 2018) have shown that state of the art
results can be achieved in many NLP tasks through good
language models, even without a task-specific architecture.
Word vectors have been a simple, popular, and effective lan-
guage model for years. Methods for generating these word
vectors typically use unsupervised learning based on the con-
text in which each word is used within the greater corpus. We
propose new method of generating these word vectors. We
use knowledge embeddings extracted from knowledge bases
like Freebase and WordNet (Bordes et al. 2013) as a starting
point, and introduce syntactic information captured from ex-
isting language models. By incorporating knowledge directly
into the word embedding we aim to improve the task of nat-
ural language inference, similar to those achieved by apply-
ing knowledge bases to machine reading (Yang and Mitchell
2019). The new embeddings are judged primarily on their
perfermance on the natural language inference model HBMP
(Talman, Yli-Jyrä, and Tiedemann 2019). This performance
is compared to that of Glove (Pennington, Socher, and Man-
ning 2014), with the same architecture. No improvement was
found to accuracy, however further steps to achieve the de-
sired improvement are well defined.

Introduction
Many NLP tasks see improved performance through the use
of a pre-trained language model. Recently, BERT has been
used to achieve state of the art results on many NLP tasks,
even without the use of extensive task specific architectures
(Devlin et al. 2018). Common methods of generating word
embeddings like Word2vec (Mikolov et al. 2013), GloVe
(Pennington, Socher, and Manning 2014), and Fasttext (Bo-
janowski et al. 2017), assign a vector representation to each
word in a particular vocabulary. Metrics like the Euclidean
distance or cosine similarity between vectors are thought of
as a pseudo measurement of similarity between words in the
language model. Something to note about these processes is
that they are built solely from the context in which a word
is used within its corpus, and do not incorporate outside
knowledge. This leads to results that contradict this notion of
similarity. For example, using Word2vec yields a very small
distance between the vector for “Hello

00 and the vector for
“Dolly

00 despite the meanings of the two words being un-

related. We propose using altered knowledge graph embed-
dings as a language model for natural language inference in
order to capture semantic information instead of just syntac-
tic information.

Knowledge graphs are large graphs of triples made up of
two entities (nodes) and a relation (edge) connecting them.
These graphs are often highly curated and contain specific
information about how various entities are related. When
dealing with knowledge graphs, we often talk about the task
of link prediction. Link prediction takes an existing knowl-
edge graph and tries to predict relations between entities not
present in the graph. Graph embeddings, a method of mod-
elling entities and relations, as well as scoring triples, are
used to achieve good results in link prediction(Trouillon et
al. 2016)(Ding et al. 2018)(Bordes et al. 2013).

TransE (Bordes et al. 2013) is a model for graph embed-
ding that represents entities as low dimensional vectors and
relations as translations (low dimensional vector similar to
those of entities) on those vectors. For head entity h, tail en-
tity t, and relation (link) l, training minimizes the euclidean
distance between h+ l and t, while maximizing the distance
between h+ l and other entities.

The TransE model is particularly suited for creating a
general language model since it models entities as low di-
mensional vectors, the same form used by methods like
Word2vec, GloVe, and Fasttext. This allows TransE embed-
dings to replace these common language models without
needing to alter the architecture used for downstream tasks.
TransE also includes a constraint on entity embeddings, re-
stricting their L2 norm to be equal to 1 This was done to
prevent artificial reduction of the loss function by increas-
ing distance between entities that do not have a relation by
arbitrarily increasing the size of entity embeddings. These
restrictions keep the embeddings in a smaller space, which
keeps related entities closer together, much like Word2vec
and similar language models.

Related Work
Generating good embeddings for rare words is a difficult
task and big problem. Since generating word embeddings
is often an unsupervised task, a large amount of data is re-
quired to create good embeddings. Rare words, by defini-
tion, do not appear often, and this lack of data often results in
unreliable word vectors that do not accurately represent the

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 17



similarity of a rare word to other words in the vocabulary.
Herbelot and Baroni (2017) describe an effective method
to train these rare word vectors by altering word2vec. This
method learns the majority of the vocabulary in accordance
with the methods of word2vec, then holds the learned word
vectors constant while learning the rare words with a higher
rate of learning and a larger window size to take in as much
context as possible. This paper also utilizes a smaller, cu-
rated subset of its corpus to train the rare words. This subset
is made up of sentences from encyclopedic data, with con-
text believed to be highly informative to the meaning of the
rare word.

A La Carte Embedding (Khodak et al. 2018) builds off
of this paper applying similar techniques to phrases. No-
tably, this word achieves low computational cost embedding
chimeras (a combination of words to simulate a new rare
word), and excellent results. Chimera representations for id-
ioms have been shown to be very similar to their meaning,
for example, the representation for beef up was (by cosine
similarity) most similar to need and improve, and the rep-
resentation for cutting edge was most similar to innovative
and technology.

Another approach for improving rare word embeddings
is the Fasttext language model (Bojanowski et al. 2017).
Fasttext is a character based language model where words
vectors are a sum of n-gram vectors. One major advantage
of this is that out of vocabulary words, a huge problem for
dictionary based models, can have approximate meanings
guessed from the vector representation of prefixes, suffixes,
and root words. This model creates word vectors that are
very related to words that share a root, which both strongly
indicates similarity linguistically and allows detection of
similarity across languages that share roots (i.e. romance
languages sharing Latin roots). This model has been com-
bined with a Gaussian Distribution model (Athiwaratkun
and Wilson 2018) which uses probability densities to be able
to model multiple meanings of a single word. The result of
the combination, Probabilistic Fasttext (Athiwaratkun, Wil-
son, and Anandkumar 2018) is able to accurately predict the
meaning of rare, misspelt, and unseen words. This model
seperates the representation of a word into various mixture
component, each representing a different sense or meaning
of the word. In doing so, this model has achieved state of the
art results on tasks that require the use and differentiation of
different meanings of a word.

There are currently many approaches to generating graph
embeddings for the task of link prediction. One notable tech-
nique applies constraints to limit irrelevant or unwanted in-
formation taken from the knowledge graph when generat-
ing embeddings (Ding et al. 2018). These constraints came
in two forms: a non-negativity constraint and approximate
entailment constraints. The non-negativity constraint does
not allow negative relations to be considered (i.e. a cat is
not a car, or a frog is not an instrument). The effect of this
constraint was a more sparse and interpretable set of entity
vectors. The approximate entailment constraint allowed de-
tection of entailment between relations. Using the ComplEx
(Trouillon et al. 2016) model, Ding et al. were able to for-
mulate an equation for detecting entailment with probability

Embedding Model Accuracy
GloVe 85.89%
TransE ConceptNet 71.35%
Word2vec 71.35%
TransE ConceptNet+Word2vec 71.35%
TransH ConceptNet+Word2vec 71.35%
DistMult ConceptNet+Word2vec 71.35%
Randomly Initialized 71.35%

Table 1: Results of each language model on snli dataset us-
ing HBMP model

�. This constraint alters the imaginary component of each
vector to encode this entailment information without greatly
affecting metrics of entity similarity in the vector space (dis-
tance and cosine similarity).

Results
We propose a new method of altering knowledge graph em-
beddings to act as a language model for natural language
inference. We approach this by replacing GloVe word vec-
tors with standard knowledge embeddings of the knowledge
graph Concept Net, and replacing those vectors with knowl-
edge embeddings generated from altered knowledge graph.
The quality of created language models is evaluated by per-
formance on the natural language inference model described
in (Talman, Yli-Jyrä, and Tiedemann 2019).

Initially, standard TransE embeddings were trained on
Concept Net triples and applied to the HBMP model. Using
OpenKE packages (Han et al. 2018), entities and relations
are indexed and triples are split into a text file for training
and a text file for testing, both of the form, entityid entityid
relationid. TransE was chosen for this initial task because it
models entities and relations from the knowledge graph as
low dimensional vectors, similar to the GloVe embeddings
to be replaced.

In an attempt to improve these embeddings, a new, mod-
ified set of triples was created in an attempt to include
syntactic information from the successful language model
word2vec. New triples were generated and added to Con-
cept Net to incorporate the similarity found in an existing
word2vec model. These triples were created by linking each
word in the model’s vocabulary (entities) with the word clos-
est to it by cosine similarity, via a new context relation. In
practice, this yields connections such as “unamused

00 is re-
lated by context to “bemused

00 or “pastured00 is related by
context to “Simmentalcattle

00. The word2vec model from
which these connections were generated was downloaded
pre-trained on the google news groups corpus.

As an extension to the previous improvement, we at-
tempted to expand this to a general n most similar words
by cosine similarity. These words would be connected by
relations, C̈ontext0, Context1, ..., Contextnr̈espectively. Un-
fortunately, this proved too time consuming for the scope of
this project, as these new sets of triples would have taken
weeks to create.

We then moved away from TransE graph embeddings to
TransH and DistMult. Both of these new embedding mod-

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 18



els have proven more effective than TransE at the task of
link prediction, which would suggest it might generate a bet-
ter general language model. TransH models entities in the
same way as TransE and GloVe, allowing for simple sub-
stitution of the newly created vectors for the default GloVe
vectors. TransH differs from TransE in that it models rela-
tions as a hyperplane, instead of just a translation. This al-
lows for more intricate combinations of relations to be mod-
eled and tested successfully in the task of link prediction.
DistMult models relations as a bilinear operator between en-
tities. This model is also a multiplicative graph embedding
model, meaning in the task of link prediction, the scoring
and prediction of triples is based on a multiplication of vec-
tors instead of addition in the case of TransE and TransH.
Multiplicative models tend to perform better than additive
ones at link prediction, but are less similiar to conventional
language models like GloVe.

The vectors we have been dealing with so far have all used
300 dimensions. However, DistMult embeds its entities with
100 dimensional vectors by default. Scaling the size of these
vectors up to 300 during training would be possible, but not
feasible given time constraints. In order to allow these em-
beddings to match the HBMP architecture, they were padded
with values of 0 to reach 300 dimensions.

Table 1 shows the accuracy achieved on the NLI task
for each set of embeddings described above. A set of ran-
domly initialized vectors was also tested to use a baseline
of a language model expected to cause no improvement. Ev-
ery set of embeddings except the original GloVe embeddings
achieved an accuracy of 71.35, while the GloVe embeddings
achieved 85.89. The interpretation of these results will be
discussed in the next section.

Discussion
Every novel language model tested produced the same re-
sult of 71.35. This accuracy is notably worse than the 85.89
observed using GloVe. We believe this occurred either due
to little overlap of key vocabulary between the knowledge
graph and NLI corpus, or because of unexpected behavior
of the HBMP model when changing embeddings.

Assuming the HBMP model performed as expected, the
poor results were likely due to the novel language mod-
els lacking reliable representations of common words from
the NLI corpus. The knowledge graph Concept Net is par-
ticularly useful when it has been applied previously be-
cause it captures semantic information. General language
models merely capture syntactic information, the general
context each word is used in, but lacks any complex or
deeper understanding. Concept Net is able to capture com-
plex ideas used in speach. This is apparent by the presence
of idioms as entities in its graph. For example, the phrase
“fewcardsshyoffulldeck

00 is present in Concept Net. The
meaning of this phrase is not the same as the literal inter-
pretation of those words in sequence. Therefore, the ability
to leverage this complex concept should prove invaluable to
natural language inference, a task that inherently requires
some kind of understanding. The problem is that in Con-
cept Net this idiom is represented as written above, several

words connected by underscores and stored as a single en-
tity. This is not the same format that would emerge in the
NLI task. If this phrase was present at all, it would be a se-
ries of words without underscores, which the model would
not equate to the representation of the idiom found in Con-
cept Net. When we consider how common phrases or ex-
pressions are in Concept Net, and that many of connections
present for individual words in Concept Net connect those
words to phrases, it seems likely that Concept Net fails to
create a densely connected network of words found in our
downstream task. This interpretation is also supported by
the performance of the randomly initialized vectors. Ran-
domly initialized vectors should contain no useful informa-
tion whatsoever, and therefore not enhance the performance
of the NLI task. Since the same results are seen using our
Concept Net models and random vectors, our vectors pro-
vide no improvement to the model.

If these results were caused primarily by an issue of
vocabulary, we would expect including information from
Word2vec to improve results. Word2vec trained on the
google news corpus should share a large portion of vocab-
ulary with the GloVe embeddings as well as the NLI task.
However we observe the same poor results on each model
that includes Word2vec based triples. In practice, merely
1 context relation did not add any significant information.
When looking through the added triples by hand, it be-
comes clear that very often the nearest vector is too sim-
ilar to the original vector to add any meaningful informa-
tion. We see many relations connecting words like peice to
piece (a misspelling) or connecting mage to mages (plural).
If these words were present in Concept Net to begin with,
it is likely that these relations are already represented. Also,
it becomes evident that a single relation for each word can-
not create good representations. If a word from Word2vec is
not present in Concept Net, it is not meaningfully added to
the vocabulary. Although it technically becomes included in
the vocabulary, it will only be connected to its closest word,
which is also likely not in the vocabulary. This yields a very
sparse set of connections, which will net create useful vec-
tors. However, even if the word is present in Concept Net,
we are still only adding a single relation. It is possible that
many relations (although expensive with regard to time) may
improve these results, but that is not certain. Even with hun-
dreds of relations, it is likely that the words from Word2vec
will become significantly connected with other words from
Word2vec and entirely unconnected to entities from Concept
Net. In that case, Concept Net would not add anything to
the language model, and performance would strive to match
plain Word2vec, not surpass it.

All issues discussed above would also apply DistMult and
TransH. If the issues already presented were not the cause of
these poor results, it is possible that existing graph embed-
ding methods are inherently ill-suited for acting as a general
language model. Typical language models use unsupervised
learning to group words used in similar contexts. This keeps
similar words very close together in the vector space. Graph
embeddings, on the other hand, require more specific infor-
mation than just whether or not two words are related. Be-
cause a graph embedding needs to know the way in which

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 19



two entities are related, it often does not group similar vec-
tors very close together. Instead these embeddings rely on
using specific directions or other similar methods to distin-
guish between relations. Ambiguity is unwelcome in graph
embeddings, as it is as important to be confident two entities
do not share a relation as it is to know the entities do share a
relation. Because of this, a greater distance between entities
can often prove benefitial. The TransE paper specifical men-
tioned needing to add a constraint to prevent entities from
drifting too far apart, which was found to happen often to
arbitrarily reduce the loss function during training.

Alternatively, these poor results may be due to unexpected
behavior involving changing the language model, or a failure
to import the new vectors. If this is the case, many of the
previously discussed issues are still relevant.

Concept Net includes many phrases and idioms. Assum-
ing those phrases are connected to many other entities that
can illustrate their meaning, those representations contain
valuable information. However, that information cannot be
accessed in its current state. Merely introducing connections
between words in Word2vec will not cause the representa-
tion of a Concept Net phrase to be used in a NLI task if the
phrase does not appear in the same form (underscores).

We also would not know if the graph embedding mod-
els are suitable to be used as a general language model. As
stated earlier, graph embeddings often have more euclidean
distance between vectors. This makes the vectors themselves
more varied between related words. Since the layers of a
neural network use matrix multiplication to generate out-
puts, intuition would suggest vectors that are made up of
very similary values would produce very similar results with
a neural NLI model. It is desireable to have similar words
behave in similar ways, so loosing that quality may hurt per-
formance when switching to a graph embedding.

Future Work
Given adequate time, we would like to explore including
more relations from Word2vec as triples. We would also like
to develop a method of connecting Word2vec entities to ex-
isting Concept Net entities. Recent work (Yang and Mitchell
2019) has shown good results applying attention to knowl-
edge graph embeddings. Specifically their method of choos-
ing embeddings to attend to, searching the graph for sub-
string matches, is a promising system for choosing entities
to relate to our vocabulary.

Once serious improvement is seen, we will experiment
with restricting the information used from our knowledge
graph. Work by (Ding et al. 2018) has shown that simple
constraints, such as not including negative relations (is not
a, does not have, etc.), can greatly improve performance in
link prediction. One would expect a negative relation con-
tradict the advantages of a language model, keeping similar
words near each other in vector space, by reducing the dis-
tance between words that are known to be related by their
dissimilarity, for instance, an Antonym relation.

We would still like to experiment with othergraph embed-
ding models. Although the models we tried in this paper did
not show any change, different embedding models can rep-
resent entities and especially relations in a myriad of ways,

some of which should vastly outperform the others. In par-
ticular, a character based embedding may help to address the
issue of formatting phrases, by being less particular about
the presence or absence of underscores.

It would also be worthwile to look into a method of pre-
processing the NLI dataset to isolate phrases and format
them ahead of time to match their appearance in Concept
Net. Concept Net is a large graph containing a large amount
of semantic world knowledge. If we could specifically tailor
our task to match Concept Net, much more of that informa-
tion could likely be used.

We would also like to look into ways of incorporating
information from knowledge graphs into language models
beyond introducing new triples and generating a graph em-
bedding. The original intent was to build off the work of
nonce2vec (Herbelot and Baroni 2017) and from an exist-
ing set of graph embeddings, additionally selectively train
the remainder of a desired vocabulary using word2vec. This
approach was hidered by the requirement of a word2vec
model to base training off of, instead of just vectors, where
knowledge embedding vectors would have been easily sub-
stitutable. Should a solution to this issue be found, a defini-
tion dataset, required for nonce2vec, has already been pre-
pared from a general corpus. There has also been discussion
of simply concatonating the representation for each word
created by glove and by a knowledge embedding into a sin-
gle vector to be fed into the downstream model. This method
should also capture semantic information from the knowl-
edge graph, but would require modification of the down-
stream architecture and involve higher dimensional vectors.

Acknowledgement
The work reported in this paper is supported by the Na-
tional Science Foundation under Grant No. 1659788. Any
opinions, findings and conclusions or recommendations ex-
pressed in this work are those of the author(s) and do not
necessarily reflect the views of the National Science Foun-
dation.

References
Athiwaratkun, B., and Wilson, A. G. 2018. Hi-
erarchical density order embeddings. arXiv preprint
arXiv:1804.09843.
Athiwaratkun, B.; Wilson, A. G.; and Anandkumar, A.
2018. Probabilistic fasttext for multi-sense word embed-
dings. arXiv preprint arXiv:1806.02901.
Bojanowski, P.; Grave, E.; Joulin, A.; and Mikolov, T. 2017.
Enriching word vectors with subword information. Trans-
actions of the Association for Computational Linguistics
5:135–146.
Bordes, A.; Usunier, N.; Garcia-Duran, A.; Weston, J.; and
Yakhnenko, O. 2013. Translating embeddings for model-
ing multi-relational data. In Advances in neural information
processing systems, 2787–2795.
Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2018.
Bert: Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805.

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 20



Ding, B.; Wang, Q.; Wang, B.; and Guo, L. 2018. Improving
knowledge graph embedding using simple constraints. arXiv
preprint arXiv:1805.02408.
Han, X.; Cao, S.; Lv, X.; Lin, Y.; Liu, Z.; Sun, M.; and Li, J.
2018. Openke: An open toolkit for knowledge embedding.
In Proceedings of EMNLP, 139–144.
Herbelot, A., and Baroni, M. 2017. High-risk learning: ac-
quiring new word vectors from tiny data. arXiv preprint
arXiv:1707.06556.
Khodak, M.; Saunshi, N.; Liang, Y.; Ma, T.; Stewart, B.; and
Arora, S. 2018. A la carte embedding: Cheap but effec-
tive induction of semantic feature vectors. arXiv preprint
arXiv:1805.05388.
Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and
Dean, J. 2013. Distributed representations of words and
phrases and their compositionality. In Advances in neural
information processing systems, 3111–3119.

Pennington, J.; Socher, R.; and Manning, C. 2014. Glove:
Global vectors for word representation. In Proceedings of
the 2014 conference on empirical methods in natural lan-
guage processing (EMNLP), 1532–1543.

Peters, M. E.; Neumann, M.; Iyyer, M.; Gardner, M.; Clark,
C.; Lee, K.; and Zettlemoyer, L. 2018. Deep contextualized
word representations. arXiv preprint arXiv:1802.05365.

Talman, A.; Yli-Jyrä, A.; and Tiedemann, J. 2019. Sentence
embeddings in nli with iterative refinement encoders. JNLE.

Trouillon, T.; Welbl, J.; Riedel, S.; Gaussier, É.; and
Bouchard, G. 2016. Complex embeddings for simple link
prediction. In International Conference on Machine Learn-
ing, 2071–2080.

Yang, B., and Mitchell, T. 2019. Leveraging knowl-
edge bases in lstms for improving machine reading. arXiv
preprint arXiv:1902.09091.

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 21



PixelMRF

A Deep Markov Random Field for Image Generation

Joshua Frederick

Departments of Computer Science & Mathematics
California Polytechnic State University

San Luis Obispo, California, USA
jmfreder@calpoly.edu

Jonathan Ventura

Department of Computer Science
California Polytechnic State University

San Luis Obispo, California, USA
jventu09@calpoly.edu

Abstract

In this work we introduce a new graphical
model for generative image modeling. The
popular PixelCNN has utilized deep graph-
ical models to represent images as directed,
acyclic Markov chains. The limitations en-
forced by the directed, acyclic nature of Pix-
elCNN have restricted the model to concep-
tualize an image as a sequence of directional
dependencies, where each pixel is condition-
ally dependent on the pixels before it in row-
major order. We instead propose PixelMRF,
a deep graphical model that fully captures
the conditional distributions for each pixel
of an image. PixelMRF achieves this goal by
representing the pixels in an image as a undi-
rected Markov random field, and so allows
the dependencies that PixelCNN lacks.

Introduction

The need for powerful generative modeling is clear from
consistent growth in area. One such highly used model is
PixelCNN [van den Oord, Kalchbrenner, and Kavukcuoglu,
2016]. The autoregressive network, PixelCNN is a convolu-
tional neural network (CNN) that represents the joint distri-
bution of an image X as the product of conditional distribu-
tions

p(X) =
n2Y

i=1

p(xi|x1, . . . , xi�1)

where xi is the ith pixel in row major order and X is a n⇥n
image (see Figure 1 for a visual representation).

The network utilizes a series of masked convolutional lay-
ers with residual connections to guarantee that each pixel
is only dependent on the prior pixels. The mask is imple-
mented by taking the Hadamard product between each con-
volution kernel and a matrix that is 1 in each position prior
to the central position and 0 otherwise, an example is given
in Figure 2 [van den Oord, Kalchbrenner, and Kavukcuoglu,
2016].

Networks with the structure of purposely obscuring in-
formation from the receptive field of each feature are com-
monly denoted as blind-spot networks. To our knowledge,
this terminology was constructed in [Krull, Buchholz, and

Figure 1: A visual representation of the dependencies of
pixel xi [Harshit Sharma, 2017]

Figure 2: An example of a mask used in PixelCNN [van den
Oord et al., 2016b]

Jug, 2018], and expanded in [Laine, Lehtinen, and Aila,
2019]. Similarly to [Laine, Lehtinen, and Aila, 2019], we
adopt this terminology but note that the term “blind-spot”
has a contradictory meaning in PixelCNN literature, where it
denotes an unintentional obscuring of the receptive field. For
the sake of concreteness of the blind-spot concept, note that
the blind spot for a pixel xi in PixelCNN is all posterior pix-
els of xi and xi itself. We question whether this blind-spot
formulation given by PixelCNN is limiting its effectiveness,
and so through this work suggest a reconsideration that we
believe will achieve better performance.

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 22

mailto:jmfreder@calpoly.edu
mailto:jventu09@calpoly.edu


Previous Works

Before continuing, we consider some prior improvements
made to PixelCNN. Soon after its inception in 2016, two
improvements to PixelCNN were suggested. An extension
of the team that developed the original model improved their
orignal architecture to the Gated PixelCNN model [van den
Oord et al., 2016b] by adding gated activation such as in
a LSTM. Then a series of improvements was suggested in
[Salimans et al., 2017], ultimately leading to the current Pix-
elCNN++.

One important attribute of PixelCNN is that it formally
optimizes the log-likelihood of the training data unlike other
forms of generative modeling such as GANs. Prior to Pix-
elCNN, other generative models sought to generate images
by optimizing the log-likelihood [Theis and Bethge, 2015;
van den Oord and Schrauwen, 2014; Dinh, Krueger, and
Bengio, 2015].

After PixelCNN in 2018, a Berkeley team used self-
attention together with the traditional convolutional net-
works of PixelCNN to achieve state-of-the-art results on a
number of standard data sets [Chen et al., 2018]. Most re-
cently an OpenAI team took the ”attention is all you need”
philosophy of [Vaswani et al., 2017] and used sparse trans-
formers to achieve the current state-of-the-art performance
on several data sets [Child et al., 2019]. On the topic of
Markov random fields in image generation, work in [Wu,
Lin, and Tang, 2016] explored the utilization of Markov ran-
dom fields for local image modeling and super-resolution.

Motivation

The chain rule for probability motivates and validates Pixel-
CNN’s representation of the joint distribution of an image.
However, the representation leads to certain restriction. For
an individual pixel xi, PixelCNN restricts xi to be viewed
as conditionally dependent on only the pixels prior to itself,
and so fails to represent the underlying conditional distribu-
tion of each xi. Indeed, to fully express the dependencies of
xi we would desire to model each pixel distribution as

p(xi|x1, . . . , xi�1, xi+1, . . . , xn2) := p(xi|x�i)

and so model the joint distribution of the image as

p(X) =
1

Z
· p̃(X) =

1

Z

n2Y

i=1

p(xi|x�i)

where p̃(x) is the pseudo-likelihood and Z is a normalizing
constant.

Implementation

The representation of p(X) presented previously is that of
a Markov random field (MRF). Indeed, this realization pro-
vides the motivation for the name PixelMRF. We follow the
following explicit implementation. Jointly, use two Pixel-
CNNs to represent the conditional distribution of xi, one
model for the pixels prior to xi in X and another reversed
PixelCNN to represent the dependencies of xi on later pix-
els in X . This joint model is visually represented in Figure
3. We additionally notice that this architecture is a blind-spot

Figure 3: A visual representation of the receptive field of two
PixelCNNs and the resulting receptive field of PixelMRF,
where two PixelCNNs are working in unison.

network where the receptive field does not contain the center
pixel. As such, we consider that for the sake of further ex-
ploration we could also consider the architecture presented
in [Laine, Lehtinen, and Aila, 2019]. One issue with this rep-
resentation is that computing the normalizing constant Z is
intractable. As noted in [Goodfellow, Bengio, and Courville,
2016], one could represent the distribution using the pseudo-
likelihood accepting that

p(X) ⇡
n2Y

i=1

p(xi|x�i)

essentially ignoring the normalizing constant. Instead, we
use the Markov chain Monte Carlo (MCMC) methods of
contrastive divergence to confront the intractability of Z.

Contrastive Divergence

To motivate the process of contrastive divergence, notice that

log p(X) = log

✓
1

Z
· p̃(X)

◆

= log p̃(X)� logZ

= log p̃(X)� log
X

X0

p̃(X 0). (0)

Thus to maximize the log-probability of our training data,
we can maximize the pseudo-log-likelihood the training data
while minimizing the weight of the total distribution

X

X0

p̃(X 0).

