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Abstract

Deep learning models have excelled in solving many
difficult problems in Natural Language Processing
(NLP), but it has been demonstrated that such models
are susceptible to extensive vulnerabilities. There are at-
tacks that can be concealed, and therefore are difficult
to protect against. This problem is exacerbated by the
use of public datasets that typically are not manually
inspected before use. Some work has moved towards
defending against these attacks during the training and
testing phases of NLP models. In this paper, we offer
a solution to this vulnerability by using random pertur-
bations such as spell checking, synonym substitutions,
and drop words to defend NLP models against adversar-
ial attacks. Our Random Perturbations Defense and In-
creased Randomness Defense methods are successful in
returning attacked models to similar accuracy of models
before attacks. The original accuracy of the model used
in this work is 80% for sentiment classification. After
undergoing attacks, the accuracy drops to an accuracy
between 0% and 44%. After applying our defense, the
accuracy of the model is returned to the original accu-
racy within statistical significance.

1 Introduction

Deep learning models have excelled in solving difficult
problems in many machine learning tasks, including Nat-
ural Language Processing (NLP) (Zhang, Zhao, and Le-
Cun 2015; Kim 2014; Devlin et al. 2019). However, re-
search has discovered that inputs can be modified to cause
deep learning models to produce incorrect results and pre-
dictions (Szegedy et al. 2014). Models in computer vision
are vulnerable to these attacks (Goodfellow, Shlens, and
Szegedy 2015), and studies have found that models in the
NLP domain are also vulnerable (Kuleshov et al. 2018;
Gao et al. 2018; Garg and Ramakrishnan 2020). One use
of these adversarial attacks is to test and verify the robust-
ness of NLP models. While adversarial training (Goodfel-
low, Shlens, and Szegedy 2015) was first developed in com-
puter vision, efforts are being made to provide centralized
resources for NLP adversarial training and data augmenta-
tion (Morris et al. 2020).

With the potential for adversarial attacks, there comes
the need for prevention and protection. There are three
main categories of defense methods: identification, recon-

struction, and prevention (Goldblum et al. 2020). Identifi-
cation methods rely on detecting either poisoned data or
the poisoned model (Chen et al. 2019). While reconstruc-
tion methods actively work to repair the model after train-
ing (Zhu et al. 2020), prevention methods rely on input pre-
processing, majority voting, and other techniques to miti-
gate adversarial attacks (Goldblum et al. 2020; Alshemali
and Kalita 2020). Although most NLP adversarial attacks
are easily detectable, some new forms of adversarial attacks
have become more difficult to detect (Wallace et al. 2021;
Chen et al. 2020). The use of these concealed and hard-
to-detect attacks has revealed new vulnerabilities in NLP
models. Considering the increasing difficulty in detecting at-
tacks, a more prudent approach would be to work on neutral-
izing the effect of potential attacks rather than solely relying
on detection. Here we offer a novel and highly effective de-
fense solution that preprocesses inputs by random perturba-
tions to mitigate potential hard-to-detect attacks.

2 Related Work

The work in this paper relates to the attack on NLP models
using the TextAttack library (Morris et al. 2020), the current
state-of-the-art defense methods for NLP models, and using
randomness against adversarial attacks.

2.1 TextAttack Library

The TextAttack library and the associated GitHub repository
(Morris et al. 2020) represent current efforts to centralize at-
tack and data augmentation methods for the NLP commu-
nity. The TextAttack library allows researchers to better un-
derstand the state-of-the-art attack models and to create new
kinds of attacks to test the robustness of NLP models. There
is a standard command-line uage of the library and also an
API. Both support attack creation through the use of four
components: a goal function, a search method, a transfor-
mation, and constraints. An attack method uses these com-
ponents to perturb the input to fulfill the given goal function
while complying with the constraints, and the search method
finds transformations that produce adversarial examples.

The library contains a total of 16 attack models based
on literature. These attacks are presented as recipes that are
readily available for use. There are 14 classification attack
recipes and 2 sequence-to-sequence attack recipes available
on the library. The work reported in this paper pertains to
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the ready-to-use classification attack recipes from the Tex-
tAttack library.

2.2 Input Preprocessing Defenses

There are many methods to defend NLP models against ad-
versarial attacks, including input preprocessing. Input pre-
processing defenses require inserting a step between the in-
put and the given model that aims to mitigate any potential
attacks. Alshemali and Kalita (2020) use an input prepro-
cessing defense that employs synonym set averages and ma-
jority voting to mitigate synonym substitution attacks. Their
method is deployed before the input is run through a model.
This distinction is what makes the defense an input prepro-
cessing method. Another defense against synonym substitu-
tion attacks, Random Substitution Encoding (RSE) encodes
randomly selected synonyms to train a robust deep neural
network (Wang and Wang 2020). The RSE defense occurs
between the input and the embedding layer.

2.3 Randomness in Defense

Randomness has been deployed in computer vision defense
methods against adversarial attacks. Levine and Feizi (2020)
use random ablations to defend against adversarial attacks
on computer vision classification models. Their defense is
based on a random-smoothing technique that creates certi-
fiably robust classification. Levine and Feizi defend against
sparse adversarial attacks that perturb a determined number
of features in the input images. They found their random ab-
lation defense method to produce certifiably robust results
on the MNIST, CIFAR-10, and ImageNet datasets.

3 Input Perturbation Approach &

Adversarial Defense

The use and availability of successful adversarial attack
methods reveal the need for defense methods that do not
rely on detection and leverage intuitions gathered from pop-
ular attack methods to protect NLP models. In particular, we
present a simple but highly effective defense against deep
learning models that perform sentiment analysis.

The approach taken is based on certain assumptions about
the sentiment analysis task. Given a short piece of text, we
believe that a human does not need to necessarily analyze
every sentence carefully to get a grasp on the sentiment. Our
hypothesis is that humans can ascertain the expressed sen-
timent in a text by paying attention to a few key sentences,
while skimming over the others. This thought experiment
led us to make intermediate classifications on all sentences
of a review in the IMDB dataset, and then combining the re-
sults for a collective final decision.

This process was refined further by considering how at-
tackers actually perturb data. Usually, they select a small
number of characters or tokens within the original data to
perturb. To mitigate those perturbations, we choose to per-
form our own random perturbations. Because the attacking
perturbations could occur anywhere within the original data,
and we do not necessarily know where they are, it is prudent
to randomly select tokens for us to perturb. This random-
ization has the potential to negate the effect the attacking

perturbations have on the overall sentiment analysis.
We wish to highlight the importance of randomness in

our approach and in possible future approaches for de-
fenses against adversarial attacks. The impact of random-
ness can be found in work using Random Forests (Breiman
2001). Random Forests have been useful in many domains
to make predictions, including disease prediction (Lebedev
et al. 2014; Corradi et al. 2018; Paul et al. 2017; Khalilia,
Chakraborty, and Popescu 2011) and stock market price pre-
diction (Khaidem, Saha, and Dey 2016; Ballings et al. 2015;
Nti, Adekoya, and Weyori 2019). The use of randomness
has made these methods of prediction robust and useful. We
have chosen to harness the capability of randomness in de-
fense of adversarial attacks in NLP. We believe that the im-
pact randomness has on our defense method is positive and
its use in defense against adversarial attacks of neural net-
works should be explored further.

3.1 Algorithm

Our algorithm is based on a random process: the random-
ization of perturbations of the sentences of a review R fol-
lowed by majority voting to decide the final prediction for
sentiment analysis. We consider each review R to be repre-
sented as a set R = {r1, r2, ..., rN} of sentences ri. Once R
is broken down into its sentences (Line 1), we create l repli-
cates of sentence ri: {r̂i1, ..., r̂ij , ..., r̂il}. Each replicate r̂ij
has k number of perturbations made to it. Each perturbation
is determined randomly (Lines 4-7).

In Line 5, a random token t where t 2 r̂ij is selected,
and in Line 6, a random perturbation is performed on t. This
random perturbation could be a spellcheck with correction,
a synonym substitution, or a drop word. A spellcheck is per-
formed using SpellChecker which is based in Pure Python
Spell Checking. The synonym substitution is also performed
in a random manner. A synonym set for token t is found us-
ing the WordNet function synsets (Fellbaum 1998). Once a
synonym set is found, it is processed to remove any dupli-
cate synonyms or copies of token t. Once the synonym set
is processed, a random synonym from the set is chosen to
replace token t in r̂ij . A drop word is when the randomly se-
lected token t is removed from the replicate altogether and
replaced with a space.

Once l replicates have been created for the given sentence
ri and perturbations made to tokens, they are put together
to create replicate review set R̂ (Line 8). Then, in Line 9,
each r̂ij 2 R̂ is classified as f(r̂ij) using classifier f(). Af-
ter each replicate has been classified, we perform majority
voting with function V (). We call the final prediction that
this majority voting results in as f̂(R). This function can be
visualized as follows (Line 12):

f̂(R) = V ({f(r̂ij) | r̂ij 2 R̂}).

The goal is to maximize the probability that f̂(R) = f(R)
where f(R) is the classification of the original review R.
This maximization is done through tuning of the parameters
l and k. The certainty T for f̂(R) is also determined for each
calculation of f̂(R). The certainty represents how sure the
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algorithm is of the final prediction it has made. In general,
the certainty T is determined as follows (Lines 13-17):

T = count(f(r̂ij) == f̂(R)) / N ⇤ l.
The full visual representation of this algorithm can be seen
in Algorithm 1 and in Figure 1.

Figure 1: Visual representation of Algorithm 1.

3.2 Increasing Randomness

Our first algorithm represented in Algorithm 1 and in Figure
1 shows randomness in two key points in the decision mak-
ing process for making the perturbations. This is the main
source of randomness for our first algorithm. In our next al-
gorithm, we introduce more randomness into our ideas from
our original algorithm to create a modified algorithm. This
more random algorithm is visually represented in Figure 2
and presented in Algorithm 2. This new defense method
adds a third random process before making random correc-
tions to a sentence. Randomly chosen ri from R are ran-
domly corrected to create replicate r̂j which is placed in R̂
(Lines 2-6). The original sentence ri is placed back into R
and a new sentence is randomly selected; this is random se-
lection with replacement. This process of random selection
is repeated until there is a total of k replicates r̂j in R̂.

In Line 2, we randomly select a sentence ri from R. This
is one of the largest differences between Algorithm 1 for our
Random Perturbations Defense and Algorithm 2 for our In-
creased Randomness Defense. That extra random element
allows for more randomization in the corrections we make
to create replicates r̂j . In Lines 3 and 4, the process is prac-
tically identical to Lines 5 and 6 in Algorithm 1. The only
difference is that only one random correction is being made
to get the final replicate r̂j for our Increased Randomness
Defense, while our Random Perturbations Defense makes k
random corrections to get the final replicate r̂ij .

3.3 Overcoming the Attacks

We define an attack as making random perturbations to an
input, specifically for this work, a review R. We assume a

Algorithm 1: Random Perturbation Defense

Result: f̂(R), the classification of R after defense
Input : Review R = {r1, r2, ..., rN} where ri

is a sentence
Parameters: l = number of copies made of each r

k = number of corrections made per ri
C = {c1, c2, ..., ck}, set of corrections
R̂ = ;

1 for ri ✏ R do

2 for j = 1 to l do

3 r̂ij = ri
4 for k do

5 Select random token t where t ✏ r̂ij
6 Perform random correction c ✏ C to t
7 end

8 Append r̂ij to R̂
9 Classify: f(rij)

10 end

11 end

12 f̂(R) = V ({f(r̂ij) | r̂ij✏R̂}), V () is a voting
function

13 if f(R̂) == negative then

14 T = count(f(r̂ij) == negative) / N ⇤ l
15 else

16 T = count(f(r̂ij == positive) / N ⇤ l
17 end

uniform distribution for randomness. We interpret these ran-
dom changes to occur throughout each review R with prob-
ability 1

W or 1
N⇤m , where W is the number of words in R,

N is the number of sentences in R, and m is the average
length of each sentence in R. We refer to this probability as
Pattack where a is the total number of perturbations made
by the attack:

Pattack =
a

W
=

a

N ⇤m.

If each random perturbation performed by the attack has a
probability of 1

N⇤m , then our defense method needs to over-
come that probability to overcome the attack.

Our two defense methods, Random Perturbations De-
fense and Increased Randomness Defense, both offer ways
to overcome the attack, i.e., undo the attack change, with
a probability greater than a

N⇤m . Our Random Perturbations
Defense picks a random token t from each sentence ri 2 R
and repeats k times to get a final replicate r̂ij . This gives an
initial probability for PRPD to be:

PRPD =
N ⇤ l ⇤m!

k!(m� k)!
.

We find this probability from choosing k tokens from ri
with length m which breaks down to a binomial coefficient�m
k

�
= m!

k!(n�k)! . This is then repeated l times for each sen-
tence in R which equates to that initial probability being
multiplied by l and N . After doing some rearranging of the
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Algorithm 2: Increased Randomness Defense

Result: f̂(R), the classification of R after defense
Input : Review R = {r1, r2, ..., rN} where ri

is a sentence
Parameters: k = number of replicates r̂j made for R̂

C = {c1, c2, ..., ck}, set of corrections
R̂ = ;, P = []

1 for j = 1 to k do

2 Randomly select ri 2 R
3 Select random token t where t 2 ri
4 Perform random correction c ✏ C to t to get r̂j
5 Append r̂j to R̂
6 end

7 for j = 1 to k do

8 Classify: f(r̂j)
9 Append results to predictions array P

10 end

11 f̂(R) = V (P ), V () is a voting function
12 if f(R̂) == negative then

13 T = count(f(r̂ij) == negative) / N ⇤ l
14 else

15 T = count(f(r̂ij == positive) / N ⇤ l
16 end

probabilities, we can see that for certain values of l and k
where k < m:

PRPD =
N2m2l(m� 1)(m� 2)...(m� k + 1)

k!
> a.

We know that W = N ⇤ m, that a = W only for one of
our attack methods, and that k should be selected so that
k << W . This means that generally, W 2 > a, W 2 > k!,
and l(m � 1)(m � 2)...(m � k + 1) > 0, which gives us
the necessary conditions to assert that PRPD > Pattack.
Therefore, our Random Perturbations Defense will over-
come the Pattack and should overcome the given attack
method.

Our Increased Randomness Defense first chooses a ran-
dom sentence ri which is selected with probability 1

N . Next,
we choose a random word within that sentence which is se-
lected with probability 1

m . This gives us a probability for
changes as follows:

PIRD =
1

N
⇤ 1

m
=

1

N ⇤m.

We can see that PIRD ⇤ a = Pattack. We need to over-
come the attack probability and we do this in two ways: we
either find the attack perturbation by chance and reverse it,
or we counter balance the attack perturbation with enough
replicates r̂j . With each replicate r̂j created, we increase
our probability PIRD so that our final probability for our
Increased Randomness Defense is as follows:

PIRD =
k

N ⇤m.

As long as our selected parameter value for k is greater
than the number of perturbation changes made by the at-
tack method a, then PIRD > Pattack and our Increased

Figure 2: Visual representation of Algorithm 2 that includes
more randomness.

Randomness Defense method will overcome the given at-
tack method.

4 Experiments & Results

4.1 Dataset

We used the IMDB dataset (Maas et al. 2011) for our exper-
iments. Each attack was used to perturb 100 reviews from
the dataset. The 100 reviews were selected randomly from
the dataset with a mix of positive and negative sentiments.
Note that the Kuleshov attack data (Kuleshov et al. 2018)
only had 77 reviews.

4.2 Models

The models used in this research are from the TextAttack
(Morris et al. 2020) and HuggingFace (Wolf et al. 2020) li-
braries. These libraries offer many different models to use
for both attacked data generation and general NLP tasks. For
this research, we used the bert-base-uncased-imdb model
that resides in both the TextAttack and HuggingFace li-
braries. This model was fine-tuned and trained with a cross-
entropy loss function. This model was used with the API
functions of the TextAttack library to create the attacked re-
views from each of the attacks we used. We chose this model
because BERT models are useful in many NLP tasks and this
model specifically was fine-tuned for sequence classification
and was trained on the dataset we wanted to use for these ex-
periments.

The HuggingFace library was also used in the sentiment-
analysis classification of the attacked data and the defense
method. We used the HuggingFace transformer pipeline for
sentiment-analysis to test our defense method. This pipeline
returns either “negative” or “positive” to classify the senti-
ment of the input text and a score for that prediction (Wolf
et al. 2020). This pipeline was used to classify each replicate
r̂ij in our algorithm and is represented as the function f().
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4.3 Experiments

The attacks from the TextAttack library were used to gen-
erate attack data. Attack data was created from 7 dif-
ferent models from the library: BERT-based Adversarial
Examples (BAE) (Garg and Ramakrishnan 2020), Deep-
WordBug (Gao et al. 2018), FasterGeneticAlgorithm (Jia
et al. 2019), Kuleshov (Kuleshov et al. 2018), Probabil-
ity Weighted Word Saliency (PWWS) (Ren et al. 2019),
TextBugger (Li et al. 2019), and TextFooler (Jin et al. 2020)
(Morris et al. 2020). Each of these attacks were used to cre-
ate 100 perturbed sentences from the IMDB dataset (Maas
et al. 2011). These attacks were chosen from the 14 classifi-
cation model attacks because they represent different kinds
of attack methods, including misspelling, synonym substitu-
tion, and antonym substitution.

Each attack method used for our experiments has a
slightly different approach to perturbing the input data. Each
perturbation method is unique and follows a specific distinct
pattern. The BAE attack determines the most important to-
ken in the input and replaces that token with the most similar
replacement using a Universal Sentence Encoder. This helps
the perturbed data remain semantically similar to the orig-
inal input (Garg and Ramakrishnan 2020). The DeepWord-
Bug attack identifies the most important tokens in the input
and performs character-level perturbations on the highest-
ranked tokens while minimizing edit distance to create a
change in the original classification (Gao et al. 2018). The
FasterGeneticAlgorithm perturbs every token in a given in-
put while maintaining the original sentiment. It chooses each
perturbation carefully to create the most effective adversarial
example (Jia et al. 2019). The Kuleshov attack is a synonym
substitution attack that replaces 10% - 30% of the tokens in
the input with synonyms that do not change the meaning of
the input (Kuleshov et al. 2018).

The PWWS attack determines the word saliency score of
each token and performs synonym substitutions based on
the word saliency score and the maximum effectiveness of
each substitution (Ren et al. 2019). The TextBugger attack
determines the important sentences from the input first. It
then determines the important words in those sentences and
generates 5 possible “bugs” through different perturbation
methods: insert, swap, delete, sub-c (visual similarity sub-
stitution), sub-w (semantic similarity substitution). The at-
tack will implement whichever of these 5 generated bugs is
the most effective in changing the original prediction (Li et
al. 2019). Finally, the TextFooler attack determines the most
important tokens in the input using synonym extraction,
part-of-speech checking, and semantic similarity checking.
If there are multiple canididates to substitute with, the most
semantically similar substitution will be chosen and will re-
place the original token in the input (Jin et al. 2020).

After each attack had corresponding attack data, the Tex-
tAttack functions gave the results for the success of the at-
tack. The accuracy of the sentiment-analysis task under at-
tack, without the defense method, is reported in the first col-
umn in Table 3. Each attack caused a large decrease in the
accuracy of the model. The model began with an average ac-
curacy of 80% for the IMDB dataset. Once the attack data
was created and the accuracy under attack was reported, the

attack data was ran through our Random Perturbations and
our Increased Randomness defense methods.

4.4 Results

We began by testing on the HuggingFace sentiment analysis
pipeline with the original IMDB dataset. This gave an origi-
nal accuracy of 80%. This percentage represents the goal for
our defense method accuracy as we aim to return the model
to its original accuracy, or higher. The accuracy under each
attack is listed in Table 3 in the first column. These percent-
ages show how effective each attack is at causing misclas-
sification for the sentiment analysis task. The attacks range
in effectiveness with PWWS (Ren et al. 2019) and Kuleshov
(Kuleshov et al. 2018) with the most successful attacks at
0% accuracy under attack and FasterGeneticAlgorithm (Jia
et al. 2019) with the least successful attack at 44% accuracy
under attack, which is still almost a 40% drop in accuracy.

Average Synonym Embeddings Defense We had initially
adapted a defense method from Alshemali and Kalita (2020)
to test against the TextAttack library attack methods. This
defense method was originally created to mitigate synonym
substitution attacks using a form of input preprocessing. The
defense method substitutes the important words in the input
with the average of their synonym set. Those changed inputs
are then classified and those predictions are used for ma-
jority voting to determine the final prediction for the task.
When using this defense method on the created perturbed
data from a couple of the TextAttack attack methods, the ac-
curacy of the model did not return to the original accuracy
of 80% and were much lower than expected with no clear
way to improve them. These tests were performed multiple
times with the same results for every test for the given at-
tack method. The results from these initial experiments can
be found in Table 1. Since the defense was credible but not
as strong as we wanted it to be, we decided to explore addi-
tional defenses, based on randomization.

Attack w/o Defense w/ Defense
BAE 33% 70%

PWWS 0% 65%

Table 1: Accuracy for each of the attack methods under at-
tack and under attack with the adapted defense from Alshe-
mali and Kalita (2020) deployed. The accuracy prior to at-
tack is 80%.

Random Perturbations Defense For the Random Pertur-
bations Defense to be successful, it is necessary to obtain
values of the two parameters, l and k. Each attack was tested
against our Random Perturbations Defense 5 times. The ac-
curacy was averaged for all 5 tests and the standard deviation
was calculated for the given mean. The mean accuracy with
standard deviation is presented for each attack in the second
column of Table 3. The results presented are for l = 7 and
k = 5. These parameters were chosen after testing found
greater values of l and k resulted in a longer run time and too
many changes made to the original input; with lower values
for l and k, the model had lower accuracy and not enough
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perturbations to outweigh any potential adversarial attacks.
The values behind this logic can be seen in Table 2.

