
Proceedings of the Seminar

Artificial Intelligence, Natural
Language Processing and

Information Retrieval

University of Colorado, Colorado Springs

August 7, 2010

Editors: Jugal Kalita and Terrance Boult

Funded by

National Science Foundation

1

Reducing Training Time for Linear SVMs
Nick Arnosti, Williams College

August 6, 2010

Abstract—Support Vector Machines (SVMs) have been shown
to achieve high performance on classification-related tasks, and
are generally portable across domains. Because training time
for SVMs typically scales poorly as the size of the training
set increases, a great deal of effort has been dedicated to
reducing the time required to learn a classification model. Recent
work presented by Joachims in [1], and improved by Franc
and Sonnenburg in [2] and [3], makes use of a reformulation
of the SVM primal problem and cutting-plane approximation
algorithms to train linear SVMs in time linear with respect to the
size of the training set. In this paper, we observe an inefficiency
in the algorithms presented in the above works, and introduce a
modification which reduces training time for linear SVMs by up
to 40% when compared to the methods presented in [2] and [3].
Additionally, we analyze the effect that runtime parameters and
data set attributes have on the performance of our algorithms.

I. INTRODUCTION

WHEN using an SVM to classify objects, it must be
provided with training data. This consists of a set of

examples of the form (xi, yi), where each xi is a vector of
feature values (independent variables) taken from the space X ,
and yi is a class label (the dependent variable) taken from the
set Y . The idealized goal, then, is to come up with a function
g : X → Y such that for each i, g(xi) = yi. Throughout this
paper, n is the number of training examples, s the number of
features for each example, X = Rs, and k is the number of
distinct classes.

For binary classification, Y = {−1,+1}, and the SVM is bi-
ased to look for solutions of the form g(xi) = sgn(wTxi+b)
for fixed w ∈ Rf , b ∈ R (from [4]). For linearly separable
data sets, the goal is to find the choice of w which maximizes
the margin between the two classes. This is equivalent to min-
imizing ||w|| subject to the constraints yi(wTxi + b) ≥ 1 ∀i.

In general, the data is not linearly separable, so it is neces-
sary to introduce error terms ξi ≥ 0 for each training example.
The goal becomes to maximize the margin between classes
while also minimizing error on the training set. Using an L1-
loss function, this boils down to the following optimization
problem (from [5]):

minimize: 1
2w

Tw + C
n

∑n
i=1 ξi

subject to: yi(wTxi + b) ≥ 1− ξi ∀i, (1)

where C ∈ R is known as the regularization constant and
determines the relative importance of the two objectives.

One unfortunate result of this formulation is that because we
have with n error terms ξi, optimizing them takes O(n2) time,
making SVM training a very slow process on large data sets.
As a result, most well-known SVM solvers, such as LIBSVM

(http://www.csie.ntu.edu.tw/ cjlin/libsvm/), scale poorly as the
size of the training set increases.

Many multi-class solutions simply break the problem down
into a series of binary classification problems, and then create
a binary classifier to solve each of these. The simplest and
most common approach is referred to as one-against-all, which
trains one binary SVM, wy , for each class y ∈ Y , using as
input labels +1 if yi = y and −1 otherwise. The decision
function in this case is ypredicted = argmaxy∈Y(wT

y xi + by).
Other common techniques are known as one-against-one, half-
against-half and error-correcting output coding, described in
[6], [7] and [8], respectively. It is noted in [9] that for many
data sets, these approaches do not produce results that are as
good as coming up with a true multi-class solution.

In the multi-class approach presented in [10], instead of
one slack variable for each point in the training set, there
are k of them. Making the simplifying (and easily reversible)
assumption that each by = 0, let ξij denote the error of point
i with respect to class j, and wj denote the linear classifier
corresponding to class j. Then the optimization problem to be
solved is of the form:

minimize: 1
2

∑k
j=1 wT

j wj + C
∑n
i=1

∑k
j=1 ξij

subject to: wT
j xi ≥ 1− ξij ∀i, j. (2)

Unfortunately, due to the large number of slack variables,
solving this optimization problem exactly is very computa-
tionally intensive. In [9], the number of slack variables is
reduced to n by defining ξi = maxj{ξij}. This simplifies the
form of the optimization problem above, but optimizing the
n × k matrix w remains a time-intensive task as the num-
ber of classes and training examples grows. Recent research
([1],[2],[11]) has focused on finding approximate solutions,
and has resulted in a significant decrease in SVM training
time. Section II discusses the algorithms presented in some
of this recent work. Section III makes note of one way in
which the algorithms presented in [1] and [2] are sub-optimal
and introduces two new algorithms which make use of this
observation. We tested our algorithms on several data sets,
and the results of these tests are presented and analyzed in
Section IV, with additional data provided in the Appendix.
In the process of conducting tests, we stumbled across an
unexpected benefit to our algorithms, which is presented in
Section V. We close with a brief conclusion and discussion of
possibilities for future work.

II. PREVIOUS WORK

In [1], Joachims presents what he calls the “structural
formulation” of the primal (1), which reduces the number of
slack variables from n to 1. For mathematical simplification,
Joachims makes the assumption that b = 0, which can easily

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 1

2

be reversed by adding a feature of weight 1 to each vector xi.
This formulation can be written as:

minimize 1
2w

Tw + Cξ

subject to 1
n

∑n
i=1 max(0, 1− yiwTxi) ≤ ξ (3)

Joachims shows that (1) and (3) are mathematically equiva-
lent after setting ξ = 1

n

∑n
i=1 ξi, meaning that a vector w∗ is

a solution to one if and only if it is a solution to the other. This
structural formulation made it possible to come up with very
good approximations of the optimal objective value in time
linear with respect to the size of the training set - a significant
improvement upon past performance.

In the years since Joachims introduced this structural for-
mulation, several others have looked to extend and improve
upon his work. One notably successful implementation is
the Optimized Cutting Plane Algorithm for Support Vector
Machines, or OCA. This paper will adopt the notation used
in [2], where the objective function from (3) is given the
name F (w), and the expression on the left hand side of the
constraint, which represents the risk using an L1-loss function,
is dubbed R(w). Rather than solving the problem directly,
Joachims’ cutting-plane algorithm (henceforth referred to as
CPA) creates ever-better approximations Rt(w) of R(w),
where t indicates the number of iterations.

In [1], Joachims conceives of the constraint from (3) as 2n

distinct constraints. Each iteration modifies Rt(w) by taking
into account the “most violated constraint.” In the language of
[2], this corresponds to taking a subgradient of R(w). Given
a choice of w′, the subgradient of interest a′ can be computed
as follows:

a′ = − 1
n

n∑
i=1

πiyixi where πi =
{

1 if yi〈w′,xi〉 ≤ 1
0 otherwise. (4)

Because R is a convex function, for any point w′ and
the corresponding subgradient a′, the linear approximation
R(w′) + 〈a′,w − w′〉 provides a lower bound for R(w).
For notational simplicity, the authors of [2] define b′ =
R(w′) − 〈a′,w′〉, so that R(w) ≥ 〈a′,w〉 + b′. Given a
collection of cutting planes defined by pairs (ai, bi), Rt(w)
is their pointwise maximum (subjected to a non-negativity
constraint): Rt(w) = max(0,max1≤i≤t{〈ai,w〉+ bi}).

One iteration of Joachims’ CPA computes wt+1 by solving
the simplified optimization problem generated by substituting
Rt(w) for R(w). Then at+1 and bt+1 are computed by the
rules above. The algorithm terminates when 1− Ft(wt)

F (wt)
≤ ε, a

constant provided as a parameter to the solver. This guarantees
that F (wt)(1− ε) ≤ F (w∗), where F (w∗) is the solution to
(1).

There are several advantages to this technique. Computing
ai and bi takes O(ns) time. In [1], Joachims proves that the
number of iterations required to reach ε-precision depends only
on ε (he bounds the growth at a rate of O(C/ε)) and not
on the number of training examples n. The time required to
solve the reduced optimization problem grows superlinearly
with the number of iterations, but as the number of constraints
is bounded by a constant independent of n and s, CPA runs in

FRANC AND SONNENBURG

Theorem 1 (Teo et al., 2007) Assume that ‖!R(w)‖ ≤ G for all w ∈W , whereW is some domain

of interest containing all wt ′ for t
′ ≤ t. In this case, for any " > 0 and C > 0, Algorithm 1 satisfies

the stopping condition (7) after at most

log2
F(0)
4C2G2

+
8C2G2

"
−2

iterations.

3. Optimized Cutting Plane Algorithm (OCA)

We first point out a source of inefficiency in CPA and then propose a new method to alleviate the

problem.

CPA selects a new cutting plane such that the reduced problem objective function Ft(wt) mono-
tonically increases w.r.t. the number of iterations t. However, there is no such guarantee for the

master problem objective F(wt). Even though it will ultimately converge arbitrarily close to the
minimum F(w∗), its value can heavily fluctuate between iterations (Figure 1). The reason for these

0 10 20 30 40 50102

103

104

105 CPA

OCA
F (wb

t)

Ft(wt)

Ft(wt)
F (wt)

iteration t

Figure 1: Convergence behavior of the standard CPA vs. the proposed OCA.

fluctuations is that at each iteration t, CPA selects the cutting plane that perfectly approximates the

master objective F at the current solution wt . However, there is no guarantee that such a cutting

plane will be an active constraint in the vicinity of the optimum w∗, nor must the new solution wt+1
of the reduced problem improve the master objective. In fact, it often occurs that F(wt+1) > F(wt).
As a result, a lot of the selected cutting planes do not contribute to the approximation of the master

objective around the optimum which, in turn, increases the number of iterations.

To speed up the convergence of CPA, we propose a new method which we call the optimized

cutting plane algorithm (OCA). Unlike standard CPA, OCA aims at simultaneously optimizing the

master and reduced problems’ F and Ft objective functions, respectively. In addition, OCA tries to

select cutting planes that have a higher chance of actively contributing to the approximation of the

master objective function F around the optimum w∗. In particular, we propose the following three
changes to CPA.

2162

Fig. 1. The effect of the OCA changes, with objective value on the y-axis.
Note that the CPA overestimate F (wt) fluctuates significantly, while the OCA
overestimate F (wb

t) decreases monotonically, causing faster convergence.

O(ns) time. Further details and analysis of CPA can be found
in [12].

In [2], the authors note several ways in which CPA is
sub-optimal. Most notably, while the under-estimate Ft(wt)
increases monotonically with respect to t, the over-estimate
F (wt) fluctuates significantly, which can lead to slow rates
of convergence. To solve this problem, a new value wb

t is
defined by wb

t = argminµ≥0F (µwt + (1 − µ)wb
t−1). Note

that for µ = 0, the argument to F is wb
t−1, so we have that

F (wb
t) ≤ F (wb

t−1), and the over-estimate F (wb
t) decreases

monotonically. A visualization of the difference is taken from
[2] and presented in Figure 1. While this modification does not
change the growth rate, O(C/ε), for the number of iterations,
in practice OCA requires many fewer iterations to converge
than CPA does. As a result, OCA training time is significantly
less than that of CPA, often by an order of magnitude or more
[2].

For notational convenience, define f(µ) = F (µwt + (1 −
µ)wb

t−1). The process of finding the value of µ which mini-
mizes f shall be referred as the “line search.” It is shown in [2]
that ∂f(µ) is a piecewise linear function with discontinuities
at n values of µ. Solving ∂f(µ) = 0 requires finding the
points of discontinuity (each one can be computed in O(f)
time), sorting them (which requires O(n log n) time), and then
evaluating the function at some of these points to determine
where ∂f(µ) crosses the x-axis.

In [3], the authors present their multi-class implementation
of OCA. In this formulation w ∈ Rd (rather than Rf) for some
choice of d, and given a function Ψ : X × Y → Rd, define
the decision function by hw(x) = argmaxy∈Y〈w,Ψ(x, y)〉.
Again, the objective function F (w) is 1

2w
Tw+CR(w), where

risk R(w) is defined by:

1
n

n∑
i=1

maxy∈Y(δ(y, yi) + 〈Ψ(xi, y)−Ψ(xi, yi),w〉) (5)

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 2

3

and δ(·, ·) is the zero-one loss function. This is a sensible
choice of risk, as a point can only be classified if its con-
tribution to the summand exceeds 1. As a result, this risk
function provides an upper-bound on the average training error
(or empirical risk) Remp(w) = 1

n

∑n
i=1 δ(hw(x), yi).

Vectors wt and wb
t are computed as in the binary case. The

latter computation again boils down to minimizing f(µ) =
F (µwt+(1−µ)wb

t−1). In this case, ∂f(µ) has discontinuities
at n(k− 1)values of µ (recall k = |Y|). Finding each of these
values can be done in O(k2) time, and sorting them can be
done in O(nk log nk) time, so the overall time complexity of
the line search is O(nk2 + nk log nk).

III. IMPROVING UPON OCA

Though the math behind completing the line search for
an optimal value of µ is elegant, the superlinear asymptotic
runtime is an immediate warning flag, as Joachims’ methods
scale linearly with n. It seems that this portion of the OCA
leaves something to be desired. When looking to improve the
OCA algorithm, our primary focus was on developing faster
techniques for choosing a good value of µ.

Using the terminology presented in [2], the CPA presented
in [1] uses µ = 1 for each iteration. While this hastens each
iteration by avoiding a line search, the effect is a notable
increase in the number of iterations required. The thought
which inspired our research is that perhaps finding good
approximations for µ could be done substantially faster than
the complete line search (thus reducing time spent on each iter-
ation), while keeping the number of iterations from increasing
as dramatically as results from simply setting µ = 1.

A. The Grid Search Cutting Plane Algorithm (GCA)

Our initial grid-search cutting-plane algorithm, GCA, rather
than solving analytically for the maximum of f(µ), computes
its value at several points and uses these to make an intelligent
choice. The method by which this choice is made is inspired by
the grid search for optimal parameter values presented in [13].
Given a parameter β ∈ (0, 0.5], GCA computes f(mβ) for
m = 0, 1, . . . b 2

β c. Then, a more refined search is conducted
in the neighborhood of the best choice of mβ, incrementing
by β2 at each step. Finally, a third search occurs in the most
promising region identified by the second pass, incrementing
by β3 at each step. The final output is the value of µ among
those checked which minimized f(µ). This process is detailed
in Algorithm 1, and makes use of a function makePass and a
global variable bestval.

It should be noted that evaluating f(µ) requires O(nk) time,
and that for any choice of β, the number of times that f(µ)
is evaluated is bounded by a constant independent of n, k, C,
or ε. As a result, GCA reduces the asymptotic runtime of the
line search from O(nk2 + nk log nk) to O(nk).

One might be concerned that GCA will get stuck in a
local minimum which is far from the true optimal value of µ.
Fortunately, this cannot occur. The shape of the function f(µ)
is described extensively in [2] and [3]. For the purposes of this
paper, it is enough to note that ∂f , though not continuous,
increases monotonically. In other words, the concavity of f

double makePass(init, max, inc)
µ′ ← init+max

2
for (µ← init;µ < max;µ← µ+ inc) do

if (f(µ) < bestval) then
bestval← f(µ)
µ′ ← µ

end if
end for
return µ′

Algorithm 1 Grid Search Algorithm (GCA)
bestval←∞
µ1←makePass(0,2,β)
µ2←makePass(µ1 − β

2 , µ1 + β
2 , β

2)
µ3 ←makePass(µ2 − β2

2 , µ2 + β2

2 , β
3)

return µ3

never changes: it is always concave-up. As a result, f has no
extraneous local minima for the grid search to find.

The computationally expensive part of the grid search is
repeatedly computing f(µ). If this is done too frequently,
the GCA grid search will run more slowly than the OCA
line search. This was the motivation behind the three-tiered
approach described above. Conducting a single pass at high
granularity would require computing f(µ) too many times.
Conducting a single pass at low granularity would alleviate this
problem, but at the expense of having a very rough estimate for
the optimal value of µ. Instead, GCA essentially “zooms in”
on the most promising sections by conducting high-granularity
searches only in regions where f(µ) is relatively low.

Unsurprisingly, the value of the parameter β has a signif-
icant effect on the efficiency of the grid search. For small
values of β, f(µ) is computed too frequently, leading to poor
performance. For large values of β, f(µ) is evaluated fewer
times, but the precision of the search is worse, so the number
of iterations required to converge is greater. We experimentally
determined that setting β = 0.2 consistently proved to be
a good compromise between these influences. Unfortunately,
even for large values of β (such as 0.5), a naı̈ve grid search
evaluates f(µ) too many times with each iteration, causing
the grid search to be slower than the OCA line search. At a
glance, this seems to spell doom for using a grid-search to
determine µ.

B. An Improved Grid Search (GCA2)

Fortunately, there are ways to get around this problem while
maintaining the core idea of using a grid-search. While GCA
neatly encapsulates the central idea behind the grid-search, it
requires several modifications in order to outperform OCA.
Accordingly, we developed a revised grid-search algorithm,
GCA2, which makes two crucial changes to GCA. These
modifications are displayed in Algorithm 2 (which makes use
of a modified routine makePass2), and described in more
detail below.

The first of these optimizations takes advantage of the
concavity of f by truncating the grid search if f(mβ) <

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 3

4

double makepass2(init, inc)
µ← init
while (f(µ+ inc) < f(µ)) do

µ← µ+ inc
end while
return µ

Algorithm 2 Modified Grid Search Algorithm (GCA2)
if (uncertainty ≥ t2) then

µ1 ←makepass2(µprev − 1, β)
else µ1 ← µprev
end if
if (uncertainty ≥ t1) then

µ2 ←makepass2(µ1 − β
2 , β

2)
else µ2 ← µprev
end if
µ3 ←makepass2(µ2 − β2

2 , β
3)

if (|µ3 − µprev| ≤ h(uncertainty)) then
decrease uncertainty

else increase uncertainty
end if
µprev ← µ3

return µ3

f((m+ 1)β), as this indicates that the search has passed the
optimal value of µ. The technique ensures that time is not
wasted calculating values of f at points which are increasingly
far from optimal, and is also applied during the second and
third passes of the algorithm. Another advantage to this is that
there is no longer the arbitrary restriction µ < 2.

The second change takes advantage of the observation
that after the first few iterations, the optimal value of µ,
as calculated by the OCA line search, was generally quite
low (certainly below 0.1). In other words, as the algorithm
progressed, wb

t was modified only slightly with each iteration.
As a result, a full grid search (even truncated as described
above), wasted too much time checking large values of µ.
To avoid this, we introduced a new variable, uncertainty,
which essentially determines the width of the search window
for each iteration.

Initially, uncertainty is set at 1, and all three passes
of the line search are conducted. From then on, each iteration
searches values of µ in an interval close the value of µ
selected by the previous iteration. The width of this interval is
determined by the value of uncertainty. There are two
threshold values t1 < t2. If uncertainty > t2, three
passes are conducted. If t1 < uncertainty < t2, the first
(coarsest) search is bypassed, narrowing the search window. If
uncertainty < t1, only the final (most refined) search is
conducted. After each iteration, the value of uncertainty
is adjusted according to how much the optimal value of µ
has changed from the previous iteration to the current one.
If the difference between these is less than a threshold value
h, uncertainty is decreased. Otherwise, it seems possible
that a broader search was needed, so uncertainty is
increased. It is best to make h depend on the width of the

search region (which in turn is a function of uncertainty).
This algorithm takes advantage of the fact that most late

iterations only modify wb
t slightly by saving time when

uncertainty is low, while still allowing the flexibility
of a full grid search when necessary. A summary of the
performance of GCA2 is presented in the following section,
with more complete data provided in the Appendix.

C. The Three-point Cutting Plane Algorithm (TCA)

Inspired by previous work and hoping to take advantage of
the shape of f(µ), we developed a second way to approxi-
mate optimal values of µ, which we refer to as the Three-
point Cutting Plance Algorithm (TCA). This algorithm makes
use of three possibilities for µ, designated low, mid, and
high. These values define a search window which is initially
centered at the value of µ selected by the previous iteration.
The width of the initial window is determined by the variable
uncertainty. If f(mid) is less than both f(low) and
f(high), this indicates that the optimal value of µ lies within
the current search region, so the search region is narrowed by
shifting the values low and high towards mid. If f(low)
is smaller than the other values, then our current search region
is to the “right” of the optimal value of µ, so the entire window
is shifted left. Similarly, if f(high) is the smallest value, the
search region is shifted right. This continues until the width of
the window, high−low, is less than a prescribed parameter
γ, at which point we set µ = mid.

When designing the algorithm, two aspects of it were
tweaked to determine what provided the best performance.
The first was, unsurprisingly, the parameter γ. The second
was the amount by which low and high are shifted inwards
when f(mid) is the lowest value. In general, the values were
computed to be a weighted average of their previous values
and mid. As is displayed in Algorithm 3, the relative weights
of these points, αl and αh, are computed using a function
g which takes as input f(mid) and f(low) or f(high),
respectively. Intuitively, the closer f(low) is to f(mid), the
less the point low should move, and so the larger the weight
for αl. After some experimentation, it was determined that
γ = 0.02, g(x, y) = (xy)2 provided good performance. Our
implementation uses the equation h(x) = x/2 to determine
whether to increase or decrease uncertainty.

IV. EXPERIMENTAL RESULTS

Tests were primarily run on two data sets, both
available from the LIBSVM data sets website
(http://www.csie.ntu.edu.tw/ecjlin/libsvmtools/datasets/).
The first, Covtype, provided cartographic data on sections of
forest, and classified each location based on the dominant
form of tree cover. The training set consists of 581012
examples, each with 54 features, divided into 7 classes. All
features were linearly scaled to take values in the range
[0,1]. The second data set, MNIST, presents a hand-written
digit recognition problem. The training set consists of 60000
examples, each with 780 features, divided into 10 classes. An
additional data set, RCV1, which uses data from the Reuters
corpus and was also obtained from the LIBSVM website,

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 4

5

Algorithm 3 Three-point Cutting Plane Algorithm (TCA)
low ← µprev − uncertainty
mid← µprev
high← µprev + uncertainty
while (high− low > γ) do

if (f(low) < f(mid)) then /* shift search left */
high← mid
mid← low
low ← 2 ·mid− high

else if (f(high) < f(mid)) then /* shift search right */
low ← mid
mid← high
high← 2 · low −mid

else /* contract search window */
αl ← g(f(mid), f(low))
αh ← g(f(mid), f(high))
low ← mid+αl·low

1+αl

high← mid+αh·high
1+αh

end if
end while
if (|mid− µprev| ≤ h(uncertainty)) then

decrease uncertainty
else increase uncertainty
end if
µprev ← mid
return mid

was used for some experiments. Its test set (which we used
for training) contains 518571 examples, each consisting of
47236 features. These examples are divided into 53 classes.
Because the focus of this project is on data sets which require
significant training time, these data sets were selected from
the LIBSVM site primarily because they were among the
largest. All tests were run on a Linux VirtualBox machine
installed on a 2.8 GHz Intel Core i7 processor with 8 GB
main memory.

Covtype

0

20

40

60

80

100

120

Iterations Search Time Time per Iteration Train Time

P
e
rc

e
n

t
o

f
O

C
A

OCA
GCA2
TCA

Fig. 2. Performance on Covtype, normalized to OCA performance. Note that
search time, the focus of GCA2 and TCA, is reduced by 60-70%, causing an
improvement in time of about 40%.

A. Results Using Default Parameter Values

The graphs in Figures 2 and 3 show results when using the
default parameter values of C = 1, ε = 0.01. Search Time
represents the total time spent determining which value of
µ to use for each iteration. All tests reached the termination
criteria 1− Ft(w

b
t)

F (wt)
< ε, and classification performance for the

three models was equivalent (OCA, GCA2 and TCA error rates
were 35.92%, 35.90%, and 35.84%, respectively, on Covtype,
and 5.57%, 5.56%, and 5.56% on MNIST). Data from more
experiments, along with discussion of the effect of changing
these parameters, follows in sections IV-B, IV-C, and the
Appendix.

The algorithms GCA2 and TCA notably outperform OCA
on both of the primary data sets. On MNIST, the total time
spent finding a good value for µ decreased by over 70%
for both algorithms, causing the time spent per iteration to
decrease by just over 16%. As the number of iterations
increased by only 2-3%, the net effect was approximately
a 14% improvement in training time. On Covtype, results
were even better: both algorithms take over 38% less time to
train than OCA. This is achieved by reducing the time spent
selecting µ by over 65-70% while increasing the number of
iterations by less than 10%.

It is not surprising that GCA2 and TCA perform relatively
better on Covtype than on MNIST, as the OCA line search
consumes over 56% of the total time on the former, and only
21% of the total time on the latter. When tested on RCV1
the three algorithms performed equivalently (slight fluctuations
from one trial to the next caused variation in which algorithm
terminated first). It is unsurprising that GCA2 and TCA do
not improve upon OCA in this case, as under 8% of OCA
training time was spent on the line search. It is natural to
ask what causes this discrepancy, since understanding it would
make it possible to determine (without explicitly running tests)
whether or not the algorithms presented in this paper were
likely to provide a significant reduction in training time on a
particular data set.

MNIST

0

20

40

60

80

100

120

Iterations Search Time Time per Iteration Train Time

P
e
rc

e
n

t
o

f
O

C
A

OCA
GCA2
TCA

Fig. 3. Performance on MNIST, normalized to OCA performance. Note that
despite improving search time by over 70%, GCA2 and TCA training times
do not decrease as substantially as for Covtype.

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 5

6

B. Examining the Number of Features

It should be noted that RCV1, for which the line search
consumed only 7.8% of the total time, has over 47000 features.
On MNIST, which makes use of 780 features, 21% of the total
time was devoted to the line search. Covtype, meanwhile, uses
only 54 features, and the line search consumes 56% of the total
time. This pattern seemed worth examining more closely.

From a theoretical perspective, the OCA line search consists
of computing O(nk) values of µ where the gradient of f(µ)
might have a discontinuity, and then sorting these values.
While time spent on the initial computation depends on the
number of features used, the line search time is dominated by
the sorting of the values [2], which takes time dependent only
on n. Accordingly, while time spent on the line search is not
technically independent of the number of features s, for data
sets with a large number of training examples (which are the
only ones of relevance for this paper), the time spent on the
line search should not be greatly affected by the number of
features. Other portions of the algorithm, however, take time
scaling linearly with s. As a result, the fraction of training
time spent on the line search should increase as the number
of features decreases.

In order to test this hypothesis, we created new training sets
from the RCV1 test set and MNIST training set. These training
sets contained all of the original data points, but left out many
of the original features. We then ran the OCAS solver on each
of these new data sets. The results, using C = 10, ε = 0.01
for MNIST and C = 1, ε = 0.01 for RCV1, are shown in
Figure 4.

As the number of features decreases, the total time spent per
iteration decreases, while the time spent during each iteration
on the line search remains fairly constant. As a result, the
percentage of the total time spent on the line search increases
notably. Because GCA2 and TCA focus on improving the
OCA line search, this indicates that these methods will out-
perform OCA by the most on data sets with relatively few
features.

Of course, one cannot arbitrarily reduce the dimensional-
ity of a data set without potentially reducing classification
performance. Because decreasing numbers of features are
accompanied by decreasing training time, there is already a
notable incentive to conduct research into how best to identify
and remove less informative features early in the classification
process. This paper does not seek to develop techniques to
accomplish this. Instead, we stop at noting which data sets
are most impacted by GCA2 and TCA modifications, and ob-
serving that if techniques for the elimination of uninformative
features improve, the algorithms presented here will become

Features % Search Features % Search
780 18.8 4373 30.0
473 25.1 2368 31.9
337 36.7 676 42.5
139 57.2 186 56.4

Fig. 4. For both MNIST (left) and RCV1 (right), as the number of features
increases, the percentage of training time spent on the OCA line search
increases.

relatively more advantageous.
It seems likely that a more thorough examination of this

phenomena, rather than looking at the raw number of features
s for a data set, should consider how s compares with
the number of training examples n, as this value crucially
determines run-times for various parts of the algorithm. We
leave this for future research.

C. Effects of Parameters C and ε

It should be noted that the percentage of the training time
spent on the line search depends not only on the data, but also
on the parameters used when solving.

If the tolerance ε is very small, then the program will
have to go through more iterations to obtain the desired
accuracy. Because the set of constraints grows with the number
of iterations, the amount of time required to solve these
constraints (referred to as Quadratic Programming, or QP,
Time) grows super-linearly with respect to the number of
iterations. The other steps of the algorithm, including the line
search, require a constant amount of time per iteration. This
is shown in Figure 5. As a result, as ε decreases, QP time
comes to dominate the training time, and so the percentage of
the process spent on the line search decreases. Accordingly,
methods which aim to decrease training time by focusing on
the line search, such as GCA2 and TCA, are less likely to
demonstrate a notable reduction in training time.

At some point, any additional iterations required as a
result of sub-optimal determination of µ should outweigh
the reduced time spent on the line search, causing OCA to
outperform GCA2 and TCA. It should be noted, however,
that classification accuracy universally converges to its final
value for values of ε much greater than this threshold value.
Correspondingly, there is no need for the user of the program
to set ε to values low enough to cause this behavior.

Unsurprisingly, given the bound of O(C/ε) on the number
of iterations, increasing C has a similar effect to decreasing ε.
Thus, for sufficiently large values of C, time spent solving the

Covtype Time per Iteration

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

log(1/Epsilon)

S
e
co

n
d

s

Search Time
QP Time
Output Time

Fig. 5. Covtype Time Breakdown. As ε decreases, the number of iterations
required to converge increases. While most steps in the algorithm take a
constant amount of time per iteration, this causes time spent solving the
reduced optimization problem, QP Time, to increase dramatically.

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 6

7

0.7

0.8

0.9

1

1.1

1.2

1.3

-4 -3 -2 -1 0 1 2

log(C)

F
ra

ct
io

n
 o

f
O

C
A

 I
te

ra
ti

o
n

s

GCA2
TCA

Fig. 6. Effect of C on Iterations Ratio. As the regularization constant C
increased, the ratio of iterations required by GCA2 and TCA to the number
required by OCA decreased. Thus, even as search time becomes a negligible
fraction of training time, these new algorithms continue to outperform OCA.

quadratic programming problem dwarfs all other components.
Interestingly, however, increasing C sometimes has another
effect on the training times for the three algorithms being
discussed. On the Covtype data set, as C grows very large,
OCA becomes increasingly likely to use µ = 0 for many
consecutive iterations. For reasons described in the following
section, this frequently results in GCA2 and TCA terminating
in fewer iterations than OCA. Thus, even for values of C
where time spent on the line search comprises a negligible
fraction of the total time, GCA2 and TCA may improve upon
the the performance of OCA. Figure 6 displays the relative
number of iterations for GCA2 and TCA (when compared to
OCA) for different values of C (logarithm for x-axis is base
10). Tables showing the full results of tests run with different
values of C and ε are provided in the Appendix.

V. ANOTHER BENEFIT TO GCA2 AND TCA

When seeking an approximate solution to the primal op-
timization problem (1), both CPA and OCA use a greedy
approach: each iteration attempts to reduce the objective value
by as much as possible. Since the ultimate goal is to find an
objective value within a tolerance ε of the optimal value, this
is a reasonable approach. It should be noted, however, that
choices for wb

t have a notable impact on values of wb
i for

i > t. This means that a slightly “worse” choice of wb
t during

the current iteration may result in better options in the future,
and lead to faster convergence.

Recall that in OCA, wb
t is found by searching along a line

between wb
t−1 and wt. Thus, the following section will discuss

finding optimal values of µ (rather than wb
t), as the two are

equivalent.
The inspiration for GCA2 and TCA was that by approximat-

ing the optimal value of µ, rather than finding it exactly, the
time spent on each iteration of the algorithm would decrease.
It was assumed that there was a tradeoff: in return for reducing
the time per iteration, the values of µ that were found would
not be as good as those found with OCA, and as a result

the above two algorithms would require more iterations to
converge. While this is often the case, for a notable number of
experiments, GCA2 and TCA terminated after fewer iterations
than OCA (in addition to requiring less time per iteration).
This is only possible because of the observation that all of the
algorithms presented in this paper use a greedy solution to a
problem which is not inherently greedy.

The above observation is only interesting if it is possible to
identify values of µ which will be particularly good or bad for
future convergence. In general, this is difficult. Nevertheless,
there is one value of µ which has a clear drawback. Note that
if µ = 0, wb

t = wb
t−1. While it is true that wt and wt+1 will

be different (so the algorithm will never truly get “stuck”), if
µ = 0 for many iterations in a row, the algorithm has spent all
of those iterations without improving its best so-far solution.

Perhaps the data set which best illustrates this
danger is “Poker,” which can be obtained from
the UCI machine learning repository of data bases
(http://archive.ics.uci.edu/ml/datasets.html). It contains
eight million example 5-card poker hands, with ten features
used to describe each (the suit and rank of each card). There
are 10 class labels, which describe the quality of the hand
(high card, pair, two pairs, etc). When run on this data set
with the default values of C = 1, ε = 0.01 TCA and GCA2
converged in 234 and 235 iterations, respectively, while OCA
required 1454 iterations and took over twelve times as long
to find an equivalent solution. Upon further investigation,
it became apparent that the concern noted above (namely,
repeatedly determining µ = 0 to be optimal) was precisely
what caused OCA to perform so poorly. For 1451 consecutive
iterations of OCA, µ = 0 was computed to be optimal.
Thus, wb

t remained at its default value, 0, and classification
error was 100%. Because of the way that GCA2 and TCA
are implemented, these algorithms tended to find small (but
nonzero) values for µ, and thus avoided the trap into which
OCA fell.

Interestingly, this problem can be avoided by a very simple
fix. After modifying OCA to arbitrarily set µ = 0.02 for
the first five iterations (after which it returned to its usual
line search), the algorithm terminated in 231 iterations, with
comparable objective value and classification performance to
GCA2 and TCA.

The fact that for ε > .011, OCA terminated without ever
modifying w serves as a potent reminder that while solving
the primal problem and achieving accurate classification score
are often linked (and most SVMs are compared on the basis
of their respective objective values), it is possible to succeed
at the first without making notable progress on the second.

It should be noted that for many reasons, the Poker data
set is not well-suited to multi-class SVM classification. With
so few features relative to the number of examples, the SVM
is unable to learn a good model - the best it can do is to
get about 50% correct. Even this is unimpressive, as over
92% of the examples belong to two of the classes, and so
the final predictions are no better than simply assigning the
most common label to every hand.

We argue that the limitations of the Poker data set should
not undermine the validity of the observations above. The first

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 7

8

reason for this is that even if it is not possible to achieve high
classification accuracy, one would hope to achieve the best
result possible in relatively few iterations. The second is that
while Poker was selected because it provides a particularly
glaring example of this concern, the same issue arises when
working with other data sets.

To prove this point, we examined the trials run on the
Covtype data set, with C = 100, ε = 0.01. In this case, OCA
requires 744 iterations to converge, while GCA2 and TCA
require 686 and 603, respectively. Upon investigation, it was
determined that on 490 of the 744 OCA iterations (or 66%),
the optimal value of µ was determined to be 0. After modifying
the code so that any time µ = 0 was determined to be optimal,
µ was instead set to 0.02, OCA terminated in 569 iterations.

These results indicate that the shortcomings of the greedy
approaches used by all cutting plane algorithms described in
this paper may, in some cases, be quite significant. The quick
fixes mentioned here may not be the best way to avoid these
concerns, and an investigation into better ways to approach this
problem would be fascinating and potentially very useful. Such
an exploration, however, is beyond the scope of this paper. For
our purposes, it suffices to note that while setting µ = 0 may
not always be problematic, repeatedly choosing doing so can
result in poor performance.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have observed that the line search used
to compute the best-so-far solution wb

t at each iteration
of the OCA algorithm is fairly computationally costly. We
present two new algorithms, GCA2 and TCA, designed to
approximate this solution in a substantially shorter amount of
time. These solutions reduce the asymptotic run-time for the
search from O(nk2 +nk log nk) to O(nk), and demonstrate a
notable decrease in training time when tested empirically. Both
algorithms reduce the search time by 65-75% while seeing
an increase in the number of iterations of approximately 3%.
On the two primary data sets used for our tests, Covtype and
MNIST, the net effect was a decrease training time by roughly
39% and 14%, respectively.