Notice that this negative term is the only difference from
simply minimizing the pseudo-log-likelihood. The process
to approximate the objective given in equation (0) optimiza-
tion is contrastive divergence, which we now state in general
terms:

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 23



Start

Sample batch from
 training data Use MCMC starting at

sampled training data  to
create a sample from p̃(X)

Compute the average
gradient of log-likelihood

the of training data

Compute the average
gradient of log-likelihood

the of sampled data

-

Update weights with
 respect to the gradient

Repeat

Figure 4: A visual representation of the contrastive diver-
gence algorithm

Algorithm 1 Contrastive Divergence
1: for k  1 to maximum of iterations do

2: Sample batch of “real” data X from training data
3: Sample batch of “fake” data X 0 from model
4: Compute mean gradient r for log-likelihood of X
5: Compute mean gradientr0 for log-likelihood of X 0

6: Update weight with respect tor�r0

7: end for

In Figure 4, we give a visual representation of the con-
trastive divergence algorithm that we believe better displays
the process. After attempting to train PixelMRF by optimiz-
ing the object given in equation (0), we relaxed the objective
to

log p̃(X)� ↵ log
X

X0

p̃(X 0) (1)

where
0  ↵  1.

In the context of equation (1), the variable ↵ can be seen
as a term to compromise between optimizing the psuedo-
loglikelihood and the contrastive divergence objective. To
see why this change was made, note in figures 12 and 13 the
instability and subsequent inability to train PixelMRF using
the objective given by equation (0).

Hamiltonian Monte Carlo

For the “fake” sampling portion of contrastive divergence
(see line 3), we use the Hamiltonian dynamic based sam-
pling method discussed in [Neal, 2010]. Hamiltonian Monte
Carlo sampling utilizes the gradient of the log-likelihood
to take informed steps, and so allows a shorter number of
steps for a fully converged sample. Additionally, we note
that for further consideration, future work could consider
other state-of-the-art MCMC methods such as the non-trivial
improvements to Hamiltonian MC: DeepHMC [Levy, Sohl-
dickstein, and Hoffman, 2018], NUTS (No U-Turn Sampler)

ReLU - 7x7 Conv

ReLU - 1x1 Conv

ReLU - 1x1 Conv

h

h

�

2h

2h

Figure 5: A layer in a PixelCNN. A total of 16 such layers
were used in each PixelCNN.

[Homan and Gelman, 2014], or the replica exchange (paral-
lel tempering). In a later section we discuss why exploring
different sampling methods may be needed, but the need can
be seen in the poor quality of the samples in Figure 11.

Model Configuration

Our model architecture closely follows the model im-
plementation given in [van den Oord, Kalchbrenner, and
Kavukcuoglu, 2016]. Of course our implementation doubles
that of PixelCNN, as PixelMRF contains two PixelCNNs
working in unison. For each PixelCNN, all but the first layer
and the final layer take the form given in Figure 5, where
h = 32 and 2h = 64 are the number the filters and the
convolution is appropriately masked. The first layer of the
PixelCNNs is a simple masked convolutional layer that ad-
ditionally masks the center pixel to obscure it from the re-
ceptive field. Due to the everywhere-differentiable regularity
requirements of HMC, unlike PixelCNN and later models,
we enforce a Gaussian prior on PixelMRF. As such, the last
layers are convolutional layers to correctly shape the output
to produce a mean and standard deviation for each dimen-
sion in the input image.

For the configuration of Hamiltonian Monte Carlo we
used 2 leapfrog integrator steps and an adaptive step size
with an initial value of 0.1. Additionally due to computa-
tional limitations, we had only 10 burnin steps, and so to
handle a zero HMC acceptance rate, noise sampled from
N (0, 0.05) was added to the “fake” data. Moreover, we
used a non-standard training scheme. We start by training
each PixelCNN in the traditional form as in [van den Oord,
Kalchbrenner, and Kavukcuoglu, 2016] for 400 epochs. We
follow this by optimizing the pseudo-loglikelihood for 100
epochs and then the full contrastive divergence loss with
↵ = 10�6 for another 100 epochs. We additionally tested
the PixelSNAIL architecture of [Chen et al., 2018]; how-
ever, due to our computational limit this did not lead to a
noticeable improvement, and so was not included in the fi-
nal results.

Evaluation

Finally, on the discussion of evaluating PixelMRF, we eval-
uated PixelMRF on the Frey data set. To properly evalu-

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 24



Figure 6: Sampling from PixelCNN using ancestral sam-
pling.

ate the performance of or MCMC method, we use the fol-
lowing process: train a PixelCNN in the traditional fashion
and evaluate the sampling performance of the the MCMC
method for our selection of hyperprameters. This allows us
to decouple the evaluation of our contrastive divergence pa-
rameters and PixelMRF’s architecture from the evaluation of
MCMC methods. As mentioned previously, one consequent
obstacle we had to overcome is that all of PixelCNN, Gated-
PixelCNN, and PixelCNN++ model some portion of p(X)
as a discrete distribution, and most advanced MCMC meth-
ods, such as Hamiltonian MC and NUTS, have everywhere-
differentiable regularity requirements. We handled this ob-
stacle by instead enforcing a Gaussian prior on both Pixel-
CNN and PixelMRF when testing MCMC methods.

As both PixelCNN and PixelMRF are attempting to rep-
resent the joint distribution p(X), it would be desirable to
directly compare their performance. A hurdle to this com-
parison is realization that due to the intractability of com-
puting Z, computing the exact negative log-likelihood for
PixelMRF is impossible. At the current time, we instead use
qualitative, visual evaluation of the generated samples. In
future work we hope to overcome this limitation, and so we
consider the use of annealed importance sampling (AIS) to
estimate Z [Neal, 2001], and so compare approximate neg-
ative log-likelihood as in [van den Oord, Kalchbrenner, and
Kavukcuoglu, 2016].

We now move on to concrete examples of performance
on the Frey data set. In Figure 6 and Figure 7, we provide
a comparison of images generated by PixelCNN. We have
sharp but sometimes distorted images produced by standard
ancestral sampling and complete noise produced Hamilto-
nian Monte Carlo sampling. This absolute failure of Hamil-
tonian Monte Carlo sampling is not ideal, but the success
of the ancestral sampling does confirm that a Gaussian prior
can adequately perform on the Frey data set.

With that knowledge we can assume the noise is a result
of the Hamiltonian Monte Carlo sampling. In figures 8 and
9, we provide a display of the effect of five steps of HMC

Figure 7: Sampling from PixelCNN using HMC sampling.

Figure 8: Five steps of the PixelCNN based Hamiltonian
Monte Carlo initialized to training examples.

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 25



Figure 9: Five steps of the PixelMRF based Hamiltonian
Monte Carlo initialized to training examples.

Figure 10: Samples from PixelMRF using the Gibbs sam-
pling procedure. Top: the starting noise. Bottom: the pro-
duced sample

sampling initialized at training examples for both PixelCNN
and PixelMRF. We see that the HMC process appears to be
adding noise to the examples and is failing to step to rea-
sonable, consistent examples. In Figure 11 we see images
generated by a trained PixelMRF and Hamiltonian Monte
Carlo. Similar to the previous PixelCNN example, these im-
ages have no clear relation to the training data and appear
to be noise, suggesting that Hamiltonian Monte Carlo is to
blame for the noisy generation by PixelMRF. In contrast,
in Figure 10 we have samples from PixelMRF produced by
the Gibbs sampling procedure. These images are lower in
quality than the PixelCNN samples, but have clear learned
structure.

Issues and Improvements

As we discussed previously and can see in Figure 11, Pix-
elMRF with Hamiltonian Monte Carlo sampling currently
has extremely poor performance. We have reasonable ex-
planations as to why this may be the case. To begin, in

Figure 11: Samples from PixelMRF using the HMC sam-
pling procedure. Top: the starting noise. Bottom: the pro-
duced sample

[Neal, 2010], Neal states that the performance of Hamilto-
nian Monte Carlo decreases heavily in a high dimensional
setting. Even in 28x20 grayscale images such as in the Frey
data set our image space still has 560 dimensions. This re-
alization could explain a portion of our poor Hamiltonian
Monte Carlo performance. This is further supported by the
success of Gibbs sampling in Figure 10. This comparison
and the eventual zero acceptance rate of HMC suggests that
one possible solution would be utilize Gibbs sampling in
place of HMC sampling in the training procedure. The main
issue with using Gibbs instead HMC is time; Gibbs sampling
is sequential and so cannot parallelized like HMC sampling,
and so becomes computational unfeasible with large images.

Additionally, the log-likelihood estimate utilized by
Hamiltonian Monte Carlo is given by the model. Thus, as the
performance of the model on the training data increases, the
log-probability distribution becomes flatter at training exam-
ples and the gradients of log-probability goes to zero. Con-
sequently, the acceptance rate of Hamiltonian Monte Carlo
at the training data goes to zero, and so the difference in
gradients given in line 6 goes to zero. Once this occurs, the
PixelCNN models underlying PixelMRF fail to learn. In the
case of our training, this zeroing of the acceptance rate oc-
curs only a few batches into training. Additionally, the ac-
ceptance rate naturally decreases exponentially in the num-
ber of dimension, and as discussed previously, image data is
necessarily high dimensional [Neal, 2001]. This fact means
that even without a trained model we would expect some
acceptance rate issues with HMC on our data.

Finally, another issue is the instability of contrastive
divergence. Recalling the objective given in (0), we see
that contrastive divergence training is inherently adversar-
ial. In cases where the PixelMRF successfully trains, we
have noisy loss functions such as in Figure 12. However,
more frequently the model chooses to minimize the log-
probability of the entire distribution including the training
data, instead of correctly maximizing the log-probability of
the training data while minimizing the mass of the total dis-
tribution. We can see an example of this failed training in
Figure 13.

In terms of solutions for these issues, we believe that the

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 26



Figure 12: A plot of the loss over time in the early stages of
a successful PixelMRF training.

Figure 13: A plot of the loss over time in an unsuccessful
PixelMRF training.

MCMC methods discussed previously could solve these is-
sues. DeepHMC parameters Hamiltonian Monte Carlo in the
form of a deep network that learns the appropriate parame-
ters to optimize proposals and the acceptance rate for a given
data set. Replica exchange Monte Carlo adds a temperature
parameter to Hamiltonian Monte Carlo which adds a proba-
bility for Hamiltonian Monte Carlo to accept a worse state.
This could help solve the issue of the model failing to learn
after a small amount of time. Finally, NUTS would provide
a fully adaptive sampler no u-turns sampler that would pos-
sibly solve all but the problems associated with the dimen-
sionality of our data.

Conclusion

The autoregressive model PixelCNN has been used in many
various applications [Kolesnikov and Lampert, 2016][Fauw,
Dieleman, and Simonyan, 2019]. Additionally, variants of
PixelCNN have been developed for domains such as au-
dio [van den Oord et al., 2016a] and text [Dauphin et al.,
2016]. However, PixelCNN has limitation that stem from
its acyclic conceptualization of pixel dependencies. Through
PixelMRF we represent pixel dependencies completely and
confront the resulting normalizing constant through con-
trastive divergence. At the current time, the performance of
PixelMRF is poor. However by exploring the samplers dis-
cussed in the document, we believe this novel representation
can be made to improve the performance of the already pow-
erful model, PixelCNN.

References

[Chen et al., 2018] Chen, X.; Mishra, N.; Rohaninejad, M.;
and Abbeel, P. 2018. Pixelsnail: An improved autoregressive
generative model.

[Child et al., 2019] Child, R.; Gray, S.; Radford, A.; and
Sutskever, I. 2019. Generating long sequences with sparse
transformers. CoRR abs/1904.10509.

[Dauphin et al., 2016] Dauphin, Y. N.; Fan, A.; Auli, M.; and
Grangier, D. 2016. Language modeling with gated convolu-
tional networks. CoRR abs/1612.08083.

[Dinh, Krueger, and Bengio, 2015] Dinh, L.; Krueger, D.;
and Bengio, Y. 2015. NICE: non-linear independent compo-
nents estimation. In 3rd International Conference on Learn-

ing Representations, ICLR 2015, San Diego, CA, USA, May

7-9, 2015, Workshop Track Proceedings.
[Fauw, Dieleman, and Simonyan, 2019] Fauw, J. D.; Diele-
man, S.; and Simonyan, K. 2019. Hierarchical autore-
gressive image models with auxiliary decoders. CoRR

abs/1903.04933.
[Goodfellow, Bengio, and Courville, 2016] Goodfellow, I.;
Bengio, Y.; and Courville, A. 2016. Deep Learning. MIT
Press. http://www.deeplearningbook.org.

[Harshit Sharma, 2017] Harshit Sharma, S. M. 2017.
Auto-regressive generative models (pixelrnn, pixelcnn++).
https://towardsdatascience.com/ auto-regressive-generative-
models-pixelrnn-pixelcnn-32d192911173. Accessed: 2019-
06-07.

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 27

http://www.deeplearningbook.org


[Homan and Gelman, 2014] Homan, M. D., and Gelman, A.
2014. The no-u-turn sampler: Adaptively setting path
lengths in hamiltonian monte carlo. J. Mach. Learn. Res.

15(1):1593–1623.
[Kolesnikov and Lampert, 2016] Kolesnikov, A., and Lam-

pert, C. H. 2016. Deep probabilistic modeling of
natural images using a pyramid decomposition. CoRR

abs/1612.08185.
[Krull, Buchholz, and Jug, 2018] Krull, A.; Buchholz, T.;
and Jug, F. 2018. Noise2void - learning denoising from
single noisy images. CoRR abs/1811.10980.

[Laine, Lehtinen, and Aila, 2019] Laine, S.; Lehtinen, J.;
and Aila, T. 2019. Self-supervised deep image denoising.
CoRR abs/1901.10277.

[Levy, Sohl-dickstein, and Hoffman, 2018] Levy, D.; Sohl-
dickstein, J.; and Hoffman, M. 2018. Generalizing hamilto-
nian monte carlo with neural networks.

[Neal, 2001] Neal, R. M. 2001. Annealed importance sam-
pling. Statistics and Computing 11(2):125–139.

[Neal, 2010] Neal, R. M. 2010. MCMC using Hamilto-
nian dynamics. Handbook of Markov Chain Monte Carlo

54:113–162.
[Salimans et al., 2017] Salimans, T.; Karpathy, A.; Chen, X.;
and Kingma, D. P. 2017. Pixelcnn++: Improving the pix-
elcnn with discretized logistic mixture likelihood and other
modifications. CoRR abs/1701.05517.

[Theis and Bethge, 2015] Theis, L., and Bethge, M. 2015.
Generative image modeling using spatial lstms. In Cortes,
C.; Lawrence, N. D.; Lee, D. D.; Sugiyama, M.; and Gar-
nett, R., eds., Advances in Neural Information Processing

Systems 28. Curran Associates, Inc. 1927–1935.

[van den Oord and Schrauwen, 2014] van den Oord, A., and
Schrauwen, B. 2014. Factoring variations in natural im-
ages with deep gaussian mixture models. In Ghahramani, Z.;
Welling, M.; Cortes, C.; Lawrence, N. D.; and Weinberger,
K. Q., eds., Advances in Neural Information Processing Sys-

tems 27. Curran Associates, Inc. 3518–3526.
[van den Oord et al., 2016a] van den Oord, A.; Dieleman, S.;
Zen, H.; Simonyan, K.; Vinyals, O.; Graves, A.; Kalch-
brenner, N.; Senior, A. W.; and Kavukcuoglu, K. 2016a.
Wavenet: A generative model for raw audio. CoRR

abs/1609.03499.
[van den Oord et al., 2016b] van den Oord, A.; Kalchbren-
ner, N.; Vinyals, O.; Espeholt, L.; Graves, A.; and
Kavukcuoglu, K. 2016b. Conditional image generation with
pixelcnn decoders. CoRR abs/1606.05328.

[van den Oord, Kalchbrenner, and Kavukcuoglu, 2016]
van den Oord, A.; Kalchbrenner, N.; and Kavukcuoglu,
K. 2016. Pixel recurrent neural networks. CoRR

abs/1601.06759.
[Vaswani et al., 2017] Vaswani, A.; Shazeer, N.; Parmar, N.;
Uszkoreit, J.; Jones, L.; Gomez, A. N.; Kaiser, L. u.; and
Polosukhin, I. 2017. Attention is all you need. In Guyon, I.;
Luxburg, U. V.; Bengio, S.; Wallach, H.; Fergus, R.; Vish-
wanathan, S.; and Garnett, R., eds., Advances in Neural In-

formation Processing Systems 30. Curran Associates, Inc.
5998–6008.

[Wu, Lin, and Tang, 2016] Wu, Z.; Lin, D.; and Tang, X.
2016. Deep markov random field for image modeling. CoRR

abs/1609.02036.

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 28



Self-Supervised Deep Learning for Fluorescence Microscopy Denoising

Sonia Rao

University of Georgia
Athens, GA, USA

sonia.rao25@uga.edu

Jonathan Ventura

California Polytechnic State University
San Luis Obispo, CA, USA
jventu09@calpoly.edu

Guy Hagen

University of Colorado
Colorado Springs, CO, USA

ghagen@uccs.edu

Abstract

This work modifies existing self-supervised de-
noising architectures for Poisson noise typi-
cal within low-intensity Fluorescence Microscopy
(FM) imagery. Biologists are often required to use
low-exposure imaging technology, such as Fluo-
rescence Microscopy, to preserve the integrity of
sensitive samples. While these advancements have
allowed for broader biological analysis, the col-
lected data is usually corrupted by noise that ob-
scures valuable biological insight. Furthermore,
ground truth images of live cells are nearly im-
possible to gather without causing permanent dam-
age to the observed specimen. FM data is unique
in that the signal captured is both inherently weak
and dominated by Poisson noise rather than Gaus-
sian noise characteristic of traditional optical mi-
croscopy. Although many deep learning denois-
ing algorithms exist, namely self-supervised meth-
ods in which elusive ground-truth images are not
needed, no models directly address the Poisson
component abundant in FM data. This work uti-
lizes a novel non-parametric probabilistic prior and
posterior approximation to restore FM imagery
specifically dominated by Poisson noise.

Introduction

Fluorescence Microscopy (FM) has allowed biologists
to observe imperative cellular processes that are other-
wise obscured from traditional optical microscopes. An
examined specimen must be stained with a fluorescent
label, if not inherently capable of expressing a fluores-
cent protein, and is then excited with low-exposure or
extremely brief light sources to observe the specimen
while also preserving its biological integrity. The low-
intensity imaging process, captured by Confocal, Two-
Photon, or Wide-Field lenses, results in heavily noisy
images as shown in Figure 1. Because the amount of
photons entering the imaging space is discrete, FM im-
agery contains predominantly Poisson noise in contrast
to conventional Gaussian noise found in optical imaging
(Zhang et al. 2018). The phenomenon of Poisson noise
coupled with low-intensity light limitations presents a
unique challenge for the necessary task of FM image
denoising.

Deep learning algorithms have traditionally had suc-
cess restoring corrupted images; however, most net-
works require both noisy data and their corresponding
ground-truth images to implicitly learn a mapping pro-
cess (Remez et al. 2017). This is typically impossible as
sensitive specimens cannot be safely photographed for
adequate time or exposure-level necessary to capture a
usable ground-truth signal. Recent work has addressed
this limitation by introducing ’self-supervised’ models
in which only noisy data and relevant latent visual con-
text are used together during training (Doersch and Zis-
serman 2017). Contemporary self-supervised denoising
algorithms have utilized independent noise realizations,
pixel receptive fields as supervisory context, or prob-
abilistic estimation to restore corrupted images. While
these existing self-supervised models have performed
exceptionally well on traditional optical imagery, most
models fail to generalize within Poisson dominated
noise (Laine et al. 2019). We expand recent algorithms
to specifically address the Poisson component present in
FM imagery; by implementing a novel loss function to
estimate a probabilistic prior distribution of clean pix-
els, we can restore FM imagery given only noisy train-
ing data.

Related Work

Prior to self-supervised methods, several deep network
architectures have been proposed to learn clean sig-
nals from noisy data on a variety of corrupted data. U-
Nets, a deep learning architecture derived specifically
for biomedical use (Ronneberger, Fischer, and Brox
2015), and Residual Neural Networks (Heinrich, Stille,
and Buzug 2018) have achieved great success on de-
noising tasks where ground truth data is readily avail-
able for training. In the case of sensitive low-lighting
imagery, the acquisition of ground truth data is avoided
by either self-supervised and unsupervised methods.

Contemporary self-supervised denoising models
have made significant advancements towards quality of
fully supervised deep learning models. Work by Lehti-
nen et al. 2018, dubbed Noise2Noise (N2N), introduced
robust self-supervision by using pairs of independently
realized corrupted images for training. The underlying
principle is that two individual noisy images, whose re-

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 29



Figure 1: Noisy imagery of Bovine Pulmonary Artery Endothelial proteins, Mice cells, and Zebrafish tissue captured
with a Fluorescence Microscope (Zhang et al. 2018).

Figure 2: Averaged clean imagery of Bovine Pulmonary Artery Endothelial proteins, Mice cells, and Zebrafish tissue
(Zhang et al. 2018).

spective noise distributions are independent, averaged
pixel-wise is likely to render a clean image; results ri-
valed those trained on clean ground-truth signals. How-
ever, acquiring two renditions of the same Frame of
View (FOV) would require that the observed specimen
is captured twice in the same instant; this is biologi-
cally infeasible for most sensitive specimens that are
inspected with FM.

Noise2Void (N2V) resolves N2N’s limitation by us-
ing only one noisy image for training in conjunction
with a novel blind-spot network (Krull, Buchholz, and
Jug 2018). Convolutional Neural Networks (CNN) em-
ploy a receptive field typically used to influence predic-
tions of its center pixel. By obscuring the center pixel
from its receptive field, the network avoids directly
learning a potentially noisy pixel identity. The center
pixel instead mimics a randomly chosen pixel from its
receptive field. While N2V compares closely to N2N re-
gardless of the loss of information during training, N2V
does not exploit possible information from the center
pixel identity. This constraint is examined by Laine et
al. in their contemporary blind-spot architecture.

Laine et al. 2019 expand on N2V’s blind-spot
concept while further improving training efficacy
and restoration accuracy. This state-of-the-art self-
supervision constructs a blind spot network by creat-

ing four cropped rotations of the same noisy image,
thereby restricting the receptive field without limiting
the loss function’s scope. This work further estimates
uncorrupted signal values through Maximum a Posteri-
ori (MAP) estimation; MAP estimation combines prob-
abilistic network outputs with the observed pixel val-
ues to yield more informed pixel predictions without
relying heavily on a potentially noisy observed pixel
value. Although this work is an exceptional estimation
of Gaussian corruption, the model worsens when faced
with low-intensity FM imagery.

Probabilistic Noise 2 Void (PN2V) specifically ad-
dresses the application of biomedical low-intensity im-
agery denoising (Krull, Vicar, and Jug 2019). PN2V’s
deep neural network outputs 800 possible signal prior
distributions by using a histogram-based noise distribu-
tion. While this method is robust to varying noise-types
and intensities, the noise distribution is constructed us-
ing pairs of clean and noisy signals such that emulated
or collected ground truth imagery is necessary for both
training and final restoration; we do not consider this
work to be self-supervised and instead target N2V’s
metrics as a baseline. During our experimentation pro-
cess, we recreate PN2V’s results and use the described
histogram-based noise model to evaluate our network
on the same data.

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 30



Using elements from several of these works, we at-
tempt to create a model that will discriminate signal
from noise using only one corrupted image.

Implementation Theory

This work utilizes a contemporary blind-spot archi-
tecture, designed specifically for Poisson-dominated
imagery, in conjunction with Maximum a Posteriori
(MAP) estimation and Expected Value of the Posterior
(EVP) to reconstruct multiple classes of FM images.
Since all imagery within our dataset is comprised of 8-
bits, we treat each possible pixel identity as a discrete
value ranging from 0 to 256. Given observed pixel zi
sampled from a Poisson distribution and hypothetical
ground truth pixel xi sampled from X, our underlying
goal is to identify the clean pixel value using informa-
tion from Z.

x̂i = argmax
x

P (Xi = xi|Zi = zi), (1)

However, we are unable to evaluate (1) directly; by
providing the noisy pixel zi, a network would learn a
direct mapping of the noisy pixel identity to the esti-
mated true signal value rather than reasonable estimates
of clean pixel values (Krull, Buchholz, and Jug 2018).
Instead, we must marginalize clean pixel probabilities,
P (Xi = xi), from the joint distribution of noisy and
clean pixels. P (Xi = xi) acts as a prior belief about
the spread of unattainable ground truth pixel values; us-
ing knowledge of the Poisson probability mass function
P (Zi = zi|Xi = xi) we create a network to output
clean priors without directly learning pixel identities.
We are then able to compute a probability distribution
around the observed pixels (2).

P (Zi = zi) =
X

x

P (Zi = zi|Xi = xi)P (Xi = xi)

(2)
We begin our model by constructing a blind-spot net-
work, a modified Convolutional Neural Network in
which the center pixel is rotationally obscured from its
receptive field (Laine et al. 2019) 3. With a noisy image
as input, we modify the network’s loss function such
that computed priors model pixel probabilities at every
possible value of Poisson component �, the discrete rate
at which photons are absorbed by the imaging sensor
(3).

P (Zi = zi|Xi = xi) =
xz exp(�x)

z!
(3)

The model’s softmax output is tuned by minimizing the
averaged negative log likelihood of P (Zi = zi) com-
bined with an entropy regularization measure of prior
belief uncertainty (4). The entropy term is multiplied
by an arbitrary constant.

Li =
1

N

X

N

� logP (Zi = zi) + Sx (4)

With both the ground truth prior and joint probability
density function marginalized, we apply Bayes’ trans-
formation on (1) to make our objective function deter-
minable.

x̂i = argmax
x

P (Zi = zi|Xi = xi)P (Xi = xi)

P (Zi = zi)
(5)

To avoid information loss, we further expand on this es-
timation to include information about the observed cen-
ter pixel zi. Maximum a Posteriori estimation provides
the Posteriori approximation with the highest likelihood
(6).

x̂i = argmax
x

P (Zi = zi|Xi = xi)P (Xi = xi). (6)

Expected Value of the Posterior estimation computes
the expected value over each � value of the normalized
posterior distribution (7).

x̂i = E[P (Zi = zi|Xi = xi)P (Xi = xi)]. (7)

Data and Evaluation

A large Fluorescence Microscopy Denoising Dataset
(FMDD) was generated by (Zhang et al. 2018) specif-
ically for the task of Gaussian-Poisson denoising.
FMDD consists of various specimens at the cellular
level captured by Confocal and Two-Photon micro-
scopes. For each specimen and imaging modality pair,
FMDD contains 20 Frames of View (FOV) each with
50 captures. While the content of each FOV differs, the
captures of each FOV are only different in their individ-
ual realizations of Poisson noise. Zhang et al. simulate
ground truth by averaging all 50 captures per FOV; by
assuming noise independence for each capture, the av-
erage yields an estimated clean image ??.