Attack l k Accuracy w/ Defense
BAE 5 2 55%
BAE 10 5 50%
BAE 7 5 79%

Table 2: This table explains values of l and k

The defense method was able to return the model to
original accuracy within statistical significance while un-
der attack for most of the attacks with the exception of the
Kuleshov method (Kuleshov et al. 2018). The accuracy for
the other attacks all were returned to the original accuracy
ranging from 76.00% to 83.20% accuracy with the Random
Perturbations defense deployed. This shows that our defense
method is successful at mitigating most potential adversar-
ial attacks on sentiment classification models. Our defense
method was able to increase the accuracy of model while
under attack for the FasterGeneticAlgorithm, PWWS, and
TextFooler. These three attack methods with our defense
achieved accuracy that was higher than the original accuracy
with statistical significance.

Attack w/o Defense w/ Defense
BAE 33% 80.80%±1.47

DeepWordBug 34% 76.60%±1.85
FasterGeneticAlgo 44% 82.20%±1.72

Kuleshov* 0% 60.00%±2.24
PWWS 0% 81.80%±1.17

TextBugger 6% 79.20%±2.32
TextFooler 1% 83.20%±2.48

Table 3: Accuracy for each of the attack methods under at-
tack and under attack with the defense method from Algo-
rithm 1 deployed with l = 7 and k = 5. The accuracy prior
to attack is 80%.

Increased Randomness Defense The Increased Random-
ness Defense was also tested on by all seven of the attacks.
Each attack was tested against this defense 5 times. The re-
sults for these experiments can be seen in Table 5. There
were tests done to determine what the proper value for k
should be. These tests were performed on the BAE (Garg
and Ramakrishnan 2020) attack and the results can be found
in Table 4. These tests revealed that 40-45 replicates r̂j was
ideal for each R̂ with k = 41 being the final value used
for the tests on each attack. This defense method was more
efficient to use.

The runtime and the resources used for this method
were lower than the original random perturbations defense
method with the runtime for the Random Perturbations De-
fense being nearly 4 times longer than this increased ran-
dom method. A comparison of the two defense methods on
the seven attacks tested can be seen in Figure 3. This de-
fense was successful in returning the model to the original

Attack k Accuracy w/ Defense
BAE 10 67%
BAE 20 76%
BAE 25 72%
BAE 30 76%
BAE 35 74%
BAE 40 82%
BAE 45 74%
BAE 41 77%

Table 4: This table shows the results for the tests for different
values of k for the increased randomness experiments.

accuracy, within statistical significance, for most of the at-
tacks with the exception of the Kuleshov attack (Kuleshov
et al. 2018). A t-test was performed to determine the sta-
tistical significance of the difference in the defense method
accuracy to the original accuracy.

Attack w/o Defense w/ Defense
BAE 33% 78.40%±3.14

DeepWordBug 34% 76.80%±2.64
FasterGeneticAlgo 44% 82.80%±2.48

Kuleshov* 0% 66.23%±4.65
PWWS 0% 79.20%±1.72

TextBugger 6% 77.00%±2.97
TextFooler 1% 80.20%±2.48

Table 5: Accuracy for increased randomness defense from
Algorithm 2 against each attack method with k = 41. The
accuracy prior to attack is 80%.

5 Conclusion

The work in this paper detail a useful defense method against
adversarial attacks generated from the TextAttack library.
These attack methods use multiple different perturbation
approaches to change the predictions made by NLP mod-
els. Our defense methods utilized randomization to miti-
gate these adversarial attacks. Our Random Perturbations
Defense was successful in mitigating attacks from the fol-
lowing methods: BAE, DeepWordBug, FasterGeneticAlgo-
rithm, PWWS, TextBugger, and Textfooler. This defense
method returned the attacked models to their original ac-
curacy within statistical significance. Our second method,
Increased Randomness Defense, used more randomization
to create an equally successful defense method that was 4
times more efficient than our Random Perturbations De-
fense. Overall, our defense methods are successful and ef-
fective in mitigating a wide range of NLP adversarial at-
tacks, presenting evidence for the effectiveness of random-
ness in NLP defense methods.
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Abstract
Vision-language models can assess visual context in
an image and generate descriptive text. While gener-
ated text may be accurate and syntactically correct, it
is often overly general. Recent work has used optical
character recognition to supplement visual information
with text extracted from an image. In many cases, us-
ing text in the image improves the specificity and use-
fulness of generated text. In this work, we contend that
vision-language models can benefit from additional sets
of tokens that can be extracted from an image, but are
ignored by current models. We modify previous multi-
modal frameworks to accept relevant information from
any number of auxiliary classifiers. In particular, we fo-
cus on person names as an additional set of tokens and
create a novel image-caption dataset to facilitate this
task. The dataset, Politicians and Athletes in Captions
(PAC), consists of captioned images of well-known peo-
ple in context. By fine-tuning pretrained models with
this dataset, we demonstrate a model that can naturally
integrate facial recognition tokens into generated text by
training on only a few samples. For the PAC dataset, we
provide an in-depth discussion about collection, anal-
ysis, and fairness. Finally, we present baseline bench-
mark scores on PAC.

1 Introduction
Vision-language models combine deep learning techniques
from computer vision and natural language processing to as-
similate visual and textual understanding. Models in this do-
main can demonstrate visual and linguistic knowledge by
performing tasks such as vision question answering (VQA)
and image captioning. There are many applications of these
tasks, including aiding the visually impaired by providing
scene information and screen reading (Morris et al. 2018).

To perform a vision-language task a model needs to un-
derstand visual context and natural language, and operate in
a shared embedding space between the two. To transcribe
visual information to text, an encoder-decoder architecture
is trained to learn the necessary shared embeddings. Ap-
proaches in the literature have improved performance by
pre-training models for both visual context and language un-
derstanding (Chen et al. 2020; Lu et al. 2019a; Su et al. 2019;
Li et al. 2020; Tan and Bansal 2019). These frameworks
have yielded accurate and semantically appropriate VQAs

or captions. However, the text generated from these are gen-
eral and overlook clues that allow for richer text generation
with improved contextualization.

Recent work has used optical character recognition
(OCR) in order to incorporate text that appears in im-
ages (Zhu et al. 2021; Gao et al. 2020b; Mafla et al. 2021;
Hu et al. 2020; Kant et al. 2020; Wang et al. 2021; Han,
Huang, and Han 2020; Liu et al. 2020). In many cases,
this significantly enhances the usefulness of the generated
text (Hu et al. 2020). Such frameworks include OCR as an
additional input modality. This results in three modalities for
VQA (image, question, and OCR) and two modalities for
image captioning (image and OCR). Attention based mech-
anisms have been successful in integrating these multiple
modalities for vision-language tasks.

While using OCR allows enhancement of some generated
text, specific information that exists in human-level descrip-
tion may also come from additional sources. Without proper
nouns or other specific vocabulary, the generated text is at
risk the of being awkwardly general, demonstrating a lack of
shared knowledge that is expected throughout society. Fig-
ure 1 show two images where using specific terms is critical
to human like descriptions.

A parallel field of study is entity-aware image captioning.
The focus of this task is to extract relevant information from
an image-article pair to generate a caption. While models
in this domain can generate captions with non-generic text,
they rely on an article for specific vocabulary rather than
strictly on the image content.

In this work, we propose a method for entity-aware text
generation that can be based solely on image content. We
propose generalizing the OCR input modality to accept help-
ful tokens from any number of auxiliary classifiers. This
framework allows a model to leverage easily available so-
phisticated libraries for tasks like face recognition and OCR
extraction. We refer to all tokens from upstream sources, in-
cluding OCR tokens, as special tokens.

We focus on person names as an example special to-
ken. To facilitate this task we create a novel image-caption
dataset, Politicians and Athletes in Captions (PAC), which
includes person names in captions in addition to relevant
scene-text found on signs or labels. PAC has 1,572 images
and three captions per image. A full discussion on the dataset
is provided in Section 4.
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Figure 1: In both human captions, non-generic terms are used. Incorporation of external vocabulary tokens is decisive to
whether a vision-language model can generate similar text.

By training on PAC in addition to other image-caption
datasets, we create a model that can naturally integrate per-
son names into captions. The same model still performs well
on more general image captioning tasks. We show this can
be learn by training on a limited number of samples. Evalu-
ation of the methods is available in Section 5.

In summary, this paper makes the following contributions:

1. Proposes special tokens as a framework to incorporate to-
kens from external sources into generated text.

2. Releases PAC image-captioning dataset and baseline re-
sults.

3. Demonstrates a model that integrates OCR and facial
recognition into image captioning.

2 Related Work
The encoder-decoder architecture divides the image caption-
ing task into two parts. The encoder acts as feature extrac-
tor and the decoder handles word generation. Before the ad-
vent of attention mechanism, deep learning models for im-
age captioning used CNN encoders for feature extraction
from the whole input image as a whole (Kiros, Salakhut-
dinov, and Zemel 2014; Karpathy, Joulin, and Fei-Fei 2014;
Vinyals et al. 2015).

Attention mechanism was first introduced in encoder-
decoder architecture for neural machine translation (Bah-
danau, Cho, and Bengio 2015). Enabling the model to per-
form better translation due to its ability to focus on the rele-
vant parts of the input for generating the output at each time
step. The seminal image captioning model, Show, Attend
and Tell (Xu et al. 2015), applied attention mechanism on
input visual features and previously generated word (during
inference) at each time step for textual caption word gener-
ation. Soft and hard visual attention were the first types of
attention mechanisms used for image captioning.

The majority of current state-of-the-art methods for image
captioning and visual question answering benefit from the
bottom-up and top-down attention mechanism (Anderson et

al. 2018). Bottom-up and top-down attention was introduced
in the context of encoder-decoder architecture (Sutskever,
Vinyals, and Le 2014) for image captioning and visual ques-
tion answering .

Bottom-up attention acts as a hard attention mechanism
and leverages an object detector, Faster R-CNN (Ren et al.
2015) for detecting the most important regions in the im-
age (Anderson et al. 2018). Top-down attention acts as a
soft attention mechanism as it performs a soft modulation
over the set of input visual features from object detection
regions. Similar to how bottom-up attention was adopted
for feature extraction in OCR (Hu et al. 2020) we adopt
this mechanism for feature extraction in facial recognition.
Rather than Faster R-CNN, we use RFBNet (Liu, Huang,
and Wang 2018) facial region detection. For facial feature
extraction we use ArcFace (Deng et al. 2019) pre-trained on
MegaFace dataset (Kemelmacher-Shlizerman et al. 2016).

Several techniques have been proposed to handle OCR
tokens in vision-language tasks. The M4C algorithm uses
an indiscriminate attention layer followed by a dynamic
pointer (Hu et al. 2020). The SS-Baseline model uses in-
dividual attention blocks for each input modality followed
by a single fusion encoding layer (Zhu et al. 2021). Sev-
eral approaches have been proposed to better handle spatial
information about OCR tokens (Gao et al. 2020b; 2020a;
Wang et al. 2021; Kant et al. 2020; Han, Huang, and Han
2020). The MMR method was proposed to utilize spacial
information of objects and scene-text via a graph struc-
ture (Mafla et al. 2021). TextOCR was introduced as an
end-to-end method for identifying OCR tokens (Singh et al.
2021). TAP was introduced as a method to integrate OCR
tokens into pre-training. We adopt M4C as a base model for
our work. Modifications are enumerated in Section 3.

Entity aware image captioning focuses on creating cap-
tions from image-article pairs (Biten et al. 2019a; Tran,
Mathews, and Xie 2020; Lu et al. 2018). Our work is distinct
in that it focuses on generating captions strictly from visual
information rather than articles. More similar to our work,
Zhao et al. uses an upstream vision classifier as input to a
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captioning model. They introduce a multi-gated decoder for
handling input from external classifiers (Zhao et al. 2019).
Comparatively we use general OCR and facial recognition
classifiers rather than a web entity recognizer as an upstream
classifier. Our approach is different from Zhao et al. in that
we use bottom-up and top-down attention rather than a stand
alone CNN for object detection, use a common embedding
space rather than a gated decoder for handling multi-modal
inputs, and use rich representations (see Section 3.2) rather
than only textual information for handling tokens from up-
stream classifiers.

MS-COCO (Lin et al. 2014) is a large dataset for common
objects in context used for image captioning. Similar to MS-
COCO, Flickr30k (Young et al. 2014) is another common
dataset used for image captioning. For MS-COCO, Karpa-
thy’s split (Karpathy and Fei-Fei 2015) is used as a com-
mon benchmark for image captioning. Google’s conceptual
captions (Sharma et al. 2018) is a vast dataset used for
pre-training multitasking vision-language models and fine-
tuning them on other vision-language down stream tasks (Lu
et al. 2019b; 2020).

To facilitate use of optical character recognition in the
Vision-Language domain, several datasets have been re-
leased, including ST-VQA (Biten et al. 2019b) for scene
text visual question answering and TextCaps (Sidorov et al.
2020) for image captioning with reading comprehension.
Along with the introduction of TextCaps dataset, the M4C
model (Hu et al. 2020) originally used for visual question
answering was adopted for image captioning. We modify the
M4C model via adding another modality of information that
includes bottom-up facial recognition features.

3 Special Tokens
We propose special tokens as a placeholder for extracted tex-
tual information that is identified as present in an image by
an upstream source and then subsequently used by a vision-
language model. In this approach there are two modalities
that hold information about an image. The first modality is
generic visual features which are responsible for informing
the model of general context. The second modality, special
tokens, is responsible for informing the model of specific
terms that are relevant to the image. The first modality is rep-
resented by visual feature vectors where as the special token
modality consists of visual feature vectors and textual fea-
ture vectors. Special tokens are additionally made available
for direct copy into generated text which allows for zero-shot
inclusion of words not seen prior. This structure has been
successful on OCR vision-language datasets. The key hy-
pothesis of this paper is that a model can further learn to dif-
ferentiate types of tokens with in the special token modality
and subsequently use each token type appropriately. Passing
all tokens from upstream sources through the same modal-
ity allows the model to accept any tokens from any num-
ber of sources at inference time. A multi-modal transformer
is used such that all special tokens can attend to each other
during training and inference. This is the substrate for which
a model can not only learn to differentiate tokens, but also
learn relationships between tokens and what effect the pres-
ence of each token should have on generated text.

In this approach, OCR tokens are placed under the um-
brella of special tokens and received along side tokens from
other upstream sources. In this work, we demonstrate adding
facial recognition tokens received from a face recognition
module. We focus our experimentation on learning to in-
tegrate facial recognition tokens by training on the PAC
dataset. However, any set of words that can be identified by
some module can conceivably be a set of special tokens.

3.1 Motivation
The goal of special tokens is to integrate vocabulary tokens
from external sources into generated text. An opposing ap-
proach would be to use an enhanced object detector for all
detection and correspondingly extend the model vocabulary
to include all desired vocabulary tokens. The special tokens
approach can be motivated based on several following ob-
servations.

1) Different architectures perform better on different
tasks. Several tasks, such as OCR detection and facial recog-
nition, benefit from specialized approaches that differ from
traditional object detection. In OCR, detection finds char-
acters individually rather than classifying words. In facial
recognition, a regression model is trained to output face em-
beddings which are subsequently compared to embeddings
of known individuals. Even on standard classification tasks,
significant research is put into fine-tuning architectures to
get state of the art results on dataset benchmarks. This work
can be leveraged by utilizing the fine-grained classifiers as
upstream sources.

2) The space complexity of all possible vocabulary tokens
is intractably large. By appending special tokens to the vo-
cabulary at inference time the captioning model’s vocabu-
lary is prevented from inflating.

3) Using non-generic terms does not always increase the
complexity of the caption. For example in Figure 1, the
names ‘General Motors’ and ‘Barack Obama’ are substitu-
tions for what could have been generic terms such as build-
ing or person. If a captioning model can generate a caption
such as ‘A person giving a speech’, it does not need a sig-
nificant increase in contextual understanding to generate the
caption ‘Barack Obama giving a speech.’ Rather, the model
just needs to know to use ‘Barack Obama’. The special to-
ken approach takes advantage of this and allows the model to
learn these correlations in few iterations and on few samples.
At the same time, the special token approach does not limit
the model from learning more nuanced correlations between
tokens and context assuming rich enough data is provided.

4) Not all applications will expect the same special tokens.
A captioning model that supplements screen reading for the
visually impaired deployed in one area of the world may de-
sire different sets or subsets of tokens than the same model
deployed in a different part of the world. In this sense special
tokens are highly practical. The same model can be trans-
ferred between applications simply by adding or detracting
the external sources used for generating tokens.

3.2 Rich Representations
Utilizing the same representation for all special tokens al-
lows the model to accept tokens from any external source.
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Figure 2: The representation of a special token where N is the number of tokens and d is the tuned dimensionality. We adopt
the representation from Hu et al. and add the projected one-hot encoding classifier feature.

The representation encodes several types of information
about the token allowing the model to learn how different
components of a token effect its use. We adopt the the visual
and textual feature representation from Hu et al. and add a
token source feature (Hu et al. 2020). A formal description
of the special representation is described below and a visual
representations is provided in Figure 2.

Special tokens are represented by a feature vector xspec
i ,

where i = 1...N . xspec
i incorporates visual features, tex-

tual features, and a classifier feature. The visual features in-
clude a bounding box xb

i and a feature vector from an object
detector xfr

i . Following previous work we use a pretrained
Faster-RCNN with a ResNet backbone to generate xfr

i from
the RoI created by the tokens bounding box. The textual fea-
tures are a fastText encoding xft

i and a pyramidal hierarchy
of characters (PHOC) encoding xp

i . The classifier feature xc
i

is a one-hot encoding of sources used for generating special
tokens. xfr

i , xft
i , and xp

i are concatenated together and pro-
jected into a tuned encoding dimensionality d by a learned
linear transformation W1. Additionally, xb

i and xc
i are pro-

jected into d by separate learned linear transformations W2

and W3. Layer normalization LN is applied to the three d
dimensional vectors. xspec

i is a result of element wise addi-
tion of these three vectors after layer normalization as shown
below:
xspec
i = LN(W1(x

fr
i +xft

i +xp
i ))+LN(W2x

b
i )+LN(W3x

c
i )

(1)

3.3 Adopting M4C
We utilize the multimodal mesh copy module (M4C) intro-
duced it Hu et al. in order to copy special tokens into gen-
erated text (Hu et al. 2020). This method has been directly
adopted by many subsequent OCR Vision-Language papers
for copying scene text into generated text. We generalize
the input from OCR tokens to special tokens, but make no
change to the copying mechanism. Here we formalize the
the differences between our captioning model and the M4C
Captioning model.

The input modalities into the M4C captioning model are
object features {xobj

1 , ..., xobj
M } for M objects and OCR

tokens {xocr
1 , ..., xocr

N } for N OCR tokens. We general-
ize OCR tokens to special tokens such that the inputs are
{xobj

1 , ..., xobj
M } and {xspec

1 , ..., xspec
N } for N special tokens.

M4C captioner predicts fixed vocab scores
{yvoc1,t , ..., y

voc
K,t} where K is a fixed vocab size and t is the

decoding step and ocr vocab scores {yocr1,t , ..., y
ocr
N,t} where

N is the number of ocr tokens. The selected word at each
time step wt = argmax(yallt ) where yallt = [yvoct ; yocrt ]. We
substitute yspect = {yspec1,t , ..., yspecN,t }, where N is the number
of special tokens, for yocrt such that yallt = [yvoct ; yspect ].

4 PAC Dataset
With this paper we release the Politicians and Athletes in
Captions (PAC) dataset. PAC is image-caption dataset con-
sisting of images well-known individuals in context. PAC
has 1,572 images and three captions per image. Samples
from PAC can be seen in Figure 4.

We create PAC with the goal of studying the use of non-
generic vocabulary in image captioning. The non-generic
terms emphasized in PAC are person names and OCR to-
kens. The PAC dataset offers the following technical chal-
lenges:

1. Correctly identifying people in a variety of settings.

2. Reasoning about the effect of the presence of the individ-
ual. If a known person is in a scene, the description of the
scene often based on the known person.

3. Naturally integration of a name into a generated caption.

Recent work has shown the ability of pretrained vision-
language models to adapt to new domains with limited sam-
ples (Tsimpoukelli et al. 2021). PAC can be used in the sense
to test a pre-trained models ability to learn problems 2 and
3.

4.1 Collection
Images were collected from the Creative Commons image
database which are made available under the CC licence. In
the collection of the dataset, 62 public figures were searched
for. We selected images from the first 100 returned, filtering
out duplicate images and images without visible faces.

Annotators were instructed to provide a caption of the
image including the name of the individual in which was
searched for when collecting the image. Other famous indi-
viduals who happened to appear in the image may also be
mentioned in the captions. Additionally, annotators were in-
structed to use scene-text if it improved the quality of the
caption. These annotation instructions differ those for cap-
tion collection of previous datasets. For example, in the col-
lection of MS-COCO captions, annotators were instructed
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Figure 3: Samples from Politicians and Athletes in Captions

to not use proper nouns (Chen et al. 2015) and annota-
tors for TextCaps were instructed to always use text in the
scene (Sidorov et al. 2020). 658 images were captioned by
college students and 914 were outsourced to Ground Truth.
Captions were scanned for grammar and spelling errors.

4.2 Analysis
PAC includes images 1,572 images with 3 captions each.
All images include at least one famous politician or athlete.
Overlap exists in several images. 62 different individual are
in the dataset for an average of 25.2 images per person. 23
of the individuals are athletes while 39 are athletes.

