

Proceedings of the Seminar

Deep Learning

University of Colorado, Colorado Springs
August 5, 2022

Editors: Jugal K. Kalita, Oluwatosin Oluwadare and
Adham Atyabi

Funded by

National Science Foundation

Preface

It is with great pleasure that we present to you the papers describing the research performed by the
NSF-funded Research Experience for Undergraduates (REU) students, who spent 10 weeks during
the summer of 2022 at the University of Colorado, Colorado Springs. Within a very short period
of time, the students were able to choose cutting-edge projects involving machine learning in the
areas of natural language processing, bioinformatics and computational medicine; write proposals;
design interesting algorithms and approaches; develop code; and write scholarly papers describing
their findings. We hope that the students will continue working on these projects and submit papers
to conferences and journals within the next few months. We also hope that it is the beginning of a
fruitful career in research and innovation for all our participants.

We thank the National Science Foundation for funding our REU site. We also thank the University
of Colorado, Colorado Springs, for providing an intellectually stimulating environment for
research. In particular, we thank Dr. Terrance Boult, who was a helpful and stimulating mentor for
the REU students. We also thank Sharon Huscher for working out all the financial and
administrative details. We thank Dr. Donald Rabern, the Dean of the College of Engineering and
Applied Science, and Dr. Thottam Kalkur, the Chair of the Electrical and Computer Engineering
Department for their support. We also thank our graduate students, in particular, Ali Al Shami,
Dino Bonaldo, Uma Chinta, Steve Cruz, Timothy Flink, Kaden Griffith, Justin Leo, Thomas
Matthews, Steven Paligo, Wesley Robbins, Yousra Shleibik, and Zanyar Zohourianshahzadi for
helping the students with ideas as well as with presentations on some of the lastest papers, and
systems and programming issues. Our gratitude to Ginger Boult for being the “REU Mom” and
having the welfare of the REU interns at her heart all through the summer. Special thanks to Parker
Hicks (UCCS REU 2021) of University of Colorado---Denver Anschutz Medical Campus, Van
Hovenga (UCCS BS 2020, MS 2022, heading to University of California, Berkeley in Fall 2022
for PhD) and Abigail Swenor (UCCS BS 2022, UCCS REU 2021) of Notre Dame University,
for taking part in panel discussions on how to apply to graduate school.

Sincerely,

Jugal Kalita
jkalita@uccs.edu
Professor

Oluwatosin Oluwadare
ooluwada@uccs.edu
Assistant Professor

Adham Atyabi
aatyabi@uccs.edu
Assistant Professor

August 5, 2022

mailto:jkalita@uccs.edu
mailto:ooluwada@uccs.edu
mailto:aatyabi@uccs.edu

Table of Contents

Explaining Math Word Problem Solvers
 Abigail Newcomb and Jugal Kalita.………………………………………………………………1
Utilizing Priming to Identify Optimal Class Ordering to Alleviate the Problems of
Catastrophic Forgetting
 Gabriel Mantione-Holmes, Justin Leo and Jugal Kalita..…………..…………………..10
CAMeMBERT: Cascading Assistant-Mediated Multilingual BERT
 Daniel DeGenaro and Jugal Kalita…….…………… …………………..……………….…..….16
Training-free Neural Architecture Search for RNN and Transformer Architectures
 Aaron Serianni and Jugal Kalita………….………………………………..………………….….21
Light Weight Transformers Ramp up Autonomy of UAVs
 Raymond Dueñas and Adham Atyabi….………………………………….…………………. 30
The Effects of Subject Transfer on Transformer-Based EEG Classification of Finger
Movement
 Zachary Snow and Adham Atyabi……………………….…………………..……………….…35
3DChromoTwist: Development of a 3D Chromosome Structure Reconstruction Game
for Educational Purposes
 Marcin Pawlukiewicz and Oluwatosin Oluwadare………………………………….………41
RECSplice: Splice Site Prediction Using Recurrent Neural Networks
 Nicole Baugh and Oluwatosin Oluwadare…….…………………………………..….………46

NSF REU Seminar on Machine Learning
Department of Computer Science

University of Colorado, Colorado Springs
Engineering 105

 August 5, 2022: Friday

10:00-10:10 AM: Welcome Remarks by Dr. Thottam Kalkur, Professor and Chair, Electrical
and Computer Engineering, University of Colorado, Colorado Springs

10:10-11:25 AM Session Chair: Dr. Terrance Boult, El Pomar Endowed Chair of Innovation and
Security and Professor of Computer Science, University of Colorado, Colorado Springs, CO

10:10-10:35 Abigail Newcomb, St. Olaf College, Northfield, MN: Explaining Math Word
Problem Solvers

10:35-11:00 Gabriel Mantione-Holmes, Lewis and Clark College, Portland, OR: Utilizing
priming to identify optimal class ordering to alleviate the problems of catastrophic
forgetting

11:00-11:25 Daniel DeGenaro, University of Massachusetts, Amherst, MA: CAMeMBERT:
Cascading Assistant-Mediated Multilingual BERT

11:25-11:35 Break

11:35-12:25 PM Session Chair: Dr. Adham Atyabi, Assistant Professor of Computer Science,
University of Colorado, Colorado Springs, CO	

11:35-12:00 Aaron Serianni, Princeton University, Princeton, NJ: Training-free Neural
Architecture Search for RNN and Transformer Architectures

12:00-12:25 Raymond Dueñas, Stanislaus State University, Turlock, CA: Light Weight
Transformers Ramp up Autonomy of UAVs

12:25-1:25 PM: Lunch

12:25-1:25 PM: Welcome Back Remarks

1:25-2:40 PM Session Chair: Dr. Oluwatosin Oluwadare, Assistant Professor of Computer
Science, University of Colorado, Colorado Springs, CO	

1:25-1:50 Zachary Snow, University of Kentucky, Lexington, KY: The Effects of Subject
Transfer on Transformer-Based EEG Classification of Finger Movement

1:50-2:15 Marcin Pawlukiewicz, University of Rhode Island, Kingston, RI:
3DChromoTwist: Development of a 3D Chromosome Structure Reconstruction Game for
Educational Purposes

2:15-2:40 Nicole Baugh, North Carolina State University, Raleigh, NC: RECSplice: Splice
Site Prediction Using Recurrent Neural Networks

2:40 PM: Closing Remarks by Drs. Oluwatosin Oluwadare, Adham Atyabi and Jugal
Kalita

Our	Session	Chairs	and	Guests	

Dr.	 Adham	 Atyabi	 is	 an	 Assistant	 Professor	 in	 the	 Department	 of	 Computer	 Science,	
University	of	Colorado,	Colorado	Springs.	His	expertise	are	 in	cognitive	and	computational	
neuroscience,	brain-computer	interface,	image	and	signal	processing,	and	deep	learning.	At	
UCCS	for	4	years,	he	obtained	his	PhD	from	Flinders	University,	Australia,	and	held	post-doc	
positions	 at	 Yale	 and	 University	 of	 Washington.	 Dr.	 Atyabi	 has	 published	 70	 papers	 in	
various	conferences	and	journals.		
Dr.	Terrance	E.	Boult	is	 	El	Pomar	Endowed	Chair	of	Innovation	and	Security	and	Professor	
of	 Computer	 Science	 at	 the	 University	 of	 Colorado	 Colorado	 Springs.	 Dr.	 Boult	 was	 the	
visionary	behind	the	unique	Bachelor	of	Innovation	Family	of	degrees,	and	actively	teaches	
mostly	 in	 that	 program.	 Dr.	 Boult	 runs	 the	 Vision	 and	 Security	 Technology	 Lab	 (VAST	
lab)	where	his	 students	and	he	are	doing	projects	 in	Security	 including	machine	 learning,	
computer	vision,	surveillance,	and	biometrics.	 	Dr.	Boult	works	with	The	El	Pomar	Institute	
for	Innovation	and	Commercialization	through	which	he	works	with	many	local	and	student	
companies.	
Dr.	 Thottam	 Kalkur	 is	 Professor	 and	 Chair	 of	 the	 Electrical	 and	 Computer	 Engineering	
Department	 at	 the	 University	 of	 Colorado,	 Colorado	 Springs.	 His	 areas	 of	 research	 are	
microelectronics	 circuit	 design,	 device	 physics,	 ferroelectrics	 for	 tunable	 RF	 circuit	
applications,	 nano-crystalline	 memories,	 polarization	 switching	 data	 converters,	 deep	
submicron	device	 and	 circuit	modeling,	MEMS	based	 sensors	 and	 switches,	 and	 radiation	
hardened	circuit	design.	
Dr.	 Patrick	 McGuire	 is	 an	 Associate	 Professor	 in	 the	 Department	 of	 Curriculum	 and	
Instruction	focusing	on	STEM	education.	He	is	also	the	Chair	of	the	department.	Dr.	McGuire	
also	serves	as	the	College	of	Education	Co-Director	of	UCCSTeach,	an	inquiry-based	program	
designed	 to	 prepare	 the	 next	 generation	 of	 secondary	mathematics	 and	 science	 teachers	
(see	 www.uccs.edu/uccsteach	 for	 more	 information).	 His	 research	 interests	 lie	 in	 the	
intersection	of	curriculum,	instructional	technology	and	STEM	education.	Before	joining	the	
UCCS	 faculty	 in	2010,	Pat	worked	as	 a	high	 school	mathematics	 teacher	 in	Pittsburgh,	PA	
and	as	a	researcher	at	Carnegie	Mellon	University.	Dr.	McGuire	is	the	evaluator	for	the	REU	
grant.		
Dr.	Oluwatosin	Oluwadare	is	an	Assistant	Professor	of	Computer	Science	and	Innovation	at	
the	 University	 of	 Colorado,	 Colorado	 Springs.	 	 	Dr.	 Oluwadare’s	 research	 focus	 areas	 are	
Bioinformatics	 and	 Computational	 Biology,	Machine	 Learning	 and	Data	Mining,	 and	Deep	
Learning	 and	Reinforcement	 Learning.	 	 He	 led	 the	 development	 of	 a	 software	 app	 called	
EyeCYou	 (http://eyecyouapp.com/)	 	 that	 uses	 AI	 to	 provide	 the	 facial	 description	 of	 a	
person	to	the	visually	impaired	.	

NSF REU Midsummer Presentation Meeting
Department of Computer Science

University of Colorado, Colorado Springs
Engineering Building, Room 103

Monday, July 11 and Wednesday, July 13, 2022

11:30-1:00 PM, July 11
Session Chair: Justin Leo, PhD Student, Department of Computer Science, University of
Colorado, Colorado Springs.

Aaron Serianni, Princeton University, Princeton, NJ: Training-free Neural Architecture
Search for RNN and Transformer Architectures

Raymond Dueñas, Stanislaus State University, Turlock, CA: Light Weight Transformers
Ramp up Autonomy of UAVs

Marcin Pawlukiewicz, University of University of Rhode Island, Kingston, RI:
3DChromoTwist: Development of a 3D Chromosome Structure Reconstruction Game for
Educational Purposes

Zachary Snow, University of Kentucky, Lexington, KY: The Effects of Subject Transfer on
Transformer-Based EEG Classification of Finger Movement

11:30-1:00 PM, July 13
Session Chair: Yousra Shleibik, MS Student, Department of Computer Science, University
of Colorado, Colorado Springs, CO

Gabriel Mantione-Holmes, Lewis and Clark College, Portland, OR: Utilizing priming to
identify optimal class ordering to alleviate the problems of catastrophic forgetting

Daniel Degenaro, University of Massachusetts, Amherst, MA: CAMeMBERT: Cascading
Assistant-Mediated Multilingual BERT

Abigail Newcomb, St. Olaf College, Northfield, MN: Explaining Math Word Problem Solvers
Nicole Baugh, North Carolina State University, Raleigh, NC: RECSplice: Splice Site Prediction

Using Recurrent Neural Networks

Our Session Chairs

Justin Leo is a PhD student in the Department of Computer Science at the University of Colorado,
Colorado Springs (UCCS). He participated in the REU program on Machine Learning at UCCS in
2019. He published a conference paper based on his REU work in 2020, followed by a recent paper
on incremental class learning in IEEE Transactions on Neural Networks and Learning Systems.

Yousra Shleibik is an MS student in the Department of Computer Science at the University of
Colorado, Colorado Springs (UCCS). She is a Fulbright Scholar from Libya. Her interests are in
applying Deep Learning techniques in Artificial and Virtual Reality.

NSF REU Proposal Presentation Meeting
Department of Computer Science

University of Colorado, Colorado Springs
Engineering Building, Room 101

Friday, June 10, 2022

1:45-1:50 PM: Welcome Remarks by Dr. Donald Rabern, Dean, College of
Engineering and Applied Science, University of Colorado, Colorado Springs

1:55-2:55 PM
Session Chair: Zanyar Zohoruianshahzadi, PhD student, Department of Computer
Science, University of Colorado, Colorado Springs, CO

Aaron Serianni, Princeton University, Princeton, NJ: Training-free Neural Architecture
Search for NLP RNNs and Transformers

Abigail Newcomb, St. Olaf College, Northfield, MN: Probing Math Word Problem Solvers

Daniel DeGenaro, University of Massachusetts, Amhert, MA: CAMeMBERT: Cascading
Assistant-Mediated Multilingual BERT

3:05-4:05 PM
Session Chair: Steve Cruz, Department of Computer Science, University of Colorado,
Colorado Springs, CO

Gabriel Mantione-Holmes, Lewis and Clark College, Portland, OR: Utilizing Random
Perturbations to Alleviate Catastrophic Forgetting in Lifelong Learning

Marcin Pawlukiewicz, University of University of Rhode Island, Kingston, RI: Development
of a 3D Structure Reconstruction Game for Educational Purposes

Nicole Baugh, North Carolina State University, Raleigh, NC: RECSplice: Splice Site
Prediction Using Recurrent Neural Networks

4:15-4:55 PM
Session Chair: Uma Chinta, PhD student, Department of Computer Science, University
of Colorado, Colorado Springs, CO

Raymond Dueñas, Stanislaus State University, Turlock, CA: Light Weight Transforms Ramp
up Autonomy of UAV’s

Zachary Snow, University of Kentucky, Lexington, KY: CNN and Transformer-Based EEG
and ECoG Classification of Finger Movement

Our Session Chairs

Uma Chinta is a fifth year PhD student at the University of Colorado, Colorado Springs. She works
in and manages the Neurocognition Lab. Her research interests are in facial expression analysis,
sentiment analysis and multimodal emotion recognition. She has submitted multiple papers, which
are under review. She is planning to work on data collection for her studies involving autistic kids,
starting Fall 2022.

Zanyar Zohourianshahzadi is a Ph.D. candidate at UCCS. His research mainly focuses on image
captioning and multimodal learning. His latest work, titled "Neural Attention for Image
Captioning: Review of Outstanding Methods" explains the evolution path of attention mechanisms
in the context of image captioning. He has also published "Neural Twins Talk" at IEEE nternational
Conference on Humanized Computing and Communication with Artificial Intelligence (HCCAI)
and a followup work titled "Neural Twins Talk and Alternative Calculations" in the International
Journal of Semantic Computing.

Steve Cruz is a PhD student at UCCS, graduating in Summer 2022. His primary area of research is
open-set recognition. He has published papers at conferences such as IEEE Computer Vision and
Pattern Recognition (CVPR), Association for the Advancement of Artificial Intelligence (AAAI), and
IEEE Winter Conference on Applications of Computer Vision (WACV). He also serves as a reviewer
for these conferences.

Explaining Math Word Problem Solvers

Abby Newcomb

St. Olaf College
1500 St. Olaf Ave

Northfield, Minnesota 55057
abbynewcomb13@gmail.com

Jugal Kalita

University of Colorado, Colorado Springs
420 Austin Bluffs Pkwy

Colorado Springs, CO 80918
jkalita@uccs.edu

Abstract

Automated math word problem solvers based on neural
networks have successfully managed to obtain 70-80%
accuracy in solving arithmetic word problems. How-
ever, it has been shown that these solvers may rely on
superficial patterns to obtain their equations. In order to
determine what information math word problem solvers
use to generate solutions, we remove parts of the input
and measure the model’s performance on the perturbed
dataset. Our results show that the model is not sensitive
to the removal of many words from the input and can
still manage to find a correct answer when given a non-
sense question. This indicates that automatic solvers do
not follow the semantic logic of math word problems,
and may be overfitting to the presence of specific words.

1 Introduction

Math word problem (MWP) solving is an area of natural
language processing (NLP) that uses machine learning to
solve simple arithmetic problems. MWPs consist of a few
sentences of text including a few numbers and an unknown
quantity, similar to problems humans are presented with in
grade school. Neural networks are trained to generate the
correct equation which computes the unknown quantity. Lit-
tle is known about how these models manage to solve math
word problems. In this paper, we remove parts of math
word problems and measure the model’s performance on the
changed data in order to ascertain which words the model is
using to choose the correct equation.

Various parts of speech work together to construct the full
meaning of a sentence, so even when a certain part of speech
is removed, other words may still indicate the desired oper-
ation. In order to more specifically gauge which words are
important to the model’s prediction, we employ input reduc-
tion, a strategy that iteratively removes the least important
word from the input until the model produces an incorrect
result. This method allows us to see how removing specific
words affects the model.

We also perform analysis of which words appear most fre-
quently in the datasets used to train the model. We also look
at the most common words for each type of problem (+, -, *,
/, multiple) to see whether certain words appear to indicate
specific operations.

In order to determine which parts of speech are most im-
portant to MWP solvers, we remove specific words from
MWP test datasets and test a Seq2seq MWP solver on its
ability to determine the correct answer on these reduced
problems. The contributions of this paper are as follows:
• We show that the lexical diversity of MaWPS is low.
• We show that the RNN Seq2seq solver performs little se-

mantic reasoning, since it can produce correct answers
with significantly reduced input.
We begin by explaining related work, then cover the meth-

ods and results of each experiment in turn, followed by the
conclusion.

2 Related Work

Various neural network MWP solvers have been created and
benchmarked on well-known datasets. Few explainability
techniques have yet been applied to MWP solving.

Math Word Problems

The current most prolific datasets for Math Word Prob-
lem solving are MaWPS (Koncel-Kedziorski et al. 2016)
and ASDiv-A (Miao, Liang, and Su 2021). These datasets
are currently the largest ones available, though they are
quite small for machine learning datasets. MaWPS has 2373
MWPs while ASDiv-A has only 1218 problems.

Figure 1: Percentage of MWPs in MaWPS dataset of each
operation type, on average across all CV folds.

REU Symposium on Deep Learning

University of Colorado, Colorado Springs 1

Various types of neural networks for solving MWPs have
been developed. Wang, Liu, and Shi (2017) use a GRU en-
coder and an LSTM decoder in a sequence to sequence ap-
proach. Another model is a graph to tree model proposed
by Zhang et al. (2020), which uses a graph transformer and
tree structured decoder to generate the MWP solution ex-
pression tree. Griffith and Kalita (2019) use a transformer-
based model. Xie and Sun (2019) use a model called GTS in
a process they call goal decomposition to find relationships
between quantities. Their approach uses feed-forward net-
works and an RNN model at different steps in the algorithm.

Though these models obtain high accuracy, their success
was called into question when MWP solvers were shown
to obtain similar accuracy when the actual question was re-
moved, leaving only the descriptive body of text at the begin-
ning of the problem (Patel, Bhattamishra, and Goyal 2021).
MWP solvers also perform poorly on the SVAMP challenge
dataset, which was specifically generated to require atten-
tion to the question itself (Patel, Bhattamishra, and Goyal
2021). This implies that the solvers are relying on superficial
patterns in the initial text rather than actually answering the
question posed in the problem. However, it was later shown
that performance on the SVAMP dataset could be improved
simply by generating more data to increase the size of MWP
training datasets (Kumar, Maheshwary, and Pudi 2022).

Explainability Techniques

The strategy of removing parts of the input to an NLP model
is often used to explain a model’s decisions. Importance
scores have been assigned to words in the input by looking at
the effects of removing those words (Li, Monroe, and Juraf-
sky 2017). Similarly, the process of input reduction involves
successively removing the word that affects the model’s con-
fidence score the least, until we are left with the smallest
possible input with which the model can still make a cor-
rect prediction (Feng et al. 2018). This process shows us
which words in the input are most important to the model’s
prediction. These methods, among others, have been imple-
mented by Wallace et al. (2019) in their AllenNLP frame-
work for NLP explainability techniques. However, applica-
tions of these methods often focus on large models such as
BERT and tasks such as to sentiment analysis, reading com-
prehension, or textual entailment. This method has not yet
been applied to MWP solving.

Another method of understanding NLP model predictions
is adversarial attacks, in which various changes are made to
the input of a model, and the performance of the model is
measured in order to determine how sensitive the model is
to the changes in the perturbed dataset. Adversarial attacks
are different from the aforementioned methods because the
new inputs to the model are meant to be semantically equiv-
alent to the previous inputs and should still be grammatically
correct (Lee, Kim, and Hwang 2019). Adversarial examples
have been used for interpretability of reading comprehen-
sion systems (Jia and Liang 2017) and question answering
systems (Lee, Kim, and Hwang 2019) in the past. Adversar-
ial attacks involving question reordering and sentence para-
phrasing were also used by Kumar, Maheshwary, and Pudi
(2021) to show that MWP solvers are not robust to these

seemingly irrelevant perturbations.

3 Problem Statement

The question remains to what degree MWP solvers perform
semantic reasoning, and what information they use to gener-
ate an equation for a solution to a given problem. We apply
various methods to search for trigger words and other super-
ficial patterns that the model may be relying on instead of
semantic reasoning.

4 Experiment 1: Removing Parts of Speech

We removed various parts of speech from the MWPs and
tested an MWP solver’s performance on the perturbed
datasets in order to see how important different types of
words are to the model. A large decrease in accuracy due
to the removal of a part of speech indicates that that part
of speech is important to the model’s prediction, since the
model cannot perform as well without it.

Methods

We generate perturbed MWPs by identifying parts of speech
using the Natural Language Toolkit (NLTK) part-of-speech
tagger (Bird, Klein, and Loper 2009) and then removing the
targeted words. We use the Seq2seq model created by Pa-
tel, Bhattamishra, and Goyal (2021) for all experiments. We
also use Patel, Bhattamishra, and Goyal (2021)’s optimized
parameters for training. Two models were trained on either
MaWPS or AsDIV-A with 5 fold cross-validation, and then
each was evaluated on perturbed examples from its respec-
tive dataset. Accuracy is measured on the model’s success in
generating the correct answer, rather than by the proximity
of the generated equation to the true equation.

As a bit of preliminary analysis, we looked at the rela-
tive concentration of different types of MWPs in MaWPS,
as seen in Figure 1. The first four categories are character-
ized by having a single operation of the specified type, while
the problems in the “multi” category have multiple opera-
tions of different types in them. The majority of problems
in MaWPS (73%) have only one operation. The dataset ap-
pears to represent addition and subtraction the best, and have
a much smaller number of multiplication and division prob-
lems. This may contribute to the slightly decreased accuracy
on multiplication and division problems visible on Figure 6
in the Appendix.

Results

The models’ accuracy on each perturbed dataset is listed
in Figures 2 and 3, and Table 3 shows all percent accura-
cies and decreases in accuracy. On the original dataset, the
model trained on ASDiv-A had 72.4% accuracy while the
MaWPS model had 86.5% accuracy. Removal of common
adjectives such as “more” resulted in accuracy decreases of
5.4% and 2.4% respectively, while removing question adjec-
tives such as “how” decreased accuracy by only 2.1% and
1.3%, and removal of all adjectives decreased accuracy by
5.1% and 2.9%. Removal of named entities such as “Jim”
was only conducted with MaWPS because of the format-
ting of the data. MaWPS model accuracy decreased by only

REU Symposium on Deep Learning

University of Colorado, Colorado Springs 2

Figure 2: The average accuracy of the Seq2seq model trained on the MaWPS dataset, when evaluated on various perturbed
datasets. The model’s average accuracy on the original test dataset is indicated by the red dashed line.

Figure 3: The average accuracy of the Seq2seq model trained on the ASDiv-A dataset, when evaluated on various perturbed
datasets. The model’s average accuracy on the original test dataset is indicated by the red dashed line.