In addition to averaged ground truth, Zhang et al. pro-
vide five degrees of averaged images to estimate varied
levels of noise typically present in biological imagery.
These categories are referred to as Noise Regimes (NR)
ranging from 1 to 5 where NR1 is an raw noisy cap-
ture and NR5 is an image averaged over 16 captures
within each FOV. All five noise regimes are included in
model evaluation for both Confocal Mice and Confocal
Zebrafish datasets.

While the averaged realizations are potentially use-
ful, it is not realistic to get multiple captures of each
FOV and essentially impossible to obtain enough cap-
tures to emulate an averaged ground truth. Instead of in-
corporating any averaged images into training, we only
utilize the lesser noise images to evaluate our pipeline.

Our evaluation mirrors that of Probabilistic
Noise2Void (PN2V) (Krull, Vicar, and Jug 2019);
PN2V utilizes the same dataset which allows for
efficient comparison. We train our model on captures
from the first 18 FOV’s, validate on the 20th FOV, and
use the 19th FOV for testing evaluation. The metric

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 31



Figure 3: Rotational Blind-spot Network Architecture (Laine et al. 2019).

NR1 NR2 NR3 NR4 NR5 Mean
Baseline 29.38 32.44 35.59 38.90 42.64 35.79
Poi2Void argmax 33.897 34.419 34.538 34.727 34.744 34.465
Poi2Void MAP 30.989 33.364 35.412 37.199 38.440 35.081
Poi2Void EVP 31.539 34.297 37.132 40.229 43.323 37.304
PN2V 38.24 39.72 41.34 43.02 45.11 41.49
N2V 37.56 38.78 39.94 41.01 41.9 39.85
N2N 38.19 39.77 41.28 42.83 44.56 41.33
U-Net 38.38 39.90 41.37 43.06 45.16 41.58

Table 1: Initial Confocal Mice PSNR Comparisons

used for testing is Peak Signal to Noise Ratio (PSNR),
a widely used measure of signal power to corruption
power on an image; similar to PN2V, we obtain the
PSNR values for restored images of every noise regime.

Experimentation

We train two models separately using TensorFlow on
14,400 128x128 crops of Confocal Mice samples and
14,400 128x128 crops of Confocal Zebrafish samples
within the FM dataset provided by Zhang et al. Image
crops were necessary due to computational restrictions;
each crop was chosen from a randomly selected region
of a randomly selected image for each batch. We tuned
network hyperparameters until converging on a 5.0e-6
learning rate, 100 training epochs, and a batch of one
128x128 crop again due to computational limitations.
Before training, we normalized each training, valida-
tion, and testing image such that the 256 discrete pixel
values were transformed into decimals between 0 and
1. The original blindspot architecture is then changed
to outputs a final softmax layer to predict those pixel
values as a prior for uncorrupted signal distributions.
To avoid getting NaN loss during training, specifically
caused by taking an improper log when calculating neg-
ative log likelihood, we clip the logits to be between
1.0e-5 and 80.

After training models on each dataset, we restored
and concatenated cropped corrupted images in three
ways: the maximum value of the network’s softmax out-
put at each pixel to act as a baseline (argmax), the Max-
imum a Posteriori evaluation (MAP), and the Expected
Value of the posterior distribution (EVP). Our entire
model is dubbed Poisson2Void (Poi2Void) for brevity
in comparisons. Using PSNR as the sole metric, Tables
1 and 2 show the results of our model on each NR.

To improve our results, we add an entropy regular-
ization term to our loss function. Entropy, the measure
of uncertainty for categorical distributions, is used in
this case to limit the model from choosing dominating
values too early. By minimizing both negative log like-
lihood and entropy, we encourage our model to be as
certain as possible about its output distribution. After
experimentation, we determine that the optimal weights
for the entropy calculation is 1.0e-2 on both datasets.

To further increase our PSNR values, instead of con-
catenating each restored crop into a 4x4 grid to yield
the final image, we stride the crops over the image such
that the window moves every 64 pixels instead of 128.
This yields a 7x7 grid of restored crops that had to be
carefully concatenated; each overlapping region was av-
eraged to yield a more robust estimate for each testing
image. Table 3 shows the non-trivial improvements in
PSNR after strided restoration on our Confocal Mice
dataset. Figures 4 and 5 show denoised images for all
restoration methods.

Poi2Void does not yet surpass other contempo-
rary semi-supervised and fully-supervised methods. Al-
though the theory of our model is similar to that of other
successful semi-supervised methods, such as PN2V
(Krull, Vicar, and Jug 2019), we ran into several limita-
tions during our experimentation that could have con-
tributed to our modest results. Where other models
trained models on entire images or larger crops, we
were constrained by our GPU VRAM capacity. Addi-
tionally, we were forced to use a batch size of one small
crop rather than 50-80 such as in recent work.

It is notable that although for raw imagery, argmax
compares or surpasses our posterior manipulations, but
as the noise regime increases, argmax falls behind the
other methods. We use this as evidence that posterior

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 32



NR1 NR2 NR3 NR4 NR5 Mean
Baseline 22.81 25.89 29.05 32.39 36.21 29.27
Poi2Void argmax 23.114 23.329 23.498 23.564 23.591 23.419
Poi2Void MAP 23.098 25.977 28.845 31.594 34.155 28.734
Poi2Void EVP 23.251 26.226 29.330 32.528 36.078 29.483
PN2V 32.45 33.96 35.48 37.07 39.08 35.61
N2V 32.10 33.34 34.43 35.39 36.21 34.30
N2N 32.93 34.37 35.71 37.06 38.65 35.74
U-Net 32.93 34.35 35.67 37.11 39.09 35.83

Table 2: Initial Confocal Zebrafish PSNR Comparisons

NR1 NR2 NR3 NR4 NR5
Baseline 22.81 25.89 29.05 32.39 36.21

Strided
Poi2Void argmax 34.485104 33.702407 33.82227 33.96317 33.98511
Poi2Void MAP 31.08027 33.27537 35.12076 36.65470 37.72091
Poi2Void EVP 34.72008 35.434919 37.27999 40.54513 43.752390

Grid
Poi2Void argmax 33.15988 33.52715 33.63908 33.76065 33.77202
Poi2Void MAP 31.05832 33.23513 35.06682 36.57020 37.60538
Poi2Void EVP 31.69174 34.43680 37.28053 40.43303 43.64095

Table 3: Strided Prediction PSNR vs Grid Prediction on Confocal Mice

Figure 4: Poi2Void results on raw NR1 Confocal Mice data (left) using argmax, MAP, and EVP.

Figure 5: Poi2Void results on raw NR1 Confocal Fish data (left) using argmax, MAP, and EVP.

Figure 6: Zoomed in Comparison of Noisy to Restored on Confocal Mice (right) and Confocal Zebrafish (left)

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 33



manipulation is superior to only modelling clean pixel
value probabilities; it is practically advantageous for our
model to be able to generalize on varied levels of noise
seen in the field.

Conclusion and Further Work

This work seeks to expand on existing literature by
addressing Poisson-dominated noise within Fluores-
cence Microscopy imaging via a self-supervised denois-
ing pipeline. Our approach’s novelty lies in the self-
supervision aspect of this pipeline, in contrast with con-
temporary model PN2V (Krull, Vicar, and Jug 2019),
and its direct application to low-intensity biomedical
imagery. Our implementation utilizes non-parametric
prior probabilities of clean pixels, evaluated through a
modified blind-spot network, with Maximum a Poste-
riori and Expected Value of the Posterior estimation to
include possible ignored clean signals.

Although this model did not succeed in progress-
ing past state-of-the-art self-supervised methods specif-
ically for FMDD, we treat this experimentation as
grounds for future work. We intend on replicating much
of PN2V’s network composition, via code provided by
Krull et al.; PyTorch enables us to utilize a larger virtual
batch size. If training becomes less computationally ex-
pensive, we can reasonably expect our loss to plateau
at a lower value than at present. Additionally, we have
made several hypotheses to modify the initial noise dis-
tribution used to calculate training loss and the poste-
rior distribution. While our noise distribution follows
the Poisson probability mass function, we clip the dis-
tribution to model � from 1 to 257, and then normalize
back into a usable probability distribution. It is possible
that this process leaves out valuable information about
the true noise. Lastly, we have recently acquired FM
video data containing multiple noisy frames of a sam-
ple unharmed by typical phototoxicity. We expect that
incorporating frames with very dependent signal values
and independent noise realizations could greatly help
our model.

Biologists have been using deep learning tools for
imperative scientific work, and will continue to do so
at increasing lengths as computational biology expands.
We hope to continue developing and refining self-
supervised denoising methods for Fluorescence Mi-

croscopy imaging.

Acknowledgement

The work reported in this paper is supported by the Na-
tional Science Foundation under Grant No. 1659788.
Any opinions, findings and conclusions or recommen-
dations expressed in this work are those of the author(s)
and do not necessarily reflect the views of the National
Science Foundation.

References

Doersch, C., and Zisserman, A. 2017. Multi-task Self-
Supervised Visual Learning. arXiv:1708.07860 [cs].
arXiv: 1708.07860.
Heinrich, M. P.; Stille, M.; and Buzug, T. M. 2018.
Residual U-Net Convolutional Neural Network Archi-
tecture for Low-Dose CT Denoising. Current Direc-
tions in Biomedical Engineering 4(1):297–300.
Krull, A.; Buchholz, T.-O.; and Jug, F. 2018.
Noise2void - Learning Denoising from Single Noisy
Images. arXiv:1811.10980 [cs]. arXiv: 1811.10980.
Krull, A.; Vicar, T.; and Jug, F. 2019. Probabilistic
Noise2void: Unsupervised Content-Aware Denoising.
arXiv:1906.00651 [cs, eess]. arXiv: 1906.00651.
Laine, S.; Karras, T.; Lehtinen, J.; and Aila, T. 2019.
High-Quality Self-Supervised Deep Image Denoising.
arXiv:1901.10277 [cs, stat]. arXiv: 1901.10277.
Lehtinen, J.; Munkberg, J.; Hasselgren, J.; Laine, S.;
Karras, T.; Aittala, M.; and Aila, T. 2018. Noise2noise:
Learning Image Restoration without Clean Data.
arXiv:1803.04189 [cs, stat]. arXiv: 1803.04189.
Remez, T.; Litany, O.; Giryes, R.; and Bronstein, A. M.
2017. Deep Convolutional Denoising of Low-Light Im-
ages. arXiv:1701.01687 [cs]. arXiv: 1701.01687.
Ronneberger, O.; Fischer, P.; and Brox, T. 2015. U-Net:
Convolutional Networks for Biomedical Image Seg-
mentation. arXiv:1505.04597 [cs]. arXiv: 1505.04597.
Zhang, Y.; Zhu, Y.; Nichols, E.; Wang, Q.; Zhang, S.;
Smith, C.; and Howard, S. 2018. A Poisson-Gaussian
Denoising Dataset with Real Fluorescence Microscopy
Images. arXiv:1812.10366 [cs, eess, stat]. arXiv:
1812.10366.

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 34



Self-Supervised Learning for

Single-Molecule Localization Microscopy Denoising

Clare Minnerath

Providence College
Providence, RI, USA

cminnera@friars.providence.edu

Jonathan Ventura

California Polytechnic State University
San Luis Obispo, CA, USA

jventu09@calpoly.edu

Guy Hagen

U. of Colorado Colorado Springs
Colorado Springs, CO, USA

ghagen@uccs.edu

Abstract

We evaluate the ability of self-supervised deep learning
for Poisson denoising of Single-Molecule Localization
Microscopy (SMLM) in addition to the impact denois-
ing can have on the ability to locate molecules within
the Single-Molecule Localization Microscopy images.
SMLM images are predominantly corrupted with Pois-
son noise. There are currently existing methods for pro-
ducing super-resolved SMLM images. However, there
is a need for more accurate SMLM images in order for
scientists to gain a better understanding of the functions
of live cells at the nanoscale. By denoising SMLM im-
ages prior to the images undergoing the current state-
of-the-art super-resolution techniques, we create a less
corrupted version of SMLM images. As a result, the ex-
act locations of the molecules in the images can be de-
termined with more accuracy and precision. We denoise
SMLM images utilizing only the original noisy images
as training data with a Self-Supervised Deep Learn-
ing model. By modifying the previous Self-Supervised
techniques that have been successful in denoising im-
ages with Gaussian noise, we remove Poisson noise
from SMLM images.

Introduction

Since a majority of biological processes occur at the
nanoscale, the ability to study cell and molecular behavior
at this scale is critical for scientists. Specifically, the knowl-
edge of nanoscale functions can help medical researchers
design tools, treatments, and therapies that are more precise
and personalized than conventional ones (Nano.gov).

Due to the effects of diffraction, classic optical micro-
scopes are only able to resolve structures larger than 200nm
(Allen et al. 2016). Single Molecule Localization Mi-
croscopy is a key technology for creating nanoscale images
with optical microscopes. Using both super-resolution tech-
niques and statistically locating individual molecule’s blinks
to sub-pixel resolution, SMLM is able to produce a new
image which compiles the individually detected molecules
together. The more exact SMLM can be in detecting and
locating individual molecule blinks is a determining factor
in how concise the location of the molecules can be deter-
mined. So, there is still room for improvement in locating
individual molecules with more accuracy than is currently
possible from noisy SMLM images due to the fact that the

Figure 1: Process of SMLM localization and reconstruction
to surpass the defraction barrier (Shannon et al. 2015).

noise within an image makes pinpointing each molecule’s
true signal difficult.

SMLM images are taken as light is absorbed by the
molecules, and, as a result, the molecules randomly emit
light of a larger wavelength in small blinks which are cap-
tured by the camera. Because the blinks only emit a small
number of photons, the resulting images are very noisy. Due
to the dynamic blinking and low light levels in SMLM im-
ages, only a single noisy instance of a signal is available
for a given instance of an image. Without a clean version
of an image’s signal, the use of a traditional deep learning
approach that trains by mapping noisy images to the corre-
sponding clean ones is not possible.

A current state-of-the-art super-resolution technique
which utilizes deep networks is DeepSTORM, a CNN that
trains on simulated and experimental data (Nehme et al.
2018). However, this method, although it has strong super-
resolution performance, does not use any localization tech-
niques which are vital in SMLM. Therefore, this method
is not a practical solution for locating molecules on the
nanoscale.

Traditionally, the best performance in deep learning ap-
proaches for image restoration and the denoising of cor-
rupted images has been done using a supervised deep net-
work that utilizes pairs of corresponding corrupt and clean
images. In particular, there are content-aware image restora-

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 35



Figure 2: Proposed blind-spot network architecture for denoising SMLM images (Laine et al. 2019)

tion (CARE) networks that have proven useful for denoising
fluorescence microscopy data given noisy and clean images
(Weigert et al. 2018). Techniques such as these are rendered
useless when considering SMLM data which has no way of
obtaining clean images.

Related Work

New findings have shown that despite the limitations of
solely individual noisy SMLM images, denoising to the per-
formance level of supervised deep networks could be possi-
ble. The work of Lehtinen et al. (2018) shows that it is no
longer necessary to provide a clean instance of an image. In
NOISE2NOISE (N2N), they show by training using pairs of
two corresponding noisy images that share the same signal,
it is possible to achieve equal quality, if not higher quality
(when training with finite data), performance for denoising.
This method still requires at least 2 noisy realizations of an
image’s signal.

Building off the ideas from N2N, NOISE2VOID (N2V)
shows that one can build a model for denoising using only
individual noisy images for training data (Self-Supervised)
(Krull, Buchholz, and Jug 2018). N2V introduces the use
of a blind-spot network which masks a pixel’s data from the
network’s receptive field and allows the data surrounding the
said blind-spot to effectively predict the the pixel’s signal.
The N2V model is limited because it assumes every pixel’s
signal is dependent of the signals surrounding it.

To address the limitation of N2V, Laine et al. (2019) de-
signed a different blind-spot architecture that uses 4 differ-
ent receptive fields to allow every pixel in the image to con-
tribute to the loss function while maintaining the blind-spot.
This differs from N2V which selected a smaller receptive
field from within the image. In order to predict the blind-spot
pixel’s signal, they apply a maximum a posteriori estima-
tion (MAP) denoising procedure during testing that allows
for the prediction of the clean signal to take into account
the masked pixel. This method can perform on par with the
supervised traditional deep denoising models under the as-
sumption of Gaussian noise in the data.

Laine et al. does include a model for Poisson noise. But,
in a manner impractical to SMLM images, their model uses
a Gaussian approximation to represent the Poisson noise dis-
tribution. This method is impractical because the signal from
SMLM is low, which causes a Gaussian approximation does
not accurately represent the Poisson noise present in SMLM
images.

More continued work since N2V also attempts to pre-

dict the blind-spot pixel without the assumption of a Gaus-
sian noise model (Krull, Vicar, and Jub 2019). The PROBA-
BILISTICNOISE2VOID (PN2V) model trains a probability
distribution for 800 possible output values for a given pixel.
PN2V is able to out perform N2V using the same U-Net ar-
chitecture, but does not perform to the level of traditional
supervised techniques. PN2V is working with discrete val-
ues for its pixel distribution which makes it a good fit to
combat Poisson noise efficiently. But, since SMLM images
are 16-bit, each pixel has 216 possible values. Since SMLM
images have such a large possible range in pixel values and
the PN2V method shows success using a distribution of 800
possible output values, PN2V is not the optimally suited for
denoising SMLM.

Research Questions

1. How well can self-supervised learning denoise SMLM
images?

Hypothesis: By modifying the work which successfully
denoises images with Gaussian noise, it will be possi-
ble to denoise SMLM images to the levels of other self-
supervised denoising models.

2. Does denoising SMLM images prior to localization tech-
niques and super-resolution improve the ability to locate
molecule positions compared to just using current local-
ization and super-resolution techniques on noisy images?

Hypothesis: Given SMLM currently depends on the
noisy signals from the blinking molecules, by denoising
the images prior to detecting and locating the molecules,
our localizing abilities will be more precise. This is be-
cause the signal from the blinking molecules will be
more representative of the molecules exact position in
an image that is not corrupted with noise.

Method

By utilizing the blind-spot architecture designed by Laine et
al. (Figure 2), which rotationally obscures the middle pixel,
while also implementing an adjusted method for training the
model and predicting the blind-spot signal’s output, we are
able to remove Poisson noise from SMLM images. In the
process described by Laine et al. (2019), Poisson noise is
approximated by considering a Gaussian distribution with
�2 = �. This estimate will only provide a strong approxima-
tion when the standard deviation within the Poisson noise is
small and the image’s signal is large.

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 36



To better train our network and more accurately estimate
a masked pixel’s signal while considering the Poisson noise
present in SMLM, we created a process that can model the
Poisson noise while producing non-discrete clean signal val-
ues. Using the Poisson probability mass function (Equation
1), it is possible to represent a distribution for the Poisson
noise present in SMLM images.

P (Z = z) =
�z exp(��)

z!
(1)

We minimized the likelihood of the noisy pixel values
over all possible clean values (Equation 2) to train our self-
supervised denoising model.

P (Zi = zi) =

Z 1

0
P (Zi = zi|Xi = x)P (Xi = x)dx

(2)

Since we only have the noisy image signals, Zi, our loss
function must be representative of these known values. To do
this we introduced the conjugate prior for the Poisson Dis-
tribution, the Gamma distribution. By representing the dis-
tribution of possible clean image signals, Xi, by the Gamma
distribution, it is possible to marginalize out the clean real-
ization of our image which is unknown in SMLM (Equation
3).

P (Zi = zi) =

Z 1

0

�↵

�(↵)
· x

zi+↵�1e(�x��x)

zi!

=
�↵

(1 + �)↵+zi
· �(↵+ zi)

�(↵)
· 1

zi!

(3)

Using this marginalized equation, the negative log likeli-
hood loss function can be calculated without using an ap-
proximation (Equation 4).

Li = � log

✓
�↵

(1 + �)↵+zi
· �(↵+ zi)

�(↵)
· 1

zi!

◆

= �↵ log(�) + (↵+ zi) log(1 + �)

� log(�(↵+ zi)) + log(�(↵)) + log(�(zi + 1))

(4)

In order for the obscured pixel value to contribute to the
clean pixel estimation, the best results were obtained using
the Gamma posterior mean (Equation 5). This preformed
better than the a the Gamma MAP estimation which tended
to weigh the noisy pixel value too heavily.

Gamma Posterior Mean: xi =
↵+ zi
� + 1

(5)

For each YFP dataset we trained a separate model. Be-
cause of differences in noise levels and molecule shapes, the
best results for denoising were produced by training and val-
idating on 1000 images cropped to 512x512 pixels from a

single dataset. Best results were obtained when the model is
trained on images with a average to slightly higher signal.
So images with little to no signal comparatively to the rest
of the dataset were not included in the training batch. After
training the networks using single 900 image batches with
100 validation images, the networks could then successfully
denoise the entirety of the respective datasets. Training the
model for each individual dataset is feasible because it takes
between 12-18 epochs to train at approximately 6 minutes
per epoch.

The visibly denoised images are then processed using
the ImageJ Plugin, ThunderSTORM (Ovesn et al. 2014;
Schneider, Rasband, and Eliceiri 2012). We then compared
the results from the processed denoised images to the pro-
cessed noisy images. We used this comparison as well as the
results from testing on simulated datasets to make sure our
model is removing the noise while retaining the true signal
from SMLM images.

Evaluation

Data

To train and test our model we used two single molecule
microscopy datasets of yellow fluorescent protein (YFP)-
tagged growth factor receptors taken from human Epithe-
lial carcinoma A431 cells expressing mCitrine-ErbB3 (Luke
et al. 2018). Since this dataset uses YFP-tagged receptors
rather than traditional dye, the molecules emit less photons
than most SMLM images. As a result, the YFP datasets have
low signal to noise ratio making them good candidates for
denoising.

We also evaluated our model using simulated datasets.
Simulated data will be useful for testing the accuracy of
the localizing from our denoised data. Testing this allows
us to gain some verification that the model does not alter the
true signal or add signal from non-existing molecules be-
cause ground truth molecule locations are known for this
data set. Using the ThunderSTORM Performance Testing
tool we created 7 simulated data sets. One of the created data
sets used the default simulation setting and was tested on all
models. For the other 6 datasets, we created two groups each
with 3 simulated datasets. Each group of data imitates one of
two real YFP data sets at 3 different levels of noise resulting
6 more generated datasets.

Metrics

To evaluate how well our model is able to denoise the
SMLM images we looked at the signal to background ratio
(SBR). In order to find the SBR, there needed to be a way of
distinguishing the background from the foreground. By im-
plementing an automatic iterative threshold selection com-
monly used for gray-scale image thresholding, it was pos-
sible to determine a signal threshold to separate the signal
from the background (Svoboda, Kybic, and Hlavac 2007).
We hoped this metric would give a marker of how well our
model is denoising given we have no clean image compar-
ison to compare our results to. However, even when the re-
sults qualitatively appeared to improve and the localization
uncertainty lowered, the SBR of a resulting image was not

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 37



necessarily greater than its noisy pair. Using the signal to
background ratio is also not an ideal way to generally assess
denoising because our model could successfully denoise the
black background without having the same effect across the
entirety of the image. For these reasons, we solely look at the
qualitative results from the denoising model prior to utiliz-
ing our super-resolution and localization techniques. Then,
if there is improvement in the ability to locate molecules in
comparison to the localization ability on the images without
denoising, it can be assumed that the denoising our model
achieved occurred across the entirety of the image.

Once we have qualitatively determined our model’s abil-
ity to denoise the SMLM images, we then evaluated the ef-
fect the denoising model had on the ability to locate indi-
vidual molecules within the images. For this we used Thun-
derSTORM. ThunderSTORM is a SMLM image processing,
analyzing, and visualizing tool (Ovesn et al. 2014). Thun-
derSTORM can be implemented as a plugin for the image
processing application ImageJ (Schneider, Rasband, and Eli-
ceiri 2012). It is particularly helpful in assessing a thresh-
old for detection of molecules in raw and filtered images.
So, in order to evaluate a potential improvement in the de-
noised images threshold for detection, we will first run the
raw/noisy YFP data through ThunderSTORM and record the
results. Then, we will denoise the YFP data with our Self-
supervised denoising model. Finally, we will run the de-
noised data through ThunderSTORM once more and com-
pare the threshold for detection results between the raw and
denoised data. Along with this quantitative data, Thunder-

Figure 3: YFP-Dataset 3 denoising visual results: (a) Sin-
gle noisy YFP image with an additional zoom of the top
right corner. (b) Single corresponding denoised YFP image
with an additional zoom of the top right corner. (c) Image
compiled from molecule localization from all YFP-dataset 3
noisy images. (d) Image compiled from molecule localiza-
tion from all denoised YFP-dataset 3 images.

STORM has a visualization tool that creates a new image
of the cell by compiling the detected molecules locations
together. So, a final visual result can also be compared be-
tween the noisy and denoised datasets.

Results

After training and testing using the self-supervised denois-
ing model on yellow fluorescent protein (YFP)-tagged data,
there have been improvements in both the reduction of noise
in the image (evaluated qualitatively) and the ability to lo-
cate individual molecules within the SMLM images.

Despite the Signal to Background Ratio metric not being
a quality measure of the noise in the images, it is not difficult
to qualitatively evaluate the denonising process. In Figures 3
and 4, images (a) and (b) from YFP-dataset 3 as well as im-
ages (e) and (f) from YFP-dataset 4 demonstrate the models
ability to pick out the signal amongst noise. Images (b) and
(f) do not appear to have as much signal as their noisy coun-
terparts images (a) and (e). But, the difference is due to the
noise being amplified in areas of signal in images (a) and (e),
not a loss of molecule signal. The ability to get rid of the ex-
cess noise around the signal allows for individual molecules
to be pinpointed. In an area where multiple molecules are
close together, their respective noise can blur together mak-
ing it unfeasible to locate each molecule individually with

Figure 4: YFP-Dataset 4 denoising visual results: (e) Sin-
gle noisy YFP image. (e.1) An additional zoom from image
(e). (f) Single corresponding denoised YFP image. (f.1) An
additional zoom from image (f). (g) Image compiled from
molecule localization from all YFP-dataset 4 noisy images.
(d) Image compiled from molecule localization from all de-
noised YFP-dataset 4 images.

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 38



Data

Molecules

Located

Mean

Sigma [nm]

Standard Dev.

Sigma [nm]

Mean

Uncertainty [nm]

Standard Dev.

Uncertainty [nm]

Noisy YFP-Dataset 3 364,509 104.8981 62.35194 17.43365 5.770702
Denoised YFP-Dataset 3 882,188 111.466 60.64917 13.46961 6.124521
Noisy YFP-Dataset 4 153,061 109.2096288 88.81489875 17.08962255 6.198097691
Denoised YFP-Dataset 4 974,163 138.215115 101.79013 16.9050282 5.87430829

Table 1: Molecule localization data obtained using ThunderSTORM with default settings + EM Gain = 150.0 for YFP-Dataset
3 and EM Gain 100.0 for YFP-Dataset 4. Post-processing with ThunderSTORM: Duplicate removal and drift correction.