Each corresponding caption includes the name of at least
one person name in the image. 66.1% of the data has scene
text that is recognized by Google Cloud OCR. 35.9% of use
scene text exactly as recognized by Google Cloud OCR in
one of the captions. Comparatively, 96.9% of TextCaps im-
ages have OCR and 81.3% of captions use at least one OCR
token. In 96.3% of the images a face RoI is detected by
the RFB net, the face detector we use throughout this work.
(Sidorov et al. 2020)

PAC captions have a lower average word count than other
image-caption datasets at 8.35 words per caption. Compar-
atively, TextCaps has 12.4 words per caption, Conceptual
Captions has 9.7, and MS-COCO has 10.5 (Sidorov et al.
2020). A number of images in PAC are close-up photos of
individuals. Often, a precise caption for such an image con-
tains few words (e.g ‘Joe Biden wearing a suit’) which ex-
plains the lower average. The names of individuals range
between one and five words. Names account for 25.7% of
the words in PAC captions.

4.3 Fairness
The fact that machine learning model learn bias from
datasets has been well documented in the literature (Belkin
et al. 2019). When the dataset includes information about
people, discriminatory biases may be encoded in the
data (Zliobaite 2015). A model can learn to correlate any
characteristic in the data to an outcome which can result dis-
criminatory model behavior. In PAC, the human characteris-

tics in the dataset are visual appearance and name. In order
to mitigate bias that may be encoded in the data, we consid-
ered the following criteria during collection: equitable dis-
tribution of races, equitable distribution of sexes, equal dis-
tribution of scenes and contexts across sexes and races.

While we have taken steps to limit encoded bias in the
dataset, it does not mean it has been does not mean it does
not exist. This dataset is only available for research use.

4.4 Limitations
We identify two primary limitations of the PAC dataset. The
dataset with 1,610 images is small relative to other image-
datasets. TextCaps has 28,408 images and MS-COCO has
330,000 images. Due to this PAC cannot represent the
breadth of scenes that is found in other datasets. It is rec-
ommended to use PAC in conjunction with other dataset in
order to mitigate this constraint.

The second primary limitation is narrow scene represen-
tation. The dataset is of famous athletes and politicians and
therefore is biased towards scenes in which athletes and
politicians are commonly photographed in. The captions
also reflect this representation. For example, the word ‘suit’
is found in 1.82% of PAC captions while only 0.14% of
TextCaps captions and 0.55% in MS-COCO. The word ‘mi-
crophone’ is found in 1.25% of PAC captions, 0.11% in
TextCaps, and 0.05% in MS-COCO. Training on PAC com-
bined with other datasets can mitigate this limitation while
still allowing the model to learn to integrate person names
as demonstrated in Section 5.

5 Experiments
We compare results on PAC with and without special tokens.
We test several configurations of combining TextCaps and
PAC for training and highlight the best results in Table 2.

5.1 Implementation Details
We build our implementation on top of the MMF li-
brary (Singh et al. 2020). For detecting regions in the image
with faces we use RFB net (Liu, Huang, and Wang 2018).
For facial recognition we use ArcFace (Deng et al. 2019).
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Table 1: Training on PAC with and without special tokens.

PAC Test Set Metrics
# Model Training B-4 M R C S

1 M4C TextCaps!PAC 2.1 6.4 14.3 24.6 4.3
2 M4C+ST TextCaps!PAC 14.5 22.4 42.0 156.8 30.3
ST: Special Tokens; B-4: BLEU-4; M: METEOR; R: ROUGUE; C: CIDEr, S: SPICE

Figure 4: Captions generated for PAC test set images. Green words indicate tokens from the face recognition module and blue
words indicate tokens from the OCR module. Corresponding metrics found in Table 1.

Using ArcFace we extract facial embedding for all individ-
uals in the dataset. At inference, a face token if is extracted
if the l2 distance between the new embeddings and the pre-
calculated embedding of a known individual is less than a
threshold T . First names and last names become separate to-
kens with copied visual features. Face RoIs were found to be
present 96.3% of images by RFB net. Approximately 80% of
the predictions made by ArcFace on the the face RoIs were
correct. To reduce noise in the training set, we manually up-
date the face tokens to be present in all images and further
assure by the face token is the correct name by referencing
the name that was searched for to get the respective image.
All reported quantitative and qualitative test set results use
unmodified tokens generated from the aforementioned facial
recognition models.

We use Google Cloud OCR for extracting OCR tokens
and set a limit at N = 50 OCR tokens. Following previ-
ous work, we use a pretrained faster RCNN with a ResNet-
101 backbone to propose RoIs and extract features for each
region. A limit is let at M = 100 object features. PAC is
broken up into the same 80-20 train-test split for all experi-
ments.

5.2 Benchmarks
In Table 1 we compare results on PAC with vanilla M4C
and M4C with special tokens (M4C+ST). Both models are
trained on TextCaps for 12,000 iterations and subsequently
on PAC for 1,300 iterations. M4C+ST sees 200-700% in-
creases across metrics on the PAC test set. Without access

to name tokens the vanilla M4C model has a small chance
of using the correct name only if the name happens to be in
model vocabulary. If the name is not in model vocabulary
there is no chance. Corresponding qualitative examples are
provided in Figure 4. In the samples, M4C+ST has appro-
priately used the face token in the caption. The right two im-
ages are samples where M4C+ST switched between model
vocabulary, face tokens, and OCR tokens. This demonstrates
the model has learned to differentiate separate special token
types.

In Table 2, we report scores after training on several dif-
ferent combinations of PAC and TextCaps. The best cap-
tioning model is the one that performs well on PAC while
still performing while on previous datasets. For this reason,
scores are reported for PAC and TextCaps for all training
combinations. The model trained on a ratio of TextCaps 8:1
PAC (Table 2 line 4) scores the highest in this regard.

6 Conclusion
Text generated by vision-language models often lacks spe-
cific terms that would be present in human level descrip-
tions or answers. The special token approach can be used
to introduce non-generic information to a vision-language
model and consequently improve generated text. The spe-
cial token approach accepts information from any number of
upstream sources. The Politicians and Athletes in Captions
dataset consists of image-caption pairs with well-known in-
dividuals. By using the special token approach and the PAC
dataset, we train a model to integrate person names into
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Table 2: PAC Baselines using Special Tokens and M4C Architecture. In the training column, a ! between datasets indicates
one dataset was trained on before the other where as a comma in between datasets indicates they were trained on simultaneously.

Metrics
# Tokens Training Test B-4 M R C S

1 a. Special TextCaps PAC 0.7 5.3 11.8 10.6 3.2
b. TextCaps 22.9 22.1 46.0 89.7 15.3

2 a. Special PAC PAC 14.9 22.3 41.9 156.7 30.5
b. TextCaps 2.0 7.5 22.0 8.5 2.6

3 a. Special TextCaps!PAC PAC 14.5 22.4 42.0 156.8 30.3
b. TextCaps 20.7 20.1 43.0 80.4 13.4

4 a. Special PAC,TextCaps PAC 13.6 22.3 42.1 157.2 104.5
b. TextCaps 22.1 20.9 45.3 84.5 24.0

5 a. Special TextCaps!PAC,TextCaps PAC 6.0 18.1 34.4 23.3 104.5
b. TextCaps 23.2 22.0 46.2 91.0 15.1

B-4: BLEU-4; M: METEOR; R: ROUGUE; C: CIDEr, S: SPICE

text. This paper works towards vision-language models than
generate human-like non-generic text, but comes far from
solving the problem. Possible improvements to the proposed
method include inclusion of more external sources, integrat-
ing open-domain knowledge with special tokens, or other
architecture improvements.
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Abstract
Incremental Learning research is principally focused on
overcoming the challenge of “catastrophic forgetting”
to increase model accuracy. However, in this endeavor
of increasing model accuracy, one factor that is almost
consistently overlooked is the way training data is or-
dered with respect to their classes. Although the en-
tirety of a dataset is always available to the authors be-
fore training, random or seeded orderings are typically
used, but this is problematic when trying to reproduce
studies and peak accuracy results. We bring to the ta-
ble a method to sort classes deterministically such that
the order in which they are presented to the IL algo-
rithm will, on average, consistently yield greater mean
accuracy than random orderings do. Thus, through this
novel ordering heuristic, we provide the computer vi-
sion community with a tool to perform more easily re-
produced and benchmarked results, as well as a trick to
boost model accuracy by as much as 5%.

1. Introduction
When AlexNet (Krizhevsky, Sutskever, and Hinton 2012)
emerged in 2012, the Computer Vision, NLP, and Neural
Machine Translation communities, to name a few, shifted
gears. As mentioned in (Can and Ezen-Can 2020), while be-
fore scientists used to spend their time crafting features to
extract information from images, documents, and other data
types, the bursting of deep neural networks into the limelight
has shifted the paradigm towards tuning the networks’ many
parameters. As a direct consequence, substantial progress
has been made in engineering more efficient models and pa-
rameters since then.

Nevertheless, one of the “parameters” that has been un-
derwhelmingly addressed in the literature is the tuning of
the order in which data is being fed to the networks to
maximize accuracy. In the literature, the relationship be-
tween the ordering of data, classes, or tasks and network
accuracy is poorly qualified and/or quantified. Despite in-
adequate understanding of this relationship, the notion that
the order of the data may have an effect on classification
is not new. In fact, (MacGregor 1988; Giraud-Carrier 2000;
Wenzel and Hotz 2010) dabbled with these concepts in the
late 80s, early 2000s, and early 2010’s respectively. While
the problems these authors tried to solve were very differ-
ent, (Wenzel and Hotz 2010) provides a formal definition of

the notion of ordering sensitivity which varies across clas-
sification algorithms. What’s more, the author establishes a
measure to estimate this sensitivity which is computed as the
variance of a network’s accuracy when trained across ran-
domly picked data orderings.

While descendants of AlexNet now excel at the ILSVRC
competition, more challenging problems such as Incremen-
tal Learning (IL) are being addressed. IL experiments of-
ten use the same Imagenet dataset (Deng et al. 2009) that
AlexNet won ILSVRC-2012 on. In IL, a network is trained
on an initial set of classes, and at each incremental step
thereafter, the model keeps getting retrained on data from
different classes without previous data available. As such,
one can see how data or class orderings are particularly rel-
evant to the IL problem.

With that in mind, we turn the attention towards Wen-
zel and Hotz (2010), who brought unto the computer vision
community the intuition that similar classes should be in-
troduced in proximity to each other or according to some
measure of relatedness. This idea is inspired from the way
humans learn in school for instance, where the incremental
learning of new concepts is timed precisely through care-
fully designed curricula. However, the opposite intuition can
also be defended wherein classifiers will more easily classify
classes that are further apart in feature space. For instance,
linear classifiers such as support vector machines (Drucker
et al. 1997) have more ease drawing an accurate hyperplane
between two classes that are further apart in feature space.

Regardless of which approach is the “correct” one, the
proposed research aims to investigate how both these order-
ing strategies can be fitted to various heuristics for class or-
dering applied to the incremental image classification set-
ting.

To summarize, we seek to address the gap in the literature
regarding the effects of class orderings on model accuracy
in the IL setting. Our contributions are the following:

1. Creating diverse class ordering heuristics inspired from
various learning philosophies,

2. Finding a heuristic that consistently yields higher model
accuracies independent of model, dataset, or hyperparam-
eters,

3. Starting a discussion about the way data ordering is used
in comparison studies and state-of-the-art papers in IL and
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how it should be revisited.

2. Related Works
2.1 Class Incremental Learning
Some notable contributions to incremental learning include
early work by Li and Hoiem (2017) with their Learn-
ing without Forgetting (LwF) regularization based method.
Their strategy is to combine the distillation loss from distil-
lation networks and regularization to update model weights
for conserved old task accuracy while tuning for new task
accuracy. The Incremental Classifier and Representation
Learning (iCaRL) model (Rebuffi et al. 2017), builds on
LwF to update its feature representation, but the authors
also augment the training dataset with exemplars, or ex-
ample images from previous tasks that represent their class
seemingly well during training. Further, they adopt an exem-
plar management strategy to cope with the increasing mem-
ory requirements of exemplar storage and a method termed
nearest-mean-of-exemplars to overcome LwF’s tendency to
favor new class data at the classifier level. Liu et al. (2020)
supplement the feature representation and exemplar stor-
age updating strategy by framing the optimization of model
weights and exemplar selection as a bi-level optimization
problem. Finally, (Hou et al. 2019) address the imbalances
in dataset size per class when using exemplars that decrease
old class classification accuracy. They do so by rebalancing
the output probabilities of the softmax layer via cosine nor-
malization to once again reduce bias towards new classes
during classification.

2.2 Task Ordering
Although not necessarily representative of the literature on
this subject, a recent survey on continual learning (Delange
et al. 2021) suggests that task ordering has no effect on ac-
curacy for two datasets, one balanced (Tiny Imagenet) 1 and
another unbalanced (iNaturalist) (Van Horn et al. 2018). In
other words, they change around the order in which each
increment is learned rather than changing the order of the
classes within each increment, or let alone the ordering of
the data within training batches. And, they claim to have
found no effect based on changing the tasks from an order
of easiest to hardest and hardest to easiest. However, they
did point out the drop in accuracy surrounding training on
classes with disproportionately small training sets regardless
of order, thus suggesting a relationship between accuracy
and class types. Further, Nguyen et al. (2019) find that for
task ordering, there is variability of results based on differ-
ent datasets and models. However, they show that when they
factor out possible confounding variables, the heterogeneity
of the sequence of tasks in incremental learning is negatively
correlated with error rate, thus suggesting that increasingly
different tasks will yield higher network accuracies.

2.3 Data Ordering
Can and Ezen-Can (2020) show that the ordering of data
within training batches has a significant impact on network

1https://www.kaggle.com/c/tiny-imagenet

accuracy regardless of learning rate, batch size, or model.
The authors provide statistical analyses to demonstrate the
significance in accuracy disparities across different data or-
derings on Imagenet, but do not provide any insight into gen-
erating favorable orderings.

2.4 Class Ordering
An early approach before the aforementioned “deep learn-
ing boom” to order classes for incremental classification
was based on finding the distance between classes. They
used Baye’s error as a measure of distance and then or-
dered the classes on the basis of which ordering minimized
that distance. The most relevant work to our proposed ap-
proach is that of Masana, Twardowski, and Van de Weijer
(2020) in which they investigate the effect of class order-
ings on the accuracies of state-of-the-art IL models. They
obtain a fitness score for various class orderings which is
computed by taking the trace of the matrix multiplication
of a weight matrix by the confusion matrix obtained after
model training and testing. In their approach, each weight
matrix represents a different heuristic for class ordering, and
the authors use a simulated annealing algorithm to gener-
ate class orderings that will maximize a fitness function for
a given heuristic. That being said, the authors did not find
a heuristic that consistently outperformed random class or-
derings across models. Occasionally, mention of class or-
derings can be spotted in IL papers (Rebuffi et al. 2017;
Castro et al. 2018). Rebuffi et al. (2017) the authors use a
shuffled version of the data that is seeded so that it’s always
the same, and Castro et al. (2018) emphasize the fact that for
fair comparison of IL model accuracies in experiments, the
same ordering of data needs to be maintained on different
models.

3. Approach
Our overarching goal is to find a heuristic for class ordering
that consistently yields greater or equivalent average clas-
sification accuracy relative to random class orderings. We
tested three classes of heuristics, each with two versions en-
gineered towards the opposing learning strategies mentioned
above:
1. Introducing most visually similar classes will yield best

results
2. Introducing most visually distinct classes will yield best

results.
In total, we have six different heuristics, each with their
own minor variations depending on distance measurements
and image type (greyscale vs. RGB).

3.1 Distance Learning
The first heuristic that we call distance learning (DL), is a
greedy heuristic. DL computes the exemplar for each class,
or the pixel wise average of all the images belonging to the
same class. Subsequently, the distances separating each ex-
emplar from one another are computed and stored in an ad-
jacency matrix. The particular distance measure depends on
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Algorithm 1: Min Distance Learning
Inputs: dataset D with set of classes C =

{C1, C2, ..., Cn}
m = number of classes per increment

1 exemplars Compute Exemplars(C)
2 for i, j = 0 to n do
3 distance adjacency matrix[i][j] eu-

clidean distance(exemplars[i],exemplars[j])
4 end
5 first class index one of the two indices for the

min value entry in distance adjacency matrix
6 class order[0] first class index
7 while class order.size != n do
8 append to class order class✓ s.t. class✓ not in

class order & class✓ nearest to
class order[�1]

9 end
10 while class order not empty do
11 increments[i] remove next m classes from

class order
12 end
13 return increments

Algorithm 2: Compute Exemplars
Inputs: C = {C1, C2, ..., Cn}

1 for each Ci in C do
2 exemplars[i] pixel-wise mean of each image

in Ci
3 end
4 return exemplars

the number of channels in the input images: if the images
are greyscale, the pixel-wise euclidean distance is used and
we leave it at that. However, if the image has RGB channels,
two scenarios exist. We first tested the flat method, wherein
we take the mean of the three channels at each pixel for each
image in the given class, and then perform regular euclidean
distance between class exemplars. This is more or less what
is depicted by Algorithm 2. On the other hand, in the sec-
ond measure tested, termed layered, exemplars have three
channels, where each value is the channel-wise mean at that
pixel for each image in the given class. Moreover, instead
of the traditional euclidean distance, we take the sum of the
euclidean distances computed with respect to each channel
as the pixel-wise distance between exemplars.

Finally, the ordering of the classes is then determined
based on the preferred learning strategy. For the first strat-
egy, similarity, the first class is randomly picked among the
two classes that have the minimum distance in the adjacency
matrix, as depicted in Algorithm 1. Then, until all classes
have been picked, we search in the adjacency matrix for the
class closest to the last one that was picked. For the second
strategy, conceptual distinction, we proceed identically but
interchanging minimum with maximum distance.

In the Results section pertaining to DL, all datasets refer-
ence the following six class ordering strategies: random, se-

mantic, flat-max, layer-max, flat-min, and layer-min. In the
random learning strategy, we use the rand.sample() Python
method to randomly generate an ordering of integers from 0
to the number of classes in the dataset. We define the seman-
tic ordering as the order given by the class labels, i.e. images
labeled 3 and 4 or 56 and 57 in the CIFAR100 dataset are in-
troduced to the model consecutively. Initially, since we con-
ducted our first experiments on the MNIST digit dataset and
the labels correspond to the digit being introduced, the la-
bel ordering represents a sort of semantic ordering. However
this did not translate to the other datasets, and other possi-
ble semantic orderings will be discussed in the Future Works
section. The flat and layer orderings represent whether the
distance between classes is computed as the average of RGB
pixel-wise values (flat) or the sum of channel-wise and then
pixel-wise values (layer). And then the min and max key-
words represent whether the ordering of classes is based on
the minimum or maximum distance separating class exem-
plars, which represents the two intuitive learning strategies
mentioned earlier.

3.2 Cluster Learning

The second and third heuristics we present are less
conventional–although one could argue convention isn’t so
much the problem in such a sparse field–as we introduce
heuristics that create tasks with variable amounts of classes
per increment. Similarly to the first heuristic, the second
and third heuristics also compute the exemplars for each
class, which are then passed through a feature extraction rou-
tine to obtain their vectorized feature representations. Sub-
sequently, the feature vectors of the exemplars are clustered,
in our case using mini-batch kmeans (Sculley 2010), and
the centroids of each cluster are evaluated. Afterwards, the
cluster-wise distances are computed and stored in an adja-
cency matrix.

The second heuristic, termed distance clustering, is simi-
lar to DL but with clusters. We define the initial set of classes
for training as those found in one of the two clusters with
the greatest distance separating them, found as the maxi-
mum entry in the adjacency matrix. The classes in the clus-
ter that was not picked as the initial set then become the
set of classes comprising the second increment. Finally, we
keep referring to the adjacency matrix to find the next clos-
est cluster to the last one picked in the ordering, and define
the following increment as the set of classes composing that
cluster.

In the third heuristic, termed scattered (or scattered dis-
tance clustering), we also compute the maximum distances
separating the centroids of each cluster, but we don’t de-
fine the clusters themselves as the classes in a single clus-
ter. Instead, the first increment is composed of one randomly
picked class from each cluster. Therefore, the first increment
contains as many classes as there are clusters defined in the
algorithm. The second increment contains randomly picked
classes from all non empty clusters left. We repeat the pro-
cess until all clusters are empty. It is worth noting that the
number of classes contained in consecutive increments ei-
ther stays constant or decreases using this heuristic.
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Algorithm 3: Min Distance Clustering
Inputs: dataset D with set of classes C =

{C1, C2, ..., Cn}
k=number of clusters
boolean scattered

1 exemplars Compute Exemplars(C)
2 feature vectors retrieve feature vector for each

exemplar from model’s penultimate layer output
3 predictions output predictions of clustering

algorithm on feature vectors with k clusters
4 exemplars per cluster array containing at each

index, all the exemplars 2 ith cluster
5 classes per cluster array containing, at each

index, all the classes 2 ith cluster
6 centroids array containing all the centroids

computed for each cluster
7 for i, j = 0 to k do
8 distance adjacency matrix[i][j] 

euclidean distance(centroids[i], centroids[j]
9 end

10 first cluster index one of the two indices for
the min distance entry in
distance adjacency matrix

11 cluster order[0] first cluster index
12 while cluster order.size != k do
13 append cluster✓ to cluster order, where

cluster✓ not in cluster order & cluster✓
nearest to cluster order[�1]

14 end
15 if scattered then
16 while classes per cluster not empty do
17 increments[i] remove one class from

each non empty cluster in
classes per cluster

18 end
19 else
20 increments[i] ith cluster in cluster order

4. Implementation
4.1 Datasets
Testing was performed on common baseline datasets for
easy comparison to previous work and as well as future com-
parison in this field. Further, we chose datasets of varying
scales to put the scalability of our technique to the test. We
chose two greyscale image datasets, the MNIST digit (Le-
Cun ) and MNIST fashion datasets (Xiao, Rasul, and Voll-
graf 2017), and two RGB image datasets, CIFAR10 and CI-
FAR100 (Krizhevsky, Hinton, and others 2009). All datasets
have 10 classes, except for CIFAR100 which has 100.