Additionally, we have examined and analyzed the ways in
which the regularization constant C, the tolerance ε, and the
number of features in the training set impact the performance
of GCA2 and TCA relative to that of OCA. For reasonable
choices of C and ε, the number of features present in a
data set was shown to significantly impact the percentage of
OCA training time spent on the line search: search time was
relatively independent of the number of features, while other
portions of the algorithm became significantly slower on data
sets with large numbers of features. As a consequence of this
fact, GCA2 and TCA are most beneficial on large data sets
with relatively few features.

Perhaps one of the most interesting observations was that
while GCA2 and TCA do not find the optimal choice of wb

t

at each iteration, for some data sets they converge in fewer
iterations than OCA, occasionally by quite a significant mar-
gin. This suggests that the approach of reducing the objective
function by as much as possible at each iteration can yield

far-from-optimal rates of convergence. An open question for
future investigation is which greedy choices are problematic
and whether there are better methods for choosing wb

t than
the approaches that have so far been employed.

Finally, it is worth noting that while the experiments used
for this paper were restricted to multi-class classification tasks,
the conceptual ideas presented in this paper apply equally well
to binary and multi-class problems. It would be informative
to conduct tests on binary data sets, to see whether empirical
results are are similar in the binary and multi-class cases. In
addition to observing whether GCA2 and TCA cause training
times to decrease by comparable ratios to those reported in
this paper, we would like to investigate whether the cases
where GCA2 and TCA terminate in fewer iterations than OCA
are more or less prevalent when solving binary classification
problems.

ACKNOWLEDGEMENT

This research was conducted with support from NSF grant
ARRA 0851783. The author would like to thank Dr. Jugal
Kalita for pointing the way to relevant recent publications and
providing valuable feedback during the editing process.

REFERENCES

[1] T. Joachims, “Training Linear SVMs in Linear Time,” in Proceedings of
the 12th ACM SIGKDD international conference on knowledge discovery
and data mining. ACM New York, NY, USA, 2006, pp. 217-226.

[2] V. Franc and S. Sonnenburg, “OCAS Optimized Cutting Plane Algorithm
for Support Vector Machines”, in Proceedings of International Machine
Learning Conference, pages 320327. ACM Press, 2008a.

[3] V. Franc and S. Sonnenburg, “Optimized Cutting Plane Algorithm for
Large-Scale Risk Minimization”, in Jounal of Machine Learning Re-
search, October 2009.

[4] E. Mayoraz and E. Alpaydin, “Support Vector Machines for Multi-Class
Classification”, in IWANN, vol. 2, 1999, pp. 833-842.

[5] C. Burges, “A Tutorial on Support Vector Machines for Pattern Recog-
nition,” in Data Mining and Knowledge Discovery. Kluwer Academic
Publishers, Bowston, MA, USA, 1998, pp. 121-167.

[6] C. Hsu and C. Lin, “Comparison of Methods for Multiclass Support
Vector Machines” in IEEE Transactions on Neural Networks, vol. 13,
no. 2, March 2002.

[7] H. Lei and V. Govindaraju, “Half-Against-Half Multi-class Support
Vector Machines,” in Proc. of the 6th International Workshop on Multiple
Classifier Systems, Seaside, CA, USA, 2005.

[8] T. Dietterich and G. Bakiri, “Solving Multiclass Learning Problems
via Error-Correcting Output Codes,” in Journal of Artificial Intelligence
Research 2, 1995.

[9] K. Crammer and Y. Singer, “On the Algorithmic Implementation of
Multiclass Kernel-Based Vector Machines” in The Journal of Machine
Learning Research, vol. 2, 2002, pp. 265-292.

[10] J. Weston and C. Watkins, “Support Vector Machines for Multi-Class
Pattern Recognition”, in European Symposium on Artificial Neural Net-
works. D-Facto public, Belgium, 1999, pp. 219-224.

[11] S. Keerthi, S. Sundararajan, K Change, C. Hsieh, and C. Lin, “A
Sequential Dual Method for Large Scale Multi-Class Linear SVMs”
in Proceeding of the 14th ACM SIGKDD international conference on
Knowledge discovery and data mining, August 24-27, 2008, Las Vegas,
Nevada, USA.

[12] T. Joachims, T. Finley, and C.N. Yu, “Cutting-plane training of structural
SVMs” in Machine Learning, 76(1), May 2009.

[13] C. Hsu, C. Chang, and C. Lin, “A Practical Guide to Support Vec-
tor Classification.” Technical report, Department of Computer Science
and Information Engineering, National Taiwan University, Taipei, 2003.
http://www.csie.ntu.edu.tw/ecjlin/libsvm/.

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 8

2010 UCCS REU FOR ARTIFICIAL INTELLIGENCE, NATURAL LANGUAGE PROCESSING AND INFORMATION RETRIEVAL FINAL REPORT 1

Streaming Trend Detection in Twitter
James Benhardus

Abstract—Twitter is a popular microblogging and social net-
working service with over 100 million users. Users create short
messages pertaining to a wide variety of topics. Certain topics
are highlighted by Twitter as the most popular and are known as
“trending topics.” In this paper, we will outline methodologies of
detecting and identifying trending topics from streaming data.
Data from Twitter’s streaming API will be collected and put
into documents of equal duration. Data collection procedures
will allow for analysis over multiple timespans, including those
not currently associated with Twitter-identified trending topics.
Term frequency-inverse document frequency analysis and relative
normalized term frequency analysis are performed on the docu-
ments to identify the trending topics. Relative normalized term
frequency analysis identifies unigrams, bigrams, and trigrams as
trending topics, while term frequcny-inverse document frequency
analysis identifies unigrams as trending topics.

Index Terms—microblogs, trend detection, natural language
processing

I. INTRODUCTION

TWITTER is a popular microblogging and social network-
ing service that presents many opportunities for research

in natural language processing (NLP) and machine learning.
Since its inception in 2006, Twitter has grown to the point
where http://twitter.com is the 11th most visited website in the
world, and the 8th most visited site in the United States1, and
over 100 million Twitter accounts have been created 2. Users
of Twitter post short (less than than or equal to 140 character)
messages, called “tweets,” on a variety of topics, ranging from
news events and pop culture, to mundane daily events and
spam postings. As of February 2010, users of Twitter were
producing 50 million tweets per day, an average of 600 tweets
per second3.

Twitter presents some intriguing opportunites for applica-
tions of NLP and machine learning. One such aspect of Twitter
that provides opportunities is trending topics - words and
phrases, highlighted on the main page of Twitter, that are
currently popular in users’ tweets. Trending topics are iden-
tified for the past hour, day and week. Examples of trending
topics can be seen in Fig. 1 and Fig. 2. Trending topics are
supposed to represent the popular “topics of conversation,”
so to speak, among the users of Twitter. Determining trending
topics can be considered a type of First Story Detection (FSD),
a subset of the larger problem known as Topic Detection and

J. Benhardus (Physics Department - Bethel University, St. Paul, MN 55112)
is a rising senior participating in a Summer 2010 National Science Foundation
REU for Artificial Intelligence, Natural Language Processing and Information
Retrieval at the University of Colorado at Colorado Springs, Colorado Springs,
CO, 80918.

email: benjam@bethel.edu
1http://www.alexa.com/siteinfo/twitter.com
2http://economictimes.indiatimes.com/infotech/internet/Twitter-snags-over-

100-million-users-eyes-money-making/articleshow/5808927.cms
3http://blog.twitter.com/2010/02/measuring-tweets.html

Tracking (TDT) [1]. The popularity and growth of Twitter
presents some challenges for applications of NLP and machine
learning, however. The length restrictions of the messages
create syntactical and structural conventions that are not seen
in more traditional corpora, and the size of the Twitter net-
work produces a continuously changing, dynamic corpus. In
addition, there is quite a lot of content on Twitter that would
be classified as unimportant to an outside observer, consisting
of personal information or spam, which must be filtered out in
order to accurately identify the elements of the corpus that are
relevant to the Twitter community as a whole, and could thus
be considered to be potential trending topics. The challenge
of Twitter’s popularity is that in order to detect and identify
trending topics, one must sample and analyze a large volume
of streaming data. This paper will propose methods of using
natural language processing techniques on streaming data from
Twitter to identify trending topics.

II. RELATED WORK

While there is a large body of work pertaining to natural
language processing, applying NLP techniques to Twitter is a
fairly recent development, due in part to the fact that Twitter
has only been in existence since 20064. In this relatively
short span of time, however, there have been many insightful
analyses of Twitter. In particular, there are several recent
applications natural language processing techniques to Twitter:

• Twitter has been used to study the dynamics of social
networks, particularly the temporal behavior of social
networks [11], or the behavior of social neworks during
disasters, such as earthquakes [8], [14].

• First story detection has been applied to Twitter to
identify the first tweets to mention a particular event [12].

• Data mining from trending topics have also been applied
to Twitter to summarize trending topics [17] and to
analyze how trending topics change over time [2].

• In addition to applications of NLP techniques to Twitter,
trend and event detection techniques have also been
applied to other online entities such as weblogs [3],
[4], news stories [1], [10], [20], or scientific journal
collections [16], [19].

III. PROBLEM DEFINITION

The main goal of this project is to detect and identify
trending topics from streaming Twitter data. To accurately
define the problem, the first step must be to define explicitly
what constitutes a trending topic. In [4], topics are defined as
consisting of a combination of chatter, which is characterized
by persistent discussion at a constant level and is largely

4http://en.wikipedia.org/wiki/Twitter

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 9

2010 UCCS REU FOR ARTIFICIAL INTELLIGENCE, NATURAL LANGUAGE PROCESSING AND INFORMATION RETRIEVAL FINAL REPORT 2

user-initiated, and spikes, which are characterized by short-
term, high intensity discussion that is often in response to
a recent event. In general, trending topics consist mainly of
spikes. However, trending topics can also consist of a fairly
even combination of spikes and chatter, or of mainly chatter.
Examples from Fig. 1 and Fig. 2 of trending topics that could
be considered to consist mainly of spikes are:

• CALA BOCA GALVAO
• Gonzalo Higuain
• Sani Kaita
• FIFA World Cup
• #worldcup
• Grecia
• Maradona
• Vuvuzela
• Oil Spill
• Tony Hayward
• Oswalt
• Shirley Sherrod
• Breitbart

Examples from Fig. 1 and Fig. 2 of trending topics that could
be considered to be a fairly even combination of spikes and
chatter are:

• #theview
• Jersey Shore tonight
• Thor

Examples from Fig. 1 and Fig. 2 of trending topics that could
be considered too consist mainly of chatter are:

• Inception
• #iconfess
• #dontcountonit
• BUSTIN DREW JIEBER

The “#” symbol at the beginning of “#worldcup”, “#iconfess”,
“#theview”, and “#dontcountonit” is called a “hashtag,” and is
used by Twitter users to classify their tweets as pertaining to
a particular topic. In addition to spikes and chatter, a trending
topic can also be the result of advertisement, as is the case for
the final trending topic in Fig. 1, “Toy Story 3.” In this third

Fig. 1: A list of trending topics as identified by Twitter from
17 June 2010.
(Source: http://twitter.com)

possibility, the trending topic is associated with a “Promoted”
tweet - a hybrid tweet-advertisement which is displayed at the
top of search results on relevant topics5.

While the classification of a trending topic as consisting
of spikes or chatter is helpful for the understanding of the
nature of trending topics, it is not directly useful in the
identification or classification of terms as trending topics. Our
working definition of a trending topic shall be a word or phrase
that is experiencing an increase in usage, both in relation
to its long-term usage and in relation to the usage of other
words. More techincal definitions of trending topics shall be
used in the actual experiments, and shall be described in the
“Methodologies” section.

In addition to defining what constitutes a trending topic,
we must also define what constitutes success for a particular
methodology. As the goal of the project is to develop a method
of identifying trending topics that is independent of the method
used by Twitter, simple agreement with the Twitter-identified
trending topics is both unambitious and potentially unrealistic
without replicating Twitter’s methodology, which happens to
be proprietary. As such, we shall define a successful method as
a method that produces relevant topics at a rate of at least 75%
of the rate returned by Twitter’s method, with an agreement
of at least 50% with the terms produced by Twitter’s method.
The details of computing relevance and agreement shall be
discussed in the “Evaluation Measures” section.

IV. METHODOLOGIES

Multiple methodologies were implemented, making use of
one or more selection criteria. Each selection criterion will
be discussed in its own subsection. All methods implemented
made use both of the Twitter Streaming API6 and the Ed-
inburgh Twitter corpus [13], a collection of approximately
97 million tweets collected between November 2009 and
February 2010. The Edinburgh Twitter corpus was used to
provide baseline measurement against the data from the Twit-
ter Streaming API. For each source, tweets were temporally

5http://blog.twitter.com/2010/04/hello-world.html
6http://stream.twitter.com/1/statuses/sample.json (see documentation at

http://apiwiki.twitter.com/Streaming-API-Documentation)

Fig. 2: A list of trending topics as identified by Twitter from
29 July 2010.
(Source: http://twitter.com)

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 10

2010 UCCS REU FOR ARTIFICIAL INTELLIGENCE, NATURAL LANGUAGE PROCESSING AND INFORMATION RETRIEVAL FINAL REPORT 3

grouped into “bag of words” style collections, or “documents.”
These documents were be normalized by duration, meaning
that each document corresponds to the tweets posted in a
certain constant length of time. The Edinburgh Twitter corpus
was divided into 1212 sections, each consisting of one hour’s
worth of tweets. The tweets from the Twitter Streaming API
were grouped into sections corresponding to either ten min-
utes, fifteen minutes, or one hour’s worth of data collection.

A. Frequency

The first criterion used was simply the raw frequency of
each term. This criterion was used mainly as a threshold
criterion, to be used with one or more of the other criteria.
Using raw frequency by itself has major drawbacks, as the
most frequent terms in the stream are the terms that carry the
least information, such as “the”, “and”, or “rt” (an abbreviation
for “retweet,” a term used when one Tiwtter user reposts an-
other Twitter user’s tweet). The majority of the most common
words can be classified as stop words, and filtered out of the
stream. Generation of a stop word list shall be discussed in
the “Experiments” section.

B. TF-IDF

The second criterion implemented involved analyzing each
document using an application of tf-idf weighting. Tf-idf
weighting is a information retrevial technique that weights a
document’s relevance to a query based on a composite of the
query’s term frequency and inverse document frequency [15].
Term frequency can be defined as either

tfi,j = ni,j

or

tfi,j =
ni,j

N

where ni,j is the number of times word i occurs in document
j and

N =
∑

k

nk,j

is the total number of words in document j. The second
definition of tfi,j is often referred to as the normalized term
frequency. Inverse document frequency is defined as

idfi = log(
D

di
)

where di is the number of documents that contain word i
and D is the total number of documents. Put simply, the
weight of a document will be higher if the number of times
a word occurs in a document is higher, or if the number of
documents containing that word is lower; similarly, the weight
of a document will be lower if the number of times a word
occurs in a document is lower, or if the number of documents
containing that word is higher [5].

C. Normalized Term Frequency
The third criterion implemented involved utilizing only

the term frequency of each element, rather than both the
term frequency and the inverse document frequency. For this
method, a normalized term frequency was used, defined as

tfnormi,j =
ni,j∑
k nk,j

∗ 106

where ni is the number of times word i occurs in document
j and

∑
k nk,j is the total number of words in document j.

Due to the large number of words found in the documents,
a scaling factor of 106 was used, meaning tfnormi,j can be
thought in terms of frequency per million words. Each word
in the test document was given a trending score, defined as

tsi,j =
tfnormi,j

atfnormi,S

in which

atfnormi,S =
∑

S={s1,...,sp}

tfnormi,sk

p

where S is the set of p baseline documents to which the test
document was compared.

D. Entropy
The fourth criterion implemented was entropy. To calculate

the entropy of a term, all of the tweets containing that term
are collected. As it is used in this project, the entropy of a
term i is defined as

Hi = −
∑

j

nj,i

N
log(

nj,i

N
)

where nj,i is the number of times word j occurs in the
collection of tweets containing term i and

N =
∑

j

nj,i

is the total number of words in the collection of tweets
containing term i. Entropy proved to be a helpful parameter
to use in filtering out terms that could be classified as spam.

V. EXPERIMENTS

Two experiments were run, implementing slightly different
methodologies, but following the same general format. Unless
stated otherwise, the process described was used for both
experiments.

A. Data Collection
Data was collected using the Twitter streaming API, with

the gardenhose tweet stream providing the input data and the
trends/location stream providing the list of terms identified by
Twitter as trending topics. The gardenhose streaming API is a
limited stream that returns approximately 15% of all Twitter
activity7. The trends/location stream provides a list of trending
topics that is specific to a particular location. The United States

7http://dev.twitter.com/pages/streaming api concepts

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 11

2010 UCCS REU FOR ARTIFICIAL INTELLIGENCE, NATURAL LANGUAGE PROCESSING AND INFORMATION RETRIEVAL FINAL REPORT 4

was used as the location for evaluation, as both experimental
methods worked almost entirely with English tweets, and most
of the trending topics from the United States were in English,
leading to a more accurate basis for comparison than trending
topics from the entire world. The streaming data was collected
automatically using the cURL data transfer tool within a shell
script. The streaming data was grouped into documents of
equal duration. The first experiment used documents consisting
of tweets collected over either ten minutes or one hour of
streaming. The second experiment used documents consisting
of tweets collected over fifteen minutes of streaming.

B. Preprocessing
The data was collected from the Twitter streaming API in

JSON format and a parser to extract the tweets from the other
information returned. Next the tweets were preprocessed to
remove URL’s, unicode characters, usernames, and punctua-
tion. A dictionary containing approximately 180,000 common
English words and acronyms was used to filter out tweets
that did not contain at least 60% English words. Tweets were
classified as spam and discarded if one word accounted for
over half of the words in the tweet. After preprocessing, tweets
were stored in two ways - in a collection in which each valid
tweet was left intact, and in a “bag of words” style dictionary
consisting of a unigram and the frequency of the unigram in
the document.

C. Baseline Data
Baseline data was computed from the Edinburgh Twitter

Corpus, a collection of over 97 million tweets collected over
three months in late 2009 and early 2010. The corpus was
divided into 1212 sections corresponding to one hour’s worth
of tweets, consisting of two bag-of-words dictionarys for each
section - one containing unigrams and one containing bigrams.
For the first experiment, the resulting documents were used
independently of one another. For the second experiment, the
documents were compiled into a comprehensive dictionary
of 805,025 words with term frequency, document frequency,
and tf-idf weights computed for each word. For the first
experiment, a specified number of baseline documents was
used to compute average normalized term frequency. For
the second experiment, the dictionary was used to provide
document frequencies for terms and for the generation of a
stop word list.

D. Stop Words
For each experiment, a list of stop words was used as an

additional filter after preprocessing. A stop word is defined as
a word that contains no meaning or relevance in and of itself,
or a word that adds to the relevance of a result to a query no
more often than would a random word [18].

For the first experiment, stop word were identified using a
“lossy counting” algorithm [9]. The lossy counting algorithm
identified the most frequent words in each of the 1212 baseline
documents. All words that appeared as the most frequent in
at least 75% of the baseline documents were classified as stop

words. If a word in the test data was identified as a stop word,
it was immediately removed from consideration as a potential
trending topic.

For the second experiment, a word was considered to be a
stop word if it matched one or more of the following criteria:

• If the word appeared in over 600 of the 1212 documents
• If the word had a total frequency of at least 3000

throughout all 1212 documents
• If the word was classified grammatically as a preposition

or a conjunction
• If the word was a derivative of a word that occurred

in 1200 or more documents (i.e. “can” occurs in all
1212 documents, so “can’t,” “could,” “couldn’t,” and
“could’ve” are also classified as stop words)

As with the first experiment, if a word in the test data was
identified as a stop word, it was immediately removed from
consideration as a potential trending topic.

E. Selection Criteria

For the first experiment, a combination of raw frequency
and relative normalized term frequency was used. The raw
frequency was used as a threshold, eliminating all terms that
did not occur an average of at least one time for every minute
of data collection. Normalized term frequency and average
normalized term frequency was calculated for each remaining
term, and the terms with the highest trending scores were
identified as trending topics. Analysis was performed for both
unigrams and bigrams. Entropy was also calculated for both
unigrams and bigrams, but was not used as a selection criterion
for this experiment.

The second experiment utilized a combination of raw fre-
quency, tf-idf weighting, and entropy to identify trending
topics. Once again, the raw frequency was used as a threshold,
eliminating all terms that did not occur an average of at least
one time for every minute of data collection. Term frequency-
inverse document frequency weights were calculated for the
remaining terms. Of the remaining terms, those with a tf-
idf weight below a threshold value (set at five greater than
the length of data collection in minutes) were removed from
consideration. Finally, terms with an entropy of less than 3.0
were removed, and the remaining terms were identified as
trending topics.

VI. EVALUATION MEASURES

The first experiment was evaluated using precision, recall,
and F-measure scores in comparison to the trending topics
identified by Twitter. All three measures require calculating the
number of true positives - that is, the items that were identified
as trending topics both by the experimental method and
Twitter’s method. In addition, determining precision requires
calculating the number of false positives - the items identified
as trending topics by the experimental method that were not
identified as trending topics by Twitter, and determining recall
requires calculating the number of false negatives - the items
identified as trending topics by Twitter that were not identified

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 12

2010 UCCS REU FOR ARTIFICIAL INTELLIGENCE, NATURAL LANGUAGE PROCESSING AND INFORMATION RETRIEVAL FINAL REPORT 5

Fig. 3: Table of precision, recall, and F-measure scores for both
unigrams and bigrams from analysis of data sets consisting of
six one-hour segments and six ten-minute segments of tweets
from the Twitter Streaming API.

as trending topics by the experimental method. Precision is
defined as

P =
TP

TP + FP

where TP is the number of true positives and FP is the
number of false positives. Recall is defined as

R =
TP

TP + FN

where TP is the number of true positives and FN is the
number of false negatives. The F-measure is the harmonic
mean of the precision and recall, defined as

F = 2 · P ·R
P +R

The second experiment was evaluated using recall and
relevancy scores. Recall was calculated in comparison to
the trending topics identified by Twitter using two different
methods of identifying true positives and false negatives. The
first method only identified as true positives terms that exactly
matched terms identified by Twitter as trending topics. Since
the second experiment returned only bigrams, terms identified
by Twitter as trending topics that were not identified by
the experimental method were only considered to be false
negatives if they were unigrams. The second method identified
a term as a true positive if it either exactly matched a term
identifed by Twitter as a trending topic or if it matched one
part of a multigram trending topic. Any term identified as a
trending topic by Twitter that was not identified as a trending
topic by the experimental method was classified as a false
negative. Relevance was calculated based on the evaluations

of human volunteers. Volunteers were given a list of terms
identified as trending topics and marked those that they felt
were valid or relevant topics. The list contained both terms
identified as trending topics by the experimental method and
terms identified as trending topics by Twitter as a control.
Relevance was calculated in the same manner as precision
was calculated in the first experiment.

Fig. 4: Graph of precision and recall scores for both unigrams
and bigrams from analysis of data sets consisting of six one-
hour segments and six ten-minute segments of tweets from the
Twitter Streaming API.

VII. RESULTS

For the first experiment, the hourly data sets had an average
precision of 0.2167 and 0.1984 and an average recall of
0.2168 and 0.3623 for an F-measure of 0.2167 and 0.2564 for
unigrams and bigrams, respectively. The ten minute data sets
had an average precision of 0.3389 and 0.1212 and an average
recall of 0.3167 and 0.1862 for an F-measure of 0.3274 and
0.1468 for unigrams and bigrams, respectively. A table of the

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 13

2010 UCCS REU FOR ARTIFICIAL INTELLIGENCE, NATURAL LANGUAGE PROCESSING AND INFORMATION RETRIEVAL FINAL REPORT 6

results of the first experiment can be seen in Fig. 3 and a
graph showing the precision and recall scores for each data
set is shown in Fig. 4. Initial goals for this experiment were
a precision score of at least 0.50 and a recall score of at least
0.75, for an f-measure of at least 0.60. The initial results are
well below this, but within reasonable range the results of
similar work, which produced f-measures in the range of 0.30
to 0.60 [1], [20].

For the second experiment, initial results gave an average
precision of 0.2780 and an average recall of 0.7667 for an
F-measure of 0.3988 as calculated by the first method of
evaluation, and an average precision of 0.4075 and an average
recall of 0.5985 for an F-measure of 0.4794 as calculated
by the second method of evaluation. The initial results were
evaluated by human volunteers as containing relevant topics
72.43% of the time, compared to 77.14% of the time for
the terms identified by Twitter as trending topics. Substituting
relevance scores for precision scores produces an F-measure
of 0.7508 as evaluated by the first method of evaluation and
and F-measure of 0.66 as evaluated by the second method
of evaluation Given that the success criteria were a recall of
0.50 when evaluated with the terms identified by Twitter and a
relevance of at least 75% that of the terms identified by Twitter,
the data from the second experiment meets the conditions of
success.

Fig. 5: Table of precision, recall, and F-measure scores for both
unigrams from analysis of data sets consisting of 24 fifteen
minute segments of tweets from the Twitter Streaming API.

VIII. IMPROVEMENTS AND EXTENSIONS

Based on the initial performance of the proposed method,
there are several possible extensions and improvements for
this project. One potential extention would be to expand the
functionality of the unigram and bigram algorithms to identify
trigrams or higher order n-grams as trending topics, instead
of single words or bigrams. Other possible extensions of this
project include interfacing with the Inouye project [6] and
the Kaufmann project [7] in order to not only identify but
summarize trending topics and normalize the syntax of the
summaries, or adapting the method to be used as a predictive

Fig. 6: Graph of precision, recall, and F-measure scores for
both unigrams from analysis of data sets consisting of 24
fifteen minute segments of tweets from the Twitter Streaming
API.

tool. One final extension could be in the evaluation process.
Terms identified as trending topics could be compared not
only to topics identified by Twitter as trending, but to topics
identified as trending by other sources, such as Yahoo!8 or
Google Trends9. Ideally, there will be time for at least two
extensions to be implemented during the remainder of the time
allotted for this project.

IX. CONCLUSION

In this paper, we have outlined methodologies for using
streaming data, tf-idf term weighting, normalized term fre-
quency analysis, and other criteria to identify trending topics

8http://www.yahoo.com
9http://www.google.com/trends

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 14

2010 UCCS REU FOR ARTIFICIAL INTELLIGENCE, NATURAL LANGUAGE PROCESSING AND INFORMATION RETRIEVAL FINAL REPORT 7

on Twitter. The methods implemented detected and identified
both unigrams and bigrams as trending topics. Preliminary
results for the first experiment fell significantly short of the
original goals, but were reasonably close to results produced
by other approaches. Preliminary results for the second ex-
periment seem to meet the success conditions put forth in
this paper. The current state of the project allows room for
extensions in the form of interfacing with other projects
applying natural language processing techniques to Twitter.
Finally, once all results are analyzed, this project hopefully
will have demonstrated the ability of natural language pro-
cessing tools to extract and identify pertinent information
from a continuously changing corpus with an unconventional
structure.

REFERENCES

[1] J. Allan, R. Papka, and V. Lavrenko, “On-line New Event Detection and
Tracking,” In Proceedings of ACM SIGR, pp. 37-45, 1998.

[2] M. Cheong, V. Lee, “Integrating Web-based Intelligence Retrieval and
Decision-making from the Twitter Trends Knowledge Base,” In Pro-
ceedings of CIKM 2009 Co-Located Workshops: SWSM 2009, pp. 1-8,
2009.

[3] N. Glance, M. Hurst, and T. Tomokiyo, “Blogpulse: Automated Trend
Discovery for Weblogs,” In WWW 2004 Workshop on the Weblogging
Ecosystem: Aggregation, Analysis, and Dynamics, 2004.

[4] D. Gruhl, R. Guha, D, Liben-Nowell, and A. Tomkins, “Information
Diffusion Through Blogspace,” In Proceedings of the 13th International
Conference on the World Wide Web, pp.491-501, 2004.

[5] D. Hiemstra, “A probabilistic justification for using tf×idf term weight-
ing in information retrieval,” International Journal on Digital Libraries,
vol. 3, no. 2, pp. 131-139, 2000.

[6] D. Inouye, “Multiple Sentence Microblog Summarization,” In REU Site
for Artificial Intelligence, Natural Language Processing and Information
Retrieval Research Projects, 2010. Forthcoming

[7] J. M. Kaufmann, “Syntactic Normalization of Twitter Messages,” In
REU Site for Artificial Intelligence, Natural Language Processing and
Information Retrieval Research Projects, 2010. Forthcoming

[8] K. Kireyev, L. Palen, K. Anderson, “Applications of Topics Models
to Analysis of Disaster-Related Twitter Data,” In NIPS Workshop on
Applications for Topic Models: Text and Beyond, 2009.

[9] G. Manku and R. Motwani, “Approximate Frequency Counts Over Data
Streams,” In Proceedings of the 28th VLDB Conference, Hong Kong,
China, 2002.

[10] R. Nallapati, A. Feng, F. Peng, and J. Allan, “Event Threading within
News Topics,” In Proceedings of the Thirteenth ACM Conference on
Information and knowledge management, pp.446-453, 2004.

[11] R. Perera, S. Anand, P. Subbalakshmi, and R. Chandramouli, “Twitter
Analytics: Architecture, Tools and Analysis.”

[12] S. Petrovic, M. Osborne, and V. Lavrenko, “Streaming First Story
Detection with appilcation to Twitter,” In Proceedings of NAACL, 2010.

[13] S. Petrovic, M. Osborne, and V. Lavrenko, “The Edinburgh Twitter
Corpus,” In Proceedings of NAACL Workshop on Social Media, 2010.

[14] T. Sakaki, M. Okazaki, and Y. Matsuo, “Earthquake Shakes Twitter
Users: Real-time Event Detection by Social Sensors,” In WWW2010,
2010.

[15] G. Salton and C. Buckley, “Term-Weighting Approaches in Automatic
Text Retrieval,” Information Processing and Management, vol. 24, no.
5, pp. 513-523, 1988.

[16] B. Shaparenko, R. Caruana, J. Gehrke, and T. Joachims, “Identify-
ing Temporal Patterns and Key Players in Document Collections,” In
Proceedings of the IEEE ICDM Workshop on Temporal Data Mining:
Algorithms, Theory, and Applications (TDM-05), pp.165-174, 2005.

[17] B. Sharifi, M. Hutton, and J. Kalita, “Experiments in Microblog Sum-
marization,” In NAACL-HLT 2010, Los Angeles, 2010.

[18] W. J. Wilbur and K. Sirotkin, “The Automatic Identification of Stop
Words,” Journal of Information Science, vol. 18, pp. 45-55, 1991.

[19] W. J. Wilbur and Y. Yang, “An Analysis of Statistical Term Strength
and its Use in the Indexing and Retrieval of Molecular Biology Texts,”
Computers in Biology and Medicine,vol. 26, no. 3, pp. 209-22, 1996.

[20] Y. Yang, T. Pierce, J. Corbonell, “A Study on Retrospective and On-Line
Event Detection,” In Proceedings of the 21st ACM SIGR, 1998.

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 15

SUMMER 2010 NSF REU 1

Combining Lexical Resources for Text Analysis of
Game Walkthroughs

Michael Billot, University of Colorado at Colorado Springs

Abstract—One approach to text analysis is motivated by a
desire to understand the actions that are most frequent within
a body of text. By analyzing words in the text, primarily verbs,
connections can be drawn to the actions that are described by the
words. The trouble is that single words can have many meanings
and evoke many different situations. For that reason, word sense
disambiguation software is a vital part of this project. Lexical
resources are also needed because they contain two major types
of information; the meanings behind words and the relationships
between meanings. Another resource needed by this project is
a part of speech tagger, which is used for extracting important
parts of speech to work with.

I. INTRODUCTION

MANY lexical tools have been developed to assist with
computational linguistics and natural language process-

ing. These tools often overlap with their capabilities, but they
differ greatly in the ways in which they structure their lexical
data. Also, they each have their own strengths and weaknesses.
Certain tools often don’t cover the same data as other tools.
Thus using two tools in conjunction can help populate sparsely
covered areas in either or both tools. Using them together may
mitigate disadvantages and weaknesses that occur in a single
tool. This projects approach to text analysis is based on the
assumption that multiple tools used in conjunction are more
powerful than any single tool by itself.

II. MOTIVATION

The purpose of this project is to process input text and
identify semantic trends, and then use those semantic trends to
help generate parameterized actions. Actions are represented
by WordNet senses of verbs. An example is the verb open,
which occurs fifty-three times in the text. The goal is to output
the actions that most frequently occur with the use of the
verb open. This is done for every verb that occurs in the
text. By doing so, we can produce a resource that dynamically
associates words with actions for a specific domain. A possible
advantage of this resource is to help disambiguate commands
into the actions, such as giving a command to a 3D agent.

III. RELATED WORK

Mihalcea et al. researched various implementations of the
PageRank Algorithm for word sense disambiguation, including
a combined method that also used the Lesk Algorithm [1].

Banerjee performed word sense disambiguation using Word-
Net and an adapted Lesk Algorithm. The implementation of
his approach comes across as being more simplistic than
disambiguation approaches presented in other papers. In the

end his disambiguation performance was relatively low in
comparison to others [2].

Agirre and Soroa delve into a personalized PageRank algo-
rithm (PPR) that mitigates certain words from having too high
of weights [3]].

Giuglea and Moschitti explore ways to connect FrameNet
and PropBank via VerbNet [4]. Their process revolves mostly
around the parameterized structure of the lexical tools. They
define relationships based on common parameterization.

Paziena et al. looked at ways to study verb relations by using
WordNet, VerbNet, and PropBank [5]. Their approach was
based on the combination of different relational knowledge
that each tool provides. WordNet provides verb sense relation-
ships. VerbNet, on the other hand, consists of verb-sense frame
knowledge. Their goal was to produce examples of verb pairs
that have semantic relations and specific predicate-argument
structures.

IV. APPROACH

This projects approach to performing verb analysis of text
is to combine different software and lexical resources. For
lexical resources, using their lexical data in combination will
strengthen the capabilities of each tool. The other software
will allow us to work with the lexical resources in new ways.

A. Domain Used

The selected domain for this project is video game walk-
throughs for The Legend of Zelda: Ocarina of Time. The
reasoning behind this is that the walkthroughs are freely
available online. Also the walkthroughs are full of commands
that tell the reader what to do. The action verbs within
these commands help the verb sense disambiguation process,
whereas sentences with many helping verbs make it more
difficult and complicated. Helping verbs are more difficult to
disambiguate because their usage in the sentence often does
not align well with senses in WordNet.

B. Tools Used

The tools used for this project include the lexical resources
WordNet and FrameNet. Another tool is a word sense disam-
biguator named UKB. Lastly, the Stanford NLP Part of Speech
Tagger is used.

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 16

SUMMER 2010 NSF REU 2

1) FrameNet: FrameNet categorizes the English lexicon
into semantic frames, which describe situations and the words
which compose them [6]. This relationship between a word
and a meaning is called a lexical unit. Frames are often
associated with multiple lexical units. Within the frame there
are frame elements, which are references to supporting frames.
Frame elements are divided into two categories: core and
non-core frame elements. Core frame elements are mandatory
parameters for a frame, and non-core frame elements are
optional constraints to the frame. Ultimately, semantic frames
correspond to situations, lexical units correspond to the words
that evoke those situations (often verbs), and frame elements
correspond to the syntactic dependents in a sentence.

2) WordNet: WordNet organizes words into structures
called synsets. Synsets encapsulate synonomous words and
inter-synset relationships [7]. These synset relationships point
to lexical relations of word form, as well as semantic relations
of word meaning. Types of relations include hypernymy,
hyponymy, antonymy, holonymy, and meronymy.