REU Symposium on Deep Learning

University of Colorado, Colorado Springs 3

Count Pct

book 68 0.16
will 62 0.14
were 61 0.14
box 52 0.12
tree 52 0.12
total 51 0.12
at 49 0.11
is 49 0.11
pick 48 0.11
from 46 0.11
park 45 0.1

(a) Addition

Count Pct

dollar 63 0.19
total 52 0.16
game 44 0.13
balloon 43 0.13
book 41 0.12
will 40 0.12
at 39 0.12
were 39 0.12
pick 37 0.11
is 37 0.11
all 36 0.11

(b) Subtraction

Count Pct

card 30 0.18
were 26 0.16
box 25 0.15
will 25 0.15
now 23 0.14
total 23 0.14
book 22 0.13
from 22 0.13
pick 21 0.13
one 21 0.13
all 20 0.12

(c) Multiplication

Count Pct

piece 23 0.16
his 23 0.16
dollar 21 0.15
box 21 0.15
from 19 0.14
make 18 0.13
hour 18 0.13
at 17 0.12
now 16 0.11
balloon 16 0.11
game 15 0.11

(d) Division

Count Pct

dollar 89 0.16
box 77 0.14
piece 73 0.13
book 69 0.13
total 69 0.13
at 65 0.12
will 63 0.11
all 61 0.11
game 61 0.11
from 61 0.11
would 61 0.11

(e) Multiple

Table 1: The top words for each operation in MaWPS CV Fold 1, excluding words that appeared in all 5 lists, by count of
MWPs it appears in. Percentage of MWPs of that operation that the word appears in is also provided for comparison’s sake.

2.8% with no named entities. Removal of all nouns, includ-
ing named entities and all common nouns, decreased accu-
racy by 9.4% on ASDiv-A and 16.6% on MaWPS. Remov-
ing prepositions decreased accuracy by 4.1% and 3.3% re-
spectively. Removing verbs decreased accuracy by 11.1% in
the ASDiv-A model and by 5.9% on the MaWPS model.

We also tested the models on datasets with two different
parts of speech missing. On a dataset with all nouns and
verbs missing, the ASDiv-A model accuracy decreased by
20.5% and MaWPS by 31.2%. With all prepositions and
verbs removed, the models’ accuracy decreased by 14.2%
and 13.9% respectively.

The model was also tested on datasets where only a spe-
cific part of speech and the number tokens were left in the
MWP, with all other words removed from the input. The
results on these datasets tended to somewhat mirror the
model’s performance on the datasets with that part of speech
removed.

On a dataset with all words except for the number tokens
removed, the model achieved 12.2% accuracy for MaWPS
and 17.1% accuracy on AsDIV-A. It is difficult to calculate
what a completely random accuracy would be and how close
these are to random guesses because of the complexity of
multiple operations, but the AsDIV-A model does manage
a significantly higher accuracy, which indicates that it may
not rely on the word content as much as the MaWPS model.

Discussion

The model’s overall higher accuracies on the MaWPS
dataset can likely be attributed to its size, since with 2373
MWPs it is nearly twice as large as ASDiv-A’s 1218 prob-
lems. The MaWPS model was also less affected by the re-
moval of any single part of speech compared to the ASDiv-A
model (average accuracy difference of 5.0% to ASDiv-A’s
6.2%), and thus seems to be less sensitive to this type of
perturbation overall. The MaWPS model was also more af-
fected by the removal of multiple parts of speech, as the de-
crease in performance on the twice perturbed datasets was
larger than the sum of the decrease in performance on either

of the once perturbed datasets, which was not the case for
the ASDiv-A model.

The removal of any single part of speech does not appear
to significantly affect either model. Overall, the MaWPS
model was most affected by the removal of nouns at a 16.6%
decrease in accuracy, and the ASDiv-A model was most af-
fected by the removal of verbs at an 11.1% decrease. As hy-
pothesized, certain operations are more affected by the re-
moval of some parts of speech more than others, as seen in
Figures 6 and 5 in the Appendix. The models’ decent per-
formance on these reduced datasets indicates that no single
part of speech is incredibly important to its decision.

However, both models were still achieving an accuracy
above 50% with no nouns or verbs in the MWPs. This rela-
tively high accuracy indicates that these models are likely
not performing semantic reasoning about the events de-
scribed in the MWP, since there is not enough information
in the problem with no verbs or nouns for the model to truly
be reasoning about the quantities present. Instead, the solver
may be relying on the presence of trigger words. For exam-
ple, the words “more” and “together” are likely to signal ad-
dition even if the model is given no additional context, while
“each” may signal multiplication or division.

For the datasets with only one part of speech and the num-
ber tokens remaining, no extremely large jumps in accuracy
were observed that would suggest that the model relies en-
tirely on one part of speech. However, accuracy was nearly
doubled from 12% to 23% with only nouns in the MaWPS
model, which does suggest at least some reliance on the
presence of certain nouns in this model since clearly with
only nouns to go draw its conclusions, no logical reasoning
of events is possible.

5 Experiment 2: MaWPS Word Frequency

In this experiment, we examine the diversity, or lack thereof,
of words in the MaWPS’ dataset’s vocabulary. Our work is
intended to reveal possible trigger words that may frequently
appear in some types of problems but not others.

REU Symposium on Deep Learning

University of Colorado, Colorado Springs 4

Figure 4: A histogram of the percentage of words in a given MWP were removed before the model produced an incorrect
solution to the problem. This histogram does not include MWPs that the model gave an incorrect prediction with the original
text.

Methods

We looked at the word frequency of words in the first cross-
validation fold of the MaWPS dataset, both the training and
testing datasets. The problem texts were first set to all lower-
case letters, then stemmed and lemmatized in order to count
all occurrences of the words.

We counted the number of MWPs that each word ap-
peared in rather than the total number of appearances of each
word. We found the top 50 words, by number of MWPs the
word appeared in, for every operation type (+, -, *, /, multi-
ple), then filtered out any words that appeared in every list.
In this way we can see which words are uniquely frequent
in specific operations, and are not just frequent in the corpus
overall.

Results

The results are shown in Table 1. We can see that these
words often appear in 10-20% of all problems of a given
type, though the majority of the words do not appear to have
any correlation to the type of operation that they most often
appear in.

Discussion

None of the most popular words appeared to be relevant to
the category of problem that they most frequently appeared
in. The fact that these words are appearing so frequently in-
dicates a low lexical diversity in the MaWPS dataset, which
may encourage the model to rely on the occurrence of these
words to classify problems into different operations.

6 Experiment 3: Input Reduction

We used input reduction to uncover how many words can be
removed from an MWP before the model will produce an
incorrect answer. If very few words remain and have little to
do with the correct equation, it suggests that the model is not
performing much semantic reasoning between quantities in
order to find the correct equation.

Methods

Our approach is based on the work of Feng et al. (2018), but
does not follow their exact methodology. We implemented
confidence scores using the posterior probability of each la-
bel, summed those probabilities and divided by the number
of outputs, since we were using an RNN model. For the input
reduction process, we iteratively removed the word which
reduced the model’s confidence score the least.

We used only the RNN Seq2seq model created from the
first CV fold of MaWPS for our input reduction predictions.

Results

A histogram of the percentage of words removed when the
model gave an incorrect prediction is shown in Figure 4.
The histogram does not include MWPs that the model got
wrong with the original text. The mean percentage of words
removed is 62.3%, while the median is 68.1%. This means
that the model produces the correct prediction with less than
68.1% of the words for half of the problems it is able to
solve.

An example of the input reduction process is shown in
Figure 4 in the Appendix. In this example, 22 words are re-
moved before the model produces an incorrect equation. The
most reduced input to receive a correct equation is “his num-
ber0 each his number1 many,” which arguably contains lit-
tle to no information about what the correct equation is, and
yet the model still solves the problem with high confidence
(99%).

Discussion

The results of the input reduction experiment show that in
most cases more than half of the total words can be removed
from the MWP before the model produces an incorrect an-
swer. With over half of the words removed, these problems

REU Symposium on Deep Learning

University of Colorado, Colorado Springs 5

are nonsensical to humans, as in Table 4. This indicates that
the model is not truly performing reasoning about the se-
quence of events explained in the problem, since it can still
produce a correct equation with over half of the information
removed from the input.

7 Future Work

We would like to implement the gradient-based method used
by Feng et al. (2018) in order to obtain a more objective
idea of how much removing a given word affects the model.
The current confidence score approach produces very high
confidence on almost every input, even when it is wrong,
which reduces the credibility of our input reduction results.

We would also like to implement the high-entropy output
fine-tuning suggested by Feng et al. (2018) to possibly im-
prove the interpretability and accuracy of the RNN Seq2seq
MWP solver.

Another possible avenue of word would be to increase the
lexical diversity of MaWPS by writing code to change words
to synonyms before the MWPs are fed into the model for
training. This way, the model would not be able to rely on
the high frequency of certain words to make its predictions.

8 Conclusion

The results of Experiment 1, parts of speech removal, indi-
cated a small reliance on some parts of speech, especially
nouns and verbs. The AsDIV-A model was also shown to
be more reliant on specific parts of speech than MaWPS,
perhaps indicating some overfitting to those words. Experi-
ment 2, word frequency in MaWPS, shows that the lexical
diversity of MaWPS is low. Experiment 3, input reduction,
shows that well over half of the words in a given MWP can
be removed before the model gives an incorrect prediction.
This shows that the model is not using all of the information
in the question to make its prediction, and may be relying
on occurrences of some of the words from Experiment 2, or
some other superficial patterns, to make its predictions.

9 Acknowledgements

The work reported in this paper is supported by the Na-
tional Science Foundation under Grant No. 2050919. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this work are those of the author(s) and do not
necessarily reflect the views of the National Science Foun-
dation.

References

Bird, S.; Klein, E.; and Loper, E. 2009. Natural language

processing with Python: analyzing text with the natural lan-

guage toolkit. O’Reilly Media, Inc.
Feng, S.; Wallace, E.; Grissom II, A.; Iyyer, M.; Rodriguez,
P.; and Boyd-Graber, J. 2018. Pathologies of Neural Models
Make Interpretations Difficult. arXiv:1804.07781.
Griffith, K., and Kalita, J. 2019. Solving Arithmetic Word
Problems Automatically Using Transformer and Unambigu-
ous Representations. In 2019 International Conference

on Computational Science and Computational Intelligence

(CSCI), 526–532.
Jia, R., and Liang, P. 2017. Adversarial Examples for Evalu-
ating Reading Comprehension Systems. arXiv:1707.07328.
Koncel-Kedziorski, R.; Roy, S.; Amini, A.; Kushman, N.;
and Hajishirzi, H. 2016. MAWPS: A Math Word Prob-
lem Repository. In Proceedings of the 2016 Conference of

the North American Chapter of the Association for Compu-

tational Linguistics: Human Language Technologies, 1152–
1157. San Diego, California: Association for Computational
Linguistics.
Kumar, V.; Maheshwary, R.; and Pudi, V. 2021. Ad-
versarial Examples for Evaluating Math Word Problem
Solvers. Technical Report arXiv:2109.05925, arXiv.
arXiv:2109.05925.
Kumar, V.; Maheshwary, R.; and Pudi, V. 2022. Prac-
tice Makes a Solver Perfect: Data Augmentation for Math
Word Problem Solvers. Technical Report arXiv:2205.00177,
arXiv.
Lee, G.; Kim, S.; and Hwang, S.-w. 2019. QADiver: Interac-
tive Framework for Diagnosing QA Models. Proceedings of

the AAAI Conference on Artificial Intelligence 33(01):9861–
9862.
Li, J.; Monroe, W.; and Jurafsky, D. 2017. Under-
standing Neural Networks through Representation Erasure.
arXiv:1612.08220.
Miao, S.-Y.; Liang, C.-C.; and Su, K.-Y. 2021. A Di-
verse Corpus for Evaluating and Developing English Math
Word Problem Solvers. Technical Report arXiv:2106.15772,
arXiv.
Patel, A.; Bhattamishra, S.; and Goyal, N. 2021. Are NLP
Models really able to Solve Simple Math Word Problems? In
Proceedings of the 2021 Conference of the North American

Chapter of the Association for Computational Linguistics:

Human Language Technologies, 2080–2094.
Wallace, E.; Tuyls, J.; Wang, J.; Subramanian, S.; Gardner,
M.; and Singh, S. 2019. AllenNLP Interpret: A Framework
for Explaining Predictions of NLP Models.
Wang, Y.; Liu, X.; and Shi, S. 2017. Deep Neural Solver for
Math Word Problems. In Proceedings of the 2017 Confer-

ence on Empirical Methods in Natural Language Process-

ing, 845–854. Copenhagen, Denmark: Association for Com-
putational Linguistics.
Xie, Z., and Sun, S. 2019. A Goal-Driven Tree-Structured
Neural Model for Math Word Problems. In Proceedings of

the Twenty-Eighth International Joint Conference on Artifi-

cial Intelligence, 5299–5305.
Zhang, J.; Wang, L.; Lee, R. K.-W.; Bin, Y.; Wang, Y.; Shao,
J.; and LIM, E.-p. 2020. Graph-to-tree learning for solving
math word problems. Proceedings of the 58th Annual Meet-

ing of the Association for Computational Linguistics 3928–
3937.

REU Symposium on Deep Learning

University of Colorado, Colorado Springs 6

10 Appendix

Perturbation Original Question Perturbed Question Correct Equation

Verbs Removed Tommy had some balloons . His
mom gave him number0 more bal-
loons for his birthday . Then ,
Tommy had number1 balloons .
How many balloons did Tommy
have to start with ?

Tommy some balloons . His
mom him number0 more
balloons for his birthday .
Then , Tommy number1 bal-
loons . How many balloons
Tommy to with ?

- number1 number0

Nouns Removed The first minute of a telephone call
costs number0 cents and each addi-
tional minute number1 cents . What
is the cost of a number2 minute tele-
phone call ?

The first of a number0 and
each additional number1 .
What is the of a number2 ?

+ number0 * num-
ber1 number2

Nouns and Verbs
Removed

Virginia starts with number0 eggs
. Amy takes number1 away . How
many eggs does Virginia end with ?

with number0 . number1
away . How many with ?

- number0 number1

Prepositions and
Verbs Removed

In March it rained number0 inches
. It rained number1 inches less in
April than in March . How much did
it rain in April ?

March it number0 inches .
It number1 inches less April
March . How much it April
?

- number0 number1

Table 2: Examples of perturbed MWPs from the MaWPS dataset. In this dataset, the actual numbers are removed and replaced
with number tokens (“number0”, “number1”, etc.) in order for the model to process them more easily.

Perturbation MaWPS CV
Accuracy

MaWPS
Decrease in
Accuracy

ASDiv-A
CV Accu-
racy

ASDiv-A
Decrease in
Accuracy

original dataset 0.857 - 0.716 -
common adjectives removed 0.841 0.017 0.67 0.046
wh-adjectives removed 0.852 0.004 0.703 0.013
all adjectives removed 0.836 0.021 0.673 0.043
named entities removed 0.837 0.02 - -
nouns removed 0.699 0.158 0.63 0.086
prepositions removed 0.832 0.025 0.683 0.033
verbs removed 0.806 0.051 0.613 0.103
nouns and verbs removed 0.553 0.304 0.519 0.197
prepositions and verbs removed 0.726 0.13 0.582 0.134
only nouns and number tokens remaining 0.232 0.625 0.217 0.499
only prepositions and number tokens remaining 0.125 0.732 0.193 0.523
only verbs and number tokens remaining 0.197 0.66 0.253 0.463
all words except number tokens removed 0.122 0.735 0.171 0.545

Table 3: Seq2seq model CV accuracy and decrease in CV accuracy on each perturbed dataset.

REU Symposium on Deep Learning

University of Colorado, Colorado Springs 7

Figure 5: The RNN Seq2seq model’s accuracy on each type of problem for the perturbed datasets with one or two parts of
speech missing.

Figure 6: The RNN Seq2seq model’s accuracy on each type of problem for the perturbed datasets with only one part of speech
and number tokens remaining.

REU Symposium on Deep Learning

University of Colorado, Colorado Springs 8

Number of
Reductions

Prediction Model Confidence Removed Word Question

0 Correct 0.927575 Bryan took a look at his books as well . If Bryan has
number0 books in each of his number1 bookshelves ,
how many books does he have in total ?

1 Correct 0.999928 in Bryan took a look at his books as well . If Bryan has
number0 books each of his number1 bookshelves ,
how many books does he have total ?

2 Correct 0.999993 bookshelves Bryan took a look at his books as well . If Bryan
has number0 books each of his number1 , how many
books does he have total ?

3 Correct 0.999994 has Bryan took a look at his books as well . If Bryan num-
ber0 books each of his number1 , how many books
does he have total ?

4 Correct 0.999995 bryan took a look at his books as well . If number0 books
each of his number1 , how many books does he have
total ?

5 Correct 0.999992 how took a look at his books as well . If number0 books
each of his number1 , many books does he have total
?

6 Correct 0.999993 took a look at his books as well . If number0 books each of
his number1 , many books does he have total ?

7 Correct 0.999994 books a look at his as well . If number0 each of his number1
, many does he have total ?

8 Correct 0.999989 . a look at his as well If number0 each of his number1
, many does he have total ?

9 Correct 0.999992 if a look at his as well number0 each of his number1 ,
many does he have total ?

10 Correct 0.999993 well a look at his as number0 each of his number1 , many
does he have total ?

11 Correct 0.999988 , a look at his as number0 each of his number1 many
does he have total ?

12 Correct 0.99999 as a look at his number0 each of his number1 many does
he have total ?

13 Correct 0.999988 at a look his number0 each of his number1 many does
he have total ?

14 Correct 0.999986 of a look his number0 each his number1 many does he
have total ?

15 Correct 0.999987 does a look his number0 each his number1 many he have
total ?

16 Correct 0.99999 total a look his number0 each his number1 many he have ?
17 Correct 0.999992 he a look his number0 each his number1 many have ?
18 Correct 0.999994 a look his number0 each his number1 many have ?
19 Correct 0.999984 look his number0 each his number1 many have ?
20 Correct 0.999799 ? his number0 each his number1 many have
21 Correct 0.990361 have his number0 each his number1 many
22 Incorrect 0.616872 his number0 each number1 many

Table 4: An example of the input reduction process.

REU Symposium on Deep Learning

University of Colorado, Colorado Springs 9

Utilizing priming to identify optimal class ordering to alleviate the problems of
catastrophic forgetting

Gabriel Mantione-Holmes
Lewis & Clark College

gabriel@lclark.edu

Justin Leo
University of Colorado

Colorado Springs
jleo@uccs.edu

Jugal Kalita
University of Colorado

Colorado Springs
jkalita@uccs.edu

Abstract

In order for artificial neural networks to begin accu-
rately mimicking biological ones, they must be able to
adapt to new exigencies without forgetting what they
have learned from previous training. Lifelong learning
approaches to artificial neural networks attempt to strive
towards this goal, yet have not progressed far enough
to be realistically deployed for NLP tasks. The prover-
bial roadblock of catastrophic forgetting still gate-keeps
researchers from an adequate lifelong learning model.
While efforts are being made to quell catastrophic for-
getting, there is a lack of research that looks into the im-
portance of class ordering when training on new classes
for incremental learning. This is surprising as the order-
ing of “classes” that humans learn is heavily monitored
and incredibly important. While heuristics to develop an
ideal class order have been researched, this paper exam-
ines class ordering as it relates to priming as a scheme
for incremental class learning. By examining the con-
nections between various methods of priming found in
humans and how those are mimicked yet remain unex-
plained in life-long learning, this paper provides a bet-
ter understanding of the similarities between our bio-
logical systems and the synthetic systems while simul-
taneously improving current practices to combat catas-
trophic forgetting. Through the merging of psychologi-
cal priming practices with class ordering, this paper was
able to identify a generalizable method for class order-
ing in NLP incremental learning tasks that consistently
outperforms random class ordering.

1 Introduction
Artificial neural networks have surpassed human abilities on
a front of tasks. Human brains, unlike their synthetic coun-
terparts, are hardly static in that they can, over their lifetime,
learn new tasks while still retaining the ability to perform
previously learned tasks. The same cannot be said about our
current methods for isolated learning (Chen and Liu 2016).
Isolated learning, while proven useful, has real world lim-
itations in that it cannot use previously learned knowledge
to facilitate learning new tasks while still retaining informa-
tion. When an isolated learning model is retrained on new
data, it typically suffers from catastrophic forgetting. Catas-
trophic forgetting, also known as catastrophic interference
(McCloskey and Cohen 1989) is the process by which a

model loses the ability to classify data on which it has pre-
viously been trained (Li, Qu, and Haffari 2021).

In order to perform well outside the lab, NLP models must
be continually trained on batches of data from new classes
while maintaining high accuracy in previously trained clas-
sification tasks. This paradigm is variously called Incre-
mental learning, continual learning, sequential learning, or
lifelong learning (Leo and Kalita 2022). Lifelong learning
can benefit NLP research in ways that multi-class learning
and isolated learning cannot. The major oversight shared by
multi-class and isolated learning is that they assume data
during training represent all the data and tasks that will be
encountered in the real world. Lifelong learning, on the other
hand, assumes that new tasks and data will naturally present
themselves later. While lifelong learning models in com-
puter vision have claimed a modicum of success, the mit-
igation of catastrophic forgetting among NLP models still
has not met the metrics well (Greco et al. 2019).

Catastrophic forgetting is being combatted in many differ-
ent ways. However, class ordering is very rarely examined
as a means to alleviate the effects of catastrophic forgetting.
Class ordering is the idea that the way class data are arranged
and fed to an incremental classifier can affect the perfor-
mance of the model being trained. Class ordering in rela-
tion to synthetic neural networks has been examined since
the late 80s. Notions of ordering sensitivity have been intro-
duced as a measure of the importance of the order in which
a network is fed classes. While class ordering has been ex-
amined in class incremental learning (He, Wang, and Chen
2022; ?), past work seems to only examine vision tasks.

To better understand class ordering within the NLP do-
main, this paper examines different methods of priming.
Semantic, associative and repetition priming methods for
NLP systems are inspired by the psychological practice of
priming humans brains. While current methods of class or-
dering utilize information contained in confusion matrices
(Masana, Twardowski, and Van de Weijer 2020), these re-
quire a model to first be trained on the classes to determine
which classes the model most often mis-classifies.

The method that this paper proposes examines class data
before training to determine an optimal ordering that lim-
its the effects of catastrophic forgetting. This method should
perform better outside the lab because as new classes are
discovered, the class ordering can be modified to accommo-

REU Symposium on Deep Learning

University of Colorado, Colorado Springs 10

date them. Examining semantic and associative relatedness
between classes allows us to generate orders for classes that
bank on artificial neural networks behaving analogously to
the organic phenomenon of priming.

This paper aims to:
• Identify a generalizable class ordering method that out-

performs random ordering for NLP incremental classifi-
cation,

• Identify a class ordering method that can order data before
model training occurs,

• Draw a connection between biological neural networks
and artificial neural networks in the context of priming.

2 Related Work
This work examines the relationship between priming as it
relates to humans and how priming can be applied to the
NLP incremental classification paradigm. This relationship
is examined in order to identify an optimal class ordering
method.

2.1 Open-set classification
Most classification problems in machine learning are eval-
uated in the “closed-set” paradigm. This is the scenario in
which the set of classes used in training is same as the set
of classes used in testing. This represents the real world in-
accurately and begs for the more realistic scenario of “open-
set” classification. Open-set classification is the process of
training a model on a set of classes that is less extensive
than the set of tested classes (Scheirer et al. 2013). Open-
set classification has been implemented using loss functions
that increase the entropy of softmax scores to better han-
dle background and unknown inputs (Dhamija, Günther, and
Boult 2018). Others have replaced the softmax layer with the
“Openmax” (Bendale and Boult 2016) layer that computes
how far a piece of data is from known training data based on
the penultimate layer’s outputs (Prakhya, Venkataram, and
Kalita 2017).

2.2 Class ordering
Class ordering during classification has been explored since
the 1980s (Lee et al. 1988). However, the majority of efforts
in class ordering have only examined vision (Yang and Li
2021). Efforts at ordering typically rely on a confusion ma-
trix that results from a network already training on the entire
dataset. To the knowledge of the authors, this is the first pa-
per to examine class ordering for NLP tasks, as well as class
ordering that can be implemented prior to any model train-
ing in the context of incremental class learning. As a final
claim, we believe this paper is the first to examine the close
relationship that biological and synthetic networks have re-
garding priming.