4.2 Models
We experimented with three main models: one for
digit MNIST, another for fashion MNIST, and finally a
VGG16 model (Simonyan and Zisserman 2014) for CI-
FAR10&CIFAR100. The first model for MNIST is a simple

neural network taken from the Keras “Simple MNIST con-
vnet”2 and we used the Adam (Kingma and Ba 2014) opti-
mizer with categorical cross-entropy loss. For the fashion
MNIST model, we use a model with 3 convolutional lay-
ers, each with 256 units, Relu activation, 3x3 kernels, and
“HeUniform” kernel initializers (He et al. 2015). These lay-
ers are followed by a max-pooling layer, a flattening layer, a
dense layer with 75 units, and a softmax layer. This model
has the same optimizer and loss function as the one above.

The VGG16 model is loaded from the Keras package with
Imagenet weights and followed up by a global max-pooling
layer, a dropout layer, and a dense layer with 2048 units,
and a softmax classifier. For all results presented in this
paper, we train the models for 50 epochs at each increment
without freezing any weights (for VGG16). We also used an
EarlyStopping callback with a patience of 15 and minimum
delta of 0.001.

4.3 Data
Data was loaded from the keras API and ordered by label for
easier downstream manipulation prior to and during training
and testing. To generate class orderings, we treat all classes
from the dataset prior to the network ever seeing the data,
such that once the classes are sorted in accordance with a
heuristic, no further manipulation of that data is needed be-
fore training the network. At each increment, we make data
from previous classes available for training. We justify this
decision by mentioning that we can use this data as an ini-
tial baseline for comparison of how class orderings affect
identical incremental learning mechanisms while allowing
us to test the robustness of different combinations of param-
eters. Moreover, we hope to make the incremental learning
mechanism itself a variable down the road for further exper-
imentation.

5. Results
In figures 1 and 2, we present experimental data from both
CIFAR10 and CIFAR100. For both datasets, each data point
represents values averaged out over 4-6 replicate experi-
ments. In the case of CIFAR10, each increment, including
the first one, saw the addition of one extra class at each
time point. For CIFAR100, the model was trained on 10 ini-
tial classes, and each increment saw the addition of 5 new
classes. Different combinations of numbers of classes intro-
duced at the first and all subsequent increments were exper-
imented with, and yielded similar results.

In Figure 1, the blue bars show the average accuracy over
all increments for all the distance heuristics presented in this
paper. We see that for CIFAR10 (Figure 2a), the accuracy of
the random heuristic is inferior only to the semantic and flat-
max heuristics by 2.43% and 3.25% respectively. Similarly,
for CIFAR100 (Figure 2b) the random heuristic has a lower
accuracy than the semantic, flat-max, and layer-max heuris-
tics by 0.05%, 5.24%, and 3.44% respectively. Thus we con-
clude that flat-max is the only heuristic so far that consis-
tently gives the network higher accuracy than the random
heuristic. Further, from data on the two MNIST datasets and

2https://keras.io/examples/vision/mnist convnet/
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Figure 1: Comparison of mean accuracies over all incre-
ments and mean accuracies at the final increment obtained
using different ordering strategies for CIFAR10 (top) and
CIFAR100 (bottom).

the two CIFAR datasets, we observe that the more complex
the problem becomes (number of channels per image, num-
ber of images per class, number of classes, etc.) the greater
the margin between the random heuristic and the flat-max
heuristic grows.

In Figure 2, the plots show the accuracy of the six heuris-
tics at each incremental step of the IL experiment. Firstly,
one of the more drastic observations to make is by how much
the minimum distance heuristics under-perform in compar-
ison to the other heuristics, and, moreover, the consistency
of this drop in accuracy from the very first increments. Sec-
ondly, the inconsistency of the accuracies in figure 2b, even
for flat-max, shows that there is still room for much improve-
ment when it comes to designing better heuristics, as those
initial increments are the ones that provide the largest in-
creases to the per approach mean accuracy.

6. Discussion
In this paper, we qualify and quantify the relationship be-
tween the ordering of classes and the accuracy of IL al-
gorithms while finding a heuristic that lets us obtain accu-
racy boosting class orderings that generalize across datasets,
models, and hyperparameters. In the results section above,
we train the aforementioned models using an IL mechanism
described as joint training in (Li and Hoiem 2017). Thus, it

is important to raise the issue that the effects of these order-
ing heuristics may not translate equivalently to actual IL al-
gorithms where data from previous classes is scarce or com-
pletely absent. Nevertheless, as joint training is often used
as an “upper bound” on the performance that IL algorithms
can potentially reach, it is quite promising to show that our
heuristic works on this baseline.

On a different note, the accuracy trends of the heuristics
tested on CIFAR100 reveal volatile behaviors, even for our
most efficient heuristic. This alone serves as motivation to
seek improved heuristics that will yield even greater boosts
in accuracy by smoothing the curve, and also begs the ques-
tion about the scalability of ordering heuristics as only the
min-distance heuristics had relatively constant accuracies
throughout. Finally, our findings put into question the way
data orderings have traditionally been taken for granted as
negligible factors in the experimental IL setup. We want to
bring attention to this problem by showing that there does in-
deed exist ordering heuristics that grant an edge over others.
Thefefore, we would like to invite the community to revisit
previous works where ordering was overlooked in compari-
son studies and even to boost peak accuracy.

7. Future Work
First and foremost, our future works includes a statisti-
cal analysis to investigate the significance of the accuracy
boosts and decreases provided by the ordering heuristics.
Likewise, as mentioned in an earlier section, our study
still lacks rigor in comparing the effect of data orderings
for various incremental learning strategies as carried out in
(Masana, Twardowski, and Van de Weijer 2020). We seek
to test the effect of all the heuristics presented in this paper
on the following three algorithms: Lwf by (Li and Hoiem
2017), iCaRL by (Rebuffi et al. 2017), and LUCIR by (Hou
et al. 2019). Additionally, we would like to test the scala-
bility of the flat-max heuristics and others on heavier duty
data sets like tiny Imagenet and Imagenet1000. Incidentally,
these experiments would also give us the opportunity to in-
vestigate if any heuristics based on the semantics of image
datasets such as the inherited hierarchical relationships from
the WordNet dataset, have any meaningful impact on IL al-
gorithm accuracy. Finally, following our finding that mini-
mum distance heuristics actually significantly reduce model
accuracy, we would like to investigate how class ordering
may be used as an alternate strategy to carry out adversarial
attacks.

8. Acknowledgements
The work reported in this paper is supported by the Na-
tional Science Foundation under Grant No. 2050919. Any
opinions, findings and conclusions or recommendations ex-
pressed in this work are those of the author(s) and do not
necessarily reflect the views of the National Science Foun-
dation.

References
Can, E. F., and Ezen-Can, A. 2020. The effect of
data ordering in image classification. arXiv preprint

REU Symposium on Deep Learning

University of Colorado, Colorado Springs 22



(a) CIFAR10 (b) CIFAR100

Figure 2: Comparing mean accuracies obtained at each increment for the different class ordering strategies.

arXiv:2001.05857.
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Abstract

High throughput chromosome conformation capture
(Hi-C) contact matrices are used to predict three-
dimensional (3D) chromatin structures in eukaryotic
cells. High resolution Hi-C data are less available than
low resolution Hi-C data due to sequencing costs, but
provides greater insight into the intricate details of 3D
chromatin structures such as enhancer-promoter inter-
actions and sub-domains. To provide a cost effective
solution to high resolution Hi-C data collection, deep
learning models are used to predict high resolution Hi-
C matrices from existing low resolution matrices across
multiple cell types. We developed a Hi-C Cascading
Residual Network (HiCARN) that outperforms state-of-
the-art Hi-C resolution enhancement models in predic-
tive accuracy.

Introduction
Chromosome 3D conformation structures are important to
consider when exploring genomic processes within eukary-
otic cell nuclei. Hi-C is a biochemical technique that sup-
ports an all versus all mapping of the interaction of the
fragments in a chromosome and a genome. This interac-
tion between the pair read assays are further converted to
an nxn interaction frequency (IF) contact matrix, where
n is the number fragments in a chromosome or genome
at a given Hi-C data resolution (Lieberman-Aiden et al.
2009). Today, these data are used as the input to many al-
gorithms for advanced understanding of the genome organi-
zation (Oluwadare, Highsmith, and Cheng 2019).

However, a major problem in understanding the genome
organization is the lack of high resolution (HR) data nec-
essary for understanding inherent topologies in the hu-
man genome such as enhancer-promoter interactions or sub-
domains (Zhang et al. 2018), which are only discoverable at
high resolutions such as  10kb. Thus, the critical need in
the chromatin genomics field is the development of a cost
effective method to increase the availability of HR Hi-C
data for advanced study and an in-depth elucidation of the
genome organization.

Deep learning models are used to fill this demand by
predicting the high resolution data from low resolutions
(LR) with great accuracy. Current models include HiCPlus
(Zhang et al. 2018), HiCNN (Liu and Wang 2019a), hicGAN

(Liu, Lv, and Jiang 2019), Boost-HiC (Carron et al. 2019),
HiCSR (Dimmick, Lee, and Frey 2020), SRHiC (Li and Dai
2020), HiCNN2 (Liu and Wang 2019b), VEHiCLE (High-
smith and Cheng 2021), and DeepHic (Hong et al. 2020).
Currently, each of the Hi-C enhancement models have their
various strengths, but performance can still be improved.
Hence, the ultimate objective of this work was to develop
an efficient Hi-C enhancement algorithm that would poten-
tially outperform existing methods for enhancements, using
a cascading residual network (CARN).

A CARN was developed for image super resolution (Ahn,
Kang, and Sohn 2018) and was shown to have a computa-
tional cost of 10 times less than the super-resolution convo-
lutional neural network model (Li et al. 2019). The CARN
also outperforms previous super resolution models in peak-
to-noise-ratio (PSNR) and structural similarity index mea-
sure (SSIM) (Ahn, Kang, and Sohn 2018). Here we present
the application of a Hi-C CARN (HiCARN) to enhance the
resolution of LR Hi-C data and outperform state-of-the-art
Hi-C super resolution models.

Related Work
Previous models are categorized into three groups based on
their respective network architectures: convolutional neural
networks (CNNs), autoencoders, and generative adversarial
networks (GANs).

CNN-Based
The first model used for Hi-C resolution enhancement was
HiCPlus (Zhang et al. 2018) which used a CNN to identify
patterns of IFs from neighboring reference regions to gen-
erate HR Hi-C data from LR inputs. HiCNN improved the
accuracy of Hi-C resolution enhancement with a network
composed of 54 layers that consistently outperformed HiC-
Plus (Liu and Wang 2019a). This was shortly followed by
HiCNN2 where three models were generated using a combi-
nation of one, two, or three CNNs in HiCNN2-1, HiCNN2-
2, and HiCNN2-3 respectively (Liu and Wang 2019b).

Autoencoder-Based
HiCSR is another notable model that uses a denoising au-
toencoder consisting of five convolutional layers preceding
five deconvolutional layers (Dimmick, Lee, and Frey 2020).
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HiCSR outperformed VEHiCLE, another autoencoder based
model in overall GenomeDISCO, HiCRep, and QuASAR-
Rep scores in four tested chromosomes (Highsmith and
Cheng 2021).

GAN-Based
Alternative network architectures besides CNNs have also
been utilized for Hi-C resolution enhancement. A GAN was
used in the hicGAN model where a generator and discrim-
inator were implemented to produce super resolution Hi-C
data and discriminate against real HR data and the super res-
olution data (Liu, Lv, and Jiang 2019).

The current overall best performing model, DeepHiC, is
also a GAN. DeepHiC outperformed HiCPlus and HiCNN
in SSIM score and Pearson Correlation (Hong et al. 2020),
while also outperforming VEHiCLE and HiCSR overall in
the previously cited structural similarity scores (Highsmith
and Cheng 2021).

Methods
Architecture
The following two architectures were compared to choose
the optimal architecture for the performance of HiCARN: a
CARN generator (HiCARN-1)(Figure 1) and a GAN with
a CARN generator and a discriminator (HiCARN-2)(Figure
2).

Figure 1: Cascading residual network architecture with local
and global cascading layers modified for application of Hi-C
data.

Figure 2: HiCARN-2 GAN architecture with a cascading
block generator and discriminator. LR images are passed
through the generator where predicted SR images are cre-
ated. The predicted SR images then are passed through the
discriminator along with the real HR images where the dis-
criminator attempts to classify them as real or fake.

HiCARN-1 and HiCARN-2’s generator retain a similar
architecture to CNNs, except each cascading block contains
two residual network (ResNet) blocks with a 1x1 convo-
lutional layer (Conv) between both ResNet blocks. Each
ResNet block contains two 3x3 Convs and two ReLU ac-
tivation functions with local cascading connections (Figure
3). Intermediate outputs from each block cascade into the
concatenation function of the next block and parameters are
shared between cascading blocks.

Figure 3: Overview of the cascading block architecture. (A)
Cascading block architecture with local and skip connec-
tions. Features extracted from previous layers are propa-
gated through the end of the cascading block via concate-
nation. The features are then condensed into a single chan-
nel as the output. (B) Each residual block follows standard
ResNet architecture, however an additional skip connection
from the input to the block output is added before the con-
volution.

HiCARN’s overall generator network shares the same
connection properties as a single cascading block (Figure
1) which function to maintain and reintroduce features from
multiple layers. This not only contributes to the performance
of HiCARN, but the efficiency as well since the multi-level
connections act as forward and backward propagation short-
cuts (Ahn, Kang, and Sohn 2018), thus allowing for quick
training and accurate predictions. Similarly to ResNet, the
residual and cascading blocks of HiCARN use many skip
connections as well as ReLU activation functions to solve
the vanishing gradient problem.

The discriminator of HiCARN-2 consists of a series of
seven 3x3 Convs, leaky ReLU’s, and batch normalizations
proceeded by a 3x3 Conv and leaky ReLU and followed by
a 3x3 Conv, sigmoid activation, and average pooling (Fig-
ure 3). There are no global or local cascading connections
between blocks and layers.

Loss Functions
HiCARN-1 utilizes mean squared error (MSE), perceptual
loss from the pretrained VGG16 CNN (VGG), and total
variation (TV) loss, while HiCARN-2 adds an additional
adversarial (AD) loss from the discriminator as the gen-
erator loss function; and the binary entropy (BCE) loss
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function for the discriminator.

Generator loss for HiCARN-1 and HiCARN-2 are respec-
tively defined by the following equations[1, 2] where ↵, �,
and � are scalar weights ranging from 0-1:

LG = lMSE + ↵(lV GG) + �(lTV ) (1)
LG = lMSE + ↵(lV GG) + �(lTV ) + �(lAD) (2)

In LG, both lMSE and lV GG compute MSE loss. MSE
measures the cross entropy of the distributions of the gener-
ator SR output and the real HR image by computing the av-
erage squared difference between the two images[3], where
y is a real HR 40x40 submatrix and ŷ is the predicted 40x40
submatrix.

MSE(ŷ, y) =
1

N

NX

i=1

(ŷi � yi)
2 (3)

AD loss of the HiCARN discriminator represents the
probability of discriminator classification error of the gen-
erated fake SR images and real HR images[4].

lAD = 1�
(
P

i ŷi)

N
(4)

TV loss functions to remove noise within the generated
SR image. Total generator TV loss is defined by the follow-
ing function[5] where  is a weight scalar, F is the number
of filters in a tensor of dimensions [F, C, H, W], and hTV [6]
and wTV [7] are the TV losses of H and W respectively:

lTV =
2 ⇤ (hTV + wTV )

F
(5)

Height and width TV loss are calculated by the sum of the
squared difference of the generator output matrix y divided
by the respective dimensions of hTV and wTV . For hTV ,
ŷ(2:i)j is the generator output with the first row removed and
ŷ(1:i�1)j is the same output with the last row removed. A
similar computation is repeated for wTV where the first and
last columns are removed.

hTV =

P
(ŷ(2:i)j � ŷ(1:i�1)j)

2

C ⇤ (H � 1) ⇤W (6)

wTV =

P
(ŷi(2:j) � ŷi(1:j�1))

2

C ⇤H ⇤ (W � 1)
(7)

The discriminator of HiCARN-2 utilizes the BCE loss
function[8] to penalize the discriminator for misclassifying
fake SR images from real HR images. Total discriminator
loss is computed as the sum of the BCE losses for the clas-
sification of fake SR images and real HR images[9].

Hp(q) = � 1

N

NX

i�1

yi ⇤ log(p(yi)+ (1� yi) ⇤ log(1� p(yi))

(8)

LD = Hp(q)real +Hp(q)fake (9)

Data
Hi-C data was collected from the Restructured Gene Expres-
sion Omnibus (ReGEO) database. The training dataset used
was obtained from the GEO GSE63525 human GM12878
cell line, the most common training data across all Hi-C res-
olution enhancement models. From this cell line, chromo-
somes 1, 3, 5, 7, 8, 9, 11, 13, 15, 17, 18, 19, 21, and 22 were
used for training and chromosomes 2, 6, 10, and 12 were
used for validation. The datasets used to test the HiCARN
model were GM12878 chromosomes 4, 14, 16, and 20; the
human K562 cell line; and the CH12-LX mouse embryonic
stem cell (mESC) line. The ESC data was used to test the
model’s accuracy across species. For each chromosome, the
whole matrix was divided into 40x40 submatrices using a
window of 40 and stride of 40 with no overlap of submatri-
ces.

Baseline Model Implementations
All baseline models were trained on our generated datasets
for 1/16, 1/32, 1/64, and 1/100 downsampled inputs. Python
source code for DeepHiC, from which we used their
code for data preprocessing and network architecture, was
obtained from https://github.com/omegahh/DeepHiC.
Source code for HiCSR, HiCNN, and HiC-
Plus were obtained from https://github.com/PSI-
Lab/HiCSR, http://dna.cs.miami.edu/HiCNN2/, and
https://github.com/wangjuan001/hicplus respectively.

HiCSR, HiCNN, and HiCPlus all take 40x40 inputs and
decrease the dimensions to output 28x28 matrices. For these
models to produce 40x40 outputs, during training and testing
LR inputs were padded with zeros to dimension 52x52.

For HiCNN, we attempted to train HiCNN2-1 per the
SGD optimizer parameters as cited (Liu and Wang 2019b),
however the model continuously produced poor results even
with varied parameters. HiCNN2-3 produced the best results
when compared to HiCNN2-2. Hence, we do not report re-
sults for HiCNN2-1 and HiCNN2-2.

Evaluation and Validation
The model was trained and tested using the data previously
cited. A leave-P-out cross validation method was used for
training and validation. Chromosomes 2, 6, 10, and 12 from
the GM12878 human cell line represent P and were tested
at the end of each training epoch to calculate the best SSIM
score over time.

During testing, Pearson Correlation Coefficient (PCC),
Spearman Correlation Coefficient (SPC), Mean Squared Er-
ror (MSE), SSIM, and PSNR scores were calculated for each
40x40 submatrix predicted by HiCARN, DeepHiC, HiCSR,
HiCNN, and HiCPlus. Novel Hi-C analysis metrics such as
GenomeDISCO (Ursu et al. 2018) and HiCRep (Yang et al.
2017) were used to calculate the reproducibility of the gen-
erated 40x40 submatrices. The models were tested across
four randomly selected chromosomes to compare the effi-
ciency and accuracy of HiCARN to state-of-the-art models.
To ensure generalizability of HiCARN, the human K562 and
mESC cell lines were not seen by the model until training
was complete.
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Image Evaluation Metrics
The following equations define PCC, SCC, SSIM, and
PSNR where y denotes the real HR target and ŷ represents
the enhanced LR input. For MSE see equation[3].

PCC calculates the correlation coefficient r of two matri-
ces along the matrix diagonal.

PCCr(ŷ, y) =

P
(ŷi � ¯̂y)(yi � ȳ)pP

(ŷi � ¯̂y)2
P

(yi � ȳ)2
(10)

SCC is also calculated along the matrix diagonal and com-
putes the strength and direction of the monotonic relation-
ship between the two matrices ⇢, whereas PCC is the lin-
ear relationship strength. Here, d represents the difference
between two observation rankings and n is the number of
observations.

SCC⇢(ŷ, y) = 1� 6
P

d
2
i

n(n2 � 1)
(11)

SSIM computes the similarity of two given images. We
used DeepHiC’s implementation of SSIM scoring (Hong et
al. 2020). The function compares contrast, structure, and lu-
minance across the two images via a moving convolution
window, extracting the values µy and µŷ . The values �y and
�ŷ are computed by moving a convolution window across
y2 and ŷ2 and subtracting their respective µ values. The con-
stants C1 and C2 were set to 0.012 and 0.032 respectively.

SSIM(ŷ, y) =
(2µŷµy + C1)(2�ŷy + C2)

(µ2
ŷ + µ2

y + C1)(�2
ŷ + �2

y + C2)
(12)

PSNR measures the ratio of the maximum signal power
to the power of corrupting noise in the image.

PSNR(ŷ, y) = 10 ⇤ log10
✓

N

MSE(ŷ,y)

◆
(13)

Hi-C Reproducibility Metrics
GenomeDISCO and HiCRep provide a more biologically
significant analysis measure compared to standard image
evaluation metrics. GenomeDISCO uses a random walk of
t steps to denoise Hi-C contact matrices from which a dif-
ference vector is computed. The concordance score is calcu-
lated by subtracting the difference vector from 1 in the range
[-1, 1], where larger values indicate increased similarity. We
used the optimal step value t=3 as cited (Ursu et al. 2018).

Similarly, HiCRep denoises the contact matrices prior to
analysis. A Pearson correlation coefficient is calculated for
each stratum. Coefficients are then combined together via a
weighted average producing a stratum adjusted correlation
coefficient. Scores are in the range [-1, 1]. We used the R
implementation of this method.