3) UKB Word Sense Disambiguator: UKB performs word
sense disambiguation by using an implementation of the
PageRank algorithm [8]. The PageRank algorithm works by
ranking nodes, which are normally websites. In this case the
nodes are WordNet senses. The reputation of each node is
affected by the reputations of nodes that point to it. Therefore,
a node with influential nodes pointing to it will have a stronger
influence on the nodes that it points to. The following image
does a good job illustrating this process.

4) Stanford NLP POS Tagger: The Stanford NLP POS
Tagger uses one of two models for English part-of-speech
tagging. The first is a model trained on sections 0 through
18 of the Wall Street Journal, uses a left3words architecture,
and is 88.85% correct on unknown words. The second model
is trained on the same WSJ sections, uses a bidirectional
architecture, and can correctly tag 90.46% of unknown words
[9]. Either model will be adequate for this project, yet the
model using the left3words architecture may be a better option
because it takes significantly less time to part of speech tag
sentences.

C. Steps

The two primary goals are to sense disambiguate verbs and
to align senses with frames. There are a few steps involved
to accomplish these two goals.

1) Part of speech tag each sentence in the text.
2) Extract parts of speech from the tagged sentences and
store verb frequencies and verb senses in memory
3) Generate context groups for each sentence that contain the
verbs, nouns, adjectives, and adverbs of a sentence.
4) Feed the context groups into a word sense disambiguator
to get the best verb senses.
5) For the verbs that occur in the text, align their senses with
frames in FrameNet.
6) Write the parsed information to a file. This info includes
verb frequencies, verb sense IDs, sentences, context groups,
and extracted parts of speech.

7) Load the parse information, verb disambiguation results,
and frame-sense alignment results into a GUI program to
review the results.

1) Word Extraction: After the sentence has been part of
speech tagged then the key words must then be extracted from
it. This collection of words essentially represents the sentence.
There are two types of undesirable collections of words. The
first is a sentence that has no verbs identified, either because
the part of speech tagger failed or it was never a complete
sentence to begin with. This type of sentence is useless because
it has no verb to disambiguate. Another undesirable case is
where there are less than three parts of speech in the sentence.
If there isnt enough contextual information, then verb sense
disambiguation cannot perform accurately. Otherwise, if there
is enough contextual information, then a context group is made
with the sentences parts of speech. The context groups are then
passed to the UKB word sense disambiguator.

2) Verb Sense Disambiguation: Word sense disambiguation
is performed solely on the verbs of the text. However, the
nouns, adjectives, and adverbs will help with this process.
UKB will perform verb sense disambiguation using graph-
based and lexical similarity methods using a pre-existing
WordNet knowledge base [8]. These methods are founded on
the PageRank algorithm, variations of which are explored by
Agirre and Lopez [10]. Verb sense disambiguation in particular
is more difficult and less accurate in comparison to nouns and
adjectives [3].

A primary goal of this project is to figure out methods to
increase the verb disambiguation performance. An example
would be to figure out what is keeping UKB from getting
the right answer. After finding what it needs to generate the
correct answer, the missing parts can be added to the context
group. This process is sort of like nudging UKB in the right
direction. Also, one could ask the reverse; what is leading it
to the wrong answer? There are sometimes words or word
relations that cause UKB to favor one sense. If these could be
identified, then they could be manipulated or removed. Lets
face it, WordNet has a very high level of granularity. This
causes it to have a surplus of word-sense relationships, some
of which contribute to improper sense disambiguation.

3) Frame-Sense Alignment: Frame-sense alignment in-
volves aligning verb senses with the FrameNet frames that
describe them. This process is not dependent on the results of
verb sense disambiguation, since frame alignment works with
all senses individually.

A method inspired by Burchardts frame assignment system
will be used. As Burchardt suggests, frame assignment may
not just involve a single word, but synonyms and hyper-
nyms of that word [11]. The first step involves generating
a set of WordNet relatives of the target sense, which in-
cludes synonyms, hypernyms, and antonyms. Each relative
word then helps score frames. If a relative word evokes a
frame, then that frame has the following added to its score:
(framesEvoked(relativeWord))

−1.
If a WordNet relative word evokes many frames, then it has

a higher probability of ambiguity. This is taken into account
by dividing by the number of frames evoked. Doing so renders

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 17

SUMMER 2010 NSF REU 3

ambiguous words to have less of an impact on the scoring of
frames. Therefore, relative words that evoke fewer frames are
more valuable in the scoring process.

To select the best frame, each frames scores are summed
up and the frame with the highest score is the winner. Other
methods that measure lemma relatedness to a frame are
experimented by Nuges and Johansson [12].

For certain verb senses there are not enough relative words
to deem the best frame. If there is no winning frame, then the
sense will be considered to be frameless. Another unique case
is where two or more frames tie. In this case all the frames
will be considered to be the best frames. Senses that perform
poorly in frame-sense alignment are in general less common
in English.

D. Output

The final output will show semantic information about
the input text. Most of the information will regard the verbs
within the text. Here is a list of the primary displayable data.

- Frequencies of verbs
- Frequencies of disambiguated verb-senses
- Frequencies of actual verb-senses
- Accuracy of verb sense disambiguation
- Best fit frames for each sense
- Pronunciation of words using dictionary.com

The processes of disambiguating verbs and aligning senses
to frames is very time consuming, especially for verbs that
have a high number of relationships in WordNet. For that
reason the project consists of two programs. The first is a
program that generates all the information, and the second is
a GUI program that displays it.

E. Metrics

There will be two main metrics used to assess the success
of the project. The first of which will examine the accuracy
of the verb-sense disambiguation. The second will examine
the accuracy of the frame-sense alignment.

1) Sense Disambiguation Metrics: In order to determine
the disambiguation accuracy one must manually tag each
instance of a verb with its real sense, if any. A disadvantage
to accuracy occurs because usually a verb is sense tagged by
a single person. A remedy would be to have multiple people
disambiguate the same sentence in order to assure a more
accurate metric. However, it is costly enough to sense tag each
verb by hand, so at this point each verb is sense tagged by
one person.

After all of the instances of a verb have been disambiguated
both by UKB and by hand, then we have the sense
disambiguation accuracy. The accuracy information includes
the percentage helping verbs with no fitting sense, and the
percentage of correct and incorrect disambiguated senses.
The following image is an example showing the results for

the verb see.

2) Frame Alignment Metrics: Frame alignment accuracy is
determined manually. If the best fit frame accurately matches
the action going on in the sentence, then it is deemed to be
correct. A better approach would be to use an existing mapping
between WordNet and FrameNet. Unfortunately, there are no
available mappings between their current versions, WordNet
3.0 and FrameNet 1.2.

The frame alignment metric provides an accuracy measure-
ment for each verb. It is designed to treat the more prominent
senses of a verb as being more important. The first sense of a
verb is always the most frequent according to sense annotated
data. Therefore, its correct frame alignment should be more
important than correctly aligning an uncommon sense.

Say a verb has a polysemy count of n. Its highest possible
score is 0.5

(
n2 + n

)
, which is equivalent to

∑n
i=1 i. If the first

and most common sense is aligned to the correct frame, then
it receives n points. If the second is correct, then it receives
n-1 points. If the least common sense is correct, it receives 1
point. The points a verb scores divided by its highest possible
score gives its sense-frame alignment accuracy.

V. RESULTS

The results to the projects experiments fall into two separate
areas. The first is sense disambiguation results and the other
is frame-sense alignment results.

A. Sense Disambiguation Results

Fig. 1. Average Personalized PageRank Verb-Sense Disambiguation Perfor-
mance

Sense disambiguation results are based off of an analysis
of the top ten most frequently occurring verbs. These verbs
are use, kill, hit, see, open, shoot, walk, find, and fall. There
are some verbs that are frequent but excluded from the

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 18

SUMMER 2010 NSF REU 4

results. One such verb is be, which is used as a helping verb
extensively. Other common verbs that are frequently used
as helping verbs frequently include get, go, and do. When
verbs are used as helping verbs they are usually difficult
to disambiguate because they dont always have a fitting
WordNet sense.

There are disambiguation results for six different methods.
Five of them use the Personalized PageRank algorithm
supplied by the UKB software. They differ in the way that
they construct context groups. The base method simply
disambiguates the verbs based on the verbs, nouns, adjectives,
and adverbs that are in the same sentence. The other methods
include WordNet relatives of the nouns in the context group.
These relatives are hypernyms, holonyms, and synonyms. A
final disambiguation method is called the first sense method.
It always assumes a verb is being used in its first sense.

There is a reason for using WordNet relatives of nouns.
Nouns are sometimes too vague or unrelated to the verb. The
hypernyms and holonyms of nouns could make the context
groups more descriptive. For example, in the text there are
many instances of the verb kill. The text usually talks about
killing monsters in game. Adding in hypernyms of what is
being killed may help the Personalized PageRank algorithm
develop a stronger connection to a specific sense of kill.

There are also disambiguation results from testing different
damping factors. The default damping value is 0.85, which
is the recommended value. However, changing the damping
value does produce some effects. The lower the damping
factor then the faster the iterations will converge on a
sense[13]. With a high damping factor, nodes will increase
their page rank more quickly. It will be interesting to see
how the damping factor influences sense disambiguation.

1) 5.1.1 Average VSD Performance of Different Methods:
The following graph shows the average sense disambiguation
accuracy of the six different methods. The methods are the
following:
1) Base: Context group consists only of verbs, nouns,
adjectives, and adverbs.
2) Hyp: Hypernyms of nouns are added to the context group.
3) Holo: Holonyms of nouns are added.
4) Hyp&Holo: Holonyms and hypernyms of nouns are added.
5) Syns&Hyper of Syns: Synonyms and hypernyms of
synonyms are added.
6) First Sense: The verbs first sense is always chosen.

Figure 1 shows that verb disambiguation performance does
not change drastically when adding WordNet relatives to
the context groups. In comparisson to the base results, the
addition of WordNet relatives created a 2.6% performance
increase at the most. The best performing methods, albeit a
small performance advantage, were the ones that included
hypernyms. On average, adding hypernyms caused a 1.8%
performance increase. Future tests will be done to test other
combinations of WordNet relatives. One particular test is

adding in WordNet relatives of the verb itself. Potentially,
a certain combination of WordNet relatives could cause a
performance increase a few percent higher.

One method with a staggering success rate is the first sense
method. This method performs so well because the first sense
is usually the most common by far. On average it performed
72.6% better than all the other methods. For this reason, it is
likely that a good apporach to verb sense disambiguation may
involve weighing the first sense of a verb more heavily than
the other senses.

Fig. 2. Damping Factor vs. Average Verb-Sense Disambiguation Accuracy

2) Damping Factor : Three different damping factors were
tested in addition to the default damping factor of 0.85. The
other tested values were 0.65, 0.95, and 1.0. The graph below
shows the average sense disambiguation performance of the
ten frequently occurring verbs.

It appears that the default damping factor for the personal-
ized pagerank algorithm may not be the best option for verb
disambiguation accuracy. Not even the documentation for the
software recommends using a different damping factor. The
documentation only mentions that the default damping factor
is 0.85. However, based of of the 14.1% increase between the
0.85 and 0.95, one can conclude that there is an optimum
damping factor.

The most accurate damping factor is not necessarily the
highest possible damping factor. The damping factor of 1.0
actually performed less accurately than the factor of 0.95. In
the future it would be nice to test a range of damping factors
with small increments of 0.01 or 0.02. That way an optimum
damping factor for a body of text could be identified. Other
text documents could be analyzed and their optimum damping
factors could be compared. Judging by the results expressed in
figure 2, the optimum damping factor is probably somewhere
around 0.95.

B. Frame Alignment Results

There are three different methods for performing frame-
sense alignment. All the methods are based off of using
different WordNet relatives of the senses. The three different
methods use the following WordNet relatives to score the best
frame. Note: frame-sense alignment will not be continued in

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 19

SUMMER 2010 NSF REU 5

Fig. 3. Frame-Sense Alignment Performance

future research. See the future research section for details.

Method 1: Synonyms, hypernyms
Method 2: Synonyms, hypernyms, hyponyms, antonyms
Method 3: Synonyms, hypernyms, hyponyms, antonyms,
holonyms, meronyms

The difference in accuracy between method two and method
one clearly shows an increase in frame-sense alignment per-
formance because of the additon of hyponyms and antonyms.
When comparing methods two and three, the results do not
demonstrate a significant impact because of the addition of
holonyms and merynyms. Upon further investigation, it looks
like verbs usually have no holonymy or meronymy relation-
ships.

VI. FUTURE WORK

In future work, there will be some drastic changes to this
project. First of all, sense-tagged text will be used. In the
event that there isn’t enough sense tagged text to produce
definitive results, then we may have to resort back to hand
tagging verb senses. There are a couple of sense-tagged
resources that could be good candidates for future resources.
The first is sense-tagged text from the Senseval3 competition
[13]. One potential problem is that this data is tagged using
WordNet 1.7 senses, and the most current version of WordNet
is 3.0. A mapping between WordNet 1.7 and 3.0 would have
to be used in order to effectively use this resource. Senseval
is currently in its firth competition. The fourth and fifth
competitions might also provide sense-tagged text. In end,
if there is not enough sense-tagged data to work with, then
hand tagging will have to be done.

Another change to the project is the exclusion of FrameNet
and frame-sense alignment. Frame-sense alignment was
originally included to assist with the long term goal of
parameterized action representation. However, that goal is
unachievable right now because of how inaccurate verb
sense disambigation is. For that reason, the sole approach
in the future will be to improve verb sense disambiguation
performance.

Future work will involve verb sense disambiguation using
the Personalized PageRank method provided by UKB. The
goal is to optimize Personalized PageRank’s as much as
possible. UKB also provides other word sense disambiguation
methods besides Personalized PageRank. Even though their
optimization is not a focus, their performance could also be
observed by applying the same changes made to Personalized
PageRank.

There are a few general ways to improve performance of
PPR. The first is to manipulate the input given to PPR, which
means changing the contextual information given to PPR.
Another way to improve performance is to adjust the options
of PPR, such as the damping factor and stopping threshold.
A final approach is to adjust the source code itself, such as
changing the way PPR applies initial weights.

For the manipulation of input, future tests will closely
resemble the previous ones. However, they will be more
thorough because they will incorporate tagged data. The
manipulation of input will still involve adding in WordNet
relatives. Other methods could be devised which remove
contextual words that are too distant from the target verb.
A more efficient metric will be developed to analyze the
results quickly so more tests can be done, in comparison
to the mere five tests already done. The adjustments of
PPR options will definitely look more deeply into using
different damping factors. Other options that will be explored
are different numbers of PageRank iterations, and different
stopping thresholds. Finally, adjustments to the source code
could involve any number of things. Currently I would like
to focus on having the program apply a higher weight to the
first sense of a verb. High weights could even be applied
to the first couple of sense for a verb, because the first few
senses are always the most common.

Once the adjustments are made and tested, then the best ad-
justments can be selected and combined. The best performing
contextual input format, damping factor, stopping threshold,
and first sense weighs will be combined together to achieve
higher verb sense disambiguation performance. This approach
is critically dependent on the higher weights of first senses.
If that implementation is successful, then performance rates
could be above 80%, considering that the first sense method
performed at about 77%. PPR performance above 80% would
be exciting because PPR baseline performance was only 43.8%
for this project. Agirre and Soroa’s PPR performance using
WordNet 3.0 lexical knowledge base was only 41.5%.

REFERENCES

[1] R. Mihalcea, P. Tarau, and E. Figa, “Pagerank on semantic networks,
with application to word sense disambiguation,” in COLING ’04:
Proceedings of the 20th international conference on Computational
Linguistics. Morristown, NJ, USA: Association for Computational
Linguistics, 2004, p. 1126.

[2] S. Banerjee and T. Pedersen, “An adapted lesk algorithm for word
sense disambiguation using wordnet,” in CICLing ’02: Proceedings of
the Third International Conference on Computational Linguistics and
Intelligent Text Processing. London, UK: Springer-Verlag, 2002, pp.
136–145.

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 20

SUMMER 2010 NSF REU 6

[3] E. Agirre and A. Soroa, “Personalizing pagerank for word sense disam-
biguation,” in EACL ’09: Proceedings of the 12th Conference of the
European Chapter of the Association for Computational Linguistics.
Morristown, NJ, USA: Association for Computational Linguistics, 2009,
pp. 33–41.

[4] A. Giuglea and A. Moschitti, “Knowledge discovering using framenet,
verbnet and propbank,” p. 6, 2004.

[5] M. T. Pazienza, M. Pennacchiotti, F. M. Zanzotto, and V. B. Arcimboldi,
“Mixing wordnet, verbnet and propbank for studying verb relations.”

[6] [Online]. Available: http://framenet.icsi.berkeley.edu
[7] [Online]. Available: http://wordnet.princeton.edu/wordnet
[8] [Online]. Available: http://ixa2.si.ehu.es/ukb
[9] [Online]. Available: http://nlp.stanford.edu/software/tagger.shtml

[10] E. Agirre, O. L. D. Lacalle, and A. Soroa, “Knowledge-based wsd on
specific domains: Performing better than generic supervised wsd.”

[11] A. Burchardt, K. Erk, A. Frank, A. Burchardt, K. Erk, and A. Frank,
“Lecture a wordnet detour to framenet.”

[12] R. Johansson and P. Nugues, “Using wordnet to extend framenet
coverage,” In Proceedings of the Workshop on Building Frame-semantic
Resources for Scandinavian and Baltic Languages, at NODALIDA,
Tartu, Estonia, May 24, 2007.

[13] [Online]. Available: http://www.senseval.org

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 21

Aligning Wiktionary With Natural Language Processing Resources

Ben Casses
Western Carolina University

Cullowhee, NC 28723
bncasses1@catamount.wcu.edu

Abstract

Recently, significant progress has been
made towards mapping various natural
language processing resources together in
order to form more robust tools. While
most efforts have gone towards connect-
ing existing tools to each other, recently
several projects have involved aligning
the popular NLP resources to open col-
laborative projects such as Wikipedia.
Such alignments are promising because
they link the specific but frequently
narrow NLP data to high coverage open
resources. This project explores the
effectiveness of some variations of the
Lesk Algorithm in connecting specific
Wikipedia senses to corresponding senses
in other NLP resources. The purpose
of this project is to present a potential
method of semiautonomous alignment
for Wiktionary that will serve to augment
other NLP resources.

1 Introduction

Existing natural language processing (NLP) re-
sources can be used in each step of the language
comprehension task. Some resources also contain
mappings to others. Since some extensive tasks like
language comprehension involve the use of multiple
resources, such mappings can be very useful. This
project will study some methods that may help to

reinforce or partially automate mappings between
some of these resources through the use of domain
based disambiguation and gloss comparisons as in
the Lesk Algorithm (Lesk, 1986). The following
introduces some of the popular NLP resources and
discusses their relative advantages.

1.1 FrameNet
FrameNet is a collection of semantic frames. It
contains detailed breakdowns of the function and
contextual meaning of a given verb along with
all possible participating semantic participants
and examples. FrameNet is organized into a
hypernym-hyponym hirearchy with more specific
terms inheriting structure from their hypernyms.
FrameNet’s exhaustive detail into semantic par-
ticipants makes it valuable for studying distance
relationships between frames. Robbery, for ex-
ample, inherits directly from Committing crime,
indirectly from Misdeed and uses Theft. 1

1.2 OntoNotes
OntoNotes is a collaborative project that aims to
produce “richer model of text meaning” (Hovy et
al., 2006). OntoNotes contains 2,445 verb entries
organized into different senses with brief definitions
and examples. OntoNotes is the most externally
connected of the sense based NLP resources, it con-
tains mappings to FrameNet, PropBank, VerbNet
and WordNet. 2

1http://framenet.icsi.berkeley.edu/
2http://verbs.colorado.edu/html groupings/

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 22

1.3 PropBank
PropBank contains information on 5,384 verbs.
Each verb entry is divided into different syntactic
structures based on common use. Structures are
subdivided into components referred to as argu-
ments. Propbank has value as a parsing and a
disambiguating resource. A verb in a given sentence
could be matched to one syntactic structure by its
surrounding arguments. Once matched, the roles of
the arguments are disambiguated according to the
roleset. PropBank contains mappings to VerbNet. 3

1.4 VerbNet
VerbNet is an online database of verbs. Verbs are
collected into 274 Levin (1993) style verb classes
containing relevant semantic and syntactic infor-
mation. The value of VerbNet lies in its depth of
study into its verb members and their relationships.
A given verb may be considered synonymous with
its fellow members and hyponymous to its class.
This can be useful for the purposes of translation
and comprehension if a given verb in VerbNet is not
understood but one of its fellow members is. Verb-
Net contains mappings to FrameNet, OntoNotes,
PropBank and WordNet.4

1.5 Wiktionary
The effectiveness of Wiktionary in NLP tasks has al-
ready been established by Zesch and Müller (2008).
At the time of this writing, English Wiktionary had
“1,813,199 entries with English definitions from
over 350 languages” (wik, 2010). The usefulness
of Wiktionary is in its open, collaborative nature.
Because anyone can contribute to Wiktionary, it is
far more encompassing than any project developed
by an individual or more structured group could
be. It is also current, while other dictionaries must
be revised and updated occasionally, Wiktionary
entries are constantly being appended as the nature
of the language changes. The author observed
the number of entries increasing by 20,000 over
a period of three weeks. Wiktionary’s advantage

3http://verbs.colorado.edu/propbank/framesets-english/
4http://verbs.colorado.edu/verb-index/index.php

can also be a disadvantage. Its open nature leads
to format inconsistencies between definitions that
make automated processing difficult. The potential
also exists for incorrect or deliberately misleading
entries such as those known to have occurred in
Wikipedia (Snyder, 2007) (Chesney, 2006).

1.6 WordNet

WordNet is a long term project hosted by Princeton
University. Entries in WordNet are organized
into parts of speech and distingushed by sense.
Wordnet is highly interconnected with each term
referring to related terms including hypernyms,
hyponyms, troponyms, frames and peers. Because
of its interconnectedness, WordNet is useful for
sense disambiguation. An unknown term could be
generalized to its hypernym, for example: if the
term “shuffle” is not understood, its hypernym,
“walk” may be. 5

2 Related Work

Several different mappings between existing NLP
resources already exist. Combinations of resources
have been created in different ways with most
projects involving multiple alignment techniques to
improve accuracy.

• Through common fields shared by both tools.
(Loper et al., 2007) (Pazienza et al., 2006)
(Giuglea and Moschitti, 2004)

• Through mutual restrictions, where a given en-
try in one database could match with a given
entry in another database, but restrictions pre-
vent this combination, thus narrowing the pos-
siblilities. (Shi and Mihalcea, 2005) (Loper et
al., 2007) (Giuglea and Moschitti, 2006)

• Through frequency analysis such as greatest
numbers of common synonyms. (Shi and Mi-
halcea, 2005) (Giuglea and Moschitti, 2006)
(Giuglea and Moschitti, 2004)

5http://wordnetweb.princeton.edu/perl/webwn

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 23

• Through supervised learning techniques where
connections are trained. (Loper et al., 2007)
(Giuglea and Moschitti, 2004)

• And through manual mapping of connections.
(Pazienza et al., 2006) (Shi and Mihalcea,
2005).

In general, these methods could be divided into three
categories: manual methods that require human
control, statistical methods that involve matching
around comparisons, and learning methods that
involve machine learning techniques.

Zesch and Gurevych (2010) compared the effec-
tiveness of several different semantic relatedness
analysis methods. They considered four distinct se-
mantic relatedness measures:

• Path based, where the distance between two
terms in a graph is considered edge counting.

• Information Content based, where the number
of documents containing both terms is consid-
ered.

• Gloss based, where the quantity of common
words in each term’s gloss is considered.

• Vector based, where vectors are constructed
from multiple documents and the frequency of
occurrence of the given term in each document
is considered.

Recently work has begun on mapping and utilizing
the collaborative resources such as Wiktionary and
Wikipedia. The Ubiquitous Knowledge Processing
Lab has developed api’s for both Wiktionary6 and
Wikipedia7 and made use of them as NLP resources
(Zesch et al., 2008).

3 Problem Definition

The task of aligning NLP resources involves several
issues. Each of the NLP resources considered in
the introduction have different strengths, but some
might be more difficult to align to Wiktionary or less

6http://www.ukp.tu-darmstadt.de/research/software/jwktl/
7http://www.ukp.tu-darmstadt.de/research/software/jwpl/

effective when combined. There are structural con-
cerns where two resources do not follow the same
layout or present the same information. There are
also potential problems where two resources do not
expose the same granularity. Only two resources
containing the same information could have a one-
to-one cardinality.

3.1 Structure and Organization
Not all of the NLP resources discussed in the
introduction follow the same structure. WordNet,
for example is categorized by frames where each
frame contains multiple syntactic structures with
interchangable member verbs. Entries in PropBank,
however, are centered around a specific predicate or
term and divided into usages.

Wiktionary is organized by term with each term
divided into different senses. It will be more
meaningful to map the Wiktionary senses to the
senses of another NLP resource that is organized
similarly. Of the resources organized in this way
that were discussed earlier, OntoNotes offers the
most advantages due to its interconnectedness. A
given Wiktionary sense mapped to OntoNotes could
be followed to each other resource that OntoNotes
is already connected to.

3.2 Granularity
Term-to-term matching is generally trivial, in-
volving only a mutual lookup for a given term.
Sense-to-sense mapping becomes more difficult
for several reasons. A sense-to-sense connection
between two different resources indicates that both
senses could be considered to be the “same”, but
the two senses will generally not contain the same
information. For example, one Wiktionary sense of
the verb make, “To indicate or suggest to be”, was
aligned to “cause to become, or to have a certain
quality” in OntoNotes even though both senses con-
tain different information. Additionally, because of
the different ways these resources were constructed,
they feature a different degree of granularity around
their terms. Arrive, for example, has three senses
in Wiktionary and one in Ontonotes. Granularity
differeneces indicate that the cardinality of this
mapping will be many-to-many.

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 24

3.3 Size

Wiktionary is a rapidly growing resource. With the
observation that on Wiktionary there may be up
to 1,000 new definitions added and many existing
definitions modified daily, manual mapping is not
a feasable method of alignment. Results would
quickly become incomplete or inaccurate. Since
it is universally editable, it is not guaranteed that
all Wiktionary entries follow the same layout. In
some cases formats are inconsistent, information
may also be missing, incorrect or presented out of
order. Inconstistency makes automated retrieval and
matching difficult.

4 Proposed Solution

Due to the differences in content and the lack of
existing connections, a gloss based method was
selected for aligning Wiktionary to OntoNotes. One
advantage of using a gloss method for comparison
is that it can act in a naı̈ve fashion. No sense content
need be understood or categorized, a sense is just
a “bag of words”. Even in occasions where sense
parsing does not work as anticipated due to format
inconsistency, for example, gloss comparisons will
not suffer significantly. A missed tag from one
resource, such as </title>, is highly unlikely to
have a correspondance in another resource.

The gloss comparison in this project will consider
common n-grams between the compared documents
or senses as an indication of similarity. Consider the
existence of the uncommon unigram lathe in table 1.

Wiktionary
turn: To shape (something) symmetrically by ro-
tating it against a stationary cutting tool, as on a
lathe.
OntoNotes
Shape by rotating, Examples: After purchasing
the wood, I ripped all the pieces to length, then
turned the legs on a motorized lathe.

Table 1: aligned Wiktionary 10 and OntoNotes 11

senses of turn

Lathe does not appear in any other senses from
either resource therefore it indicates a relationship
between these two senses.

5 Experiments

Two different experiments were performed, the first
involved comparing Wiktionary senses directly to
OntoNotes senses. Both experiments attempted
to determine the most appropriate sense-to-sense
mapping for fifteen verbs, show in table 2, that were
selected from three sets of driving directions from
Google Maps12, Yahoo Maps13 and MapQuest14.

For each comparison between two documents,
or one document and a corpus, a similarity value
was computed as the sum of the values of each
instance of each n-gram in common between the
two sources. The comparison with the greatest simi-
larity value was considered to be the correct choice.
Ties involving a correct answer were considered
incorrect as they did not effectively disambiguate.

5.1 Direct Method
Let N denote the set of senses {N1, N2, N3, ..., Nj}
for a given term in OntoNotes and let W denote
the set of senses {W1, W2, W3, ...,Wk} for the
same term in Wiktionary. The matching senses
are those with the greatest similarity. To compute
similarity, let each sense Sa from W and N contain
a set of n-grams {Sa1, Sa2, Sa3, ..., Sap}. The
similarity between two glosses is equal to the sum
of the values of the intersection of their terms.
SimNx,Wy =

∑

r∈I

V (r) where I = Nx ∩ Wy and

V is a value filter discussed in 5.4. This process
derived a closest match x ∈ N for each sense
y ∈ W .

5.2 Transitive Method
The second method, the transitive comparison,
involved first comparing glosses for a given term
from Wiktionary, W and OntoNotes, N to a set

12http://maps.google.com/
13http://maps.yahoo.com/
14http://www.mapquest.com/

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 25

of n-grams in a domain specific corpus C. As
with the previous method, similarity scores were
calculated based on the values of the intersection of
terms, but in this case, a best similarity score was
derived separately for OntoNotes and Wiktionary,
SimNx =

∑

r∈I

V (r) where I = Nx ∩ C and

SimWy =
∑

r∈I

V (r) where I = Wy ∩ C. The

senses Nx and Wy with the greatest similarity
scores to C were considered the correct sense for
the domain and matched to each other. This process
derived a single closest disambiguated sense pair
(y ∈ W, x ∈ N) for each term.

arrive avoid bear
become continue enter

go head keep
make merge start
take turn welcome

Table 2: driving verbs

The Wiktionary source text was downloaded from
a publicly available data dump 15. The OntoNotes
source text was gathered from the OntoNotes 16 site.

5.3 Testing
Volunteers were initially asked to select only the
most appropriate sense to the driving domain from
Wiktionary and OntoNotes for each of the fifteen
verbs in table 2. Of the thirty selections, the vol-
unteers were found to be in agreement on a single
sense only 58% of the time. Because this amount
of disagreement either indicates a many-to-one
correspondance or some incorrect selections by the
volunteers, it was decided that further disambigua-
tion was necessary for testing. The volunteers were
combined into a single group and asked to decide
on a most appropriate sense or more than one in the
case of a deadlock. The volunteers were then asked
to select the most appropriate OntoNotes sense for
63 additional senses in Wikipedia from the fifteen
verbs.

15http://dumps.wikimedia.org/enwiktionary/latest/
16http://verbs.colorado.edu/html groupings/

After the committee decisions, there were only
two situations that involved one Wiktionary sense
mapping to multiple OntoNotes senses. For analysis
in these cases, each of the selected OntoNotes
senses was considered to be equally correct, that is,
if the sense programmatically determined to be the
most approprite matched any of the correct senses,
it was considered a success.

There was one trivial situation where a term
had only one sense. The verb arrive had only one
OntoNotes sense, making determination trivial and
potentially skewing results, therefore there were 72
non-trivial determinations to be made in the direct
gloss comparisons and 30 determinations to be
made in the transitive comparisons.

5.4 Filters

To avoid false matches from insignificant, common
words such as the, of, is, a word frequency list was
formed from the Wiktionary data dump. First, all
tags were removed leaving only text. Next, a list
of the frequency of appearance of each individual
word was created. This list was used to construct
two filters. The first filter, gentle assigned a value
v = −Log2

f
F+1 to a given term found f times in

Wiktionary where the greatest frequency for any
word was F . The second filter, severe, was created
to determine if more restrictive scoring achieved
any better results. Values for the second filter were
set to v = −Log2

f ·20
F+1 and assigned to 10−10 if zero

or less.

Two different metrics were explored for evaluat-
ing n-grams. The first was the sum of the values
of the terms V = v1 + v2 + ... + vn, the second
was a geometric mean, V = n

√
v1 · v2 · ... · vn. In

both cases, the filters created greater emphasis on
n-grams containing rare words. This allowed the
trigram the cat is, for example to be slightly more
significant than cat alone but not as significant as
sneaky orange cat. Only unigrams, bigrams and
trigrams were counted.

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 26

5.5 Direct Comparison
The direct comparisons involved evaluating a given
sense in Wiktionary against each sense for the
same term in OntoNotes. Within Wiktionary, for
example, there are 13 senses for the verb make.
Each of these senses was compared to the 17 senses
for make in OntoNotes. For each Wiktionary sense,
the sense pair with the greatest similarity value was
considered to be the correct mapping, so for make
there were 13 possible correct mappings. These
results were compared to the direct comparisons
made by the volunteers.

5.6 Transitive Comparison
The transitive comparisons involved evaluating
each sense from a given resource against a domain
specific corpus for disambiguation assistance. Only
the domain relevant sense decided by the volunteers
was considered to be the correct answer, so there
was only one correct sense for each verb in each
resource.

Two corpora were created for testing transitive
comparisons. The first was formed from the sources
for the 15 verbs, driving directions from Google,
MapQuest, and Yahoo Maps. The second corpus
was created from Google searches for “driving
+turn +go +keep +bear”.

6 Results

For each method, the results were considered
compared to the volunteer selections. If the sense
pair with the greatest similarity score matched the
sense pair selected by the volunteers, the matching
was considered correct.

6.1 Direct Comparison Results
For the direct comparisons, there were 72 non-trivial
matches. Four sets of experiments were performed:
Sum n-gram and Geometric Mean n-gram evalu-
ations were performed with the gentle and severe
filters. Although they resulted in slightly different
sets of correct answers, neither evaluation or filter
method did significantly better. Results are shown

in table 3 as accuracy percentages out of 72 possible
matches.

For a baseline comparison, a naı̈ve selection was
developed that involved matching all Wiktionary
senses to the first OntoNotes sense for a given term.
The naı̈ve achieved 35% accuracy.

Sum Eval Geom Mean
gentle 46% 46%filter
severe 47% 46%filter

Table 3: Direct Comparisons

6.2 Transitive Comparison Results
For the transitive comparison, there were 29
non-trivial matches. Eight comparisons were per-
formed. Sum n-gram and Geometric Mean n-gram
evaluations were performed with the gentle and
severe filters in comparisons to both corpora. In the
transitive case, the severe filter performed slightly
better than the gentle filter. Results are shown in
table 4 as accuracy percentages out of 29 possible
matches.

A naı̈ve method, selecting the first sense was used
for a baseline comparison to the transitive method.
The naı̈ve method achieved 48%.

original Sum Eval Geom Meancorpus
gentle 48% 48%filter
severe 48% 52%filter
Google Sum Eval Geom Meansearch
gentle 48% 48%filter
severe 62% 59%filter

Table 4: Transitive Comparisons

Discarding all but the most effective methods,

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 27

these results, 47% and 62% can be compared to
(Lesk, 1986) 50%-70% and (Banerjee and Pedersen,
2002) 25% for verbs and 74%-78% for (Kilgarriff
and Rosenzweig, 2000).

7 Problems

Although each method performed as good as or
better than naı̈ve selection, 72 potential matches
among 15 verbs may not be enough to make any
determination about the validity of the hypothesis.
Further tests are needed to reinforce the effective-
ness of these methods.

Some OntoNotes senses were troublesome for
gloss comparisons. The fifteenth sense of go, for
example, “miscellaneous idioms...” is a catch-all
sense containing more text, therefore more inadver-
tent matches, than other senses. The seventeenth
OntoNotes sense of make, “other verb particle
constructions”, is informative to a human reader, but
contains little information for gloss comparisons.

It is likely that a single document may use the
same word in two different senses. While this was
not the case with the transitive comparison corpora
used, it could cause confusion in future experiments.

8 Conclusion

These results are far better than random, 28% for
transitive and 46% for direct comparison. The
most accurate mapping method found was 62%
for the severe filter sum evaluation on the Google
search corpus. While both the direct and transitive
methods achieved results slightly better than their
corresponding naı̈ve methods, 14% and 17% better
respectively, the results are not strong enough to
regard these experiments as effective stand alone
semiautonomous alignment methods.

It appears that the neither method of evaluating
n-grams performed significantly better at disam-
biguating. It is possible that false matches, n-grams
that correspond to the incorrect sense, were more
significant to the outcome than evaluation methods.
This could explain why changing the filter caused
more of a difference than changing the evaluation

method.