2.3 Priming
Priming is the psychological process by which one expo-
sure to a certain stimulus has an influence on the reaction
to the exposure of another stimulus (Bargh and Chartrand
2014). Psychologists have discovered three types of priming

that the authors have identified as viable to be transferred to
the incremental learning domain. Semantic priming (Shelton
and Martin 1992) refers to priming in which the initial stim-
ulus has an important semantic relationship to the reacted
stimulus, which influences the reaction to a greater degree
than some other stimulus that had a weaker semantic rela-
tionship. Associative priming (Ferrand and New 2004) refers
to priming in which the initial stimulus is in close proximity
to the reacted stimulus (and hence associated), which influ-
ences the reaction to a greater degree than some other stimu-
lus that appears further away in proximity. The final priming
method is repetition priming (Forster and Davis 1984). This
is priming in which the initial stimulus affects future reac-
tions to itself. As we are examining incremental learning in
NLP, these three methods stood out to us. Being able to com-
pute words that have semantic and associative relationships
to a given word enables us to see if artificial neural net-
works are affected similarly to biological neural networks.
Our model relies on rehearsal strategies (Luo et al. 2020)
where past data are used for retraining when a new class is
discovered. This incremental learning method has deep roots
in repetition priming as both are a form of replay of data.

3 Problem Statement

While lifelong learning has had some success in computer
vision, the same cannot be said for NLP. Lifelong learning
models still suffer from catastrophic forgetting when faced
with NLP tasks. Class order has been examined for lifelong
learning in the context of computer vision, but has been
completely untouched in NLP. This paper identifies class
ordering methods that outperform random class ordering,
which increases accuracy of the model, and hence hampers
catastrophic forgetting.

4 Approach

The goal of this paper is to identify a method for class or-
dering that will outperform random class ordering for NLP
classification tasks. Four different methods were tested to
identify if there was a method that outperformed random
order. We also tested whether interleaved or block learn-
ing (He, Wang, and Chen 2022) performs better in conjunc-
tion with the four different methods. The model used to test
these class ordering methods was the Classification Confi-
dence Threshold (CCT) model (Leo and Kalita 2021). The
CCT model identifies new classes using open-set classifica-
tion and a confidence threshold. The presence of data from
previously unseen classes is identified through spectral clus-
tering of unknown pieces of data. Examples of previously
unseen classes are identified through a scheme where the
classifier is “primed” to be on the lookout for data from un-
seen classes. A confidence threshold is used to determine
whether or not the class to which the data example belongs is
truly unknown. When the classifier is retrained on the newly
identified class data, the model adds new nodes at the output
layer to catch new class data.

REU Symposium on Deep Learning

University of Colorado, Colorado Springs 11

Figure 1: A representation of the CCT method that adds a priming node at the classifiers softmax layer (Leo and Kalita 2021).

4.1 Associative Priming
The first heuristic we examined was based on associative re-
lationships between classes. This heuristic was pursued due
the effects of associative priming on human learning. To find
the associative relationships between classes, an exemplar of
the class is first identified by computing the average docu-
ment for a class. The average document is computed by tak-
ing the average of all word embeddings of all documents in
a class. While this is a relatively naive method of making an
exemplar for a text class, it is computationally cheap and can
be computed without the training of anything but a word2vec
model (Mikolov et al. 2013) for the corpus. Along with us-
ing word2vec, doc2vec was also used to determine an exem-
plar by computing the average document as the average of
doc2vec representations (Le and Mikolov 2014). However,
since most of the documents are short, our approach is prac-
tical and resonably sound.

After an exemplar is computed for each class, the simi-
larity is computed by using cosine similarity. The similar-
ity/dissimilarity between pairs of classes is then stored in
an adjacency matrix. The distance between class averages is
also computed using the Euclidean distance between them,
as an alternative. While cosine similarity tells us how similar
classes are to one another Euclidean distance informs us of
how different classes are and where their is little difference
similarity is assumed.

Once an adjacency matrix is computed, an order is con-
structed based on interleaved learning, the process of learn-
ing data classes that differ significantly, or block learning,
the process of learning data classes that are very similar (He,
Wang, and Chen 2022). For interleaved learning, the order
is constructed by taking the pair of classes with the great-
est distance or least similarity as the first two classes and
adding on a class to the order that is furthest/ least similar to
the last class added. This results in an order of classes that
vary the most from each other on an associative level. For
block learning, a similar method is used, but instead of us-
ing classes have the greatest distance/lowest similarity, we

take classes that have the least distance or most similarity.
While this method can be made more complex by iden-

tifying more robust methods of computing association be-
tween classes, this current naive approach offers a starting
point for future research in this area.

4.2 Semantic Priming
The second heuristic we examined was based on semantic
relationships between classes. This heuristic was pursued
also due to the success of semantic priming within the hu-
man learning system. To find the semantic relationships be-
tween classes, the set of top 10 most important words per
class was computed using tf-idf. For each set of words, the
semantic similarity was computed. This was done by ob-
taining the WordNet synset of each word and computing
the Wu-Palmer similarity (Wu and Palmer 1994) between
them. Once the similarity between each word of the two sets
is computed, the average similarity between the words of
the two sets is computed and used as the semantic similar-
ity between the two classes. This is done between each class
which results in an adjacency matrix.

Once an adjacency matrix is computed, the order is con-
structed again based on either block learning where the or-
der will be comprised of semantically similar classes or in-
terleaved learning where the order will be comprised of se-
mantically dissimilar classes.

4.3 Repetition Priming
For semantic and associative priming, it is then exam-
ined whether repetition priming of semantic and associa-
tive classes has any benefits. Because the incremental learn-
ing model we are using relies on rehearsal, the incremental
learner is already using repetition priming by using the same
order. To determine whether repetition affects this process,
the model was trained on the full order as well as using the
order for the first five classes and then using a random order
for the rest. This acts as an ablation study on the effective-
ness of repetition priming when it comes to class ordering.

REU Symposium on Deep Learning

University of Colorado, Colorado Springs 12

4.4 Data
Two text datasets were used to determine if a method of
class ordering could be generally applied across incremen-
tal learning NLP tasks. The Reddit Mental Health Dataset
(RMHD) consists of posts from 27 subreddits (Low et al.
2020). The CCAT-50 dataset consists of 50 writing pieces
from 50 authors (Houvardas and Stamatatos 2006). These
two datasets differ greatly in that one consists of internet
posts that are filled with slang and vernacular text while
CCAT-50 consists of formal writing.

5 Results
In Figs 2 and 3, we present averaged experimental data using
the RMHD and CCAT-50 datasets, respectively. The figures
show the accuracy of the model over 15 iterations using as-
sociative priming methods with word2vec. The model starts
with training on five classes and with each iteration adds one
new class. In both Figs 2 and 3, we see how associative inter-
leaved priming performs much better than associative block
priming. This mimics what psychologists have found to be
true about humans (Rohrer, Dedrick, and Stershic 2015;
Pan 2015). Not only is it interesting that the CCT model
mimics the same priming effect as humans, but ordering
based on associative priming outperforms random ordering
by about 15% for RMHD and 20% for CCAT-50. The in-
terleaving priming outperforms block priming by 20% for
RHMD and 10% for CCAT-50. Across both datasets asso-
ciative interleaved priming outperforms random.

In Figs 4 and 5, we present average experimental data
for semantic priming for our datasets. While semantic block
priming outperforms interleaved priming for RMHD, this
trend is not supported by CCAT-50. The discrepancies aris-
ing in the semantic priming results can be explained by
the shortcomings of Wordnet. While Wordnet is a fantas-
tic tool, if a word is not in Wordnet’s vocabulary, it will not
be able to create a synset for it. When examining the most
important words for both datasets many sets of top words
included slang, proper nouns, and acronyms all of which
were overlooked by Wordnet. Until semantic similarity can
be more easily computed between words that are currently
overlooked, this research concludes that semantic priming is
a dead end.

In Figs 6 and 7 we present average experimental data
for associative priming using doc2vec rather than word2vec.
Surprisingly the use of doc2vec does not appear to pro-
duce conclusive results across both datasets. While there are
methods that outperform random ordering within doc2vec
associative priming for both datasets, they do not behave
similarly and therefore the argument for one of them work-
ing well throughout the NLP domain is invalidated.

.

6 Conclusion
Class ordering does matter for NLP incremental learning
tasks. In our process of examining class ordering, we have
found a method that improves performance over random
class ordering. In addition, we have found another method

Figure 2: Averaged results from associative priming for the
RMHD dataset using word2vec

Figure 3: Averaged results from associative priming for the
CCAT-50 dataset using word2vec

that underperforms random ordering. Class ordering ap-
pears to perform best across both datasets when associated-
interleaved-repetition priming is utilized. Furthermore, since
the same is true for humans, this discovery has revealed a
similarity between biological and synthetic networks. Re-
production with other datasets will help solidify our claim
that this method is truly generalizable. This work does
point toward the need to look further into class ordering
in the context of incremental NLP classification. Random
order is consistently outperformed with one of the meth-
ods we have used. We conclude that associative-interleaved-
repetition priming should be further examined across vari-
ous NLP incremental classification problems.

7 Acknowledgements
The work reported in this paper is supported by the Na-
tional Science Foundation under Grant No. 2050919. Any
opinions, findings and conclusions or recommendations ex-

REU Symposium on Deep Learning

University of Colorado, Colorado Springs 13

Figure 4: Averaged results from semantic priming for the
RMHD dataset

Figure 5: Averaged results from semantic priming for the
CCAT-50 dataset

pressed in this work are those of the author(s) and do not
necessarily reflect the views of the National Science Foun-
dation.

References
Bargh, J. A., and Chartrand, T. L. 2014. The mind in the
middle: A practical guide to priming and automaticity re-
search.
Bendale, A., and Boult, T. E. 2016. Towards open set deep
networks. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR).
Chen, Z., and Liu, B. 2016. Lifelong machine learn-
ing for natural language processing. In Proceedings of the
2016 Conference on Empirical Methods in Natural Lan-
guage Processing: Tutorial Abstracts. Austin, Texas: As-
sociation for Computational Linguistics.
Dhamija, A. R.; Günther, M.; and Boult, T. 2018. Reducing

Figure 6: Averaged results from associative priming for the
RMHD dataset using doc2vec

Figure 7: Averaged results from associative priming for the
CCAT-50 dataset using doc2vec

network agnostophobia. Advances in Neural Information
Processing Systems 31.
Ferrand, L., and New, B. 2004. Semantic and associative.
Mental lexicon: Some words to talk about words 25.
Forster, K. I., and Davis, C. 1984. Repetition priming
and frequency attenuation in lexical access. Journal of ex-
perimental psychology: Learning, Memory, and Cognition
10(4):680.
Greco, C.; Plank, B.; Fernández, R.; and Bernardi, R.
2019. Psycholinguistics meets continual learning: Measur-
ing catastrophic forgetting in visual question answering. In
Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, 3601–3605. Florence, Italy:
Association for Computational Linguistics.
He, C.; Wang, R.; and Chen, X. 2022. Rethinking class
orders and transferability in class incremental learning. Pat-
tern Recognition Letters.

REU Symposium on Deep Learning

University of Colorado, Colorado Springs 14

Houvardas, J., and Stamatatos, E. 2006. N-gram feature
selection for authorship identification. In International con-
ference on artificial intelligence: Methodology, systems, and
applications, 77–86. Springer.
Le, Q., and Mikolov, T. 2014. Distributed representations
of sentences and documents. In International conference on
machine learning, 1188–1196. PMLR.
Lee, E. S.; MacGregor, J. N.; Bavelas, A.; Mirlin, L.; Lam,
N.; and Morrison, I. 1988. The effects of error transforma-
tions on classification performance. Journal of Experimental
Psychology: Learning, Memory, and Cognition 14(1):66.
Leo, J., and Kalita, J. 2021. Incremental Deep Neural Net-
work Learning Using Classification Confidence Threshold-
ing. IEEE Transactions on Neural Networks and Learning
Systems 1–11.
Leo, J., and Kalita, J. 2022. Survey of Continuous Deep
Learning Architectures for Incremental Learning. unpub-
lished manuscript.
Li, Z.; Qu, L.; and Haffari, G. 2021. Total Recall: a Cus-
tomized Continual Learning Method for Neural Semantic
Parsers. In Proceedings of the 2021 Conference on Empir-
ical Methods in Natural Language Processing, 3816–3831.
Online and Punta Cana, Dominican Republic: Association
for Computational Linguistics.
Low, D. M.; Rumker, L.; Talkar, T.; Torous, J.; Cecchi, G.;
and Ghosh, S. S. 2020. Natural Language Processing Re-
veals Vulnerable Mental Health Support Groups and Height-
ened Health Anxiety on Reddit During COVID-19: Obser-
vational Study. J Med Internet Res 22(10):e22635.
Luo, Y.; Yin, L.; Bai, W.; and Mao, K. 2020. An Appraisal
of Incremental Learning Methods. Entropy 22(11):1190.
Masana, M.; Twardowski, B.; and Van de Weijer, J. 2020.
On class orderings for incremental learning. arXiv preprint
arXiv:2007.02145.
McCloskey, M., and Cohen, N. J. 1989. Catastrophic inter-
ference in connectionist networks: The sequential learning
problem. volume 24 of Psychology of Learning and Moti-
vation. Academic Press. 109–165.
Mikolov, T.; Chen, K.; Corrado, G.; and Dean, J. 2013. Ef-
ficient estimation of word representations in vector space.
arXiv preprint arXiv:1301.3781.
Pan, S. C. 2015. The interleaving effect: mixing it up boosts
learning. Scientific American 313(2).
Prakhya, S.; Venkataram, V.; and Kalita, J. 2017. Open-set
deep learning for text classification. Machine Learning in
Computer Vision and Natural Language Processing; ACM:
New York, NY, USA 1–6.
Rohrer, D.; Dedrick, R. F.; and Stershic, S. 2015. Inter-
leaved practice improves mathematics learning. Journal of
Educational Psychology 107(3):900.
Scheirer, W. J.; de Rezende Rocha, A.; Sapkota, A.; and
Boult, T. E. 2013. Toward open set recognition. IEEE
Transactions on Pattern Analysis and Machine Intelligence
35(7):1757–1772.
Shelton, J. R., and Martin, R. C. 1992. How semantic is

automatic semantic priming? Journal of Experimental Psy-
chology: Learning, memory, and cognition 18(6):1191.
Wu, Z., and Palmer, M. 1994. Verb semantics and lexical
selection. arXiv preprint cmp-lg/9406033.
Yang, Z., and Li, H. 2021. Task ordering matters for in-
cremental learning. In 2021 International Symposium on
Networks, Computers and Communications (ISNCC), 1–6.

REU Symposium on Deep Learning

University of Colorado, Colorado Springs 15

CAMeMBERT: Cascading Assistant-Mediated Multilingual BERT

Dan DeGenaro
University of Massachusetts, Amherst

Department of Linguistics
650 North Pleasant St.
Amherst, MA 01003

ddegenaro@umass.edu

Jugal Kalita
University of Colorado, Colorado Springs

Department of Computer Science
1420 Austin Bluffs Pkwy

Colorado Springs, CO 80918
jkalita@uccs.edu

Abstract
Massive language models having hundreds of millions,
and even billions, of parameters have performed ex-
tremely well on a variety of natural language process-
ing (NLP) tasks. Their widespread use and adoption,
however, is hindered by the lack of availability and
portability of sufficiently large computational resources.
This paper proposes a knowledge distillation (KD) tech-
nique building on the work of LightMBERT, a student
model of multilingual BERT (mBERT). By repeatedly
distilling mBERT through increasingly compressed top-
layer distilled teaching assistant networks, CAMeM-
BERT aims to improve upon the time and space com-
plexities of mBERT while keeping loss of accuracy be-
neath an acceptable threshold. At present, CAMeM-
BERT has an average accuracy of around 60.1%, which
is subject to change after making improvements to the
hyperparameters used in fine-tuning.

1 Introduction
Massive multilingual language models such as multilingual
BERT (mBERT) have excelled at tasks such as machine
translation, question answering, and structured predictions
(Hu et al. 2020). However, they are generally too computa-
tionally expensive to be used on personal devices. A solu-
tion to this problem is knowledge distillation (KD). KD was
first suggested by Buciluǎ, Caruana, and Niculescu-Mizil
(2006), but was first popularized among machine learning
researchers by Hinton, Vinyals, and Dean (2015). KD refers
to the idea of “distilling” a larger model into a much smaller
one, often called “teacher” and “student” networks, respec-
tively. Many successful techniques have been employed in
order to reduce the computational needs of these impressive
neural networks, while maintaining relatively small losses
in accuracy. A simple approach to KD may be, for instance,
using a loss function that minimizes the difference between
the logits of the teacher and student models.
• This paper aims to improve upon the results of (Jiao et al.

2021) by applying a similar distillation technique, com-
bined with use of teacher assistant networks as described
by (Mirzadeh et al. 2020).

• In so doing, this paper also proposes use of adjacent layer
averaging as a teacher-to-student layer mapping during
the distillation process.

What follows is a brief review of related work (Section 2),
a fuller description of both the problem at hand (Section 3)
and our approach to solving it (Section 4), and an evaluation
of our model’s performance on the XNLI metric (Conneau
et al. 2018), a common benchmark for multilingual language
models (Section 5).

2 Related Work
2.1 Initializing from Teacher Networks
Rather than directly training the student model on the train-
ing data using tasks like masked language modeling, it has
been shown to be more effective to train the student model to
just mimic the teacher (Gou et al. 2021). This has been done
in several ways. One of the first methods employed, Dis-
tilBERT (Sanh 2020), involved training a new, smaller net-
work (half as many layers) to mimic the original model. Dis-
tilBERT performed extremely well on various benchmarks,
and was initialized with one out of every two layers of its
teacher. This approach led to a slightly different student ini-
tialization method known as “top-layer distillation” (Jiao et
al. 2021), in which the student network is initialized with
the lower layers of the teacher network, and trained in sim-
ilar fashion to mimic the teacher. In this paper, the student
network, LightMBERT, was initialized with the lower six
encoder layers of mBERT, and then trained to mimic the
teacher mBERT.

2.2 Teacher Assistant Networks
In computer vision (as well as other fields employing neu-
ral networks), an increasingly popular framework for KD
makes use of “teaching assistant” (TA) networks that try
to bridge the large gap in capabilities between student and
teacher networks (Mirzadeh et al. 2020). TAKD has been
shown to improve retention of information by student net-
works. Indeed, it has been shown by Mirzadeh et al. that
a distillation path having the maximal number of TAs pro-
duces optimal results (removing only one or two layers at a
time).

2.3 Other Techniques
Other work has focused on reducing the amount of mem-
ory needed by storing weight matrices into tensor products
(Tahaei et al. 2021) as well as mixing traditional learning

REU Symposium on Deep Learning

University of Colorado, Colorado Springs 16

with distillation, weighted by a monotonically decreasing
temperature hyperparameter (Jafari et al. 2021). TinyBERT
(Jiao et al. 2020) used a two stage training method which
factored in loss not only in the pre-trained model, but in the
fine-tuning layer as well.

3 Problem Statement
Large language models are simply too cumbersome and
slow on inference for most potential users. While KD is
being actively researched as a solution to this issue, mul-
tilingual models, in particular, are largely ignored in favor
of continually improving English-language models, such as
BERT (Devlin et al. 2019), and other single-language mod-
els. If sufficiently reduced in size without much loss of ac-
curacy, a smaller, faster, distilled network is far better suited
to use on edge devices with limited resources than are larger
models. We build a six-layer BERT-style network following
Jiao et al. (2021) that aims to improve upon their results,
namely by employing iterated assistant network distillation
as described by Mirzadeh et al. (2020).

4 Approach
4.1 High-level Details
Our approach combines several techniques that have been
successfully employed independently, namely top-layer dis-
tillation (Jiao et al. 2021) and iterated assistant networks
(Mirzadeh et al. 2020). CAMeMBERT was constructed via
iterated top-layer distilled assistant networks. Starting from
the 12-layer mBERT network, an assistant network is ini-
tialized with the lowest 11 layers of mBERT, including both
weights and architecture (cutting out the topmost layer).
This assistant network is then trained to mimic the teacher
(mBERT). Then, a second assistant network is constructed
using the first, albeit again with the top encoder layer re-
moved. The second network is initialized with the lowest
ten layers of the first assistant, both weights and architecture.
This process is iterated until a network of six hidden layers
is left, which is the CAMeMBERT model. This model is the
same size as LightMBERT (Jiao et al. 2021). See Figure 1
for a diagram of this process.

4.2 Low-level Details
Pretraining Data The training corpus consists of a single
text file of about 43 GB. Parts of the file were not used, how-
ever. It contains lines of text scraped from the largest 104
languages on Wikipedia1 (Wikimedia Foundation 2022), as
described by Devlin et al. (2019). The languages were sam-
pled by a probability distribution P

0 defined as

P
0(lang

j
) =

P (lang
j
)S

P
k
P (lang

k
)S

(1)

where P (lang
j
) denotes the probability of language j ac-

cording to the proportional space it occupies on disk, i.e.

1The text was obtained via HuggingFace’s Datasets library, ex-
cept for the languages Cebuano and Spanish, which were obtained
via the WikiExtractor tool (all from the 2022-03-01 dump).

P (lang
j
) =

size(lang
j
)

P
k

size(lang
k
)

(2)

S was chosen such that P 0(English) = 100P 0(Icelandic), as
described by the BERT team2. The texts used to produce the
corpus were cleaned to contain only the plain text of an arti-
cle, including headings, and blank lines were removed. The
articles from all languages were then concatenated into one
large text file, whose lines were rearranged in random order
using the GNU/Linux shuf utility. Each line was consid-
ered one training example (so a batch size of 256 would in-
volve accumulating loss over 256 lines, one at a time, before
performing an optimizer step).

Table 1: Language abbreviations and representation.

Language Abbreviation % of corpus
English en 12.0
Spanish es 3.49
Chinese zh 2.08
German de 6.06
Arabic ar 2.33
Urdu ur 0.365

Pretraining Method Each network was trained for 66,666
steps (batches), for a total of about 400,000 steps across all
six networks. Each pretraining distillation process used a
distinct section of the corpus, unseen by preceding or fol-
lowing networks. The mBERT pretrained tokenizer from
HuggingFace was used. This tokenizer is cased, and at no
point was lowercasing was performed on the text. The vo-
cabulary size for this tokenizer is 119,547. Maximum length
padding was employed, along with truncation, with a maxi-
mum input sequence length of 128. All networks were kept
in training mode (i.e. dropout enabled) throughout the pro-
cess, and embedding layers were always frozen. Each net-
work was optimized via an Adam optimizer defined by the
following hyperparameters: batch size 256, peak learning
rate 1⇥10�7, linear warmup over the first 6,666 steps, linear
decay, �1,2 = 0.9, 0.999, no weight decay, and ✏ = 1⇥10�9.
It was also noted that loss decreased more sharply when
training the 11-layer network if linear warmup was applied
throughout the training process, so this was done. These
choices are summarized in Table 1.

The total loss for a batch is defined as follows, following
Jiao et al. (2021):

L =
1

n

✓ nX

j=1

LA

j
+

n+1X

k=1

LH

k

◆
(3)

where the student network has n attention layers and n + 1
hidden outputs (this implies the teacher has n + 1 attention
layers and n+2 hidden outputs). LH

k
is the loss of one layer’s

2Consider looking at this markdown file in the GitHub repo
for BERT, which gives more details: https://github.com/google-
research/bert/blob/master/multilingual.md

REU Symposium on Deep Learning

University of Colorado, Colorado Springs 17

Teacher

hm

...

h5

h4

h3

h2

h1

TA1

init. from Teacher

...

init. from Teacher

init. from Teacher

init. from Teacher

init. from Teacher

TA2

init. from TA1

...

init. from TA1

init. from TA1

init. from TA1

. . .

. . .

. . .

. . .

TAn

init. from TAn�1

init. from TAn�1

init. from TAn�1

Student

init. from TAn

init. from TAn

Figure 1: Repeated top-layer distillation via teaching assistant networks (embeddings not shown). The number of hidden
layers in network j is one fewer than in network j � 1.

hidden outputs, and LA

j
is the loss of one layer’s attentions.