Results
HiCARN-1&2 were trained on 40x40 submatrices in 200
epochs using the Adam optimizer with a batch size of 64 and
an initial learning rate of 1.0x10�3. A variable learning rate
was used and is defined by the following equation where lrn
and En are the current learning rate and epoch respectively:

lrn = lrn=1 ⇤ (0.1bEn/30c) (14)

The variable learning rate allows for increased learning
in early epochs after-which it stabilizes. HiCARN learns
and converges very quickly for SSIM scores during training
(Figure 4).

Figure 4: SSIM scores captured throughout 200 epochs of
training for HiCARN-2.

Differences among varied cascading blocks
quantities
We trained HiCARN with varying numbers of cascading
blocks. Using 3 cascading blocks proved sufficient for out-
performing state-of-the-art models, however when more
blocks are added, almost all evaluation metric scores in-
crease, albeit slightly. We tested the performance of 3, 4, 5, 6
and 10 cascading block networks. HiCARN with 10 cascad-
ing blocks outperformed all other architectures at the cost
of training and predicting speed. A network of 5 cascading
blocks was chosen to balance the added accuracy of higher
block counts and reduced computational cost of lower block
counts.

HiCARN frequently outperforms baseline models
in image and Hi-C evaluation metrics
A visual comparison of predicted contact maps is provided
for chromosomes 4 and 14 from GM12878 (Figure 5) and
chromosomes 11 and 19 from K562 (Figure 7). HiCARN-
1 and HiCARN-2 produce nearly identical contact maps
which is confirmed by the evaluation metrics (Figure 6).
Within the GM12878 cell line, each of the models recon-
structs a contact map fairly comparable to the HR target.
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Figure 5: Heat map diagram of GM12878 chromosome 4 predictions from HiCARN and baseline models. The top row displays
the 40-45Mb region and the bottom is a zoomed in view from 40-41.5Mb. The green box in the target heat map indicates
zoomed in area.

Figure 6: Image and Hi-C evaluation results of HiCARN
and baseline models for the GM12878 cell line. Bolded
values identify the top score. SSIM, PSNR, MSE, and
GenomeDISCO scores were calculated from predicted
40x40 submatrices during testing. All scores are displayed
as averages across chromosomes 4, 14, 16, and 20. PCC,
SCC, and HiCRep scores were calculated for the entire ma-
trix, indicated by *.

Overall, HiCARN-1 produces the top results for PSNR,
SSIM, MSE, PCC, and GenomeDISCO. HiCARN-2 scores
are quite close with very minimal difference. HiCSR
achieved top scores in SCC and HiCRep.

HiCARN performance across unseen cell lines
HiCARN and baseline models were tested on chromosomes
3, 11, 19, and 21 from the K562 human cell line. Overall,
HiCARN-1 outperforms all other models with HiCARN-2
following close behind. DeepHiC and HiCNN also produced
comparable results in reproducibility scores and image re-
construction.

HiCARN also conditionally outperforms all baseline
models in all evaluation metrics when predicting across
species. If 4 cascading blocks are used for prediction, then
performance is high among baseline models. A network of
10 cascading blocks performs similarly. However, if our
standard model of 5 cascading blocks is used, then accuracy
drops significantly for Hi-C reproducibility metrics.

Figure 7: Heat map diagram of K562 chromosome 19 pre-
dictions from HiCARN and baseline models from the 10-
15Mb region.

3D chromatin reconstruction
We reconstructed 3D chromatin models using the 3DMax
structure prediction tool (Oluwadare, Zhang, and Cheng
2018). Models were generated for the 1/16 downsampled
matrix, the real HR target, and HiCARN’s prediction for
chromosome 4 (40-45Mb) from the GM12878 cell line (Fig-
ure 8). HiCARN is able to produce 3D conformations sim-
ilar to that of the real HR contact maps with a spearman
correlation of 0.8310 between the two.

Conclusion
In this work, we presented a novel framework for HR Hi-C
contact map predictions. Variations in the number of cas-
cading blocks and the overall framework (CNN vs GAN) do
not significantly hinder or improve the performance of Hi-
CARN. However, if the user requires a quick training pro-
cess, HiCARN-1 with 3-5 cascading blocks should be used
to reduce computational load during training and predicting.
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Figure 8: 3D reconstruction of the 1/16 downsampled (left), real high resolution (center) and HiCARN-1’s generated (right)
contact matrices. The region presented is from chromosome 4 (40-45Mb) from the GM12878 cell line. Each colored section
corresponds to a 10kb reference region from the human hg19 reference genome.

We also demonstrated HiCARN’s superior performance
over all baseline models in both image and Hi-C evaluation
metrics. Baseline models performed well, however our net-
work outperformed these models across all tested cell lines.

HiCARN contributes further to the development of high
fidelity predictions of HR Hi-C contact maps from state-of-
the-art resolution enhancement models.

Availability and Implementation
HiCARN can be accessed and utilized as an open-sourced
software at: https://github.com/OluwadareLab/HiCARN.
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Appendix
Equations

a1 = Conv(ReLU(Conv(x))) (15)
b1 = ReLU(a1 + x) (16)

c1 = b1 + x (17)
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Abstract
Identifying splice site (SS) regions is an important step
in genomic DNA sequencing pipelines for biomedi-
cal and pharmaceutical research. Within this research
purview, efficient and accurate SS detection is highly
desirable, and a variety of computational models have
been developed towards this end. In particular, neural
network (NN) architectures have recently been shown
to outperform classical machine learning (ML) ap-
proaches for the task of SS prediction. Despite these
advances, there is still considerable potential for im-
provement, especially in terms of model accuracy and
inter-species generalizability. Bearing these issues in
mind, EnsembleSplice is a deep learning (DL) model
that incorporates the hitherto unseen method of ensem-
ble learning for splice site prediction. When evaluated
on genomic DNA datasets for the species Homo sapi-
ens and Arabidopsis thaliana, EnsembleSplice outper-
formed existing state-of-the-art SS detection models, at-
taining average accuracies of 96.02% for donor SS and
94.59% for acceptor SS.

Introduction
Organismal genomes are studied primarily through genome
annotation, which involves classifying genomic elements
based on their function or location (Abril and Castel-
lano Hereza 2019). This annotation is typically performed at
the nucleotide-level to determine the locations of key genetic
elements in DNA sequences, at the protein-level to evalu-
ate proteomic function, or at the process-level to study the
mechanisms underlying gene interaction (de Sá et al. 2018).

Genes responsible for protein coding are composed of al-
ternating nucleotide regions called introns, which are the
non-protein coding regions, and exons, which are the pro-
tein coding regions. During DNA transcription in eukary-
otic cells, introns are cut out by spliceosomes and exons are
combined together; this general process is called RNA splic-
ing, and is critical for the creation of mature mRNA from
pre-mRNA and for protein synthesis (Pohl et al. 2013). The
dinucleotides AG and GT are often present in the 31 intron
boundary, or donor splice site (DoSS) region, and the 51 in-
tron boundary, or acceptor splice site (AcSS) region, respec-
tively, and are biological markers involved in RNA splicing
(Pertea, Lin, and Salzberg 2001) (see Figure 1). Nucleotide-
level annotation was designed to accurately detect the loca-

tion of these splice sites, which can be used to identify genes
in eukaryotic genomes; a variety of other computational ap-
proaches have also been developed for this purpose.

Figure 1: Illustration detailing the process of splicing.

EnsembleSplice is one such computational method, and
is a deep learning pipeline that employs ensemble learning
for splice site prediction. Ensemble learning methods have
been shown to enhance classification results, and have, in
recent years, been successfully applied within the field of
bioinformatics (Sagi and Rokach 2018; Cao et al. 2020).

We contribute the following to research on splice site pre-
diction:

• We develop EnsembleSplice, a DL architecture that learns
from an ensemble of convolutional neural network (CNN)
and dense neural network (DNN) architectures to achieve
state-of-the-art performance at predicting splice sites.

• We evaluate the performance of EnsembleSplice across
three datasets and two organisms.

• We create a usage tutorial, detail all architectural design
choices, and, for reproducibility, make the code available
at https://github.com/tmartin2/EnsembleSplice.
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Methodology
Datasets
Each dataset used in this paper consists of both confirmed
true (positive) DoSS/AcSS and confirmed false (negative)
AcSS/DoSS. Evaluation of classification performance is
separated by splice site type, which means that one model is
trained to distinguish between false/true DoSS regions and
another is trained to distinguish between false/true AcSS re-
gions. It is important to note that EnsembleSplice is tested on
both imbalanced datasets (HS3D) and balanced ones (Homo
sapiens and Arabidopsis thaliana). See Table 1.

HS3D. The Homo Sapiens Splice Sites Dataset (HS3D)
consists of human genomic DNA introns and exons ex-
tracted from the Primate Division of GenBank Rel.123
(Pollastro and Rampone 2002). There are 2, 796 con-
firmed positive DoSS regions, 2, 880 confirmed posi-
tive AcSS regions, 271, 937 confirmed negative DoSS re-
gions, and 329, 374 confirmed negative AcSS regions.
This paper randomly selects 10000 false DoSS regions
and 10000 false AcSS regions from the 271, 937 and
329, 374 available in the dataset, respectively; the Python
code random.seed(123454) is used to shuffle the en-
tire HS3D dataset before the false DoSS and false AcSS
subsets are selected. The nucleotide consensus AG for
AcSS regions occurs at positions 69 and 70, and the nu-
cleotide consensus GT for DoSS regions occurs at posi-
tions 71 and 72. The HS3D dataset can be accessed at
http://www.sci.unisannio.it/docenti/rampone/.

Homo sapiens and Arabidopsis thaliana. The Homo
sapiens and Arabidopsis thaliana datasets consist of splice
site regions selected from annotated genomic DNA se-
quences for Homo sapiens and Arabidopsis thaliana in En-
sembl (Zerbino et al. 2018). The peripheral nucleotide se-
quences padding each AcSS or DoSS were determined via
Bedtools (Albaradei et al. 2020; Quinlan and Hall 2010).
Each splice site region in the datasets is 602 nucleotides
long; each DoSS region has consensus GT at positions 301
and 302, and each AcSS has consensus AG also at posi-
tions 301 and 302. In the Homo sapiens dataset, there are
250, 400 confirmed positive and negative DoSS regions, and
248, 150 confirmed positive and negative AcSS regions. The
Arabidopsis thaliana dataset includes 110, 314 confirmed
positive and negative DoSS regions, and 112, 336 confirmed
positive and negative AcSS regions. The confirmed nega-
tive AcSS and DoSS regions were selected from chromo-
somes 21, 2, 2L, 1, and I . Again, this paper randomly se-
lects 8000 true/false DoSS regions and 8000 true/false AcSS
regions from both datasets. As with the HS3D dataset, the
Python code random.seed(123454) is used for shuf-
fling the Homo sapiens and Arabidopsis thaliana datasets
before the DoSS and AcSS subsets are selected. The Homo
sapiens and Arabidopsis thaliana datasets can be accessed
at https://github.com/SomayahAlbaradei/Splice Deep.

EnsembleSplice Pipeline
We now propose EnsembleSplice, a DL architecture that
consists of an ensemble of three CNN and three DNN sub-

Table 1: Dataset Metrics
Splice Site Dataset Sequence

Count
Pos:Neg

Ratio
Acceptor
(AcSS)

HS3D 2,880 (true),
10000 (false)

1:3.472

Homo
Sapiens

8000 (true),
8000 (false)

1:1

Arabidopsis
thaliana

8000 (true),
8000 (false)

1:1

Donor
(DoSS)

HS3D 2,796 (true),
10000 (false)

1:3.577

Homo
Sapiens

8000 (true),
8000 (false)

1:1

Arabidopsis
thaliana

8000 (true),
8000 (false)

1:1

models, for the task of splice site detection. See Figure 2 for
the full architecture.

The sub-models in EnsembleSplice generate predictions
for whether genomic DNA input sequences are positive
DoSS or negative DoSS, or if the AcSS model is being
used, for whether the sequences are positive AcSS or neg-
ative AcSS. These binary predictions are then aggregated
(stacked) into a new dataset, where each sub-model’s pre-
dictions become a column vector, and this dataset is then
fed into a Logistic Regression classifier, which produces the
final predictions for the inputted sequences.

Consider a family

D “ tS0, S1, . . . , Snu
of nucleotide splice site regions. We have the ordered set

Si “ tx1, x2, . . . , x|Si|u
where Si is the i-th nucleotide splice site region, and

xj P X “ tA,C,G,Tu, 0 § j § |Si|
For all 0 § i § n, Si is encoded as a |Si| ˆ |X| binary
matrix through one-hot encoding. These encoded sequences
are fed to the three CNNs and three DNNs.

Each CNN sub-model in EnsembleSplice is composed of
three convolutional layers and a dropout layer. The convo-
lutional layers automatically extract local and global fea-
tures from the AcSS or DoSS input sequences. In particular,
these layers form complex representations of the sequences,
and are the components of the CNN that allow it to ac-
curately discriminate between the true/false acceptor/donor
sites. The first layer has 72 convolutional filters and a ker-
nel size of 5, the second layer has 144 convolutional filters
and a kernel size of 7, and the third layer has 168 convolu-
tional filters and a kernel size of 7. Each convolutional layer
employs the ReLU activation function as its final compo-
nent; this removes noisy or otherwise irrelevant features,
thus improving feature selection (Hahnloser et al. 2000;
Krizhevsky and Hinton 2010). Additionally, each convolu-
ational layer has a stride size of 1. Next, a dropout layer
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prunes a percentage (20%) of each network’s total convolu-
tional nodes, which limits the co-dependencies each node in
the network has on other nodes in the network, subsequently
reducing model overfitting (Srivastava et al. 2014). Lastly,
the output is fed through a Softmax activation function,
which produces, for each given input sequence, a probability
of that sequence being a true/false acceptor/donor site. The
ADAM optimizer with an inverse time decay learning rate
schedule is used during model compilation (Kingma and Ba
2014). This architecture is consistent across the CNN sub-
models, and is used for both AcSS prediction and DoSS pre-
diction. The CNN architecture parameters were selected us-
ing hyperparameter tuning. For the hyperparameter tuning,
see Table 2.

The DNN sub-models in EnsembleSplice consist of two
fully-connected dense layers, followed by a dropout layer,
another fully-connected dense layer, and another dropout
layer. The first two fully-connected dense layers have 704
and 224 nodes, respectively, and both use a kernel regular-
izer with an L2 regularization penalty of 0.025. The third
fully-connected densee layer has 512 nodes, but uses no reg-
ularization penalties. The first dropout layer prunes 10% of
the DNN’s nodes and the second dropout layer prunes 15%.
Each fully-connected layer incorporates the ReLU activa-
tion function. Identical to the CNN sub-models, the output
layer is a Softmax activation function and model compila-
tion for the DNN sub-models is completed via the ADAM
optimizer with an inverse time decay learning rate schedule.
All DNN sub-models use this architecture for both AcSS
prediction and DoSS prediction, and the parameters for this
architecture were also selected using hyperparameter tuning.

EnsembleSplice is implemented via the Ten-
sorFlow/Keras framework (Abadi et al. 2016;
Chollet and others 2018). For all experiments con-
ducted, 30 was the maximal number of epochs used for
training. The early model stopping callback, which ceases
training if the model’s validation loss does not improve
for a selected number of epochs, was used during training
and validation, which occurred in Google Colaboratory
https://colab.research.google.com/ and made use of Graph-
ical Processing Unit (GPU) hardware. Cross validation
was used for initial CNN and DNN sub-model architecture
testing.

One-hot Encoding
Genomic DNA splice site regions are composed of four nu-
cleotides - A (Adenine), C (Cytosine), G (Guanine), or T
(Thymine). Given the input constraints of DL architectures,
these nucleotides are encoded numerically, as opposed to
categorically. Each nucleotide corresponds to a row in a 4ˆ4
identity matrix. The encoding scheme utilized in this paper
is that A corresponds to [1, 0, 0, 0], C corresponds to
[0, 1, 0, 0], G corresponds to [0, 0, 1, 0], and
T corresponds to [0, 0, 0, 1]. Since each splice site
region consists of some N nucleotides, the final numerical
representation for each splice site region is a N ˆ 4 matrix,
where each row is a one-hot encoded nucleotide that occurs
at the same index as it did in the splice site region’s original
representation.

Table 2: Sub-model Hyperparameter Tuning
CNN Parameters Search Space
Conv. Layer 1 Filters t8, 16, . . . ,72, . . . , 400u
Conv. Layer 1 Kernel Size t1, 3,5, 7, 9u
Conv. Layer 2 Filters t8, 16, . . . ,144, . . . , 400u
Conv. Layer 2 Kernel Size t1, 3, 5,7, 9u
Conv. Layer 3 Filters t8, 16, . . . ,168, . . . , 400u
Conv. Layer 3 Kernel Size t1, 3, 5,7, 9u
Dropout Layer t 1

20 ,
2
20 ,

3
20 ,

4
20 , . . . ,

10
20u

DNN Parameters Search Space
Dense Units 1 t32, 64, . . . ,704u
Dense Kernel Reg. 1 t 1

1000 ,
1

400 ,
1

200 ,
1

100 ,
1
40 ,

1
20u

Dense Units 2 t32, 64, . . . ,224, . . . , 704u
Dense Kernel Reg. 2 t 1

1000 ,
1

400 ,
1

200 ,
1

100 ,
1
40 ,

1
20u

Dropout Layer 1 t 1
20 ,

2
20 , . . . ,

10
20u

Dense Units 3 t32, 64, . . . ,512, . . . , 704u
Dropout Layer 2 t 1

20 ,
2
20 ,

3
20 , . . . ,

10
20u

Cross Validation, Training, and Testing
The HS3D, Homo sapiens, Arabidopsis thaliana dataset sub-
sets were each split into a training (80% of the data) and a
testing (20% of the data) subset. Cross-validation has been
demonstrated to be an effective tool for model selection, and
as such, 10-fold cross validation was used for evaluating
alternative EnsembleSplice sub-model architectures (Shao
1993). For each dataset, the training subset of that dataset
was partitioned into 10 approximately equal sized subsets.
Every subset was used at some point to evaluate the perfor-
mance of EnsembleSplice; for each of the 10 runs, training
occurred on 9 subsets, and testing occurred on the last sub-
set. The cross-validation performance for a particular dataset
was the average performance over the 10 folds. Once the
sub-model architectures for EnsembleSplice were chosen,
EnsembleSplice was trained on the full training subset of
each dataset, and then tested once on the testing subset of
the respective dataset. No additional training or validation
occurred following the final test run; the results reported for
EnsembleSplice in this paper are the performances from this
final test run.

Experiments and Results
Evaluation Metrics
To measure the performance of EnsembleSplice, and to
compare EnsembleSplice with with other splice site detec-
tion models, the counts of correctly identified true AcSS or
DoSS (true positive, “TP”), correctly identified false AcSS
or DoSS (true negative, “TN”), incorrectly identified true
AcSS or DoSS (false positive, “FP”), and incorrectly iden-
tified false AcSS or DoSS (false negative, “FN”) are used.
See Table 3.
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Table 3: Confusion Matrix for Binary Classification Tasks

Actual Class
Predicted Class

Class Positive Class Negative

Class Positive True Positive
(TP)

False Negative
(FN)

Class Negative False Positive
(FP)

True Negative
(TN)

From these metrics, additional metrics common to clas-
sification tasks can be used for evaluation: Accuracy (Acc)
- the fraction of AcSS or DoSS correctly identified, Preci-
sion (Pre) - the fraction of positive classifications for AcSS
or DoSS that were positive, Sensitivity (Sn) - the fraction of
positive AcSS or DoSS with a positive classification (true
positive rate), Specificity (Sp) - the fraction of negative
AcSS or DoSS with a negative classification (true negative
rate), Matthew’s correlation coefficient (Mcc) - the corre-
lation between true/false AcSS and DoSS and the classifi-
cations for them generated by the mode, and F1 score - the
harmonic means of the fraction of positive classifications for
AcSS or DoSS that were positive and the fraction of positive
AcSS or DoSS that were correctly identified. Lastly, the er-
ror rate measures how often the classifier misclassified the
data. The equations for these metrics are in Table 4.

Table 4: Evaluation Metrics
Metric Equation

Acc TP`TN
TP`FN`TN`FP

Sp TN
TN`FP

Sn TP
TP`FN

F1
2ˆTP

2ˆTP`FP`FN

Pre TP
TP`FP

Mcc TPˆTN´FPˆFN?
pTP`FP qpTP`FNqpTN`FP qpTN`FNq

Error rate 1´ Accuracy

Model Benchmarking
The state-of-the-art models iss-CNN and SpliceRover were
used in a comparision with EnsembleSplice (Zuallaert et al.
2018; Tayara, Tahir, and Chong 2019).

iss-CNN was trained on a subset of HS3D data, and con-
sists of a convolutional layer with 16 filters, a kernal size
of 7, and stride size of 3, a dropout layer that prunes 30%
of the nodes, and a fully-connected dense layer that uses
the Sigmoid activation function. The testing was conducted
on iss-CNN’s public web server, which can be found at

http://nsclbio.jbnu.ac.kr/tools/iSS-CNN/, and the classifica-
tion threshold used for predicting AcSS or DoSS was 0.5.
The HS3D testing subset, which was also used to evaluate
EnsembleSplice, was used for benchmarking iss-CNN. See
Figure 3

Figure 2: iss-CNN Webserver

Figure 3: The iss-CNN public webserver.

SpliceRover was trained on human genomic DNA data
and Arabidopsis thaliana genomic DNA data, and is an-
other CNN. Its architecture consists of a convolutional layer
with filters equal in number to the AcSS or DoSS length, a
max-pooling layer, and a series of convolutional and max-
pooling layers. A fully-connected dense layer follows the
convolutional layers, and the output is lastly fed through a
Softmax activation function. To benchmark SpliceRover,
their publically available web server was used; a cut of
0.5 was again utilized, as this is what EnsembleSplice
uses. The web server can be found at the following link:
http://bioit2.irc.ugent.be/rover/splicerover. See Figure 5

Figure 4: SpliceRoverWebserver

Figure 5: The SpliceRover public webserver.