9 Future Work

A larger selection of verbs to disambiguate should
help to better establish the accuracy of this method.
Additionally, a different domain for transitive
comparisons would further prove the possibilities of
this method.

The value of the most likely sense, whether cor-
rect or not, often stood out strongly from the other
senses, sometimes differing in value by an order
of magnitude. This could indicate that the analysis
method may be “fooled” by false matches. If these
false matches could be isolated and disregarded
somehow, results might improve.

The corpus, in the case of the transitive mapping,
also caused some false matches, for example, the
phrase “crossing into NEBRASKA” in the corpus
and the example ...water turned into ice... in
OntoNotes caused turn to match to the become
sense in one experiment. Issues like these might be
resolved by scaling the values of n-grams based on
their distance in the document from the term being
considered. The text corpus for comparison could
be refined to a domain keyword list which would
eliminate some extraneous terms.

The severe filter, which performed better than
the gentle filter, was created after the gentle filter
in response to the determination that insignificant
words still had too much influence. Perhaps a
stronger filter could produce better results.

There are several possiblities for augmenting
this gloss comparison method. Second order
comparisons as used by (Banerjee and Pedersen,
2002) might be beneficial. Additionally, it has been
suggested that syntactic limitations from a given
sense could be considered in disamgibuation.

Verbs containing troublesome senses as men-
tioned in the Problems section cannot be aligned
through gloss comparisons. In future experiments,
such verbs should be discarded from the test set.

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 28

References
Satanjeev Banerjee and Ted Pedersen. 2002. An adapted

lesk algorithm for word sense disambiguation using
wordnet. pages 117–171.

Thomas Chesney. 2006. An empirical examination of
wikipedias credibility.

Ana-maria Giuglea and Ro Moschitti. 2004. Knowledge
discovering using framenet, verbnet and propbank.

Ana-maria Giuglea and Ro Moschitti. 2006. Semantic
role labeling via framenet, verbnet and propbank. In
In Proceedings of COLING-ACL.

Eduard Hovy, Mitchell Marcus, Martha Palmer, Lance
Ramshaw, and Ralph Weischedel. 2006. Ontonotes:
the 90% solution. In NAACL ’06: Proceedings of
the Human Language Technology Conference of the
NAACL, Companion Volume: Short Papers on XX,
pages 57–60, Morristown, NJ, USA. Association for
Computational Linguistics.

Adam Kilgarriff and Joseph Rosenzweig. 2000. Frame-
work and results for english senseval.

Michael Lesk. 1986. Automatic sense disambiguation
using machine readable dictionaries: how to tell a pine
cone from an ice cream cone. In SIGDOC ’86: Pro-
ceedings of the 5th annual international conference on
Systems documentation, pages 24–26, New York, NY,
USA. ACM.

Beth Levin. 1993. English Verb Classes and Alter-
nations: a preliminary investigation. University of
Chicago Press, Chicago and London.

Edward Loper, Szu ting Yi, and Martha Palmer. 2007.
Combining lexical resources: Mapping between prop-
bank and verbnet. In In Proceedings of the 7th Inter-
national Workshop on Computational Linguistics.

Maria Teresa Pazienza, Marco Pennacchiotti, Fabio Mas-
simo Zanzotto, and Via B. Arcimboldi. 2006. Mixing
wordnet, verbnet and propbank for studying verb rela-
tions.

Lei Shi and Rada Mihalcea. 2005. Putting pieces to-
gether: Combining framenet, verbnet and wordnet for
robust semantic parsing. In Alexander F. Gelbukh, ed-
itor, CICLing, volume 3406 of Lecture Notes in Com-
puter Science, pages 100–111. Springer.

Johnny Snyder. 2007. Its a wiki-world utilizing
wikipedia as an academic reference.

2010. Wiktionary english version main page.

Torsten Zesch and Iryna Gurevych. 2010. Wisdom of
crowds versus wisdom of linguists - measuring the se-
mantic relatedness of words. Natural Language Engi-
neering, 16(01):25–59.

Torsten Zesch, Christof Mller, and Iryna Gurevych.
2008. Using wiktionary for computing semantic re-
latedness. In In Proceedings of AAAI.

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 29

FINAL PAPER FOR UCCS REU 2010 1

Event and Temporal Information Extraction towards
Timelines of Wikipedia Articles

Rachel Chasin
Department of Computer Science

University of Colorado at Colorado Springs
Colorado Springs, Colorado 80918

Abstract—This paper explores the task of creating a timeline
for historical Wikipedia articles, such as those describing wars,
battles, and invasions. It focuses on extracting only the major
events from the article, particularly those associated with an
absolute date. Existing tools extract all possible events, while
we write tools to identify time expressions and anchor them in
real time. From this set of all events, we identify the major
ones using a classifier. We then place these events on a timeline
and label them with a time interval as small as possible. The
timeline is integrated into an online user interface that displays
named entities for each event and finds its locations on a map;
we separately list named entities and locations mentioned in the
article but not around any event.

I. INTRODUCTION

EVENT and temporal information extraction from plain
text is a crucial task for natural language processing and

knowledge management, particularly in the tasks of summa-
rization and question-answering. Topic summarization must
pick out the important events in one or more stories to yield the
best summary with the least extraneous information. Question-
answering tools must be able to answer queries about dates,
durations, and even relative times, whether in natural language
or with a set query type (“When did the Civil War end?”, “How
long was the Battle of Gettysburg?”, “How many years were
between the Civil War and World War I?”).
The possible domains for temporal information extraction

are numerous and varied; it is especially useful in the news
domain and for patient reports in the medical domain. This
paper discusses its use in documents that describe historical
events. The problem it addresses can be roughly broken down
into two large components: extracting only important events,
and relating them via the temporal expressions in the document
so they can be viewed on a timeline.

II. RELATED RESEARCH
Even setting aside the problem of automating the process,

identifying and representing the temporal relations in a doc-
ument is a daunting task for humans. Several structures have
been proposed, from Allen’s 1983 interval notation and 13
relations [1] and variations on it using points instead, to a con-
straint structure for the medical domain in [2] (patient hospital
reports). The most recent way to represent the relations is a
set of XML tags called TimeML.

Rachel Chasin is an undergraduate at Massachusetts Institute of Technology,
Cambridge, MA, 02139 e-mail: rchasin@mit.edu.

Software has been developed ([3], [4]) that identifies events
and time expressions, and then generates relations among
them. Events generally consist of most verbs in the document,
but also include some nouns. The link generation is done
differently depending on the system, but uses a combination
of rule-based components and classifiers.
Research on event extraction has often focused on identify-

ing the most important events in a set of news stories ([1], [5]).
The advantage of this domain is that important information is
usually repeated in many different stories, all of which are
being examined. This allows algorithms like TF-IDF to be
used. In this Wikipedia project, there is only one document
per specific topic, so these algorithms cannot be used. There
has also been research into classifying events into specific
categories and determining their attributes and argument roles
by [6] (submitted to the ACE task in 2005). Another issue
addressed by the ACE task is event coreference, determining
which descriptions of events in a document refer to the same
actual event.

III. OUR APPROACH
The task of making a timeline for a Wikipedia article lends

itself well to separation into two subtasks - identifying whether
an event is important or not, and putting these events on a
timeline. We focused on each of these separately. After the
timeline data was generated, we used the existing software
Simile1 to graphically represent it, and worked with a group
researching the identification and mapping of geospatial enti-
ties to combine the two visualizations.

A. Important Events
For determining important events, we first run the EVITA

program2 described in [7] on the article, which labels all
possible events in the TimeML format. Specifically, it places
XML “EVENT” tags around single words defining events;
these may be verbs or nouns, as seen in Figures 1a and 1b.
Each event has a class; in this case, “fought” is an occurrence.
Other classes include states and reporting events. For our
purposes, occurrences will be the most important because
those are the kinds of events generally shown on timelines.

1Simile was originally authored by David Franois Huynh and is available
at http://www.simile-widgets.org/timeline/.
2The entire TARSQI Toolkit is freely downloadable upon email request;

see: http://timeml.org/site/tarsqi/toolkit/download.html

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 30

FINAL PAPER FOR UCCS REU 2010 2

EVITA recognizes events by first preprocessing the document
to tag parts of speech and chunk it, then examining each
verb, noun, and adjective for linguistic (using rules) or lexical
(using statistical methods) properties that indicate it is an
event. Instances of events also have more properties that help
temporal relations to be established in later processing steps;
these properties include tense and sometimes modality.

Portion of an article with events tagged by EVITA (words
followed by e i)

The Battle of Fredericksburg, <EVENT
class="OCCURRENCE" eid="e1">fought</EVENT>
in and around Fredericksburg, Virginia [...]

Figure 1b: A portion of the XML representation of Figure 1a.

For this task, an event is considered to be the sentence
containing it. These sentences will eventually be used as the
text for each event on the timeline. Each event/sentence is
classified as important or not using a classifier trained with
a set of mostly word-level and sentence-level features. On
the first attempt at classification, one classifier used numerical
features and another used purely binary features, translating
the former into the latter by putting them in or out of ranges.
The numerical classifier used 16 features and the purely binary
one used 19. The numerical classifier’s features are listed in
Table 1 and the purely binary classifier used the same ones
with numerical features split into ranges. Many features had to
do with the characteristics of the event word in the sentence
(part of speech, grammatical aspect, distance from a named
entity, etc.) or the word by itself (length). Some had to do with
the sentence as a whole (for example, presence of negation and
presence of digits).
Two were also related to the article as a whole - position

of the sentence in the document, and similarity of the event
word to article “keywords.” These keywords were taken as the
first noun and verb or first two nouns of the first sentence of
the article. These were chosen because the first sentence of
these historical narratives often sums up the main idea and
will often therefore contain important words. In the articles
of our corpus, these are often “war,” “conflict,” or “fought,”
for example. An event word’s similarity to one of these words
may having a bearing on its importance. The decision to use
two keywords helps in case one of the words is not a good
keyword; only two are used because finding similarity to a
keyword is expensive in time. Similarity is measured using
the ”vector pairs” measure from the WordNet::Similarity Perl
module, proposed in [8]. This calculates the similarity of the
vectors representing the glosses of the words to be compared.
This measure was chosen because it was one of the few that

can calculate similarity between words from different parts of
speech, which was necessary for this feature.

Important Event Classifier Features, version 1
Distance (characters) from nearest named entity
Digit presence in sentence
Negation presence in sentence
Position (by token) of event word in sentence
Position of sentence in article
Length of event word
Similarity of event word to keywords
Event word is capitalized
Event word is noun
Event word is verb
Event word is in past tense
Event word is in infinitive
Event word has no tense (for nouns)
Event word has perfective aspect
Event word has positive polarity
Event word is of the event class ”occurrence”

Table 1: A list of features for classifying events as important
or not

Upon training and testing, SVMs using these features per-
formed poorly, particularly in precision (see Experiments), so
we altered the approach. Because events are considered to be
the sentences containing them, that is, we are trying to decide
which sentences are important based on the events EVITA
extracts from them, we changed the set of features to apply
to sentences. The new set of features discarded some features
that did not make sense to apply to the sentence; included the
same sentence-level features as well as some new ones; and
changed some word-level to sentence-level features by adding,
averaging, or taking the maximum of the word-level features
for each event in the sentence. The new features can be seen
in Table 2.
The most different feature added was a feature based on

TextRank ([9]), an algorithm developed by Mihalcea that
ranks sentences based on importance and is used in text
summarization. TextRank works using the PageRank algorithm
developed by Google. While PageRank works on web pages
and the links among them, TextRank treats each sentence
like a page, creating a weighted, undirected graph whose
nodes are the document’s sentences. Edge weights between
nodes are determined using a function of how similar the
sentences are. After the graph is created, PageRank is run
on it which ranks the nodes in order of essentially how
much weight points at them (taking into account incident
edges and the ranks of the nodes on the other sides of these
edges). Thus sentences that are in some way most similar
to most other sentences get ranked highest. We wrote our
own implementation of TextRank with our own function for
similarity between two sentences. Our function automatically
gave a weight of essentially 0 if either sentence was shorter
than a certain threshold (we chose 10 words). For all others, it

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 31

FINAL PAPER FOR UCCS REU 2010 3

calculated the “edit distance” between the sentences, treating
words (rather than characters) as the units to be compared and
calling two words equal if their stems are equal. The similarity
was then chosen as the sum of the sentence lengths divided
by their edit distance.
Named entities were also considered more important to the

process than before. Instead of just asking if the sentence
contained one, the some measure of the importance of the
named entity is calculated and taken into account for the
feature. This is done by counting the number of times the
named entity is mentioned (people being equal if their last
names are equal, and places being equal if their most specific
parts are equal). This total is then normalized for the number
of named entities in the article.

Important Event Classifier Features, final version
Presence of an event in the perfective aspect
Percent of events in the sentence with class “occurrence”
Digit presence
Maximum length of any event word in the sentence
Sum of the Named Entity ‘weights’ in the sentence
(NE weight being the number of times this NE was
number of mentioned in the article divided by the
all NE mentions in the article)

Negation presence in the sentence
Number of events in the sentence
Percent of events in the sentence that are verbs
Position of the sentence in the article normalized by the
number of sentences in the article

Maximum similarity (as previously described) of any event
word in the sentence

Percent of events in the sentence that are in some
past tense TextRank rank of the sentence in the article,
divided by the number of sentence
in the article

Number of “to be” verbs in the sentence

Table 2: A final list of features for classifying events as
important or not

B. Temporal Relations
The rest of TTK creates event-event and event-time links

(called TLINKs). Times are identified by GUTime, another
part of the toolkit, which marks them with “TIMEX3” XML
tags. These include attributes like type of expression (DATE,
TIME, etc.) and value (when possible to tell). A time identified
in Figure 1a was “1862.” Some events, then, will be anchored
to time expressions, and some to other events. These are
represented by the TLINK XML tag, which has attributes like
the type of relation. There are other links, called SLINKs,
that describe modal relations between events, but these are
not as relevant to the task, though perhaps useful for filtering
out events that get tagged but do not actually happen in
the narrative (ex. what someone thought would happen). An
example of each kind of TLINK is shown in Figure 2. The

first represents that fact that the event with ID 1 is related to
the time with ID 3 by “before”; the second also represents
“before,” between events 5 and 6.

<TLINK eventInstanceID="ei1" lid="l9"
origin="CLASSIFIER 0.995194" relType="BEFORE"
relatedToTime="t3"/>
<TLINK eventInstanceID="ei5" lid="l10"
origin="CLASSIFIER 0.999577" relType="BEFORE"
relatedToEventInstance="ei6"/>

Figure 2: Two TLINKs.

In fact, almost all the TLINKs we encountered when trying
out the TTK linking program were “before” links, and they
gave little to no more information reiterating the order of the
events in the text. While this is generally accurate, since it can
be done without the program, we decided not to use TTK for
the temporal relation processing.
As a step before beginning this work, we tried a simple

approach just using regular expressions to extract times. The
results of using extensive regular expressions versus using the
GUTime part of the TTK showed that the regular expressions
pull out many more (complete) dates and times. For example,
in Figure 1a, GUTime only finds 1862, while the regular
expressions would find a range from December 11 1862 to
December 15 1862. Because of this, we decided to use our own
program based in regular expressions rather than GUTime. A
flaw present in our program and not in GUTime is its ability
to only pick out one time expression (point or interval) per
sentence. This is consistent with our current view of events as
sentences, although it would arguably be better to duplicate
the sentence’s presence on a timeline while capturing all time
expressions present in it. We do not think it would be overly
difficult to implement this change although it might cause
problems for the extraction of expressions that have parts that
can be far away from each other in the sentence.
GUTime also attempts to compute real values for the times

in the ISO8601 standard, but usually does it in relation to the
document creation time; this is useful for news articles, for
which a creation time is provided, but is detrimental in our
case, as it assumes the current date. Instead, to anchor time
expressions to real times - specifically to a year - we have
used a naive algorithm that chooses the previous anchored
time’s year. We heuristically choose the most probable year
out of the previous anchored time’s year and the two adjacent
to it by looking at difference in the month, if it is given.
For example, a month that is more than five months earlier
than the anchoring’s time’s month is probably in the next year
rather than the same year (with “The first attack occurred in
December 1941. In February, the country had been invaded,”
it is probably February 1942). In addition to the year, if the
time needing to be anchored lacks more fields, we fill them
with as many corresponding fields from the anchoring time as
it has.
Each time expression extracted is considered to have a

beginning and an end, at the granularity of days (though we
do extract times when they are present). Then the expression
“December 7, 1941” would have the same start and end point,

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 32

FINAL PAPER FOR UCCS REU 2010 4

while the expression ”December 1941” would be considered
to start on December 1 and end on December 31. Similarly,
modifiers like “early” and “late” change this interval according
to common sense; for example, “early December” corresponds
to December 1 to December 9. While these endpoints are
irrelevant to a sentence like, “The Japanese planned many
invasions in December 1941,” it is necessary to have exact
start and end points in order to plot a time on a timeline.
Thus while the exact start and end days are often arbitrary for
meaning, they are chosen by the extractor.
Some expressions cannot be given a start or end point at all.

For example, “The battle began at 6:00 AM” tells us that the
start point of the event is 6:00AM but says nothing about the
end point. Any expression like this takes on the start or end
point of the interval for the entire event the article describes
(for example, the Gulf War). This interval is found by choosing
the first beginning time point and first ending time point that
are anchored directly from the text, and is logically probable
to find the correct span. While this method is reasonable for
some expressions, many of them have an implicit end point
somewhere else in the text, rather than stretching until the end
of the article’s event. It would likely be better to instead follow
the method we use for giving times to sentences with no times
at all, described below.
After initial extraction of time expressions and finding a

tentative article span, we discard times that are far off from
either end point, currently using 100 years as a cutoff margin.
This helps avoid times that are obviously irrelevant to the
event, as well as expressions that are not actually times but
look like they could be (for example, “The bill was voted down
166-269” which looks like a year range). We also discard
expressions with an earlier end date than start date, which
helps avoid the latter problem.
Despite the thoroughness of the patterns we look for in

the text, the majority of sentences still have no times at all.
However, they may still be deemed important by the other part
of our work, so must be able to be displayed on a timeline.
Here we exploit the characteristic of historical descriptions
that events are generally mentioned in the order in which they
occurred. For a sentence with no explicit time expression, the
closest (text-wise) sentence on either side that does have a
time expression is found, and the start times of those sentences
are used as the start and end time of the unknown sentence.
There are often many unknown sentences in a row; each
one’s position in this sequence is kept track of so that they
can be plotted in this order, despite having no specific date
information past the interval, which is the same for them all.
Sometimes the start and end time we get in this manner are
invalid because the end time is earlier than the start time. In
this case, we look for the next possible end time (the start
time of the next closest sentence with a time expression). If
nothing can be found, we use a default end point. This default
end point is chosen as the last time in the middle N of the
sorted times, where N is some fraction specified in the program
(currently chosen as 1/3). We do this because times tend to
be sparse around the ends of the list of sorted times, since
there are often just a few mentions of causes or effects of the
article’s topic.

IV. EXPERIMENTS

A. Important Events

Given tagged data, the “important event extraction” was
simple to test since it is a classification problem. It required
a set of Wikipedia articles that were hand-tagged as to
whether each event word identified by EVITA was part of an
important event. An event word being part of an important
event meant that the sentence containing it was important
and that it contributed to this importance. Because there is
no good objective measure of importance (except, perhaps,
presence on a manually generated timeline from some other
source), we asked multiple volunteers to tag the articles to
avoid bias. The subjectivity was a real problem, however.
We gave the annotators guidelines for what events were and
were not important, but there was still a lot of confusion and
disagreement. The most basic guideline was to judge whether
you would want the event on a timeline of the article. Other
guidelines included to not tag it if it was more of a state than
an action, and to tag all event words that referred to the same
event. Each article was annotated by more than one person so
that disagreements could be resolved using a majority vote.
There were 13 articles annotated in total and the breakdown
of numbers of annotators was: 1 article annotated by 5 people,
4 articles annotated by 4 people, 6 articles annotated by 3
people, and 2 articles annotated by 2 people.
Originally, different words tagged as events by EVITA were

considered different events even if they were in the same
sentence. During this stage, an event was labeled important
for the classifier if at least half of its annotators tagged it
as such. Inter-annotator agreement was calculated pair-wise
and averaged over all pairs of annotators of an article. One
annotator’s tagging was taken as ground truth, and each other
annotator’s accuracy measures were calculated against that.
Over all articles, all “ground truth” annotators for that article,
and all annotators compared against them, the average F1-
score was 42.6%, indicating great disagreement.
An SVM using a radial basis function kernel was trained

on 11 articles, with 2 left for testing. This yielded precision,
recall, and f-measure scores. The 11 training articles consisted
of 5602 event words and the 2 testing articles consisted of 3227
event words (1503 and 1724). The SVM was trained with the
LIBSVM software ([10]) using a binary classifier with a radial
basis function kernel. The parameters for the kernel and cost
constant were found with one of LIBSVM’s built-in tools.
After the initial training and testing, the SVM simply

performed as a majority-class classifier, since the number of
negative examples - events tagged as unimportant - grossly
outnumber the positive examples. This obviously yielded high
accuracy and high precision, but almost 0 recall.
Two common methods for combatting sample inequality of

classes were considered and tried. One was SMOTE ([11]),
Synthetic Minority Over-sampling Technique, presented by
Chalwa in 2002. This technique reads in positive examples
and creates artificial positive examples close to the real ones.
This is better than simple oversampling because it creates
different points rather than repeating the same points (although
it does end up doing some repetition). We used SMOTE to

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 33

FINAL PAPER FOR UCCS REU 2010 5

generate enough new positive examples so that the numbers
of positive and negative examples were approximately equal
for each article. The other method to prevent simple majority-
class classification was weighting the costs of misclassifying
positive and negative examples differently. By penalizing
misclassified positive examples more than negative ones, the
SVM gets trained to make fewer of those errors, increasing
recall at the expense of precision. Following [12], we tried
both of these methods together, but found that oversampling
with SMOTE in addition to having different costs ended up
with slightly lower scores. Further, for the numerical feature
SVM (as opposed to the pure binary feature SVM), the best
cost ratio with oversampled data was just 1. The precision-
recall data points for different conditions are given in Figure
3. The different data sets represent the two test articles, each
compared with predictions from an SVM that was or was not
(“unsmoted”) trained on oversampled data.
The results of testing the modified SVM showed low

precision and medium to high recall. For the SVM with binary
features, the best case was with data that was not oversampled,
using a positive example cost to negative example cost ratio
of 3. The average F-score between the two testing articles was
33.4% in this case, with precisions of 22.0% and 25.8%, and
recalls of 54.0% and 56.8%. The SVM with numeric features
performs similarly, with the highest average F-score being
33.3% on data that was not oversampled with a cost ratio
of 2. The precisions for this are 29.0% and 27.8%, and the
recalls are 40.9% and 39.5%.
We thought these low scores partially stemmed from the

fact that annotators may have considered the same sentences
important but tagged different event words within them, thus
not giving accurate test data. Since we had told them to decide
whether sentences were important or not and we were planning
to only display sentences on the article timeline, we decided
to classify at sentence level as well.
The annotated data was again processed to give a test

set of important and unimportant sentences. A sentence was
labeled important for the classifier if either (1) some event
in the sentence was marked important by every annotator, or
(2) at least half of the events in the sentence were marked
important by at least half of the annotators. Using this criteria,
over the 13 articles 696 sentences were labeled important and
1823 unimportant. The pairwise inter-annotator agreement was
recalculated for this new method of labeling and the average
F-score between annotators rose to 66.8% (lowest being 47.7%
and highest being 78.5%).
As described above, a different set of features was chosen

and calculated for each of the 13 articles. SVMs were trained
and tested using 10-fold cross-validation. Rather than breaking
up the data into training and test sets by article, this time
the 2519 sentences were divided into 10 equal sets plus one
remainder set that was not used in training or testing during
cross-validation.
To determine the best SVM model, the parameter space

was partially searched for cost of missing examples (c), the
parameter gamma of the radial basis kernel function (g), and
the weight ratio of cost for missing positive examples to cost
for missing negative examples (w). For any given choice of

Figure 3: Precision and recall for original SVM results

c, g, and w, an SVM was trained on each cross-validation
training set and tested on the corresponding test set, using
libsvm. The resulting F-scores were averaged over the different
sets and recorded. The search space was explored starting at
c=1.0, g=1.0, w=1. c and g went down by powers of 2 and
w was incremented. This portion of the space was explored
because in the original classification SVM training, the optimal
c and g (as found by a libsvm tool) were usually 0.5 and 0.5.
Fixing c and w, the next g would be chosen until F-scores no
longer went up. w was usually set to 2 almost immediately
because of low scores for w=1. This was repeated for w up
to 3 (as 4 produced slightly poorer results), and then the next
value of c was chosen. The results of these tests are shown in
Table 3. 0.5 and 0.5 were optimal values for the event-word-
level classifiers, however, so a broader search may have been
beneficial.

The best results were at 51.0% F-score and came from a
few different choices of parameters. The set c=1.0, g=0.125,
w=3 was chosen and the final model was trained with those
parameters on the entire data set.

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 34

FINAL PAPER FOR UCCS REU 2010 6

c g w F-score
1.0 1.0 1 29.0

1.0 1.0 2 46.1
1.0 0.5 2 46.9
1.0 0.25 2 47.5
1.0 0.125 2 48.0
1.0 0.0625 2 49.0
1.0 0.03125 2 48.0

1.0 1.0 3 46.2
1.0 0.5 3 48.9
1.0 0.25 3 50.1
1.0 0.125 3 51.0
(p:41.06066, r:75.0522, f:51.0428)

1.0 0.0625 3 50.9

0.5 1.0 2 45.2
0.5 0.5 2 47.1
0.5 0.25 2 47.5
0.5 0.125 2 48.2
0.5 0.0625 2 48.1

0.5 1.0 3 48.0
0.5 0.5 3 49.2
0.5 0.25 3 50.55
0.5 0.125 3 51.0
(p:41.14866, r:74.7939, f:51.03596)

0.5 0.0625 3 51.0
(p:41.35864, r:73.9689, f:51.01095)

Table 3: SVM parameter searching test results (averaged over
cross-validation sets)

B. Temporal Relations

Testing the times is significantly more difficult, since the
intervals generated by this program are certainly different than
the ones intended by the article representing events with times
is difficult even for human annotators. Instead, we will use a
measure proposed by Ling and Weld in 2010 ([4]) that they
term “Temporal Entropy” (TE). This indirectly measures how
large the intervals generated are, smaller, and therefore better,
ones yielding smaller TE. Different Wikipedia articles have
different spans and time granularities, and therefore TE varies
greatly among them. For example, a war is usually measured
in years while a battle is measured in days. An event whose
interval spans a few months in a war article should not be
penalized the way that span should be in a battle article. It is
then be necessary to normalize the TE. To do this, we divide
the length of the event’s interval in seconds by the length in
days of the unit that is found for display on the timeline as
described in the visualization section.
Temporal entropy does not give all the information, how-

ever. Spot-checking of articles reveals that many events -
particularly those whose times were estimated - are not in the
correct interval at all. A useful but impractical additional test,
which we have not performed, would be human examination

Figure 4: Temporal Entropy graph - the temporal entropies
were sorted in increasing order for plotting. Temporal entropy
is in log(seconds/days)

of the results to tell whether each event’s assigned interval
includes or is included in its actual interval. Then those that
fail this test could be given maximum temporal entropy, to
integreate this test’s results into the former results.

V. WEB VISUALIZATION AND RELATION TO GEOSPATIAL
AND OTHER NAMED ENTITIES

A website is maintained where a user can view already
processed Wikipedia articles or request the processing of new
ones. The website allows users to view several aspects of
the article. An example of what a user sees is in Figure
5. One aspect is the timeline of events whose creation has
been the subject of this paper. Clicking any event on the
timeline displays an infobox with further information about
it, including the full sentence. The other major aspect is
a map (via the Google Maps API) and list of locations
the article mentions. These locations are processed using a
separate system, and are the results of running a named entity
recognizer (currently the Stanford NER) on the article and
then geocoding and disambiguating the results. People and
organizations, as extracted by the named entity recognizer, are
also recorded. The locations, people, and organizations keep
track of which sentences they are associated with, and can
therefore be related to the timeline events. An example of this
is seen in Figure 6, which shows a sample event infobox that
includes associated locations, people, and organizations. If the
user clicks on a listed location, the map centers on and zooms
to that location. If the user clicks a location marker on the
map, an infobox with the location’s name and original context
is displayed, as seen in Figure 7. Pages and their links to events
and entities are stored in a database; the text is stored in one
place and upon a user’s request to view or process an article,
the server generates the necessary data.
For the visual representation of the timeline, we use the

Simile Timeline software, which allows the inclusion of a
timeline on a website. The timeline is set up in javascript,
which specifies the number of bands and their paramters,
such as scale and center date. It also allows highlighting and
magnification of certain regions (“hot zones”). These features

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 35

FINAL PAPER FOR UCCS REU 2010 7

are crucial to a readable timeline. Data is provided, in our case,
in an XML format. Both the javascript and XML depend on
the article, and they are generated upon a user’s request to
view a timeline. Most of the expensive computing is done
when putting an article’s information into the database, so a
request to just view is fast.
Events that contain time expressions are simple to plot, as

they have always a given start and end date. The events whose
endpoints were guessed are placed in the interval they were
given but are displayed at a subinterval that keeps them in
order with respect to other such events in that interval. Then,
the times that the timeline shows are far from certain, but the
order is more likely to be correct.

Figure 5: Example of an article’s visualization

Figure 6: Event infobox in the visualization, after clicking
“Richmond, VA, USA”

The identification of “hot zones” is an important part of the
process of visualization, because the articles often give some
background and after-effects of their main events, but most
of the sentences cluster in one or more important intervals.
We originally only created one hot zone and made it the
“middle of the article times” interval described previously.
This was not optimal, because times often cluster into multiple,
densely populated sections. To generate the endpoints for
more than one hot zone, we sort the times for an article and
examine the time differences (in days) between consecutive

Figure 7: Geospatial entity infobox in the visualization

times. Long stretches of low differences indicate dense time
intervals. An example of these differences graphed for an
article with obvious clusters is shown in Figure 8. Figure 9
shows part of its corresponding timeline. It is not necessary for
the differences to be zero, just low, so a measure was needed
for how low was acceptable. We chose to remove outliers from
the list of time differences and then take the average of the
new list. To remove outliers, we proceed in a common manner
and calculate the first and third quartiles (Q1 and Q3) and then
remove values greater than Q3 + 3 ∗ (Q3 −Q1) or less than
Q1− 3 ∗ (Q3−Q1). The latter quantity was usually zero, so
this ended up removing high outliers. This average was the
threshold below which a difference was called low. We also
had to ensure that too many hot zones were not generated, so
we chose a threshold for the number of consecutive differences
that had to be low for the interval to be a hot zones; we chose
10, based on what we felt would be appropriate for a timeline.

Figure 8: Differences between consecutive times in the sorted
time list for Mexican-American War

Figure 9: Timeline for Mexican-American War, containing 3
hot zones

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 36

FINAL PAPER FOR UCCS REU 2010 8

VI. CONCLUSIONS
The difficulty in classifying important events may lie with

the features we chose or with the idea that one can even
classify events as “important” or “not important.” From the
performance improvement for both machine and humans when
switching from words to sentences, it seems that it is much
more natural to ask about important sentences. This moves
into the territory of text summarization, and it might be more
pertinent to rank the sentences than to put them into two
classes.
The temporal relation extraction turns out to work fairly well

for this domain of historical narratives because the sentences
are often ordered in the text similarly to their temporal order.
In another domain, even one rich in temporal information
like biographies, it might not do as well. Further, due to the
algorithms for anchoring times to years and for giving times
to sentences without them, errors tend to build up and carry
over a lot; some kind of check or reset condition, if one could
be developed, would have helped accuracy.
Finding and displaying links among events, people, or-

ganizations, and locations succeeded since the events are
just considered sentences. The visualization of this has good
usability and is a useful tool to people analyzing the articles.

VII. FUTURE WORK

The mediocre performance of the important event classifier
could be improved upon in the future. It is possible that
more features would help it better classify. Ideas for sentence
features that were not implemented included calculating the
current features for the adjacent sentences. Classifiers other
than SVMs were also considered, and this option could be
explored. Since the task is similar to text summarization,
methods like TF/IDF that are used for summarization could
be adapted to one document and tried out. It is also possible
that the definition of “important” is not objective or specific
enough, and further investigation into this would be useful.
While classifying more events positively tends to increase

scores, visualizing so many is not desirable. To reduce the
number that get selected, we could reduce the number that are
classified at all by doing preprocessing on the sentences. We
suggest running TextRank on the sentences originally and then
picking some fraction of the top ranked sentences to classify.
The classifier also takes more time than is desirable to

calculate the features. Long articles can take 2-3 minutes, and
since these articles are being processed while users wait for
them, the current run times are not optimal. Using multithread-
ing on processing articles would make some improvement.
There are three specific features that take the most time to
calculate - similarity, named entity weight, and TextRank rank.
Experimenting with removing any of these features while
preserving accuracy could make a more efficient classifier.
The place for the most improvement is likely the temporal

portion of the process. Most of the algorithms we use here
are naive and do not make use of existing tools. The regular
expression extractor works fairly well, but needs expansion to
handle relative expressions like “Two weeks later, the army
invaded.” To implement this with the same accuracy that the

extractor currently has should not be hard, as when the expres-
sion is recognized, the function that it implies (in this example,
adding two weeks) can be applied to the anchoring time. It also
cannot currently handle times B.C.E. More difficult would be
a change to the program to have it extract multiple expressions
per sentence (beyond the range-like expressions it already
finds). If events are ever considered smaller than sentences,
this is crucial. Having events smaller than sentences would
also allow the use of Ling and Weld’s Temporal Information
Extraction system ([4]), which temporally relates events
within one sentence.
The visualization could also be improved with some changes

to Simile’s code for displaying a timeline, particularly the
width of the timeline, which does not automatically adjust for
more events. Because the important event classifier positively
identifies a lot of sentences that are often close in time, the list-
ing of events on the timeline overflows the space, so more must
be allotted even for sparser articles. This could be improved
with automatic resizing or zooming. Another improvement
would be to create event titles that better identify the events
since they are currently just the beginnings of the sentences.
Finally, more features could be added to the visualization,
especially in terms of filtering by time or location range.

REFERENCES
[1] J. F. Allen, “Maintaining knowledge about temporal intervals,”

Commun. ACM, vol. 26, no. 11, pp. 832–843, November 1983.
[Online]. Available: http://dx.doi.org/10.1145/182.358434

[2] L. Zhou, G. B. B. Melton, S. Parsons, and G. Hripcsak, “A temporal
constraint structure for extracting temporal information from clinical
narrative.” J Biomed Inform, September 2005. [Online]. Available:
http://dx.doi.org/10.1016/j.jbi.2005.07.002

[3] M. Verhagen and J. Pustejovsky, “Temporal processing with the tarsqi
toolkit,” in 22nd International Conference on on Computational Linguis-
tics: Demonstration Papers. Manchester, United Kingdom: Association
for Computational Linguistics, August 2008, pp. 189–192.

[4] X. Ling and D. Weld, “Temporal information extraction,” in Proceedings
of the Twenty-Fourth Conference on Artificial Intelligence (AAAI-10),
Atlanta, GA, July 2010.

[5] R. Swan and J. Allan, “Extracting significant time varying features
from text,” in CIKM ’99: Proceedings of the eighth international
conference on Information and knowledge management. New
York, NY, USA: ACM, 1999, pp. 38–45. [Online]. Available:
http://dx.doi.org/10.1145/319950.319956

[6] D. Ahn, “The stages of event extraction,” in Proceedings of the
Workshop on Annotating and Reasoning about Time and Events.
Sydney, Australia: Association for Computational Linguistics, July
2006, pp. 1–8. [Online]. Available: http://www.aclweb.org/anthology-
new/W06/W06-0901.bib

[7] R. Saur, R. Knippen, M. Verhagen, and J. Pustejovsky, “Evita: a robust
event recognizer for qa systems,” in Proceedings of the conference on
Human Language Technology and Empirical Methods in Natural Lan-
guage Processing. Vancouver, British Columbia, Canada: Association
for Computational Linguistics, October 2005, pp. 700–707.