These are defined thus:

LA

j
=

1

12

12X

`=1

MSE
✓
1

2

✓
A

j`

T
+A

j+1,`
T

◆
, A

j`

S

◆
(4)

LH

k
= MSE

✓
1

2

✓
H

k

T
+H

k+1
T

◆
, H

k

S

◆
(5)

where T ,S denote teacher and student, respectively, and `

ranges over the attention heads, of which there are 12 in the
case of a BERTBASE-style network. LA

j
is therefore the av-

erage loss of attention over the 12 attention heads at the j-th
layer.

It should be noted that LA

j
and LH

k
are defined differently

from Jiao et al. (2021) out of necessity; in that paper, a “layer
mapping” can be performed from 12 layers to six layers di-
rectly, but in this paper, since one layer is removed at a time,
the mapping must map 12 to 11, 11 to ten, and so on. Thus,
the mapping is defined (as is evident from the definition of
the loss at one layer) to be the average of layers j and j+1 of
the teacher to the j-th layer of the student, a strategy we call
“adjacent layer averaging.” To be clear, the average of layers
six and seven of a teacher would be used to train the sixth
layer of its student, for instance. See Figure 2 for a diagram
of this process.

It is also important to define MSE clearly. MSE refers to
mean squared error, which is defined generically as:

MSE(X,Y) =
1

numel(X)

X

j,k,...

(Xjk... � Yjk...)
2 (6)

where shape(X) = shape(Y), both can be indexed by in-
dices j, k, ... and numel(X) (which equals numel(Y)) de-
notes the number of elements in X (product of ranges of all
indices).

Fine-tuning Method The networks were fine-tuned on the
English XNLI dataset’s “train” split obtained via Hugging-
Face’s Datasets library. Fine-tuning was conducting by an
Adam optimizer as follows: 3 epochs, batch size 32, learn-
ing rate 2 ⇥ 10�5, �1,2 = 0.9, 0.999, no weight decay, and
✏ = 2 ⇥ 10�7. Padding and truncation were applied with

a maximum sequence length of 128. Our network’s weights
were loaded into a HuggingFace BertForSequenceClassifi-
cation architecture, with weights of the fine-tuning archi-
tecture being randomly initialized. The number of output
classes was set to be 3, as XNLI data are labeled as either
‘entailment’ (0), ‘neutral’ (1), or ‘contradiction’ (2). Cross
entropy loss was employed as the fine-tuning loss3.

Table 2: Hyperparameters. Note that the abbreviation ‘LR’
refers to learning rate.

Hyperparameter Pretraining Fine-tuning
optimizer Adam Adam

epochs 1 3
steps 66,666 12,271

batch size 256 32
peak LR 1⇥ 10�7 2⇥ 10�5

LR warmup linear, first 6,666 steps* none
LR decay linear, to the end none

�1 0.9 0.9
�2 0.999 0.999

weight decay 0 0
✏ 1⇥ 10�9 2⇥ 10�7

padding True True
max seq. length 128 128

embeddings frozen True True
vocab size 119,547 119,547

*The first TA (11 layer network) had linear warmup over all
66,666 steps.

4.3 Evaluation Metric

The networks were evaluated on the zero-shot cross-lingual
transfer task using HuggingFace’s “test” split of the XNLI
dataset. It was evaluated on the six languages present in Ta-
ble 2, and the mean accuracy (AVG) displayed in Table 3 is
the mean accuracy across those six languages.

3See documentation here: https://pytorch.org/docs/stable/
generated/torch.nn.CrossEntropyLoss.html

REU Symposium on Deep Learning

University of Colorado, Colorado Springs 18

TA5 (7 layers)

h7

h6

h5

h4

h3

h2

h1

AVG
AVG
AVG
AVG
AVG
AVG

CAMeMBERT

h6

h5

h4

h3

h2

h1

Figure 2: Adjacent layer averaging between a teacher network and its student. The number of hidden layers in network j is one
fewer than in network j � 1.

5 Results
At present, the networks do not perform as well as LightM-
BERT, but close to it. Improving these results will be a mat-
ter of adjusting the mapping encoded into the loss function,
which currently averages two layers of a teacher to train one
layer of a student, adjusting learning rates throughout the
distillation process, and adjusting the number of warmup
and decay steps, primarily in the fine-tuning process.

Table 3: Results on XNLI Task by Language and Number
of Layers

en es zh de ar ur AVG
11 81.0 73.3 69.3 70.1 64.6 57.1 69.2
10 79.2 71.3 66.1 67.0 61.8 56.4 67.0
9 79.9 69.6 65.9 65.5 60.9 56.4 66.4
8 77.8 67.8 64.9 64.2 58.9 54.5 64.7
7 77.7 65.7 64.6 62.3 57.1 52.3 63.3
6 76.8 62.1 60.7 60.1 51.5 49.6 60.1

LMB* 81.5 74.7 69.3 72.2 65.0 59.3 70.3

*LMB is LightMBERT’s results (Jiao et al. 2021).

6 Conclusion
By applying repeated teaching assistant-mediated top-layer
distillations to a large language model, this work stands to
produce a fast, memory- and storage-efficient neural net-
work that can mimic the abilities of mBERT. This work
builds on that of LightMBERT, which was created via top-
layer distillation, as well as that of the TAKD framework for
more effective knowledge distillation.

7 Acknowledgement
The work reported in this paper is supported by the Na-
tional Science Foundation under Grant No. 2050919. Any
opinions, findings and conclusions or recommendations ex-
pressed in this work are those of the author(s) and do not
necessarily reflect the views of the National Science Foun-
dation. Thanks to Abigail Swenor (Notre Dame), Aaron Se-

rianni (Princeton), and Dr. Terrance Boult (UCCS) for their
help with the practical side of this project.

References
Buciluǎ, C.; Caruana, R.; and Niculescu-Mizil, A. 2006.
Model compression. In Proceedings of the 12th ACM

SIGKDD international conference on Knowledge discovery

and data mining, KDD ’06, 535–541. New York, NY, USA:
Association for Computing Machinery.
Conneau, A.; Lample, G.; Rinott, R.; Williams, A.; Bow-
man, S. R.; Schwenk, H.; and Stoyanov, V. 2018. XNLI:
Evaluating Cross-lingual Sentence Representations. Num-
ber: arXiv:1809.05053 arXiv:1809.05053 [cs] version: 1.
Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. In Proceedings of the 2019 Con-

ference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technolo-

gies, Volume 1 (Long and Short Papers), 4171–4186. Min-
neapolis, Minnesota: Association for Computational Lin-
guistics.
Gou, J.; Yu, B.; Maybank, S. J.; and Tao, D. 2021. Knowl-
edge Distillation: A Survey. International Journal of Com-

puter Vision 129(6):1789–1819.
Hinton, G.; Vinyals, O.; and Dean, J. 2015. Distilling
the Knowledge in a Neural Network. Technical Report
arXiv:1503.02531, arXiv. arXiv:1503.02531 [cs, stat] type:
article.
Hu, J.; Ruder, S.; Siddhant, A.; Neubig, G.; Firat, O.; and
Johnson, M. 2020. XTREME: A Massively Multilingual
Multi-task Benchmark for Evaluating Cross-lingual Gener-
alisation. In Proceedings of the 37th International Con-

ference on Machine Learning, 4411–4421. PMLR. ISSN:
2640-3498.
Jafari, A.; Rezagholizadeh, M.; Sharma, P.; and Ghodsi, A.
2021. Annealing Knowledge Distillation. In Proceedings of

the 16th Conference of the European Chapter of the Asso-

ciation for Computational Linguistics: Main Volume, 2493–
2504. Online: Association for Computational Linguistics.
Jiao, X.; Yin, Y.; Shang, L.; Jiang, X.; Chen, X.; Li, L.;
Wang, F.; and Liu, Q. 2020. TinyBERT: Distilling BERT for

REU Symposium on Deep Learning

University of Colorado, Colorado Springs 19

Natural Language Understanding. In Findings of the Asso-

ciation for Computational Linguistics: EMNLP 2020, 4163–
4174. Online: Association for Computational Linguistics.
Jiao, X.; Yin, Y.; Shang, L.; Jiang, X.; Chen, X.; Li, L.;
Wang, F.; and Liu, Q. 2021. LightMBERT: A Simple Yet
Effective Method for Multilingual BERT Distillation. Tech-
nical Report arXiv:2103.06418, arXiv. arXiv:2103.06418
[cs] type: article.
Mirzadeh, S. I.; Farajtabar, M.; Li, A.; Levine, N.; Mat-
sukawa, A.; and Ghasemzadeh, H. 2020. Improved Knowl-
edge Distillation via Teacher Assistant. Proceedings of

the AAAI Conference on Artificial Intelligence 34(04):5191–
5198.
Sanh, V. 2020. DistilBERT, a distilled version of BERT:
smaller, faster, cheaper and lighter. EMCˆ2 5:5.
Tahaei, M. S.; Charlaix, E.; Nia, V. P.; Ghodsi, A.; and
Rezagholizadeh, M. 2021. KroneckerBERT: Learn-
ing Kronecker Decomposition for Pre-trained Language
Models via Knowledge Distillation. Technical Report
arXiv:2109.06243, arXiv. arXiv:2109.06243 [cs] type: ar-
ticle.
Wikimedia Foundation. 2022. Wikimedia downloads.

REU Symposium on Deep Learning

University of Colorado, Colorado Springs 20

Training-free Neural Architecture Search for RNN and Transformer Architectures

Aaron Serianni,
1

Jugal Kalita
2

1Princeton University,
2University of Colorado Colorado Springs
serianni@princeton.edu, jkalita@uccs.edu

Abstract

Neural architecture search (NAS) has allowed for the automa-
tion of creating new and effective neural network architec-
tures, offering an alternative to the laborious process of man-
ually designing complex architectures. However, traditional
NAS algorithms are slow and require immense amounts of
computing power. Recent research has investigated training-
free NAS metrics for image classification architectures, dras-
tically speeding up search algorithms. In this paper, we inves-
tigate for the first time training-free NAS metrics for recurrent
neural network (RNN) and BERT-based transformer architec-
tures, targeted towards language modeling tasks. First, we de-
velop a new training-free metric, named hidden covariance,
that predicts the trained performance of an RNN architec-
ture, and outperforms existing training-free metrics. We ex-
perimentally evaluate the effectiveness of the hidden covari-
ance metric on the NAS-Bench-NLP benchmark. Second, we
find that the current search space paradigm for BERT-based
models is not optimized for training-free neural architecture
search. Instead, a simple qualitative analysis can effectively
shrink the search space to the best performing models. This
conclusion is based on our investigation of existing training-
free metrics and new metrics developed from recent trans-
former pruning literature, evaluated on our own benchmark of
trained BERT models. Ultimately, our analysis shows that the
architecture search space and the training-free metric must be
developed together in order to achieve effective results.

1 Introduction

Recurrent neural networks (RNNs) and BERT-based mod-
els with self-attention have been extraordinary successful in
achieving state-of-the-art results on a wide variety of lan-
guage modeling-based natural language processing (NLP)
tasks, including question answering, sentence classification,
tagging, and natural language inferencing (Brown et al.
2020; Palangi et al. 2016; Raffel et al. 2020; Sundermeyer,
Schlüter, and Ney 2012; Yu et al. 2019). However, the man-
ual development of new neural network architectures has be-
come increasingly difficulty as models become larger and
more complicated. Neural architecture search (NAS) algo-
rithms aim to procedurally design and evaluate new, ef-
ficient, and effective architectures within a predesignated
search space (Zoph and Le 2017). NAS algorithms have
been extensively used for developing new convolutional
neural network (CNN) architectures for image classifica-

tion, with many surpassing manually-designed architectures
and achieving SOTA results on many classification bench-
marks (Tan and Le 2019; Real et al. 2019).

While NAS algorithms and methods have been success-
ful in developing novel and effective architectures, there are
two main problems that current algorithms face. The search
space for various architectures is immense, and the amount
of time and computational power to run NAS algorithms is
prohibitively expensive (Mehta et al. 2022). Because tradi-
tional NAS algorithms require the evaluation of candidate
architectures in order to gauge performance, each candi-
date architecture needs to be trained fully, taking hours or
days to complete. Thus, past attempts at NAS have been
critiqued for being computationally resource-intensive, con-
suming immense amounts of electricity, and producing large
amounts of carbon emissions (Strubell, Ganesh, and McCal-
lum 2019). These problems are particularly true for trans-
formers and RNNs, as they have more parameters and take
longer to train when compared to other types of neural net-
works (So, Le, and Liang 2019; Zhou et al. 2022).

Recently, there has been research into training-free NAS
metrics and algorithms, which offer significant performance
increases over traditional NAS algorithms (Abdelfattah et al.
2020; Mellor et al. 2021a; Zhou et al. 2022). These metrics
aim to partially predict an architecture’s trained accuracy
from its initial untrained state, given a subset of inputs. How-
ever, prior research has focused on developing training-free
NAS metrics for CNNs and Vision Transformers with im-
age classification tasks. In this work, we apply existing and
create our own training-free metrics for RNNs and BERT-
based transformers with language modeling tasks. Our main
contributions are:

• We develop a new training-free metric for RNN archi-
tectures, hidden covariance, which significantly outper-
forms existing metrics on NAS-Bench-NLP.

• We develop a NAS benchmark for BERT-based mod-
els utilizing the FlexiBERT search space and ELECTRA
pretraining scheme.

• We evaluate existing training-free metrics on our NAS
benchmark for BERT-based models, and propose a series
of new metrics adapted from attention head pruning.

• Finally, we discuss current limitations with training-free
NAS for transformers due to the structure of transformer

REU Symposium on Deep Learning

University of Colorado, Colorado Springs 21

search spaces, and propose an alternative paradigm for
speeding up NAS algorithms based on scaling laws of
transformer hyperparameters.

2 Related Work

Since the development and adoption of neural architec-
ture search, there has been research into identifying well-
performing architectures without the costly task of training
candidate architectures.

2.1 NAS Performance Predictors

Prior attempts at predicting a network architecture’s accu-
racy focused on training a separate performance predictor.
Deng, Yan, and Lin (2017) and Istrate et al. (2019) devel-
oped methods called Peephole and Tapas, respectively, to
embed the layers in an untrained CNN architecture into vec-
tor representations of fixed dimension. Then, both methods
trained LSTM networks on these vector representations to
predict the trained architecture’s accuracy. Both methods
achieved strong linear correlations between the LSTMs’ pre-
dicted accuracy and the actual trained accuracy of the CNN
architectures. In addition, the LSTM predictors can quickly
evalutate large amounts of CNN architectures. The primary
limitation of these methods is that the LSTM predictors re-
quire large amounts of trained CNN architectures in order to
accurately train the predictors, thus not achieving the goal of
training-free NAS.

2.2 Training-free Neural Architecture Search

Mellor et al. (2021a) presented a method for scoring a net-
work architecture without any training and prior knowledge
of trained network architectures. They focused on CNN ar-
chitectures in the sample space of various NAS benchmarks,
predicting the accuracy of the architectures on the CIFAR-
10, CIFAR-100, and ImageNet image classification bench-
marks. While Mellor et al.’s proposed method showed a cor-
relation between their score and actual trained accuracy, it
decreased with more complex datasets like ImageNet and
architectures with high accuracy. Mellor et al. also found
that the images chosen for the mini-batch and initialization
weights of the model have negligible impact on their score.
Their method predicted accuracies of architectures in sec-
onds, and is easily combined with traditional NAS algo-
rithms.

Abdelfattah et al. (2020) introduced a series of additional
training-free metrics for CNNs with image classification
tasks, based in network pruning literature, aiming to improve
performance. They also tested on their metrics on other
search spaces with different tasks, including NAS-Bench-
NLP with RNNs and NAS-Bench-ASR, but found signifi-
cantly reduced performance in these search spaces.

3 Training-free NAS Metrics

A series of training-free NAS metrics have been proposed
in recent literature. These metrics look at specific aspects of
an architecture, such as parameter gradients, activation cor-
relations, and weight matrix rank. Most metrics can be gen-
eralized to any type of neural network, but have only been

tested on CNN architectures. For transformer architectures,
we also adapt various attention parameter pruning metrics as
training-free metrics, scoring the entire network.

3.1 Synaptic Saliency

In the area of network pruning, Tanaka et al. (2020) pro-
posed synaptic saliency, a score for approximating the
change in loss when a specific parameter is removed. Synap-
tic saliency is based on the idea of preventing layer collapse
while pruning a network, which significantly decreases the
network’s accuracy. Synaptic saliency is expressed by

S(✓) =
@L
@✓

� ✓, (1)

where L is the loss function of the network, ✓ is the net-
work’s parameters, and � is the Hadamard product. Ab-
delfattah et al. (2020) generalize synaptic saliency as a
training-free metric for NAS by summing over all N pa-
rameters in the network: S =

PN
i=1 S(✓i). Abdelfattah

et al. (2020) found that synaptic saliency slightly outper-
forms Jacobian covariance on NAS-Bench-201.

3.2 Jacobian Covariance

Jacobian Covariance is a training-free NAS metric for CNN
networks proposed by Mellor et al. (2021b). Given a mini-
batch of input data, the metric assesses the Jacobian of the
network’s loss function with respect to the minibatch inputs,
J =

⇣
@L
@x1

· · · @L
@xN

⌘
. Further details of the metric can be

found in the original paper.
Celotti, Balafrej, and Calvet (2020) expand on Jacobian

Covariance with a series of variations on the metric, aim-
ing to speed up computation and refine the metric’s effec-
tiveness. These include using cosine similarity instead of a
covariance matrix to calculate similarity, expressed by

S = 1� 1

N2 �N

NX

i=1

��JnJ t
n � In

�� 1
20 , (2)

where Jn is the normalized Jacobian and the minibatch has
N inputs. They also add various noise levels to the input
minibatch, hypothesizing that an architecture with high ac-
curacy will be robust against noise.

3.3 Activation Distance

In a revised version of their paper, Mellor et al. (2021a) de-
veloped a metric that directly looks at the ReLU activations
of a network. Given a minibatch of inputs fed into the net-
work, the metric calculates the similarity of the activations
within the initialized network between each input using the
Hamming distance. Mellor et al. conclude that the more sim-
ilar the activation map for a given set of inputs are to each
other, the harder it is for the network to disentangle the rep-
resentations of the inputs during training.

3.4 Synaptic Diversity

Zhou et al. developed a metric specific for vision transform-
ers (ViT) (Dosovitskiy et al. 2021). Synaptic diversity is

REU Symposium on Deep Learning

University of Colorado, Colorado Springs 22

based upon previous research on rank collapse in transform-
ers, where for a set of inputs the output of a multi-headed at-
tention block converges to rank 1, significantly harming the
performance of the transformer. Zhou et al. use the Nuclear-
norm of an attention heads’s weight matrix Wm as an ap-
proximation of its rank, creating a synaptic diversity score:

SD =
X

m

����

����
@L

@Wm

����

����
nuc

� ||Wm||nuc.

3.5 Hidden Covariance

We propose a new metric specific for RNNs, based on the
hidden states between each layer of the RNN architecture.
Previous NAS metrics focus on either the activation func-
tions within an architecture, or all parameters of the archi-
tecture. The hidden state of an RNN layer encodes all of
the information of the input, before being passed to the next
layer or the final output. Similar to Mellor et al. (2021a), we
hypothesize that if the hidden states of an architecture given
a minibatch of inputs are similar to each other, the more dif-
ficult it would be to train the architecture.

Given the hidden state H(X) of a specific layer of the
RNN with a minibatch of N inputs X = {xn}Nn=1, observe
the covariance matrix to be

C = (H�MH)(H�MH)T ,

where (MH)ij = 1
N

PN
n=1 Hin. Then, calculate the Pear-

son product-moment correlation coefficients matrix

Rij =
Cijp
CiiCjj

.

As with Mellor et al.’s Jacobian Covariance score, the final
metric is calculated with the Kullback–Leibler divergence of
the kernel of R, which has the N eigenvalues �1, · · · ,�N :

S(H) = �
NX

n=1

✓
log(�n + k) +

1

�n + k

◆
,

where k = 10�5.

3.6 Attention Confidence, Importance, and

Softmax Confidence

For transformer-specific metrics, we look into current trans-
former pruning literature. Voita et al. (2019) propose prun-
ing the attention heads of a trained transformer encoder
block by computing the “confidence” of a head using a
sample minibatch of input tokens. Confident heads attend
their output highly to a single token, and, hypothetically,
are more important to the transformer’s task. Behnke and
Heafield (2020) attempt to improve on attention confidence
by looking at the probability distribution provided by an at-
tention head’s softmax layer. Alternatively, Michel, Levy,
and Neubig (2019) look at the sensitivity of an attention head
to its weights being masked, by computing the product be-
tween the output of an attention head with the gradient of its

weights. These three attention metrics are summarized by:

Confidence: Ah(X) =
1

N

NX

n=1

|max(Atth(xn))|

Importance: Ah(X) =

����Atth(X)
@L(X)

@Atth(X)

����

Softmax
Confidence

: Ah(X) =
1

N

NX

n=1

|max(softmaxh(xn))|

where X = {xn}Nn=1 is a minibatch of N inputs, L is the
loss function of the model, and Atth and softmaxh are an at-
tention head and its softmax respectively. We expand these
metrics into an overall score for the entire network by sum-
ming over all attention heads: A(X) =

P
h Atth(X).

4 Methods

4.1 NAS Benchmarks

Because of the large search space for neural architec-
tures, it is challenging to have direct comparisons be-
tween various NAS algorithms. A series of NAS bench-
marks (Mehta et al. 2022) have been created, which eval-
uate a set of architectures within a given search space
and store the trained metrics in a lookup table. These
benchmarks include NAS-Bench-101 (Ying et al. 2019),
NAS-Bench-201 (Dong and Yang 2020), and NAS-Bench-
301 (Siems et al. 2021) with CNNs for image classification,
NAS-Bench-ASR with convolutional LSTMs for automatic
speech recognition (Mehrotra et al. 2021), and NAS-Bench-
NLP with RNNs for language modeling tasks (Klyuchnikov
et al. 2022). Because all the architectures in a NAS bench-
mark have already been trained, they also allow for easier
development of NAS algorithms without the large amounts
of computational power required to train thousands of ar-
chitectures. However, there are currently no NAS bench-
marks for transformer or BERT-based architectures, likely
due to the longer time and higher computational power to
train transformers.

To evaluate training-free metrics on RNNs, we utilize
the NAS-Bench-NLP benchmark (Klyuchnikov et al. 2022),
which consists of 14,322 RNN architectures trained for lan-
guage modeling with the Penn Tree Bank dataset. The ar-
chitecture search space is defined by the operations within
an RNN cell, connected in the form of an acyclic digraph.
The RNN architecture consists of three identical stacked
cells with an input embedding and connected output layer.
In our evaluations, the NAS-Bench-NLP architectures which
did not complete training in the benchmark or whose metrics
could not be calculated for were discarded, leaving 8,795 ar-
chitectures.

4.2 BERT Benchmark for NAS

Because no preexisting NAS benchmark exists for BERT-
based models, we need to pretrain and evaluate a large set
of various BERT architectures in order to evaluate our pro-
posed training-free NAS metrics. Certain choices were made
in order to speed up pretraining. These included: using the

REU Symposium on Deep Learning

University of Colorado, Colorado Springs 23

Architecture Element Allowed Hyperparameters

Hidden dimension {128, 256}
Number of Encoder Layers {2, 4}
Type of attention operator {self-attention, linear transform, span-based dynamic convolution}
Number of operation heads {2, 4}
Feed-forward dimension {512, 1024}
Number of feed-forward stacks {1, 3}
Attention operation parameters

if self-attention {scaled dot-product, multiplicative}
if linear transform {discrete Fourier, discrete cosine}
if dynamic convolution convolution kernel size: {5, 9}

Table 1: The FlexiBERT search space, with hyperparameter values spanning those found in BERT-Tiny and BERT-Mini. Hidden
dimension and number of encoder layers is fixed across the whole architecture; all other parameters are heterogeneous across
encoder layers. The search space encompasses 10,621,440 architectures.

ELECTRA pretraining scheme (Clark et al. 2020), choosing
a search space consisting of small BERT architectures, and
shortening pretraining. Once a set of optimal architectures is
found using our metrics, it can be scaled up into a full-sized
architecture comparative to state-of-the-art architectures.