The benchmarked results, along with EnsembleSplice’s
results, can be found in Table 5.
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Table 5: Model Performances
Dataset Splice Site Model Sp Sn Pre Err Acc Mcc F1
HS3D Acceptor issCNN 89.20 91.84 83.05 9.83 90.16 79.53 87.22

EnsembleSplice 97.75 92.36 92.20 3.45 96.55 90.07 92.29
Donor issCNN 94.50 94.99 90.61 5.32 94.68 88.61 92.75

EnsembleSplice 98.25 96.96 93.93 2.03 97.97 94.14 95.42
Arabidopsis thaliana Acceptor SpliceRover 88.31 89.25 88.42 11.22 88.78 77.57 88.83

EnsembleSplice 93.88 93.44 93.85 6.34 93.66 87.31 93.64
Donor SpliceRover 86.88 87.13 86.91 13.00 87.00 74.00 87.02

EnsembleSplice 94.06 94.81 94.11 5.56 94.44 88.88 94.46
Homo Sapiens Acceptor SpliceRover 88.25 93.44 88.83 9.16 90.84 81.80 91.08

EnsembleSplice 93.19 93.94 93.24 6.44 93.56 87.13 93.59
Donor SpliceRover 85.44 91.13 86.22 11.72 88.28 76.69 88.61

EnsembleSplice 95.31 96.00 95.34 4.34 95.66 91.31 95.67

Figure 6: Donor site detection accuracies for each method
tested.

Figure 7: Acceptor site detection accuracies for each method
tested.
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The accuracies for each DoSS model benchmarked can be
found in Figure 6, and the accuracies for each AcSS model
benchmarked can be found in Figure 7.

Conclusion and Future Work
From the results, it can be observed that on all metrics em-
ployed, EnsembleSplice performed better than either iss-
CNN or SpliceRover, two state-of-the-art methods that ex-
ist for splice site prediction and that use DL architectures.
For future work, we consider evaluating model robustness;
this would consist of testing a model trained on genomic
DNA from one species on another species genomic DNA.
In this case, that would mean testing the EnsembleSplice
models trained on Homo sapiens data on the Arabidopsis
thaliana data, and seeing how well the performance gener-
alizes across species.
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Abstract

This paper examines the effectiveness of deep learning
models at predicting motor imagery (MI) tasks
when adding data across subjects within the same
dataset and from different datasets. We generate
STFT representations of EEG data and classify those
representations with a simple CNN architecture to test
this influence. In addition to that, we compare the
simple CNN with AlexNet for single trial.
The simple CNN outperforms AlexNet across every
subject for single trial and gets close to state-of-the-art
performance in BCI Competition IV Dataset I, and BCI
Competiton III Dataset IVa, with it achieving 2.22%
higher accuracy on subject E than the highest state-
of-the-art model compared, while also outperforming
some of the other studies for average accuracy.
When testing the influence of pertaining on other
subjects, 9 of the 20 subjects tested saw an improvement
in accuracy when the additional data was added. The
overall trend is, of those 9, the lower performing
subjects improved the most.

I. Introduction
Brain-computer interfaces (BCI) are communication
technologies that allow people’s brains to send commands
to the outside world without passing through normal
pathways such as nerves or muscles (Wolpaw et al. 2002).
Electroencephalogram (EEG) data can store these encrypted
signals through brain activity recorded by electrodes placed
on a subject’s scalp.

One set of tasks for BCI studies is a subject’s intention
to move their body, separate from the signals of actually
moving their body. This set of tasks is called motor imagery

(MI). The goal of MI classification models is to predict
which body part a subject is imagining moving. A perfect MI
prediction model could allow robotic prosthetics to receive
directions from the brain about how to move, mimicking the
way humans interact with their natural limbs (Katyal et al.
2014). Another application is that it would let people play
video games with their thoughts instead of a controller or
keyboard (Parthasarathy et al. 2020).

Our hypothesis is that a unique pattern in the EEG
data would allow a model to correctly classify MI tasks
for most people. Like image classification, the problem is

that to generalize a MI prediction model across subjects
effectively, the model needs to be robust to the variations
across samples. This study aims to test the influence of
adding all available subjects to the training data. However,
unlike image classification, MI datasets typically have less
than 20 subjects; the standard benchmark datasets from BCI
competition III and IV have at most 9 subjects.

The solution this paper tests is the effect of combining
multiple subject’s data to pre-train before evaluating the
last subject. This paper’s approach combines MI datasets
collected by different labs with different procedures
conducting different experiments. For example, one lab
could be testing left foot or right foot, while another lab is
testing right hand and left foot. To combine these datasets,
the MI prediction model has to predict all these tasks
or generalize these tasks (ex. left and right foot become
just foot). In addition to that, the model has to classify
across recording sessions, recording devices, protocols, and
experiment designs.

The model uses representations of the EEG data’s
component frequencies using the Short-time Fourier
transform (STFT). After this, we test for single trial on
a simple CNN and AlexNet. The motivation for testing
AlexNet is that there are more resources put into image
classification models, so finding an accurate image classifier
of EEG data for motor imagery would help the BCI
community by giving access to a much larger pool of
possible networks for motor imagery classification.

The rest of the paper is organized as follows. Related
work covers some of the state-of-the-art machine learning
methods that have been applied to motor imagery
classification. The method covers the prepossessing, STFT
feature extraction, simple CNN and AlexNet architecture,
and how we evaluated the impact of training on additional
subjects. The results show the impact of the additional data
along with a comparison with other state-of-the-art methods.
The discussion section suggests possible explanations and
limitations of these results. Lastly, the future work section
provides a brief overview of possible strategies to improve
on these results.

II. Related Work
This section provides an overview of some of the state-of-
the-art machine learning models designed to classify MI
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tasks.

A. STFT

(Tabar and Halici 2016) generated STFT representations
of EEG data. The STFT produced an image of both the
mu band and the beta band for each epoch, and a specially
designed convolutional neural network (CNN) model called
CNN-SAE is used to classify those images. They reported
accuracy of 77.6% with the highest accuracy of 95.3% on
subject 4 on BCI Competition IV dataset 2b.

(Chaudhary et al. 2019) generated STFT and CWT
representations of EEG data. From that, they fed the
images to the image classification model AlexNet. They
evaluated their model on BCI Competition III Dataset IVa.
For single-trial, they obtained an accuracy of 99.35% with
the CWT representations and 98.7% accuracy for STFT
representations.

(Lu et al. 2016) implemented a restricted Boltzmann
machine (RBM) to classify motor imagery tasks. They stack
three RBM models together using a Frequential Deep Belief
Network (FDBN) with a final softmax layer to classify the
signals. They used BCI competition IV dataset 4a to test
their model, and they reported 71% accuracy for subject
transfer.

(Schirrmeister et al. 2017) applied three different CNN
architectures. They tested CNN with 2, 5, and 31 layers.
The shallow CNN provided the best results on the BCI
Competition IV dataset IIa with 73.7% accuracy for
frequencies ranging from 0-38 Hz and 60.8% accuracy for
frequencies ranging from 4-38 Hz. They didn’t report the
accuracy of their model specifically for subject transfer,
but (Amin et al. 2019) reported that they obtained 41.0%
accuracy on the BCI Competition IV dataset IIa.

(Zhou et al. 2018) proposed a method that extracted the
wave features from the signal data and then used that as
input for an LSTM model. The wave extraction methods
they used were Hilbert transform (HT) and discrete wavelet
transform (DWT). They reported an accuracy of 91.43% on
BCI competition II dataset III.

B. CSP

(Kumar, Sharma, and Tsunoda 2019) proposed a method
that combines a common spatial pattern (CSP) model and a
long short-term memory (LSTM) model to motor imaginary
EEG signals. They used data BCI Competition IV Dataset
I for single trial classification. The average accuracy across
the subjects was 82.16%.

C. Raw Signal

(Luo and Lu 2018) used a Conditional Wasserstein
GAN (CWGAN) to generate more EEG signal data to
classify emotions. They only used high-quality data, which
they evaluated using discriminator loss, maximum mean
discrepancy, and two-dimensional mapping. The additional
data reported accuracy improvements of 2.9%, 9.15%, and
20.13%, depending on the dataset.

(Amin et al. 2019) built on the work done by
(Schirrmeister et al. 2017) by developing a CNN fusion
method for EEG data. The networks are first pre-trained

on a high gamma dataset (HGD) with 20 subjects. The
fusion models they used were multilayer perceptron and an
autoencoder. When testing for subject transfer classification
on the BCI Competition IV dataset IIa, the proposed cross-
encoding model scored 55.3% accuracy with it getting
69.43% accuracy on subject 9.

III. Method

A. Data

Some of the widely used benchmark datasets are from
BCI Competition III and IV (Blankertz et al. 2005),
(Tangermann et al. 2012). We used dataset IIa and dataset
I from BCI Competition IV and dataset IVa from BCI
Competition III.

BCI competition IV dataset IIa consists of 9 subjects
labeled A01, A02, A03, A04, A05, A06, A07, A08, A09.
In the experiment, they are asked to think about moving
their right hand, left hand, both feet, and tongue, with the
exception of A04, who did not perform the foot task. Motor
imagery takes place for three seconds after the cue. The
experiment was recorded with a sampling rate of 250Hz on
22 EEG channels. We evaluate this dataset on 3 classes: left,
right, and foot.

BCI Competition IV dataset I consists of 7 subjects, A,
B, C, D, E, F, G. It this experiment, subjects B, C, D, E,
and G are asked to think about their left hand or right hand.
Subjects A and F are asked to think about their left hand or
feet. Motor imagery takes place for times varying from 1.5s
to 8s. The experiment was recorded with a sampling rate of
1000Hz on 59 EEG channels.

BCI Competition III Dataset IVa consists of 5 subjects
labeled aa, al, av, aw, ay. In the experiment, all the subjects
were asked to think about moving their right hand or right
foot. Motor imagery lasted for 3.5s. The experiment was
recorded at 1000Hz on 118 EEG channels.

To make the datasets compatible, we did the following.
We chose 12 channels, C1, C2, C3, C4, C5, C6, CP3, CP4,
Cz, FC3, FC4, Fz, which are common across all the datasets.
We chose an epoch length of 3.5s for each of the datasets
when training across datasets. Lastly, all of the datasets were
downsampled to 250Hz.

B. Preprocessing

The primary purpose of the prepossessing stage is to split
the EEG data into time segments that represent a specific MI
task.

The first step was to pick the 12 channels common across
all the datasets. After this, we downsampled every subject
to the lowest sample rate of 250 Hz. After this, we applied
common average referencing for each of the channels. We
apply a current source density filter to the data. After this,
we applied a bandpass filter to only look at the Alpha and
Betta waves (0.5-100 Hz). A bandpass filter of 8-30Hz is
later applied when we generate the STFT representations.
After this, we split the raw EEG into epochs of length 3.5s.
The only exception is that we used a window of 4s when
testing single trial for BCI Competition IV dataset IIa.
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C. Short-Time Fourier Transform (STFT)

Short-time Fourier Transformation (STFT) has been
proven to work as a feature representation to classify MI
tasks using EEG data (Chaudhary et al. 2019), (Tabar and
Halici 2016). STFT can represent the change in component
frequencies over time. The formula is shown below.

X(t, f) =

Z
x(⌧)h(⌧ � t)e�j2⇡f⌧d⌧, (1)

where x(t) is the STFT of the signal, h(t) is the lowpass
filter, and X(t, f) is the correlation between x(⌧) and
h(⌧ � t)e�j2⇡. STFT representations effectively capture
the temporal or frequency features of the signal with larger
windows increasing the frequency resolution and shorter
windows increasing the time resolution (Kwok and Jones
2000). For all subjects, we had a window size of 1s with
an overlap size of 0.9s.

For AlexNet, the STFT spectrograms were transformed
from shape 540 x 26 x 1 to RGB images with shape 224 x
224 x 3. The simple CNN took the STFT spectrograms at
their original size of 540 x 26 x 1.

Figure 1: Resized STFT spectogram for AlexNet on subject
al: right hand (A), foot (B)

D. CNN Models

After the STFT representations are generated, they are
fed into either AlexNet or a simple CNN for classification.
AlexNet consists of eight layers: 5 convolutional layers, 3
max-pooling layers, and a dropout layer, generating about
62 million parameters.

In contrast, the simple CNN we tested has 2,800,009
parameters with 2 convolutional layers and 1 max-pooling
layer. The layers are shown below. In all experiments, the
learning rate was set to 0.0001.

Layer Type Output Shape Parameters
Conv2D (1, 540, 26, 4) 104
MaxPool2D (1, 270, 13, 4) 0
Con2D (1, 270, 13, 4) 404
Flatten (1, 14040) 0
Dense (1, 200) 2808200
Dropout (1, 200) 0
Dense (1, 2) 402

Figure 2: An overview of the method’s structure from
importing the EEG data to classification

Figure 3: Validation and training accuracy for simple CNN
plotted over epochs for subject al

V. Expiriments

Experiment 1

To test the influence of using all available data on
motor imagery classification and the effectiveness of
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STFT representations with the CNN models, we ran four
experiments for each of the subjects, single-trial, cross-
subject within-dataset (CSWD), and cross-subject cross-
dataset (CSCD).For single-trial, the evaluation and the
training data were combined into one dataset except for
the subjects in BCI Competition IV dataset I because the
tasks in the evaluation set were different from those in the
training set. After this the data was shuffled, they are split
into 2 groups; one that contains 80% of the subject’s data
for training and 20% of the subject’s data for evaluation. The
accuracy reflects the average of 3 iterations of a 5-fold cross
validation. For each of the folds, training ran for 180 epochs
with a batch size of 20.

Experiment 2

For the cross-subject within-dataset (CSWD) experiment,
we ran a leave-one-out validation for zero-trial where none
of the last subject’s data is used and an experiment where
50% of the last subject’s data is trained on after pretraining
on the other subjects’ data. Pretraining ran for 240 epochs
with a batch size of 100. Retraining with the 50% trial ran
for 120 epochs with a batch size of 20.

Experiment 3

For the cross-subject cross-dataset (CSCD) experiment,
we ran a leave-one-out validation for zero-trial and a 50%
trial. Even though each subject’s data is symmetric, it’s not
symmetric across datasets, so the classes were weighted by
taking the ratio between the number of total samples over
the number of samples in a specific class. Pretraining ran
for 400 epochs with a batch size of 100. Retraining with
the 50% trial ran for 160 epochs with a batch size of 20.
For both CSWD and CSCD, each of the subject’s 50% was
tested separately, and the average accuracy for an iteration
reflects the average of those sets.

VI. Discussion

A. Single-Trial

For single trial, both a simple CNN and AlexNet were
evaluated. In every subject, the simple CNN outperformed
AlexNet. Two possible contributing factors to this are the
number of parameters in AlexNet and the inherent distortion
when reshaping the input to 224 x 224 x 3. The simple
CNN has 22x fewer parameters, which might be better suited
for a smaller amount of data. AlexNet was developed with
the intention of classifying ImageNet, which has 22 million
images, substantially more images than the number of
samples in the BCI competition datasets. BCI Competition
IV dataset IIa has the most at only 432 samples for 3-
class between training and validation. The other issue with
AlexNet could be that the STFT spectrograms have to be
distorted before AlexNet can train on them. Since we chose
12 channels, the shape of the spectrogram is 540 x 26, a
rectangular matrix that gets converted to a square matrix.

Comparing the results to other studies, the model
performs the best on BCI Competition III dataset IVa. Just
with single-trail the average accuracy shows an increase of

7.49% from (Su et al. 2020), 4.59% from (She et al. 2018),
and 1.00% from (Park and Chung 2018).

B. Adding additional data

There isn’t a large amount of EEG data for classifying
motor imagery tasks. Thus we tested the influence of adding
more data both from within that dataset and across other
datasets. The subjects where adding more helped were A05,
A06, A07 from BCI competition IV dataset IIa, C, F, and
G from BCI Competition IV dataset I and subjects al, av,
and aw from BCI competition III dataset IVa. The average
change in accuracy from single trial to CSWD - 50% was -
6.81%, -2.77%, and 0.794% for BCI Competition IV Dataset
IIa, BCI Competition IV Dataset I, and BCI Competition III
Dataset IVa, respectively. The average change in accuracy
from single trial to CSCD - 50% was -3.69%, -0.31%,
and -3.65% for BCI Competition IV Dataset IIa, BCI
Competition IV Dataset I, and BCI Competition III Dataset
IVa, respectively. A significant contributing factor could be
that the single trial takes 30% more of the subjects’ data to
train before evaluation.

That being said, some subjects improved their accuracy
with more training data from the other subjects. Going
from single trial to CSWD - 50%, subject C, from BCI
Competition IV dataset I, had a 9.42% increase. Going from
single-trial to CSCD, subject A05 from BCI Competition IV
dataset IIa saw an improvement of 8.45%. These subjects
both performed the worst for single trial in their respective
datasets. Since these were low-performing subjects, this
could imply that these subjects need a more robust model to
classify their tasks. If these subjects have lower quality data,
meaning the signals do not match the task, then it follows
that when the model sees other subjects’ low-quality data,
the model becomes more robust to those outlier samples
where the subject may not be thinking about the task. On
the other side, for subjects with high-quality data, the results
seem to suggest that the model does not need to capture these
outlier data points.

VII. Conclusion
This paper demonstrated that adding additional subjects
from the same dataset as well as from other datasets can
mainly improve accuracy of low-performing subjects for
classifying motor imagery tasks because 9 of the 20 subjects
saw an improvement when increasing the amount of data.
This paper also outlines some of the potential benefits of
opting for a simple CNN as opposed to a network with
many more parameters like AlexNet. It also outlined that
feature representations meant for subject transfer can still
remain competitive with state-of-the-art single-trial methods
for BCI Competition III Dataset IVa, with it improving on
three of the existing state-of-the-art techniques.

VIII. Future work
This study tested the impact of adding additional data by
combining the data from all the other subjects in a specific
subject’s dataset or all the data from all the datasets used.
Given that the poor subject’s improved in accuracy and the
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Table 1: BCI Competition IV Dataset IIa

A01 A02 A03 A05 A06 A07 A08 A09 Average
CNN 79.98% 67.28% 82.01% 53.14% 55.78% 74.31% 69.14% 76.10% 69.18%
AlexNet 77.28% 58.2% 77.18% 42.74% 53.09% 63.53% 68.29% 72.61% 63.49%
CNN CSWD - 0% 58.45% 36.19% 46.37% 36.80% 36.57% 26.77% 51.15% 47.22% 42.44%
CNN CSWD - 50% 73.53% 63.27% 75.85% 49.23 47.61% 64.49% 64.43% 72.76% 63.90%
CNN CSCD - 0% 59.03% 35.01% 45.68% 39.74% 36.57% 32.79% 43.40% 42.82% 42.44%
CNN CSCD - 50% 70.76% 53.55% 74.54% 61.61% 63.27% 81.25% 66.59% 67.67% 67.41%

Table 2: BCI Competition IV Dataset I

A B C D E F G Average
CNN 82.00% 72.66% 69.00% 74.99% 98.66% 77.00% 89.50% 80.54%
AlexNet 68.67% 63.67% 67.67% 72.33% 96.16% 63.17% 88.67% 74.33%
CNN CSWD - 0% 56.75% 64.83% 54.25% 50.67% 53.42% 50.67% 54.42% 55.00%
CNN CSWD - 50% 81.16% 68.33% 78.42% 68.83% 89.42% 79.58% 78.67% 77.77%
CNN CSCD - 0% 64.99% 59.00% 51.08% 52.75% 87.66% 49.67% 73.33% 62.64%
CNN CSCD - 50% 74.00% 68.83% 61.67% 69.00% 96.83% 95.67% 95.67% 80.24%

Table 3: BCI Competition III Dataset IVa

aa al av aw ay Average
CNN 75.47% 95.11% 72.38% 93.45% 89.92% 85.23%
AlexNet 65.83% 93.45% 65.12% 82.38% 86.55% 78.67%
CNN CSWD - 0% 61.25% 88.69% 51.07% 71.73% 64.22% 67.39%
CNN CSWD - 50% 75.42% 97.50% 73.75% 96.61% 87.02 86.06%
CNN CSCD - 0% 53.99% 76.49% 57.44% 54.76% 58.87% 67.39%
CNN CSCD - 50% 66.55% 86.93% 77.26% 92.86% 84.49% 81.62%

Table 4: BCI Competition IV Dataset I: Single Trial Comparison

Method A B C D E F G Average
(Qian et al. 2020) 66.9% 65.2% 82.35% 94.55% 94.9% 84.25% 81.15% 81.33%
(Kumar, Mamun, and Sharma 2017) 88.1% 59.1% 67.9% 84.3% 90.2% 85.9% 92.2% 81.1%
(Amirabadi and Kahaei 2020) 85.44% 75.27% 78.16% 80.72% 96.44% 91.00% 91.83% 85.55%
Proposed 82.00% 72.66% 69.00% 74.99% 98.66% 77.00% 89.5% 80.54%

Table 5: BCI Competition III Dataset IVa: Single Trial Comparison

Method aa al av aw ay Average
(Singh, Lal, and Guesgen 2019) 81.25% 100% 76.53% 87.05% 91.26% 87.22%
(Su et al. 2020) 76.43% 98.21% 72.35% 75.43% 66.46% 77.78%
(Kevric and Subasi 2017) 96% 92.3% 88.9% 95.4% 91.4% 92.8%
(She et al. 2018) 61.7% 100% 73.88% 88.17% 79.64% 80.68%
(Park and Chung 2018) 100% 74.11% 67.85% 90.07% 89.29% 84.26%
(Jin et al. 2020) 82.1% 93.9% 73.6% 93.6% 93.2% 87.28%
Proposed 75.47% 95.11% 72.38% 93.45% 89.92% 85.27%
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Table 6: Best Performance Achieved
Dataset Subject Method Average

Performance

BCI Competition IV Dataset IIa

A01 CNN + Singe Trial 79.98 %
A02 CNN + Singe Trial 67.28 %
A03 CNN + Singe Trial 82.01 %
A05 CNN + CSCD - 50% 61.61 %
A06 CNN + CSCD - 50% 63.27 %
A07 CNN + CSCD - 50% 81.25%
A08 CNN + Singe Trial 69.14 %
A09 CNN + Singe Trial 76.10 %

BCI Competition IV Dataset I

A CNN + Singe Trial 82.00 %
B CNN + Singe Trial 72.66 %
C CNN + CSWD - 50% 78.42 %
D CNN + Singe Trial 74.99 %
E CNN + Singe Trial 98.66 %
F CNN + CSCD - 50% 95.67 %
G CNN + CSCD - 50% 95.67 %

BCI Competition III Dataset IVa

aa CNN + Singe Trial 75.47 %
al CNN CSWD - 50% 97.50 %
av CNN CSCD - 50% 77.26 %
aw CNN CSWD - 50% 96.61 %
ay CNN + Singe Trial 89.92 %

good subjects did not see an improvement, this begs the
question if there’s a way to improve the accuracy for all the
subjects. A future study could develop a method for finding
the ideal subjects to train on. This could involve a clustering
algorithm like KNN or looking at the co-variance of all pairs
of subjects. The objective would be to find the subject that
is most similar to reduce the amount of extraneous data.