Data True Positives False Positives False Negatives Jaccard Index Precision Recall F1

Noisy Simulated 150,630 3,790 16,874 0.879 0.975 0.899 0.936
YFP-3 Model 156,795 3,899 10,709 0.915 0.976 0.936 0.955
YFP-4 Model 156,136 4,178 11,341 0.91 0.974 0.932 0.953

Table 2: Performance evaluation results from the ThunderSTORM simulated dataset using the default settings. The data from
each row is the result of a comparison between the dataset’s localizations and the ground truth molecule locations.

any certainty. To locate each molecule in an SMLM image,
ThunderSTORM fits a Gaussian distribution to the signals
from the image. Using the data from the Gaussians at each

Figure 5: Single noisy ThunderSTORM simulated images
on the left with the corresponding denoised images on the
right. From top to bottom: generated data simulating YFP-
dataset 3 (Mean Noise Level = 150.0 photons), generated
data simulating YFP-dataset 4 (Mean Noise Level = 150.0
photons), generated data using default settings.

point, it can be determined whether a molecule is present,
where it is present, and a location uncertainty value. We
know more molecules can be located in the denoised im-
ages because of the compiled images produced as well as
the localization data found in Table 1.

Table 1 shows the results of the analysis of the original
noisy image sets in comparison with analysis of the denoised
image sets. Sigma is the standard deviation of the gaussian
fit to a molecules signal and the uncertainty measure is cal-
culated using a combination of this value, the intensity of
the signal, and other parameters from the gaussian distribu-
tion. Using ThunderSTORM it was possible to locate more
than double the amount of molecules with the denoised data
compared to the original corrupted data. Both models were
able to make these large jumps in localizaion of molecules
while still maintaining lower mean uncertainties.

Applying our denoising networks to simulated data also
produced improvements in visual denoising and molecule
locating. Using the ground truth molecule locations it is pos-
sible to determine how many molecules are being accurately
located as well has the number of false positive and false
negative molecule localizations. For our experiments, a lo-
calization of a molecule is considered correct if it is within
50nm of the ground truth location (default setting). The re-
sults from our simulated data give reassurance in our de-
noised molecule localization numbers from the real data.

Utilizing the ThunderSTORM simulated data default
noise and signal settings, we created a 1,000 image dataset.
Table 2 and the bottom images in Figure 5 display the results
of the models which were trained on real data being used to
denoise the ThunderSTORM default simulated dataset. The
left of the bottom right two images is the output of the model
trained on YFP-dataset 3 and the right of the two is the out-
put of the model trained on YFP-dataset 4. Both models pro-
duced images which were able to detect more true molecule
locations than the original noisy image set. However, on this
specific dataset both model’s output images had more false
positive localizations than from the noisy data. We speculate
that a model trained and tested on data with different levels

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 39



Noise Level Data

True

Positives

False

Positives

False

Negatives Jaccard Index Precision Recall F1

50.0 Noisy 167,163 7,075 14,690 0.885 0.959 0.919 0.939
Denoised 171,418 2,847 10,435 0.928 0.984 0.943 0.963

100.0 Noisy 166,354 7,768 15,253 0.878 0.955 0.916 0.935
Denoised 169,642 3,979 11,965 0.914 0.977 0.934 0.955

150.0 Noisy 165,023 8,466 16,258 0.870 0.951 0.910 0.930
Denoised 167,947 5,890 13,334 0.897 0.966 0.926 0.946

Noise Level Data

True

Positives

False

Positives

False

Negatives Jaccard Index Precision Recall F1

50.0 Noisy 167,814 11,855 24,052 0.824 0.934 0.875 0.903
Denoised 169,974 6,407 21,892 0.857 0.964 0.886 0.923

100.0 Noisy 165,988 12,903 25,867 0.811 0.928 0.865 0.895
Denoised 167,174 8,514 24,681 0.834 0.952 0.871 0.910

150.0 Noisy 163,058 13,732 28,328 0.795 0.922 0.852 0.886
Denoised 163,228 12,032 28,158 0.802 0.931 0.853 0.890

Table 3: Performance evaluation results from ThunderSTORM generated data imitating YFP-dataset 3 (above) and YFP-dataset
4 (below) at three different mean background noise levels (photons). The data from each row is the result of a comparison
between the dataset’s localizations and the ground truth molecule locations.

of signal and noise leads to lower quality denoising perfor-
mance and therefore lower localization abilities. Nonethe-
less, the overall result is that all the similarity indexes are
improved by the model’s denoised images except the preci-
sion of localization in the images from the YFP-4 model.

To better represent the real data that our models were
trained on, we generated simulated data with a comparable
signal intensity range as well as comparable full width at
half maximum range for the molecule signal spread to the
real YFP datasets. Using a mask (thresholded image) from
the original YFP-dataset, the ThunderSTORM data gener-
ator spreads the signal intensities according to the mask’s
values. We then replicated the simulation at 3 different
noise levels for both of the datasets since the level of noise
throughout the real YFP images frames is not uniform. Each
dataset consisted of 1,000 images and was tested on the net-
work trained on the data it is simulating. After processing
the noisy data and model’s output, the produced molecule
localizations are compared with the ground truth locations.
As can be seen in Table 3, at each level of noise both of the
model’s are able to pinpoint more molecules while maintain
less false positives and false negatives than the noisy data.
As a result, the similarity indexes are higher at every point
for the denoised data in comparison with the original sim-
ulated noisy data. An example of the qualitative denoising
results from the model on the simulated data can be seen in
Figure 5. So, our models, when trained at certain signal in-
tensities/noise levels, are able to produce denoised images
which accuratly locate higher numbers of molecules in a
given dataset.

Conclusion

We have developed and evaluated a self-supervised deep
learning model for denoising Single Molecule Localization
Microscopy images which are corrupted with Poisson noise.

To do this, we built off recent research in self-supervised
denoising models and fit the techniques to denoise im-
ages taken in low light conditions (images containing large
amounts of Poisson noise). As a result of the denoising, there
has been no correlation with the Signal to Background met-
ric. However, utilizing the ImajeJ plugin, ThunderSTORM,
we have been able to see an improvement in detecting and
locating individual molecules within SMLM images. Repro-
ducing positive results on real data as well simulated data
has shown that our models are able denoise SMLM images
without distorting the true image signal. By locating more
molecules and continuing farther past diffraction barrier, we
hope to create better SMLM images which will allow biol-
ogists to advance the studies of cell and molecular behavior
at the nanoscale.

Acknowledgement

The work reported in this paper is supported by the Na-
tional Science Foundation under Grant No. 1659788. Any
opinions, findings and conclusions or recommendations ex-
pressed in this work are those of the author(s) and do not
necessarily reflect the views of the National Science Foun-
dation.

References

Allen, J.; Silfies, J.; Schwartz, S.; and Davidson, M. 2016.
Single-molecule super-resolution imaging. Nikons Mi-

croscopyU.
Krull, A.; Buchholz, T.-O.; and Jug, F. 2018. Noise2void-
learning denoising from single noisy images. arXiv preprint

arXiv:1811.10980.
Krull, A.; Vicar, T.; and Jub, F. 2019. Probabilistic
noise2void: Unsupervised content-aware denoising. arXiv

preprint arXiv:1906.00651.

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 40



Laine, S.; Karras, T.; Lehtinen, J.; and Aila, T. 2019.
High-quality self-supervised deep image denoising. arXiv

preprint arXiv:1901.10277.
Lehtinen, J.; Munkberg, J.; Hasselgren, J.; Laine, S.; Kar-
ras, T.; Aittala, M.; and Aila, T. 2018. Noise2noise: Learn-
ing image restoration without clean data. arXiv preprint

arXiv:1803.04189.
Luke, T.; Pospil, J.; Fliegel, K.; Lasser, T.; and Hagen, G.
2018. Supporting data for quantitative super-resolution sin-
gle molecule microscopy dataset of yfp-tagged growth fac-
tor receptors. GigaScience Database.
What’s so special about the nanoscale? Official website of

the United States National Nanotechnology Initiative.
Nehme, E.; Weiss, L. E.; Michaeli, T.; and Shechtman, Y.
2018. Deep-storm: super-resolution single-molecule mi-
croscopy by deep learning. Optica 5(4):458–464.
Ovesn, M.; Kek, P.; Borkovec, J.; vindrych, Z.; and Hagen,
G. M. 2014. Thunderstorm: a comprehensive imagej plug-in
for palm and storm data analysis and super-resolution imag-
ing. Bioinformatics 30(16):23892390.
Schneider, C. A.; Rasband, W. S.; and Eliceiri, K. W. 2012.
Nih image to imagej: 25 years of image analysis. Nature

Methods 9:671675.
Shannon, M.; Burn, G.; Cope, A.; Cornish, G.; and M Owen,
D. 2015. Protein clustering and spatial organization in t-
cells. Biochemical Society transactions 43:315–21.
Svoboda, T.; Kybic, J.; and Hlavac, V. 2007. Image Process-

ing, Analysis & and Machine Vision - A MATLAB Compan-

ion. Thomson Learning, 1st edition.
Weigert, M.; Schmidt, U.; Boothe, T.; Mller, A.; Dibrov, A.;
Jain, A.; Wilhelm, B.; Schmidt, D.; Broaddus, C.; Culley, S.;
Rocha-Martins, M.; Segovia-Miranda, F.; Norden, C.; Hen-
riques, R.; Zerial, M.; Solimena, M.; Rink, J.; Tomancak,
P.; Royer, L.; Jug, F.; and Myers, E. W. 2018. Content-
aware image restoration: pushing the limits of fluorescence
microscopy. Nature Methods.

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 41



I-MOVE: Independent Moving Objects for Velocity Estimation

Jonathan Schwan Akshay Raj Dhamija Terrance E. Boult
University of Colorado, Colorado Springs

{jschwan2 | adhamija | tboult} @ vast.uccs.edu

Abstract

This undergraduate research was conducted because although
there are multiple static RGB-D, stereo, and ego-motion
datasets, none specifically address the problem of motion
parameters and object velocity estimation. We introduce I-
MOVE, the first publicly available RGB-D/stereo dataset for
estimating velocities of independently moving objects. The
dataset features various outdoor and indoor scenes of single
and multiple moving objects. Compared to other datasets,
a unique property of I-MOVE is that the 3D position and
3D velocity for each object is supplied for a variety of dif-
ferent settings / environments and objects / motions. The
dataset includes training and test sequences captured from
four different RGB-D camera views and three 4K-stereo se-
tups. The data are also time synchronized with dual Doppler
radars to provide velocity ground truth. Multiple scenes are
designed for high-quality ground truth computations with in-
creasing levels of complexity. The I-MOVE dataset also in-
cludes complex scenes from moving pedestrians to multiple
flying drones captured with the seven stereo cameras. We
look forward to the constructive feedback on the idea of
the dataset and its collection process.

Introduction
“What we see depends mainly on what we look for.” John
Lubbock, The Beauties of Nature and the Wonders of the
World We Live in, 1892.

The above quote has stood the test of time in the field
of computer vision. In the realm of still imagery, sev-
eral problems have and continue to be addressed, such as
image classification and object detection. Similarly, with
the rise in popularity of videos, problems such as tracking
(Atev et al. 2005; Sadeghian, Alahi, and Savarese 2017;
Jiang et al. 2018; Kim, Li, and Rehg 2018), localization
and mapping (Zhang et al. 2018; Brosh et al. 2019), ac-
tion recognition, as well as sentiment analysis have been
identified (Chang et al. 2019; Piergiovanni and Ryoo 2019).
In this undergraduate work, we present the relatively unex-
plored task of motion parameter estimation. Even though
motion parameters are useful for a large variety of applica-
tions, estimating them from videos has not been studied ex-
tensively. Motion parameters are a necessary component in
numerous applications such as robotic navigation (Chuang
et al. 2018; noa ) and collision detection (Atev et al. 2005;

Gandhi and Trivedi 2006; Heyman 2019). Because having
related data to this problem has become so necessary, many
synthetic environments have been created (Fei et al. 2019;
Zamora et al. 2016; Fan et al. 2018). These synthetic en-
vironments have greatly helped people approach the prob-
lem, but in the unconstrained real world environments these
tasks are much more complicated than the research envi-
ronments. In problems such as collision detection it is not
only necessary to take into account your directional veloc-
ity but that of other objects as well. In order to accomplish
this it is required that you have the three dimensional direc-
tional velocity of each of the objects. Similarly, in robotics
if one wishes to enable a robot to interact with an indepen-
dently moving object (ex flying ball or frisbee or indepen-
dent drone), the motion parameters of these objects need to
be accurately estimated in order to understand the trajectory.
Another important application area for motion parameter es-
timation is sports. In numerous sports performance analysis
of athletes, relies on velocity and acceleration information.
Most obviously, sports where speed is the main component
(running, biking, swimming, etc.), but also for sports such
as weightlifting where the athletes are looking for their lift
force and acceleration in order to calculate the best feasible
posture or lift technique. Similarly, motion parameters may
also be useful for training purposes in various sports such as
skiing, snowboarding or skateboarding.

While most of the constrained application areas could
either document motion parameter information using spe-
cialized sensors, such as IMUs (Inertial Measurement Unit)
or from egocentric videos, these are not viable for uncon-
strained scenarios because both of these approaches need
to have access to the object in motion. With a task such
as estimating the instantaneous velocity of a flying ball
neither IMUs nor egocentric videos may be used (Chatz-
itofis, Zarpalas, and Daras 2018; Chatzitofis et al. 2013;
Einfalt, Zecha, and Lienhart 2018; Lee and Kitani 2016).
Since views from cameras can be easily accessible for such
problems they become the logical choice to create a more
useful and robust method for motion parameter estimation.

Since, to the best of our knowledge none of the current
datasets provide velocity estimation information or other
vital motion parameter ground truth for such complicated
tasks, we introduce a new dataset (I-MOVE). Our dataset fo-
cuses on aiding motion parameter estimation for outdoor and

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 42



Figure 1: SETUP FOR DATASET COLLECTION The above picture describes the setup used for the data collection process for a moving
pendulum, which is just one of the various moving objects in our dataset. Our dataset aims to allow vision-based estimation the velocity of
moving objects from any of the three types of sensors. The first set are three pairs of high-resolution stereo cameras, 4K hardware synchronized
Go-pros in custom mounts, with 2.92mm, 4.3 and 5.2mm lenses respectively. The second set are Intel RealSense RGB-D cameras (415 and
435), with active illumination. The third sensor is a passive stereo system (ZED). The final video is a grayscale active illumination depth
sensor (MYNT Eye S). The same setup is used for data collection on all our moving objects. In order to acquire the ground truth velocity we
use one or two Doppler radars with varying positions relative to the moving object(s). The doppler radars provide the instantaneous velocity
of the pendulum as depicted in the bottom plot of the figure. Since the pendulum is moving towards and away from the radar it provides a
sinusoidal instantaneous velocity. For further details on the setup please refer Section .

indoor objects of various kinds. In order to enable research
in incremental steps for such a hard problem our dataset in-
cludes three types of vision sensors, providing RGB, Stereo
and RGB-D data. The ground-truth velocities are obtained
via Doppler radars. The data is also collected in sufficient
amounts from varied sources of cameras to enable training
of supervised deep learning methods. The objects also vary
throughout the scenes, for example some scenes are based
upon a person’s movement while others are designed for eas-
ier predictable movements, e.g. a rolling ball or pendulum as
can be seen in Figure 1. Unlike any of the existing datasets,
we also provide ground truth measurements of 3D veloc-
ity parameters for each moving object in each scene using
Doppler radars. Depending on the object’s path / movement
we will use either one or two doppler radars (for more unpre-
dictable movements where triangulation is necessary to es-
timate the velocity). In order to validate the accuracy of the
Doppler radars we use them in simple scenes, where the ve-
locity information can be easily verified by using the laws of
physics. Such scenes include rolling objects down inclined
planes, motion of a pendulum, and falling/flying objects.

Related Datasets
Vision based velocity estimation has been studied for
decades (Hinedi 1988; Nakazawa, Ishihara, and Inooka
2003; Mahapatra and Mehrotra 2000). In recent years,
with application of computer vision algorithms to the do-
mains of robotics (Xia et al. 2018; Hua et al. 2018) and au-
tonomous driving (cars (Fangjun Jiang and Zhiqiang Gao
2000; Kampelmhler, Mller, and Feichtenhofer 2018) and
drones (Chuang et al. 2018)), the number of works at-
tempting to estimate motion parameters has grown dramat-
ically (Coskun et al. 2017; Prez-Ortiz et al. 2003). As a
result the need for these datasets has also grown greatly
(Zhu et al. 2018; Sturm et al. 2012; Kim et al. 2018;
Chen, Jafari, and Kehtarnavaz 2015; Sigal, Balan, and Black
2010). Many of these works differ in the primary purpose of
the dataset and the objects for which motion parameters are
estimated. In this section we will first recognize the datasets
that either are aimed for motion parameter estimation or a
related task. These datasets generally either use RGB data
or data acquired from non vision systems. Then we discuss
the most similar datasets within the RGB-D realm.

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 43



HumanEva
(Sigal,

Balan, and
Black
2010)

DIML
(Kim et

al.
2018)

Evaluation of
RGB-D SLAM
Systems (Sturm

et al. 2012)

UTD-
MHAD
(Chen,

Jafari, and
Kehtar-
navaz
2015)

Human
Activity

Recognition
(Anguita et

al. 2013)

I-MOVE
(Ours)

Velocity Ground Truth X
Moving Object(s) X X X

Any Specific Motion
Parameter Ground Truth

X X

Images / Video Provided X X X X X
Indoor Images X X X X X

Outdoor Images X
Multiple Cameras Used X X
Multiple Perspectives of

Same Object
X X

RGB-D X X X
Passive STEREO X

Table 1: COMPARISON OF THE CURRENTLY AVAILABLE DATASETS Above we summarize some of the currently available datasets.
It should be observed that none of the available datasets provide a velocity ground truth which is a big contribution of our I-MOVE dataset.
The closest dataset to ours is the HumanEva dataset which unlike ours only contains humans.

RGB or Motion Parameter Only Datasets
The Human Activity Recognition dataset (Anguita et al.
2013) provides potentially useful data to address the mo-
tion parameter estimation problem. The dataset contains
smartphone accelerometer information collected by numer-
ous people performing various tasks such as sitting, walking,
and going up stairs. However, this dataset contains no im-
ages / video and was created with the intention of creating a
model that could predict activity solely from the accelerom-
eter information. Since the aim of the problem presented in
this paper is to estimate the motion parameters of an object
from a video, this dataset cannot be utilized for its addressal.

Another human activity recognition based dataset is the
UTD-MHAD (Chen, Jafari, and Kehtarnavaz 2015) which
contains both IMU and video information. This dataset con-
tains 27 actions performed by 8 subjects (4 females and 4
males). Each subject repeated each action 4 times. The ac-
tions, such as knock on door, sit to stand, and stand to sit, are
fairly limiting in movement, and hence do not make them as
desirable to estimate motion parameters.

Another interesting dataset is the HumanEva dataset (Si-
gal, Balan, and Black 2010), which is a synchronized video
and motion capture dataset. It consists of 4 subjects per-
forming a set of six predefined actions three times (twice
with video and motion capture, and once with motion cap-
ture alone). This dataset was intended to be used to improve
existing three dimensional pose estimation, but it may also
be used for motion parameter estimation.

RGB-D Datasets
While there are a variety of RGB-D datasets, to the best
of our knowledge there is no RGB-D dataset that contains
velocity ground truth to accurately evaluate an algorithms

performance. The most similar dataset is the one proposed
in the paper, A Benchmark for the Evaluation of RGB-D
SLAM Systems (Sturm et al. 2012). The dataset contains
the color and depth images from a Microsoft Kinect sensor
along with the ground-truth trajectory of the sensor. The
ground-truth trajectory was obtained from a high-accuracy
motion-capture system with eight high-speed tracking cam-
eras plus the accelerometer data from the Kinect. How-
ever, since the kinect has limited performance in outdoor
environments, the dataset was restricted to indoor use only.
Moreover, the dataset only contained a single type of ob-
ject and hence even if someone would attempt to create a
system for motion parameter estimation on this dataset it
may not generalize well on other objects. The DIML RGB-
D Dataset (Kim et al. 2018) also contains data collected
with a Kinect, however this database does include indoor
and outdoor video in addition to object segmentation mak-
ing it more plausible to conduct tests for motion parameter
estimation purposes. But this dataset too does not contain
any velocity ground truth. As well as since the dataset only
contains single camera views any system created to estimate
motion parameters on this dataset may not translate well to
data from a different camera source.

The I-MOVE Dataset
Though our dataset collection process is ongoing, we have
completed our initial round of dataset collection, which in-
cluded deciding upon the sensors and the conditions for data
collection as well as recording the initial physics based set-
ups to mathematically verify the quality and plausibility of
our velocity estimation. Through this paper we attempt to
get a feedback / input from the computer vision community
on any shortcoming or missing aspects in our initial setup.

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 44



(a) Samples from HumanEva Dataset

(b) Ours I-MOVE (Intel RealSense 435) (c) Ours I-MOVE (ZED)

Figure 2: HUMANEVA DATASET VERSUS OUR I-MOVE DATASET While the HumanEva dataset uses humans as the moving
subjects whose motion is recorded with motion capture, the dataset is primarily aimed for key point tracking (Fig 2(a)). These keypoints may
be used for motion parameter estimation but the limited motion of the subjects does not make it interesting enough for motion estimation task.
Moreover, the dataset is restricted to indoors not providing enough lighting variations for a good relevance to the real world scenarios. To
overcome the short coming of the HumanEva dataset we propose I-MOVE where the subjects are captured in an unconstrained environment
with a variety of movements. As visible from the Fig 2(b) and 2(c). The variations in the type of camera also provide considerable variations
to the same scenes, these variations may also prove useful for training a deep network based approach.

Compared to the reviewed datasets, I-MOVE is unique
in the following ways:

(a) To the best of our knowledge, this dataset is the first to
focus on and provide object motion parameters.

(b) I-MOVE also contains a variety of objects in both indoor
and outdoor scenes.

(c) Each scene is captured with a variety of cameras from
different viewing angles. This variety of data provides
the necessary means for developing more robustness ap-
proaches.

(d) We also provide the ground truth velocity for each moving
object in the scene using doppler radars.

(e) The performance of the doppler radars is validated in con-
trolled experiments where the results can be verified using
basic laws of physics.
The velocity ground truth is also thoroughly proofed and

tested to ensure accuracy with physics based examples and
settings to allow completely mathematical based calcula-
tions to be done by hand and compared against.

Setup
The apparatus used for data collection was meticulously
crafted to ensure the most reliable results in various loca-
tions / scenes. The seven cameras and two radars were
mounted on a 14 gauge angle bar as can be seen in Figure 1,
this allows us to adjust the various heights of the apparatus

(cameras) as needed to give us more accuracy and reliability
when collecting data on an uneven surface.

The cameras and radars were mounted identically at each
location such that each camera’s individual abilities can also
be evaluated (range, quality, accuracy, etc.) in different set-
tings. The cameras used were three GoPro Hero 3 stereo rigs
(six GoPros in total because there are two GoPros per stereo
setup), along with two Intel RealSense cameras (a 415 and
435), a ZED camera, and lastly a MYNT Eye S. The radars
used were OmniPreSense doppler radars, which provide ve-
locity of objects within their 78� wide beams.

Due to the wide variety in object size, scene layouts, and
environments where data was collected, the apparatus was
created to accommodate these differences. The cameras all
have a different field of view and so the order and spacing
of them was vital to collect the data as best possible. Two of
the GoPro setups have modified lenses giving them a field
of view of 54.1� and 64.7�, respectively. The standard /
unmodified GoPro stereo set up has a horizontal field of view
of 122.6�. The Intel RealSense 435 has a field of view of
85� horizontally, while the RealSense 415 version has 63�,
and finally, the ZED is capable of 90� viewing horizontally.
We also had additional depth information recorded with a
MYNT Eye S (that has a 122� field of view horizontally)
to allow for better camera to camera comparisons; however,
the MYNT we used is not RGB / only monochromatic.

Given our purposeful placement based on the field of view
of the cameras, see Fig. 3, we were able to obtain a two foot
spacing between each camera allowing for fairly significant

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 45



Figure 3: SKEMATIC FOR HORIZONTAL FIELD OF VIEW OF
EACH CAMERA Each box represents a 1 foot x 1 foot square and
as can be seen in the figure the cameras are placed two feet apart
horizontally. The figure also shows that object has to be slightly
less than five feet away from the center camera (Intel RealSense
435) in order to be in the field of view of all the cameras.

difference in camera perspective while still having all cam-
eras capturing the object and it’s most valuable movements.
The set up was arranged from left to right (facing the lens)
as follows: Stereo GoPro (standard), Stereo GoPro (modi-
fied), Stereo GoPro (modified), Intel RealSense 415, Intel
RealSense 435, ZED, MYNT Eye S (Monochromatic). This
can be seen in Fig 1. This rig allows us to have a fairly
portable and consistent system which is essential given the
numerous locations / environments where the data was col-
lected.

Calibration and Synchronization of Sensors
Intrinsic and extrinsic distortion parameters of the sensors
were found using the checkered board approach commonly
done with OpenCV (Romero-Ramirez, Muoz-Salinas, and
Medina-Carnicer 2018; Datta, Kim, and Kanade 2009). Due
to the variation in lens and distortion for every single cam-
era used in our rig, it is necessary that the OpenCV cali-
bration approach is done separately for each camera at each
location or every time there is a significant change in light-
ing or background. For some of the cameras such as the
ZED and Intel RealSense, calibration options were avail-
able within the SDKs, so these were used when possible.
In addition to calibration, synchronization was also essen-
tial due to the fact that the same motion ground truth was
used for different cameras and perspective. For this reason
it is also crucial to ensure the radars providing the ground
(that is not obtainable via physics based setups / equations)
are time synced with the cameras so that the ground truth
can be accurately applied to the appropriate frame from each
stereo camera setup. In order to do this we had the same
data collection device (an HP XPS 13) used to collect the
information from both OmniPreSense radars also to collect
the Inter RealSense 435 data. Both radars are set to return
their timestamp information in addition to the speed data and

these timestamps are synchronize with the Intel RealSense
435’s data. This synchronization allows us to use a flash
event, where we utilize a camera flash that lasts 4 millisec-
onds allowing the moment to be visually captured by all the
stereo cameras and using the frame(s) with flash to appro-
priately sync the velocity information to each frame.

Data Collection
Our data collection process was intended to include a signifi-
cant variety in objects, object motion, object velocity, scenes
/ environments and lighting, while still ensuring maximum
accuracy in the ground truth for segmentation and velocity
of the object. The dataset was also designed to allow the
same ground truth to be applicable to multiple views. The
six cameras used ensure a fairly significant variety in camera
perspective / viewing location in addition to the difference in
field of view. The variety in cameras also allows the dataset
user to compare the performance between them if they wish.