[8] T. Pedersen, S. Patwardhan, and J. Michelizzi, “Wordnet::similarity:
measuring the relatedness of concepts,” in HLT-NAACL ’04: Demon-
stration Papers at HLT-NAACL 2004 on XX. Morristown, NJ, USA:
Association for Computational Linguistics, 2004, pp. 38–41.

[9] R. Mihalcea and P. Tarau, “Textrank: Bringing order into texts,” in
Proceedings of EMNLP 2004, D. Lin and D. Wu, Eds. Barcelona,
Spain: Association for Computational Linguistics, July 2004, pp. 404–
411.

[10] C.-C. Chang and C.-J. Lin, LIBSVM: a library for
support vector machines, 2001, software available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[11] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:
Synthetic minority over-sampling technique,” Journal of Artificial
Intelligence Research, vol. 16, pp. 321–357, 2002. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.5547

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 37

FINAL PAPER FOR UCCS REU 2010 9

[12] R. Akbani, S. Kwek, and N. Japkowicz, “Applying
support vector machines to imbalanced datasets,” in Machine
Learning: ECML 2004, 2004, pp. 39–50. [Online]. Available:
http://www.springerlink.com/content/pa57eam5t5dkem4h

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 38

!"#$%&'"!&()%*

!"#$%&'$!"#$%&%'()* + (# + $,) + -(%.)/(01& + 2()&/ + ,13) + .1**(3)+

0%&&)0$(%#*+%2+(#2%4.1$(%#+$,1$+14)+/(22(05&$+$%+1&('#+1#/+0%.614)7+

"5$&(#)/+(#+$,(*+616)4+14)+*41)'()*+$%+1#1&89)+0544)#$+*1)+%2+

$,)+14$+%#$%&%'8+1&('#.)#$+1&'%4($,.*+-8+1#1&89(#'+4)*5&$*+1#/+

6)42%4.1#0)+:($,+-%$,+*.1&&;+1#/+&14');*01&)+%#$%&%'()*7+<)*5&$*+

%2+$)*$(#'+314(%5*+*)$*+%2+%#$%&%'()*+1'1(#*$+1+2):+#1.)/+"#$%&%'8+

1&('#.)#$+ $%%&* + (* +1&*% + (#0&5/)/7 +=,) +5&$(.1$) +'%1& +:(&& +-)+ $,)+

.%/(2(01$(%#+1#/+%6$(.(91$(%#+%2+$,)+>$%5$)#-54'+1&'%4($,.+:($,+

?41#0, + 1#/ + ?%5#/ + (# + %4/)4 + $% + 64%/50) + *56)4(%4 + 4)*5&$* + (#+

64)0(*(%#+1#/+45#+$(.)+2%4+&14')+*01&)+%#$%&%'8+1&('#.)#$7

%+ %&'!,-#.'%,&

&$/01023$405/67$6080/59$59:;/<3=>6$?;/$;23;9;:4$59<:2>023$

=580$@002$A0809;B0A+$'=0$59:;/<3=>6$5/0$200A0A$?;/$3=0$

<230:/53<;2 $ 52A $;B3<><C53<;2 $;? $ 3=0 $ >524 $;23;9;:<06 $ 2;D$

585<95@90$;2$3=0$D0@$EFG+$(<><95/947$3=0$6<C0$52A61590;?$3=0$

;23;9;:<06 $ 585<95@907 $ 56 $ D099 $ 56 $ 3=0 $ B;3023<59 $ 59<:2>0236$

@03D002$65<A$;23;9;:<06$=56$:/;D2$6H@63523<5994$EIG+$

%

,23;9;:<06$5/0$59D546$@0<2:$HBA530A$52A$/08<60A+$,23;9;:4$

59<:2>0236$596;$;11H/$>H1=$>;/0+$'=060$513<;26$;?$;23;9;:<159$

0JB526<;2$ <208<35@94$ 905A$3;$ 95/:0/ $52A$95/:0/ $;23;9;:<06EFG+$

K96;7$1/053<2:$95/:0 $;23;9;:<06 $35L06 $3<>07$?H2A<2:7 $52A$152$

;?302 $ @0 $ 80/4 $ A<??<1H93 $ 3; $ 1/0530 $ EMG+ $ '=0 $ 1905/94 $ 8<6<@90$

5A85235:06 $ 3; $ 59<:2<2: $;23;9;:<06 $ >52H5994 $ <219HA0 $ =<:=94$

511H/530 $59<:2>023 $ /06H936+ $'=0/0?;/07 $ 3; $ /0AH10$ 3=0$ 3<>0$;?$

59<:2<2:$;23;9;:<067$5$=<:=94$511H/530$59<:2>023$B/;:/5>152

@0$H60A+

'=0$<23023<;2$;?$3=<6$B5B0/$<6$3;$A061/<@0$3=0$5BB/;51=$H60A$

3;$0J3/513$52A$H60$=<:=94$A035<90A$?053H/06$?/;>$;23;9;:<06$56$5$

@56<6 $?;/ $ 59<:2>023+ $ K96;7 $ 5 $ A035<90A $ A061/<B3<;2 $;? $ 3=0$

59:;/<3=> $ 1H//02394 $ <2 $ A0809;B>023 $ 3=53 $ H3<9<C06 $ 3=0$

5?;/0>023<;20A$$?053H/0$0J3/513<;2$3;;96+

%%+ $*!,NO"P$('K'"P"&'

'=0$:;596$;?$3=<6$B/;Q013$<219HA0R$A030/><2<2:$20D7$A035<90A$

?053H/06$3;$0J3/513$?/;>$;23;9;:4$1;210B36$3;$?;/>$5$@56<6$?;/$

;23;9;:4 $ 59<:2>023 $ 56 $ D099 $ 56 $ A0809;B<2: $ 52 $;23;9;:4$

59<:2>023$59:;/<3=>$3=53$D<99$2;3$;294$511H/53094$0J3/513$ 3=0$

?053H/06 $ @H3 $ 596; $ H60 $ 3=0> $ 3; $ A030/><20 $ =<:=94 $ 511H/530$

59<:2>0236$5>;2:63$;23;9;:4$1;210B36+

$'=0$8563$5>;H23$;?$<2?;/>53<;2$<219HA0A$D<3=<2$3=0$080/S

:/;D<2:$;23;9;:<06$3;A54$=56$@01;>0$<21/056<2:94$A<??<1H93$3;$

52594C0 $ 52A $ 1;>B5/0+ $ '=0 $ 59:;/<3=>6 $ @0<2: $ H60A $ 3;A54 $ 3;$

59<:2 $;23;9;:<06 $ 5/0 $ 599 $ H2<TH0 $ <2 $ 3=0</ $;D2 $ 63/530:<06 $ 3;$

A030/><20$>531=<2:$;23;9;:4$1;210B36+$);D080/7$6;>0$>;/0$

U*5B0/$6H@><330A$VH94$MW7$IWFW+$(H@><330A$56$52$<2<3<59$B/;B;659$A/5?3$56$B5/3$

;?$3=0$!"#$&(X$%230/26=<B$B/;:/5>+$

3=52$;3=0/6$/094$;2$52$5BB/;51=$3=53$>54$5AA/066$/0AH1<2:$3=0$

/H2$3<>0$;?$;23;9;:4$59<:2>023$69<:=394$>;/0$3=52$511H/514EYG+$

(<><95/94$6;>0$B/;:/5>6$=580$651/<?<10A$511H/514$3;$<>B/;80$

6B01<?<1 $ 1;210B36 $;? $ 3=0</ $ 59:;/<3=>+ $'=0 $ 02A $ /06H93 $ <6 $ 3=0$

B/<>5/4$?;1H67$=;D080/+ $Z<3=;H3$511H/530$/06H9367$ 3=0$D=;90$

BH/B;60 $;? $;23;9;:4$59<:2>023 $?5996 $?/;>$8<0D+ $ %2 $;/A0/ $ 3;$

HB=;9A$3=0$=<:=063$6352A5/A$;?$TH59<34$<2$<2?;/>53<;2$B/06023<2

;23;9;:<067$3=0$=<:=063$90809$;?$511H/514$>H63$@0$51=<080A<2

3=0$B/;1066$;?$59<:2<2:$;23;9;:<06+

%%%+ !"OK'"-$!"("K!.)

K>;2:$3=0$6080/59$;23;9;:4$59<:2>023$59:;/<3=>6$52A$3;;967$

A<??0/023$>03=;A6$?;/$59<:2>0236$=580$@002$A0809;B0A+$'=060$

5H3;>530A $ 64630>6 $ H3<9<C0 $ 5 $ @/;5A $ /52:0 $;? $ 59<:2>023$

5BB/;51=06 $ 6H1= $ 56 $ 9;:<159 $ 5J<;> $ 6<><95/<34 $ B/;1066<2:$

>023<;20A<2E[G$52A$6<><95/<34$:/;HB<2:$?;99;D0A$@4$A035<90A$

/0953<;26=<B$1;>B5/<6;26$56<2EIG+$

);D080/7 $ 3=0 $ (3;H302@H/: $ 59:;/<3=> $ 630B6 $ 5D54 $?/;>$

6<><95/<34S@560A$59<:2>0236$52A$H606$3=0$L2;D90A:0$;?$HBB0/$

;23;9;:<06 $ 52A $ 5BB9<06 $ 6HBB;/3 $ 8013;/ $ >51=<20 $ \(]P^$

301=2;9;:4$3;$B/;AH10$2;2S0TH<8590210$/0953<;2$59<:2>0236EYG+

'=0$(3;H302@H/:$5BB/;51=$H606$Z;/A&03F$52A$,B02.41I$3;$

52594C0$1;210B36$;?$ 3=0$;23;9;:<06$@0<2:$59<:20A$EYG+ $'=060$

3;;96$0J3/513$?053H/06$D<3=<2$3=0$;23;9;:<06$52A$;/:52<C06$3=0>$

5BB/;B/<53094+$'=0$/06H93<2:$19566<?<153<;26$5/0$B5660A$3=/;H:=$

5 $ (HBB;/3 $]013;/ $ P51=<20 $ D=<1= $ A030/><206 $ B/;B0/$

59<:2>0236 $ EYG+ $);D080/7 $ <3 $?099 $ 6=;/3 $ <2 $ 0J01H3<;2 $ 3<>0$

BH6=<2:$HBD5/A6$;?$_`$=;H/6$3;$59<:2$;23;9;:<06$EYG+

%2$/06B;2607$B53=6$D0/0$35L02$3;$A01/0560$0J01H3<;2$3<>0$;?$

3=0$(3;H302@H/:$59:;/<3=>$D=<1=$90A$3;$3=0$N/521=$52A$N;H2A$

59:;/<3=>+ $ K6 $ A061/<@0A $ <2 $ EYG $ 3=0 $ N/521= $ 52A $ N;H2A$

59:;/<3=> $ H606 $ 5 $ 1;210B3 $;? $;20 $;23;9;:4 $ 52A $ A030/><206$

60>523<1$19;602066$3;$1;210B36$<2$5$601;2A$;23;9;:4a$<?<3D56$

A030/><20A $ 3; $ 2;3 $ =580 $ 60>523<1 $ 19;6020667 $ 3=0 $ 1;210B3 $;?$

;23;9;:4$D<99$@0$35L02$;H3$56$D099$56$<36$1=<9A/027$;3=0/D<60$

3=0 $ 1;210B3 $ B5</ $ D;H9A $ 1;23<2H0 $ 3; $ @0 $ 59<:20A+ $ K96;7$

642;24>;H67 $ =4B;24>;H67 $ 52A $ =4B0/24>;H6 $ /0953<;26 $ 5/0$

H60A$3;$A030/><20$60>523<1$19;602066+$N560A$;2$3=0$/06H936<2

EYG $=4B;24>4$4<09A0A $ 3=0$@063 $ /06H936+ $'=<6 $ 9530/ $5BB/;51=7$

=;D080/7$4<09A0A$9066$511H/530$/06H936$52A$56$5$/06H93$63<99$=56$

/;;>$?;/$<>B/;80>023EYG+

K93;:03=0/7 $3=0/0$=580$@002$>524$5BB/;51=06$3;$;23;9;:4$

59<:2>023+ $);D080/7 $;294 $ /0102394 $ =580 $ >;/0 $ 5BB/;51=06$

<21;/B;/530A $D546 $ 3; $ =52A90 $ 95/:0 $;23;9;:<06+ $ K>;2: $ 3=0$

6>599 $ 2H>@0/ $;? $ B/;:/5>6 $ 511;H23<2: $?;/ $ 61595@<9<347 $ 3=0$

(3;H302@H/: $ @/521= $ 52A $ @;H2A $ 59:;/<3=> $ 6=;D6 $ 3=0 $ >;63$

B/;><6<2: $ B/09<><25/4 $ /06H936 $ <2 $ /0AH1<2: $ /H2 $ 3<>0+ $ '=<6$

F=33BRbbD;/A203+B/<2103;2+0AHb$ $
I=33BRbbDDD+141+1;>b;B02141$ $

%>B/;8<2:$,23;9;:4$K9<:2>023$K11H/514$D<3=$

-035<90A$X053H/0$"J3/513<;2$';;96

!"#$%&'%&(#)"*"

FREU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 39

http://wordnet.princeton.edu/
http://www.cyc.com/opencyc

!"#$%&'"!&()%*

?H/3=0/$0J0>B9<?<06$3=0$200A$?;/$=<:=0/$511H/514<2;23;9;:4$

59<:2>0236$56$3=0$3;B<1$;?$61595@<9<34$<6$52$5/05$;?$<21/056<2:$

?;1H6+ $'=0$511H/514$;? $59<:2>0236 $>H63$@0 $>5<235<20A$52A$

<>B/;80A$?;/$:/0530/$02A$/06H936+

%]+ X"K'#!"$"c'!K.'%,&

Z=02$5AA/066<2:$3=0$56B0136$3=53$><:=3$<21/0560$511H/5147$

D0$?;1H60A$;2$3=0$?053H/06$@0<2:$0J3/5130A$?/;>$051=$;23;9;:4$

1;210B3+$N560A$;2$3=0$B/<;/$D;/L$>023<;20A<2EYG$D0$?;H2A$

3=53$3=0$?053H/06$@0<2:$0J3/5130A$<219HA0A$3=0$?;99;D<2:R

! O<2:H<63<1S@560A

! *5330/2S@560A

! (3/<2:S@560A

! "J3/<26<1S@560A

! N5:S;?SD;/A6S@560A

O<2:H<63<1S@560A$?053H/06$56$>023<;20A$<2EYG<219HA0$3=;60$

>052<2:?H9$B/0?<J06$<2$63/<2:6$3=53$><:=3$<2A<1530$5$6H@19566$

/0953<;26=<B$@015H60$3=0$59:;/<3=>$<2EYGH606$52$(]P$3;$?<2A$

19566 $ 1;//06B;2A0210+ $ *5330/2S@560A $?053H/06 $ 5/0 $ 6<><95/ $ 3;$

9<2:H<63<1$?053H/06$<2$3=53$3=04$5/0$6<>B94$B5330/26$3=53$5/<60$<2$

;23;9;:4$1;210B3$25>06+

(3/<2:S@560A $?053H/06 $ 5/0 $ 3=;60 $ 3=53 $ <219HA0 $ 6H@S63/<2:$

1;>B5/<6;26EYG+$X<2A<2:$3=53$6;>0$;23;9;:4$19566$B5</6$=5A$3=0$

65>0$02A<2:$D;/A6$>5A0$?;/$6;>0$>052<2:?H9$A535+

N5:S;?SD;/A6S@560A $?053H/06 $ 1;26<63 $;? $ 3=0 $ 61;/<2: $;?$

642;24>67 $ =4B;24>67 $ 52A $ =4B0/24>6 $ 5>;2: $;23;9;:4$

1;210B3$B5</6EYG+$

X<259947$"J3/<26<1S@560A$?053H/06$5/0$3=;60$1;210B3$B5</6$3=53$

=;9A $ 6423513<1 $;/ $ 60>523<1 $ /0953<;26=<B6 $ @560A $;2 $;H36<A0$

L2;D90A:0 $ 6;H/106 $ 6H1= $ 56 $ Z;/A&03 $ 52A $,B02.41 $ 56$

>023<;20A$05/9<0/EYG+$

K93;:03=0/$3=060$?053H/06$5/0$066023<59$?;/$511H/530$;23;9;:4$

59<:2>0236+$K99$3=0$B/010A<2:$?053H/06$D0/0$H60A$<2$3=0</$;D2$

6B01<?<1 $D54$<2$EYG $ 3;$/03/<080$/06H936$H6<2:$3=0$(3;H302@H/:$

59:;/<3=>+$

);D080/7$D0$H60A$3=<6$L2;D90A:0$3;$1/0530$;H/$;D2$6B01<?<1$

603$;?$?053H/06$3=53$D0$H60$<2$;H/$;D2$6B01<?<1$<>B90>02353<;2$

;?52;23;9;:4$59<:2>023$59:;/<3=>+

]+ .,&."*'

N560A $;2 $ 3=0 $ A;>5<2 $D0$D<99 $ @0 $?;1H6<2: $;H/ $ 0??;/36 $ d$

@<;>0A<159 $;23;9;:<06 $ d $ D0 $?;H2A $ 3=53 $ 3=0/0 $ <6 $ 5 $ 9;3 $;?$

<2?;/>53<;2 $ D<3=<2 $ 3=0 $ 19566 $ 25>06 $ 52A $ 95@096 $;? $ 3=0$

;23;9;:<06+$,H/$<A05$<6$3;$0J3/513$3=<6$<2?;/>53<;2$52A$H60$<3$56$

5$@56<6$?;/$3=0$1;210B3$59<:2>023$D<3=<2$3=0$;23;9;:<06+$

P;/0$6B01<?<159947$3=0$9<2:H<63<1$859H0$;?$051=$19566$25>0$;/$

95@09<6;H/$?;1H6+$X;/$0J5>B907$3=0$?;99;D<2:$95@09$?;H2A$<2$

3=0$e020$,23;9;:4$=;9A6 $6080/59 $L04$D;/A6$ 3=53 $511H/53094$

A061/<@0$D=53$3=53$6B01<?<1$19566$/0B/060236R

f'=0$1=0><159$/0513<;26$52A$B53=D546$<28;98<2:$5><2;$51<A6$

1;235<2<2: $ 6H9?H/7 $ 1;>B/<6<2: $ 14630<207 $ =;>;14630<207$

>03=<;2<20$52A$60902;14630<20+g

,@8<;H694$3=0/0$<6$5$9;3 $;?$<2?;/>53<;2$D<3=<2$3=0$95@09$3=53$

:<806$5$8<8<A$/0B/0602353<;2$;?$ 3=0$;23;9;:4$19566+$);D080/7$

D=<90$ 3=0$ 9<2:H<63<1S@560A $?053H/06 $>023<;20A$ <2$EYG $?;1H60A$

;294$;2$B/0?<J06$?;/$10/35<2$/0953<;26=<B67$;H/$>03=;A$H606$2;3$

;294$B/0?<J067$@H3$596;$3=0$/;;3$52A$6H??<J06$;?$3=;60$L04D;/A6+

Z<3=$599$3=0$5??<J06$52A$/;;36$1;>B<90A$56$5$95/:0$L2;D90A:0$

@560 $?;/ $ 1;>B5/<6;267 $D0 $ 152 $>5L0 $>;/0 $ 511H/530 $ /06H936$

@015H60$;?$3=0$=<:=94$6B01<?<1$<2?;/>53<;2$D0$0J3/513+$

);D080/7$3=0/0$<6$63<99$3=0$=H/A90$;?$A06<:2<2:$52$59:;/<3=>$

3=53$D<99$511H/53094$0J3/513$3=0$9<2:H<63<1$?053H/06$D0$600L+$

]%+ KXX%cb!,,'$"c'!K.'%,&

'=0$:;59$;?$3=<6$?053H/0$0J3/513<;2$K*%$<6$3;$35L0$<2$5$63/<2:$

D;/A$52A$0J3/513$599$3=0$B/0?<J067$6H??<J067$52A$/;;3$?/;>$3=0$

D;/A$D=<1=$152$3=02$@0$H60A$@4$3=0$H60/$?;/$D=53080/$/056;2$

3=04>54=580$?;/$<3+$

Z0$H3<9<C0$1=5/5130/$>52<BH953<;2$3;$1;>B9030$3=<6$B/;1066+$

Z0 $D<99 $ @0 $ H6<2: $ 3=0 $D;/A $ f<28<6<@90g $ 56 $ 52 $ 0J5>B90 $ 3;$

B/;8<A0$5$8<6H59$/0?0/0210$?;/$=;D$3=<6$59:;/<3=>$D;/L6+$

'=0 $ 0J3/513<;2 $ 59:;/<3=>$:;06 $ <2 $ 3=0 $?;99;D<2: $;/A0/ $ <2$

0J3/513<2:$<2?;/>53<;2$?/;>$3=0$D;/AR

$\F^ 0J3/513$6H??<J

$\F+F^ 0J3/513$5AA<3<;259$6H??<J06

$\I^ 0J3/513$/;;3

$\M^ 0J3/513$B/0?<J

$\M+F^ 0J3/513$5AA<3<;259$B/0?<J06

'=0/0?;/07$3;$@0:<2$D<3=$3=0$59:;/<3=>$63/<B6$;??$;20$1=5/5130/$

53$5$3<>0$?/;>$3=0$?/;23$;?$3=0$63/<2:$52A$1;>B5/06$3=0$20D94$

3/H21530A$63/<2:$5:5<263$5$95/:0$1;99013<;2$;?$6H??<J06$3=53$=580$

@002$1;>B<90A$;80/$3<>0$<23;$;20$?<90+$

X<:H/0 $ F $ A035<96 $ 3=0 $ B/;1066 $ 3=/;H:= $ 5 $ >;/0 $ 8<6H59$

/0B/0602353<;2+$

+(,-./%01%2-33(4%/4*.56*("7%)."6/##

'=0 $ 6H??<J $ 0J3/513<;2 $ B/;1066 $ <30/5306 $ H23<9 $ 2; $ >;/0$

6H??<J06 $5/0 $?;H2A+ $'=<6 $026H/06 $ 3=53 $ 3=;60 $D;/A6 $ 3=53 $=580$

>H93<B90 $ 6H??<J06 $ 5/0 $ 35L02 $ 15/0 $;?+ $);D080/ $ 3=<6 $ <30/53<80$

B/;1066 $ 152 $ 596; $ 15H60 $ <2511H/530 $ 0J3/513<;26 $ @H3 $ 3=53 $ <6$

A035<90A$9530/+

X;99;D<2:$6H??<J$0J3/513<;27$3=0$6580A$@560$63/<2:d<2$3=<6$

1560$3=0$f<28<6g$63/<2:$d<6B5660A$3;$3=0$/;;3$>03=;A$3;$0J3/513$

3=0$/;;3$;?$3=0$D;/A7$<?$3=0/0<6;20+

'=0 $ /;;3 $ 0J3/513<;2 $ B/;1066 $ ><//;/6 $ 3=53 $;? $ 3=0 $ 6H??<J$

IREU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 40

!"#$%&'"!&()%*

0J3/513<;2$0J10B3$3=53$3=0/0$5/0$2;$<30/53<;267$3=0/0$<6$;294$;20$

B566$3=/;H:=$3=0$63/<2:$3;$A030/><20$5$/;;3+$X<:H/0I6=;D6$3=0$

1;23<2H0A$0J3/513<;2$B/;1066$;?$3=0$D;/A$f<28<6<@90g+$

+(,-./%81%9""*%/4*.56*("7%)."6/##

K:5<27 $ 3=0 $ /;;3 $:;06 $ @4 $ 3=0 $ 65>0 $ B/;1066 $ 56 $ 3=0 $ 6H??<J$

0J3/513<;2 $ B/;10667 $ QH63 $ D<3=;H3 $ <30/53<;26+ $ %2 $ 6;>0 $ 156067$

=;D080/7 $ 3=0/0 >54@0 $2;$ /;;3 $?;H2A+ $'=<6 >54@0 $15H60A$

@015H60$3=0$/;;3 $D<3=<2$ 3=0$D;/A$<6$2;3$ <2$3=0$1;99013<;2$;?$

/;;36$;/$<3>54@0$@015H60$3=0/0$<6$2;$/;;3$<2$3=0$D;/A$52A$3=0$

D;/A$1;26<636$;?$;294$B/0?<J06$52A$6H??<J06+$"<3=0/$D547 $ 3=0$

20J3$630B$<6$3;$0J3/513$3=0$B/0?<J$;?$3=0$D;/A+$

'=0 $ B/0?<J $ 0J3/513<;2 $ B/;1066 $ A<??0/6 $ 69<:=394+ $ %26305A $;?$

63/<BB<2: $1=5/5130/6 $?/;>$ 3=0 $?/;23 $;? $ 3=0 $ 63/<2:7 $ 3=0 $B/0?<J$

0J3/513<;2 $ 59:;/<3=> $ 35L06 $ 1=5/5130/6 $?/;> $ 3=0 $ 02A $;? $ 3=0$

63/<2:+$'=<6$D547$ <2$1560$2;$/;;3 $D56$?;H2A$52A$3=0/0$D0/0$

0J1066$1=5/5130/6$;2$3=0$02A$;?$3=0$63/<2:7$<3$D<99$2;3$<230/?0/0$

D<3=$3=0$B/0?<J$B/;1066$1;>B5/<2:$3=0$63/<2:$3;$3=0$1;99013<;2$

;?$B/0?<J06+$X<:H/0M6=;D6$3=0$?<259$/06H936$;?$3=0$0J3/513<;2$

B/;1066 $;? $ f<28<6<@90g+ $);D080/7 $ 3; $?H/3=0/ $ A035<9 $ =;D $ 3=0$

B/0?<J$0J3/513<;2$59:;/<3=>$D;/L67$600$X<:H/0$Y+

'=0 $ 63/<2: $ f<2g $ 3=53 $ /0>5<20A $D56 $ TH<1L94 $ 1=01L0A $ 52A$

?;H2A$D<3=<2$3=0$1;99013<;2$;?$B/0?<J06$52A$6;$3=0$0J3/513<;2$

B/;1066$?;/$f<28<6<@90$<6$1;>B9030+

X;/$3=0$?;99;D<2:$0J5>B90$<2$X<:H/0$Y7$D0$D<99$@0$H6<2:$3=0$

D;/A $f1;85902394g+ $K66H>0$ 3=53 $ 3=0 $ 6H??<J $ f94g $=56 $ 59/05A4$

@002$63/<BB0A$?/;>$3=0$63/<2:$52A$3=53$2;$/;;3$D56$?;H2A$D=02$

1=01L0A$3=/;H:=$3=0$/;;3$0J3/513<;2$B/;1066+

%2$3=<6$15607$3=0$90?3$@0=<2A$63/<2:$D<99$@0$<30/530A$5:5<2$H23<9$

2;$B/0?<J$<6$?;H2A+$K96;7$QH63$9<L0$3=0$6H??<J$0J3/513<;2$B/;1066$

3=0$<30/53<;26$152$15H60$<2511H/51<06$3;$;11H/+$);D080/$3=0/0$

=580$@002$630B6$35L02$3;$0//;/$1=01L$3=0$859<A<34$;?$3=0$02A$

/06H936$D=<1=$D<99$@0$>023<;20A$9530/+

K?30/$599$6H??<J067$B/0?<J06$52A$3=0$/;;3$=580$@002$0J3/5130A$

3=0$B/;1066$<6$205/94$1;>B9030+$X;/$3=0$>;63$B5/3$3=060$3=/00$

>03=;A6$D<99$511H/53094$0J3/513 $599 $ 3=0$ <2?;/>53<;2$?/;>$3=0$

63/<2:$52A$D<99$@0$585<95@90$3;$3=0$H60/$3;$A;$D<3=$56$3=04$D<6=+

K99 $ 3=53 $ /0>5<26$5/0 $6;>0$0//;/ $1=01L<2:$B/;10AH/06 $ 3=53$

=52A90$6;>0$;?$3=0$<2511H/51<06$3=53$>54$;11H/+

]%%+ "!!,!$.)".h%&e

O52:H5:07 $ 06B01<5994 $ 3=0 $ "2:9<6= $ 952:H5:07 $ =56 $ >524$

0J10B3<;26 $ 3=53 $ =580 $ 3=0 $ B;3023<59 $ 3; $?;;9 $ 3=0 $ 0J3/513<;2$

59:;/<3=>$A035<90A$5@;80+$'=0/0?;/0$D0$=580$<>B90>0230A5

?0D$0//;/ $1=01L<2:$59:;/<3=>6$3;$026H/0$3=0$511H/514$;?$3=0$

5??<J$52A$/;;3$0J3/513<;2$B/;1066+

';$@0:<27$@0?;/0$3=0$63/<2:<6B5660A$3=/;H:=$524$0J3/513<;2$

59:;/<3=>6<3<6$1=01L0A$?;/$B/;B0/$6B099<2:$52A$D=03=0/$;/$2;3$

<3$<6$52$511H/530$D;/A$<2$5$95/:0$A<13<;25/4$?<90+$.H//02394$3=0$

?<90$=56$;80/$FiW7WWW$D;/A$023/<06$3=53$B/;8<A0$52$5A0TH530$

@5609<20+ $'=0/0 $ <6 $ 63<99 $ /;;>$ 3; $ 0JB52A $ 3=0 $A<13<;25/4 $D<3=$

>;/0$@<;>0A<159$30/>6$3=53$D<99$1;80/$>H1=$;?$3=0$A;>5<2$D0$

D<99$@0$3063<2:$<2+

,210$3=0$D;/A$=56$B5660A$3=0$6B099S1=01L<2:30637<3$>;806$

3=/;H:=$3=0$0J3/513<;2$>03=;A6$52A$@560A$;2$3=0$02A<2:$/06H936$

;? $ 3=0 $ 0J3/513<;2 $ B/;1066 $D<99 $ @0 $ BH3 $ 3=/;H:= $?H/3=0/ $ 0//;/$

1=01L<2:$59:;/<3=>6+$

'=0/0$5/0$6B01<59$15606$3=53$152$15H60$A;H@90$1=01L<2:$3;$

;11H/+ $(;>0$;?$3=0$15606$3=53 $152$15H60$<2511H/51<06 $<2$3=0$

0J3/513<;2$B/;1066$<219HA0R

• ';;$>524$6H??<J$0J3/513<;2$<30/53<;26$3=53$63/<B$5D54$

6H@63/<2:6$3=53$5/0$2;3$511H/530$6H??<J06

M

+(,-./%:1%;./3(4%/4*.56*("7%)."6/##

+(,-./%<1%=">)?/*/%;./3(4%/4*.56*("7%)."6/##

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 41

!"#$%&'"!&()%*

! "J+$f1;85902394g$;2$3=0$?</63$/H2$3=/;H:=$D<99$

?<2A$f94g7$f023g7$52A$f59g$56$6H??<J06+

! f94g$<6$3=0$;294$6H??<J$<2$3=<6$D;/A

• %2511H/530$/;;3$0J3/513<;2

! "J+$%2$3=0$1560$;?fg3=0$/;;3$D56$0J3/5130A$

56fgD=02$<3$6=;H9A$511H/53094$@0$fg+

• &;$/;;3$?;H2A

! O05806$@0=<2A$/0>5<2<2:$63/<2:$56<2X<:H/0$

Y

• ';; >524 B/0?<J $ 0J3/513<;2 $ <30/53<;26 $ 3=53 $ <A023<?4$

<21;//013$B/0?<J06$<?$2;$/;;3$D56$?;H2A+

! "J+ $ %? $ 2; $ /;;3 $D56 $?;H2A $ 52A $ 3=0 $ B/0?<J$

0J3/513;/$63/<BB0A$;H3$5$/0:<630/0A$B/0?<J$63<99$

<219HA0A$<2$3=0$0J3/5$6H@63/<2:

'=0$?</63$0//;/$1=01L$59:;/<3=><6H60A$<?$3=0/0$<6$5$63/<2:$90?3$

;80/$?/;>$3=0$0J3/513<;2$B/;1066$56$<2$X<:H/0$Y+$'=0$59:;/<3=>$

35L06 $ 3=0 $ 90?3 $;80/ $ 6H@63/<2: $ 52A $ @0:<26 $ /01;263/H13<2: $ 3=0$

D;/A$@4$5AA<2:$3=0$9563$6H??<J$?;H2A7$;20$1=5/5130/$53$5$3<>0+$

K2 $ 0J5>B90 $;? $ 3=<6 $ B/;1066 $ 152 $ @0 $?;H2A $ <2 $ X<:H/0 $ [+$

K66H>0<2X<:H/0$[$3=53$3=0$D;/A$f1;85902394g$<6$H60A+$K96;7$

566H>0$3=53$3=0$6H??<J$<30/53<;2$0J3/5130A$<21;//013$6H??<J06$56$

>023<;20A$5@;80$<2$3=0$?</63$@H9903$;?$<2511H/514$15606$52A$3=53$

3=0$/0>5<2<2:$63/<2:$1;26<636$;?$;294$f8g$@015H60$3=0$B/0?<J$

D56$0J3/5130A$56$D099+

%?$3=0$0//;/$1=01L$?<2A6$2;$/;;36$5?30/$/01;263/H13<2:$3=0$?</63$

3<>07 $ <3 $D<99 $ 1;23<2H0 $ 1=01L<2: $ @4 $ 35L<2: $ 3=0 $ /01;263/H130A$

63/<2:$\<2$3=<6$1560$f859g^$52A$5AA<2:$3=0$953063$B/0?<J$3=53$D56$

0J3/5130A+$$'=0/0?;/07$3=0$63/<2:$D;H9A$@0$?H/3=0/$/01;263/H130A$

3;$f1;859g+$'=<6$6H@63/<2:$<6$3=02$1=01L0A$5:5<263$3=0$B/0?<J$

1;99013<;2$3;$>5L0$6H/0$3=53$3=0$1;//013$B/0?<J$D56$0J3/5130A$

52A$3=53$3=0$;80/S<30/53<;2$;?$6H??<J$0J3/513<;26$A<A$2;3$15H60$

52$<21;//013$B/0?<J$3;$@0$?;H2A+

K96;7$AH/<2:$3=<6$<2<3<59$0//;/S1=01L7$<?$524$<2511H/51<06$5/0$

?;H2A7$3=0$B/0?<J7$/;;3$52A$6H??<J$<2?;/>53<;2$D<99$@0$5930/0A$

<>>0A<53094$3;$/0?9013$3=0$1;//013$0J3/513<;26+$

,210$3=0$?</63$0//;/$1=01L$<6$1;>B9030$3=0$20J3$0//;/$1560<6

/08<0D0A+$'=0$;11H//0210$>54$5/<60<2D=<1=$3=0/0$<6$2;$63/<2:$

/0>5<2<2:$5?30/ $599 $ 0J3/513<;2$B/;106606 $=580$1;>B9030A $@H3$

3=0/0$5/0$2;$B/0?<J06$?;H2A+$%?$3=<6$<6$3=0$1560$52A$3=0/0$5/0$

>;/0$3=52$3=/00$6H??<J06$3=53$=580$@002$0J3/5130A7$5$20D$0//;/$

1=01L<6B0/?;/>0A+$'=0$?</63$630B$<3$35L06$<6$3;$602A$3=0$/;;3$

D;/A$3=/;H:=$3=0$B/0?<J$0J3/513<;2$3;$026H/0$3=53$3=0/0$D56$2;3$

5 $B/0>53H/0$0J3/513<;2$ 3=53 $15H60A $2;$B/0?<J06$ 3; $@0$?;H2A+$

K?30/ $?<2A<2: $?<2<6=<2: $ 3=0 $ B/0?<J $ 0J3/513<;2 $ >03=;A7 $ 3=<6$

>03=;A $ /01;263/H136 $ 3=0 $ 63/<2: $ 635/3<2: $ D<3= $ 3=0 $ /;;3 $ 52A$

5AA<2:$051=$6H??<J<2;/A0/+$"51=$3<>0$5$6H??<J$<6$5AA0A$3;$3=0$

/0>5<2A0/$63/<2:7$<3$D<99$@0$B5660A$3=/;H:=$3=0$/;;3$0J3/513<;2$

>03=;A$3;$026H/0$511H/514$<2$3=0$/;;3$D;/A+

K?30/ $ 599 $ 1=01L6 $=580$ 1;219HA0A7 $ 3=0 $B/;B0/ $ 1=52:06 $ 5/0$

>5A0$52A$599$0//;/$1=01L<2:$<6$1;>B9030+$

]%%%+%P*O"P"&'K'%,&

Z=<90$ 3=0$0J3/513<;2$59:;/<3=>$>54$600>$ 3;$511H/53094$

0J3/513$9<2:H<63<1$?053H/06$?/;>$D;/A67$D0$1;H9A$;294$A;$6;$

>H1=$3;$3063$<36$90809$;?$0??013<802066+$Z0$1/0530A$6080/59$

3063$15606$3;$026H/0$3=0$511H/514$;?$3=0$0J3/513<;2$59:;/<3=>+$

);D080/7 $D0 $ A01<A0A $ 3; $ 3063 $ <3 $?H/3=0/ $ @4 $ A0809;B<2: $ 5$

H2<TH0$;23;9;:4$59<:2>023$B/;:/5>$3=53$H3<9<C0A$3=<6$3;;9+

'=0$B/;:/5>$<6$60B5/530A$<23;$?;H/$6013<;26$@560A$;2$3=0$

<2?;/>53<;2$D0$D;H9A$H60$3;$A030/><20$0TH<8590210$@03D002$

;23;9;:4$1956606R

• ,23;9;:4$19566$95@096

• K??<Jb/;;3$A0?<2<3<;2$19;602066$A535@560

• '=0$;23;9;:<06$

• K9<:2>023$B/;1066

'=0 $ <2?;/>53<;2 $ D0 $ D<99 $ @0 $?;1H6<2: $;2 $ 3; $ H3<9<C0 $ 3=0$

0J3/513<;2$59:;/<3=>$5/0$3=0$95@096$?;/$051=$;23;9;:4$19566+$K6$

A061/<@0A<2(013<;2$]+$.,&."*'7$3=0$95@096$;?$52$;23;9;:4$

19566 $ =;9A $ 5 $ 95/:0 $ 5>;H23 $;? $ <2?;/>53<;2 $ 3=537 $ <? $ 0J3/5130A$

B/;B0/947 $ 152 $ 60/80 $ 3; $ @0 $ 52 $ 0J1099023 $ 6;H/10 $?;/ $ =<:=94$

511H/530$;23;9;:4$59<:2>0236+

'=0$;23;9;:4$19566$95@096$6013<;2$;?$3=0$B/;:/5>$=;9A6$3=0$

023</0 $ 5??<J $ 52A $ /;;3 $ <2?;/>53<;2 $ 56 $D099 $ 56 $ 3=0 $ A0?<2<3<;2$

19;602066$A535$?/;>$3=0$A535@560$D=<1=$D<99$@0$1;80/0A$6;;2+$

'=0$19566$95@096$1;A0$35L06$<2$3=0$95@09$63/<2:$52A$60B5/5306$

3=0 $ 63/<2: $ <23; $ L04D;/A6+ $ '=0 $ L04D;/A6 $ 5/0 $ 3=02 $ B5660A$

3=/;H:=$3=0$0J3/513<;2$59:;/<3=>$D=0/0$599$3=0$5??<J$52A$/;;3$

<2?;/>53<;2$<6$6580A$?;/$9530/$H60+$,210$599$3=0$5??<J$52A$/;;3$

<2?;/>53<;2$=56$@002$1;990130A7$3=04$5/0$599$B5660A$3=/;H:=5

A535@560$6B01<?<1$<A023<?<153<;2$2H>@0/6$5/0$1;990130A$<2$/03H/2$

?;/$H60$<2$3=0$59<:2>023$B/;1066+

'=0$A535@560$<6$5$95/:0$L2;D90A:0$@560$6<><95/$ 3;$3=53$;?$

Z;/A&03 $ 52A $;3=0/ $ A0?<2<2: $ A535@560 $ 3;;96+ $ '=0 $ A535@560$

=;9A6$6426036$;?$A535$3=53$15//4$52$<A023<?<153<;2$2H>@0/+$"51=$

642603$596;$=;9A6$5$A0?<2<3<;2<2D=<1=$6B01<?<1$5??<J06$;/$/;;36$

152$@0$9<2L0A$3;+$X;/$0J5>B907$3=0$642603$D<3=$3=0$A0?<2<3<;2$

f;20g$596;$=56$6B01<?<1$5??<J06$9<2L0A$3;$<3$6H1=56fH2<g$52A$

f>;2;g$D=<1=$=;9A$3=0$65>0$A0?<2<3<;2+$'=<6$6B01<?<1$642603$

>54$=;9A$3=0$ <A023<?<153<;2$2H>@0/$;?$fFWg+ $'=0/0?;/07 $ <? 5

642603$;?$6<><95/$A0?<2<3<;2$<6$B/06023$<2$3=0$A535@560$6H1=$56$

Y

+(,-./%@1%A..".%6$/6B%C%)$5#/%0%)."6/##

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 42

!"#$%&'"!&()%*

f6<2:90g$3=0$<A023<?<153<;2$2H>@0/$D;H9A$@0$19;60$3;$3=0$f;20g$

642603$52A$B;66<@94$@0$fFFg$\(00$X<:H/0$`^+$'=0$19;602066$;?$

A0?<2<3<;26$<6$3=0$@56<6$?;/$;H/$59<:2>023$B/;1066+

'=0$20J3$6013<;2$<219HA06$3=0$;23;9;:<06$3=0>609806+$'D;$

;23;9;:<06 $ 5/0 $ B5660A $ 3D; $ 3=0 $ 59<:2>023 $ B/;1066 $ 3; $ @0:<2+$

'=0/0?;/07 $ 051= $;23;9;:4$;@Q013 $=;9A6 $ 599 $ 3=0 $ 19566 $;@Q0136$

D<3=<2$ 3=53 $;23;9;:4$56 $D099$56 $ 3=0$19566 $ 95@09 $;@Q0136+ $'=0$

;23;9;:4$;@Q013$596;152/03H/2$3=0$6B01<?<1$#!%$;?$5$19566$?;/$

59<:2>023$;H3BH3+

X<259947 $3=0$59<:2>023$B/;1066$H606$599$3=0$5?;/0>023<;20A$

<2?;/>53<;2$3;$A030/><20$0TH<8590210$52A$6<><95/<3<06$@03D002$

1;210B36$?/;>$051=$;23;9;:4+$

K6$A061/<@0A $05/9<0/7 $ 051= $19566 $=;9A6 $5 $ 95@09 $52A $D<3=<2$

051=$95@09$;@Q013$<6$5$1;99013<;2$;?642603%-$2H>@0/6$?/;>$3=0$

A0?<2<3<;2 $ A535@560+ $ '=0 $ 59<:2>023 $ B/;1066 $ 1;>B5/06 $ 051=$

95@09$D<3=$3=0$95@096$<2$3=0$601;2A$;23;9;:4$@4$1591H953<2:$52$

511H/514$859H0+ $X<:H/0 $j $ 6=;D6$=;D$ 3=0 $B/;1066 $D;/L6$?;/$

051=$1;>B5/<6;2+$

+(,-./%D1%2E7#/*%=">)5.(#"7%57F%#6".(7,

X;/$080/4$642603$%-$<2$O5@09$F$3=53$<6$6<><95/$3;$5$642603$%-$

<2$O5@09$I7$5$1;H230/<6<21/0>0230A$52A$@4$3=0$02A$;?$599$3=0$

1;>B5/<6;2$3=0$3;359$1591H9530A$6<><95/<3<06<6A<8<A0A$@4$3=0$

3;359$2H>@0/$;?$1;>B5/<6;26$>5A0+KA01<>59$6H1=$56$3=<6$<6$

1591H9530A $?;/ $ 599 $ 3=0 $ B/0?<J7 $ 6H??<J $ 52A $ /;;3 $ 642603 $ %-$

1;>B5/<6;26+$&0J37$599$3=0$A01<>59$859H06$5/0$5AA0A$3;:03=0/$

52A$580/5:0A$?;/5?<259$511H/514$859H0+

'=0 $?<259 $ 511H/514 $ <6 $ 1=01L0A $ 5:5<263 $ 5 $ B/0A030/><20A$

511H/514$3=/06=;9A+$%?$3=0$/06H93<6=<:=0/$3=52$3=0$3=/06=;9A7$

3=0$@;3=$19566$#!%6$5/0$B/<230A$3;$5$30J3$?<90$D<3=$3=0$511H/514$

859H0 $ 599 $ 60B5/530A $ @4 $ 5 $ 60><1;9;2+ $ '=0 $ /06H936 $ @09;D$ 3=0$

3=/06=;9A$B;<23$152$596;$@0$B/<230A$<?$3=0$H60/$A01<A06$3;$H60$

3=0$<2?;/>53<;2+

K96;7$5$3<>0/$=56$@002$<>B90>0230A$3;$/01;/A$3=0$/H2$3<>0$

;? $ 3=0 $ 59<:2>023 $B/;1066+ $'=0 $ /H2 $ 3<>0$ <6 $A<6B9540A $ <2 $ 3=0$

/06H936$@;3=$5@;80$52A$@09;D$3=/06=;9A$<2$><99<601;2A6+

%2 $ 1;219H6<;27 $ 3=0 $ 59<:2>023 $ B/;:/5> $H3<9<C06 $ 3=0 $ 9<2:H<63<1$

?053H/06$A0/<80A$?/;>$3=0$D;/A$0J3/513<;2$59:;/<3=><2=;B06$

;?$=<:=94$511H/530$/06H936$52A$0J1099023$59<:2>023$/06H936+

!"X"!"&."(

EFG (+$h+$(3;H302@H/:+%G6H-(.(7,%5FI576/F%).")/.*(/#%(7%"7*"?",E %

>5))(7,'%\IWWi^+$*%hP$kWiR$*/;100A<2:$;?$3=0$I2A$*=-$D;/L6=;B$;2$

%2?;/>53<;2$52A$L2;D90A:0$>525:0>023+$$BB+$_SF`+

EIG Z0<$)H7$lHC=;2:$mH7$e;2:$.=02:+$\IWWi^+$P531=<2:$95/:0$;23;9;:<06R$

K$$A<8<A0S52AS1;2TH0/$5BB/;51=+$&5*5%J%K7"L?/F,/%A7,(7//.(7,+$];9+$

`j\F^+BB+$FYWSF`W

EMG !+$X/01L903;2+$\IWFW^+$M7*"?",E%G?(,7>/7*%N#(7,%G-*">5*(6%O56$(7/ %

P/5.7(7,%Q/6$7(H-/#'

EYG (+$h+$(3;H302@H/:7$fKA85210A$;23;9;:4$59<:2>023R$&0D$>03=;A6$?;/$

@<;>0A<159$;23;9;:4$59<:2>023$H6<2:$2;2S0TH<8590210$/0953<;267g$*=-+$

-<660/353<;27$#2<80/6<34$;?$.;9;/5A;$53$.;9;/5A;$(B/<2:67$IWW_+

E[G P+$"=/<:7$l+$(H/0+$\IWW[^+$M7*"?",E%O5))(7,%RE%G4(">#%SMOGT+$

*/;?066<;259$h2;D90A:0$P525:0>023R$O013H/0$&;306<2.;>BH30/$

(1<0210+$];9+$MjiIbIWW[+$BB+$[`WS[`_

[

+(,-./%U1%&5*5R5#/%?5E"-*%/45>)?/

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 43

Designing Soft Keyboards for Brahmic Scripts

Lauren Hinkle

Abstract

Soft keyboards, because of their ease
of installation and lack of reliance on
specific hardware,
are a promising solution as an input
device for many languages. Developing
an acceptable soft keyboard requires
frequency analysis of characters in
order to design a layout that minimizes
text-input time. This paper proposes
using various development techniques,
layout variations, and evaluation
methods for soft keyboard creation for
Brahmic scripts. We propose that
using optimization techniques such as
genetic algorithms to develop multi-
layer and/or gesture keyboards will
increase the speed at which text can
be entered.

1 Introduction

In an increasingly fast paced world, being
able to input text quickly is important to
all users. Standard Roman-alphabet based
languages have been studied in detail, and it is
important to now develop efficient keyboards
in languages that have not been highly
researched. Many Indic languages have only
rudimentary keyboards that were developed
so that users could input text, not with the
goal of optimization. As a result, many of
these keyboards have not had a significant
impact because they are difficult to learn and
inefficient use.

Soft keyboards allow a user to input text
with and without a physical keyboard. They
are versatile because they allow data to
be input through mouse clicks on an on-
screen keyboard, through a touch screen on a
computer, cell phone, or PDA, or by mapping

a virtual keyboard to a standard physical
keyboard. With the recent surge in popularity
of touchscreen media such as cell phones and
computers, well-designed soft keyboards are
becoming more important everywhere.

For languages that don’t conform well to
standard
QWERTY-based keyboards that accompany
most computers, soft keyboards are especially
important. Brahmic scripts (Columas et al.
1990) have more characters and ligatures than
fit usably on a standard keyboard. A soft
keyboard allows any language to have custom
layouts based on the frequency of character
and ligature use within that language that do
not conform to a standard keyboard. While
physical keyboards have been designed for
Brahmic scripts, such as (Joshi et al. 2004),
they are cumbersome and difficult to learn.
The development and spread of soft keyboards
would allow the use of an easier to learn and
more efficient keyboard.

Web service providers such as Google.com
and Wikipedia.com have developed soft
keyboards for Brahmic languages, but these
are not optimized. Computer users are often
forced to use English keyboards to tediously
type their script. This limits people’s ability
to use computers and thus connect themselves
to the many resources computers can provide.
The development of soft keyboards for these
languages has the dual benefit of allowing
more people to be able to use a computer in
their native language and to prepare users for
touch-screen technologies.

Developing a soft keyboard for a Brahmic
script is important, but in order for it to be
usable it is necessary to design it such that it
is easily learned as well as efficient.

An efficient soft keyboard must optimize the
speed with which a user can input text using

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 44

only one input device (for example a stylus,
finger, or mouse). A user must be able to select
the desired characters as quickly as possible.
Brahmic scripts pose an important problem
that must be overcome: the number of
characters that should appear on the keyboard
to maximize efficiency. Brahmic scripts have
more characters than the standard Roman-
based languages most people are familiar
with. For example, the Eastern Nagari script
has 37 consonants, 11 vowels, and 4 special
characters that can be used individually as
well as combined to create about 250 different
ligatures.

In addition
to deciding whether ligatures should appear
on the keyboard, the layout of the characters
must be designed with efficient text-entry in
mind. More frequently used characters should
be placed centrally, and characters that are
often used together should be located close to
one another. This would minimize the travel
distance between characters being selected and
therefore increase the input speed.

2 Related Work

While efficient soft keyboards have not been
widely developed for Brahmic scripts, there
has been much research in techniques for
development of soft keyboards in English.

Soft keyboard layouts have developed from
simple and familiar to seemingly arbitrary,
yet designed by computers to be as efficient
as possible. Early techniques for English
soft keyboards used either alphabetic ordering
or the traditional QWERTY layout. While
these are still the most commonly used
keyboards, great enhancements have been
made in optimization. MacKenzie et al. were
among the first to design a layout based
on character frequency. They used Fitt’s
Law and trial-and-error hand-placement of
frequently occuring bigraphs to develop the
OPTI keyboard (MacKenzie and Zhang 1999).
Keyboards were further improved upon by
using computers to iterate over many solutions
to computation-heavy algorithms from physics
such as Hook’s Law and a Metropolis random
walk algorithm. Machines developed and
tested increasingly efficient soft keyboards
that were able to reach theoretic upper-

bounds of text input of approximately 42
wpm (Zhai et al. 2000). The next major
step in efficiency was undertaken by employing
genetic algorithms. The keyboards generated
using this technique were more efficient for
every layout tested than any previous soft
keyboard (Raynal and Vigouroux 2005). The
impressive performance of genetic algorithms
leads to the idea of using other optimization
techniques for keyboard layout. While such
techniques have not been applied to keyboards
aimed at the general public, ant colony
optimization strategies have been applied to
virtual keyboards designed to make text input
simpler for people with disabilities (Colas et
al. 2008).

If these steps worked to create efficient soft
keyboards for English, we hypothesize they
will work as well for other languages.

Brahmic soft keyboards are currently at a
point in their development analogous to where
English soft keyboards were a decade ago.
They are currently organized in traditional
alphabetic ordering or in consonant-vowel
groups. However, there have been several
interesting techniques for input schemes
employed. Although there are some designs
for single layer keyboards, reminiscent of
English soft keyboards (Sowmya and Varma
2009), this is not the trend in Brahmic
keyboards.

As a result of the great number of characters
in the alphabets, including diacritics, many
Brahmic keyboard designers have opted for
layered keyboards. A layered keyboard
has multiple characters residing in the same
location that are accessible by either hitting
a button that toggles between layers (Rathod
and Josh 2002) or rolling over base characters
to reveal others (Shanbhag et al. 2002).
Shanbhag’s keyboard has a combination of
these effects, with multiple layers that can be
toggled between as well as a layer that has
consonants grouped together and accessible by
rolling over the group icon (Shanbhag et al.
2002).

Another technique to decrease the necessary
number of keys is the use of gestures on
the keyboard. In a gesture keyboard, the
user draws any necessary diacritics for each
character as they select it (Krishna et al.

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 45

2005). Gesture based keyboards have taken
some of their ideas from English gesture-based
keyboards such as T-Cube, in which a user
selects different characters by flicking their
mouse or stylus in different directions (Venolia
and Neiberg 1994).

These techniques have the potential to
increase the input speed of the user by
decreasing the search time for characters and
decreasing the necessary distance to travel
between characters. However, no theoretic
input speeds have been calculated for them.
In addition, both techniques stand to benefit
by reordering the keyboard by frequency of
use of unigraphs and bigraphs, rather than
alphabetically.

3 Brute-Force Brahmic Soft
Keyboard Design

As a first attempt in designing a soft
keyboard, we took a brute-force approach. We
implemented a three-level pop-up menu based
soft keyboard for Assamese, the Eastern-most
Indo-European language and one that uses
the Eastern Nagari variant of Brahmic scripts.
The first level provided an individual key for
each consonant (See Figure 1). It also had
a single key for each of the following sets of
characters: vowels, vowel diacritics, digits and
special punctuation marks.

Figure 1: The top-level menu items for
character entry. The 11 vowels are represented
by the first menu item in the top row. The
second item in the top row represents the
medial diacritic representations of the eleven
vowels. The last three items on the bottom
row represent special characters, numerals and
punctuation, respectively.

The second level of keys were organized

as follows. When the first vowel, , which
appears on the initial screen, is pressed on,
a horizontal pop-up menu with the 10 other
vowels appeared. Similarly, when one presses
on the first diacritic , the diacritics for
the ten other vowels appear in a horizontal
pop-up menu. When one presses on any
of the consonants at the first level, every
combination of the consonant with vowel
diacritics and every ligature in which the
consonant participates shows up. The second
level menus are rectangular. An example of
the menu that pops up for is shown in Figure
2.

Figure 2: Second level menu (light blue in
green) for a consonant.

There exists a third level of menus as well.
Each ligature in the second layer has a sub-
menu of all the vowel diacritics that can be
added to it. The level 3 menu for a ligature is
shown in Figure 3.

Figure 3: Third level menu (in red) for a ligature

Thus, in our three-level menu system, we
provide direct access to every vowel, vowel
diacritic, digit, special punctuation mark,
consonant, and consonant-vowel diacritic
combination, as well as every ligature-vowel
combination. However, this made for an
unweildy keyboard with access to over 3000
character combinations in which it is possible
to type anything that can appear in print by
menu traversal only.

Our tests on this keyboard were
disappointing. We were unable to perform a

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 46

theoretical analysis of this keyboard since we
could not find any theoretical models to do so.
Our one-time test with 5 volunteers led to a
speed of 30 characters per minute or about
5 words per minute. Therefore, we looked
for ways to develop more intelligent designs
of keyboards. The rest of the paper discusses
our new approach.

4 Soft Keyboard Development
Using Optimization Techniques

We attempt to address the problems of
Brahmic script text input by applying a
combination of techniques previously used for
the development of English keyboards and
those design choices already used for Indic
language layouts. We look at two approaches
for improving input potential: layouts based
on character frequency, and the use of machine
learning techniques for character placement.

Keyboard layouts based on alphabetical
ordering make the initial learning of the
keyboard simpler, however, it is a tradeoff
for efficient input later. Based on the
improvements gained in English keyboards by
organizing layouts by unigraph and bigraph
frequency, we theorize that a similar approach
will be equally beneficial for Brahmic script
keyboards. The Emille Corpus for Assamese
(Baker et al. 2003) was analyzed in order
to develop tables of unigraph and bigraph
frequencies. In addition initial research into
ligature frequencies has been performed on the
same corpus (Baker et al. 2003). Although
ligatures have not yet been integrated into
the soft keyboards being developed, future
research into this is expected.

4.1 Design Choices

In creating soft keyboards, several design
choices were made that may affect input speed.
Some of these are discussed here.

In all of the keyboards designed, the
spacebar is fixed below the grid of characters.
When determining the distance between a
digraph that contains a space, the center
of the spacebar is used as the location the
user would choose when typing. Although
optimum input speed is obtained when the
user always chooses the shortest path, this
cannot be expected. Zhai et al. estimated

that, given the choice of four spacebars, users
chose the optimum space bar only 38%− 47%
of the time (Zhai et al. 2000). Therefore, in
order to have a conservative estimate of the
upperbound for input time, perfect travel to
and from thespacebar was not assumed. In
addition, this decision avoids underestimates
in movement calculations from “free-warping”
in which the stylus enters a spacebar in
one location and leaves it in an unrelated
location, a common error in soft keyboard
evaluation (Zhai et al. 2000).

We have chosen to create rectangular ‘grid’
keyboards in which each character occupies
a square. This is the most common layout,
however the Metropolis Keyboard (Zhai et
al. 2000) and select others use hexagon
keys and irregular, honeycomb shapes for the
keyboard. Our decision to use a rectangular
layout for all of our designs is a desire to
have a similar layout among all stages of
development in order to best compare them. It
is believed that rectangular layered menus will
be most efficient because square hierarchical
menus have been shown, both theoretically
and empirically, to be the most efficient type
of menu selection (Ahlström et al. 2010). A
desire to have a rectangular keyboard with
square keys at one stage necessitates the need
for a similar layout and key shape at all stages.

4.2 Genetic Algorithm Designs

Genetic algorithms are a technique in machine
learning that is derived from the principles
of natural selection. A genetic algorithm is
composed of three major parts: a population
of potential solutions, a fitness function which
evaluates those solutions, and a method for
reproducing and changing the population of
potential solutions over time. In a given
generation, each individual within the current
population of potential solutions is evaluated
by the fitness function and given a score.
The higher an individual’s score, the more
fit, or closer to the optimum solution, they
are considered to be. A new population
of potential solutions is then created, in
which the most fit individuals continue to
survive and new individuals are created from
fit individuals in the previous generation.
These new individuals can be a combination
of previous individuals, or can be developed

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 47

by mutating previous individuals. Many
iterations of this occurs until the solution, or
an approximate for it, is found.

Figure 4: Evolutionary cycle of a population of
chromosomes in a genetic algorithm.

In developing a genetic algorithm for soft
keyboards, each individual in the population,
called a chromosome, is a different layout
for a keyboard. Each chromosome contains
a number of genes equal to the number of
characters in the alphabet being considered.
Each gene is unique. In the initial genetic
algorithm, a simple one-layer, rectangular
keyboard was developed. Each chromosome
was given a score in its fitness function that
represented the inverse of its mean time to
type a character in that layout, as calculated
by Fitt’s Law. Thus chromosomes with lower
mean times were given higher fitness scores.
The fastest layouts were kept for the next
generation, and chromosomes were chosen for
gene mutations (swapping the locations of
two characters) and combinations with other
chromosomes (in which part of one layout was
adopted by another layout) with likelihood
of being chosen proportional to their fitness.
These newly created chromosomes as well as
the best performing chromosomes become the
population to be evaluated in the next round.

Figure 5: Example chromosome for an Assamese
keyboard in which each character in the Assamese
alphabet is a gene in the chromosome. In an a × b
rectangular keyboard, the first a genes represent the
first row, and the second a genes represent the second
row, etc.

In our genetic algorithms, we allowed the

population of keyboards to continue evolving
until a single layout was considered the most
fit in the population for a predetermined
number of continuous generations.

There are many variables in genetic
algorithms that can be adjusted, including but
not limited to: the number of chromosomes
in a population, the number of generations
the genetic algorithm runs for, the number of
required stable generations (one chromosome
is consistently the most fit), the chance of
mutation, and how many chromosomes were
preserved between generations. There are too
many variables to fully test all possibilities.
When determining what values to use for
the chance of mutation, we tested a range
of percentages between .001 and .15 and
found our best results with a chance of
approximately .08. This is a higher mutation
rate than many genetic algorithms use, and
further testing may show that better or faster
results are found with a different mutation
rate. However, we used mutation rates of .08
for most of our tests whose results are reported
in this paper. We also chose to preserve
approximately 10% of each population.

We chose to focus our attention on
varying the number of chromosomes in a
population and the number of required
stable generations. For each keyboard
designed using genetic algorithms we varied
the population size between 10 chromosomes
and 1000 chromosmes. Although the
results varied, generally it seems that the
best performing keyboards were developed
with larger population sizes. The number
of required stable generations were varied
between 10 and 100. A couple of tests were run
with a stable generation requirement of 250
and 500 and the results were not any better.
Having a high number of stable generations
didn’t seem to improve the results. Most of
the best keyboards had a stable generation
requirement of 15 to 35. Although many tests
were run for each type of keyboard developed,
only the best keyboards from each category are
reported in this paper; we note the number of
chromosomes used to develop that keyboard
as well as the number of stable generations
required.

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 48

5 GA-Based Flat English Soft
Keyboards

The keyboards previously designed
for Brahmic scripts have two downfalls as
comparators for our keyboards: they have
only been evaluated by human volunteers,
and there has been little attempt to optimize
them. As a result, in order to determine that
the techniques we use to design keyboards
are indeed designing theoretically efficient
layouts, English keyboards were designed
and evaluated in parallel with Brahmic
keyboards. This allowed us to see whether
the techniques create keyboards that are
competitive in a language where much
research for optimization has taken place. If
these keyboards are theoretically competitive
in English, we hypothesize that the same
techniques applied to the development of
Brahmic keyboards will also create keyboards
that will be competitive in terms of efficiency
even though no previous work on theoretic
analysis of input speed has previously been
performed.

Figure 6: English soft keyboard developed using
genetic algorithms. This keyboard has a predicted
upper-bound of 38.6 wpm based on Fitt’s law. While
this is not as high as other upper-bounds, the suspected
difference is the placement of the spacebar across the
bottom of the keyboard rather than including it as a
gene in the chromosomes in the genetic algorithm.

5.1 Fitness Function Used: Fitt’s Law

Fitt’s Law (Fitt 1992) is a technique used
for evaluating a theoretic upper-bound of
words per minute (wmp) in stylus-based
input systems. While Fitt’s Law has been
widely used for evaluation of soft keyboards
in English, it has not previously been
applied to Brahmic script keyboards. It
calculates the mean time in seconds to type
a character, which can then be used to
determine wpm (Zhai et al. 2000).

Fitt’s Law finds the average time to move
between a character i and a character j in
an alphabet with n characters by looking at
the distance apart the characters are, Dij , as
well as the frequency with which that digraph
occurs, Pij . Given a width Wj for each key
j, and an index of performance IP , the mean
time in seconds to type a character is:

t̄ =
n∑

i=1

n∑
j=1

Pij

IP

[
log2(

Dij

Wj
+ 1)

]

Previous work in the field uses an IP of
4.9 (MacKenzie and Zhang 1999) (Raynal and
Vigouroux 2005) (Zhai et al. 2000). In
order to maintain consistency in evaluation,
our calculations also use this value.

In the tests
performed on the designed English keyboards,
the standard of five characters per word is used
in our computations. Thus, given the mean
time in seconds, t̄, for typing a character, the
calculation for wpm is wpm = 60

5t̄ .

The fitness function used to develop both
English and Assamese flat keyboards was an
inverse of Fitt’s Law. In order to maximize the
input speed of the user, our fitness function
sought to minimize the mean time to travel
between characters. In other words, the fitness
function evaluated each layout accoriding to
Fitt’s Law. The higher the Fitt’s score the
keyboard received, the greater the mean time
to travel between characters, and the lower the
fitness score given to the keyboard. The higher
the fitness score of a keyboard, the more likely
it was to be kept for the next generation and
to be selected for crossover and mutation.

5.2 Evaluation

The only soft keyboards developed by us for
English that we have tested were done using
a genetic algorithm that employed Fitt’s Law
as the fitness function. These keyboards were
designed to parallel the most basic Brahmic
keyboard in which only one layer is used.
While our designed English keyboard is not
the fastest according to Fitt’s Law, it is
competitive with other keyboards. Although
its theoretic upper-bound is less than 40
wpm, as compared to 43.1 wpm (Zhai et al.
2000) and 46.4 wmp (Raynal and Vigouroux
2005), there is a considerable enhancement

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 49

over using a standard QWERTY layout as
a soft keyboard. We hypothesize that the
reason our keyboard is slower is that we used a
fixed space-bar at the bottom of the keyboard
rather a central button (Zhai et al. 2000) or
including multiple space buttons (Raynal and
Vigouroux 2005). The result is an increase
in the average travel distance to and from
the space-bar, the most frequently occurring
character. A test with human volunteers was

Figure 7: Graph of volunteers’ average improvement
over multiple ten-minute sessions at typing on the
English keyboard designed using genetic algorithms.
Average user input speed is increasing with each
session.

carried out to show that the typing trend was
approaching the expected words per minute
as predicted by Fitt’s Law. Ten volunteers
typed random phrases on the keyboard during
ten minute sessions over a period of a week.
The phrases used were from MacKenzie and
Soukoreff’s published collection (MacKenzie
et al. 2003). This test was not intended
to determine input speed of long-term users,
but to determine if the keyboard is easily
learned and to show that input speed does
approach the predicted speed. The results
suggest that user’s typing speed does increase
and will continue increasing after long term
use. Therefore, we claim that the genetic
algorithm used to design this keyboard, as well
as using Fitt’s law to evaluate it, are both valid
for developing and evaluating soft keyboards,
and we will apply them to Brahmic scripts as
well.

6 GA-based Flat Brahmic
Keyboard

As a basis to compare the results of our
genetically designed keyboards to, we first
evaluated a flat, rectangular, alphabetic
keyboard. In order to maintain the
comparison, the diacritics were also added
to the keyboard. Several layouts, which
varied in number of columns and rows, were
evaluated using Fitt’s Law. In addition, the
placement of the diacritics was adjusted. In all
trials, the vowels and consonants were kept in
alphabetic order and the diacritics were kept
in a group, but the input speed was calculated
with three different layouts: with the diacritics
appearing before the vowels, after the vowels,
and after the consonants. The fastest resulting
alphabetic keyboard, shown in Figure 8, was
an 8 × 8 square with the diacritics appearing
after the consonants. An evaluation using
Fitt’s Law predicts an input speed of 25.06
wpm.

Figure 8: Alphabetically Organized Keyboard for
Assamese with diacritics located after consonants.
This keyboard is the predicted fastest alphabetic
keyboard we tested and has a theoretic input of 25.06
wpm.

The first Brahmic script keyboard designed
using genetic algorithms was a simple, single-
layer keyboard for Assamese. The keyboard
maintained the 8 × 8 grid of the 64
consonants, vowels, and diacritics that was
used in analyzing an alphabetically organized
keyboard. It is an improvement on the
alphabetic keyboard, as its design considers
the bigraph frequencies of Assamese and
attempts to minimize the travel distance
between characters in frequently occurring
bigraphs. It was designed using a population
of 1000 layouts which were allowed to evolve

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 50

until a single keyboard had been the “most
fit” for 25 generations. Although many
tests were performed with varying numbers
for population size and required stable
generations, this was the best performing
keyboard we found. The resulting keyboard
has an expected input of 34.23 wpm according
to Fitt’s law, a promising initial result.
When designing GAG1 and GAG2, Raynal
and Vigouroux used populations of 20, 000
chromosomes and continued their algorithm
until a single keyboard had been the most
fit for 500 generations (Raynal and Vigouroux
2005).

Figure 9: Assamese soft keyboard developed using
genetic algorithms. This keyboard has a predicted
upper-bound of 34.23 wpm based on Fitt’s law.

Figure 10: A graph of the growth of the improvement
of the most fit keyboard in the genetic algorithm.
There were 1000 keyboard layouts in each generation
and the algorithm continued until the population had
been stable for 25 generations.

In determining words per
minute for Assamese soft keyboards, several
measurements had to be obtained. The Emille
Corpus for Assamese was used to calculate
frequencies for all unigraphs and bigraphs. In
addition, it was used to obtain the average
number of characters per word in Assamese,

which was calculated to be approximately
six (Baker et al. 2003).

7 Hierarchical GA-Based Brahmic
Keyboard

The initial use of genetic
algorithms for designing soft keyboards for
Brahmic scripts based on character frequency
is very promising. A second technique tried
for improving input speed is the development
of multi-layer keyboards. A multi-layered
keyboard allows menus or extra keys to be
placed on top of an original keyboard. Genetic
algorithms have previously been shown to
produce high efficiency in the development
of hierarchical menus (Matsui and Yamada
2008). While hierarchical menus and layered
keyboards have some differences in design,
the techniques used to evaluate them will be
similar. For example, a two layer keyboard
in which the second layer is accessible by
rolling over characters in the first layer can
be represented by a two-level menu.

7.1 Diacritic Menu as Second Layer

In an attempt to reduce the number of keys
on the screen as well as improving input
speed, the technique of adding a diacritic
menu to each consonant was tried, When a
consonant on the main level of the keyboard
is selected by pressing the mouse button down,
a diacritic menu appears around the selected
consonant. The user can either release the
mouse button on the chosen consonant to type
a bare consonant, or they can drag the mouse
and release it above one of the diacritics to add
it to the consonant.

The diacritic menu allows selection of the
12 most frequently occurring diacritics. They
were hand-placed in the diacritic menu such
that the four most frequent diacritics appear
immediately above, below, and to the side
of the selected consonant. The next four
most frequently occurring diacritics appear in
the location immediately diagonal from the
selected consonant. This is intended to allow
the fastest possible selection time. Future
work may include using optilization techniques
to place the vowels, rather than hand-placing
them.

The diacritics appear in the same location

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 51

Figure 11: A layered keyboard for Assamese.
Consonants and vowels are organized on the bottom
layer using a genetic algorithm.

Figure 12: The second layer appears when a
consonant is pressed down. The most common
diacritics are available to be added to the consonant.
They always appear in the same location in the
diacritic menu.

for each consonant regardless of frequency
with which they are used together. This is
anticipated to facilitate faster learning of the
diacritic menu by minimizing the visual search
time for each consonant and decreasing the
number of locations that must be memorized
by the beginner in order to become an expert.

Diacritic sub-menus are not new, they have
been widely used to decrease the number of
visible keys. However, to improve upon this
idea, we combined the ideas of diacritic menus
and the organization by frequency of a base
layer of consonants and vowels. We designed
a genetic algorithm that took into account
the diacritic layer with its fixed diacritic
locations within that layer. The idea behind
the algorithm is that if there is a frequently
occurring trigraph abc with a diacritic as the
central character, the best location for the
third character, c, is as close as possible to
directly below the diacritic b that appears in

the menu off of a.