BERT Search Space BERT (Bidirectional Encoder Rep-
resentations from Transformers) (Devlin et al. 2019) con-
sists of a series of encoder layers with multi-headed self-
attention, taken from the original transformer model pro-
posed by Vaswani et al. (2017). Numerous variations on
the original BERT model have been developed. For our ar-
chitecture search space, we utilize the FlexiBERT search
space (Tuli et al. 2022), which has improvements over other
proposed BERT search spaces. Foremost is that the encoder
layers in FlexiBERT are heterogeneous, each having their
own set of architecture elements. FlexiBERT also incorpo-
rates alternatives to the multi-headed self-attention into its
search space. The search space is described in Table 1.

The architectures in the Flexibert search space are rela-
tively small, as the hyperparameters in FlexiBERT search
space spans those in BERT-Tiny and BERT-Mini (Turc et al.
2019). However, Kaplan et al. (2020) show many many
attributes of a transformer architecture, including number
of parameters, scale linearly with the architecture’s perfor-
mance. Thus, a transformer architecture can easily be scaled
up by increasing its hyperparameter values equivalent to
those found in larger architecture, in order to achieve greater
performance. This methodology was utilized in EcoNAS al-
gorithm (Zhou et al. 2020), which explores a reduced search
space, before scaling up to produce the final model.

To allow for simpler implementation of the FlexiBERT
search space and the utilization of absolute positional en-
coding, we keep the hidden dimension homogeneous across
all encoder layers. In total, this search space encompasses
10,621,440 different transformer architectures.

ELECTRA Pretraining Instead of the traditional masked
language modeling used to pretrain BERT-based models, we
implemented the ELECTRA pretraining scheme (Clark et al.
2020), which uses a combination generator-discriminator
model with a replaced token detection task. As the ELEC-
TRA task is defined over all input tokens, instead of the

masked tokens, it is significantly more compute efficient
and results in better finetuning performance when compared
to masked-language modelling. Notably, ELECTRA scales
well with small amounts of compute, allowing for efficient
pretraining of small BERT models.

Architecture Training and Evaluation We pretrain a
random sample of 500 models from the FlexiBERT sub-
space using ELECTRA with the OpenWebText dataset, con-
sisting of 38 GB of tokenized text data from 8,013,769 doc-
uments (Gokaslan and Cohen 2019). OpenWebText is based
on OpenAI’s WebText dataset (Radford et al. 2019). Pre-
training occurs with TPUv2s with 8 cores and 64 GB of
memory, using Google Collabortory. We finetune and eval-
uate the architectures on the General Language Understand-
ing Evaluation (GLUE) benchmark (Wang et al. 2019). The
hyperparameters used for pretraining and finetuning are the
same as those used for ELECTRA-Small. However, the sam-
pled architectures were only pretrained for 100,000 steps for
the best tradeoff benefit between pretraining time and GLUE
score. All GLUE results are from the dev set.

5 Experimental Results of Training-free

Metrics

For the training-free NAS metrics presented, we empiri-
cally evaluate how well the metric performs in predicting
the trained performance of an architecture. We use Kendall
rank correlation coefficient (Kendall ⌧) and Spearman rank
correlation coefficient (Spearman ⇢) to quantitatively evalu-
ate the metrics by comparing them with the trained perfor-
mance of the architectures within NAS-Bench-NLP and our
BERT Benchmark.

5.1 Training-free Metrics for RNNs

We ran the training-free metrics on 8,795 architectures in
NAS-Bench-NLP. A summary of our results are show in Fig-
ure 1. Computing these metrics was very efficient, only re-
quiring a forward and backward pass with a single minibatch
of sample data, in order to compute one set of gradients. Fur-
thermore, all the metrics can be computed simultaneously on
the same input and gradients.

REU Symposium on Deep Learning

University of Colorado, Colorado Springs 24

Figure 1: Plots of training-free metrics evaluated on 8,795 RNN architectures in NAS-Bench-NLP, against test loss of the
architectures assessed on the Penn Tree Bank dataset when trained. Kendall ⌧ and Spearman ⇢ also shown. Only our Hidden
Covariance metric performed on the first and second layer of the RNN showed a substantial correlation between the metric and
trained test loss. Some other metrics do have some positive correlation.

Most metrics preform poorly on predicting the loss of a
trained RNN architecture, including all the existing training-
free metrics designed for CNN architectures. None sur-
passed a Kendall ⌧ value of 0.28. Our proposed Hidden Co-
variance score preforms the best out of all metrics, achiev-
ing a Kendall ⌧ value of 0.3715. It is clear that the initialized
hidden states of an RNN contain the most salient informa-
tion for predicting the RNN’s trained accuracy.

5.2 Training-free Metrics for BERT Architectures

We investigated the series of training-free metrics on our
own NAS BERT benchmark of 500 architectures sampled
from the FlexiBERT search space. Results are shown in Fig-
ure 2. Compared to their performance on NAS-Bench-NLP,
all the training-free metrics, including our proposed metrics
based on attention head pruning, performed poorly. Only the

Attention Confidence metric had a significant positive corre-
lation, with a Kendall ⌧ of 0.27.

A notable reference point for training-free metrics is the
number of trainable parameters in a transformer architec-
ture. Previous research has shown a strong correlation be-
tween number of parameters and model performance across
a wide range of transformer sizes and hyperparameters (Ka-
plan et al. 2020). Our NAS BERT Benchmark displays this
same correlation (Figure 3). In fact, the Kendall ⌧ value for
number of parameters is 0.44, significantly surpassing all
training-free metrics.

Great care must be used when developing training-free
metrics to ensure that the metric is normalized for number
of parameters or other high-level features of the network,
such as number of layers or hidden size. In Zhou et al.’s pro-
posed DSS-indicator score for vision transformers (a combi-

REU Symposium on Deep Learning

University of Colorado, Colorado Springs 25

Figure 2: Plots of training-free metrics evaluated on 500 architectures randomly sampled from the FlexiBERT search space,
against GLUE score of the pretrained and finetuned architecture. All metrics are normalized against number of features. Only
our Attention Confidence metric displayed some positive correlation between the metric and final GLUE score.

Figure 3: Correlation between number of parameters in a
BERT-based architecture and its pretrained and fintuned
GLUE score, for 500 architectures from the FlexiBERT
search space. Number of parameters shows a strong corre-
lation with architecture performance, substantially outper-
forms all training-free metrics evaluated.

nation of synaptic saliency and synaptic diversity metrics),
they did not normalize the score for the number of features
in the network. Instead, the DSS-indicator almost directly
corresponds to the number of parameters in an architecture,
as shown in their figures, thus yielding their high Kendall

Figure 4: Attention Confidence metric evaluated on architec-
tures from the FlexiBERT search space, without normaliza-
tion for number of features. The metric’s performance sub-
stantially improves when not normalized, and its plot mir-
rors that of number of parameters, as indicated by its Kendall
⌧ value.

⌧ of 0.70. We witnessed a similar pattern with our series of
metrics. For our highest performing score, Attention Con-
fidence, had a Kendall ⌧ of 0.49 without normalization for
number of features, comparable to number of parameters,
but decreased to 0.30 with normalization (Figure 4).

REU Symposium on Deep Learning

University of Colorado, Colorado Springs 26

6 Discussion

Neural architecture search for transformers is a fundamen-
tally different task than neural architecture search for CNNs
and RNNs. Almost all search spaces for transformers relies
on the same fundamental paradigm of an attention module
followed by a feed-forward module within each encoder/de-
coder block, connected linearly (Wang et al. 2020; Yin et al.
2021; Zhao et al. 2021). Conversely, most search spaces
for CNNs and RNNs, including NAS-Bench-201 and NAS-
Bench-NLP, use an cell-based method, typically with an
acyclic digraph representing the connections between oper-
ations (Dong and Yang 2020; Jing, Xu, and Zugeng 2020;
Klyuchnikov et al. 2022; Tan et al. 2019), allowing for sig-
nificantly more flexibility in cell variation. For CNN and
RNN search spaces, the connections between operations
within a cell have a greater impact on the architecture’s per-
formance than number of parameters. In NAS-Bench-NLP,
there is no correlation between number of parameters and
model performance (Figure 5); hence, previous studies did
not need to normalize their training-free metrics for number
of parameters. Furthermore, we hypothesize that for trans-
former search spaces, the number of parameters in an ar-
chitecture dominates the model performance, explaining the
poor performance for training-free NAS metrics.

Figure 5: Plot of number of parameters against test loss for
8,795 RNNs architectures in NAS-Bench-NLP. Unlike the
architectures in the FlexiBERT search space, there is no cor-
relation between number of parameters and architecture per-
formance for the architectures in NAS-Bench-NLP.

With this hypothesis, we propose an alternative to
training-free metrics for current transformer neural archi-
tecture search, based upon transformer scaling laws. When
model size and number of parameters is not a concern, in-
creasing the size and dimensions of the architecture will
consistently increase model performance. Thus, one should
limit the transformer search space to larger model sizes in
order to find better performing models more quickly.

However, it is often the case that the number of parameters
within a model must be limited due to various computational
limitations, including training time and cost or deployment
on resource-constrained devices. First, one should set a tar-
geted number of parameters for the architectures within the

transformer search space. The ratios between various hyper-
parameters within the network can then be searched for with
the NAS algorithm. Kaplan et al. (2020) found that model
performance varies minimally between different hyperpa-
rameter ratios when number of parameters is fixed for ar-
chitectures that are homogeneous between layers. They also
present the most optimal ratios between hidden size, feed-
forward dimension, number of layers, and number of atten-
tion heads. Therefore, increased focus should be placed on
layer heterogeneity within the search space, with established
hyperparameter ratios used as starting points.

While these suggestions can help with shrinking the
search space for transformer architectures and speed up neu-
ral architecture search algorithms, they do not address the
main problem regarding transformer architecture search: the
inflexibility of current transformer search spaces. Unless
transformer search spaces adopt the variability of connec-
tions provided by a cell-based methods, as used by CNN
and RNN search spaces, simple heuristics such as number of
parameters will be primary training-free predictor of trans-
former model performance. To our knowledge, two works
have utilized a cell-based method for transformer search
spaces, the original transformer architecture search paper,
”The Evolved Transformer,” by So, Le, and Liang, and its
successor ”Primer” (So et al. 2021). Some research has been
done with cell-based search spaces for Conformers (Shi
et al. 2021) and Vision Transformers (Guo et al. 2020), but
only on the convolution modules of the architectures. Ulti-
mately, there is significant opportunity for growth regard-
ing transformer architecture search, and with it training-free
NAS metric for transformers.

7 Conclusion

In this paper, we presented and evaluated a series of training-
free NAS metrics for RNN and BERT-based transformer
architectures, trained on language modeling tasks. We de-
veloped new training-free metrics targeted towards specific
architectures, hidden covariance for RNNs and three met-
rics based on attention head pruning for transformers. We
first verified the training-free metrics on with NAS-Bench-
NLP, and found our hidden covariance metric outperforms
existing training-free metrics on RNNs. We then developed
our own NAS benchmark for transformers within the Flexi-
BERT search space, utilizing the ELECTRA scheme to
significantly speed up pretraining. Evaluating the training-
free metrics on our benchmark, our proposed Attention
Confidence metric performs the best. However, the current
search space paradigm for transformers is not well-suited for
training-free metrics, and the number of parameters within
a model is the most significant predictor of transformer per-
formance. Our research shows that training-free NAS met-
rics are not universally successful across all architectures,
and better transformer search spaces must be developed for
training-free metrics to succeed. We hope that our work is a
foundation for further research into training-free metrics for
RNNs and transformers, in order to develop better and more
efficient NAS techniques.

REU Symposium on Deep Learning

University of Colorado, Colorado Springs 27

Acknowledgments

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 2050919. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foun-
dation.

References

Abdelfattah, M. S.; Mehrotra, A.; Dudziak, L.; and Lane,
N. D. 2020. Zero-Cost Proxies for Lightweight NAS. In In-

ternational Conference on Learning Representations 2021.
Behnke, M.; and Heafield, K. 2020. Losing Heads in the
Lottery: Pruning Transformer Attention in Neural Machine
Translation. In Proceedings of the 2020 Conference on Em-

pirical Methods in Natural Language Processing (EMNLP),
2664–2674. Online: Association for Computational Linguis-
tics.
Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J. D.;
Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell,
A.; Agarwal, S.; Herbert-Voss, A.; Krueger, G.; Henighan,
T.; Child, R.; Ramesh, A.; Ziegler, D.; Wu, J.; Winter,
C.; Hesse, C.; Chen, M.; Sigler, E.; Litwin, M.; Gray, S.;
Chess, B.; Clark, J.; Berner, C.; McCandlish, S.; Radford,
A.; Sutskever, I.; and Amodei, D. 2020. Language Models
are Few-Shot Learners. In Advances in Neural Information

Processing Systems, volume 33, 1877–1901. Curran Asso-
ciates, Inc.
Celotti, L.; Balafrej, I.; and Calvet, E. 2020. Improv-
ing Zero-Shot Neural Architecture Search with Parameters
Scoring. Https://openreview.net/forum?id=4QpDyzCoH01.
Clark, K.; Luong, M.-T.; Le, Q. V.; and Manning, C. D.
2020. ELECTRA: Pre-training Text Encoders as Discrim-
inators Rather Than Generators. ArXiv:2003.10555 [cs].
Deng, B.; Yan, J.; and Lin, D. 2017. Peephole:
Predicting Network Performance Before Training.
ArXiv:1712.03351v1.
Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. ArXiv:1810.04805 [cs].
Dong, X.; and Yang, Y. 2020. NAS-Bench-201: Extending
the Scope of Reproducible Neural Architecture Search. In
International Conference on Learning Representations.
Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn,
D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.;
Heigold, G.; Gelly, S.; Uszkoreit, J.; and Houlsby, N. 2021.
An Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale. In Ninth International Conference on

Learning Representations.
Gokaslan, A.; and Cohen, V. 2019. OpenWebText Corpus.
Guo, Y.; Zheng, Y.; Tan, M.; Chen, Q.; Chen, J.; Zhao,
P.; and Huang, J. 2020. NAT: Neural Architecture
Transformer for Accurate and Compact Architectures.
ArXiv:1910.14488 [cs, stat].
Istrate, R.; Scheidegger, F.; Mariani, G.; Nikolopoulos, D.;
Bekas, C.; and Malossi, A. C. I. 2019. TAPAS: Train-Less

Accuracy Predictor for Architecture Search. Proceedings

of the AAAI Conference on Artificial Intelligence, 33(01):
3927–3934. ArXiv:1806.00250v1.
Jing, K.; Xu, J.; and Zugeng, H. X. 2020. NASABN: A
Neural Architecture Search Framework for Attention-Based
Networks. In 2020 International Joint Conference on Neural

Networks (IJCNN), 1–7. ISSN: 2161-4407.
Kaplan, J.; McCandlish, S.; Henighan, T.; Brown, T. B.;
Chess, B.; Child, R.; Gray, S.; Radford, A.; Wu, J.; and
Amodei, D. 2020. Scaling Laws for Neural Language Mod-
els. ArXiv:2001.08361 [cs, stat].
Klyuchnikov, N.; Trofimov, I.; Artemova, E.; Salnikov, M.;
Fedorov, M.; Filippov, A.; and Burnaev, E. 2022. NAS-
Bench-NLP: Neural Architecture Search Benchmark for
Natural Language Processing. IEEE Access, 10: 45736–
45747. ArXiv:2006.07116v1.
Mehrotra, A.; Ramos, A. G. C. P.; Bhattacharya, S.;
Dudziak, L.; Vipperla, R.; Chau, T.; Abdelfattah, M. S.; Ish-
tiaq, S.; and Lane, N. D. 2021. NAS-Bench-ASR: Repro-
ducible Neural Architecture Search for Speech Recognition.
In International Conference on Learning Representations.
Mehta, Y.; White, C.; Zela, A.; Krishnakumar, A.; Zabergja,
G.; Moradian, S.; Safari, M.; Yu, K.; and Hutter, F. 2022.
NAS-Bench-Suite: NAS Evaluation is (Now) Surprisingly
Easy. In Ninth International Conference on Learning Rep-

resentations. ArXiv:2201.13396v2.
Mellor, J.; Turner, J.; Storkey, A.; and Crowley, E. J. 2021a.
Neural Architecture Search without Training. In Pro-

ceedings of the 38th International Conference on Machine

Learning, 7588–7598. ArXiv:2006.04647v3.
Mellor, J.; Turner, J.; Storkey, A.; and Crowley, E. J. 2021b.
Neural Architecture Search without Training.
Michel, P.; Levy, O.; and Neubig, G. 2019. Are Sixteen
Heads Really Better than One? In Advances in Neural Infor-

mation Processing Systems, volume 32. Curran Associates,
Inc.
Palangi, H.; Deng, L.; Shen, Y.; Gao, J.; He, X.; Chen, J.;
Song, X.; and Ward, R. 2016. Deep Sentence Embedding
Using Long Short-Term Memory Networks: Analysis and
Application to Information Retrieval. IEEE/ACM Transac-

tions on Audio, Speech, and Language Processing, 24(4):
694–707. Conference Name: IEEE/ACM Transactions on
Audio, Speech, and Language Processing.
Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.;
Sutskever, I.; and others. 2019. Language models are un-
supervised multitask learners. OpenAI blog, 1(8): 9.
Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.;
Matena, M.; Zhou, Y.; Li, W.; Liu, P. J.; and others. 2020.
Exploring the limits of transfer learning with a unified text-
to-text transformer. Journal of Machine Learning Research,
21(140): 1–67.
Real, E.; Aggarwal, A.; Huang, Y.; and Le, Q. V. 2019. Reg-
ularized Evolution for Image Classifier Architecture Search.
ArXiv:1802.01548 [cs].
Shi, X.; Zhou, P.; Chen, W.; and Xie, L. 2021. Efficient
Gradient-Based Neural Architecture Search For End-to-End

REU Symposium on Deep Learning

University of Colorado, Colorado Springs 28

ASR. In Companion Publication of the 2021 International

Conference on Multimodal Interaction, ICMI ’21 Compan-
ion, 91–96. New York, NY, USA: Association for Comput-
ing Machinery. ISBN 978-1-4503-8471-1.
Siems, J. N.; Zimmer, L.; Zela, A.; Lukasik, J.; Keuper, M.;
and Hutter, F. 2021. NAS-Bench-301 and the Case for Sur-
rogate Benchmarks for Neural Architecture Search.
So, D.; Le, Q.; and Liang, C. 2019. The Evolved Trans-
former. In Proceedings of the 36th International Conference

on Machine Learning, 5877–5886. ArXiv:1901.11117v4.
So, D.; Mańke, W.; Liu, H.; Dai, Z.; Shazeer, N.; and Le,
Q. V. 2021. Searching for Efficient Transformers for Lan-
guage Modeling. In Advances in Neural Information Pro-

cessing Systems, volume 34, 6010–6022. Curran Associates,
Inc.
Strubell, E.; Ganesh, A.; and McCallum, A. 2019. Energy
and Policy Considerations for Deep Learning in NLP. In
Proceedings of the 57th Annual Meeting of the Association

for Computational Linguistics. ArXiv:1906.02243v1.
Sundermeyer, M.; Schlüter, R.; and Ney, H. 2012. LSTM
neural networks for language modeling. In Thirteenth an-

nual conference of the international speech communication

association.
Tan, M.; Chen, B.; Pang, R.; Vasudevan, V.; Sandler, M.;
Howard, A.; and Le, Q. V. 2019. MnasNet: Platform-Aware
Neural Architecture Search for Mobile. In 2019 IEEE/CVF

Conference on Computer Vision and Pattern Recognition

(CVPR), 2815–2823. Long Beach, CA, USA: IEEE. ISBN
978-1-72813-293-8.
Tan, M.; and Le, Q. 2019. EfficientNet: Rethinking Model
Scaling for Convolutional Neural Networks. In Proceedings

of the 36th International Conference on Machine Learning,
6105–6114. ArXiv:1905.11946v5.
Tanaka, H.; Kunin, D.; Yamins, D. L.; and Ganguli, S. 2020.
Pruning neural networks without any data by iteratively con-
serving synaptic flow. In Advances in Neural Information

Processing Systems, volume 33, 6377–6389. Curran Asso-
ciates, Inc.
Tuli, S.; Dedhia, B.; Tuli, S.; and Jha, N. K. 2022. FlexiB-
ERT: Are Current Transformer Architectures too Homoge-
neous and Rigid? ArXiv:2205.11656 [cs].
Turc, I.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2019.
Well-Read Students Learn Better: On the Importance of Pre-
training Compact Models. ArXiv:1908.08962 [cs].
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2017. At-
tention is All you Need. In Advances in Neural Information

Processing Systems, volume 30. Curran Associates, Inc.
Voita, E.; Talbot, D.; Moiseev, F.; Sennrich, R.; and Titov,
I. 2019. Analyzing Multi-Head Self-Attention: Specialized
Heads Do the Heavy Lifting, the Rest Can Be Pruned. In
Proceedings of the 57th Annual Meeting of the Association

for Computational Linguistics, 5797–5808. Florence, Italy:
Association for Computational Linguistics.
Wang, A.; Singh, A.; Michael, J.; Hill, F.; Levy, O.; and
Bowman, S. R. 2019. GLUE: A Multi-Task Benchmark

and Analysis Platform for Natural Language Understanding.
ArXiv:1804.07461 [cs].
Wang, H.; Wu, Z.; Liu, Z.; Cai, H.; Zhu, L.; Gan, C.; and
Han, S. 2020. HAT: Hardware-Aware Transformers for Ef-
ficient Natural Language Processing. In Proceedings of the

58th Annual Meeting of the Association for Computational

Linguistics, 7675–7688. Online: Association for Computa-
tional Linguistics.
Yin, Y.; Chen, C.; Shang, L.; Jiang, X.; Chen, X.; and Liu,
Q. 2021. AutoTinyBERT: Automatic Hyper-parameter Op-
timization for Efficient Pre-trained Language Models. In
Proceedings of the 59th Annual Meeting of the Association

for Computational Linguistics and the 11th International

Joint Conference on Natural Language Processing (Volume

1: Long Papers), 5146–5157. Online: Association for Com-
putational Linguistics.
Ying, C.; Klein, A.; Christiansen, E.; Real, E.; Murphy,
K.; and Hutter, F. 2019. NAS-Bench-101: Towards Repro-
ducible Neural Architecture Search. In Proceedings of the

36th International Conference on Machine Learning, 7105–
7114. PMLR. ISSN: 2640-3498.
Yu, Y.; Si, X.; Hu, C.; and Zhang, J. 2019. A Review of
Recurrent Neural Networks: LSTM Cells and Network Ar-
chitectures. Neural Computation, 31(7): 1235–1270.
Zhao, Y.; Dong, L.; Shen, Y.; Zhang, Z.; Wei, F.; and Chen,
W. 2021. Memory-Efficient Differentiable Transformer Ar-
chitecture Search. In Findings of the Association for Com-

putational Linguistics: ACL-IJCNLP 2021, 4254–4264.
Zhou, D.; Zhou, X.; Zhang, W.; Loy, C. C.; Yi, S.; Zhang,
X.; and Ouyang, W. 2020. EcoNAS: Finding Proxies for
Economical Neural Architecture Search. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, 11396–11404.
Zhou, Q.; Sheng, K.; Zheng, X.; Li, K.; Sun, X.; Tian, Y.;
Chen, J.; Ji, R.; and Laboratory, P. C. 2022. Training-free
Transformer Architecture Search. In Proceedings of the

2022 IEEE/CVF Computer Vision and Pattern Recognition

Conference. ArXiv:2203.12217v1.
Zoph, B.; and Le, Q. V. 2017. Neural Architecture Search
with Reinforcement Learning. In 5th International Confer-

ence on Learning Representations. ArXiv.1611.01578v2.