Currently, the dataset features ten different objects: per-
son, car, dog, skateboarder, skateboard, biker, ball, drone,
pedestrian and RC Car. These objects differ widely not only
in shape and size but also motion paths making them suit-
able to train and test upon. We have numerous scenes that
involve the different objects in their respective environments
with their frequent movements and motion. However, in an
attempt to ensure that a model may accurately learn the mo-
tion parameters regardless of the object itself the I-MOVE
dataset also contains objects traveling on the same path with
an easily estimated velocity using physics. For example a
variety of objects have been dropped, rolled down a ramp
with a constant rolling base object, or swung on a pendu-
lum. I-MOVE’s variety in objects, scenery, and motion pa-
rameters/movement paths is designed to help create the most
robust velocity estimation models yet.

Calculation and Verification of Velocity
The main purpose of this dataset is to provide the necessary
data for better prediction of motion parameters, in particular
the velocity of an object. Choosing the point of the object
in which to document the velocity of is itself is often non-
trivial. For example, when a person is walking they have
multiple components (legs, arms, torso) moving at different
velocities. In order to make our dataset as useful as possi-
ble for multiple applications and objects we have attempted
to find the ground truth velocity for the center point of each
object being tracked. Because of this, it is especially vi-
tal that the ground truth is as accurate as possible. To en-
sure the velocity of each object is correct we have additional
purely physics based scenes put in place, some of these in-
clude dropping an object, rolling a ball (or rollable object)
down a ramp, and swinging a pendulum with the object at-
tached at the end.

With these known physics based environments it becomes
possible to use physics equations to find the instantaneous
velocities for each set up, and to use this information to
help perfect the radar setup helping ensure that the trian-
gulation of the radars used for other setups is accurate. This
fine tuning of the radars allows us to provide more accurate
velocity ground truths for the non-easily physics calculated

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 46



(a) Intel RealSense 415 (b) Intel RealSense 435

(c) ZED (d) MYNT

Figure 4: SAMPLE IMAGES FROM OUR DEPTH CAMERAS Though all the above images provide us depth information from the
scene, each of them provides a slightly different view point. These viewpoint variations can provide more data while training deep learning
approaches. Also some very different camera models may be held back in order to test trained approaches. For example, while 4(a) Intel
RealSense 415 and 4(b)Intel RealSense 435 could be used for training, 4(c) ZED and 4(d) Mynt Eye S could be used to test the generalization
of the approach.

set ups. The equations used for each of the setups required
the more complex instantaneous velocity calculations to be
used as opposed to the more common final velocity equa-
tions. This is because we wanted to obtain velocity for each
frame/image within the videos collected.

The velocity data for the object drop was computed using
the commonly known equation:

V =
1

2
gt2 (1)

For this equation g (gravity) is 9.8 meters per second
squared and t is the time since object was released. Because
all cameras are returning time stamp information the veloc-
ity is easily calculated by pinpointing the timestamp of the
moment the object was released and using the time differ-
ence between that frame(s) and the future frames in which
the ball is falling as t.

In order to accurately calculate the rolling ball / object’s
instantaneous velocity a more complex approach had to be
used. The ramp itself has friction with the ball or rolling
object so in order to make the ramp have as little friction
a metal surface was placed over the wooden ramp supports.
This reduction in friction allows us to use more common and
less complicated physics equations. The final velocity (ve-
locity when the rolling object reaches the end of the ramp)
is calculated using the following equation:

Vfinal =

r
10

7
gh (2)

Where g is once again gravity and h is the height of the
ramp.

Now that the final velocity is obtained, and given that we
know the initial velocity is zero we can find the average ac-
celeration using the equation,

a =
vfinal
�t

(3)

by dividing the final velocity by the change in time (time
it takes to reach the bottom of ramp) we can then use this
average acceleration to find the velocity at any point between
the object starting down the ramp and reaching the ground.
To do this we use the following equation:

Vt = at (4)

This equation multiplies the acceleration down the ramp
by the time (t) since the release of the object / when the ob-
ject started rolling, allowing us to calculate the instantaneous
velocity of the object.

In order to calculate instantaneous velocity for a pendu-
lum a series of calculations were also required. We know
the length of the string (L) used for the pendulum and the
gravitational acceleration (g) so we were able to find the pe-
riod (time to complete a swing) by using the equation:

P = 2⇡

s
L

g
(5)

When the period (P) is found we can then use the informa-
tion we have to find the instantaneous angle of the pendulum
also known at ✓t.

✓t = ✓highestcos(
2⇡

P
t) (6)

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 47



Figure 5: PHYSICS FOR ESTIMATING INSTANTANEOUS
VELOCITY OF A PENDULUM This sketch shows how the equa-
tion to find VB is used.

The equation uses ✓highest which is the highest point of
the swing (or the initial drop angle). P, the period of the
swing, and t, the time since ✓highest in which you are trying
to find the angle for. Given this angle information we can
then find the instantaneous velocity of the pendulum with
the equation:

VB =
p
2(gLcos� � gLcos↵) (7)

VB is the velocity at the point we are attempting to find.
The equation uses g, gravitational acceleration, L, the length
of the pendulum string, ↵, the angle from vertical in which
the pendulum was released, and � the angle from vertical the
pendulum is currently at in comparison to ↵. To help clarify
this a visual aid accompanying this set up can be seen in
Figure 5.

Now that we are able to solve for the instantaneous veloc-
ity of the pendulum we apply this to each time-step in the
recorded pendulum data. The accuracy of this velocity data
is also significantly improved by the fact that we applied this
to pendulum drops of 20�or less making it a simple small
amplitude pendulum problem and improving the data gen-
erated via the prior equations. These physics based setups
/ environments with known equations used to calculate ve-
locities are also accompanied by two OmniPreSense radars
allow us to provide the most accurate velocities we can.

Conclusion
“What we see depends mainly on what we look for”, and in
this I-MOVE dataset we have chosen to look for that which
is crucial to many applications. We presented a novel dataset
intended to help researchers progress and refine their ap-
proaches to produce more robust motion parameter estima-
tion, specifically the velocity of the object being tracked. We
identify several drawbacks, and limitations with the existing
datasets in addition to explaining the differences between
our dataset and ground truths. We also explain how none of
the preexisting datasets contain the necessary information
to adequately approach the problem of single moving ob-
ject velocity estimation. We detail our meticulously crafted

setup and explain how ground truth estimation from a ded-
icated motion parameter sensor like the Doppler radar can
be verified using controlled environments and basic laws of
physics. To the best of our knowledge this is the first dataset
that is directly target to the problem of motion parameter es-
timation on independently moving objects in a complicated
environment.

In future works we plan to extend the dataset to contain
more diverse environments, classes of objects, as well as
complicated motion paths, such a stunts by a gymnast and
skateboarder or a flying Frisbee etc. With this additional in-
formation we hope to be able to make more robust models
that may be applied to a wider range of applications. As an
extension, the community may explore more motion param-
eters such as angular velocity or rotation in degrees, but it
is much harder to obtain ground truths for such setups. An-
other extension may also be to estimate motion parameters
for each limb of a subject rather than the complete body.
Though such an addition will be useful for applications ori-
ented towards sports it may not be easy to collect.

Acknowledgement
The work reported in this paper is supported by the Na-
tional Science Foundation under Grant No. 1659788. Any
opinions, findings and conclusions or recommendations ex-
pressed in this work are those of the author(s) and do not
necessarily reflect the views of the National Science Foun-
dation.

References
Anguita, D.; Ghio, A.; Oneto, L.; Parra, X.; and Reyes-Ortiz, J. L.
2013. A Public Domain Dataset for Human Activity Recognition
using Smartphones. In ESANN.
Atev, S.; Arumugam, H.; Masoud, O.; Janardan, R.; and Pa-
panikolopoulos, N. P. 2005. A vision-based approach to collision
prediction at traffic intersections. IEEE Transactions on Intelligent
Transportation Systems 6(4):416–423.
Brosh, E.; Friedmann, M.; Kadar, I.; Yitzhak Lavy, L.; Levi, E.;
Rippa, S.; Lempert, Y.; Fernandez-Ruiz, B.; Herzig, R.; and Dar-
rell, T. 2019. Accurate Visual Localization for Automotive Appli-
cations. 0–0.
Chang, C.-Y.; Huang, D.-A.; Sui, Y.; Fei-Fei, L.; and Niebles, J. C.
2019. D3tw: Discriminative Differentiable Dynamic Time Warp-
ing for Weakly Supervised Action Alignment and Segmentation.
3546–3555.
Chatzitofis, A.; Vretos, N.; Zarpalas, D.; and Daras, P. 2013.
Three-dimensional monitoring of weightlifting for computer as-
sisted training. In Proceedings of the virtual reality international
conference: Laval virtual, 3. ACM.
Chatzitofis, A.; Zarpalas, D.; and Daras, P. 2018. A computer-
ized system for real-time exercise performance monitoring and e-
coaching using motion capture data. In Precision Medicine Pow-
ered by pHealth and Connected Health. Springer. 243–247.
Chen, C.; Jafari, R.; and Kehtarnavaz, N. 2015. UTD-MHAD: A
multimodal dataset for human action recognition utilizing a depth
camera and a wearable inertial sensor. In 2015 IEEE International
Conference on Image Processing (ICIP), 168–172.
Chuang, H.-M.; Wojtara, T.; Bergstrm, N.; and Namiki, A. 2018.
Velocity Estimation for UAVs by Using High-Speed Vision. Jour-
nal of Robotics and Mechatronics 30(3):363–372.

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 48



Coskun, H.; Achilles, F.; DiPietro, R.; Navab, N.; and Tombari, F.
2017. Long Short-Term Memory Kalman Filters: Recurrent Neural
Estimators for Pose Regularization. 5524–5532.
Datta, A.; Kim, J.-S.; and Kanade, T. 2009. Accurate camera
calibration using iterative refinement of control points. In 2009
IEEE 12th International Conference on Computer Vision Work-
shops, ICCV Workshops, 1201–1208. IEEE.
Einfalt, M.; Zecha, D.; and Lienhart, R. 2018. Activity-conditioned
continuous human pose estimation for performance analysis of ath-
letes using the example of swimming. In 2018 IEEE Winter Confer-
ence on Applications of Computer Vision (WACV), 446–455. IEEE.
Fan, L.; Zhu, Y.; Zhu, J.; Liu, Z.; Zeng, O.; Gupta, A.; Creus-
Costa, J.; Savarese, S.; and Fei-Fei, L. 2018. SURREAL: Open-
Source Reinforcement Learning Framework and Robot Manipula-
tion Benchmark. In Conference on Robot Learning, 767–782.
Fangjun Jiang, and Zhiqiang Gao. 2000. An adaptive nonlin-
ear filter approach to the vehicle velocity estimation for ABS. In
Proceedings of the 2000. IEEE International Conference on Con-
trol Applications. Conference Proceedings (Cat. No.00CH37162),
490–495.
Fei, F.; Tu, Z.; Yang, Y.; Zhang, J.; and Deng, X. 2019. Flappy
Hummingbird: An Open Source Dynamic Simulation of Flap-
ping Wing Robots and Animals. arXiv:1902.09628 [cs]. arXiv:
1902.09628.
Gandhi, T., and Trivedi, M. M. 2006. Pedestrian collision avoid-
ance systems: a survey of computer vision based recent studies. In
2006 IEEE Intelligent Transportation Systems Conference, 976–
981.
Heyman, J. 2019. TracTrac: A fast multi-object tracking algorithm
for motion estimation. Computers & Geosciences 128:11–18.
Hinedi, S. 1988. An extended kalman filter based automatic fre-
quency control loop. Telecommunications and Data Acquisition
Progress Report 95:219–228.
Hua, M.; Manerikar, N.; Hamel, T.; and Samson, C. 2018. Attitude,
Linear Velocity and Depth Estimation of a Camera Observing a
Planar Target Using Continuous Homography and Inertial Data. In
2018 IEEE International Conference on Robotics and Automation
(ICRA), 1429–1435.
Jiang, M.-x.; Deng, C.; Pan, Z.-g.; Wang, L.-f.; and Sun, X. 2018.
Multiobject Tracking in Videos Based on LSTM and Deep Rein-
forcement Learning.
Kampelmhler, M.; Mller, M. G.; and Feichtenhofer, C. 2018.
Camera-based vehicle velocity estimation from monocular video.
arXiv:1802.07094 [cs]. arXiv: 1802.07094.
Kim, Y.; Jung, H.; Min, D.; and Sohn, K. 2018. Deep Monocular
Depth Estimation via Integration of Global and Local Predictions.
IEEE Transactions on Image Processing 27(8):4131–4144.
Kim, C.; Li, F.; and Rehg, J. M. 2018. Multi-object Tracking with
Neural Gating Using Bilinear LSTM. In Ferrari, V.; Hebert, M.;
Sminchisescu, C.; and Weiss, Y., eds., Computer Vision ECCV
2018, volume 11212. Cham: Springer International Publishing.
208–224.
Lee, N., and Kitani, K. M. 2016. Predicting wide receiver trajec-
tories in american football. In 2016 IEEE Winter Conference on
Applications of Computer Vision (WACV), 1–9. IEEE.
Mahapatra, P. R., and Mehrotra, K. 2000. Mixed coordinate track-
ing of generalized maneuvering targets using acceleration and jerk
models. IEEE Transactions on Aerospace and Electronic Systems
36(3):992–1000.
Nakazawa, S.-i.; Ishihara, T.; and Inooka, H. 2003. Real-time
algorithms for estimating jerk signals from noisy acceleration data.

International Journal of Applied Electromagnetics and Mechanics
18(1-3):149–163.
Vision-only egomotion estimation in 6dof using a sky compass |
Robotica | Cambridge Core.
Piergiovanni, A. J., and Ryoo, M. S. 2019. Representation Flow
for Action Recognition. 9945–9953.
Prez-Ortiz, J. A.; Gers, F. A.; Eck, D.; and Schmidhuber, J.
2003. Kalman filters improve LSTM network performance in prob-
lems unsolvable by traditional recurrent nets. Neural Networks
16(2):241–250.
Romero-Ramirez, F. J.; Muoz-Salinas, R.; and Medina-Carnicer,
R. 2018. Speeded up detection of squared fiducial markers. Image
and Vision Computing 76:38–47.
Sadeghian, A.; Alahi, A.; and Savarese, S. 2017. Tracking the Un-
trackable: Learning to Track Multiple Cues with Long-Term De-
pendencies. In 2017 IEEE International Conference on Computer
Vision (ICCV), 300–311. Venice: IEEE.
Sigal, L.; Balan, A. O.; and Black, M. J. 2010. HumanEva: Syn-
chronized Video and Motion Capture Dataset and Baseline Algo-
rithm for Evaluation of Articulated Human Motion. International
Journal of Computer Vision 87(1-2):4–27.
Sturm, J.; Engelhard, N.; Endres, F.; Burgard, W.; and Cremers, D.
2012. A benchmark for the evaluation of RGB-D SLAM systems.
In 2012 IEEE/RSJ International Conference on Intelligent Robots
and Systems, 573–580. Vilamoura-Algarve, Portugal: IEEE.
Xia, X.; Xiong, L.; Liu, W.; and Yu, Z. 2018. Automated Vehicle
Attitude and Lateral Velocity Estimation Using a 6-D IMU Aided
by Vehicle Dynamics. In 2018 IEEE Intelligent Vehicles Sympo-
sium (IV), 1563–1569.
Zamora, I.; Lopez, N. G.; Vilches, V. M.; and Cordero, A. H.
2016. Extending the OpenAI Gym for robotics: a toolkit for re-
inforcement learning using ROS and Gazebo. arXiv:1608.05742
[cs]. arXiv: 1608.05742.
Zhang, X.; Wei, Y.; Feng, J.; Yang, Y.; and Huang, T. S. 2018. Ad-
versarial Complementary Learning for Weakly Supervised Object
Localization. 1325–1334.
Zhu, A. Z.; Thakur, D.; zaslan, T.; Pfrommer, B.; Kumar, V.;
and Daniilidis, K. 2018. The Multivehicle Stereo Event Cam-
era Dataset: An Event Camera Dataset for 3d Perception. IEEE
Robotics and Automation Letters 3(3):2032–2039.

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 49



A Domain Independent Social Media Depression Detection Model

Sven Marnauzs
Department of Mathematics

Boise State University
svenmarnauzs@u.boisestate.edu

Jugal Kalita
Department of Computer Science

UC Colorado Springs
jkalita@uccs.edu

Abstract

Due to negative social stigmas surrounding mental
health disorders, a large portion of the affected popu-
lation are reluctant to seek help. In consequence, many
of those in need remain undiagnosed and uneducated
about their condition. Language contains information
on the author’s mental state and demographic, and has
been leveraged by NLP models that learn to predict each
one independently or jointly. With the advent of social
media, we have access to an unprecedented amount of
natural language data. However, these models require
large labeled data sets that can be very expensive and
time consuming to create. In addition, these data sets are
typically derived from a single domain such as Twitter,
Facebook, Reddit, Instagram, etc. As such, they are un-
able to generalize well to other mediums outside of their
domain. Focusing on the diagnosis of depression disor-
der, the present contribution aims to create a domain in-
dependent depression detection model that uses a novel
combination of deep learning, NLP, and machine learn-
ing techniques while using datasets much smaller than
those found in the literature.

Introduction
The World Health Organization (WHO) reports that mental
health disorders such as depression and anxiety are among
the largest contributors to global disability. These types of
disorders are detrimental to every aspect of an affected indi-
viduals health. Depression alone is estimated to affect more
than 300 million people worldwide. Yet, a large portion of
this population remains undiagnosed and reluctant to seek
help due to the negative social stigma surrounding such ac-
tions or time and financial limitations.
There has been a large push to use recent advancements in
Natural Language Processing (NLP) that can leverage so-
cial media data as a depression detection system (De Choud-
hury et al. 2013), (Coppersmith, Dredze, and Harman 2014),
(Coppersmith et al. 2015). There has also been work on us-
ing multitask learning to predict mental disorders (depres-
sion, PTSD, bipolar, etc.) and gender simultaneously in an
attempt to be able to use smaller datasets (Hovy, Mitchell,
and Benton 2017). More recently, there has been work to

Copyright c� 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

negate the affects of data imbalance in datasets created for
the depression detection task (Cong et al. 2018), (Gerych,
Agu, and Rundensteiner 2019).
However, previous studies have either only used data from
one type of domain or have data from multiple domains but
no way of fine tuning that data for new data sets. To the best
of our knowledge, there is not any work being done to create
a general depression detection system that can be fine tuned
to data outside of its domain. For example, a depression de-
tection classifier based on Facebook data may not classify
well on data taken from Twitter. In general, end-to-end deep
learning approaches are not feasible on small datasets.
In the present contribution, we propose a general depression
detection model. This model will take in labeled natural lan-
guage data provided by the user, feed it to various depres-
sion classifiers from different domains, and then use predic-
tions from those classifiers as features in a machine learning
model. Our hypothesis is that the machine learning model
will be able to determine which classifiers are able to best
diagnose depression in the new domain.

Related Work

Predicting Depression via Social Media

Using the CES-D (Center for Epidemiologic Studies De-
pression Scale) questionnaire, De Choudhury et al. (2013)
determined the depression level of 1,583 crowdsourced sub-
jects. At the end of the session, they asked each subject
if they would like to share their Twitter username. From
those that agreed, they created a database of 544 twitter user
names and their corresponding tweets, and then labeled each
user as depressed or not depressed based on their answers to
the CES-D questionnaire. The final database contained 171
users classified as depressed and 305 as not depressed. For
those classified as depressed, they only kept tweets from one
year prior to their onset or diagnosis date in an attempt to
create a model that can predict future episodes of depression.
They found that their SVM based model with 188 features
was able to classify depressed users with about 70 percent
accuracy. While their results were promising, their collec-
tion and feature extraction methods were very time consum-
ing and expensive.

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 50



Multitask Learning for Mental Health Conditions
with Limited Data
It has been shown that there can be a considerable perfor-
mance jump when transitioning from Single Task Learning
(STL) to MTL (Caruana 1993). Hovy, Mitchell, and Ben-
ton (2017) were the first to use deep-learning in the task of
mental disorder detection. In addition, they used a combi-
nation of automatic data collection from twitter and hand-
annotation to create their labeled database. While their meth-
ods may not be as concrete as De Choudhury’s, they were
certainly less time consuming. They developed neural MTL
models trained on twitter data for 8 mental condition pre-
diction tasks and 2 auxiliary prediction tasks (neurotypical-
ity, and gender). They found that their most complex MTL
models (ones that simultaneously trained the most tasks)
performed significantly better than independent STL models
when they had smaller amounts of data on certain conditions
such as bipolar disorder and PTSD. They theorize that when
they force the model to predict conditions which have large
amounts of data available, they significantly improve the
prediction accuracy of other similar conditions with small
amounts of available data.

X-A-BiLSTM: a Deep Learning Approach for
Depression Detection in Imbalanced Data
Deep learning approaches to the social media depression
detection task are hindered by imbalanced datasets. In an
attempt to lift this weight, Cong et al. (2018) use a novel
combination of traditional machine learning techniques and
deep-learning. To validate their proposed model, they used
the RSDD dataset (Yates, Cohan, and Goharian 2017). Lan-
guage data of each author in the training set was initially
feed into an XGBoost model that significantly reduced the
degree of imbalance in the dataset by weeding out nega-
tive samples. The positive predictions were then feed into
an attention Bi-LSTM deep-learning model to output the fi-
nal classes of positive and negative samples. Their proposed
model surpassed several other state-of-the-art deep-learning
models in the social media depression classification task.

Data
Data was collected from two social media domains. The first
is the RSDD dataset from Yates et al. (2017), which is com-
posed of public Reddit posts. The second is the CLPsych
2015 shared task Twitter dataset from Coppersmith et al.
(2015). Both datasets were created via a combination of au-
tomatic retrieval and hand annotated labeling similar to the
procedures of Coppersmith et al. (2014). Social media users
choose to publicly post statuses of their mental health for
a variety of reasons such as looking for support and sym-
pathy from their social network. Another common reason
to publicly report their diagnosis is to educate others about
their condition. Nevertheless, publicly available posts on be-
ing clinically diagnosed with depression provides us with an
opportunity to explore the language differences between de-
pressed and non-depressed users. As both the RSDD dataset
and the CLPsych 2015 shared task dataset use these pub-
licly available posts of diagnosis, their ground truth values

share a similar degree of reliability. This allows us to con-
duct a exploration of the differences and similarities in how
users communicate on their respective platforms. Our intu-
ition tells us that there should be a difference in the way that
depressed and non-depressed users use language. For exam-
ple, a good generalized model trained on domain A should
be able to classify users on domain B with a precision close
to that of a good model being tested and trained on solely on
B. The acquired datasets allow us to explore the correctness
of this intuition.
We also make use of age and gender labeled datasets pro-
vided by various 2017 PAN shared tasks (Potthast et al.
2017). These datasets are of the tweets from hundreds of
Twitter users, where each user is given a label for gender,
and then their respective age group (18-24, 25-34, 35-49,
50-XX). Since depression is slightly correlated with age and
gender, our intuition tells us that incorporating this informa-
tion into our model should increase its predictive accuracy.

Data preprocessing
In an attempt to remove the effect of domain specific text
patterns on our model, we take all data through various pre-
processing techniques. However, we still seek to capture as
much unique and quirky language from the users as possible,
so we make our best effort strike a balance between prepro-
cessing and leaving the data as is. We also must take into
account that our primary model is an n-gram character lan-
guage model (CLM). Therefore, by reducing the character
vocabulary of the text, we substantially reduce the complex-
ity of our model.

RSDD Reddit dataset As Reddit posts have essentially no
character limit, they are typically filled with special format-
ting such as newlines, tabs, links, etc. The first step was to re-
move these unnecessary gaps between sections of text. This
first step greatly reduced the complexity of our higher or-
der n-gram CLMs. Next, we substituted references to links,
usernames, and subreddits with special characters or just
simply removed them. It is possible that references to sub-
reddits could potentially help a model determine the classifi-
cation for a user. For example, depressed users may mention
r/depression more often than other users. However, to keep
our model as generalized as possible, we chose to remove
such references as they are not present in other social media
domains. Another decision we made was to change all text
to lowercase for the sake of simplicity.

CLPsych 2015 and PAN 2017 Twitter dataset Even
though Twitter has its own unique style when compared to
Reddit, most of the preprocessing steps were identical. We
remove links, usernames, newlines, tabs, and unnecessary
whitespace. Unique to twitter is the retweet type of post.
We removed all retweets as these tweets are not written by
the user. We chose to keep in standard punctuation, how-
ever these may need to be removed so that we can reduce
the complexity of our CLMs. At the order four CLM, we al-
ready had 106 four-grams, and we were not able to upscale

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 51



to a higher order due to a memory error. Due to complica-
tions, the PAN dataset was not filtered or processed in any
way.

Model Architecture
Baseline Model Social media is rampant with internet-
slang, misspelled words, niche text patterns, and obscure
references. As a simple solution to capture all of these nu-
ances, we employ n-gram character-level language models
with k-smoothing to score an aggregate of x tweets at a time,
where the scores indicate whether a user is depressed or not.
Our approach follows closely to the MIQ team approach in
CLPsych 2015 shared task competition; see Coppersmith et
al. (2015) for more details. Through this approach we exam-
ine how likely a sequence of characters is to be generated by
a depressed or non-depressed user. We begin by building an
n-gram character-level model for each condition based on
the training subset of our data. For each user in the test set,
we score an aggregate of x tweets based on its character-
level n-grams. Let Tx be the aggregate of x tweets for a
given user, D the CLM for depression, and D

0 the CLM for
control. Our scoring function f is thus

f(Tx) =

P
Tx

log p(cD)� log p(cD0)

|Tx|
where p(cD) is the probability of an n-gram character se-
quence appearing in model D, and p(cD0) is the probability
of an n-gram character sequence appearing in model D0. To
compute the final score for each individual user, we average
the scores in a sliding window of five x tweet aggregates at a
time. Once a score is obtained for each window, the median
of the set of window scores is used as the final score for the
user. Our model was essentially identical between training
and testing on the RSDD and CLPsych datasets. However,
for the RSDD data, we did not use a sliding window. The
predictive accuracy of our CLMs will serve as our cross-
domain baseline.

Improved model To improve upon the performance of
our baseline cross-domain model, we propose a model that
uses a combination of conventional machine learning, deep
learning, and multi-task learning to create an automatic
domain independent social media depression detector. We
use a deep-learning transformer model from Google’s Ten-
sor2Tensor library to pre-train age, gender, and depression
classifiers (Vaswani et al. 2018). To test our cross-domain
model, we use the RSDD dataset to train our depression clas-
sifier, and then test the model on our Twitter data. We use the
depression, gender, and age labels as semi-supervised fea-
tures in a Random Forest Classifier (RFC) model, where the
labels are produces by feeding in the Twitter data to each
pre-trained classifier. We show a generalized diagram of our
model in Figure (1), where C : [C1, C2, ..., Cn] is the set
of classifiers, n is the number of classifiers, a is the number
of authors in the local database, O : [C1,i, C2,i, ..., Cn,i] is
a n ⇥ a dimensional matrix that holds the outputs of each
classifier for author i where i ✏[1, 2, ..., a], and y is an ar-
ray that contains a label for each author (depressed or not
depressed).