Another area to investigate is a transformation to
make one subject’s data similar to another subject’s data.
Assuming subjects’ data lie on their own feature plane, it
follows that there should be a mapping from one subject
to another. This could have the benefit of increasing the
quality of the additional data, which seems to be especially
important for the high-performing subjects.
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Abstract

Advanced motor imagery brain-computer interfaces
have several, diverse applications from providing com-
munication capability to paralyzed and locked-in pa-
tients to controlling movement of wheelchairs for pa-
tients will lack of motor control/functionality. Non-
invasive electroencephalogram (EEG) is commonly
used due to its ease of use and relatively low risk
with the drawback of having limited spatial resolution.
Machine learning and computational data analytics are
widely utilized across BCI studies due to the effec-
tiveness of these methods in identifying and translat-
ing brain patterns to understandable commands. The
recent success of deep learning methods, specifically
computer vision models in terms of their ability to iden-
tify relationships between key patterns in an image, at-
tracted its utilization in other fields such as BCI sys-
tems. Yet the development of EEG-based deep learn-
ing motor imagery BCI has struggled with its own is-
sues, mainly a lack of large high quality training sets
and challenges creating a model that can perform well
across multiple subjects. Past works have been able to
create models with high accuracies, but often with lim-
ited data thus rendering the models less practical than
expected. This paper proposes a method to increase the
amount of available motor imagery data by sampling
overlapping windows from the EEG data and utilizing
that data to create image representations of the EEG sig-
nals which will be used to train a simple Convolutional
Neural Network(CNN) in hopes of creating an accurate
model across many subjects.

Introduction

Brain-computer interfaces (BCIs) are systems that allow for
communication between the human brain and an external
device. BCIs are able to understand brain activity patterns
and use that information to perform the task associated with
that pattern. A well-known example of a BCI system is brain
controlled wheelchair where BCI reads brain activities of
a subject and provides motor controlling parameters to the
wheelchair. Assisting those with motor disabilities is one of
the many applications of BCIs. MI signals are commonly
used in BCI studies due to the practicality of translating
thought patterns to commands in contrast to other variations
of EEG-based BCI systems where specially designed inter-

faces and the presence of continuous external stimuli is nec-
essary.

When developing BCIs, brain activity recording devices
are vital for collecting data. EEG records the electrical po-
tentials that are measured across the scalp, and are one of the
most common devices used in BCI studies. EEG is a non-
invasive method for recording brain activity that requires rel-
atively simple equipment compared to other recording meth-
ods such as fNIRS or fMRI (Gu et al., 2021). In addition,
EEG have excellent temporal resolution in the range of mil-
liseconds, but low spatial resolution (Gu et al., 2021).

Deep learning models are able to interpret complex and
low resolution data and thus have been used to study EEG
data with varying degrees of success. One of the main chal-
lenges within EEG-based BCI research is the lack of access
large data sets. Collecting EEG data is a time-consuming
process and thus the available data sets have limited number
of subjects enrolled and the amount of data recorded from
each subject is also limited. This poses a large challenge for
use of DL method in EEG-based BCI studies, since proper
training of DL models requires large amounts of samples
(Tabar and Halici, 2016). Another issue with current BCIs
is inconsistent performance across subjects which makes the
task of of training models across subjects (subject transfer)
difficult (Padfield et al., 2019). It is necessary that BCIs are
able to perform well with multiple subjects, since in practi-
cal/industrial applications a BCI systems, a single BCI sys-
tem is expected to accurately be used by several subjects
with varying BCI skills and brain patterns. Yet EEG signals
are extremely variable across subjects, recording sessions,
recording devices and protocols, and experiment design.

This instability and pattern variability considerably in-
creases the difficulty of implementing multi-subject, multi-
session, multi-experiment BCI system. Since EEG patterns
for the same stimuli between different subjects are known to
be different and this instability is also observed in recording
from the the same subject across multiple recording sessions
(Abbass et al., 2014).

Because of the amount of noise in EEG data, feature
representation methods are incredibly important to increase
the accuracy of DL models. Feature extraction methods are
ways reduce the dimensionality of data and may even re-
move redundant data (Dey et al., 2018). A common feature
used for BCI MI studies is the Continuous Wavelet Trans-
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formation (CWT). CWT is able to extract both temporal and
spatial features from the signal data, which is why it is very
useful for EEG.

We believe that there is in fact a common pattern for mo-
tor imagery within EEG data and, by increasing the amount
of data through overlapping and incorporating other subjects
within the training data, a deep learning model can elucidate
those patterns and accurately classify motor imagery EEG
signals.

Related Works

Tabar and Halici (2016) used short time Fourier transforma-
tion (STFT) to create images of EEG signals to train their
novel deep learning model combining a convolutional neu-
ral network (CNN) and a stacked autoencoder (SAE). They
achieved an average accuracy of 77.6% with their proposed
model, but note that the lack of large amount of data render
deep learning methods less preferable for practical applica-

tions. They found their network outperformed previous net-
works using features based on EEG signals and not images.

Lu et al. (2016) used 3 Restricted Boltzmann Machines
(RBMs) to classify motor imagery tasks from BCI Compe-
tition IV Dataset 2b. Using leave-one-out cross validation,
they achieved an 84% average accuracy for session-transfer
and 71% average accuracy for subject-transfer. This reflects
the difficulty of subject-transfer.

Atyabi, Shic, and Naples (2016) attempts to resolve this
issue by using multiple data sets and down sampling all of
them to a 250 Hz sampling rate and spliting each epoch into
smaller 0.5 second sub-epochs, but did not use an electrode
reduction method.

Zhang et al. (2018) implemented ERSP image representa-
tion to train a recurrent convolution neural network to assess
mental workload.

Raghu et al. (2020) also used STFTs to create images of
EEG signals, but used those images with pretrained mod-
els such as Alexnet, Googlenet, Resnet, and Inceptionv3

Table 1: BCI Competition III & IV Datasets
Competition Dataset Sample Rate (Hz) Number of Channels Number of Subjects Task

BCI
Competition
III

Dataset 2 240 64 2 character sequence

Dataset 3a 250 60 3 left hand, right hand,
foot, tongue

Dataset 3b 125 2 3 left hand, right hand

Dataset 4a 1000 118 5 right hand, foot

Dataset 4b 1000 118 1 left hand, foot

Dataset 4c 1000 118 1 left hand, foot

Dataset 5 512 32. 3 left hand, right hand,
word association

BCI
Competition
IV

Dataset 1 1000 64 7 left hand, right hand,
foot

Dataset 2a 250 22 9 left hand, right hand,
foot, tongue

Dataset 2b 250 3 3 left hand, right hand

Table 2: Common Ground Data set
Competition Dataset Sample Rate (Hz) Number of Channels Number of Subjects Task
BCI
Competition
III

Dataset 4a 1000 118 5 right hand, foot

BCI
Competition
IV

Dataset 1 1000 64 7 left hand, right hand,
foot

Dataset 2a 250 22 9 left hand, right hand,
foot, tongue

250 22 21 right hand, left

hand, foot
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for seizure detection. They achieved a highest accuracy of
88.30%.

Xu et al. (2018) trained their own CNN on images from
Continuous Wavelet Transformations from BCI competition
IV Data set 2a. They achieved average best accuracy across
subjects of 85.59%.

Wu et al. (2019) trained their own CNN on signal data
from BCI competition IV Data set 2a and achieved an aver-
age accuracy of 75.8% across all subjects

Methods

Data Sets

One of the most widely used data sets in BCI studies are the
BCI competition III and IV data sets (Al-Saegh, Dawwd,
and Abdul-Jabbar, 2021). These data sets have different
numbers of subjects, number of channels, sampling rates,
and classes. Table 1 provides the details on various BCI
competition data sets. The data sets chosen for this paper
are shown in Table 2. Figure 1 depicts the data processing
from the raw EEG data to training the CNN.

Figure 1: Methods

Preprocessing

In order to increase the size of available data, the BCI com-
petition data sets was normalized relative to each subject.
This includes creating a data set with the same number of
channels, length of epochs, sampling rate, and classes. Ta-

ble 2 shows the data sets used and the common ground that
was achieved. The preprocessing pipeline is outlined in Fig-

ure 1 . First the raw data has all channels removed except for
the channels in question; C1, C2, C3, C4, C5, C6, CP3, CP4,
Cz, FC3, FC4, Fz. Next, the data was denoised using com-
mon average referencing and a band-pass filter was used to
extract just the alpha and beta waves between 8 and 30 Hz.
Alpha and beta waves are associated with motor movement,
and by removing delta, gamma, and theta waves unnecessary
information could be removed. The denoised data is then re-
sampled to 250 Hz.

Continuous Wavelet Transformation

Those epochs will undergo a CWT and the transformed data
will be used to create image arrays. Wavelets are similar to
waves in that they oscillate, but differ that wavelets are lo-
calized. Wavelets have a spatial property called scaled that is
similar to frequency or wavelength of wave(Addison, 2005).
Scale refers to how tight or spaced out the wavelet is. The
second property of wavelets is location which or time.

At a core level, the wavelet transformation attempts to find
how much of the wavelet is within the signal. The wavelet
is essentially convolved through the signal, and the wavelet
is multiplied by the signal. For a Discrete Wavelet Trans-
formation this occurs for a certain set of scales and times,
but the Continuous Wavelet Transformation does this for all
possible scales and times. The mathematical expression of a
CWT is below.

Xw(a, b) =
1p
a

Z 1

�1
x(t) 

✓
t� b

a

◆
dt

Where  
�
t�b
a

�
is the Daubechies 7 and 10 (db7 and db10)

Wavelet expression. After the signals were transformed,
each channel array was stacked next to each other. These
signal arrays can be converted to scalograms as shown in
Figure 3 and Figure 4. The signal arrays were then saved to
train the CNN.

Figure 2: Daubechies 7 Wavelet Scalogram for a single
channel.

Figure 3: Daubechies 7 Wavelet Scalogram for a 12 channels
stacked next to each other.

REU Symposium on Deep Learning

University of Colorado, Colorado Springs 46



Figure 4: CNN Architecture

Overlapping

To increase the amount of data, one second overlapping win-
dows were sampled from each of the epochs. The sampling
starts with a 25% overlap at the beginning of the trial and
increases to a 90% overlap near the center of the epoch, and
then tapers off to 25% towards the end of the trial. This sam-
pling method ensures that the center of the epoch, where
the strongest motor imagery patterns are likely to be, are
sampled more, but does not neglect the information near the
beginning and the end of trials. Through overlapping, the
amount of available data increased by a factor of 39. On
caveat when using this method is to ensure that overlapped
windows from the same epoch are not separated into train-
ing and testing sets. Instead all the overlapped windows of
one epoch must be separated into either training and testing
sets. Failure to complete this step can artificially increase the
evaluation accuracy.

The Convolutional Neural Network

The model consists a 2D Convolutional layer, Max-pooling
layer, 2D Convolutional layer, Flattening layer, Dense layer,
a Dropout layer, and then a final dense layer. Figure 5 dis-
plays the architecture.

Single Trial

For all the subjects in the datasets, the CNN was first trained
and evaluated through a 5-fold cross validation solely on
that subjects non-overlapped db7 data. The 5-fold cross val-
idation was repeated 3 times and the average accuracy of
all 3 repetitions was reported. Then the CNN was trained
and evaluated on solely that subject’s db7 overlapped data
through the same 5-fold cross validation (3 repetitions).
These steps were then repeated for the db10 data.

Cross the Subject

For all the subjects in each dataset, the CNN was first trained
on all subject’s db7 non-overlapped data within that dataset
except the target subject and then evaluated on the target
subjects data. The model’s weight’s were saved to be used
as checkpoint. After loading the model’s weights, it was cal-
ibrated to 50% of the target subject’s data and evaluated on

the other 50% and this was repeated 5 times. The average
accuracy was reported. This process was repeated with db10
non-overlapped data, as well as the overlapped data for both
wavelet types.

BCI Competition IV Data set 2a Results

Table 3 shows the accuracies for each subject in every data
set and a corresponding method. Table 4 displays the best
and second best accuracy achieved with that subject and the
corresponding method to achieve that result.

Discussion

Within single trial, overlapping the data provides a substan-
tial boost to the accuracy ranging from 5% to 9% average
increase in accuracy compared to the non-overlapped single
trial accuracies. In addition, most of the results found in Ta-

ble 3 are well above chance level, which illustrates that there
does exist a common pattern within motor imagery EEG and
that a neural network can recognize that pattern. Further-
more, Table 4 clearly demonstrates that the most success-
ful methods were overlapping and 50% subject transfer for
nearly all subjects in every data set. Increasing the amount of
available training data through overlapping and incorporat-
ing other subject’s data provides a substantial boost to the ac-
curacy. The implementation of these methods into other mo-
tor imagery BCI studies would strengthen future BCI sys-
tems.

Conclusion

The possible practical applications of BCIs are very attrac-
tive. Yet the development of these systems is impeded by
a lack of data and struggles with stable performance over
multiple subjects. With the increase data size via overlap-
ping and subject transfer, there is an increase of classifica-
tion accuracy with a simple deep learning model. While the
accuracies themselves may not be strong enough to build
a successful BCI system, the increase in accuracy with the
increase of data indicates that these methods can improve
accuracies.
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Table 3: Results

Table 4: Best results for each subject
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Abstract

Autonomous navigation of vehicles is a difficult prob-
lem to solve, with numerous approaches developed over
the last few decades. Understanding the known and un-
known dynamics of a vehicle’s environment requires a
flexible and adaptive technique to ensure the minimiza-
tion of costs and constraints. These can include colli-
sions, range, time, and computational resources. In the
field of aerial vehicles, these can be particularly limited,
which increases the need of further research. In this re-
search, we aim to reduce the amount of collisions and
flight time by using a Deep Learning (DL) network to
assist the drone in identifying nearby objects in its en-
vironment. By training and testing the network using a
series of flight data collected using a monocular UAV
camera, we hope to reduce the computational time and
complexity needed to accomplish obstacle avoidance.
Our pretrained model will then generate depth estima-
tion images using binary classification, denoting where
objects are close and faraway. This will allow us to iden-
tify nearby and faraway objects in the path of the drone.

Introduction
The autonomous navigation of drones is a problem seen in a
variety of different areas. These areas include photogram-
metry, the study and mapping of landscapes using image
data, networking, the field that aims to develop strong wire-
less signals, traffic monitoring, and in loads carrying (Sko-
robogatov, Barrado, and Salamı́ 2020). Some uses in pho-
togrammetry include using drones to navigate and map out
a forested area (Brust and Strimbu 2015). In this case, the
drones need to collaborate and navigate around a forest en-
vironment, through trees and branches that could result in
damaging collisions. The drones also need to know where
previous drones have been, so that the data is not overwrit-
ten for that area. In networking, a fleet of drones can be used
to increase the cellular signal in crowded events (Sawalmeh
et al. 2017). In this environment, the drones need to navi-
gate around other aerial objects and cell towers in order to
get to a destination point. The drones also need to collab-
orate in strengthening the signal, and moving if there are
locations with disruptions or high traffic. Creating a solution
for these navigational problems, amongst similar problems,
should produce fruitful results for technological innovation.

In this research, we aim to offer a solution to assist the au-
tonomous aerial vehicle navigation problem. This solution
will use a DL network that is trained to generate depth esti-
mation images from frames collected from an aerial monoc-
ular camera attached to a drone. Using these depth estima-
tion images, we can approximate location of obstacles that
are close to the aerial vehicle in an indoor environment. This
knowledge will be used in assisting drones that are either
too small or financially limited in identifying nearby objects
without the addition of payloads.

The DL network was trained to perform a binary clas-
sification on image sections, using a depth estimation im-
age generated from an optical flow field as the ground truth
depth for each section. From this binary classification, we
can determine what objects might present potential colli-
sions with our drone, allowing us to develop solutions to
navigate around these objects. Creating a framework using a
binary classification will allow a starting point to develop ap-
plications with a higher number of classes, to give the drone
more options in navigating through its environment.

Related Work
There have been several approaches to the autonomous nav-
igation of aerial vehicles. These approaches have used a va-
riety of techniques, including the usage of game engines and
deep learning networks. Some also use additional sensors to
track the drone’s location and surrounding environment. Be-
low are some of the techniques used in developing a solution
to the autonomous navigation problem, as well as some so-
lutions to monocular depth estimation.

EGO-Swarm
EGO-Swarm was developed as a multi-robot autonomous
navigation system (Zhou et al. 2020b). Each robot in the
system maps out its own local surroundings, and commu-
nicates it with the rest of the drones in the network. These
surroundings are captured using additional sensors attached
to the drone, and the drone’s location is also sent and regis-
tered in the ground control system. The ground control then
constructs the global, obstacle-rich environment to assist the
drones in the network in planning their trajectories.

These trajectories are planned using a local path planning
solution. Using an Euclidean Signed Distance Field (ESDF)
free gradient-based local planner known as EGO-Planner
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(Zhou et al. 2020a), the drones in the network are able to
plan out local trajectory solutions for their current surround-
ings. This was an improvement upon previous ESDF solu-
tions, as the EGO-Planner solution minimized the updating
range to only feasible solutions. By minimizing the compu-
tation time and complexity, this improvement allowed the
trajectory planner to be computed using the on-board pro-
cessor of each drone. By sharing these trajectories with other
drones in the EGO-Swarm network, the computation time
and complexity was further reduced, allowing the drones in
the network to collaborate towards a common goal.

However, there are various issues associated with EGO-
Swarm. First, none of their hardware specifications were
shared, so replicating their results would be a difficult task to
accomplish. Certain makes and models of drones also don’t
have the capability for added hardware, reducing the acces-
sibility of their results and methods. Second, their EGO-
Planner solution spends processing time to filter out other
drones in the swarm. Not only does this add instructions to
each drones’ on-board processor, but it also open up a vul-
nerability where each drone relies on a previous drone to
have travelled further through a common path. Each drone in
the swarm also follows the same path calculated by a previ-
ous drone, causing an issue if a miscalculation were to hap-
pen or a drone were to fail to avoid a collision. Since each
drone is not programmed to recalculate the path, mistakes
will be replicated as each drone continues down the path of
a previous drone. This also causes an issue for obstacles that
are not stationary in the environment, like the other drones
in the swarm.

ROSUnitySim
In contrast to the above solution, the ROSUnitySim tech-
nique aims to assist a fleet of drones in navigating an envi-
ronment through the use of a game engine. By using Unity,
this method seeks to generate solutions to local trajecto-
ries by mapping the location and local environment of each
drone into a global environment (Hu and Meng 2016). This
allows each drone in the swarm to discover their own so-
lutions to traversing an obstacle-rich environment, using in-
formation gathered from the game engine. These trajectories
are generated using Unity’s in-built path finding algorithms,
reducing the complexity and requirements of the system. It
also maps out the environment by using Unity’s rendering
methods, further placing an emphasis on the Unity software.

Nonetheless, the ROSUnitySim method also has some
disadvantages in the Unity software. One major disadvan-
tage is Unity’s lack of multi-threading solutions, requiring
the use of a single thread on the CPU to generate calcula-
tions. This can be circumnavigated by transferring data over
to the GPU to compute, but that increases the risk of mem-
ory failure and still requires a substantial amount of time
for each rendering and path-finding solution. In both tech-
niques, the time to compute one rendering or trajectory so-
lution takes over 20ms, which impairs the drone from mak-
ing quick and efficient maneuvers. This latency becomes ex-
ponential as more drones are added to the system, making
ROSUnitySim a potentially unfit solution to the autonomous
navigation problem.

DroNet and FlowDroNet
The DroNet model aims to solve the autonomous aerial nav-
igation problem by training drones on data sets collected in
real-world environments. (Loquercio et al. 2018) These data
sets are taken from human controlled ground vehicles, such
as cars and bicycles, and translated into a convolutional neu-
ral network (CNN) to train drones on obstacle detection and
avoidance. This model is accurate in predicting trajectories
for drones in urban road environments. However, it is lim-
ited to only environments where cars and bicycles can drive,
making it unfit for other urban and rural environments.

To improve upon the results of DroNet, a team of re-
searchers developed FlowDroNet (Sperling et al. 2020). This
model wanted to fix the generalization problem in DroNet
by applying optical flow fields. These fields created a gen-
eral classification of several objects, creating a framework
to improve issues found in the DroNet model. The Flow-
DroNet research team also wanted to increase the amount of
data for training the CNN, so they used a simulated environ-
ment developed in Unity to try and fill up gaps in real-world
data. This was successful and allowed the drones to gen-
eralize multiple different environments. The team applied
their work in a realistic environment by having an individual
drone fly through a parking garage with various amounts of
lighting to ensure the drone could overcome different kinds
of collisions. Using their results from physical testing, the
FlowDroNet team published their findings with IEEE.