REU Symposium on Deep Learning

University of Colorado, Colorado Springs 29

Light Weight Transforms Ramp up Autonomy of UAVs

Raymond Dueñas
University of Colorado Colorado Springs

duenas2100@gmail.com

Adham Ayabi
University of Colorado Colorado Springs

aatyabi@uccs.edu

Abstract
Autonomous uncrewed areal vehicles require the ability
to navigate various environments without collision fail-
ures. These systems already serve important roles in a
variety of fields ranging from entertainment to military
application. There is a desire to replace costly multi-
sensor based systems with a system based solely on
computer vision. However, these systems suffer from
varying accuracy in object recognition and in some
cases object recognition is to slow to avoid a collision
failure. Currently the best solutions for computer vision
based systems implement artificial neural networks or
an algorithm written for a specific task. Based on (Wang
et al. 2022) which illustrate the high accuracy of OFA
this work implements OFA as an alternative to artificial
neural networks and in doing so expects to produce a
vision based autonomous system with minimal parame-
ters high accuracy and competitive speed.

Introduction
Uncrewed arial vehicles (UAVs) have a wide range of
applications, from children’s toys to military operations.
One such environment is UAV racing as a sport which
has produced championship UAV pilots that can fly UAVs
through obstacle courses performing maneuvers including
corkscrews, loops, suicide dives, and reaching speeds up to
120mph. There is a high demand for advancement in devel-
oping an autonomous UAV (AUAV) system with the abil-
ity to navigate through obstacles, avoid collisions, and reli-
ably execute objectives. The UAV maneuverability achieved
by champion UAV racing pilots serves as a benchmark for
AUAVs, a benchmark with an extreme gap in performance.
Lockheed Martin and CEO of The Drone Racing League,
Nicholas Horbaczewski shared a vision of leveraging the
sport to ramp up advancements in AUAV technology. This
vision brought about the foundation of Lockheed Martin’s
AlphaPilot Innovation Challenge which challenges partici-
pants to design AUAV capable of piloting through profes-
sional drone racing courses. The metrics used to determine
the winning AUAV are, firstly, the percentage of course com-
pleted, and secondly, the speed of completion. The AlphPi-
lot Innovation Challenge finalist competed at Artificial In-
telligence Robotic Racing (AIRR) World Championship. At
this event, of the nine finalists, only two AUAVs success-
fully completed the course, a failure rate of 78%. Of the

two AUAVs that completed the course, the winner had an
average speed of 1.5m/s. The architecture utilized by this
AUAV serves as a benchmark for this work. The Game of
Drones is another drone racing platform and is where the
second benchmark for this work is derived. A Microsoft ini-
tiative working to close the gap between AUAVs and pi-
loted UAVs The Game of Drones runs on the AirSim vir-
tual platform developed by Microsoft and Stanford. Teams
load there computer vision-based navigation models onto a
virtual drone that then uses the model to traverse a rigorous
virtual course. Winning requires completing more gates than
any other team or completing the same number of gates with
a faster track time. This work utilizes recent advances in
lightweight visual transformers. Applying the visual trans-
former model OFP a sequence to sequence framework pre-
sented by (Wang et al. 2022) in conjunction with the Sep-
arable Pyramidal Pooling EncordEr-Decoder (SPEED) pre-
sented by (Papa et al. 2022) for depth perception and ob-
ject avoidance guided controllers based on (Zhang et al.
2020) work with monocular trajectory planning. Combin-
ing the three listed methods will yield a general solution
for the computer vision based AUAV navigation situation.
Providing enhanced object detection, route navigation, col-
lision avoidance, and an increased success rate of monocular
AUAV flight.

Related Work
Autonomous flight requires the successful syntheses of mul-
tiple dynamic objectives and systems. In this work we focus
in on object detection, route estimation or obstacle avoid-
ance and depth estimation. The following related works rep-
resent the top performing AUAV systems from three sepa-
rate competitions and presents the methods utilized by each
team with respect to the noted systems of focus for this work.

UZH Robotics and Perception Group: Optimal
Methods meet Deep Learning for Autonomous
Drone Racing
Object detection: Utilizing A deep network the team first
delivers an input image to a shallow DroNet architecture
based Convolutional Neural Network, the outputted carica-
turists are then handled by two individual multilayer percep-
trons.

REU Symposium on Deep Learning

University of Colorado, Colorado Springs 30

Collision avoidance and Rout Estimation: Utilizing a suc-
cessive two stage system, first a waypoint is derived from
gate estimated location and a favorable path is chosen. In
the next stage the onboard controller is relayed directions to
navigate to the waypoint and flight path is tracked for im-
proved stabilization between waypoints.
Depth Estimation: This model calculates the deep network
derived regression of the input RGB image’s mean in order
to determine distance to a gate.

Sejong University: Report for Game of Drones A
NeurIPS 2019 Competition
Object detection:: Using a Neural Network as an object de-
tection model. The team implements U-Net segmentation an
actor net and a critic net in the process of training the neu-
ral network. In order to develop a reward based guidance for
navigation decisions derived from the initial detection of a
gate and current estimated AUAV location.
Collision avoidance and Rout Estimation: Developing
and implementing a rule-based control scheme called move-
BySplineAsnc and moveOnSplineAsnc. The control scheme
was trained by running the actor net through a virtual gate
from a number of approach trajectories and presenting it
with a risk reward value depending on if it makes it through
the gate or suffers a collision failure while the segmenta-
tion compressed and preserved valuable data gained from
the simulation.
Depth Estimation: (At this point it is unclear to me how
they handle depth estimation. I believe it is derived from data
gained from their object detection model)

MAVLab: A Computationally Efficient
Vision-Based Navigation And Control Strategy
Object detection: The system utilizes deep learning based
optic flow and algorithms they call Snake gate detection and
Histogram gate algorithm which were uniquely designed
for the competition.
Collision avoidance and Rout Estimation: Utilizing a PD
controller and the Snake gate detection algorithm the AUAV
is centered to the gate when ever there is a positive reading
of a gate in view. To compensate for situations when no gate
is in view the team implements a state estimator arc to turn
the drone in the direction of the next gate.
Depth Estimation: Provided attitude estimate to the Snake
Gate algorithm developed, also allows for depth estimate.

MAVLab, the winners of the AlphPilot Innovation Chal-
lenge, lay out the process of developing their benchmark
AUAV in (Li et al. 2020) . A detailed system overview
establishes that the system hardware utilized consists of a
camera with six optical elements and 14 Megapixels sen-
sor, Parrot p7 dual-core CPU cortex 9 (max 2GHZ), an
MPU 6050 IMU and sonar with less than 8m range. Their
AUAV utilizes a novel snake gate detection algorithm to
identify and a PD controller to steer the drone to the center
of the detectable rectangular-shaped gates. Utilizing classic
complementary filter for attitude and heading reference sys-
tems (AHRS) then using Kalman filter to fuse AHRS and

IMU measurements to estimate position. The system im-
plemented a prediction-based feed-forward control scheme
when the steer when snake gate detection algorithm does
not detect a gate. Lastly, as a low-level attitude controller,
their system employed an adaptive incremental nonlinear
dynamic inversion (INDI). Utilizing the described AUAV
was able to navigate a course at an average speed of 1.5m/s.
However, (Li et al. 2020) explains that there are failure cases
where the drone crashes into the gate due to late gate detec-
tion and complete detection failures.

Problem Statement
Working to develop a robust AUAV is a global effort. Cur-
rently, the success rate in developing an AUAV system that
can navigate a course without crashing is at most 22% when
considering the AIRR world championships, which–within
the scope of the competition–consist of the most competi-
tive AUAVs yet to be developed. This work aims to produce
a general AUAV system that efficiently detects and classi-
fies objects, develops superior navigational routes, and sig-
nificantly reduces collision rates, all while increasing the
AUAV’s rate of travel. Lastly, the systems utilized by the
benchmark AUAV employed a visual navigation algorithm
specific to rectangular gate detection and will fail if the gate
shape is changed. The successful execution of this work will
produce a general system that does not rely on a mission
specific algorithm, and instead accepts situational parame-
ters to yield a significant gain in the operational scope of the
AUAV.

Approach
Proposed System
To handle object detection, the lightweight vision trans-
former, OFA, which through a sequence-to-sequence
learning framework, can perform vision and language
tasks with state-of-the-art accuracy and competitive speed
presented by (Wang et al. 2022) will be implemented. This
transformer detects, classifies, provides objects in frame
location, and can perform impressive image infilling. If this
transformer can be implemented onto memory-constrained
drones and tuned to increase throughput, these capabilities
would provide a highly effective object detection model. In
managing depth estimation and obstacle avoidance issues
associated with monocular vision, this work proposes
utilizing a paired CNN architecture, an overview of which
can be seen in figure 1. The first CNN takes in a sequence
of two one-dimensional frames that have been combined
into one two denominational array and will produce optical
flow-related values. The second CNN takes in the values
produced by the first CNN and three-dimensional destina-
tion coordinate from which it outputs an optimal directional
decision. The proposed CNN architecture aims to be as ac-
curate as the RT-ViT model developed by (Ibrahem, Salem,
and Kang 2022) and as fast as the SPEED model developed
by (Papa et al. 2022). RT-ViT addresses depth estimation
in real-time situations when depth estimation must be
conducted with only monocular data. The performance of
RT-ViT, reached state-of-the-art accuracy on multiple data

REU Symposium on Deep Learning

University of Colorado, Colorado Springs 31

Figure 1: Paired CNN Architecture

sets, including NYU-depthv2 and CITYSCAPES.
However, the fastest RT-ViT model, ViT-t16+DE, had
a maximum frame rate of 20.83. SPEED addresses
collision avoidance in real-time situations, with only
monocular data available. The performance of SPEED
is better than other fast throughput architectures, even
on low-resource settings (Papa et al. 2022). The SPEED
model utilizes two depth-wise separable pyramidal pooling
layers, increasing the inference frequency and reducing
computational complexity. Utilizing NYU Depth v2 and
DIML Kinectv2 datasets to benchmark monocular depth
estimation. SPEED achieves state-of-the-art results for
fast throughput compared with related works on the DIML
Kinect v2 data set and outstanding results in error estimation
compared to more complex models. When presented in
2019, SPEED’s performance on the NYU Depth v2 data
set was near the state-of-the-art at the time(Papa et al. 2022).

Furthermore, the obstacle avoidance scheme proposed
by (Zhang et al. 2020) will be employed to provide reli-
able route estimation. The scheme will be implemented to
develop the three-dimensional coordinates, which will be
passed to the second CNN in the proposed paired CNN ar-
chitecture. In their work (Zhang et al. 2020) states that re-
liable collision prevention estimation is unattainable with
monocular data alone. Their work proposes an obstacle col-
lision avoidance trajectory planning scheme as an alterna-
tive to collision prevention. Considering the characteristics
of monocular optical measurement, they utilize two obsta-
cle localization models based on relative range and rela-
tive angle. This model enhances the capability of AUAVs
to avoid collision trajectories and achieve favorable results
when compared with methods capable of geometric colli-
sion avoidance utilizing global knowledge.

Measuring Results
Environmental constraints make reproducing the MAVLab
benchmark AUAV experiment unfeasible in this work. How-
ever, utilizing The Tello EDU model number: TLW004, this
work will fit the benchmark model as tight as possible to the
TLW004. Available specifications show that the TLW004
is equipped with 720p HD transmission, 5MP photos,
FOV: 82.6, video: HD720P30, Intel processor, range finder,
and barometer. After fitting the benchmark model to the
available TLW004 the MAVLab metric tests will be run to
establish a benchmark figure running MAVLab system on
the TLW004. Once the benchmark has been established, the
system proposed in this work will be fitted to the TLW004
and the tests will be repeated. Taking the percentage of
course completed, average observed speed, gate detection
hit/miss rate, and error distribution between estimated states
and ground-truth states as metrics to compare the results of
the proposed system with the established benchmark.

Microsoft’s drone racing simulator, AirSim, will be
employed in measuring this works proposed system against
the top-performing system utilized by Sejoung University.
Sejoung University provides metrics for the performance
of their AUAV system in (Shin, Kang, and Kim). Loading
the proposed work into the AirSim testing the performance
of the system and measuring results with respect to the
metrics provided by (Shin, Kang, and Kim) will allow for
determination of the performance of the proposed system
against that of the top-performing Sejoung University
system.

After metric comparisons are complete, to test the scope
of the proposed system’s operational environment, the
AUAV will navigate through three additional variations of
a test course. The first variation will replace all rectangular
gates with circular ones. The second will replace all circu-

REU Symposium on Deep Learning

University of Colorado, Colorado Springs 32

Figure 2: Example of drone state data collected.

lar gates with rectangular obstacles that must be maneuvered
around to avoid a collision. Lastly, the course will combine
rectangular gates, circular gates, rectangular obstacles, and
circular obstacles. The successful completion of these dif-
fering environments will demonstrate a degree of the scope
for the operational environment provided by the proposed
AUAV system. Possible data sets for this work include Wild-
UAV, EuRoC MAV, TUM monoVO, NYU Depth V1/V2,
RGB+D, PASCAL VOC12, MS COCO, ImageNet, Open
Images V6, and a self-derived data set for control outputs.

Experiments and Results

Data Set

TThe development of a data set was necessarily added to
the scope of this work to experiment and train the proposed
paired CNN architecture. Data was collected by flying the
Tello drone indoors in both congested and clear environ-
ments. The video feed was recorded at a rate of 30 frames
per second and stored as an avi file for each session. Dur-
ing each flight session, the drone state information was also
recorded at a rate of 30 states per second. This information
includes drones x, y, z, acceleration values relative height,
and more. An example of this data can be seen in figure
2. While the drone state information includes the drone’s
height, z coordinate, it does not include x and y coordinates.
Using the drone’s tunable travel rate in centimeters per sec-
ond measurements were conducted to calibrate the drones
in-flight x and y coordinates relative to its initial hover posi-
tion after take-off. This information was added to the drone’s
state data and can be seen in figure 2 labeled as x, y, z, and z-
relative. Z-relative is the drone’s height relative to anything
directly beneath it, while z is in reference to initial take-off.
With this information, odometry maps were developed and
stored for reference as visual representations of the drone’s
traveled path. Lastly, after flight sessions were completed, a
folder for each flight containing the individual frames from
each session recording was created. From these frame files,
a data set was generated containing the optical flow informa-
tion pairs of frames. The results for each optical flow calcu-
lation were further processed, parsing each result into nine
non-lapping regions, each of which was reduced to a single
floating point value. The frames utilized in the optical flow
operation and nine region representing floating point values
generated are aligned in the data set generated. An example
of this data and a visual representation of the nine optical
flow regions can be seen in Figures 3 and 4.

Figure 3: Visualisation of the nine optical flow region.

Model Development
The development of the paired CNN architecture has been
split into two phases. The first of which develops the CNN
in charge of taking in two sequential one-dimensional
images paired together as one two-dimensional array and
generating a nine-value representation of optical flow for
the inputted sequence. After completion of this model, the
second phase of model development would begin in which
the model outputs drone motor control commands from
the nine outputs of the first CNN and three denominational
destination coordinate.

Results
In phase one, training the CNN took place in Colab Pro+
utilizing, Tensorflow, Keras, and Sklearn. The model would
be required to take in an image as a variable and predict nine
continuous values. From this, it was determined that this was
a regression model task. As such mean squared error was
implemented as the loss function, and mean absolute error
was implemented as the metric for measuring the prediction
error of the model. Experimenting with multiple architec-
tures variations of the regression model and utilizing K-Fold
cross-validation to provide the entirety of the data set, the

REU Symposium on Deep Learning

University of Colorado, Colorado Springs 33

Figure 4: Example of Optical flow values representing nine regions of optical flow.

Figure 5: Architecture of optical flow value generating

model.

lowest mean absolute error observed was 6.1520. Meaning
that, on average, the model is 6.1520 units away from the
correct prediction. The model architecture used to produce
these results can be seen in figure 5.

Conclusion
The general solution presented in this work utilized the
visual transformer model OFA and the proposed paired
CNN architecture in conjunction with trajectory modeled for
depth perception, obstacle avoidance, and motor controllers.
The implementation of the first phase in model development
has produced a model with prediction error that encourages
improvement. Future work will include the implementation
of phase two of model development, creating a model capa-
ble of producing optimal motor control commands towards
its given destination. Completion of model development will
prompt the highly anticipated testing of the proposed general
solution against the benchmark AUAV models with respect

to the defined metrics. Given the test results, further work to
improve the model or further testing for robustness may be
implemented..

References
Ibrahem, H.; Salem, A.; and Kang, H.-S. 2022. Rt-vit: Real-
time monocular depth estimation using lightweight vision
transformers. Sensors 22(10).
Li, S.; Ozo, M. M.; De Wagter, C.; and de Croon, G. C.
2020. Autonomous drone race: A computationally efficient
vision-based navigation and control strategy. Robotics and
Autonomous Systems 133:103621.
Papa, L.; Alati, E.; Russo, P.; and Amerini, I. 2022. Speed:
Separable pyramidal pooling encoder-decoder for real-time
monocular depth estimation on low-resource settings. IEEE
Access 10:44881–44890.
Shin, S.-Y.; Kang, Y.-W.; and Kim, Y.-G. Report for game
of drones: A neurips 2019 competition.
Wang, P.; Yang, A.; Men, R.; Lin, J.; Bai, S.; Li, Z.;
Ma, J.; Zhou, C.; Zhou, J.; and Yang, H. 2022. Uni-
fying architectures, tasks, and modalities through a simple
sequence-to-sequence learning framework. arXiv preprint
arXiv:2202.03052.
Zhang, Z.; Cao, Y.; Ding, M.; Zhuang, L.; and Tao, J. 2020.
Monocular vision based obstacle avoidance trajectory plan-
ning for unmanned aerial vehicle. Aerospace Science and
Technology 106:106199.

REU Symposium on Deep Learning

University of Colorado, Colorado Springs 34

The Effects of Subject Transfer on Transformer-Based EEG Classification of
Finger Movement

Zach Snow
University of Kentucky

Lexington, Kentucky 40506
zsn222@uky.edu

Adham Atyabi
University of Colorado, Colorado Springs

1420 Austin Bluffs Parkway
Colorado Spring, Colorado 80918

aatyabi@uccs.edu

Abstract

Brain-Computer Interfaces (BCIs) employing Elec-
troencephalogram (EEG) signals are powerful mecha-
nisms for controlling prosthesis without physical ma-
nipulation. Current methods of processing EEG signals
are either limited in their accuracy or in their flexibility,
both of which hinder their broad use and application.
EEG signals have exceptional temporal resolution but
are comparatively lacking in spatial resolution which
can make deep features of their signals difficult to in-
terpret. Vision Transformers (ViTs) specialize in ex-
tracting patterns and features in images and categoriz-
ing them by detecting the importance of image regions
in relation to other regions. This functionality makes
ViTs strong candidates for translating EEG signals into
specific motor functions. Transfer learning is the act of
using a model trained on a similar task as a baseline
for the intended task to reduce the amount of data re-
quired and improve classification accuracy. This paper
proposes the use of Transformers and subject transfer to
more effectively classify EEG signals as movements of
individual fingers.

1 Introduction
An Electroencephalogram (EEG) is a brain signal record-
ing method that uses multiple electrodes placed on the scalp
to take measurements of signals in different areas of the
brain. EEGs are often used to evaluate and diagnose neural
conditions such as epilepsy, sleep disorders, and other en-
cephalopathies. Brain-Computer Interfaces (BCIs) are sys-
tems that take signals from the brain, analyze them, and re-
lay them as commands to an output device. One increasingly
prevalent application of BCIs is in the field of prosthetics as
BCIs have the capacity to convert brain signals from imag-
ined motion into physical motion of a controlled device.

EEGs have high temporal resolution, typically taking
samples of brain activity at a sampling rate of between 200
and 1000 times per second. The drawback of EEGs in pros-
thetics is their poor spatial resolution (Ieracitano et al. 2021).
Current EEG systems consist of between 4 and 256 elec-
trodes with the most common layouts having between 20
and 64 electrodes in their placement (Towle et al. 1993).

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The International standard 10-20 EEG system is pictured in
Figure 1. Even with 256 electrodes, it is impossible to mea-
sure brain activity with any level of spatial precision. Since
the number of neurons in a human brain is several orders of
magnitude higher than the number of electrodes in a typi-
cal EEG, EEGs can only detect the activity of large clusters
of neurons which leads to results that can be challenging to
interpret.

Figure 1: Electrode locations of the 10-20 system (Towle et
al. 1993).

Due to the relatively poor spatial resolution of EEGs, it
can be difficult to discern between movements of small,
specific body parts such as individual fingers. Additionally,
EEG results for the same motion can vary drastically be-
tween different test subjects and can even vary for the same
subject at different times. In spite of this, having the ability
to accurately discern between different finger movements is
critical in the future of making more functional prostheses.
This paper aims to improve upon current models used for
EEG classification using transformers and subject transfer,
which has not been used for the task of finger classification.

2 Related Works
In 2017, Google Brain and Google Research, teams of top
machine learning specialists at Google, published their pa-
per ”Attention is All you Need.” This influential paper intro-
duced a novel neural network architecture known as a Trans-
former (Vaswani et al. 2017). Transformers employ ”self-
attention” which allows the network to identify the impor-

REU Symposium on Deep Learning

University of Colorado, Colorado Springs 35

tance of elements in the input in relation to other elements
in the input.

Transformers are the new preferred architecture for Nat-
ural Language Processing (NLP) tasks due to their ability
to learn how words in a sentence relate to other words. Fur-
thermore, Transformers are rapidly becoming one of the pre-
ferred methods of classification in Computer Vision (CV)
due to their ability to extract information about how certain
pixels of an image relate to other pixels. This could prove
useful in EEG and ECoG classification because regions in
those signals are not independent of other regions.

Convolutional Neural Networks (CNNs) are similar to tra-
ditional dense artificial neural networks in their functional-
ity. Both serve to extract deep features in a data set to classify
new data, but due to the structure of CNNs, CNNs tend to
use significantly fewer parameters while maintaining com-
parable accuracy with two- and three-dimensional data such
as images. Instead of connections between every individual
node, CNNs utilize ”kernels.” A kernel can be thought of
as a small filter that passes over the image and accentuates
desirable features.

CNNs excel in mapping convoluted patterns in images to
an output variable. They are currently one of the default so-
lutions to prediction problems involving image data as in-
puts. Consequently, CNNs are a method of identifying deep
features of EEG data and classifying them as movement of
a specific body part (Sadiq et al. 2022).

In 2021, Ieracetano et al. (2021) showed strong results in
using Convolutional Neural Networks (CNNs) to discrimi-
nate between open-hand/rest and closed-hand/rest positions
using EEG signals. Their work was able to classify pre-
hand closed versus rest and pre-hand open versus rest with
an accuracy of approximately 90%. Furthermore, they were
able to discriminate between preparation of different sub-
movements with a precision of approximately 62%.

Kim et al. (2021) discovered that employing Sequential
Transfer Learning has the potential to further increase clas-
sification accuracy of Motor Imagery (MI) of hand, foot,
and tongue movements. Their pre-trained model correctly
identified the body part being moved with an accuracy of
63.8% (with transfer learning) compared to a baseline of
61.6% (without transfer learning). Consequently, the perfor-
mance of their MI-BCI showed improvement when com-
pared to previous CNN-based approaches. In cases with
smaller datasets, it can be beneficial to train on similar data
prior to fine-tuning on the intended dataset.

In their 2022 paper, Khademi et al. (2022) constructed a
hybrid CNN and Long-Short Term Memory (LSTM) deep
learning model to classify motor imagery signals from the
BCI Competition IV Dataset 2a, a dataset with 4 motor im-
agery classes (left hand, right hand, feet, and tongue). They
achieved a classification accuracy of approximately 90%
with their hybrid model of ResNet-50 (a pretrained CNN)
and an LSTM.

The electrodes in an Electrocorticogram, or ECoG, are
placed directly on the cerebral cortex as opposed to elec-
trodes in an EEG which are placed on the scalp. Conse-
quently ECoG data can be more reliable for predicting fine
motor movement due to its improved spatial and temporal

resolution as compared to EEG data. As a result, research in
2018 by (Xie, Schwartz, and Prasad 2018) showed promise
in being able to distinguish finger movement using a Long-
Short Term Memory (LSTM) architecture.

3 Methods
A combination of pre-existing pre-processing methods, en-
semble learning, and transfer learning were employed to im-
prove accuracy of classification.

3.1 Obtaining Data
General Overview: Data used was obtained from a
large, publicly available electroencephalogram motor im-
agery dataset for brain-computer interfaces. This dataset
contains approximately 60 hours of EEG recordings spread
over 75 recording sessions of 13 participants. It contains
more than 60000 examples of motor imageries in 4 inter-
action paradigms. This dataset is one of the largest publicly-
available EEG BCI datasets currently published (Kaya et al.
2018). For more details about this dataset, please see Table
1.