Figure 1: Semi-supervised ML Model Flowchart

As can be seen in the above diagram, natural language
data from n Twitter authors is processed by the pre-trained
classifiers in C, and the outputs O will be used as values for
each author’s feature vector. This dataset of feature vectors
and corresponding y labels will then be split into training
and testing datasets used to train the RFC model.

Experiments
RSDD For the RSDD data, we experimented with one,
two, and three gram CLMs. We also experimented with
many different combinations of window and aggregate post
size. We found that we obtained the best results when com-
piling 20 (x = 20) posts and omitting the window approach
entirely. Filtered and unfiltered data were also trained and
tested on. Filtered data out-preformed unfiltered data in ev-
ery case.
We also trained a transformer model on the RSDD data, but
we did not conduct an in depth evaluation of this model. This
model was only used for generating semi-supervised depres-
sion labels of Twitter users in our CLPsych 2015 dataset.

CLPsych 2015 shared task Due to a smaller dataset size,
we were able to expand to a four order CLM in addition to
the lower orders. We also experimented with different com-
binations of window and aggregate post size, and found that
aggregating 20 posts together with a window size of 5 gave
us the best results. As with the RSDD experimentation, fil-
tered data out-preformed unfiltered in every case.
We train a transformer model on the CLPsych Twitter data
to compare its predictive accuracy against our cross-domain
model and our CLM model. The transformer model gave a
binary label to each post of a user. For the final score of
each user, we used the median of an array of 20 post sliding
window scores, where each window was scored as the ratio
of depressed posts to non-depressed posts. This experiment
was done to verify that the results of the transformer model
trained on a single domain were as good as or better than our
baseline model results.

Cross domain testing baseline The main objective of the
current contribution is to approve upon a baseline test on
how well a model trained on one social media domain will
fair when given data from a different domain. We experi-
mented with using the one, two, and three RSDD CLMs

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 52



to score Twitter users from the CLPsych 2015 shared task
dataset. As this kind of cross domain testing has not been
explored before, we use the result as a baseline test, and seek
to improve upon it.

Improved cross domain model To improve upon the
baseline, we use a RFC with features extracted from feeding
Twitter data into our pre-trained transformer model classi-
fiers. Each pre-trained classifier outputs a label for each post
of a user. We then use the sliding window approach (size 20)
to produce the final labels for gender, age, and depression for
each user in the Twitter dataset. This dataset was split into
training and testing, where the training set was used to train
the RFC model, and the testing set was used for validation
and baseline comparison tests.

Results

Baseline model results

Figure (1) shows the best results of training and testing a
CLM on the RSDD dataset. We found that taking the median
of 20 post aggregate scores that were scored by a second
order CLM trained and tested on filtered text gave us the
best results. The AUC of our model is 0.79.

Figure 2: The ROC curve for a second order CLM trained
and test on filtered Reddit data.

Figure (2) shows the best results of training and testing
a CLM on the CLPsych dataset. We found that taking the
median of window scores of size five gave us the best re-
sults, where each window took the mean of 20 post aggre-
gate scores that were scored by a second order CLM trained
and tested on filtered text. We found the average precision
was 0.65, and the AOC was 0.80 for our model.

Figure 3: The ROC curve for a order four CLM trained and
tested on filtered Twitter data.

Figure (3) shows how well our order three Reddit CLM
preformed on classifying twitter users. The parameters of
both models were identical to the models which gave us the
best results in their respective domains. The AUC and aver-
age precision of the Reddit based CLM was 0.67 and 0.55 re-
spectively. For comparison, the AUC and average precision
of the Twitter based CLM was 0.78 and 0.62 respectively.

Figure 4: A comparison of ROC curves for order three
CLMs trained on filtered Twitter data and Reddit data, and
then tested only on Twitter data.

Figure (4) shows a comparison between a n = 3 CLM
trained and tested on Twitter data, and a n = 3 CLM trained
on Reddit but tested on Twitter. For the Twitter CLM, we
obtained an AUC score of 0.78 with and average precision
of 0.63. The Reddit CLM gave us an AUC score of 0.63
with an average precision of 0.55. We were unable to upscale
to a higher-order CLM for the RSDD data due to various
complications. As such, we thought it fair to compare the 3-
gram RSDD CLM to the 3-gram CLPsych CLM instead of
the better performing 4-gram CLM.

Transformer/RFC model results
We explore the results of our "improved" models against the
baseline models. We used the best results from each model
type instead

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 53



Figure 5: A comparison between the transformer model and
n = 4 CLM trained and tested on the CLPsych 2015 Twitter
data.

Figure (5) shows the results of the n = 4 CLM and our
transformer model trained and tested on Twitter data. This
single domain experiment was conducted to verify that our
transformer model could perform as well as our baseline
model when trained on a single domain. The 4-gram CLM
had an AUC of 0.80 with an average precision of 0.65. Our
transformer model had an AUC of 0.83 with an average pre-
cision of 0.72

Figure 6: A comparison between our RFC model with semi-
supervised labels and a "vanilla" (only depression labels)
transformer model when tested on the CLPsych data. Both
models were never trained on any of the CLPsych data.

We explore the effect of adding age and gender informa-
tion to our model in Figure (6). Both models had an AUC
of 0.65. Our vanilla model gave us an average precision of
0.53, while our RFC model had an average precision of 0.52.

Discussion
The performance of our CLM models on Reddit and Twitter
data were surprisingly good (Figure (1) and (2)). We expect
that as we are able to increase the order of our CLMs we

will achieve better performance. As can be seen in Figure
(3), our Reddit base CLM model does not preform as well
as the Twitter based one. To have a fair comparison between
models, both models used third order CLMs. We attribute
the poor performance to the large differences in how Twitter
and Reddit operate as social media sites. One possible ex-
planation is that CLMs are not be able to pick up the true
sentiment of users posts. Another could be that we simply
did not take advantage of higher order CLMs. We expect
that as we are able to increase the order of both CLMs, the
gap between their performance will decrease. However, we
do not know if this gap will ever converge using just CLMs.
Nevertheless, we will use the CLM models as our baseline
performance.
The performance of Google’s transformer model trained and
tested on the CLPsych data set was good, but not as good as
we had hoped it would be, as it only slightly outperformed
our simple 4-gram CLM. However, we did not attempt to
use an aggregate training or scoring method. These meth-
ods significantly improved the performance of our CLMs.
Therefore, we expect that we would achieve a similar per-
formance boost for the transformer model as well.
Both the "vanilla" transformer model and our RFC model
(with age and gender labels) produced very similar results.
This came to our surprise, as we intuitively theorized that
incorporating this extra information into a model would in-
crease the cross-domain generalization, thus increasing the
accuracy once shown data from another domain. There are
multiple explanation for why our results were not satisfac-
tory. First, we did not pre-process the age and gender data
due to time constraints and complications. We also did not
do a through evaluation of how well the age and gender
models were performing on ground truth age and gender
labeled Twitter data. Going through these tasks and eval-
uations would likely improve the accuracy of our semi-
supervised labels for our RFC model. There is also a pos-
sibility that the RFC is not taking advantage of the gender
and age labels due to over-weighing the depression labels.

Future Work
Model exploration and fine-tuning, multi-task
learning, and extra features
First, our RFC may not be taking advantage of additional in-
formation. We should explore other models that will better
use this extra data. We will also attempt to fine-tune param-
eters of the RFC to see if it can make better use of all its
features. There is also a good chance that we can make our
transformer perform better across all tasks by fine-tuning pa-
rameters and learning how to train it better, as these are not
trivial tasks. For example, we will train a transformer model
on an aggregates of posts instead of individual ones. How-
ever, we are experiencing memory error when attempting to
do so. We will likely find a way to overcome this obstacle in
the near future, and when we do, we expect a large across-
the-board performance increase. Text CNNs for post clas-
sification are also a topic of interest (Kim 2014). We have
already begun initial experimentation using this approach.
The possibility of using multi-task learning for classifying

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 54



depressed users is very intriguing. We have proposed using
a text CNN network to pre-train on the gender and age data,
and then use those trained models to calculate vectors for
each sample in the CLPsych dataset. We would then train
another text CNN model on the CLPsych depression data
while incorporating the pre-calculated vectors. We have cre-
ated the groundwork for this approach, but we have yet to
fully implement it. We theorize that making our text CNN
model train on several tasks at once will increase the per-
formance across all tasks. It could also improve the cross-
domain compatibility of the model (i.e. perform good when
given data from other domains).
Finally, the addition of features in our RFC could help im-
prove the cross-domain performance of the model. Other
features considered are personality traits, the general emo-
tion of a users posts, and additional depression classifiers.
These addional depression classifiers could each have dif-
fernet scoring methods and models. For example, we could
use a combination of multi-task and single-task models us-
ing different parameters for training and scoring (i.e. differ-
ent window sizes).

Obtaining relevant datasets
For our model to work as planned, we must seek out ad-
ditional datasets other than RSDD and CLPsych 2015. We
have already obtained several Twitter datasets related to age
and gender tasks that were created for a shared task competi-
tions at the PAN workshops held annually at CLEF. We have
also obtained the DAIC-WOZ dataset which contains tran-
scribed interviews of subjects and their ground truth scores
of depression based on PHQ-8 questionnaires. Aside from
these datasets, there is possibility that we will want to incor-
porate a dataset from a third social media domain such as
Facebook. This would allow us to perform three-fold cross
validation of our cross-domain model. A three-fold cross
validation scheme would greatly increase the validity of our
model because using just two social media domains would
likely lead to over fitting our model.

Conclusion
Much work has been done to improve social media depres-
sion detection models. However, these models are trained
and tested on a single social media domain. As such, they
are likely unable to generalize well. We have begun to con-
firm our intuition by conducting a baseline test using n-gram
CLMs. We found that the baseline models performed poorly
when trained on Reddit data but subjected to Twitter data
for testing. We sought to improve upon this baseline by us-
ing a RFC with semi-supervised features extracted by feed-
ing Twitter data into transformer models pre-trained on de-
pression, gender, and age labeled datasets. While our initial
results are not satisfactory, there are many untraveled av-
enues to explore. We cannot yet conclude that our proposed

"improved" model will not perform better than those in the
literature when subjected to data from external domains.

References
Caruana, R. 1993. Multitask learning: A knowledge-based
source of inductive bias. In Proceedings of the Tenth Inter-
national Conference on Machine Learning, 41–48. Morgan
Kaufmann.
Cong, Q.; Feng, Z.; Li, F.; Xiang, Y.; Rao, G.; and Tao,
C. 2018. Xa-bilstm: a deep learning approach for de-
pression detection in imbalanced data. In 2018 IEEE In-
ternational Conference on Bioinformatics and Biomedicine
(BIBM), 1624–1627. IEEE.
Coppersmith, G.; Dredze, M.; Harman, C.; Hollingshead,
K.; and Mitchell, M. 2015. CLPsych 2015 Shared Task:
Depression and PTSD on Twitter. In Proceedings of the 2nd
Workshop on Computational Linguistics and Clinical Psy-
chology: From Linguistic Signal to Clinical Reality, 31–39.
Denver, Colorado: Association for Computational Linguis-
tics.
Coppersmith, G.; Dredze, M.; and Harman, C. 2014. Quan-
tifying mental health signals in twitter. In Proceedings of
the workshop on computational linguistics and clinical psy-
chology: From linguistic signal to clinical reality, 51–60.
De Choudhury, M.; Gamon, M.; Counts, S.; and Horvitz,
E. 2013. Predicting depression via social media. In Seventh
international AAAI conference on weblogs and social media.
Gerych, W.; Agu, E.; and Rundensteiner, E. 2019. Classify-
ing depression in imbalanced datasets using an autoencoder-
based anomaly detection approach. In 2019 IEEE 13th Inter-
national Conference on Semantic Computing (ICSC), 124–
127.
Hovy, D.; Mitchell, M.; and Benton, A. 2017. Multitask
Learning for Mental Health Conditions with Limited Social
Media Data. In EACL.
Kim, Y. 2014. Convolutional neural networks for sentence
classification. arXiv preprint arXiv:1408.5882.
Potthast, M.; Rangel, F.; Tschuggnall, M.; Stamatatos, E.;
Rosso, P.; and Stein, B. 2017. Overview of panâĂŹ17. In
International Conference of the Cross-Language Evaluation
Forum for European Languages, 275–290. Springer.
Vaswani, A.; Bengio, S.; Brevdo, E.; Chollet, F.; Gomez,
A. N.; Gouws, S.; Jones, L.; Kaiser, L.; Kalchbrenner,
N.; Parmar, N.; Sepassi, R.; Shazeer, N.; and Uszkoreit, J.
2018. Tensor2tensor for neural machine translation. CoRR
abs/1803.07416.
Yates, A.; Cohan, A.; and Goharian, N. 2017. Depression
and self-harm risk assessment in online forums. In Proceed-
ings of the 2017 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), 2958–2968. Associa-
tion for Computational Linguistics.

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 55



Solving Arithmetic Word Problems Automatically Using Transformer and
Unambiguous Representations

Kaden Griffith and Jugal Kalita
University of Colorado Colorado Springs

kadengriffith@gmail.com and jkalita@uccs.edu

Abstract

Constructing accurate and automatic solvers of math word
problems has proven to be quite challenging. Attempts using
machine learning have so far been trained on corpora specific
to math word problems to produce arithmetic expressions in
infix notation before answer computation. Neural networks
have struggled to generalize, even when trained on large and
diverse datasets. This paper outlines the use of Transformer
networks trained to translate simple math word questions
to equivalent mathematical expressions in infix, prefix, and
postfix notations. We use a pretraining approach to transla-
tion, followed by training on corpora specific to word prob-
lems, and compare results produced by a large number of neu-
ral configurations. We find that the use of the prefix notation
produces the best results, surpassing the state of the art.

Introduction
Solving a math word problem (MWP) starts with one or
more sentences describing a problem to be understood.
These sentences are processed to produce an arithmetic ex-
pression, which is evaluated to provide an answer. Recent
neural approaches to solving arithmetic word problems have
used various flavors of recurrent neural networks (RNN) as
well as reinforcement learning. Such methods have had dif-
ficulty achieving a high level of generalization. Often, they
can extract the relevant numbers, but misplace them in the
generated expressions. At other times, they have replaced
the numbers in the problem statement with arbitrary other
numbers when formulating corresponding math expressions.
The infix notation used requires pairs of parenthesis to be
balanced and also placed correctly, bracketing the right num-
bers. There have been problems with both of these require-
ments as well.

Figure 1: Misinterpretations of a MWP.
Question:
At the fair Adam bought 13 tickets. After riding the ferris
wheel he had 4 tickets left. If each ticket cost 9 dollars, how
much money did Adam spend riding the ferris wheel?
Some possible expressions that can be produced:
(13 - 4) * 9, 9 * 13 - 4, 5 * 13 - 4, 13 - 4 * 9,
13 - (4 * 9), (9 * 13 - 4)

Figure 1 gives examples of some infix representations that
a machine learning word problem solver can produce from
a simple word problem. Of the expressions shown, only the
first one is correct. We start with a hypothesis that the sole
use of the infix expression representation as a precursor to
solving such problems attributes to some of these problems
in automatic solvers. In modern application of math, we are
used to using infix notation, but the formulation of expres-
sions does not make this requirement.

We have also noticed that the actual numbers used in
MWPs vary widely from problem to problem. Real num-
bers can take any conceivable value, making it almost im-
possible for a neural network to learn good representations
for them. Thus, we hypothesize that replacing the numbers
in the problem statement with generic tags like hn1i, hn2i,
and hn3i and saving their values as a pre-processing step,
will not take away from the generality of the solution, but
will suppress the problem of fertility in number generation,
which leads to the introduction of numbers not present in the
question sentences, in the relevant solution.

Another hypothesis that forms the basis of our approach is
that a neural network which has been pre-trained on general
language knowledge will be better able to “understand” the
semantics of the problem to produce the correct arithmetic
expressions with the tags we use.

We use the Transformer model [Vaswani et al., 2017] to
solve arithmetic word problems as a particular case of ma-
chine translation from text to the language of mathematical
expressions. Transformers in various configurations have
become a staple of NLP in the past two years. Past neural
approaches did not treat this problem as pure translation like
we do but augmented the neural architectures with various
external modules such as parse trees or used deep reinforce-
ment learning. In this paper, we demonstrate that Trans-
formers can be used to solve MWPs successfully. We show
that our results outperform state-of-the-art results by [Wang
et al., 2018,Hosseini et al., 2014,Kushman et al., 2014,Roy,
Vieira, and Roth, 2015, Robaidek, Koncel-Kedziorski, and
Hajishirzi, 2018], which we use for comparison.

We organized our paper as follows. The second section
presents related work. Then we discuss our approach. We
follow by an analysis of experimental results and how they
compare to recent networks. We also discuss our successes
and shortcomings in this section. Finally, we share our con-

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 56



cluding thoughts and end with our direction to future work.

Related Work
Many past strategies to solve math word problems have uti-
lized rules and templates to match sentences to arithmetic
expressions. Some such approaches seemed to solve prob-
lems impressively within a narrow domain, but performed
poorly when out of domain, lacking generality that is nec-
essary to solve common questions [Bobrow, 1964, Bakman,
2007, Liguda and Pfeiffer, 2012, Shi et al., 2015]. Kush-
man et al. (2014) used feature extraction and template-based
categorization by representing equations as expression tree
forests and finding a near match. Such methods required
human intervention in the form of feature engineering and
development of templates and rules, which is not desirable
for expandability and adaptability. Hosseini et al. (2014)
performed statistical similarity analysis to obtain acceptable
results, but did not perform well with texts that were dissim-
ilar to training examples.

Existing approaches have used various forms of auxiliary
information. For example, Hosseini et al. (2014) used verb
categorization to identify important mathematical cues and
contexts. Mitra and Baral (2016) used predefined formulas
to assist in matching. Koncel-Kedziorski et al. (2015) parsed
the input sentences, enumerated all parses, and learned to
match, requiring expensive computations. Roy and Roth
(2017) performed searches for semantic trees over signifi-
cant computational spaces.

Some recent approaches have transitioned to using arti-
ficial neural networks. Semantic parsing of MWPs is a re-
cently developed strategy which takes advantage of RNN ar-
chitectures to parse math word problems directly into equa-
tions or expressions in a uniquely developed math-specific
language [Shi et al., 2015, Sun et al., 2019]. Systems us-
ing RNNs have shown promising results, but they have
had difficulties correctly learning balanced parenthesis, and
also, sometimes incorrectly choose numbers when gener-
ating equations. Most recently, Sun et al. (2019) used a
Bi-Directional LSTM architecture for math word problems.
Huang et al. (2018) used a deep reinforcement learning
model to achieve character placement in both seen and novel
equation templates. Wang et al. (2018) also used deep rein-
forcement learning to solve MWPs more comprehensively
than RNNs.

Approach
We view MWP solving as a sequence-to-sequence trans-
lation problem. Systems using RNNs have excelled in
sequence-to-sequence problems such as text translation and
question answering. The recent introduction of attention
mechanisms has improved the performance of RNN mod-
els. In particular, Vaswani et al. (2017) introduced the Trans-
former network, which uses stacks of attention layers instead
of recurrence. The use of Transformers in various configu-
rations has shown vastly improved results, achieving state-
of-the-art performance in many natural language processing
tasks.

Figure 2: Representations of a MWP.
Question:
At the fair Adam bought 13 tickets. After riding the ferris
wheel he had 4 tickets left. If each ticket cost 9 dollars, how
much money did Adam spend riding the ferris wheel?
Expression Tree:

Output:
Prefix: - 13 4 * 9
Postfix: 13 4 - 9 *
Infix: (13 - 4) * 9
Computed Answer:
81 dollars

We use several configurations of Transformer networks to
learn the prefix, postfix, and infix notations of each MWP
equation independently. Prefix and postfix representations
of equations do not contain parentheses, which has been a
source of unnecessary confusion in some approaches. Fig-
ure 2 shows the three notations for a problem. We expect that
the use of suitable training data, in particular, if the learned
target sequences are less likely to mislead or throw off a neu-
ral network, may help the learning of the model to be more
robust.

We train on standard datasets, which are readily available
and commonly used for our task. Our method considers
the translation of English text to simple algebraic expres-
sions, although the general approach can be used for other
tasks as well. After performing experiments by training di-
rectly on math word problem corpora, we perform a differ-
ent set of experiments by pretraining our network on general
language corpora. The success of pre-trained models such
as ELMo [Peters et al., 2018], GPT-2 [Budzianowski and
Vulić, 2019], and BERT [Devlin et al., 2018] for all man-
ners of natural language tasks, may encourage better learn-
ing of our system. However, in our case, the output is not
natural language, but algebraic expressions, and that is why
we were apprehensive at first. Our success in such hetero-
geneous translations opens up other possible usages of such
pre-trained networks.

Data

Four individual datasets are combined to create a super-
collection of MWPs that we call MWP-Data. The datasets
contain addition, subtraction, multiplication, and division
word problems. Questions in MWP-Data pair with equiv-
alent math equations.

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 57



1. AI2 [Hosseini et al., 2014]. AI2 is a collection of 395
problems. Each problem contains multiple numeric val-
ues, where some may not be relevant for answering the
question. These questions are addition and subtraction
problems.

2. CC [Roy and Roth, 2016]. The Common Core dataset
contains 2-step algebra word questions. The Cognitive
Computation Group gathered these questions. We use a
total of 600 unique MWPs from this set in training. This
included all of the set’s examples.

3. IL [Roy, Vieira, and Roth, 2015]. The Illinois dataset
contains 1-step algebra word questions. The Cognitive
Computation Group also compiled these questions. All of
562 MWPs were used in training from this set.

4. MAWPS [Koncel-Kedziorski et al., 2016]. MAWPS is a
relatively large collection of MWPs which are primarily
from other MWP datasets. We use 2,373 of 3,915 MWPs
from this set. The problems not used from this set were
more complex problems requiring systems of equations to
derive a final solution.

We take a randomly sampled 95% of MWP-Data for train-
ing. Networks test on the 5% of withheld examples from
each MWP dataset. Training and testing are repeated three
times, and reported results are an average between the three
outcomes.

Representation Conversion
We take a simple approach when converting infix expres-
sions found in MWP-Data to the other two representations.
We strip out the equals sign and variable representing the
solved value in each equation. Then two stacks are filled;
one with operators found in the equation and the other with
the operands. From these stacks, we form a binary tree struc-
ture. A given expression tree resembles the one depicted in
Figure 2. Traversing an expression tree in pre-order results
in a prefix conversion. Post-order traversal gives us a postfix
expression. We pre-process the original infix expression as
well, removing the variable, and equals sign. Three versions
of our training and testing data are used to account for each
conversion. By training on different representations, we ex-
pect our test results to change.

Pretraining
We pre-train half of our networks to endow them with a good
foundational knowledge of English. Pretraining models on
significant-sized language corpora has been a common ap-
proach recently. We explore the pretraining approach using
a general English corpus because our MWPs resemble the
English language. For this task, we use the IMDb Movie Re-
views dataset [Maas et al., 2011]. This set contains 314,041
unique sentences. Since movie reviewers wrote this data, it
is a reference to natural language not necessarily related to
arithmetic. Although we pre-train, we do so using a rela-
tively small and specialized corpus that is readily available,
to investigate the efficacy of pretraining for math word prob-
lems. Training on a much bigger and general corpus like

Wikipedia may make the language model stronger, but we
leave this for future work.

We compare pre-trained models to non-pre-trained mod-
els to observe performance differences. Our pre-trained
models are trained in an unsupervised fashion to improve
the encodings of our fine-tuned solvers.

Method: Training and Testing
The input sequence is a natural language specification of an
arithmetic word problem. The MWP questions and equa-
tions have been encoded using the subword text encoder
provided by the TensorFlow library. The ideal output will
be an expression in prefix, infix, or postfix notation, which
then can be manipulated further and solved to obtain a final
answer.

Many of the examples in MWP-Data contain unique num-
bers. Rare terms are adverse for generalization since many
of these numbers occur only once in the dataset. The net-
works may have difficulty dealing with the presence of
unique values. As a precaution to this issue, our networks
do not consider any relevant numbers during training. Be-
fore the networks attempt any translation, we pre-process
each question and expression in MWP-Data by a number
mapping algorithm. This algorithm replaces each numeric
value with a corresponding identifier (e.g., hn1i, hn2i, etc.),
and remembers the necessary mapping. We find that this ap-
proach significantly improves how networks interpret each
question. When translating, the numbers in the original
question are tagged and cached. From the encoded English
and tags, a predicted sequence resembling an expression
presents itself as output. Since each network’s learned out-
put resembles something like hn1i+ hn2i ⇤ hn3i, we use the
cached tag mapping to replace the tags with the correspond-
ing numbers and return a final mathematical expression.

Three representation models are trained and tested sepa-
rately: Prefix-Transformer, Postfix-Transformer, and Infix-
Transformer. For each experiment, we use representation
specific Transformer architectures. Each model uses the
Adam optimizer with beta1 = 0.95 and beta2 = 0.99 with
a standard epsilon of 1e�9. The learning rate is reduced
automatically in each training session as the loss decreases.
Throughout the training, each model respects a 10% dropout
rate. We employ a batch size of 128 for all training. The
networks are trained on a machine using 1 Nvidia 1080 Ti
graphics processing unit (GPU).

We compare medium-sized, small, and minimal networks
to show if network size can be reduced to increase training
and testing efficiency while retaining high accuracy. Net-
works over six layers have shown to be non-effective for this
task. We later discuss the issues that arose when attempting
such configurations. We tried many configurations of our
network models, but report results with only three configu-
rations of Transformers.

- Transformer Type 1: This network is a small to medium
sized network consisting of 4 Transformer layers. Each
layer utilizes 8 attention heads with a depth of 512 and a
feed-forward depth of 1024.

- Transformer Type 2: The second model is small in size,

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 58



using 2 Transformer layers. The layers utilize 8 attention
heads with a depth of 256 and a feed-forward depth of
1024.

- Transformer Type 3: The third type of model is minimal,
using only 1 Transformer layer. This network utilizes 8
attention heads with a depth of 256 and a feed-forward
depth of 512.

Objective Function We calculate the loss in training
according to the mean categorical cross-entropy formula.
Evaluation between the possible translation classes (all vo-
cabulary subword tokens) and the produced class (predicted
token) is the metric of performance here. During each evalu-
ation, target terms are masked, predicted, and then compared
to the masked (known) value. This process is applied to ev-
ery determined subword in a translation and then the model
loss is adjusted according to the mean of the translation ac-
curacy.

loss =
IX

i=1

1

J

JX

j=1

✓
�

KX

k=1

targetj,k ⇤ log
�
p(j 2 k)

�◆
(1)

where K = |Translation Classes|, J = |Translation|,
and I is the number of examples.