Our genetic algorithm was run with a
population of 500 individuals with a stable
generation requiremenent of 15. The resulting
keyboard, seen in Figure 12, has an expected
theoretic input speed of 40.24 wpm. This is a
significant improvement over the single-layer,
alphabetically organized Assamese keyboard.

Figure 13: A graph of the growth of the improvement
of the most fit keyboard in the genetic algorithm.
There were 500 keyboard layouts in each generation
and the algorithm continued until the population had
been stable for 15 generations.

For comparison, a diacritic layer was added
to the alphabetic keyboard. The resulting
keyboard had an expected input of 33.94 wpm.

7.2 Vowel Menu

Assamese vowels are used infrequently, the
most frequent character occuring only 1.36%
of the time. Because of this, we hypothesized
that the input speed could be increased by
placing all of the vowels in a separate vowel
menu. A single button that includes all of the
vowels is a common organization technique in
previous Brahmic keyboards. This technique
has the benefit of reducing the number of
characters on the board to be memorized as
well as allowing the remaining characters to
be closer together. Immediately, it seems
that it would improve the theoretic input
speed according to both Fitt’s Law and Hick-
Hyman’s law. To test this, the vowels were
placed in set positions, based on frequency just
like the diacritic menu, in their own menu on
the bottom left of the screen, shown in Figure
14.

A genetic algorithm was designed and run to
create a keyboard with only consonants in the
base layer, a second layer of diacritics attached
to each consonant, and a vowel menu button.

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 52

Figure 14: Vowel menu appears around the
most commonly used vowel. The vowel menu
was located in the lower left of the keyboard.

The keyboards designed using this algorithm
were evaluated with the same methods used to
evaluate the diacritic menu. However, the best
keyboards developed using the vowel menu
had, on average, an expected input rate that
was 5 wpm less than those expected for the
keyboards that had no vowel menu. The
keyboard with the fastest expected input rate
that included a vowel menu was 35.6 wpm.
While further research into different layouts
of the vowel menu and different locations for
it may create a keyboard that has an input
expectation similar to those without a vowel
menu, 5 wpm is a significant gap to bridge.

7.3 Fitness Function Used

While an inversion of Fitt’s Law was an
effective fitness function for a single-level
soft keyboard, multi-level keyboards need a
different one. Multiple layers means that
traversal time between layers needs to be
taken into account, both in evaluation and
in determining the most fit keyboards. In
order to do this, we applied the ideas from the
evaluation of hierarchical menus performed
by (Ahlström et al. 2010). They built
on a technique for analyzing the search and
selection time of items in a hierarchical menu
from (Cockburn et al. 2007) that combines
Fitt’s Law, Hick-Hyman’s Law, and the
Steering Law and applied it to hierarchical
menus in which each menu and submenu
is a square grid of the available options.
The rectangular, multi-level soft keyboards we
designed are an application of a rectangular
hierarchical menu, and so their techniques for
evaluation were used in the fitness function of
our genetic algorithms (Cockburn et al. 2007).

Hick-Hyman’s Law (Seow 2005) predicts the
amount of time a person will take to make a
decision given the number of choices they have.

The user’s reaction time is modelled by

T = b
n∑

i=1

pi log2(
1

pi
+ 1)

where n is the number of choices and pi is the
probability of that choice being chosen. A user
must make a decision about what character to
press when their selection changes. The Hick-
Hyman law can be applied to the original,
base-layer of the keyboard as well as to the
diacritic second layer.

The Steering Law claims that the time to
move the cursor through a constrained two-
dimensional “tunnel” to move from one level
to the next is a linear function of the ration
between the tunnel length and width. The
Steering Law is very important in classic
hierarchical menus and pie menus. When the
hierarchical menu is a square grid, however,
the ratio reduces to one and the time to
move into a new level approaches the predicted
time to move between two points as predicted
by Fitt’s Law (Cockburn et al. 2007).
The diacritic menu that appears around the
selected consonant is mostly square, but
includes some outcroppings. The Steering Law
does not need to be taken into account when
selecting consonants and vowels on the base-
layer.

The fitness function
used in the our development of Assamese soft
keyboards with layers attempts to minimize
the sum of the time spent searching for the
next character (Hick-Hyman’s Law), moving
between locations (Fitt’s Law) and moving
between layers (The Steering Law). The
fitness function gets the mean time to type a
character by summing three different “types”
of ways a character can be typed. There
are two types of characters that can be
typed. Base characters reside in the bottom
layer of the keyboard and diacritics appear
in the second level. The three types of
inputs that must be taken into account are
a base character typed after another base
character, t̄bb, a base character followed by
a diacritic character, t̄bd, and a diacritic
character followed by a base character, t̄db.

t̄ = t̄bb + t̄bd + t̄db

The goal of the fitness function, as before when
the average time was computed only with t̄bb,

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 53

is to reward chromosomes that have smaller t̄
values with higher fitness scores.

In calculating t̄, the three averages are
computed as follows. t̄bb is the sum of Fitt’s
Law and Hick-Hyman’s Law for each pair of
characters on the base layer. Steering’s Law
does not apply to the base layer because the
ratio between the width and height of the
“tunnel” being traversed is 1. t̄bd is the sum
of Hick-Hyman’s Law and the Steering Law
for each diacritic that can be chosen from
each base character. t̄db is more complicated
because it requires calculating the distance
from each diacritic to each base character,
and all possible locations of each diacritic
must be taken into account. This requires
trigraph analysis of each base-diacritic-base
combination. t̄db is the sum of Hick’s Law and
Fitt’s Law for all base-diacritic-base trigrams.

7.4 Implementation of Text
Prediction

Text prediction has been shown to help
improve input speed in several input domains
such as texting and as an input aid for persons
with disabilities (Wobbrock and Myers 2006).
Although Brahmic script input does not fall
under those domains, it has been hypothesized
that well designed and implemented text
prediction could increase the input speed
of the average computer user (Anson et al.
2006). Although text prediction has not
caught on as a general typing aid because
it requires that the user switch their focus
from the keyboard on which they’re typing
to the prediction suggestions, this may not
be as large of a problem when typing with
soft keyboards. The study performed by
Anson et al. suggests that text prediction
algorithms used in conjunction with soft
keyboards actually improve the input speed.
They hypothesize that this is because the
predictions are physically closer to where the
typist is focused, and so requires less time
to use (Anson et al. 2006). The result of
this study motivates us to incorporate text
prediction into our Brahmic keyboards.

Unfortunately, there has
been little theoretic work on the time required
to consider the predictions suggested. Since
the typist will glance at the list of suggestions
after every character they type regardless of

whether the word they are writing appears
there, it is apparent that poorly designed
and implemented text prediction could easily
decrease input speed. Empirical tests have
shown that vertically listed suggestions tend
to be faster, more suggestions increases the
input time, and that using n-grams helps with
prediction suggestion when n, the number on
words used, is not too large (Garay-Vitoria
and Abascal 2005).

Our implementation of text prediction uses
unigram, single word, and n-gram, multi-word,
prediction. Once a user has begun typing
a word, the three most frequently occuring
words beginning with the letter the user has
typed are displayed for them to choose from.
If the user does not select one of those words
but instead types a second character, the most
frequently occuring unigrams beginning with
those letters are suggested. This continues
until the user has either typed the full word or
selected a word from the suggestion list. When
a word has been completed by either method,
three words are suggested as the next word.
Next word predictions are made by using
bigrams and trigrams, of which the next word
is the last word in said n-grams. The three
most frequently occuring trigrams using the
two most recently typed words as the first and
second word in the trigram are suggested. If
there are no trigrams, then bigram prediction,
with the most recently typed word as the first
word in the bigram, is used instead. Using an
n-gram model is hoped to improve accuracy of
predictions.

The frequencies for both unigrams, bigrams,
and trigrams are based on our analysis of
the Emille corpus for Assamese (Baker et al.
2003). Our predictions are listed vertically
on both sides of the keyboard, as can be
seen in Figure 15. The top word has the
highest frequency and the bottom word has
the lowest frequncy of those listed. Locating
the suggestions on both sides of the keyboard
is hoped to minimize gaze and travel time
for the typist, as they can use whichever
prediction list is closest to the last character
they typed.

Our current work regarding text prediction
lies in the realm of using the previously
typed words in a document to predict the

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 54

Figure 15: Text prediction suggests three
words beginning with the letters already typed
that have the highest frequency of occurence
among all unigrams. The suggests appear on
both sides of the keyboard.

words that will be typed. Typists tend
to reuse the same vocabulary, at a rate
of approximately 70% (Tanaka-Ishii et al.
2003). Incorporating the frequency of use of
certain words by a particular user would make
the word suggestions more accurate. Many
previous solutions to the problem of user-
affected frequencies have used a personalized
dictionary that the typist can add words to.
However, this is not used as often as it could
be because of the inconvenience of adding
words. In addition, this technique does not
account for a difference in personal vocabulary
frequency. A better approach would allow for
dynamic frequencies in the text prediction.

8 Future Work

Despite the progress that has been made, there
are still many tactics and techniques that
could be tried to develop a better keyboard.

Success with genetic algorithms suggests
that other optimization techniques can also
be applied to soft keyboard development.
Such techniques as ant colony algorithms
and particle swarm optimization will be
investigated and applied to Brahmic soft
keyboards.

Additionally, future research into the
implementation of gestures, in which a certain
movement with the stylus or mouse indicates
a different level, will be investigated. Using
gestures as a second or third layer above the
original keyboard may allow for easier and
faster vowel diacritic selection. It is expected
that ultimately the best keyboards will be a

combination of these tactics.

Another technique that may improve input
speed is the inclusion of ligatures. Ligatures
take more time to input than other characters
because a single ligature requires three or five
characters to be selected on the keyboard for a
single character to be displayed in the output.
Inclusion of a few commonly used ligatures
may increase input time by decreasing the
number of key strokes that must be made.

Perhaps the most important step in this
research will be empirical testing. Tests
with volunteers on the layered and predictive
Assamese keyboards will be performed.
Testing the Assamese keyboards will reveal
whether they are easy to learn and use by
people. Although they may be theoretically
efficient, keyboards are not worthwhile if
they’re not usable. In addition to the
benefits of empirical testing on the genetically
engineered Assamese keyboards, tests will
provide a basis to compare the results of
testing the keyboards that employ text-
prediction. Because we have not yet found a
way to theoretically analyze the input speed
of keyboards with text prediction, empirical
testing is essential. Such a test would compare
the input speed of volunteers on one of the
previously mentioned keyboards as well as
their speed on the same keyboard that includes
text prediction.

Assamese is not the only language that
could benefit from an optimized keyboard. We
are looking into developing keyboards, using
the same techniques as used with Assamese,
for other Brahmic languages such as Gujarati
and Kannada. Although many languages
share characters, differences in frequency of
use of those characters will cause a keyboard
optimized for one language to not be very
efficient for another language. The benefit of a
soft keyboard is that anyone using it would be
able to switch the layout to the one they are
most familiar with, it is not necessary to have
standard character placements for all users in
a single county or area.

9 Conclusion

Soft keyboards have the benefit of not
being limited to a specific layout as physical
keyboards are. They are versatile in shape

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 55

and can be varied by language in order to
be most efficient for whoever is using them.
Theoretic analysis using techniques such as
Fitt’s Law, Hick-Hyman’s Law, and Steering’s
Law were used to analyze various layouts, and
showed that reorganizing keyboards such that
characters in frequently occuring bigraphs
appear near one another results in a keyboard
with a higher expected input rate.

Table 1: Summary of Expected Input Speeds

Keyboard Type Expected WPM

Flat Alphabetic 25.06
Layered Alphabetic 33.94
Flat GA-Designed 34.23
Layered GA-Designed 40.24

Assamese text input can be improved from
an expected input of approximately 25 wpm
using an alphabetically ordered keyboard to
approximately 34 wpm merely by reordering
the keys. This improvement has also been
seen in English, and can likely be applied to
other Brahmic scripts. In addition, applying
this technique of organization by frequency
using through genetic algorithms to layered
keyboards can lead to another significant
increase in expected input to approximately 40
wpm. It is interesting to note that alphabetic
keyboards that apply layering techniques
are still outperformed by a flat keyboard
organized by frequencies. This suggests that
the most important technique for improving
input speed is frequency organization. This
would mean that having efficient keyboards
designed for each language is more important
than a general keyboard design for a shared
script. The beauty of soft keyboards is that
they allow this versatility. Once efficient
keyboards have been developed for a language,
it can be available for speakers of that
language everywhere they go.

References

Ahlström D., Cockburn A., et al., Why it’s Quick
to be Square: Modelling New and Existing
Hierarchical Menu Designs. Dallas, PA, USA:
College Misericordia, 2010.

Anson D., Moist P., et al., The Effects of Word
Completion and Word Prediction on Typing

Rates Using On-Screen Keyboards. Atlanta,
GA, USA: CHI 2006.

Baker P., Monmarche N. et al., EMILLE Corpus:
Assamese. European Language Resources
Association, 2003.

Cockburn A., Gutwin C., and Greenbrug S., A
Predictive Model of Menu Performance. San
Jose, CA, USA: CHI, 2007.

Colas S., Hardy A. et al., Artificial Ants for the
Optimization of Virtual Keyboard Arrangement
for Disabled People. Tours, France: Laboratoire
d’Informatique de l’Universite de Tours, 2008.

Columas, F., The Writing Systems of the World,
Cambridge, MA: Basil Blackwell, 1990.

Fitts, P. M., The Information Capacity of
the Human Motor System in Controlling the
Amplitude of Movement, Journal of Psychology:
General, Volume 121, No. 3, pp. 262-269 (reprint
of the same article from Journal of Experimental
Psychology, 47, 381-391, 1954), 1992.

Garay-Vitoria N., Abascal J., Text Prediction
Systems: A Survey. Donostia, Spain: KReSIT
IIT Bombay, 2005.

Joshi A., Parmar V. et al., Keylekh: A Keyboard
for Text Entry in Indic Scripts. Mumbai, India:
KReSIT IIT Bombay, 2004.

Krishna A., Ajmera R., Halarnkar S. and
Pandit P., Gesture Keyboard - User Centered
Design of a Unique Input Device for Indic
Scripts. Mumbai, India: HP Laboratories,
2005.

MacKenzie S. and Soukoreff R. W., Phrase Sets
for Evaluating Text Entry Techniques. Ft.
Lauderdale, FL, USA, 2003. 1992.

MacKenzie S. and Zhang S. X., The Design
and Evaluation of a High-Performance Soft
Keyboard. Pittsburgh, PA, USA, 1999.

Matsui S. and Yamada S., Genetic Algorithm Can
Optimize Hierarchical Menus. Florence, Italy,
2008.

Rathod A. and Joshi A., A Dynamic Text Input
Scheme for Phonetic Scripts like Devangari.
Mumbai, India: IIT Bombay, 2002.

Raynal M. and Vigouroux N.,
Genetic Algorithm to Generate Optimized Soft
Keyboard. Portland, OR, USA, 2005.

Seow, S., Information Theoretic Models of HCI: A
Comparison of the Hick-Hyman Law and Fitts’
Law, Human-Computer Interaction, Volume 20,
pp. 315-352, 2005.

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 56

Shanbhag S., Rao D., and Joshi R. K.,
An Intelligent Multi-Layer Input Scheme for
Phonetic Scripts. 1em plus 0.5em minus
0.4emMumbai, India, 2002.

Sowmya V. B. and Varma V., Design and
Evaluation of Soft Keyboards for Teluga. Pune,
India, 2009.

Tanaka-Ishii K. et al., Acquiring Vocabulary for
Predictive Text Entry through Dynamic Reuse
of a Small Corpus. Tokyo, Japan: University
of Tokyo, 2003.

Venolia D., and Neiberg F., T-Cube: A Fast, Self-
Disclosing Pen-Based Alphabet. Boston, MA,
USA: Human Factors in Computing Systems,
1994.

Wobbrock J. O., and Myers B. A., From Letters
to Words: Efiicient Stroke-based
Word Ccompletion for Trackball Text Entry.
Portland, OR, USA: ASSETS, 2006.

Zhai S., Hunter M., and Smith B. A., The
Metropolis Keyboard - An Exploration of
quantitative Techniques for Virtual Keyboard
Design. San Diego, CA, USA: IBM Research
Center, 2000.

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 57

RESEARCH FINAL REPORT, UCCS, JULY 2010 1

Multiple Post Microblog Summarization
David Inouye

University of Colorado at Colorado Springs

Abstract—The use of microblogs such as Twitter1 has increased
incredibly over the past few years. Because of the public nature
and sheer volume of text from these constantly changing mi-
croblogs, it is often difficult to fully understand what is being said
about various topics. A method for summarizing popular topics
of microblogs has been proposed but its summaries are only one
sentence or phrase in length. Therefore, this work focuses on
extending microblog summarization by producing multiple post
summaries. Two main summarization algorithms are explored:
a clustering based algorithm and a threshold based Hybrid
TF-IDF algorithm. The results will be evaluated by comparing
the generated summaries with manually generated summaries.
For purposes of comparison, the results are also compared to
MEAD, LexRank and TextRank—some leading traditional multi-
document summarization systems.

Index Terms—microblogs, summarization, clustering.

I. INTRODUCTION

THE massive rise of microblogging as a new form of
communication and data generation2 has opened up a

new area of natural language processing that could be aimed at
discovering real time public opinion or news stories. In order
to understand and use this amount of information, however,
automatic summarization is a necessity. Though automatic
summarization of longer or more structured documents has
been researched [1]–[9], processing short and unstructured
microblog posts has only recently been considered. Shar-
ifi, Hutton and Kalita [10] proposed and implemented two
methods of summarizing any given microblog topic in one
sentence.3 They implemented a novel graph-based Phrase
Reinforcement algorithm and a Hybrid TF-IDF algorithm. The
Hybrid TF-IDF algorithm was an altered TF-IDF algorithm
(explained in [11], [12]) in which the TF (term frequency)
component is computed upon the entire collection of posts
whereas the IDF (inverse document frequency) component
is computed upon a single post. Both algorithms produced
human competitive results but the Hybrid TF-IDF algorithm
seemed to produce consistently better results and therefore is
integrated into this project.

II. MOTIVATION

Though microblog summarization algorithms have produced
summaries competitive with human generated summaries [10],
they only produce a single sentence. Consequently, they can

D. Inouye is participating in a Research Experience for Undergraduates
(REU) with the Department of Computer Science, University of Colorado,
Colorado Springs, GA, 80918 USA.

1http://twitter.com
2http://www.networkworld.com/news/2010/041410-biz-stone-says-twitter-

has.html
3The program developed by [10] will be referred to as “Sharifi’s program”

throughout the rest of the paper.

only represent one idea surrounding a topic. With this limited
coverage of a specified microblog topic, important or inter-
esting information about a topic may be easily overlooked.
Though these short summaries may provide simple indicative
summaries that give enough information to spark the interests
of users as explained in [5], multiple post summaries that
cover multiple subtopics of the original topic would push the
summaries towards being informative [5]. Therefore, this paper
describes some possible methods for producing these multiple
post summaries for microblogs.

III. PROBLEM DEFINITION

The problem considered in this paper is how to produce
a multiple post summary of microblog posts on a particular
topic that is specified by a keyword or phrase. The resulting
summary will be an extractive summary because the algo-
rithms presented in this paper extract quotes from the original
collection of posts.

This problem can be defined as follows: given a topic
keyword or phrase T and the number of posts for the summary
k, retrieve a set of microblog posts P in which for all pi ∈ P ,
T is in the text of pi and output a set of posts S with a
cardinality of k in which all si ∈ S are related to T by a
relative relevancy ranking ri but for all si, sj ∈ S, si "∼ sj .
For each post si ∈ S, a feature vector vi ∈ V can be computed
based on word frequencies after any noise has been removed.
The primary measure of similarity will be the cosine similarity
measure:

sim(si, sj) = cos(vi, vj) =
vtivj

‖vi‖‖vj‖
,

which can be simplified to sim(si, sj) = vtivj because ‖vi‖ =
‖vj‖ = 1.

IV. PROPOSED SOLUTION

Two main methods for producing summaries are explored in
this paper. The first method is using clustering to cluster posts
into subtopics and then summarizing each cluster individually
and the second method is modifying the Hybrid TF-IDF
summarization algorithm so that it can produce multiple post
summaries. Initial testing of microblog post clustering are
performed to select the best clustering method for the cluster
summarier.

A. Clustering Microblog Posts

In this phase, Sharifi’s program filters the posts by removing
any non-English posts and spam messages as determined by
simple heuristics and a spam classifier. Then, post noise such

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 58

RESEARCH FINAL REPORT, UCCS, JULY 2010 2

as html tags, website addresses, headings and references are
removed.

Once the posts have been pre-processed, the feature vectors
vi ∈ V will be computed for each post based on the
Hybrid TF-IDF weighting of words already implemented in
Sharifi’s program. In order to increase the performance of the
algorithms, the feature vector computation ignores two types
of noise: stop words that appear in a large majority of posts
such as “a,” “and” or “the” and simple sentences in a post such
as “Wow!!!” and “Hahaha, that’s funny.” These feature vectors
are normalized to unit vectors so that v′i = vi

||vi|| in order
to account for the difference in post lengths [13]. However,
for comparision, the first set of tests does not normalize the
feature vectors. The posts are then processed by a variety of
greedy clustering algorithms. The main set of algorithms are
variations of the k-means algorithm. Because the standard
k-means algorithm generally performs well and is easy to
implement [14], it has been tested first. The bisecting k-means
algorithm was implemented afterwards because it may perform
better than the direct k-means algorithm as suggested in [13],
[14]. The k-means++ algorithm, which is a new variation of k-
means algorithm proposed and initially tested by Arthur [15],
was then implemented. Finally, an algorithm that combines
the k-means++ algorithm with the bisecting algorithm was
implemented.

For the following definitions, the centroid ci ∈ C is defined
as

ci =

∑
v∈Vi

v

ni
,

in which ni is the number of posts and Vi is the set of
all feature vectors in ith cluster. The k-means clustering
algorithms are defined as follows:

1) Standard k-means algorithm
a) Randomly choose k initial centroids ci ∈ V from all

the computed feature vectors.
b) Assign each post pi to the centroid that is most similar

to its corresponding feature vector vi.
c) Compute the centroid of each cluster.
d) Repeat steps 1b and 1c until no posts are reassigned.

2) Bisecting k-means algorithm
a) Split the set of posts P into 2 clusters using the

standard k-means algorithm (k′ = 2) defined by step
1 above.

b) Choose an already formed cluster to split.
c) Repeat steps 2a and 2b until the kth cluster has been

formed.
3) k-means++ algorithm

a′) Choose initial centroids based on probability.
i) Choose an initial centroid c1 uniformly at random

from V .
ii) Choose the next center ci, selecting ci = v′ ∈ V

with the probability D(v′)2∑
v∈V

D(v)2
where D(v) is the

shortest distance from v to the closest center which
is already known.

iii) Repeat step 3a′ii until k initial centroids have been
chosen.

b-d) Continue with the standard k-means clustering algo-
rithm defined in steps 1b-1d.

4) Bisecting k-means++ algorithm
a) Follow step 2a of the bisecting algorithm above except

use the k-means++ algorithm instead of using the
standard k-means algorithm.

b-c) Continue with the bisecting k-means clustering algo-
rithm defined in steps 2b-2c.

B. Summarization
1) Baseline Summarizers:

a) Random Summarizer - For a baseline, a random
summarizer was implemented that randomly chose
four posts out of all the posts in each topic to serve
as a summary.

b) Mead Summarizer - For the well-known well known
multi-document summarization system called MEAD4

described in [16], the summaries were summarized
with the default settings.

c) LexRank Summarizer - LexRank [17] is a graph based
multi document summarization method that uses the
similarity between two sentences as the weight of the
edge between those two sentences. Then, the final
score of a sentence is computed based on the weights
of the edges that are connected to it. Since the MEAD
summarization toolkit came with a LexRank feature
script, the LexRank implementation with the MEAD
toolkit was used to compute the LexRank summaries.

d) TextRank Summarizer - TextRank [18] is another
graph based method that comes primarily from the
ideas behind the PageRank [19] algorithm. Because
the exact implementation was not available, the sum-
marizer was implemented internally using the formu-
las described in [18].

2) Cluster Summarizer: The cluster summarizer used the
best clustering algorithm found in the clustering tests—the
normalized bisecting k-means++ algorithm. It clustered the
posts into 4 clusters (k = 4) and then summarized each cluster
with the Hybrid TF-IDF algorithm.

3) Variable Cluster Summarizer: This test varied the value
of k for k-way clustering from 5 to 10 in order to see if
changing the number of clusters affected the results of the
Cluster Summarizer. The largest 4 clusters were then chosen,
and then each of these four clusters was summarized with the
Hybrid TF-IDF algorithm.

4) Hybrid TF-IDF Summarizer: This algorithm developed
by [10] weights all the sentences based on a modified TF-IDF
(Term Frequency Inverse Document Frequency) weighting of
sentences. The definition of what a document is for microblog
posts needed to be modified. Therefore, a hybrid definition
of a document was used instead in which the TF component
uses the entire collection of posts as one document while
the IDF component is computed on each post individually.
Originally, the algorithm only selected the best summarizing
topic sentence, but for this project, it was modified to select
the top four most weighted posts.

4http://www.summarization.com/mead/

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 59

RESEARCH FINAL REPORT, UCCS, JULY 2010 3

V. EXPERIMENTAL SETUP

A. Evaluation Methods
In order to test the clustering algorithms, a testing corpus

of pre-classified posts has been fed to the algorithm and the
values of entropy and purity has been used as the primary
metrics as defined by [13]. Given a particular cluster Xi of
size nr, the entropy of the cluster is defined as

E(Xr) = − 1

log q

q∑

i=1

log
ni
r

nr
,

where q is the number of classes in the pre-classified posts and
ni
r is the number of posts of the ith class that were assigned

to the rth cluster. The total entropy of the clustering solution
is

E(X) =
k∑

r=1

nr

n
E(Xr).

In general, the smaller the entropy values the better the
clustering solution. Similarly, the purity of a particular cluster
is defined as

P (Xr) =
1

nr
max(ni

r),

which represents the fraction of the cluster that is made up
of the largest class of documents. The total purity of the
clustering solution is

P (X) =
k∑

r=1

nr

n
P (Xr).

In general, the larger the purity values, the better the clustering
solution.

In order to test the final automatic summaries, the ROUGE-
N metric [20] will be used to compare manually generated
summaries to the automated summaries because [10] found
that for microblogs the ROUGE-1 (N = 1 for unigrams) metric
is a sufficient evaluation of microblog summaries. Given that
M is the set of manual summaries and u is the set of unigrams
in a particular manual summary, ROUGE-1 can be defined as

ROUGE-1 =

∑
m∈M

∑
u∈m match(u)∑

m∈M

∑
u∈m count(u)

,

where count(u) is the number of unigrams in the manual
summary and match(u) is the number of co-occurring uni-
grams between the manual and automated summaries. This
formulation of the ROUGE-N metric can be used to measure
the precision of the auto summaries since the divisor is
the number of relevant unigrams. The metric can be altered
slightly so that it measures the recall of the auto summaries
by changing the divisor to be the number of unigrams in
the auto summary which represents the number of retrieved
unigrams. This formulation of the ROUGE metric can be
stated as follows:

ROUGE-1 =

∑
m∈M

∑
u∈m match(u)

Mn ∗
∑

u∈a count(u)
,

where Mn is the number of manual summaries and a is the
auto summary. Because both recall and precision are important

in summaries, the F1-measure of the precision and recall are
computed such that

Fβ − measure =
(β2 + 1)pr

β2(p+ r)
,

where p is the precision and r is the recall. In addition,
for reporting the results, the average F1-measure of all the
iterations—25 iterations for non-random summarizers and
2500 for random summarizers—was computed as

avg(F1-measure) =
1

Fn

∑

f∈F

f,

where F is the set of all F1-measures and Fn is the number
of F1-measures being averaged.

At least two volunteers will manually generate multiple post
summaries by performing all the main steps of the algorithm
so that the basic steps parallel the steps of the algorithm. First,
like the algorithm, they will cluster the posts into a specified
number of clusters k. The specific value of k = 4 was chosen
after looking at the posts and determining that on average 4
clusters seemed to be reasonable.5 Second, they will choose
the most representative post from each cluster. And finally,
they will order the posts in a way that they think is most
logical. The information from this last step was not used in
this research project but was collected to possibly help an
extension of this project that could deal with the ordering of
the posts and post order coherence.

B. Test Data
The test data used in this research project came from the test

data collected for Sharifi’s summarization program [10]. Over
the course of five consecutive days, Sharifi et. al. collected
1500 microblog posts from the top ten trending topics on
the Twitter home page. Then, because microblog posts are an
unstructured and informal way of communicating, these post
were preprocessed to remove spam and other noise features.
These pre-processing steps were as follows [10]:

1) Convert any HTML-encoded characters into ASCII.
2) Convert any Unicode characters (e.g. “nu24ff”) into their

ASCII equivalents and remove.
3) Filter out any embedded URL’s (e.g. “http://”), HTML

(e.g. “<a.../a>”), headings (e.g. “NEWS:”), references
(e.g. “[...]”), tags (e.g. “<...>”), and retweet phrases (e.g.
“RT” and “@AccountName”).

4) Discard the post if it spam.
5) Discard the post if it is not in English.
6) Discard the post if another post by the same user has

already been acquired.
7) Reduce the remaining number of posts by choosing the

first 100 posts.
8) Break the post into sentences.
9) Detect the longest sentence that contains the topic phrase.

5Though the choice of k will introduce some bias into the manual summary
generation, a specific value needs to be set in order to accurately compare the
automatic summaries–which take k as a parameter–to the manual summaries
especially because the ROUGE-1 metric is very sensitive to summary length.
A possible extension of this project would be to design an algorithm to
compute the best value for k given a set of posts.

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 60

RESEARCH FINAL REPORT, UCCS, JULY 2010 4

These pre-processing steps and their rationale are described
more fully in [10]. Fifty topics of 100 posts gives a total of
5,000 posts. For the clustering tests, the topics were split into
10 sets of 5 so that 5-way clustering could be evaluated over 10
different data sets. For the summarizing tests, only the first 25
topics were used because of the limited number of volunteer
hours that were needed to perform manual summaries of the
topics.

C. Clustering Test

In order to avoid the sensitivity of random seeding, 100 5-
way clustering solutions were computed for each of the 10
different data sets for a total of 1000 iterations per algorithm.

D. Summarization Tests

For the summarizers that involve random seeding (e.g. Clus-
terSummarizer, RandomSummarizer), 100 summaries were
produced for each topic to avoid the effects of random seeding.

For the well-known multi-document summarization system
called MEAD6 described in [16], the posts were summarized
with the default settings. Each post was formatted to be one
document with a single sentence inside of it.

Since the MEAD summarization toolkit came with a
LexRank feature script, the LexRank implementation with the
MEAD toolkit was used to compute the LexRank summaries.
One change from the main MEAD program test, however, is
that all the posts for each topic were added to one document
as separate sentences so that their LexRank scores could be
computed against each other.

Because the exact implementation of TextRank was unavail-
able, the summarizer was implemented internally using the
formulas described in [18].

The cluster summarizer used the best clustering algorithm
found in the clustering tests—the normalized bisecting k-
means++ algorithm. It clustered the posts into 4 clusters (k
= 4) and then summarized each cluster with the Hybrid TF-
IDF algorithm. Because some of the volunteers had suggested
that some topics had significant noise and the fact that k-way
clustering can perform significantly differently for different
values of k, the number of clusters was varied from five to
ten and the largest 4 clusters were chosen to summarize.

Because the Hybrid TF-IDF may produce very similar
sentences as the top most weighted sentences, a similarity
threshold was applied in which the algorithm looped through
the posts starting at the most weighted and only choosing the
post if the following condition was true for the current post
si:

sim(si, sj) ≤ t

for all sj ∈ R where R is the set of posts aleady chosen and
t is the similarity threshold. The cosine similarity measure
was used and the threshold was varied from 0 to 0.99 with
increments of 0.01 for a total of 100 tests.

6http://www.summarization.com/mead/

VI. RESULTS AND EVALUATION

A. Clustering Results and Analysis
he entropy and purity measures of the 1000 iterations for

each algorithm were averaged to give an overall sense of each
algorithm’s performance. The algorithms marked “modified”
normalized the feature vectors to unit lengths. The average
purities and entropies for all 8 implementations are shown
in Table I. In order to give an overview of the relative
performance of each implementation, Figure 1 shows the
relative entropies and purities that have been normalized based
on the following equations:

E′
i(X) =

max(E(X))

Ei(X)
and P ′

i (X) =
Pi(X)

min(P (X))
.

Because of this normalization, higher values are better for both
entropy and purity, and all the algorithms are relative to the
base k-means algorithm.

TABLE I
AVERAGE ENTROPY AND PURITIES

Algorithm Implementation Avg. Entropy Avg. Purity
k-means 0.740 0.491
k-means++ 0.731 0.499
Bisecting k-means 0.732 0.504
Bisecting k-means++ 0.724 0.509
k-means (modified) 0.732 0.499
k-means++ (modified) 0.724 0.508
Bisecting k-means (modified) 0.720 0.514
Bisecting k-means++ (modified) 0.709 0.525

Fig. 1. The normalized relative entropies and purities for each algorithm.
The series labeled “modified” use the normalized unit feature vector.

One of the first observations is that normalizing the feature
vectors to be unit vectors improved the performance of all
the algorithms by about 1.5%. This seems to be logical
because normalizing the feature vectors significantly reduces
the algorithms’ sensitivity to length. The modified bisect-
ing k-means++ algorithm performed the best by producing
approximately 4% better entropy and 7% better purity than
the base k-means algorithm. The bisecting k-means++ algo-
rithm performed the best most likely because it combines the
strengths of both the k-means++ algorithm and the bisecting

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 61

RESEARCH FINAL REPORT, UCCS, JULY 2010 5

k-means algorithm. As suggested by [13], [14], the bisecting
k-means algorithm did work better than the standard k-means
algorithm. Though the k-means++ algorithm performed better
than the standard k-means algorithm, the k-means++ algorithm
did not perform as well as expected considering the tests
performed in [15]. This may be due to the feature vector of
short microblog posts.

Though these relative values show that the k-means al-
gorithm can be improved, the absolute entropy and purity
values as seen in Table I seem to suggest that the variations
on the k-means algorithm will only produce small changes
in the results. Hopefully, the different implementations of
the criterion optimization algorithm will provide a significant
increase in performance. In addition, the computation for
the feature vectors may need to be reexamined because the
clustering algorithms depend on good feature extraction.

B. Summarization Results and Analysis

1) Manual Summaries: Though the manual to manual
ROUGE-1 F-measure scores seem to low (F-measure =
0.3291), this can be explained by the several factors. First, the
instructions for summarizing did not give any guidelines to
how each person clustered except for whatever themes or top-
ics the volunteers thought could be good clusters. Therefore,
the clusters for a topic may have been significantly different
from one person to another depending on how they wanted
to differentiate the posts. They were not limited to simply
extractive clustering either since they were allowed to abstract
concepts from the posts. In addition, for some topics, there was
only thematic overlap rather than specific word overlap. For
example, the topic “#MM” was a topic that stood for “Music
Mondays” and the tweets would simply have names of songs
or names of artists. Obviously, the names of songs or artists
do not tend to overlap naturally. These results also seem to
agree with the low F-measure scores that computed for one
sentence summaries in Sharifi’s work [10].

Because choosing the specific number of clusters for the
volunteers (k = 4) could have introduced bias, data was
collected on whether on not the volunteer thought 4 clusters
was the right size for each particular post. This was a way
to gather information about how good 4 clusters seemed
and for future extensions of this research. Out of the 50
manual summaries—2 summaries per topic with 25 topics—
the volunteers answered that there should have been less 13
times, the same 28 times, and more 9 times. This data is
summarized in Figure 2.

It seems that the number of clusters (k = 4) was about
the mean but was not always the best choice for all topics.
Therefore, this research could be extended to discover how
the number of k could be decided more intelligently.