Stimuli and Experimental Design: Participants in the 5F
(five finger) experiment were first seated in front of a screen.
The experiment proceeded as follows: “At the beginning of
each trial, an action signal appeared (represented by a num-
ber from 1 to 5) directly above the finger whose movement
imagery was to be implemented. The action signal remained
on for 1s, during which time the participants implemented
the corresponding imagery once. The imageries were in-
voked as a flexion of the corresponding fingers up or down,
per the preference of the participant. There was no passive
state in this paradigm – each action signal required a re-
sponse. Single imagery was implemented per action signal.
After executing the imagery, participants remained passive
until the next action signal presentation.” (Kaya et al. 2018)

3.2 Preprocessing
Overview: Preprocessing was conducted using MAT-
LAB’s PREP Pipeline for standardized EEG preprocessing
(Bigdely-Shamlo et al. 2015). The PREP Pipeline allows for
automatic selection and rejection of epochs, automatic re-
jection of channels, removal of line noise, and detrending of
the data. Beyond this, electrodes CZ, C3, C4, T3, T4, FZ,
F3, and F4 are being utilized due to their close proximity to
the motor cortex, the area in the brain that primarily controls
motor movement.

Process: All EEG data was imported directly into MAT-
LAB. Channels CZ, C3, C4, T3, T4, FZ, F3, and F4 were
extracted from the dataset prior to preprocessing in order
to reduce computational demand. These channels were se-
lected due to their proximity to the motor cortex, which is
the region of the brain controlling motor function. Data was
detrended and line noise was reduced using the standard
PREP Pipeline settings. Finally, data was referenced using
a RANSAC approach. Data was saved as text files and then
converted to MATLAB files to be transformed via Short-
time Fourier transform.

REU Symposium on Deep Learning

University of Colorado, Colorado Springs 36

Dataset Type of Data Classes Sample Rate (HZ) Channels Subjects Epoch Length Task

BCI 5F Dataset EEG 5 200 and
1000 22 8 1

second
Finger

Movement

Table 1: Dataset Information

3.3 Overlapping Methods
One preliminary issue that reduced classification accuracy
was a lack of data. There were approximately 130 exam-
ples of each motor task per subject which is not enough to
effectively train a vision transformer. In order to improve
classification accuracy, the number of images being fed into
the vision transformer was increased. To do this, a process
known as ”overlapping” was performed in which multiple
offset windows are taken from each epoch.

Standard Overlapping: In standard overlapping, ex-
tracted windows are overlapped by a set amount across the
full epoch. The typical overlapping percentage ranges from
10% to 90%. For the purpose of this paper, overlapping per-
centages of 25%, 50%, 75%, and 90% were tested with a
window of 0.5 seconds. 75% overlapping showed the most
promising results compared to the computational demand
and was thus used for further testing.

Triangular Overlapping: Triangular overlapping is an
overlapping method proposed by (Atyabi, Fitzgibbon, and
Powers 2012) in which desirable sections of the EEG data
are overlapped at a higher percentage than other, less desir-
able sections. For example, in a 2-second long epoch, the
beginning of the signal is not useful due to the participants
reaction time and the end of the signal isn’t as useful due to
mental fatigue. Consequently, overlapping the center of the
signal more densely will lead to the model being trained on
higher-quality data. A modified triangular overlapping ap-
proach was taken to ensure that there are no duplicate sam-
ples which would lead to challenges in test/train/validation
division prior to training. Unfortunately, this method was in-
feasible for application to all subjects due to its computa-
tional demand and the length of this program.

3.4 Short-Time Fourier Transform
Once the Electroencephalogram data is preprocessed, it
would be ready to be classified if the intended classification
model was built to handle sequential data, such as a Long
Short-Term Memory model (Wang et al. 2018) or a Recur-
rent Neural Network (Ma et al. 2018). However, sequential
data is not useful for a vision-based classifier such as a CNN
or a Vision Transformer. Consequently, the data was passed
through a script that applied a Short-time Fourier transform
(STFT) to each individual channel of every epoch of every
trial. STFT converts a function into a spectrogram by de-
termining the sinusoidal frequency and phase content of the
function over time. In an STFT, a short window function
is slid across the signal over the time axis, and the result-
ing image is a construction of the individual, short-time dot
products of the window function and the signal. An STFT-
generated spectrogram of one epoch of EEG data can be
seen in Figure 2.

STFT{x(t)}(⌧,!) =
Z 1

�1
x(t)!(t� ⌧)e�i!tdt

Figure 2: Comparison of raw signal (left) and transformed
spectrogram (right).

3.5 Ensemble Learning
Another remedy to the lack of data was the utilization of
more channels of the EEG. To train the model on multiple
channels, ensemble learning was implemented. Ensemble
learning requires simultaneously training of multiple mod-
els. Each model was responsible for the classification of a
specific channel. To decide the classification of an input,
each model in the ensemble ”voted” for the class that it de-
cided the input falls into. This method improves classifica-
tion accuracy by spreading the data amongst multiple mod-
els, reducing the required information storage of each indi-
vidual model. The drawback of this approach is that it takes
significantly longer to train than a single-transformer model.
A visualization of this model can be seen in Figure 3.

Figure 3: Visualization of Transformer Ensemble

REU Symposium on Deep Learning

University of Colorado, Colorado Springs 37

3.6 Implementing a Transformer
The transformers used to classify the electroencephalo-
gram data are BERT-like transformer encoder models that
have been pretrained on ImageNet-21k and ImageNet 2012.
Pretrained models generally require less data to train and
achieve solid performance in less time than comparable un-
trained models (Kim et al. 2021). Training with limited data
is critical in this case as access to large, publicly available
EEG datasets is limited.

3.7 Subject Transfer
Transfer learning is the act of using a model trained on one
task as a baseline for another task. In this case, the model
was trained on seven of the eight subjects before being used
to classify the final subject. Two methods of subject transfer
were implemented. The first method involved training the
transformer ensemble on seven subjects and testing on the
last subject with no fine-tuning. The other method involved
training the ensemble on seven subjects followed by fine tun-
ing on a randomly selected half of the samples from the final
subject.

4 Current Work: Results
4.1 Single Subject: No Fine Tuning
Subject C, Trial 1. Results were obtained by training a sepa-
rate transformer on channels cz, c3, c4, t3, t4, fz, f3, and f4
of subjects A, B, E, F, G, H, and I before testing on subject C
without any retraining. Training was performed with a batch
size of 32, a learning rate of 2E-5, and 10 epochs. During
testing, each transformer predicted the class based on the
input channel. Class was chosen via majority voting. Ties
were broken randomly. For these results, see Table 2. Preci-
sion, recall, and F1 score are an average across all classes.
For specific precision, recall, and F1 scores by class, see the
appendix.

Subjects Pretrained On Precision Recall F1
A NaN NaN NaN

A, B NaN NaN NaN
A, B, E NaN NaN NaN

A, B, E, F NaN NaN NaN
A, B, E, F, G NaN NaN NaN

A, B, E, F, G, H NaN NaN NaN
A, B, E, F, G, H, I NaN NaN NaN

Table 2: Single Subject with No Fine Tuning: Results

4.2 Single Subject: With Fine Tuning
Subject C, Trial 1. Results were obtained by training a sep-
arate transformer on channels cz, c3, c4, t3, t4, fz, f3, and
f4 of subjects A, B, E, F, G, H, and I. This training was
followed by randomly splitting Subject C, Trial 1 into 50%
train, 50% test. Training was performed with a batch size
of 32, a learning rate of 2E-5, and 10 epochs for both pre-
training and fine-tuning. During testing, each transformer
predicted the class based on the input channel. Class was

chosen via majority voting. Ties were broken randomly. For
these results, see Table 3. Precision, recall, and F1 score are
an average across all classes. For specific precision, recall,
and F1 scores by class, see the appendix.

Subjects Pretrained On Precision Recall F1
A NaN NaN NaN

A, B NaN NaN NaN
A, B, E NaN NaN NaN

A, B, E, F NaN NaN NaN
A, B, E, F, G NaN NaN NaN

A, B, E, F, G, H NaN NaN NaN
A, B, E, F, G, H, I NaN NaN NaN

Table 3: Single Subject with Fine Tuning: Results

5 Future Work
5.1 Weighted Voting
In the current transformer ensemble, each transformer gets
a ”vote” on which class it believes the input falls into. All
votes are weighted equally and the class that gets the ma-
jority of votes is the class that the ensemble assigns the in-
put. In reality, some transformers classify their channel more
effectively than other transformers in the ensemble. Con-
sequently, weighting votes in favor of more accurate trans-
formers should lead to increased classification accuracy.

5.2 Convolutional Neural Networks
Convolutional Neural Networks (CNNs) have been the
state-of-the-art for image classification for decades. Con-
sequently, over 70% of deep-learning approaches to EEG
classification employ CNNs (Al-Saegh, Dawwd, and Abdul-
Jabbar 2021). In the future, a CNN-based classification
model will be implemented to compare results with the more
recently introduced transformer-based classification model.

6 Conclusion
In order to create more capable prostheses, it is paramount
that more work is done to be able to accurately discriminate
between small, precise motor movements. As of now, there
is much improvement to be done on current models that dis-
tinguish between individual finger movements. The goal of
this project is to build upon current models and strive to-
ward more accurate CNN- and Transformer-Based EEG and
ECoG classification in order to further develop the field of
prosthetics.

7 Acknowledgement
The work reported in this paper is supported by the Na-
tional Science Foundation under Grant No. 2050919. Any
opinions, findings and conclusions or recommendations ex-
pressed in this work are those of the author(s) and do not
necessarily reflect the views of the National Science Foun-
dation.

REU Symposium on Deep Learning

University of Colorado, Colorado Springs 38

References
Al-Saegh, A.; Dawwd, S. A.; and Abdul-Jabbar, J. M.
2021. Deep learning for motor imagery eeg-based classifi-
cation: A review. Biomedical Signal Processing and Control
63:102172.
Atyabi, A.; Fitzgibbon, S.; and Powers, D. 2012. Multi-
plication of eeg samples through replicating, biasing, and
overlapping. volume 7670, 1–13.
Bigdely-Shamlo, N.; Mullen, T.; Kothe, C.; Su, K.-M.; and
Robbins, K. A. 2015. The prep pipeline: standardized pre-
processing for large-scale eeg analysis. Frontiers in neuroin-
formatics 9:16.
Ieracitano, C.; Mammone, N.; Hussain, A.; and Morabito,
F. C. 2021. A novel explainable machine learning approach
for eeg-based brain-computer interface systems. Neural
Computing and Applications 1–14.
Kaya, M.; Binli, M. K.; Ozbay, E.; Yanar, H.; and
Mishchenko, Y. 2018. A large electroencephalographic mo-
tor imagery dataset for electroencephalographic brain com-
puter interfaces. Scientific data 5(1):1–16.
Kim, D.-K.; Kim, Y.-T.; Jung, H.-R.; Kim, H.; and Kim,
D.-J. 2021. Sequential transfer learning via segment af-
ter cue enhances the motor imagery-based brain-computer
interface. In 2021 9th International Winter Conference on
Brain-Computer Interface (BCI), 1–5.

Ma, X.; Qiu, S.; Du, C.; Xing, J.; and He, H. 2018. Im-
proving eeg-based motor imagery classification via spatial
and temporal recurrent neural networks. In 2018 40th An-
nual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC), 1903–1906. IEEE.
Sadiq, M. T.; Aziz, M. Z.; Almogren, A.; Yousaf, A.; Siuly,
S.; and Rehman, A. U. 2022. Exploiting pretrained cnn mod-
els for the development of an eeg-based robust bci frame-
work. Computers in Biology and Medicine 105242.
Towle, V. L.; Bolaños, J.; Suarez, D.; Tan, K.; Grzeszczuk,
R.; Levin, D. N.; Cakmur, R.; Frank, S. A.; and Spire, J.-P.
1993. The spatial location of eeg electrodes: locating the
best-fitting sphere relative to cortical anatomy. Electroen-
cephalography and clinical neurophysiology 86(1):1–6.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. At-
tention is all you need. Advances in neural information pro-
cessing systems 30.
Wang, P.; Jiang, A.; Liu, X.; Shang, J.; and Zhang, L. 2018.
Lstm-based eeg classification in motor imagery tasks. IEEE
transactions on neural systems and rehabilitation engineer-
ing 26(11):2086–2095.
Xie, Z.; Schwartz, O.; and Prasad, A. 2018. Decoding of
finger trajectory from ecog using deep learning. Journal of
neural engineering 15(3):036009.

REU Symposium on Deep Learning

University of Colorado, Colorado Springs 39

8 Appendix

No Fine-Tuning A A,B A,B,E
Channel 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Precision .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

Recall .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
F1 Score .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

No Fine-Tuning A,B,E,F A,B,E,F,G A,B,E,F,G,H
Channel 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Precision .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

Recall .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
F1 Score .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

No Fine-Tuning A,B,E,F,G,H,I
Channel 1 2 3 4 5
Precision .000 .000 .000 .000 .000

Recall .000 .000 .000 .000 .000
F1 Score .000 .000 .000 .000 .000

With Fine-Tuning A,B,E,F,G,H,I,C
Channel 1 2 3 4 5
Precision .000 .000 .000 .000 .000

Recall .000 .000 .000 .000 .000
F1 Score .000 .000 .000 .000 .000

REU Symposium on Deep Learning

University of Colorado, Colorado Springs 40

3DChromoTwist: Development of a 3D Chromosome Structure Reconstruction

Game for Educational Purposes

Marcin Pawlukiewicz

University of Rhode Island
45 Upper College Rd
Kingston, RI 02881

mapawlukiewicz@uri.edu

Oluwatosin Oluwadare

University of Colorado Colorado Springs
1420 Austin Bluffs Pkwy

Colorado Springs, CO 80918
ooluwada@uccs.edu

Abstract

The 3D structure reconstruction of the chromosome is
important so that a better knowledge of chromosome ac-
tivity can aid us in understanding DNA replication, gene
regulation, genome interaction, genome folding, and
genome function. The High-throughput Chromosome
Conformation Capture (Hi-C) technique incorporates
chromosome conformation capture approach with the
power of the Next Generation Sequencing technologies
to study the 3D chromatin organization. From the Hi-C
data, we can infer the contact or interaction frequency
(IF) matrix which describes the level of interaction be-
tween the chromosome bins. In this work, we propose
the development and design of a single-player bioin-
formatics game called 3DChromoTwist. The project’s
objective is to interest non-scientists in learning about
three-dimensional (3D) chromosomal structure. A re-
duced Hi-C contact matrix representing the final, com-
plete structure is provided to players along with a 3D
fragment of a chromosome. Players must then solve the
puzzle by moving gene loci of 3D chromosomal struc-
tures until they form the desired relationships between
the folds of the chromosome. We expect that 3DChro-
moTwist will positively influence the progression of sci-
ence by introducing a new set of learners to the world of
genetics. Ultimately, this will increase public scientific
literacy and public engagement with science and tech-
nology.

Introduction

High throughput chromosome conformation capture (Hi-C)
is a technique for evaluating chromatin’s spatial arrange-
ment in a cell. The technique counts how many interactions
there are between genome loci. The genome loci are de-
tectable in a 3D structure when they are close together yet
separated by many nucleotides in a linear genome. (Hakim
and Misteli 2012).

The process involves crosslinking DNA such that ad-
joining areas are linked together. The regions can then be
quickly identified. When cell genomes are cross-linked with
formaldehyde, chromatin crosslinking begins. DNA frag-
ments are then cut with a restriction enzyme, fragments are
sealed with a biotin marker, and ligated. Chimeric DNA

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

fragments are then created using reversed crosslinking. Af-
ter DNA purification, streptavidin is used to pull down the
DNA, after which the fragments are sequenced. Hi-C se-
quencing will generate sequenced pair reads that identify
their nucleotides. These are then mapped to a reference
genome and filtered for noise, ultimately preprocessed to
produce an IF matrix (Sati and Cavalli 2017). Hi-C sequenc-
ing results in a comparison of multiple DNA fragments to
each other. As a result, it scans the locus of the close pairs
and maps their relations onto a N*N matrix, where N is the
number of chromosome fragments. In a Hi-C experiment,
each element in the matrix comprises a count of reading
pairs that connect two homologous chromosome regions.
As a result, the chromosomal contact matrix is symmetric
and represents all observable interactions between the re-
gions of a chromosome (Lieberman-Aiden et al. 2009). This
data can be used in the 3D reconstruction of chromosomes.
The reconstruction could be used to study DNA replication,
gene regulation, genome interaction, genome folding, and
genome function (Oluwadare, Zhang, and Cheng 2018). We
can see that the number of relationships between chromo-
some regions is proportional to the distance in the 3D struc-
ture, therefore we can make predictions relying on that infor-
mation (Lieberman-Aiden et al. 2009). Over the years, many
3D chromosome reconstruction algorithms have been devel-
oped, (Oluwadare, Highsmith, and Cheng 2019; MacKay
and Kusalik 2020) give a comprehensive review of these
methods and their strengths.

The way chromosomes fold helps us to understand data
about the intricate connection between chromatin struc-
ture, quality movement, and the useful condition of the cell
(Woodcock and Ghosh 2010). The genome must be packed
properly into the nucleus. Otherwise, serious diseases, such
as congenital malformations (ex. fewer or too many fin-
gers) or cancer, may occur (Gorkin 2017). Knowledge of
how genes act can help with the reconstruction of the en-
tire genetic or biochemical pathways. This is essential to
our understanding of metabolism, signal transduction, and
other developmental or psychological processes (Dekker et
al. 2002). Folding DNA into chromosomes is crucial as this
is something that makes us, us. All the processes in our
cell must occur correctly. This prevents tangling and dam-
age during cell division. In the case of pregnancy, if the em-
bryo misses a chromosome, it means that there is some ge-

REU Symposium on Deep Learning

University of Colorado, Colorado Springs 41

netic damage, and this can prevent a successful pregnancy
(Xie et al. 2021). Folding DNA into chromosomes makes
the genetic material fit inside a cell but allows for distant in-
teractions between them. This process is important as this
regulates gene activities (Banigan et al. 2020).

Chromosomes consist of tightly packed DNA, wound up
in order to condense a vast amount of genetic informa-
tion into a smaller volume. DNA consists of a double he-
lix, which is then wrapped around histone proteins to cre-
ate nucleosomes. From there, nucleosomes are coiled into
chromatin fiber, then looped to condense the chromatin into
the final form of a fully assembled chromosome. Our game
takes place at the point nucleosome creation, the point at
when the relationships between segments of DNA can be
analyzed and used to predict what the final chromosomal
structure will be. This is what is calculated then given to
solve to players via chromosome segments based on the Hi-
C matrices (Alberts et al. 2002).

Chromosomes are part of every nucleus in every cell of
our body. Visualization of the folding process is crucial for
deeper understanding of the above addressed problems. The
game helps not only to understand the processes in our body
but also teaches the fundamental knowledge necessary in
every biological field. Thus, the game influences the pro-
gression of science by equipping non-experts with biological
knowledge, engaging them through game-play to contribute
to the world of genetics.

The very first game was presented over fifty years ago
(Ford 2012). Since then, many new games have appeared.
Today, we can count them in millions. Both scientific and
non-scientific games played have the element of entertain-
ment. Without this, players will not be interested in the
game. Moreover, the game should also be informative by
presenting the player with some useful knowledge. Thus,
making a game that is simultaneously fun and educational
is important.

We believe that 3D structures are an informative and eas-
ily understood way to appeal to non-scientific audiences by
giving reasonably accurate visualizations. We use current
methods and algorithms to make the game as much realis-
tic as possible to enable the possibility for new learners to
make new discoveries and contribute to the scientific world.

This paper describes 3DChromoTwist, a game created to
educate about chromosomal structure through the use of
Hi-C data. The game is directed toward a broad audience
and thus our development is adjusted as we expect people
from non-scientific backgrounds to participate. The design
and easy level are simplistic and, as we proceed to the hard
level, more complex. The user can start from any level and
move to more advanced levels at later stages as appropri-
ate skills have been developed. Both design and movement
of the structures need not be over complicated to reach the
desired audience.

Related Work

Our inspiration is the popular online multiplayer game “Fold
it” (Cooper et al. 2010). The game follows an educational
approach and falls in the field of biology. In the game, play-
ers learn how protein folding mechanisms work. The design

is simplified for non-expert players however, the game has
many features. We noticed that the game garnered a lot of
popularity over the years and many papers have been pub-
lished regarding it. As we noticed the huge positive impact
of this game, we decided to implement similar solutions into
chromosomal structures.

Our work differs by applying the concepts of structure for-
mation to 3D chromosome structure. As opposed to folding
parts of a protein to prevent viral attacks within the struc-
ture of the protein, chromosome segments are moved around
to reconstruct the natural positioning of the chromosomal
components into their correct place, allowing the complete
chromosome structure and shape to be revealed to the player
once a level is successfully solved. This also played using a
given Hi-C matrix, a unique component when compared to
“Foldit.” Moreover, there is no current related work in chro-
mosome structure prediction. Thus, this will pioneer a new
research direction towards this goal.

Implementation

Table 1: Key description

Key Description

H Hide/ Show the menu.
L Surrender.
O Hide/ Show the outline of the objects.
Q Reset the bin choice.
R Hide/ Show the scoreboard (top 5 players).
+/= Choose bin with index higher by one.
- Choose bin with index lower by one.
0 Choose a bin with index increased by 10.
1-9 Pick index from 1 to 9 in the current teens.
Scroll Zoom in and out.
ESC Quit the game.

The game has been created as a 3D structure where the
user can freely move around the objects to obtain a better
understanding of the structure with the use of the following
keys: W, S, A, and D. While camera motion is controlled
with the use of the mouse, holding the keys moves the player

Figure 1: Simplified Hi-C matrix in the game, level normal.

REU Symposium on Deep Learning

University of Colorado, Colorado Springs 42

(a) Prompt to enter the name.

(b) Instructions of the game.

(c) Level of difficulty.

Figure 2: The beginning of the game.

forward, backward, left, and right, respectively. When start-
ing the game, the player is first asked to enter a name 2a.
Once okay is clicked, the player is then presented with the
instructional prompt 2b. After acknowledging the instruc-
tions, the player needs to choose a level of difficulty as pre-
sented in figure 2c. Next, on the display, the player can see
the following additional key options described in table 1.

Apart from all this, the player can see a simplified version
of the Hi-C data matrix. The data for the chromosome struc-
ture has been used from the following paper, ”HSA: integrat-
ing multi-track Hi-C data for genome-scale reconstruction
of 3D chromatin structure” (Zou, Zhang, and Ouyang 2016).
We took a hundred points x, y, and z that are loaded onto the

Table 2: Distance description

Name Distance Color

Completed The correct position of the
object with allowed margin
of error up to 2 units.

Dark green

Very Close Between 2 and 4 units. Green
Close Between 4 and 8 units. Yellow
Far Between 8 and 15 units. Orange
Very Far Above 15 units. Red

The distance is measured by the Euclidean distance formula. Every
center of the loci (x, y, z) is compared with every other object.

level as every game begins. Next, depending on the choice of
difficulty, the player receives a random consecutive number
of bins that are taken from the loaded data. Each bin is gen-
erated in a randomized position. To ease the difficulty of the
game, the x coordinates have been randomized with some
precision to the original spot. The player can see the Hi-C
matrix with the colors (figure 1) defined as presented in table
2. This is an estimation that shows the distance between the
current location and the correct final position of the bins. Us-
ing Euclidean distance, the program checks the correctness
of the correlation between the bins as the player progresses
through the level. The colors on the matrix progress towards
red as the position of the bins moves away from the correct
position.

Figure 3: Start of the game, level normal.

The player can pick a bin using the keyboard. The num-
bers 1 to 9 can pick a bin from the current teens, while 0
increases the bin by 10. The following keys “-“ and “=” de-
crease and increase the current bin by one accordingly. The
active bin can be noticed by a color change to red (figure 4).
Although the bins have been indexed properly with the order
of the x-coordinate, the player needs to figure out the index
on its own while playing.