Even so, the FlowDroNet model still has its limitations.
The drones used in the study have the ability to detect colli-
sions, but they are not able to navigate around those potential
collisions. In the real world application, the drone they used
would stop right before a pillar, and either await a human
navigator or land. The research team did not develop a path
finding algorithm for the drone to use in order to navigate
around obstacles. Therefore, their results are more of a land-
ing point to solve the autonomous navigation problem, but
they are not a suitable solution.

(Eigen, Puhrsch, and Fergus 2014) Method
Monocular depth estimation is important to understanding
the geometric relations of objects within a scene or envi-
ronment. In most cases of depth estimation, a collection of
stereo images is used, or motion data, in order to collect
information about the depth of objects in the environment.
However, there a several uses where we are limited to a
monocular image, which requires us to attempt a different
approach to solve the problem.

Some applications where monocular depth estimation is
important include uses in economics, electronics, and math-
ematics (Eigen, Puhrsch, and Fergus 2014). If a potential
client to a real-estate company wanted details about the
length of the driveway, or how far the kitchen island is from
the oven, then the company would be interested in determin-
ing the depth of objects in the scene using a single image. In
our case, we want our drones to be able to determine where
obstacles are to avoid collisions using only a single camera
attached to the drone.

To approach a solution to this problem, this method cre-
ated a deep learning network that uses regression as a loss
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function. Using both the NYUD2 and KITTI data sets, this
method trained and validated his depth estimation calculated
from an 11-layer deep learning network. This network is
formed from two component stacks, once determines the
global depth of the image using a coarse-scale, while the
other refines the coarse image to determine the depth of
individual objects. The accuracy of their prediction is then
measured against the ground truth accuracy, and predictions
within an error rate of 25% are evaluated as a good result.
(Eigen, Puhrsch, and Fergus 2014) introduced the idea of
reporting accuracies within 1.252 and 1.253 as separate met-
rics.

(Eigen, Puhrsch, and Fergus 2014) accuracy
� < 1.25 � < 1.252 � < 1.253

0-10 meters 61.1% 88.7% 97.1%

(Cao, Wu, and Shen 2018) Method
Taking inspiration from (Eigen, Puhrsch, and Fergus 2014),
this project sought to improve the regression results by dis-
cretizing the ground-truth depth into 10 bins and running a
deep learning network that uses classification as a loss (Cao,
Wu, and Shen 2018). It was their hypothesis that depth esti-
mation as a regression function would make it harder for a
deep learning network to determine an accurate depth value.
Since humans find it difficult to determine the exact distance,
it was formulated that the deep learning network would have
a similar issue. Therefore, it was predicted that the network
would be better at generating rough estimates.

Using the NYUD2 dataset generated by their predeces-
sor, this research was able to train and test in a similar
environment, using the ResNet101 model. They were able
to demonstrate improvements to the (Eigen, Puhrsch, and
Fergus 2014) method using classification through a series
of experiments. One of these experiments included an in-
vestigation into the network finding the mean depth of a
given image, and determining the best accuracy by return-
ing that mean. By splitting the input data into 3 different
depth ranges, this method was able to demonstrate an im-
provement to the results of their predecessor. The following
are this method’s results:

(Cao, Wu, and Shen 2018) accuracy
� < 1.25 � < 1.252 � < 1.253

0-3 meters 69.6% 91.2% 97.2%
3-7 meters 76.0% 94.9% 98.6%

7-10 meters 49.7% 74.9% 93.1%
Overall 69.4% 92.4% 97.5%

From these results, it can be interpreted that this model
outperforms the (Eigen, Puhrsch, and Fergus 2014) model.
By using classification instead of regression, and breaking
up the ground-truth depth values into three different classes,
this method was able to obtain a better accuracy (As shown
in the 3-7 meter row). Comparing these results to our model
will give us insight into where we want our performance to
be, and will be used to determine best fit factors in our ex-
perimentation.

Our Contribution
By using deep learning methods introduced by (Cao, Wu,
and Shen 2018) and (Eigen, Puhrsch, and Fergus 2014), we
will be developing a depth estimation method to be used
for unmanned aerial vehicles. This approach will establish
efficiency in identifying nearby objects, which will allow
drones with limited computational resources to maneuver
through cluttered environments. It will also provide an ac-
curacy that is close to modeling a depth camera, to allow
drones without the ability to carry or incorporate a depth
camera to identify potential collisions for trajectory paths.

Depth Estimation
Optical Flow
During our initial research, we created the objective to have
the ability for drones to detect and capture the depth of ob-
jects. Our research brought us to using optical flow fields.
These can be calculated using functions in the OpenCV li-
brary (Bradski 2000). Once a optical flow field is generated,
we can calculate the depth of each pixel from an image pair
using the equation:

Depth = vdrone ⇤
Dfocal

Magflow
(1)

where vdrone is the velocity of the drone (constant 30
cm/s), Dfocal is the distance of the pixel from the focal
point, and Magflow is the magnitude of the flow vector.
Since the flow vector is in pixels per frame, we also need
to multiply the magnitude by the frame per second amount,
set at 10 fps. Once the depth for each pixel is generated, it is
stored in an array for depth estimation. From there the pixels
are grouped together to form an 8x8 grid, which sections the
image into an 8x8 grid of depths.

Deep Learning
Since the optical flow calculation takes 3-4 seconds to gen-
erate a depth estimation image, it is unsuitable for use in
obstacle avoidance. In order to try and reduce the computa-
tion time, we decided to try using a deep learning network
to classify depths for each section of a frame. By using the
OpenCV library (Bradski 2000), we had a drone fly through
a series of different courses under the control of a human
operator, then stored each frame collected from the drone
(at 10 frames per second) in a directory. From there, we
used the OpenCV library to generate an optical flow field
for each image pair, then calculated the depths. We then cre-
ated depths estimation images by grouping depths together
in 8x8 sections, with the minimum depth getting reported
for each chunk with the exception of the center chunks.

Once the depth estimation images were generated, we
cropped each depth estimation image and frame into 8x8
sections, then sorted the frames into 6 different classes. Each
of these classes corresponded to a range of depth, with the
closest being within 1 second of the drone (at a speed of
30 cm/s) and the furthest being more than 5 seconds away.
From this sorting, we were able to create a deep learning
network that used the classification as a loss function to gen-
erate a depth for each section in an image.
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The creation of the deep learning network was then bro-
ken up into three phases. First, we had our drone fly through
a course with a human navigator, then generated depth esti-
mation images using optical flow fields for 5 different runs
in different environments. With each run consisting of 500-
800 frames, and a depth estimation image generated be-
tween each frame, we moved to processing the images. We
cropped each frame and depth estimation image into 64 dif-
ferent chunks, forming an 8x8 grid, then matched each depth
estimation image with its respective sectioned image. Af-
ter cropping, we sorted each sectioned frame into their re-
spective classes using data collected from the corresponding
depth estimation image. This allowed us to develop a classi-
fication model for 2, 3, and 6 classes.

We hope that by using a classification model, we can
strive to be accurate to as close to 80% as possible, to
match the results of (Cao, Wu, and Shen 2018) and (Eigen,
Puhrsch, and Fergus 2014) from their data sets. For us to ac-
complish this task, we performed a series of tests with sev-
eral factors and levels. These factors include the amount of
layers, the optimizer and learning rate, the amount of classes
and their weights, and the dropout rate and validation split.

Experimentation
To determine and discover the best validation accuracy, we
went through a series of experiments, adjusting our model
in each step. We want to see changes in the model run time
using different amounts of layers, and changes in both loss
and accuracy in other factors. Our preliminary factor level
for each trial was to use 9 layers, the Adam Optimizer, a 1e-
3 learning rate, 2 classes, 0.8 Background : 1.2 Foreground
class weights, 0.3 node dropout rate, and a 0.1 validation
split. Once we discovered a factor level that showed im-
provements from these preliminary levels, we adapted our
experiment to utilize the superior factor level.

Below are our results for our experimentation on the net-
work factors. To obtain these results, we took an average
over the last 10 epochs (or iterations) in each run, with each
run consisting of 30 epochs. We predict that using this to
compare our results will assist in keeping our model con-
sistent, while offering insight into each factor level. We
then analyze each level to determine the best version of our
model, and repeat those factor levels in future results with
additional changes to other factors. We also maintain the
same random seed for splitting the training and validation
data sets, to ensure that our results can both be replicated
and compared to the same training and validation data.

Layers

To determine the best layer structure, we wanted to examine
response variables such as run time, accuracy, and loss. We
wanted to have a network that could compute 3 batches of 64
images in an efficient amount of time, while having a high
amount of accuracy. Each amount of layers follows the same
structure in regards to the model. Our deep learning network
follows the model:

Model Architecture
Layer Type Parameters

1 Conv2D 448
2 MaxPooling2D 0
3 Conv2D 4640
4 MaxPooling2D 0
5 Conv2D 18496
6 MaxPooling2D 0
7 Conv2D 73856
8 MaxPooling2D 0
9 Conv2D 295168

10 MaxPooling2D 0
11 Flatten 0
12 Dense 196736
13 Dense 258

Using this structure, we developed experiments for 7, 9,
11, and 13 layers. For 7 layers, we removed layers 5-10
in the above structure. We then adapted the structure for 9
and 11 layers by removing layers 7-10 and 9-10, respec-
tively. Removing these layers also corresponded to a change
in the number of trainable parameters. For 13 layers we
have 589,602 parameters, 671,266 parameters for 11 layers,
1,375,658 for 9 layers, and finally 2,708,834 for 7 layers.
Our results for each factor level is shown below (With the
highest average value for each variable shown in bold).

7 Layers
Run Runtime Accuracy Loss

1 25.9 0.74183 1.02952
2 25.7 0.74277 1.04960
3 25.7 0.74587 1.06790

Average 25.8 0.74349 1.04901

9 Layers
Run Runtime Accuracy Loss

1 26.7 0.76392 0.74193
2 22.6 0.76176 0.80639
3 25.0 0.76092 0.72216

Average 24.8 0.76220 0.75683

11 Layers
Run Runtime Accuracy Loss

1 26.0 0.77384 0.62207
2 23.0 0.77582 0.59601
3 28.4 0.77645 0.60856

Average 25.8 0.77537 0.60888

13 Layers
Run Runtime Accuracy Loss

1 24.0 0.77260 0.59473
2 27.0 0.76720 0.60057
3 28.4 0.76696 0.60538

Average 26.5 0.76892 0.60023

Our findings show that the validation accuracy starts to
deteriorate after 11 layers, with only slight decreases in val-
idation loss. We also notice that the run time for each batch
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starts to increase after 9 layers. From these findings, we con-
clude that the best amount of layers to have in the model is
11, since that produced our highest average accuracy, while
maintaining a low run time for each batch.

Optimizer
We continue our research by examining our optimizer. Most
image classification models use Adam since it combines the
best properties of RMSprop and AdaGrad, while maintain-
ing itself as a replacement for stochastic gradient descent.
We wanted to ensure Adam was the best optimizer for our
use, so we tested it against one of its predecessors, RM-
Sprop. Below are our results in analyzing both the accuracy
and loss on the validation data set.

Adam
Run Accuracy Loss

1 0.77387 0.59821
2 0.77014 0.58039
3 0.77336 0.62200

Average 0.77246 0.60020

RMSprop
Run Accuracy Loss

1 0.64722 0.63728
2 0.65008 0.61736
3 0.63992 0.62605

Average 0.64574 0.62690

Our results conclude that Adam outperforms RMSprop in
both validation accuracy and loss. Even on RMSprop’s best
run, the Adam optimizer still out performs on all 3 of their
runs. Therefore, our findings support the use of the Adam
optimizer, and we will continue to use it for our experiments.

Learning Rate
After determining the best optimizer, we shifted our experi-
ment into finding the best learning rate. The default value for
the Adam optimizer in TensorFlow Keras is 0.001 (Chollet
2015), so we wanted to increase and decrease from there to
determine the best learning rate for our model. Below are
our results for 1e-4, 1e-3, and 1e-2.

0.0001 Learning Rate
Run Accuracy Loss

1 0.76192 0.51198
2 0.76509 0.51178
3 0.76978 0.49805

Average 0.76560 0.50727

0.001 Learning Rate
Run Accuracy Loss

1 0.77372 0.61191
2 0.77113 0.61005
3 0.77412 0.61271

Average 0.77299 0.61156

0.01 Learning Rate
Run Accuracy Loss

1 0.41220 0.69917
2 0.41220 0.70115
3 0.41220 0.70098

Average 0.41220 0.70043

These findings inspire additional research and experimen-
tation to investigate some causes. Firstly, we want to look
into the 0.01 learning rate. It is hypothesized that since the
learning rate affects how fast the model adapts to the training
data, that a model with a high training rate is more likely to
over fit the data. This occurs when the model discovers com-
monalities in the training data, and adjusts to always get the
training data correct. Since it is not trained to adjust to the
validation data, it has a low accuracy when classifying the
validation data. In this case, this capped the validation accu-
racy at 41.22%. This could be related to the foreground data
making up 41.22% of the validation data, making the as-
sumption that the model was classifying everything as fore-
ground to generate the least amount of loss.

Secondly, when decreasing the learning rate, the loss de-
creased but so did the accuracy. Further research could be in-
cluded to have the 1E-4 learning rate runs iterate over more
epochs to see additional changes, however, due to our time
restriction, we were not able to run over these epochs. Since
1E-3 gave the highest accuracy for 30 epochs, we decided to
continue to use this as the learning rate of our model.

Number of Classes

After determining the number of layers and the optimizer
and learning rates, we shift our investigation into the number
of classes. Since we want our drone to be able to understand
multiple aspects of our environment, we want to expand our
amount of classes. However, we also want to establish our
model, so we want to go with the amount of classes that
gives us the best accuracy rate. This will allow us to compete
with similar models, such as (Eigen, Puhrsch, and Fergus
2014) and (Cao, Wu, and Shen 2018).

2 Classes
Run Accuracy Loss

1 0.77429 0.61231
2 0.77642 0.60582
3 0.77314 0.61379

Average 0.77462 0.61064

3 Classes
Run Accuracy Loss

1 0.65431 0.96873
2 0.65207 0.94917
3 0.64714 0.98961

Average 0.65117 0.96917
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6 Classes
Run Accuracy Loss

1 0.41534 1.71566
2 0.43045 1.70062
3 0.41690 1.70270

Average 0.42090 1.70633

According to the table above, our best accuracy rate is two
classes. This also is close to (Cao, Wu, and Shen 2018)’s re-
sults for a 25% error rate, motivating our research. While the
average error rate across classes decreases, the loss greatly
increases in proportion to the accuracy decrease. Therefore,
adding additional classes will require further research and
tuning, while the binary classification task allows us to ac-
complish our goal with the drones without causing too much
error.

Class Weights
Since the proportion of nearby objects to far away objects is
not even in our dataset (41.56% to 58.44&), we did some in-
vestigation into adjusting the class weights. During our pre-
liminary investigation we found using 0.8:1.2 gave great re-
sults in determining nearby accuracy, so we decided to eval-
uate it against 0.9:1.1 and 1:1. We then compare the accu-
racy and loss of these factor levels to determine the best set
of class weights.

0.8 Far : 1.2 Nearby
Run Accuracy Loss

1 0.77586 0.61488
2 0.77654 0.59633
3 0.77781 0.61340

Average 0.77674 0.60820

0.9 Far : 1.1 Nearby
Run Accuracy Loss

1 0.77677 0.59214
2 0.78041 0.58367
3 0.77704 0.58985

Average 0.77807 0.58855

1.0 Far : 1.0 Nearby
Run Accuracy Loss

1 0.77724 0.60574
2 0.78137 0.59118
3 0.77723 0.61686

Average 0.77861 0.60459

According to these results, we achieve the best overall
accuracy using 1:1 weights. Nonetheless, it is not much of
an improvement over the 0.9:1.1 average overall accuracy.
The 0.9:1.1 also has the best loss out of all 3 levels. We be-
lieve that should be a strong determining factor, since we
want to be able to classify nearby objects correctly. It is hy-
pothesized that the reduction in loss will help with both the
difference in proportion, and classifying the nearby objects
accurately. Since the overall accuracy is only a slight de-
crease from 1:1, we determined that 0.9:1.1 is the best set of
weights for our classification model.

Node Dropout Rate

Another way to discourage the model over fitting is to use
dropout on the nodes within your layers. Since the model
cannot continue to use the same path through the network
for the training data, it is forced to find new solutions, which
also allows it to have a better validation accuracy. Originally
we were using a dropout rate of 0.3, but we wanted to do an
investigation into 0.5, and from there into 0.6. Below are our
results for each dropout rate.

0.3 Dropout
Run Accuracy Loss

1 0.77696 0.60919
2 0.77873 0.60563
3 0.77723 0.61365

Average 0.77657 0.60949

0.5 Dropout
Run Accuracy Loss

1 0.77873 0.51042
2 0.77952 0.50884
3 0.78164 0.50163

Average 0.77996 0.50696

0.6 Dropout
Run Accuracy Loss

1 0.77723 0.49051
2 0.77485 0.49027
3 0.78186 0.48900

Average 0.77798 0.48993

Supporting our original hypothesis, we found that increas-
ing the dropout rate lead to a higher accuracy. Similar to
the amount of layers, there seems to be a point of dimin-
ishing returns. That point here is a 0.5 dropout rate, with
increases to the dropout rate decreasing the accuracy. The
loss decreasing as we continue to increase the dropout rate
seems to require further investigation, however. The dropout
rate will be another factor to consider when tuning results in
the future, as changes to the dropout might constitute a better
validation accuracy or loss as we continue to add classes.

Training and Validation Split

Finally, we wanted to finish our investigation by changing
the training and validation split. Since these results have a
possibility of changing the comparison in the results during
previous factor testing, we wanted to save this experimenta-
tion for last. For this factor, we predicted that increasing the
amount of training data would reduce the risk of over-fitting,
since the model would have more data to train over. We also
estimated that there would be another point of diminishing
returns, using our knowledge from previous factors. It is also
predicted that there is a certain point where we don’t have
enough validation data to compare our results. The tables
below show our findings.
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0.95 Training : 0.05 Validation
Run Accuracy Loss

1 0.78314 0.49888
2 0.77230 0.51224
3 0.77711 0.50879

Average 0.77752 0.50664

0.90 Training : 0.10 Validation
Run Accuracy Loss

1 0.77871 0.50251
2 0.77804 0.50074
3 0.77851 0.49619

Average 0.77842 0.49981
0.80 Training : 0.20 Validation

Run Accuracy Loss
1 0.77147 0.52714
2 0.77389 0.52181
3 0.77327 0.52905

Average 0.77288 0.52600
These findings support our thoughts from the preliminary

experimentation, and enforce our decision to use a 0.9 train-
ing to 0.1 validation split. Our hypothesis was correct in de-
termining there was a point of diminishing returns, and we
already had the best amount of training data to train over.
Our thoughts on increasing the training data also are shown,
as there are several improvements in the 0.1 split over the
0.2 split. In further experimentation with more classes, we
would like to continue to test results on the validation split
to determine the best amount of data for different amounts
of classes.

State-of-the-Art Comparison
To compare our results with the state of the art, we will want
to review the overall results of (Cao, Wu, and Shen 2018)
and (Eigen, Puhrsch, and Fergus 2014). We hope to be com-
parable to these results, as they are both validation accuracy
and loss on their trained data sets, and since we are also
training on our own data set, we only want to try and achieve
the same accuracy. Their results are as follows:

State of the art
� < 1.25 � < 1.252 � < 1.253

(Cao, Wu, and
Shen 2018)

69.4% 92.4% 97.5%

(Eigen, Puhrsch,
and Fergus 2014)

61.1% 88.7% 97.1%

Since (Cao, Wu, and Shen 2018) uses classification in-
stead of regression, which is similar to our project, and it
outperforms (Eigen, Puhrsch, and Fergus 2014), we choose
to compare it to our results. Since we are not using an error
rate for our results, it is hard to compare the results. Since we
are looking to determine a rough estimate with minimal cal-
culations in an indoor environment, we want to have a good
accuracy while maintain our run time. Since we also run the
last three frames through our model to determine each class,
we can also assume an accuracy close to 95.09%, assuming
a classification accuracy of 0.77842.

Using that last metric, we are confident that our results
are performing close to the state of the art. We want to con-
tinue our work by adding classes while maintaining the same
accuracy rate. We also want to modify the majority voting
system for border cases where a section might fall into more
than one class. Nonetheless, we feel that we have established
a secure proof of concept to apply to the drone navigation
problem.

Future Work
Some future objectives of our work include visual odometry,
swarming, and creating a common framework. Odometry is
important in ensuring the drones are reporting an accurate
current location, and to make sure the drones are accurate
in arriving to their destinations. Next, we want to be able to
use swarming with our drones, so that we can accomplish
tasks that require a fleet of drones. Finally, we want to cre-
ate a common framework of our research, so that our results
and methods can be replicated in other makes and models of
drones. This is important because the majority of drone re-
search is in very specific models of drones. This makes other
findings hard to replicate, as each drone has different capa-
bilities in hardware and software, as shown in our findings
regarding EGO-Swarm (Zhou et al. 2020b).

Conclusion
In conclusion, this research aims to offer assistance in solv-
ing the autonomous vehicle navigation problem using Deep
Learning. By using deep learning to skip the optical flow
field step, we have reduced the computational time between
frame collection and depth estimation image generation by
70%, and we hope to continue to reduce this time. We also
want to expand our classification model into more than 2
classes, to gather accurate data about each drone’s surround-
ings. In conjunction, we also want to achieve and maintain
a depth accuracy of more than 80%. Once these are fin-
ished, we hope to expand our research into visual odometry,
swarming, and creating a common framework for others to
replicate for their own usage.
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