Experiment 1: Representation Many of the problems
encountered by prior approaches seem to be encouraged by
the use of infix notation. In this experiment, we compare
translation BLEU-2 scores. Traditionally, a BLEU score is
a metric of translation quality. Our presented BLEU scores
represent an average of scores a given model received over
each of the target test sets. We use a standard bi-gram weight
to show how accurate translations are within a window of
two adjacent terms. After testing translations, we calculate
an average BLEU-2 per test set, which is related to the suc-
cess over that data. The scores for each dataset are then
averaged for the presented value.

modelavg =
1

N

NX

n=1

BLEUavgn (2)

where N is the number of test datasets, which is 4.

Experiment 2: State-of-the-art This experiment com-
pares our networks to recent previous work. We count
a given test score by a simple “correct versus incorrect”
method. The answer to an expression directly ties to all
of the translation terms being correct, which is why we do
not consider partial precision. We compare average accura-
cies over 3 test trials on different randomly sampled test sets
from each MWP dataset. This calculation more accurately
depicts the generalization of our networks.

Effect of Pretraining We also explore the effect of lan-
guage pretraining. Half of the models are pre-trained on
unlabelled English data. This training occurs over 30 itera-
tions to install an advanced level of language understanding

before training on MWP-Data. The same Transformer archi-
tectures are also trained solely on MWP-Data. Each model
is trained on MWP-Data for 300 iterations before testing.

modelavg =
1

R

RX

r=1

✓
1

N

NX

n=1

C 2 n

P 2 n

◆
(3)

where R is the number of test repetitions, which is 3; N
is the number of test datasets, which is 4; P is the number
of MWPs, and C is the number of correct equation transla-
tions.

Results
We now present the results of our various experiments. We
compare the three representations of target equations and
three architectures of the Transformer model in each test.
Not all past work has used the data we use here, but we
attempt to communicate our capabilities compared to past
neural approaches to the best of our ability.

Table 1: BLEU-2 comparison for Experiment 1.
(Type) Model Average
Pre-trained

(1) Prefix-Transformer 94.03
(1) Postfix-Transformer 92.71
(1) Infix-Transformer 93.59
(2) Prefix-Transformer 93.51
(2) Postfix-Transformer 92.92
(2) Infix-Transformer 93.34
(3) Prefix-Transformer 93.39
(3) Postfix-Transformer 92.84
(3) Infix-Transformer 93.14
Non-pre-trained

(1) Prefix-Transformer 94.95
(1) Postfix-Transformer 87.55
(1) Infix-Transformer 93.56
(2) Prefix-Transformer 95.57
(2) Postfix-Transformer 94.01
(2) Infix-Transformer 93.39
(3) Prefix-Transformer 95.13
(3) Postfix-Transformer 94.03
(3) Infix-Transformer 93.36

Results of Experiment 1 are given in Table 1. By using
BLEU scores, we assess the translation capability of each
network. This test displays how networks understand differ-
ent math representations to a character summary level. We
compare by average BLEU-2 accuracy among our tests in
the Average column of Table 1 to communicate these trans-
lation differences.

From our results, prefix representation of our target lan-
guage performs better than the generally used infix notation.
The best performing network was a non-pre-trained type 2
prefix Transformer arrangement. Infix notation was better
understood than postfix in the smaller models.

The reasoning behind why similar representations provide
different results is somewhat unclear. One hypothesis to ex-
plain this is related to the way attention in the systems is

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 59



accumulated. A network is more likely to produce a suc-
cessful translation if the operators, determined by language,
are close to one another. Numbers and operators appear
partially grouped in both prefix and postfix representations,
which could be the cause of observable enhanced learning.

Table 2 provides detailed results of Experiment 2. Results
by [Wang et al., 2018,Hosseini et al., 2014,Roy, Vieira, and
Roth, 2015, Robaidek, Koncel-Kedziorski, and Hajishirzi,
2018] are sparse but indicate the scale of success in past ap-
proaches. Prefix, postfix, and infix representations in Table
2 shows that network capabilities are changed by how teach-
able the target data is.

While our networks fell short of Wang et al., 2018 AI2
testing accuracy, we present state-of-the-art results for the
remaining three datasets. The type 2 prefix Transformer re-
ceived the highest testing average of 86.73% accurate. Com-
paratively, the Transformer network performs well and re-
quires little computation time.

Our attempt of language pre-training fell short of expecta-
tions. It is odd to see that more examples of English does not
improve the understanding of MWPs. Use of advanced em-
bedding techniques tried by Robaidek, Koncel-Kedziorski,
and Hajishirzi, 2018 also seem to limit MWP coherence. In
future attempts, using a more general corpora of language
could help grow semantic ability.

Analysis
All of the network configurations used were very successful
for our task. To display the capability of our most successful
model (type 2 prefix Transformer), we present some outputs
of the network in Figure 3.

Even when incorrect, the syntax of math expressions was
strongly held. For the majority of questions, our translators
were able to determine operators based solely on the context
of language.

Larger networks in tandem with pre-training have been
shown, in many cases, to relate semantics of natural lan-
guage better. Our pre-training was unsuccessful in improv-
ing accuracy, even when applied to networks larger than
those reported. We may need to use more general language,
or pre-train on very math specific texts to be successful. Our
results support our thesis of infix limitation.

Error Analysis Our system, while performing above stan-
dard, could still apply some improvements. One issue orig-
inates from the algorithmic pre-processing of our questions
and expressions. In Figure 4 we show an example of one
such issue. The excerpt comes from a type 3 non-pre-trained
Transformer test. The example shows that identifier hn1i
was seemingly overlooked after translation. The issue is at-
tributed to the identifier algorithm only considering num-
bers in the problem. Observe in the question that the word
“eight” is the number we expect to relate to hn2i. Our iden-
tifying algorithm could be improved by considering such
number words and performing conversion to a numerical
value. If our algorithm performed as expected, the identi-
fier hn1i would be related with 4 (the first occurring number
in the question) and hn2i with 8 (the converted number word
appearing second in the question).

Figure 3: Successful prefix translations.
AI2
A spaceship traveled 0.5 light-year from earth to planet x
and 0.1 light-year from planet x to planet y. Then it traveled
0.1 light-year from planet y back to Earth. How many light-
years did the spaceship travel in all?
Translation Produced:

+ + 0.5 0.1 0.1

CC
There were 16 friends playing a video game online when 7
players quit. If each player left had 8 lives, how many lives
did they have total?
Translation Produced:

* 8 - 16 7

IL
Lisa flew 256 miles at 32 miles per hour. How long did Lisa
fly?
Translation Produced:

/ 256 32

MAWPS
Debby’s class is going on a field trip to the zoo. If each
van can hold 4 people and there are 2 students and 6 adults
going, how many vans will they need?
Translation Produced:

/ + 2 6 4

Figure 4: Number replacement errors.
Question (MAWPS)
Melanie is selling 4 gumballs for eight cents each. How
much money can Melanie get from selling the gumballs?
Correct Translation (Infix)
4 * 8
Hypothesized Translation
4 + < n1 >

The overall translation was incorrect whether or not our
algorithm was successful, but it is essential to analyze prob-
lems like these that result in future improvements. Had
all questions been tagged correctly, our performance would
have likely improved.

One approach not tried here is the use of alphabetical as-
signment for numerics. Instead of hn1i, hn2i, we could
easily use hai, hbi; which, reduces the chance of predic-
tion error by 25%. In addition, better and more accurate re-
placement techniques exist which could further improve our
work, but for our initiative, we wish to focus less on algo-
rithm improvement and more on neural performance. In an
ideal application of a MWP solver, no pre-processing would
be necessary, but our approach significantly changed the fo-
cus of the system from rare occuring numbers to important
language cues found in problem text.

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 60



Table 2: Test results for Experiment 2 (* denotes averages on present values only).
(Type) Model AI2 CC IL MAWPS Average
Hosseini et al., 2014 77.7 – – – ⇤77.7
Kushman et al., 2014 64.0 73.7 2.3 – ⇤46.7
Roy, Vieira, and Roth, 2015 – – 52.7 – ⇤52.7
Robaidek et al. 2018 – – – 62.8 ⇤62.8
Wang et al., 2018 (MathDQN) 78.5 75.5 73.3 – ⇤75.4
Pre-trained

(1) Prefix-Transformer 70.2 91.1 95.2 82.4 84.7
(1) Postfix-Transformer 66.7 90.0 92.9 82.7 83.1
(1) Infix-Transformer 70.2 93.3 96.4 82.4 85.6
(2) Prefix-Transformer 66.7 91.1 96.4 82.1 84.1
(2) Postfix-Transformer 68.4 93.3 94.1 82.4 84.6
(2) Infix-Transformer 70.2 94.4 94.1 84.4 85.8
(3) Prefix-Transformer 68.4 91.1 95.2 82.4 84.3
(3) Postfix-Transformer 66.7 92.2 94.1 82.1 83.8
(3) Infix-Transformer 68.4 93.3 95.2 84.1 85.2
Non-pre-trained

(1) Prefix-Transformer 71.9 94.4 95.2 83.4 86.3
(1) Postfix-Transformer 63.2 81.1 92.9 75.7 78.2
(1) Infix-Transformer 68.4 97.8 92.9 83.4 85.6
(2) Prefix-Transformer 73.7 94.4 94.1 84.7 86.7
(2) Postfix-Transformer 68.4 94.4 94.1 83.1 85.0
(2) Infix-Transformer 68.4 95.6 94.1 83.1 85.3
(3) Prefix-Transformer 73.7 93.3 95.2 84.1 86.6
(3) Postfix-Transformer 68.4 94.4 94.1 82.4 84.8
(3) Infix-Transformer 66.7 95.6 94.1 81.7 84.5

Figure 5: Failure of large Transformer.
Question (IL)
There are 4 cards. 3 cards more are added. How many are
there total?
Correct Translation (Infix)
4 + 3
Hypothesized Translation
hhhhh ... hhhhh

Others have had great success with large Transformer ar-
chitectures, especially when tasked with translation. We ob-
serve problems that result in an unusable arrangement when
attempting networks of large sizes. Figure 5 demonstrates
issues of attempted large networks. This occurance was
common among pre-trained and non-pre-trained models of
various dimensions above 6 Transformer layers.

Conclusions and Future Work
We show that alternative math representations provide more
stability in automatic solvers. Use of Transformer networks
improves automatic math word problem solving. We make
improvements through very accessible means with thought-
ful data and training of general natural language. Auto-
matically solving math word problems will undoubtedly
be very useful for entities such as question answering ser-
vices. Transformers with unambiguous intermediate repre-
sentations produce state-of-the-art arithmetic word problem

translations.
Datasets such as Dolphin18k Huang et al., 2016, consist-

ing of web-answered questions from Yahoo! Answers, re-
quire more variety of questions to be understood by the sys-
tem. We hope to expand to step-based calculations, more
complex concepts such as probabilities or calculus, and push
the limits of machine understanding of classical mathemat-
ics.

Extensive pre-training over a large corpora of language
has extended the capabilities of many neural approaches.
Networks like BERT Devlin et al., 2018, trained exten-
sively on data from Wikipedia, perform relatively better in
many contexts. Alternatively, creating intentional bias to-
ward words which determine a specific operation (i.e., +, *,
-, /) could increase the connection between natural language
and mathematics.

With a hope to further advance this area of research and
heighten interests, all of the code and data used is available
on GitHub.

Acknowledgement

The National Science Foundation supports the work re-
ported in this paper under Grant No. 1659788. Any
opinions, findings any conclusions or recommendations ex-
pressed in this work are those of the author(s) and do not
necessarily reflect the views of the National Science Foun-
dation.

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 61



References
Bakman, Y. 2007. Robust understanding of word problems
with extraneous information. arXiv preprint math/0701393.
Bobrow, D. G. 1964. Natural language input for a computer

problem solving system. Ph.D. Dissertation, Massachusetts
Institute Of Technology.
Budzianowski, P., and Vulić, I. 2019. Hello, it’s gpt-2–
how can i help you? towards the use of pretrained language
models for task-oriented dialogue systems. arXiv preprint

arXiv:1907.05774.
Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2018.
Bert: Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805.
Hosseini, M. J.; Hajishirzi, H.; Etzioni, O.; and Kushman,
N. 2014. Learning to solve arithmetic word problems with
verb categorization. In Proceedings of the 2014 Confer-

ence on Empirical Methods in Natural Language Processing

(EMNLP), 523–533.
Huang, D.; Shi, S.; Lin, C.-Y.; Yin, J.; and Ma, W.-Y. 2016.
How well do computers solve math word problems? large-
scale dataset construction and evaluation. In Proceedings of

the 54th Annual Meeting of the Association for Computa-

tional Linguistics (Volume 1: Long Papers), volume 1, 887–
896.
Huang, D.; Liu, J.; Lin, C.-Y.; and Yin, J. 2018. Neural
math word problem solver with reinforcement learning. In
Proceedings of the 27th International Conference on Com-

putational Linguistics, 213–223. Santa Fe, New Mexico,
USA: Association for Computational Linguistics.
Koncel-Kedziorski, R.; Hajishirzi, H.; Sabharwal, A.; Et-
zioni, O.; and Ang, S. D. 2015. Parsing algebraic word
problems into equations. Transactions of the Association

for Computational Linguistics 3:585–597.
Koncel-Kedziorski, R.; Roy, S.; Amini, A.; Kushman, N.;
and Hajishirzi, H. 2016. Mawps: A math word problem
repository. In Proceedings of the 2016 Conference of the

North American Chapter of the Association for Computa-

tional Linguistics: Human Language Technologies, 1152–
1157.
Kushman, N.; Artzi, Y.; Zettlemoyer, L.; and Barzilay, R.
2014. Learning to automatically solve algebra word prob-
lems. In Proceedings of the 52nd Annual Meeting of the

Association for Computational Linguistics (Volume 1: Long

Papers), volume 1, 271–281.
Liguda, C., and Pfeiffer, T. 2012. Modeling math word

problems with augmented semantic networks. In Interna-

tional Conference on Application of Natural Language to

Information Systems, 247–252. Springer.
Maas, A. L.; Daly, R. E.; Pham, P. T.; Huang, D.; Ng,
A. Y.; and Potts, C. 2011. Learning word vectors for sen-
timent analysis. In Proceedings of the 49th Annual Meeting

of the Association for Computational Linguistics: Human

Language Technologies, 142–150. Portland, Oregon, USA:
Association for Computational Linguistics.
Mitra, A., and Baral, C. 2016. Learning to use formulas
to solve simple arithmetic problems. In Proceedings of the

54th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), volume 1, 2144–2153.
Peters, M. E.; Neumann, M.; Iyyer, M.; Gardner, M.; Clark,
C.; Lee, K.; and Zettlemoyer, L. 2018. Deep contextualized
word representations. arXiv preprint arXiv:1802.05365.
Robaidek, B.; Koncel-Kedziorski, R.; and Hajishirzi, H.
2018. Data-driven methods for solving algebra word prob-
lems. arXiv preprint arXiv:1804.10718.
Roy, S., and Roth, D. 2016. Solving general arithmetic word
problems. arXiv preprint arXiv:1608.01413.
Roy, S., and Roth, D. 2017. Unit dependency graph and its
application to arithmetic word problem solving. In Thirty-

First AAAI Conference on Artificial Intelligence.
Roy, S.; Vieira, T.; and Roth, D. 2015. Reasoning about
quantities in natural language. Transactions of the Associa-

tion for Computational Linguistics 3:1–13.
Shi, S.; Wang, Y.; Lin, C.-Y.; Liu, X.; and Rui, Y. 2015.
Automatically solving number word problems by semantic
parsing and reasoning. In Proceedings of the 2015 Confer-

ence on Empirical Methods in Natural Language Process-

ing, 1132–1142.
Sun, R.; Zhao, Y.; Zhang, Q.; Ding, K.; Wang, S.; and Wei,
C. 2019. A neural semantic parser for math problems incor-
porating multi-sentence information. ACM Transactions on

Asian and Low-Resource Language Information Processing

(TALLIP) 18(4):37.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. At-
tention is all you need. In Advances in neural information

processing systems, 5998–6008.
Wang, L.; Zhang, D.; Gao, L.; Song, J.; Guo, L.; and Shen,
H. T. 2018. Mathdqn: Solving arithmetic word problems via
deep reinforcement learning. In Thirty-Second AAAI Con-

ference on Artificial Intelligence.

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 62



Adversarial Analysis of Natural Language Inference Systems

Tiffany Chien

University of California, Berkeley
Jugal Kalita

University of Colorado, Colorado Springs

Abstract

The release of large natural language inference (NLI)
datasets like SNLI and MNLI have led to rapid
development and improvement of completely neu-
ral systems for the task. Most recently, heavily pre-
trained, Transformer-based models like BERT and MT-
DNN have reached near-human performance on these
datasets. However, these standard datasets have been
shown to contain many annotation artifacts: features
that correlate strongly with the correct label in train-
ing (and testing), but are clearly non-generalizable (e.g.
sentence length, word overlap). This allows models to
shortcut understanding using simple fallible heuristics,
and still perform well on the test set. So it is no surprise
that many adversarial (challenge) datasets have been
created that cause models trained on standard datasets
to fail dramatically. Although extra training on this data
generally improves model performance on just that type
of data, transferring that learning to unseen examples is
still partial at best. This work evaluates the failures of
state-of-the-art models on existing adversarial datasets
that test different linguistic phenomena, and find that
even though the models perform similarly on MNLI,
they differ greatly in their robustness to these attacks.
In particular, we find syntax-related attacks to be par-
ticularly effective across all models, so we provide a
fine-grained analysis and comparison of model perfor-
mance on those examples. We draw conclusions about
the value of model size and multi-task learning (beyond
comparing their standard test set performance), and pro-
vide suggestions for more effective training data.

Introduction

In recent years, deep learning models have achieved and
continued to improve on state-of-the-art results on many
NLP tasks. However, models that perform extremely well on
standard datasets have been shown to be rather brittle and
easily tricked. In particular, the idea of adversarial exam-
ples or attacks was brought over from computer vision, and
various methods of slightly perturbing inputs have been de-
veloped that cause models to fail catastrophically (McCoy,
Pavlick, and Linzen 2019; Glockner, Shwartz, and Goldberg
2018; Naik et al. 2018).

Adversarial attacks need to be studied from a security per-
spective for the deployment of real-world systems, but they
are also a powerful lens into interpretability of black-box

deep learning systems. By examining the failures of state-
of-the-art models, we can learn a lot about what they are
really learning, which may give us insights into improving
their robustness and general performance.

One philosophical generalization about the cause of fail-
ure for all current NLP systems is a lack of deep, ‘real’ un-
derstanding of language. We will focus on the task of nat-
ural language inference (NLI), which is a basic natural lan-
guage understanding task thought to be a key stepping stone
to higher-level understanding tasks like question answering
and summarization. The setup of the NLI task is to deter-
mine whether a hypothesis is true given a premise, answer-
ing entailment, contradiction, or neutral.

The current top-performing systems for NLI rely on pre-
training on generic tasks, followed by fine-tuning on a
labeled task-specific dataset. This is in contrast to older
(before late 2018) models, which were primarily task-
specific architectures trained primarily on task-specific la-
beled datasets. In addition, the Transformer architecture
(Vaswani et al. 2017) now outperforms the previously dom-
inating recurrent architectures (LSTM and variants). We
want to analyze what kinds of adversarial attacks are still
potent on highly-acclaimed recent NLP models like BERT
(Devlin et al. 2018) and MT-DNN (Liu et al. 2019).

Our contributions are as follows:
• We test models on a variety of existing adversarial

datasets, with a high level of granularity to different lin-
guistic phenomena. Results indicate that the pre-trained
models are remarkably good at lexical meaning, while
struggling most with logic and syntactic phenomena.

• We focus in on the syntax-focused dataset created by Mc-
Coy, Pavlick, and Linzen. We look closely at the 30 sub-
cases, and analyze the effects of model size (base vs. large
size) and multi-task learning (MT-DNN vs. BERT). We
also examine what subcases all models fail at.

• We experiment with fine-tuning the models with (flat-
tened) dependency parses as input (with no adjustments
to architecture or data pre-processing). We find that this
does improves performance on some, but not all, subcases
that rely on the hierarchical structure of sentences.

• Lastly, we investigate MNLI’s biases by analyzing perfor-
mance after different amounts of fine-tuning (more and
more overfitting) on MNLI.

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 63



Related Work

This work joins a growing movement in NLP to go beyond
improving test set metrics to more deeply analyze model
learning and performance (Belinkov and Glass 2019). This
genre of work believes in the value of interpretability, both
to build safer practical systems, and just to find fruitful di-
rections for improving raw model performance.

Liu, Schwartz, and Smith (2019) use a metaphor of inoc-
ulation to disentangle the blame for adversarial vulnerability
between training data and model architecture. They expose a
small part of the challenge dataset to the model during train-
ing, and re-test its evaluation performance on the original
test set and the challenge dataset.

1. If the model still fails the challenge dataset, the weakness
probably lies in its design/architecture or training process.

2. If the model can now succeed at the challenge dataset
(without sacrificing performance on the original dataset),
then the original dataset is at fault.

3. If the model does better on the challenge dataset but worse
on the original dataset, the challenge dataset is somehow
not representative of the phenomenon it was trying to
test, for example having annotation artifacts or being very
skewed to a particular label.

Unfortunately, even if adversarial training does improve
model performance on that particular dataset, it is funda-
mentally impossible to devise and train on all possible lin-
guistic phenomena. The transferability of adversarial robust-
ness to new kinds of examples has been tested by some of the
creators of adversarial datasets, by withholding some exam-
ple generation methods while training on others. Nie, Wang,
and Bansal (2018) find that knowledge of each of their rule-
based templates was almost completely non-transferable to
others. In fact, training on some specific templates caused
overfitting and hurt overall robustness. McCoy, Pavlick, and
Linzen (2019) find more mixed results, with some cases of
successful transfer.

Many standard datasets for different tasks have been
shown to have blatant annotation artifacts, allowing models
to learn features that are strong in the training (and testing)
data, but that have nothing to do with actually performing the
task. Gururangan et al. (2018) find many of these artifacts in
standard NLI datasets (SNLI and MNLI). For example, neu-

tral hypotheses tend to be longer in length, because an easy
way to generate a hypothesis that isn’t necessarily entailed
by the premise is to add extra details. Meanwhile, strong
negation words like nobody, no, never are strong indica-
tors of contradiction. With these artifacts in mind, they split
the data into “hard” and “easy” versions, and model perfor-
mance decreased by about 15% on the hard test set. These
findings suggest that it is not the models’ faults for failing
on adversarial examples, given that there exist easier ways
to get high accuracy than truly understanding anything. But
it also means that current evaluation metrics greatly overes-
timate models’ abilities and understanding.

Models

The two new models that we study gain most of their power
from pre-training on a generic language task with a huge
unlabeled dataset. They achieve state-of-the-art performance
on a variety of language understanding tasks.

1. BERT (Devlin et al. 2018) pre-trains on a bidirectional
word-masking language modelling task, in addition to
sentence pair prediction, i.e. whether the second sentence
is likely to directly follow the first.

2. MT-DNN (Liu et al. 2019) builds on BERT by performing
multi-task learning on the nine GLUE (General Language
Understanding Evaluation) benchmark tasks (Wang et al.
2018), after BERT’s pre-training.

BERT is based on the Transformer architecture (Vaswani et
al. 2017), a non-recurrent, purely attention-based architec-
ture. BERT has a base version (12 Transformer layers), and
a large version (24 layers). We trained base and large ver-
sions of both BERT and MT-DNN. These models are fine-
tuned on MNLI starting from publicly available pre-trained
checkpoints.

We compare with an older recurrent model, ESIM (En-
hanced Sequential Inference Model) (Chen et al. 2016). It
is NLI-task-specific and only trained on MNLI, with no
huge pre-training. It uses a bidrectional LSTM to encode the
premise and hypothesis sentences, and uses attention across
those representations.

We also considered another model, Syntactic TreeLSTM
(S-TLSTM), which is identical to ESIM except it uses a
TreeLSTM that takes a dependency parse as input (Chen et
al. 2016). This model may provide a useful comparison to
BERT because its explicit use of the hierarchical structure of
language is the exact opposite model design direction from
extensive unsupervised pre-training. However, various stud-
ies suggest that the BERT architecture does in fact learn hi-
erarchical structure: Goldberg (2019) found that BERT per-
formed remarkably well when fine-tuned for external syn-
tactic classification tasks, and Jawahar, Sagot, and Seddah
(2019) showed that different layers of BERT learned struc-
tural representations of language at different abstraction lev-
els. McCoy, Pavlick, and Linzen (2019) test a different tree-
based model (SPINN (Bowman et al. 2016)) on their ad-
versarial dataset, and find that it outperforms ESIM, but not
BERT. Considering all this, and the fact that there is cur-
rently no tree-based model that comes close to outperform-
ing BERT and variants on standard datasets, we decided not
to test S-TLSTM, despite its philosophical appeal.

Overall Results and Analysis

First, for reference, we provide the accuracies on the
matched MNLI dev set for the models we trained (and
tested) in Table 1. BERT-large results do not quite match
published results, but we had limited hardware and did not
carefully tune hyperparameters. The BERT-based models all
perform comparably, and even ESIM does respectably.

Let us now analyze the performance of the selected mod-
els on the adversarial datasets (also called challenge sets,
stress tests). We discuss the first two briefly and then focus

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 64



Model Accuracy (%)
ESIM 76.80
BERT base 84.17
BERT large 85.84

MT-DNN base 84.20
MT-DNN large 86.69

Table 1: Overall MNLI Results

on the last one (McCoy, Pavlick, and Linzen 2019) because
it is the most interesting in terms of actually distinguishing
the strengths of the better-performing models.

Glockner, Shwartz, and Goldberg (2018) This dataset is
created by modifying SNLI examples with single word re-
placements of different lexical relations, based on WordNet.
It tests lexical inferences and relatively simple world knowl-
edge. They test a model called KIM (Knowledge-based In-
ference Model) (Chen et al. 2016), which builds on ESIM
to explicitly incorporate knowledge from WordNet in a va-
riety of ways, including in architecture additions. However,
the BERT-based models still significantly outperform KIM.
This could be due to model architecture, but is most likely
a result of their extensive pretraining on a huge diverse cor-
pus. There is not a big difference between model sizes, or
between MT-DNN and BERT. This suggests that lexical se-
mantics is more basic and low-level, so learning it does not
need so many layers of abstraction, or multi-task learning
(see Table 2).

Model Accuracy (%)
ESIM* 65.6
KIM* 83.5
BERT base 92.2
BERT large 94.2

MT-DNN base 92.9
MT-DNN large 94.8

Table 2: Single Word Replacement Attacks from (Glockner,
Shwartz, and Goldberg 2018). ESIM and KIM results from
original paper.