There are two important components in the game that are
responsible for motivation and engagement. The score is the
first factor. The player gains points as the matrix becomes
better and there is a less red and more dark green color on it.
The starting matrix is set up as a score of zero. Any deteri-
oration of the matrix will encourage the player make up for
this if the player wants to gain points. The scoring algorithm

REU Symposium on Deep Learning

University of Colorado, Colorado Springs 43

Figure 4: Active bin marked on red.

has been adjusted correspondingly, so no matter which ma-
trix the user starts out with, it still achieves the same num-
ber of points. Another component is time. The player has
a limited amount of time to complete the game. Depend-
ing on the level the player chooses, the time increases with
difficulty. If the player does not make it on time, the game
will end (figure 5). The score will be saved and displayed
along with a “Game Over” message. However, if the player
is able to complete the structure before time runs out, the
score will be increased with bonus points. Depending on the
time, the score will be adjusted accordingly. The player will
be prompted with a “Victory” message. The player also has
the option to surrender. In this instance, there are no bonus
points added and the current score will be saved. To com-
plete the level, the player needs to reposition loci accord-
ing to clues received from the simplified Hi-C data matrix.
The matrix is interactive and changes colors as the player
changes distance. As loci get closer to their proper desti-
nation, the color changes to dark green. However, as the
player gets further from the proper final destination, the
color changes to red. Once the matrix is fully dark green,
the level is complete (figure 6).

Figure 5: End of the game with the solution, level hard.

To make the game more competitive, each level has its
own high score board. The top 5 players are always dis-
played with their scores. The player can show and hide the
scoreboard at any point during the game. Once the game is
completed, the scoreboard is displayed. Each level of diffi-
culty has its own scoreboard. All the scores are saved into a
text file that is secured by a number generated depending on
the strings, results, and characters. Therefore, any attempts
to change the records manually will result in resetting the
file. Similarly, a change in coordinates in the text file will
have similar results.

Figure 6: End of the game with the solution, level normal.

Upon completion of the game, the player, besides the
“Game Over” or “Victory” message, will be allowed to see
the solution by pressing “ENTER.” Once the key is pressed,
the player will see the level’s complete structure as well as
the solution next to it (figure 6). The solution represents the
entire chromosome structure built out of 100 loci. However,
because the player was required only to play with between
7 and 25 loci, all the loci used in the current game and cho-
sen by the randomizing algorithm will be highlighted in red.
The solution post-view is the last step in the game (figure 7).
The player can choose to close the game by pressing “ESC”
on the keyboard and to start the game again, the player is
required to rerun the jar file.

Figure 7: Chromosome structure.

We expect that the players, with the help of the given so-
lutions in the form of the simplified Hi-C matrices, will be
able to solve the puzzle. Naturally, replication of the same

REU Symposium on Deep Learning

University of Colorado, Colorado Springs 44

chromosome is extremely difficult, as there are many pos-
sibilities involved in its 3D structure. Hence, the acceptable
margin of error is equal to 2 units.

Conclusion

The 3DChromoTwist game is playable by anyone using any
type of personal computer thanks to the design and simplic-
ity of the 3D software used to develop it. The fact that the
results of the 3D chromosomal structure prediction are un-
known posed the biggest design challenge. Even the most
sophisticated structures offered by the game are uncertain,
but the game nevertheless directs the player to them.

The game is very intuitive from the very first level to
make it accessible as the player progresses. By making
3DChromoTwist available to users, we hope to demonstrate
a fresh method for teaching chromosomal structure predic-
tion and foster a deeper comprehension of the topic. More-
over, the game allows the visualization of these structures in
3-Dimension, giving a realistic perspective of the chromo-
some behavior. The game is a great complement to today’s
textbooks since it makes it easier to understand and picture
the structure in real time.

The goal of the game is to gradually increase the level
of difficulty while yet maintaining a pleasurable experience
for the player. The players’ problem-solving abilities may
be enhanced by 3DChromoTwist, which can also assist in
the resolution of actual scientific conundrums.

We intend to keep working on 3DChromoTwist. As we
believe the game can advance research by introducing a new
group of students to the field of genetics, we aim to improve
the game design and add new levels throughout time. In the
end, this will elevate public interest in science and technol-
ogy as well as public scientific literacy. If even a fraction of
the effort that goes into playing computer games can be di-
rected toward scientific research, we personally believe that
scientific advancement is achievable.

Acknowledgement

The work reported in this paper is supported by the Na-
tional Science Foundation under Grant No. 2050919. Any
opinions, findings and conclusions or recommendations ex-
pressed in this work are those of the author(s) and do not
necessarily reflect the views of the National Science Foun-
dation.

References

Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.;
and Walter, P. 2002. Molecular biology of the cell. Garland
Science, 4th ed edition.
Banigan, E. J.; van den Berg, A. A.; Brandão, H. B.; Marko,
J. F.; and Mirny, L. A. 2020. Chromosome organization by
one-sided and two-sided loop extrusion. eLife 9:e53558.

Cooper, S.; Treuille, A.; Barbero, J.; Leaver-Fay, A.; Tu-
ite, K.; Khatib, F.; Snyder, A. C.; Beenen, M.; Salesin, D.;
Baker, D.; and Popović, Z. 2010. The challenge of de-
signing scientific discovery games. In Proceedings of the
Fifth International Conference on the Foundations of Digital
Games, FDG ’10, 40–47. New York, NY, USA: Association
for Computing Machinery.
Dekker, J.; Rippe, K.; Dekker, M.; and Kleckner, N.
2002. Capturing chromosome conformation. Science
295(5558):1306–1311.
Ford, W. K. 2012. Copy game for high score: The first video
game lawsuit. Journal of Intellectual Property Law 20:1–3.
Gorkin, D. 2017. Genomic technologies for studying 3d
genome organization. Encode 1–12.
Hakim, O., and Misteli, T. 2012. SnapShot: Chromosome
conformation capture. Cell 148(5):1068–1068.e2.
Lieberman-Aiden, E.; van Berkum, N. L.; Williams, L.;
Imakaev, M.; Ragoczy, T.; Telling, A.; Amit, I.; Lajoie,
B. R.; Sabo, P. J.; Dorschner, M. O.; Sandstrom, R.; Bern-
stein, B.; Bender, M. A.; Groudine, M.; Gnirke, A.; Stama-
toyannopoulos, J.; Mirny, L. A.; Lander, E. S.; and Dekker,
J. 2009. Comprehensive mapping of long-range interactions
reveals folding principles of the human genome. Science
326(5950):289–293.
MacKay, K., and Kusalik, A. 2020. Computational methods
for predicting 3d genomic organization from high-resolution
chromosome conformation capture data. Briefings in Func-
tional Genomics 19(4):292–308.
Oluwadare, O.; Highsmith, M.; and Cheng, J. 2019. An
overview of methods for reconstructing 3-d chromosome
and genome structures from hi-c data. Biological Proce-
dures Online 21(1):7.
Oluwadare, O.; Zhang, Y.; and Cheng, J. 2018. A maximum
likelihood algorithm for reconstructing 3d structures of hu-
man chromosomes from chromosomal contact data. BMC
Genomics 19(1):161.
Sati, S., and Cavalli, G. 2017. Chromosome conforma-
tion capture technologies and their impact in understanding
genome function. Chromosoma 126(1):33–44.
Woodcock, C. L., and Ghosh, R. P. 2010. Chromatin higher-
order structure and dynamics. Cold Spring Harbor Perspec-
tives in Biology 2(5):a000596–a000596.
Xie, D.; Yang, W.; Fang, J.; Li, H.; Xiong, L.; Kong, F.;
Wang, A.; Liu, Z.; and Wang, H. 2021. Chromosomal
abnormality: Prevalence, prenatal diagnosis and associated
anomalies based on a provincial-wide birth defects moni-
toring system. Journal of Obstetrics and Gynaecology Re-
search 47(3):865–872.
Zou, C.; Zhang, Y.; and Ouyang, Z. 2016. Hsa: Integrating
multi-track hi-c data for genome-scale reconstruction of 3d
chromatin structure. Genome Biology 17(1).

REU Symposium on Deep Learning

University of Colorado, Colorado Springs 45

RECSplice: Splice Site Prediction Using Recurrent Neural Networks

Nicole Baugh

North Carolina State University
ncbaugh@ncsu.edu

Oluwatosin Oluwadare

University of Colorado Colorado Springs
ooluwada@uccs.edu

Abstract

Post-transcriptional slicing of mRNA occurs when re-
gions of RNA that do not encode for protein expres-
sion (introns) are removed from regions that do (ex-
ons). Accurate identification of splice sites in DNA se-
quences plays an important role in the structural and
functional identification of eukaryotic genes. Thus, ac-
curate splice site detection is essential for biological
and medical tools of diagnosis and treatment. How-
ever, current computational models for splice site pre-
diction are lacking in efficiency and biological prowess.
With this in mind, we propose RECSplice, a deep
learning Recurrent Neural Network (RNN) architec-
ture for splice site prediction. RNN algorithms imi-
tate the sequential nature of RNA, tracking the loca-
tion and order of nucleotide sequences to better iden-
tify intron and exon genomic patterns with long term
dependencies in addition to other important biologi-
cal characteristics. In this work, we will compare the
ability of existing state-of-the-art splice site prediction
algorithms to accurately identify splice site locations
in Homo sapiens, Drosophila melanogaster, and Ara-

bidopsis thaliana with RECSplice.

Introduction

Alternative splicing plays a significant contribution in ex-
panding the protein diversity of humans. Nearly 95% of
human genes undergo splicing, where non-coding regions
of mRNA (introns) are separated from coding regions of
mRNA (exons) through the spliceosome complex (Pan et al.
2008). A splice site is classified as the boundary between
an exon and an intron. Post-splicing, the coding regions are
sealed back together before undergoing translation for pro-
tein expression. However, only 3% of the entire genomic re-
gion is composed of coding regions that can reach this point
(Goel, Singh, and Aseri 2013). Though the other 97% of
the genome is removed prior to protein expression, genome-
wide association studies have identified over 6,000 diseases
that have contributing mutations or predispositions located
in non-coding regions (Hindorff et al. 2009). Thus, identi-
fying the intron regions of DNA can be a powerful tool for
diagnosis.

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Machine learning algorithms have increasingly been em-
ployed to perform human genome sequencing in order to
identify these splice site locations. One such architecture,
recurrent neural networks (RNN), mimic the sequential na-
ture of genomic sequences. Trained on a data set, RNN’s use
internal state memory as well as the present input in order
to determine an algorithm-based classification (Sherstinsky
2020). As genomic nucleotide sequences are not indepen-
dent of each other, this internal state memory will allow the
deep learning network to take advantage of known biologi-
cal characteristics of splice site locations. One such charac-
teristic includes the consensus Adenine-Guanine at the in-
tersection of the intron-exon border, or the acceptor site, and
the consensus Guanine-Thymine at the intersection of the
exon-intron border, or the donor site (Goel, Singh, and Aseri
2015). Accurate prediction of splice sites must include both
the canonical AG/GT sites as well as alternate splicing loca-
tions that enhance protein diversity by allowing the produc-
tion of different proteins from a single gene. As AG and GT
rich sites exist elsewhere in the mRNA genome, false pos-
itives can result from mistakenly classifying these pseudo
canonical sites as splice sites (Ruohan et al. 2019).

This study focuses on splice site prediction using a RNN
architecture that considers canonical and non-canonical sites
in order to increase the efficiency and accuracy of splice site
prediction as an important biological and medical tool.

Figure 1: A depiction of acceptor and donor splice sites with
canonical sequences.

Related Work

Accurate identification of splice sites plays a central role
in understanding the structure of genes in eukaryotes. Non-
deep learning and deep learning (DL) algorithms and models
are an active research area in Bioinformatics for splice site

REU Symposium on Deep Learning

University of Colorado, Colorado Springs 46

genomic analysis. Many models struggle with ineffective
classification from raw data, model overfitting, and problem-
atic sequence pattern discovery.

One such non-DL method is GeneSplicer, a combination
of maximal dependence decomposition decision trees and
enhanced Markov models that focuses only on small win-
dows surrounding splice junctions (Pertea, Lin, and Salzberg
2001). GeneSplicer used two second-order Markov models
to model the coding and non-coding regions that always sur-
round a splice site to reduce false positives, a known issue in
splice site prediction across all models.

Ruohan et al. developed SpliceFinder, a DL model that
utilizes a convolutional neural network (CNN), to reduce
false positives while maintaining recall for ab initio predic-
tion (Ruohan et al. 2019). The CNN was trained on human
genomic data (GRCh38) and achieved a 96.5% accuracy.
Another DL technique, DeepSplicer, employed a CNN in
tandem with grid search methods to find optimal hyperpa-
rameters to enhance classification accuracy of acceptor and
donor sites (Akpokiro, Oluwadare, and Kalita 2021). Using
five-fold cross-validation, DeepSplicer was able to achieve
an accuracy of 96.65%.

The iss-CNN model similarly uses grid search meth-
ods to tune hyperparameters for sequence based prediction
(Tayara, Tahir, and Chong 2019). After testing four differ-
ent models with varying convolutional layer parameters, iss-
CNN achieved an accuracy of 96.66% on donor sites using
two convolution layers. However, iss-CNN was only able to
achieve an accuracy of 93.57% on acceptor sites using a sin-
gle one-dimensional convolution layer.

Zuallaert et al. developed the CNN model SpliceRover
with the intention of classifying splice site locations as well
as understanding the ’black box’ nature of the convolutional
architecture, or the relatively little understood learned rea-
soning mechanisms found within the computational layers
(Zuallaert et al. 2018). SpliceRover was trained on only
canonical splice site data and used the DeepLIFT (Deep
Learning Essential FeaTures) algorithm for evaluation.

Some deep learning algorithms aim to recognize splice
sites in primary DNA sequences that have yet to undergo
transcription as opposed to traditionally examined mRNA
sequences that have yet to undergo translation. One such
CNN model, Splice2Deep, trained two independent models,
one for acceptor sites and one for donor sites, while using
flanking regions and exon periodicity of three features of
DNA (Albaradei et al. 2020). Another DNA-focused model,
DeepSS, utilized the same CNN architecture in two differ-
ent applications: DeepSS-C for splice site classification and
DeepSS-M for splice site sequence pattern detection (Du et
al. 2018). DeepSS-C generated better results on donor splice
sites than on acceptor sites, a trend commonly seen across
machine learning algorithms for splice site prediction. This
trend is largely attributed to a more conservative GT se-
quence at the donor location than that of the AG sequence
at the acceptor location.

Despite the accuracy of CNN models, they are unable to
take into account the sequential, nucleotide-dependent na-
ture of RNA, leaving room to accommodate prediction per-
formance enhancements.

RNN’s have been employed in epigenome-based splice
site prediction in order to account for spatiotemporal pat-
terns found beyond the genomic sequence. Lee et al. devel-
oped a RNN prediction model to account for histone mod-
ifications and mRNA accessibility, placing splice site pre-
diction in an epigenomic context (Lee et al. 2020). This
epigenome based model supports the application of RNN
architecture for sequential information as well as time-
direction data such as mRNA, which runs along genomic
coordinates in the 5’ to 3’ direction. An RNN Long Short
Term Memory (LSTM) model is a promising proposal to
account for spatiotemporal patterns while allowing for suffi-
cient training on expansive genomic datasets.

Preliminary Work

Data

To demonstrate RECSplice’s adaptability, we trained the
model on three datasets from organisms: Homo sapiens,

Drosophila melanogaster, and Arabidopsis thaliana. The
model was trained on a sequence of approximately 10,000
nucleotides long for each dataset. These reference genomic
sequence datasets and their corresponding annotation se-
quences were downloaded from NN269, a database tool that
organizes genomic reference data.

Input Data

During preprocessing of the genomic reference sequences,
one-hot encoding was performed. One-hot encoding trans-
forms the four nucleotide bases into numerical vectors com-
posed of 0 and 1. For example, Adenine (A) is [1 0 0 0], Cy-
tosine (C) is [0 1 0 0], Guanine (G) is [0 0 1 0], and Thymine
(T) is [0 0 0 1]. This results in a matrix that is the length of
the sequence data x 4 that serves as the input for the model.

Methods

An RNN is a neural network that is distinguished through
its use of internal state memory. Data such as genomic se-
quences follow a dependent sequential order that RNN’s can
account for with this memory loop. A known issue with
RNN models includes vanishing gradients as the algorithm
uses backpropogation through time for training. In order to
combat this issue, we propose using a LSTM model, a form
of RNN, to predict splice site locations. LSTM’s are advan-
tageous in the way that they allow long term dependencies
with a stable gradient. The proposed architecture will use
three gates within the LSTM, including an input, a forget,
and an output gate. The forget gate allows the algorithm to
disregard unnecessary states based on a sigmoid function (0
indicating completely disregard, and 1 indicating completely
remember) in order to avoid the vanishing gradient problem.

RECSplice’s current model uses a two layer LSTM ar-
chitecture, connected through a dense classification layer. A
dropout of 0.3 and categorical cross entropy loss were used.
Figure 2 illustrates the LSTM model. Additionally, 5-fold
cross validation is used in order to ensure optimal selection
of a final architecture for training and testing. A separate
model for donor and acceptor splice sites was used.

REU Symposium on Deep Learning

University of Colorado, Colorado Springs 47

Figure 2: Current RECSplice architecture for donor sites.

Results and Discussion

Validation

Initially, an input length of 400 nucleotides was used, re-
sulting in an accuracy that plateaued at 75%, illustrated in
Figure 3. However, other RNN architectures employed in
genomic data prediction problems have shown higher accu-
racy rates when using smaller nucleotide input lengths. For
example, Tahir et al. developed an LSTM algorithm for the
prediction of N7-Methylguanoisine sites found in RNA us-
ing an input length of 41 nucleotides, achieving an accuracy
of 95.95% (Tahir et al. 2022). Canatalay and Ucan utilized
an input length of 70 nucleotides in their LSTM-RNN and
GRU method architecture to achieve an accuracy of 96.1%
for exon prediction and splice site mapping (Canatalay and
Ucan 2022).

Based on these studies, an input length of 100, 80, 60,
and 50 nucleotides were each tested in the initial RECSplice
architecture, using 20 epochs with a batch size of 50. The
results in Figure 4 were obtained.

Figure 3: Initial results with nucleotide length of 400.

Figure 4: Accuracy and Loss values using differing nu-
cleotide input lengths.

Comparative Metrics

Independent models for classification of donor and acceptor
splice site locations were created using 5-fold cross valida-
tion and a 70/30 percent dataset split. A sequence length of
80 was maintained as input based on Figure 4.

In evaluating RECSplice’s performance in predicting
splice sites, accuracy was used as a comparison metric. Pre-
cision and recall metrics will be added to future RECSplice
models.

Accuracy is given by:

The preliminary results presented in this section focus
only on donor sites, though acceptor locations will be used

REU Symposium on Deep Learning

University of Colorado, Colorado Springs 48

Table 1: Comparing RECSplice and State-of-the-Art CNN splice site prediction models accuracy on donor locations.
Organism RECSplice DeepSplicer SpliceFinder DeepSS Splice Rover

Homo Sapiens 78.84 93.13 92.05 94.27 95.49
Drosophila Melanogaster 76.67 90.03 N/A N/A 89.85

Arabidopsis Thaliana 75.42 89.78 88.96 N/A 92.25

in future models. Table 1 shows the accuracy compari-
son of RECSplice to State-of-the-art models. Currently, the
RECSplice model is not competitive with the current state-
of-the-art models for splice site classification. Architectural
and hyperparameter improvements will be made in order to
become competitive. A deep bidirectional LSTM architec-
ture is currently being worked on in order to improve the
RECSplice model.

Conclusion

Splice site prediction modeling is in need of an efficient and
cost effective technique that allows for accurate classifica-
tion of splice site locations. If the final RNN algorithm in
this paper proves more accurate than current state-of-the-art
CNN splice site prediction algorithms, it would prove a crit-
ical development for medical diagnosis and treatment.

Acknowledgement

The work reported here is supported by the NSF REU fund-
ing towards the University of Colorado Colorado Springs
and Oluwatosin Oluwadare.

References

Akpokiro, V.; Oluwadare, O.; and Kalita, J. 2021. Deep-
Splicer: An Improved Method of Splice Sites Prediction Us-
ing Deep Learning. IEEE International Conference on Ma-

chine Learning and Applications.
Albaradei, S.; Magana-Mora, A.; Thafar, M.; Uludag, M.;
Bajic, V. B.; Gojobori, T.; Essack, M.; and Jankovic, B. R.
2020. Splice2Deep: An Ensemble of Deep Convolutional
Neural Networks for Improved Splice Site Prediction in Ge-
nomic DNA. Gene.
Canatalay, P. J., and Ucan, O. N. 2022. A Bidirectional
LSTM-RNN and GRU Method to Exon Prediction Using
Splice-Site Mapping. MDPI.
Du, X.; Yao, Y.; Diao, Y.; Zhu, H.; Zhang, Y.; and Li, S.
2018. DeepSS: Exploring Splice Site Motif Through Con-
volutional Neural Network Directly From DNA Sequence.
IEEE Access.
Goel, N.; Singh, S.; and Aseri, T. C. 2013. A Review of
Soft Computing Techniques for Gene Prediction. ISRN Ge-

nomics.
Goel, N.; Singh, S.; and Aseri, T. C. 2015. An Improved
method for Splice Site Prediction in DNA Sequences Using
Support Vector Machines. Procedia Computer Science.
Hindorff, L. A.; Sethupathy, P.; Junkins, H. A.; Ramos,
E. M.; Mehta, J. P.; Collins, F. S.; and Manolio, T. A. 2009.

Potential Etiologic and Functional Implications of Genome-
Wide Association Loci for Human Diseases and Traits. Pro-

ceedings of the National Academy of Sciences.
Lee, D.; Zhang, J.; Liu, J.; and Gerstein, M. 2020.
Epigenome-Based Splicing Prediction Using a Recurrent
Neural Network. PLoS Computational Biology.
Pan, Q.; Shai, O.; Lee, L. J.; Frey, B. J.; and Blencowe, B. J.
2008. Deep Surveying of Alternative Splicing Complexity in
the Human Transcriptome by High-Throughput Sequencing.
Nature Genetics.
Pertea, M.; Lin, X.; and Salzberg, S. L. 2001. GeneSplicer:
A New Computational Method for Splice Site Prediction.
Nucleic Acids Research.
Ruohan, W.; Zishuai, W.; Jianping, W.; and Li, S. 2019.
SpliceFinder: ab initio Prediction of Splice Sites Using Con-
volutional Neural Network. BMC Bioinformatics.
Sherstinsky, A. 2020. Fundamentals of Recurrent Neu-
ral Network (RNN) and Long Short-Term Memory (LSTM)
Network. Physica D: Nonlinear Phenomena.
Tahir, M.; Hayat, M.; Khan, R.; and Chong, K. T. 2022. An
Effective Deep Learning-Based Architecture for Prediction
of N7-Methylguanosine Sites in Health Systems. MDPI.
Tayara, H.; Tahir, M.; and Chong, K. T. 2019. iSS-CNN:
Identifying Splicing Sites Using Convolution Neural Net-
work. Chemometrics and Intelligent Laboratory Systems.
Zuallaert, J.; Godin, F.; Kim, M.; Soete, A.; Saeys, Y.; and
De Neve, W. 2018. SpliceRover: Interpretable Convolu-
tional Neural Networks for Improved Splice Site Prediction.
Bioinformatics.

REU Symposium on Deep Learning

University of Colorado, Colorado Springs 49

Author Index
Atyabi, Adham……………………………………………………………………………..……………….… 30,35
Baugh, Nicole……………..…………………………………………………………………..…..……………….46
DeGenaro,	Daniel………………………………………………………………………………………………………..…16	
Dueñas, Raymond…………………………………………………………………………………………………30
Kalita, Jugal………………………………………………………………….…………………..….……1,10,16,21
Leo, Justin……………………….…..……………………………………………………………………….……..10
Newcomb, Abigail………………………………………………….…………………………………..…….…….1
Mantione_Homes, Gabriel…………….……………………………………………………..………………..10
Oluwadare, Oluwatosin……………………………………………………….…………………………….41,46
Pawlukiewicz, Marcin………………………….……………………………………………..…………………41
Serianni, Aaron…………..…………………………………………………………………….………..…………21
Snow, Zachary………………..…………..………………………………………………………………………..35