Naik et al. (2018) This dataset is composed of a variety of
tests motivated by a manual examination and categorization
of 100 mistakes made by the best performing model at the
time (Nie and Bansal 2017). The categories are antonyms,
word overlap (append “and true is true”), negation words
(append “and false is not true”), length mismatch (append
“and true is true” 5 times), and spelling errors. Antonyms
and Spelling are “competence” tests, while the rest are “dis-
traction” tests. The examples are generated by modifying ex-
amples from MNLI. We report accuracy averaged over all
categories in Table .

BERTlarge and MT-DNNlarge do best. Overall model
performance trends the same as performance on MNLI, but

Model Accuracy (%)
ESIM 68.39
BERT base 74.30
BERT large 77.21

MT-DNN base 73.73
MT-DNN large 77.14

differences are not huge. Furthermore, when we examined
performance on specific categories, all models had about
the same pattern of relative performance on different cate-
gories of tests, i.e. they have the same relative successes and
failures. This consistency and generally similar performance
indicates in this case that the dataset is not well-targeted
enough for really interesting insight. In addition, compared
to McCoy, Pavlick, and Linzen (2019) (below), the way that
examples are generated is more artificial, and maybe less
meaningful. Of course, a robust NLI system still should not
be defeated by this kind of attack, i.e. be able to determine
irrelevant information, including tautologies, and this test
shows that even the best models do not have this capabil-
ity mastered properly.

McCoy, Pavlick, and Linzen (2019) They hypothesize
that models utilize shallow, fallible syntactic heuristics to
achieve accuracy on MNLI, instead of “real” understand-
ing. The dataset consists of examples generated from manu-
ally created templates that break these heuristics. They have
three categories of heuristics (each is a special case of the
one before).

1. Lexical overlap: Model is likely to answer entailment if
the premise and hypothesis share a lot of words.
Would trick bag-of-words (no word order) models.

2. Subsequence: The hypothesis is a contiguous string of
words from the premise.
The ball by the bed rolled. 9 The bed rolled.

Could confuse sequence models too.
3. Constituent: The hypothesis is a syntactic constituent in

the premise.
If the boys slept, they would not eat. 9 The boys slept.

Could confuse models that know about syntax.
All three heuristics involve the model thinking the answer is
entailment when it is not, i.e. the non-entailment examples
are the ones that contradict the heuristic. So the extreme im-
balance in model performance between entailment and non-
entailment examples is strong evidence that the models do
indeed rely on the hypothesized heuristics (Table 3 vs. 4).

Entailment word overlap subseq constituent
ESIM 96.52 98.46 94.48
BERTbase 97.20 99.52 99.04
BERTlarge 90.48 99.48 96.70
MT-DNNbase 97.22 99.98 99.22
MT-DNNlarge 96.06 99.54 99.14

Table 3: Accuracy on examples labeled ‘entailment’

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 65



Non-entailment word overlap subseq constituent
ESIM 1.56 4.88 3.32
BERTbase 54.68 9.46 4.88
BERTlarge 83.44 31.38 44.72

MT-DNNbase 72.96 5.66 16.50
MT-DNNlarge 88.08 31.24 22.88

Table 4: Accuracy on examples labeled ‘non-entailment’

All the BERT-based models do significantly better than
the LSTM-based ESIM in most categories, as we see in Ta-
ble 4. But BERTlarge and MT-DNNlarge do vastly better
than all others, a difference that was not nearly as apparent
in any of the other datasets we tested. In combination with
the granularity in the manually created templates, these huge
differences in performance indicate that this dataset more
directly probes and reveals the strengths and weaknesses of
different models.

The success of BERTlarge and MT-DNNlarge suggests
that structural/syntactic information is learned more deeply
by a larger model with more layers and parameters to work
with (in contrast to lexical semantics (Glockner, Shwartz,
and Goldberg, above)). BERTlarge also has lower accuracy
on the entailment examples, also indicating that it is less
prone to blindly following the heuristics.

MT-DNNbase (which is built on BERTbase and is there-
fore of comparable size) does significantly better than
BERTbase in some categories, indicating the value of multi-
task learning (specifically on language understanding tasks).

Fine-grained Model Comparison

Comparison of BERTbase and BERTlarge

BERTlarge performs better than or equal to BERTbase (at
worst -1%) on all fifteen non-entailment subcases. Some
templates saw particularly large improvement, such as mod-
ifying clauses:

• Relative clauses that modify nouns (+42.4%)
The artists that supported the senators shouted. 9 The

senators shouted.

• Prepositional phrase modifiers (+38%)
The managers next to the professors performed. 9 The

professors performed.

Understanding modifying clauses requires understanding
the mechanics of compositional semantics (probably uti-
lizing some kind of hierarchical syntax), which is a basic
but crucial step in language understanding. So BERT-large’s
performance over BERT-base on these examples is evidence
of significantly deeper understanding.

Another area of improvement is the lexical meanings of
special subclasses of verbs and adverbs.

• Non-truth verbs with clause complements (+60.4%)
The tourists said that the lawyer saw the secretary. 9 The

lawyer saw the secretary.

This template uses a variety of verbs, all of which suggest
but do not entail their complements.

• Modal adverbs (+26.7%)
Maybe the scientist admired the lawyers. 9 The scientist

admired the lawyers.

Similarly, passive voice is a special syntactic phenomenon
that BERT-large improves on, but still has trouble with.
• Passive voice (3.6% ! 29.8%)

The managers were advised by the athlete. 9 The man-

agers advised the athlete.

BERTbase and BERTlarge were trained (pre-training and
fine-tuning) on the same data, so the difference in the rich-
ness of their learning must reside only in the doubled num-
ber of layers in BERTlarge. These performance improve-
ments are evidence that more layers is necessary space for
learning all the different special cases of language.

There are also some partially learned special cases, such
as the meaning of “if” and related (logical implication).
• 76.6% ! 98.7%: Unless the professor danced, the stu-

dent waited. 9 The professor danced.

• both 0%: Unless the bankers called the professor,

the lawyers shouted. 9 The lawyers shouted.

Meanwhile, all models fail to understand the logical
meaning of disjunction (0-2%).
• The actor helped the lawyers, or the managers stopped

the author. 9 The actor helped the lawyers.

Logic is a very important component of inference as an un-
derstanding task, but understandably difficult for statistical
models to learn properly, because it is in some sense not
probabilistic, in addition to being dependent on exact mean-
ings of single function words. Many traditional inference
systems relied primarily on formal logic machinery, and
finding a way to incorporate that into new models seems like
a promising direction. Designing and training neural net-
works that parse and understand formal, symbolic logic is a
pretty well-studied problem (Evans et al. 2018), and it is cer-
tainly known theoretically that general neural networks can
represent arbitrary nonlinear logical relations. The difficulty
is getting natural language models to actually care enough
about logic during training to use it correctly for a spe-
cific task. Many different approaches have been explored re-
cently, including but not limited to modifying the loss func-
tion to encourage logical consistency (Minervini and Riedel
2018), rule distillation in a teacher-student network (Hu et
al. 2016), and indirect supervision using probabilitic logic
(Wang and Poon 2018). To our knowledge, these have not
yet been incorporated into state-of-the-art models, but they
show promising results on the baseline models tested, espe-
cially in lower-resource scenarios.

All of these special cases are almost certainly encoun-
tered in BERT’s huge pre-training corpus, but that unsuper-
vised stage does not necessarily teach the model how to use
that information towards performing inference. This is why
larger and larger pre-training may not be the most effective
or at least efficient way to achieve language understanding.

Some of the subsequence templates are still a struggle for
all models, including large BERT and MT-DNN (<10%):
• The manager knew the athlete mentioned the actor 9

The manager knew the athlete.

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 66



Heuristic Syntactic subcategory MT-
DNN
large

BERT
large

MT-
DNN
base

BERT
base

ESIM BERT
large UP

MT-
DNN
base PO

Lexical
Overlap

subject/object swap 0.999 0.994 0.935 0.729 0 0.988 0.936
preposition 0.934 0.979 0.794 0.745 0.004 0.960 0.889
relative clause 0.912 0.928 0.699 0.504 0.069 0.930 0.837
passive 0.625 0.298 0.432 0.036 0 0.214 0.505
conjunction 0.934 0.973 0.788 0.720 0.005 0.943 0.711

Subseq

NP/S 0.042 0.003 0 0.016 0.058 0.004 0.003
PP on subject 0.668 0.673 0.168 0.293 0.001 0.786 0.533
relative clause on subject 0.749 0.698 0.082 0.133 0.087 0.863 0.347
past participle 0.006 0.049 0.013 0.018 0.050 0.032 0.008
NP/Z 0.097 0.146 0.020 0.013 0.047 0.217 0.172

Constituent

embedded under if 0.703 0.987 0.369 0.767 0.137 0.907 0.387
after if clause 0.001 0 0 0 0 0 0.010
embedded under verb 0.342 0.903 0.252 0.299 0 0.546 0.146
disjunction 0.005 0 0.001 0.001 0.029 0.008 0.002
adverb 0.093 0.346 0.203 0.079 0 0.083 0.036

Table 5: Results for non-entailment subcases. Each row corresponds to a syntactic phenomenon. BERT large UP: trained on
unparsed then parsed; MT DNN-base PO: trained on parsed only

• When the students fought the secretary ran. 9 The stu-

dents fought the secretary.

These templates are in the spirit of garden path sentences,
where local syntactic ambiguity causes a sequential reading
of a sentence to lead to an incorrect interpretation. This kind
of sentence has been studied extensively in cognitive sci-
ence, specifically language processing, as human readers are
first misled and then must backtrack to reanalyze the compo-
sition of the sentence to understand it properly (Ferreira and
Henderson 1991; Osterhout, Holcomb, and Swinney 1994).
Goldberg (2019) shows that BERT performs well on com-
plex subject-verb agreement tasks, even without any fine-
tuning, indicating that the pre-trained model already has the
ability to correctly parse this kind of sentence. So the model
somehow knows about syntax but does not know how to use
it towards the task of inference, a teaching failure that can
only be blamed on the inference-task-specific fine-tuning.
MNLI probably has a low occurrence of complex syntax,
but perhaps more importantly, the complete syntactic infor-
mation is rarely necessary to perform the task. Nevertheless,
an ability to utilize challenging syntax is an important gen-
eralizable skill, because it indicates deep, principled under-
standing of language.

Comparison of BERT and MT-DNN

Even though MT-DNNlarge performs better on MNLI
than BERTlarge, BERT beats MT-DNN on more sub-
cases in this dataset. In particular, MT-DNNlarge struggles
much more with subcases that test special lexical mean-
ings that prevent entailment (number is difference between
MT-DNNlarge and BERTlarge):

1. conditionals: if, unless, whether or not (28.4%)

2. ‘belief’ verbs: believed, thought, hoped (56.1%)

3. uncertainty adverbs: hopefully, maybe, probably (25.3%)

The only subcase that MT-DNNlarge is significantly better
at is the passive voice (+32.7%).

MT-DNN is trained starting with a pre-trained BERT
and then fine-tuning on the 9 language understanding
tasks in the GLUE benchmark (before fine-tuning again
on MNLI). So if MT-DNN performs worse than a BERT
model of the same size, this fine-tuning caused it to forget

some knowledge that it had before. This would happen if the
datasets being fine-tuned on do not explicitly test that knowl-
edge, teaching the model to care less about the information
from these words. Considering that most of the GLUE tasks
are not straight NLI tasks, it is somewhat unsurprising that
the model forgot how these words affect entailment.

Parses as Input

Considering that syntactic phenomena are one of the mod-
els’ weaknesses, we conduct an experiment of simply pass-
ing the flattened binary parses as the input “sentences”. We
use the automatically generated parses that come with MNLI
and the adversarial dataset. We test on the dataset from Mc-
Coy, Pavlick, and Linzen (2019).
We try two fine-tuning regimens:

1. Fine tune on original (unparsed) MNLI, then fine-tune
again on the same data, parsed (labeled UP in Table 5).

2. Only fine-tune on parsed MNLI (no other inference-
specific fine-tuning) (labeled PO in Table 5).

We find that it is rather difficult to get the different models
to train well. Some had loss that never converged, some got
near 0% on all non-entailment subcases. The only reason-
able parsed models are BERTlarge under the first regimen
(UP), and MT-DNNbase under the second (PO). It is likely
that these difficulties could be overcome with some system-
atic hyperparameter tuning, but we see substantial consis-
tency (in model performance on the adversarial dataset) be-
tween the two successes, so do not think it would be very in-

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 67



Type Sentence 1 Sentence 2
NP/S The manager knew the tourists supported the author. The manager knew the tourists.
NP/Z Since the judge stopped the author contacted the managers. The judge stopped the author.
past participle The scientist presented in the school stopped the artists. The scientist presented in the school.
after if clause Unless the scientists introduced the presidents, the athletes rec-

ommended the senator.
The athletes recommended the senator.

Table 6: Non-entailed cases where BERTlarge does very poorly: Sentence 1 does not entail Sentence 2.

sightful to test more. But the fact that the models responded
so differently to fine-tuning suggests that the models have
significantly different ‘knowledge states’ in terms of what
they learned about how to solve tasks, i.e. they ended up in
different local optima after pre-training. This idea deserves
more analysis, because the whole point of huge pre-training
is to learn maximally transferable and general representa-
tions of language. Thus, how to guide models towards these
ideal local optima (and away from overfitting) is a very im-
portant and difficult question.

The fact that any model is able to learn what to do
with parses is already surprising, given that none of their
pre-training is parsed. Evaluating on the parses of MNLI
(matched dev set), BERTlarge achieves 82% accuracy (com-
pare to 86% unparsed), and MT-DNNbase gets 84% (equal
to unparsed).

These are the six subcases that saw a 10% or greater
change in accuracy between parsed and unparsed inputs.
Numbers are percent change from unparsed to parsed
(BERTlarge, MT-DNNbase).
Parsing does better on:
• Modifiers on subject

The managers next to the professors performed. 9 The

professors performed. (+11.3, +36.5)
The artists that supported the senators shouted. 9 The

senators shouted. (+16.5, +26.5)
• NP/Z (+7.1, +15.2)

Since the athlete hid the secretaries introduced the presi-

dent. 9 The athlete hid the secretaries.

The parsed models still only achieve 21.7% and 17.2%
accuracy, but this is still some improvement.

• Conjunction (+22.2, +1.8 (unparsed MT-DNNbase al-
ready gets 90.8))
The tourists and senators admired the athletes ! The

tourists admired the athletes.

This is an entailment template, so BERTlarge’s lower
accuracy actually indicates less heuristic reliance, and
parsed improvement from 64.4 ! 86.6 really indicates
better understanding (while MT-DNNbase’s performance
could just be using the heuristic).

Parsing does worse on:
• Embedded clause under non-truth verb (-35.7, -10.6)

The lawyers believed that the tourists shouted. 9 The

tourists shouted.

• Adverbs indicating uncertainty (-26.3, -16.7)
Hopefully the presidents introduced the doctors 9 The

presidents introduced the doctors.

Of this small set of significant changes, it can be said that
the parsed inputs helped the model with syntactic, hierarchi-
cal examples, and hurt it on specific lexical semantics. This
is a surprisingly intuitive result: the model shifted its focus
more to syntax!

However, these are the only subcases that changed sig-
nificantly, out of 30, suggesting either that the parses don’t
encode that much useful information, or (more likely) that
the fine-tuning didn’t teach the model how to use the ex-
tra information. For example, maybe BERTlarge (trained on
unparsed then the exact same data parsed) just learned to
ignore parentheses.

Furthermore, the subcases which had score close to 0 for
the unparsed model basically did not see any improvement.
These obstinate cases are given in Table 6. Most of these
cases are tests of syntactic phenomena, so parsed data cer-
tainly contains useful information, but again, the fine-tuning
is somehow not enough to teach the model how to use it.

We do not think that parsing is necessarily a preprocessing
step that should be incorporated into future models/systems,
because it takes extra computational and annotated data re-
sources. But this experiment does show that without induced
biases, BERT’s massive, generic pre-training does not cap-
ture some basic rule-like principles.

Overfitting to MNLI

Models learn and use fallible heuristics only because it
works on their training datasets; in other words, they are
overfit to their training data, MNLI. We analyze this pro-
cess by evaluating the model after different amounts of
fine-tuning on MNLI. We perform this experiment on
MT-DNNlarge, the best performer on MNLI, and gauge
overfitting by evaluating on the adversarial dataset from Mc-
Coy, Pavlick, and Linzen (non-entailment subcases).

Epoch # 1 2 3
matched MNLI dev set 85.66 86.69 86.59
McCoy non-entailment 44.09 47.40 42.49

Table 7: Accuracy (%) for MT-DNNlarge fine-tuned on
MNLI for varying numbers of epochs, and then evaluated
on the dataset from McCoy, Pavlick, and Linzen.

The model trains very quickly, reaching 1% away from
max dev accuracy after only one epoch of fine-tuning, and
decreasing slightly on dev accuracy by the third epoch. This
is a claimed benefit of multi-task learning: the model is more
flexible to learning different tasks quickly.

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 68



From epoch 2 to 3, MNLI dev performance decreases by
only 0.1%, but according to performance on the adversarial
dataset, the model is relying significantly more on heuristics,
revealing a more overfit state. Looking at specific subcases,
the epoch-3 model differs by more than 10% in 6 subcases,
split very similarly to what happened with parsed inputs:

• Improves at lexical semantics: ‘belief’ verbs (believed,
thought) (+11.8%) and uncertainty adverbs (hopefully,
maybe) (+24.3%)

• Gets worse at structural/syntactic phenomena: passive
voice (-24.4%), conjunction (-12.4%), and subject mod-
ifiers (PP (-15.6%), relative clauses (-19.1%))

Interestingly, the subcases that more MNLI fine-tuning helps
are exactly the same as the ones that BERTlarge beats
MT-DNNlarge on. This strongly suggests that the purpose
of these words is emphasized in MNLI: MT-DNN forgets
about it while fine-tuning on other GLUE tasks, and more
fine-tuning on MNLI makes it re-learn it.

On the other hand, the subcases that more fine-tuning
hurts are all structural/syntax-focused, indicating that MNLI
is biased against actually utilizing complex syntactic phe-
nomena in a way that affects entailment (supporting the syn-

tactic heuristic hypothesis of McCoy, Pavlick, and Linzen).
Creating feasibly-sized training datasets with “no biases”

is impossible. Here we find some subtle examples in MNLI,
emphasizing the sensitivity of these models to pick up on
any useful signal. NLI is a very broad task, making it hard
to define what a natural or representative input distribution
would be, so dataset should depend on desired abilities and
applications.

Conclusion

In this work, we use adversarial and challenge datasets to
probe and analyze the failures of current state-of-the-art nat-
ural language inference models, comparing BERT and MT-
DNN models of different sizes. Evaluating on these datasets
distinguishes the actual understanding capabilities of the dif-
ferent models better than simply their performance on MNLI
(the large dataset they were trained on). Our analysis is very
fine-grained, targeting many specific linguistic phenomena.
We find various improvements from larger model size and
multi-task learning. We find that the most difficult exam-
ples for the best models are logic or syntax-based, includ-
ing propositional logic and garden-path sentences. We ex-
periment with passing parses as input to the out-of-the-box
pre-trained models, and find that it does provide some im-
provement in examples that require understanding syntax,
demonstrating the value of syntactic induced biases. We an-
alyze what overfitting to MNLI looks like, and reveal some
biases/artifacts in the dataset.

Some may argue that testing NLI systems on artificially
challenging datasets is unfair and not useful, because it is
not representative of their performance on naturalistic, real-
world data. But even if the data humans naturally produce is
not so difficult (because humans also are lazy and use heuris-
tics), the difference is that we always can parse sentences
correctly, utilizing rules and principles. And we intuitively

know that ability is crucial to robust, trustworthy, and real

language understanding.

Acknowledgement

The work reported in this paper is supported by the Na-
tional Science Foundation under Grant No. 1659788. Any
opinions, findings and conclusions or recommendations ex-
pressed in this work are those of the author(s) and do not
necessarily reflect the views of the National Science Foun-
dation.

References

Belinkov, Y., and Glass, J. 2019. Analysis Methods in Neu-
ral Language Processing: A Survey. Transactions of the As-

sociation for Computational Linguistics 7:49–72.
Bowman, S. R.; Gauthier, J.; Rastogi, A.; Gupta, R.; Man-
ning, C. D.; and Potts, C. 2016. A Fast Unified Model
for Parsing and Sentence Understanding. arXiv:1603.06021

[cs]. arXiv: 1603.06021.
Chen, Q.; Zhu, X.; Ling, Z.; Wei, S.; Jiang, H.; and Inkpen,
D. 2016. Enhanced LSTM for Natural Language Inference.
arXiv:1609.06038 [cs]. arXiv: 1609.06038.
Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2018.
BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. arXiv:1810.04805 [cs]. arXiv:
1810.04805.
Evans, R.; Saxton, D.; Amos, D.; Kohli, P.; and Grefenstette,
E. 2018. Can Neural Networks Understand Logical Entail-
ment? arXiv:1802.08535 [cs]. arXiv: 1802.08535.
Ferreira, F., and Henderson, J. M. 1991. Recovery from
misanalyses of garden-path sentences. Journal of Memory

and Language 30(6):725–745.
Glockner, M.; Shwartz, V.; and Goldberg, Y. 2018. Breaking
NLI Systems with Sentences that Require Simple Lexical
Inferences. In Proceedings of the 56th Annual Meeting of

the Association for Computational Linguistics (Volume 2:

Short Papers), 650–655. Melbourne, Australia: Association
for Computational Linguistics.
Goldberg, Y. 2019. Assessing BERT’s Syntactic Abilities.
arXiv:1901.05287 [cs]. arXiv: 1901.05287.
Gururangan, S.; Swayamdipta, S.; Levy, O.; Schwartz, R.;
Bowman, S. R.; and Smith, N. A. 2018. Annotation Artifacts
in Natural Language Inference Data. arXiv:1803.02324

[cs]. arXiv: 1803.02324.
Hu, Z.; Ma, X.; Liu, Z.; Hovy, E.; and Xing, E. 2016. Har-
nessing Deep Neural Networks with Logic Rules. In Pro-

ceedings of the 54th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers), 2410–
2420. Berlin, Germany: Association for Computational Lin-
guistics.
Jawahar, G.; Sagot, B.; and Seddah, D. 2019. What Does
BERT Learn about the Structure of Language? In Proceed-

ings of the 57th Conference of the Association for Computa-

tional Linguistics, 3651–3657. Florence, Italy: Association
for Computational Linguistics.

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 69



Liu, X.; He, P.; Chen, W.; and Gao, J. 2019. Multi-Task
Deep Neural Networks for Natural Language Understand-
ing. arXiv:1901.11504 [cs]. arXiv: 1901.11504.
Liu, N. F.; Schwartz, R.; and Smith, N. A. 2019. Inocu-
lation by Fine-Tuning: A Method for Analyzing Challenge
Datasets. arXiv:1904.02668 [cs]. arXiv: 1904.02668.
McCoy, T.; Pavlick, E.; and Linzen, T. 2019. Right for the
Wrong Reasons: Diagnosing Syntactic Heuristics in Natu-
ral Language Inference. In Proceedings of the 57th Con-

ference of the Association for Computational Linguistics,
3428–3448. Florence, Italy: Association for Computational
Linguistics.
Minervini, P., and Riedel, S. 2018. Adversarially Reg-
ularising Neural NLI Models to Integrate Logical Back-
ground Knowledge. arXiv:1808.08609 [cs, stat]. arXiv:
1808.08609.
Naik, A.; Ravichander, A.; Sadeh, N.; Rose, C.; and Neu-
big, G. 2018. Stress Test Evaluation for Natural Language
Inference. arXiv:1806.00692 [cs]. arXiv: 1806.00692.
Nie, Y., and Bansal, M. 2017. Shortcut-Stacked Sentence
Encoders for Multi-Domain Inference. In Proceedings of the

2nd Workshop on Evaluating Vector Space Representations

for NLP, 41–45. Copenhagen, Denmark: Association for

Computational Linguistics.
Nie, Y.; Wang, Y.; and Bansal, M. 2018. Ana-
lyzing Compositionality-Sensitivity of NLI Models.
arXiv:1811.07033 [cs]. arXiv: 1811.07033.
Osterhout, L.; Holcomb, P. J.; and Swinney, D. A. 1994.
Brain potentials elicited by garden-path sentences: Evidence
of the application of verb information during parsing. Jour-

nal of Experimental Psychology: Learning, Memory, and

Cognition 20(4):786–803.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2017. At-
tention Is All You Need. arXiv:1706.03762 [cs]. arXiv:
1706.03762.
Wang, H., and Poon, H. 2018. Deep Probabilistic Logic: A
Unifying Framework for Indirect Supervision. In Proceed-

ings of the 2018 Conference on Empirical Methods in Nat-

ural Language Processing, 1891–1902. Brussels, Belgium:
Association for Computational Linguistics.
Wang, A.; Singh, A.; Michael, J.; Hill, F.; Levy, O.; and
Bowman, S. R. 2018. GLUE: A Multi-Task Benchmark
and Analysis Platform for Natural Language Understanding.
arXiv:1804.07461 [cs]. arXiv: 1804.07461.

REU Symposium on Machine Learning 

University of Colorado, Colorado Springs 70



Author Index 
Bena, Brendan…………………………………………………………………………………………………9 
Boult, Terrence………………………………………………………………………………………..…….42 
Chien, Tiffany………………….………………………………………………………………………………63 
Conley, Andrew………………..………………………………………………………………………….…17 
Dhamija, Akshay………………………………………………………………………………………….…42 
Frederick, Joshua……………………………………………………………………………………..…….22 
Griffith, Kaden………………..………………………………………………………………………………56 
Hagen, Guy…………………………………………………………………………………..……………29,35 
Kalita, Jugal…………………………………………………………………………………1,9,17,50,56,63 
Leo, Justin……………..………………………………………………………………..…..………………….1 
Marnauzs, Sven……………………………………………………….…………………………………..…50 
Minnerath, Clare……………………………………………………….……………………………………35 
Rao, Sonia….………………………………………………………………………………………..………..29 
Schwan, Jonathan…………..…………………………………………………………………….………..42 
Ventura, Jonathan…………..………………………………………………………………….…22,29,35 


	01Cover
	Blank
	02Preface
	Blank
	03TableOfContents
	Blank
	04FinalPresentationSchedule
	05ProposalPresentationSchedule
	06MidtermPresentationSchedule
	11Leo
	12Bena
	Introduction
	Related Work
	Approach
	Poem Emotion Scoring
	GPT Architecture
	Text Generation and Sampling

	Experiments and Results
	Datasets and Resources

	Evaluation
	Coh-Metrix

	Conclusion & Future Work
	Acknowledgement

	13Conley
	14Frederick
	Introduction
	Previous Works
	Motivation

	Implementation
	Contrastive Divergence
	Hamiltonian Monte Carlo
	Model Configuration

	Evaluation
	Issues and Improvements

	Conclusion

	15Rao
	16Minnerath
	17Schwan
	18Maranuzs
	19Griffith
	20Chien
	30AuthorIndex