2) Baseline Summarizers:
a) Random Summarizer - The seemingly high F-measure

of the random summarizer may possibly be explained
by a few characteristics of microblog posts. First,
many microblog posts about a subject use the similar
words in the post so unigram overlap within all
posts seems to already be fairly high. Second, the

0

5

10

15

20

25

30

Less About right More

Fig. 2. Volunteer’s answers to question about whether the specified number
of clusters (k = 4) was right for the topic.

0.285

0.29

0.295

0.3

0.305

0.31

0.315

0.32

0.325

0.33

0.335

Manual Random MEAD TextRank LexRank

Fig. 3. F-measures for the baseline summarizers compared to the manual to
manual F-measure.

most representative post about a topic is often quoted
verbatim so the random summarizer has a decent
chance of selecting one of these retweeted posts.
Third, the unigram overlap even among manually
generated summaries was low so it is not surprising
that the random summarizer agreed some of the time.

b) MEAD - Interestingly, the MEAD default summarizer
did slightly worse than the random summarizer. This
seems to suggest that traditional ways of summarizing
do not work very well with microblog posts. The
unstructured and informal nature of the posts do
not correlate with the expectations of the MEAD
summarizer.

c) LexRank - Though the LexRank summarizer im-
proved the random summarizer’s F1-measure by about
5%, it does not seem to be significantly better than
the naiv̈e random summarizer. Again, this seems to
suggest that summarization of microblog posts is

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 62

RESEARCH FINAL REPORT, UCCS, JULY 2010 6

significantly different than normal document summa-
rization.

d) TextRank - Again, TextRank seemed to perform about
3.7% better than the random summarizer but not a
significant improvement.

3) Cluster Summarizer: The cluster summarizer produced
good results with an F-measure that is 8% better than the ran-
dom summarizer. And though varying the number of computed
clusters might have reduced noise, it seems from the results
when k > 4 that the performance decreases as is shown in
Figure 4. Therefore, the best Cluster summarizer is the original
implementation that clustered the posts into 4 clusters and
summarized each cluster into 4 representative posts.

0.25

0.26

0.27

0.28

0.29

0.3

0.31

0.32

0.33

0.34

4 5 6 7 8 9 10

Number of Clusters

Fig. 4. F-measures of the Cluster Summarizer over the number of clusters.

4) Hybrid TF-IDF Summarizer with Similarity Threshold:
The Hybrid TF-IDF Summarizer’s performance was better
than expected with a best F-measure of 0.3537 that was 17%
better than the random summarizer when t = 0.77. Its best
threshold measure of t = 0.77 seems to be reasonable because
it allows for some overlap but does not allow sentences to be
nearly identical. One reason for this summarizer doing so well
is that it puts all the noise posts near the bottom since they do
not seem to be related to other posts. In addition, the specific
weighting of sentences is probably better suited for microblog
posts than most traditional weightings of sentences such as
normal TF-IDF.

5) Summary of Results: A summary of the best performing
summarizers can be seen in Figure 6. The average precision,
recall and F-measure are scaled by the F-measure of the
random summarizer (0.3020) to give a relative sense of each
summarizer. The values of precision, recall and F-measure
with a standard deviation σ can be seen in Table II.

It can be seen from Figure 6 that the Hybrid TF-IDF and the
Cluster summarizers performed better than any of the other
summarizers including TextRank and LexRank. In addition,
the Hybrid TF-IDF significantly improves over the Cluster
summarizer by reaching about 18% better than random.

Because the topic phrase will be included in every post, it
seems that a unigram match of the topic phrase is actually triv-

0.29

0.3

0.31

0.32

0.33

0.34

0.35

0.36

0
0.
04

0.
08

0.
12

0.
16 0.
2

0.
24

0.
28

0.
32

0.
36 0.
4

0.
44

0.
48

0.
52

0.
56 0.
6

0.
64

0.
68

0.
72

0.
76 0.
8

0.
84

0.
88

0.
92

0.
96

Similarity Threshold

Fig. 5. F-measures of Hybrid TF-IDF Summarization algorithm over different
thresholds.

TABLE II
ROUGE-1 AVERAGES

Precision Recall F-measure ± σ

Manual 0.3383 0.3383 0.3291 ± 0.1089
Random 0.2885 0.3322 0.3020 ± 0.0930
Mead 0.2429 0.4109 0.3005 ± 0.0913
TextRank 0.2644 0.4075 0.3133 ± 0.0955
LexRank 0.3676 0.2943 0.3170 ± 0.0871
Cluster 0.3092 0.3606 0.3271 ± 0.1060
Hybrid TF-IDF 0.3505 0.3723 0.3537 ± 0.1172

‐30%

‐20%

‐10%

0%

10%

20%

30%

40%

Manual Random Mead TextRank LexRank Cluster Hybrid TF‐
IDF

Precision Recall F‐measure

Fig. 6. Scaled F-measures of the summarizers.

ial and could be hiding non-trivial unigram overlap. Therefore,
the ROUGE scores were recomputed so that the computation
ignored keywords. The results are shown in Table III and
summarized in Figure 7. Again, the results shown in Figure
7 are scaled by the F-measure of the random summarizer
(0.2071).

The drop of almost all the averages by about 0.1 when

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 63

RESEARCH FINAL REPORT, UCCS, JULY 2010 7

keywords were ignored seems to be about right since the
average length of a post is 11 words and each post will have
one of the keywords at least once (1/11 ≈ 0.1). However, the
relative results of the summarizers changed. Using this slightly
modified ROUGE metric, LexRank performs less than the
random summarizer and the TextRank summarizer performs
just slighltly better than the Cluster summarizer. The Hybrid
TF-IDF summarizer continues to significantly outperform all
other summarizers with an F-measure of 0.2524 which is 22%
better than the random summarizer.

TABLE III
ROUGE-1 AVERAGES (KEYWORDS IGNORED)

Precision Recall F-measure ± σ

Manual 0.2320 0.2320 0.2252 ± 0.0959
Random 0.1967 0.2283 0.2071 ± 0.0817
LexRank 0.2333 0.1894 0.2027 ± 0.0760
Mead 0.1771 0.3050 0.2204 ± 0.0738
Cluster 0.2180 0.2554 0.2310 ± 0.0891
TextRank 0.1954 0.3053 0.2328 ± 0.0799
Hybrid TF-IDF 0.2499 0.2666 0.2524 ± 0.0906

‐20%

‐10%

0%

10%

20%

30%

40%

50%

60%

Manual Random LexRank Mead Cluster TextRank Hybrid TF‐
IDF

Precision Recall F‐measure

Fig. 7. Scaled modified F-measures (keywords ignored) of the summarizers.

Since the number of unigrams in the summary could affect
the ROUGE scores, the average number of characters for
each summarizer is shown in Figure 8. The high values of
the TextRank and MEAD summarizer that are approximately
50% higher than the manual summaries, would explain why
the recall values of the TextRank and MEAD summarizer are
particuarly high. In addition, the results help explain why the
recall of every summarizer except the LexRank summarizer
are higher than their corresponding precision measures. An
extension of this work may be to attempt to penalize longer
posts especially for the MEAD and TextRank summarizers to
see if it improves their F-measures.

Examples of the top 3 summarizers (TextRank, Cluster and
Hybrid TF-IDF) appear in Tables IV-VI. The three topics were
chosen based on the F-measure scores of the Hybrid TF-IDF
summarizer for it’s best, worst and average topic.

0

100

200

300

400

500

600

Manual LexRank Hybrid TF‐
IDF

Random Cluster TextRank MEAD

Fig. 8. Average number of characters per summarizer.

VII. CONCLUSION

The final goal of this research is to produce multiple
post summaries of particular topics discussed in microblog
posts in order to simplify and understand the information
that microblogs provide. This research project specifically
extends the work of [10], which only considered producing
one sentence summaries. It seems from the clustering results
that clustering microblog posts is not as simple or clean as
clustering normal structured documents, and therefore, some
new ways of clustering or computing feature vectors could be
explored in future work.

The Hybrid TF-IDF summarizer with a similarity threshold
of 0.77 produces significantly better results than the random
summarizer and seems to be competitive with manually gen-
erated summaries. In addition, it performs better than some of
the more traditional multi-document summarization systems
MEAD, LexRank and TextRank. This points to the fact that
microblog posts cannot be treated as traditional documents.

This project could be further extended in several ways.
First, if a list of the most significant current topics could
be computed as is being researched by [21], a summary of
all the most significant topics could be generated in real
time. It may also be possible to produce a topic browsing
and summarization tool that will help people have a more
comprehensive idea about real time microblog information.

Second, the coherency of the multiple post summary could
be researched in depth. Sophisticated methods for ordering
standard documents have been explored by [22], [23], and
these advanced methods could possibly be applied to mi-
croblog summary cohesion. Other coherence issues such as
pronoun resolution and fragmented arguments are issues that
all summarization techniques need to consider [5]. If these
issues could also be solved, clean, cohesive and comprehensive
summaries of specified microblog topics could be practical and
beneficial for many people.

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 64

RESEARCH FINAL REPORT, UCCS, JULY 2010 8

TABLE IV
GOSSIP GIRL (BEST TOPIC FOR HYBRID TF-IDF)

Manual 1 about to watch gossip girl!
great episode of Gossip Girl tonight!
Not happy with that episode at all. #Gossip Girl
gossip girl was way dramatic tonight blair and chuck can not break up

Manual 2 Yeah, it’s time for Gossip Girl!
great episode of Gossip Girl tonight!
Gah, this week’s Gossip Girl broke my heart in about 16 different ways. Chuck and Blair better make up soon!
Just missed #gossip girloh why? Oh, wait, i know.....too mauch damn homewrok!!

TextRank i wanted to watch gossip girl with the girls but tummy ache :(this hasn’t happened in months. ugh. house finally came on and it was gooood.
So... I’m sitting in Indie’s room with a bunch of Lesbians trying to explain the magnificence that is “Gossip Girl“
Aww, Chuck & Blair are mad at each other. Usually Gossip Girl ends on a good note for Chuck and Blair. This episode didn’t. I’m sad now :’(
I will seriously stop watching “Gossip Girl“ if Chuck and Blair break up. And WTF? Get Hilary Duff off of the show!

Cluster has enjoyed throwing some MST3K style riffs at Gossip Girl tonight. Drew some inspiration from Bob Evil & Nick from Time Chasers. :D #fb
gossip girl was way dramatic tonight blair and chuck can not break up
Hmm. Gossip Girl voice overs starting to sound an awful lot like Meredith Grey’s voice overs. This is not a positive development.
wait people still watch gossip girl? lmao

Hybrid
TF-IDF

Not happy with that episode at all. #Gossip Girl

wait people still watch gossip girl? lmao
great episode of Gossip Girl tonight!
gossip girl was way dramatic tonight blair and chuck can not break up

TABLE V
#MM (WORST TOPIC FOR HYBRID TF-IDF)

Manual 1 its still monday?! welp #MM Tank “Slowly“ -hmmmmm
#MM “We Used To Vacation“ Cold War Kids ¡– Pure Talent! Another one of my favs...
#ralphlauren I got so many horses bitches call me polo... Guess the artist who said those lyrics #mm #musicmonday
@Firefly2020 Thank you for #MM hugs - same back to you!

Manual 2 #MM The Feelies - The Good Earth
#MM Keep It Flowin- Isley Brother...I could listen to this ALL day! Get up on it!
’Take your time when you likin a guy Cause if he sense that your feelings too intense, it’s pimp or die...“ #MM Jay-Z Soon You’ll Understand
iphone app which might mitigate this winter by starting the car from anywhere #iPhone #automobile #MM #app #apps http://bit.ly/6yZPE

TextRank #MM Kanye West “See You In My Nightmare“... I Got The Right To Put Up A Fight!!!
That is a sad discovery!! RT @joeyt2k just found out The Darkness broke up in 2006, is too devastated to speak. #MM #musicmonday
#MusicMonday I always smoke dro, so it must be the answer, best beat in the game? my votes for #BeatCancer www.myspace.com/dezine420
#mm
#MM #MusicMonday This is so very gay, but Miley Cyrus “Party in the U.S.A.“ is actually starting to grow on me...

Cluster RT @aFOOLwperspctve: #MM Bobby Womack “If u think u lonely now“ wheeeeeeeeew my shit (Mine too!!)
#MM Blade Icewood - Oh Boy, it’s a detroit thing yall wouldnt understand lol
#MM “Deosnt Mean Anything“ by Alicia Keys...i love dis chick
#MM Amy Winehouse Black to Black album...5stars

Hybrid
TF-IDF

#MM Amy Winehouse Black to Black album...5stars

@young gab...stole my #MM song
#MM “Deosnt Mean Anything“ by Alicia Keys...i love dis chick
RT @RoseGold88: #MM Rell feat jay Z-Love for free***thats my favorite song sis!!!

TABLE VI
A-ROD (AVERAGE TOPIC FOR HYBRID TF-IDF)

Manual 1 A-Rod and ARod are trending now...hahaha.
Yankees fans: No matter how this postseason turns out, please shut up about A-Rod being a postseason choker. Yours in Christ, SDC
Nice CC!!.. Posada’s off his game tonight but A-Rod’s on point! LET’S GO YANKEES!
A-Rod is superman

Manual 2 A-Rod is just on fire this postseason.
A-Rod homers in third straight game http://bit.ly/168LMB
I HATE A - ROD TOO MUCH!!! WHO’S WITH ME?
not only is ARod a trending topic but so is A-Rod lol

TextRank Come on, Angels. Do work. Do something. Gosh, I haaaaaaate the Yankees. And A-rod is NOT worth that contract.
Girardi is now going to pinch hit for A-Rod 3-2 here because that’s what his book says is the right move (via @NoYoureATowel)
Wow both A-Rod and ARod is on Trending topics. Stupidddd,,,
Wow both A-Rod and ARod is on Trending topics. Stupidddd,,,

Cluster I have no idea who none of these players are besides A Rod and Derek Jeter - -
A-Rod homers in third straight game: A-Rod homers in third straight game http://bit.ly/168LMB
Gotta love that both arod and A-Rod are trending: Gotta love that both arod and A-Rod are trending
LOL no one is in this game. Posada leaves home plate after Jeter’s double play thinking it was 3 outs. kudos 2 A-rod who ran to cover home.

Hybrid
TF-IDF

RT @johnnnyAa love this A-Rod guy, dude can really play baseball

watching a-rod tie howard and gehrig’s postseason rbi streak record. howard also tied gehrig’s 70+ year old record just this year.
Gotta love that both arod and A-Rod are trending: Gotta love that both arod and A-Rod are trending
A-Rod homers in third straight game: A-Rod homers in third straight game http://bit.ly/168LMB

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 65

RESEARCH FINAL REPORT, UCCS, JULY 2010 9

REFERENCES

[1] H. Luhn, “The automatic creation of literature abstracts,” IBM Journal
of research and development, vol. 2, no. 2, pp. 159–165, 1958.

[2] H. Edmundson, “New methods in automatic extracting,” Journal of the
ACM (JACM), vol. 16, no. 2, pp. 264–285, 1969.

[3] K. Mahesh, “Hypertext summary extraction for fast document brows-
ing,” in Proceedings of the AAAI Spring Symposium on Natural Lan-
guage Processing for the World Wide Web, 1997, pp. 95–103.

[4] K. Knight and D. Marcu, “Summarization beyond sentence extraction:
a probabilistic approach to sentence compression,” Artif. Intell.,
vol. 139, no. 1, pp. 91–107, July 2002. [Online]. Available:
http://dx.doi.org/10.1016/S0004-3702(02)00222-9

[5] U. Hahn and I. Mani, “The challenges of automatic summarization,”
Computer, pp. 29–36, 2000.

[6] N. Madnani, D. Zajic, B. Dorr, N. Ayan, and J. Lin, “Multiple alternative
sentence compressions for automatic text summarization,” in Proceed-
ings of the 2007 Document Understanding Conference (DUC-2007) at
NLT/NAACL. Citeseer, 2007, p. 26.

[7] E. Gonzàlez and M. Fuentes, “A New Lexical Chain Algorithm Used
for Automatic Summarization,” in Proceeding of the 2009 conference
on Artificial Intelligence Research and Development: Proceedings of the
12th International Conference of the Catalan Association for Artificial
Intelligence. IOS Press, 2009, pp. 329–338.

[8] W. T. Visser and M. B. Wieling, “Sentence-based summarization of sci-
entific documents the design and implementation of an online available
automatic summarizer,” 2008.

[9] J. Kupiec, J. Pedersen, and F. Chen, “A trainable document summarizer,”
in Proceedings of the 18th annual international ACM SIGIR conference
on Research and development in information retrieval. ACM, 1995,
pp. 68–73.

[10] B. Sharifi, M.-A. Hutton, and J. K. Kalita, “Automatic microblog
classification and summarization,” 2010.

[11] G. Salton, “Term-weighting approaches in automatic text retrieval,”
Information Processing & Management, vol. 24, no. 5, pp. 513–
523, 1988. [Online]. Available: http://dx.doi.org/10.1016/0306-4573(88)
90021-0

[12] D. Jurafsky and J. H. Martin, Speech and Language Processing:
An Introduction to Natural Language Processing, Computational
Linguistics and Speech Recognition (Prentice Hall Series in
Artificial Intelligence), 1st ed. Prentice Hall, February 2000.
[Online]. Available: http://www.amazon.com/exec/obidos/redirect?tag=
citeulike07-20\&path=ASIN/0130950696

[13] Y. Zhao and G. Karypis, “Criterion functions for document
clustering: Experiments and analysis,” 2001. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.17.3151

[14] M. H. Dunham, Data Mining: Introductory and Advanced Topics. Pren-
tice Hall, August 2002. [Online]. Available: http://www.amazon.com/
exec/obidos/redirect?tag=citeulike07-20\&path=ASIN/0130888923

[15] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful
seeding,” in SODA ’07: Proceedings of the eighteenth annual ACM-
SIAM symposium on Discrete algorithms. Philadelphia, PA, USA:
Society for Industrial and Applied Mathematics, 2007, pp. 1027–1035.
[Online]. Available: http://portal.acm.org/citation.cfm?id=1283494

[16] D. Radev, T. Allison, S. Blair-Goldensohn, J. Blitzer, A. Çelebi, S. Dim-
itrov, E. Drabek, A. Hakim, W. Lam, D. Liu, J. Otterbacher, H. Qi,
H. Saggion, S. Teufel, M. Topper, A. Winkel, and Z. Zhang, “MEAD -
a platform for multidocument multilingual text summarization,” in LREC
2004, Lisbon, Portugal, May 2004.

[17] D. Radev and G. Erkan, “Lexrank: graph-based centrality as salience in
text summarization,” Journal of Artificial Intelligence Research, vol. 22,
pp. 457–480, 2004.

[18] R. Mihalcea and P. Tarau, “TextRank: Bringing order into texts,” in
Proceedings of EMNLP. Barcelona: ACL, 2004, pp. 404–411.

[19] S. Brin and L. Page, “The anatomy of a large-scale hypertextual Web
search engine* 1,” Computer networks and ISDN systems, vol. 30, no.
1-7, pp. 107–117, 1998.

[20] C. Lin, “ROUGE: A package for automatic evaluation of summaries,”
in Proceedings of the Workshop on Text Summarization Branches Out
(WAS 2004), 2004, pp. 25–26.

[21] J. Benhardus, “Streaming trend detection in twitter,” 2010.
[22] R. Barzilay, N. Elhadad, and K. McKeown, “Sentence ordering in

multidocument summarization,” in Proceedings of the first international
conference on Human language technology research. Association for
Computational Linguistics, 2001, p. 7.

[23] M. Lapata, “Probabilistic text structuring: Experiments with sentence
ordering,” in Proceedings of the annual meeting of the Association for
Computational Linguistics, 2003, pp. 545–552.

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 66

FINAL PAPER, JULY 29, 2010 1

Syntactic Normalization of Twitter Messages
Max Kaufmann

Abstract—The use of computer mediated communication such
as emailing, microblogs, Short Messaging System (SMS), and chat
rooms has created corpora which contain incredibly noisy text.
Tweets, messages sent by users on Twitter.com, are an especially
noisy form of communication. Twitter.com contains billions of
these tweets, but in their current state they contain so much
noise that it is difficult to extract useful information. Tweets
often contain highly irregular syntax and nonstandard use of
English. This paper describes a novel system which normalizes
these Twitter posts, converting them into a more standard form of
English, so that standard machine translation (MT) and natural
language processing (NLP) techniques can be more easily applied
to them. In order to normalize Twitter tweets, we take a two step
approach. We first preprocess tweets to remove as much noise
as possible and then feed them into a machine translation model
to convert them into standard English. Together, these two steps
allow us to achieve improvement in BLEU scores comporable to
the improvements achieved by SMS normalization

I. INTRODUCTION

TWITTER is a relatively new hybrid micro blogging/social
networking website where users can post and read mes-

sages from a variety of electronic medium, such as Twitter’s
own website, text messages, or their computer desktop. Twitter
is a popular medium for broadcasting news, staying in touch
with friends, and sharing opinions. Since its initial founding
in 2006, it has obtained over 100 million users [15]. Tweets, a
term used to describe messages sent on Twitter, contain only
140 characters, 20 characters less than the 160 allowed by text
messages. Twitter users are not even guaranteed to be able to
use all of these for content. Twitter posts frequently included
URLs, as well as markup syntax, which further decreases the
amount of characters available for content. Because of these
limits, users have created a novel syntax, very similar to SMS
lingo, to communicate their messages with as much brevity
as possible. While this brevity allows tweets to contain more
information, it makes them harder to mine for information, due
to its lack of standardization. Table 1 shows some examples
of tweets.

TABLE I
SAMPLE TWEETS

Never say never.....dont let me goo dont let mee gooo dont let me
gooooo....
@user13431 when r u commin to Montreal
#bestfeeling is feeling like u mean the world to someone
My work buddy ’go smoke’ like 3 times already
mai8mai RT @user1341 : Support Breast Cancer Awareness. Add
A #twibbon To Your Avatar Now!!
I’m so #overyou Didn’t even know it was possible!!!

There are several issues that makes the normalization of
tweets a difficult task. Tweets are written extremely collo-
quially, containing an unusually high amount of repetition,

novel words, and interjections. A word may be written using
a phonetic spelling (nite instead of night), or combined with
other frequently used words into an acronym (omg instead
of oh my god). Twitter users also have little regard for the
proper use of capitalization and punctuation. Capitalization in
a tweet may signal a proper noun or a sentence boundary, but it
may also be used for something as arbitrary as emphasizing a
certain segment. Punctuation may signal sentence boundaries,
but it might also be used to create an emoticon. There are
some deviations that are standard and systematic, but new
variations can be created at any time, making the process
of modeling the language extremely difficult. Additionally,
Twitter users frequently use symbols to encode meta-content,
such as who the tweet was directed to, or the topics to which
it pertains. This meta-content sometimes is integrated into the
syntax of the tweet, but there is no guarantee that it will be. In
order to normalize these tweets, they will first be preprocessed
to remove as much of the noise as possible, then fed into
a machine translation model to convert them into standard
English.

II. MOTIVATION

Due to Twitter’s popularity, it has produced a massive
amount of data. This data offers new and exciting opportuni-
ties, and there is much useful information that can be learned
from meaningful analysis of this data. But the quality of the
data is so poor that standard NLP tools are unable to process
it. Tools such as Named Entity Recognizers have been shown
to perform extremely poorly on tweets, most likely due to the
high amount of noise present in tweets [5]. It has been shown
that normalizing text messages allows standard MT techniques
to work on them with little or no adaptation [3], and this
paper posits that the same is true for tweets. If tweets can be
converted to standard English, then the same should hold true
for them. Another area in which data from Twitter can be used
in is trend analysis. [4] claims that the unstructured nature of
news articles, and the difficulty of NLP makes the problem
of finding trends and topics in news articles a rather complex
problem. These issues are magnified in tweets, which have
all of the issues that normal news articles do, in addition to
non standard orthography and extreme noisiness. Normalizing
tweets would make work in this area, as well as any other area
that involved analyzing tweets, much easier.

This is not to say that nobody has had success in mining
data from tweets. Many studies have been able to draw
conclusions from analyzing data on Twitter. Studies such as [2]
have investigated how individuals use Twitter to communicate
vital information in states of emergency. Papers such as [17]
have shown that the informal communication that microblogs
foster improves collaboration in the workplace. However, these

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 67

FINAL PAPER, JULY 29, 2010 2

studies concern the social effects of Twitter. Studies such as
Puniyani et al. which attempt to preform an analysis focused
on the content of the tweets admit that “Twitter contains highly
non-standard orthography that poses challenges for early-stage
text processing” [14].

III. PREVIOUS WORK

While normalization of Twitter posts has never been at-
tempted before, work has been done on noisy text normaliza-
tion in the NLP field. However, tweets have several proper-
ties which makes normalizing them a substantially different
problem than normalizing other forms of noisy text, such as
emails or forum posts. First, they are very brief, containing
only 140 characters. This means that it is much more difficult
to use context as part of the disambiguation process. Tweets
also have several novel syntactic elements which are especially
challenging to disambiguate. Despite these differences, the
process of tweet normalization is actually fairly close to the
process of SMS normalization.

One area in which SMS normalization has been approached
is to compare it to speech recognition. Text messages contain
a significant number of tokens that are more indicative of its
pronunciation, rather than its normal orthography.(e.g., rite in-
stead of right)[9]. Speech recognition techniques are designed
to decode phonetic representations into written words.[9] used
techniques from automated speech recognition in order to
normalize SMS. [9] claims that the dynamic nature of SMS
is very difficult to capture with only a rule based MT system.
They encoded the tokens in SMS messages into phonetic
forms, and attempted to find the correct word with the most
phonetic similarity.

Another way to approach the problem is to look at tweets
as though they are a different language, and attempt to
use machine translation techniques to normalize them. This
approach is fairly popular. Kobus et al [9] used this approach
in addition to phonetic decoding. Others such as [8] and [3]
have used supervised learning machine translation models to
attempt to capture the most common SMS phrases and their
English equivalents in a phrase table.

IV. NORMALIZATION

Previous work such as [9] has suggested that combining
multiple approaches in noisy text normalization creates the
best results. Additionally, normalizing input text before in-
serting it into a MT system has been shown to improve the
output quality. [13] modified their translations to harmonize
word order, in order to improve the accuracy of their MT
system. Preprocessing the tweets decreases the amount of
noise present when they are being analyzed by the MT system,
thus increasing the quality of the results. There are several
issues, discussed in the following sections, which are easily
dealt with by preprocessing, but would cause a great deal of
confusion to a MT system.

The normalization model consists primarily of
two parts, a normalization module and a statistical

machine translation module. Below is a diagram.

Preparation

Preprocessing

Orthographic Normalization

Syntactic Disambiguation

Machine Translation

Training

Translation

Evaluation

Figure 1: Tweet Normalization Process

A. Preparation

Before beginning the experiment, it was necessary to hand
annotate tweets, so that there was a gold standard to evaluate
the quality of the translation against . Approximately 1 million
tweets were extracted from the the Edinburgh Twitter Corpus,
a corpus containing 97 million Twitter posts[1]. These tweets
were then filtered to remove tweets that were not in English.
A tweet is not considered to be in English if it has under
40% English words. From these tweets, 1150 were randomly
selected. These were hand translated by 10 annotators. The
goal of this project is to remove as much noise as possible
from tweets, so the annotators were instructed to remove
any elements that were not absolutely necessary to form a
grammatical English sentence. This included deleting elements
such as smilies and extraneous punctuation, inserting subject
pronouns, replacing acronyms, and correcting verb tenses. For
example, the tweet @user213 how are you?? I’m good :”
would have been translated as How are you? I’m good. This
is a significantly different approach than is normally taken
with SMS normalization. In SMS normalization corpora such
as the ones created by [8], [6], many extraneous elements
were kept in. The decision to remove them was motivated
by the goal of this project. In order for tools such as named
entity recognizers and semantic role labelers to work, they
need their input to be as close to standard English as possible,
and so it makes sense to remove these elements in tweets.
Extra information would only serve to confuse these tools. In
the normalization model, most of the extraneous elements are
removed during preprocessing, so if a study were interested in
using this extraneous information, it would be a fairly trivial
task to leave these elements in.

B. Orthographic Normalization

Although, Twitter messages are similar syntactically to SMS
messages, they differ significantly in their type and quantity of

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 68

FINAL PAPER, JULY 29, 2010 3

orthographic errors. SMSs are created almost exclusively on
cell phone, while approximately 90% of tweets come from the
Web, IM, or custom applications, according to [11], all which
use an automated spellchecker to suggest spelling corrections
to the user. Because text messages are not spell checked prior
to their submission, they are most likely going to have many
more unintentional errors. The orthographic normalization
model assumes that the main source of error in tweets will
be from intentional spelling errors, since the spellchecker will
have taken care of the majority of accidental errors. However,
identifying spelling errors in Twitter messages is a difficult
task. Twitter is frequently used as a medium to broadcast
news [11] and therefore contain a large number of proper
nouns that are not likely to be contained in a dictionary.
Figuring out whether a word that is not in the dictionary
is a misspelled or simply a novel word is not a trivial task.
Because of this, the orthographic model is fairly conservative
in spelling correction, to avoid misidentifying a novel word as
a misspelled word. The approach taken simply identifies and
corrects the most common intentional orthography errors.

One of the most common types of orthographical errors
in Twitter posts is shortening words. Frequently used phrases
are shortened into acronyms, and frequently used words are
shortened by using phonetic spellings, or having characters
removed. To help disambiguate these terms, a table of common
SMS acronyms and short forms was created. This table was
based on the work by [6]. [6]created a table containing
common SMS errors and their English equivalents. This list
was parsed to obtain a list of SMS acronyms that could be
directly mapped to English words of phrases. The original
table contained ambiguous mappings, such as translating wt
as what, even though it is sometimes translated as with. If a
statistical MT system were not part of the normalization ap-
proach, it might have been a good idea to leave the ambiguous
mappings in, and just replace errors in the tweets with their
most common correction. However, the statistical MT model
is capable of disambiguating based on context, and can resolve
ambiguous mappings. Therefore, all ambiguous sms terms
which had multiple English mappings were stripped from the
list by hand, leaving only items that could be unambiguously
mapped to an English equivalent, such as u, 2moro, and wut.

One of the easiest spelling errors to make are off-by-
one transpositions. For each misspelled word, all possible
combinations that involve swapping two adjacent letters are
tried, and if a correct match is found in the dictionary, the
correct spelling is substituted.

Twitter messages frequently use repetition to convey em-
phasis. Written text lacks the tonality and variations which
are used to convey emotions in spoken language, and so
Twitter users are forced to creatively find ways to express
emotion in their limited 140 characters. Similar to the way
that people drag out words in spoken language to emphasize
them, Twitter users frequently repeat characters in order to
create emphasis. For example, a Twitter user wrote OMG!
I’m so guilty!!! Sprained biibii’s leg! ARGHHHHHH!!!!!! The
repeated exclamation marks and extra letters on the token
argh serve to emphasize the author’s emotions. To correct
for this, misspelled words that contain repeated sequential

letters have these letters removed. If removing these letters
creates a correct word, than the misspelled word is replaced
in the text. Similarly, repeated punctuation is shortened to one
punctuation mark, since the additional punctuation marks are
not syntactically necessary.

C. Syntactic Disambiguation

1) @: There are several elements in tweets that only some-
times have syntactic value. One of the elements is @username.
Typing “@username” in a tweet is a processes commonly
referred to as replying. However, the term “replying” is
somewhat of a misnomer, as a user does not need to receive
a message in order to “reply” with this syntax. The most
general definition of this symbol is that it means the author
of the post is telling a certain user that he thinks they would
be interested in the content of the tweet. The most common
use is to preface a tweet with @username (e.g., @Sammy
wanna go to the park?). However, @username can appear at
any point in the tweet. It can appear in the middle, if the author
wants to address different sections of the tweet to multiple
people (e.g., @sammy I’ll be over tommorow @sally I’ll fix
it later). In these situations, @username has no syntactical
value. However, that is not always the case. The @username is
frequently incorporated into the sentence. For example, a user
may write, @sammy is my best friend! or Im at the park with
@sammy and we’re having a great time. In these situations,
the @username performs a syntactic role in the sentence, and
its removal would be grammatically improper.

Another feature of the @username syntax is that it can
be used to broadcast information to all of a users followers.
Twitter users frequently send tweets they find interesting to
all of their followers with the syntax “RT @username:”,
where username is the username of the original author, of the
followed by the original message. While this appears similar
to @username, it is syntactically different. RT @username
almost always has no syntactic value, and can be removed
while maintaining proper syntax.

Analysis of these tweets has revealed that there are certain
linguistic properties that can be analyzed to remove the
majority of @username when it is appropriate. By tagging
the text that is being translated with part of speech (PoS) tags,
it becomes apparent that when the @username needs to be
kept in the sentence for syntactical reasons it is preceded or
followed by certain parts of speech. If the @username is at
the beginning of the tweet, then only the subsequent terms can
be used in this analysis. If the @username is followed by a
word that is either a coordinating conjunction, subordinating
conjunction, preposition,or a verb it is almost always necessary
to keep the @username in the tweet. If it is not the first
word, then the part of speech of words on both sides can
be used to help disambiguate @username. In these situations,
the preprocessor checks for the above conditions, but it also
checks to see if the part of speech of the preceding word
belongs to the previous list.

2) #: Another element which may or may not have syn-
tactic value is the #. The most common syntax of # (read as
hash or hash symbol) is #topic. The word following the # is

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 69

FINAL PAPER, JULY 29, 2010 4

generally the topic to which the tweet pertains. If a user was
tweeting about the government stimulus bill, they might insert
#stimulus into their tweet. This process is called tagging, and
a #topic is commonly known as a tag. Twitter uses these tags
to classify posts by common topic. Like @, the # may or may
not have syntactic value. It is most commonly inserted at the
end of a tweet without any syntactic value (e.g., I just got
the new Droid phone #droid), but if the topic of the tweet
is contained within the tweet, users frequently append a hash
to the topic, in order to stay within the 140 character limit
and avoid repetition (e.g., I just got the new #droid phone).
Additionally, in tweets that are about the user’s mood instead
of a certain topic, it is common to use the # for emphasis (e.g.,
At work thinking abt how I have to leave tonight and come
Right back in the am. #Argh And I have to train somebody
2day).

Unfortunately, PoS tags alone cannot be used to decide
whether a hashtag has syntactic value in the sentence. @user-
name is always a noun, whereas a hashtag can be any type
of word. Observation of the annotated tweets shows that
humans almost always thought that terms with a hashtag
located in the middle of a sentence were important to the
syntax of the sentence, and should not be deleted. However,
hashtags at the beginning and end of tweets are much more
difficult to disambiguate. This is an unfortunate problem,
since the beginning and end of tweets are where hashtags
are most commonly found. To disambiguate these hashtags
the following heuristics were used: If there are two or more
sequential hashtags, it is likely that they are topics, and have no
syntactic value, and so they can be removed. Additionally, if
a hashtag is preceded by a terminal punctuation mark, we can
assume that they are standalone topics, and play no role in the
syntax of the tweet, and can also be removed. If the hashtag
is preceded by a conjunction, preposition, or transitive verb,
then we can assume that the hashtag is syntactically linked to
the previous term and needs to remain in order to preserve
the syntax of the tweet. If none of these conditions were met,
then the hashtag was removed.

D. Statistical Machine Translation

After the preprocessing is done, the tweets are ready to be
fed into the statistical machine translation system. The tool that
was used to build this system is Moses. Moses is a statistical
machine translation package which can produce high quality
translations from one language into another[10]. At its core,
translation simply consists of finding phrases in one language
that correspond to phrases in another language. While the tasks
of tweet normalization is not translation, it does consist of
converting one set of phrases into another set, which makes
Moses an extremely valuable tool.

1) Training: According to the Moses website 1, there are
9 steps involved in creating a Moses model

1) Prepare data
2) Run GIZA++
3) Align words

1http://www.statmt.org/moses/?n=FactoredTraining.HomePage

4) Get lexical translation table
5) Extract phrases
6) Score phrases
7) Build lexicalized reordering model
8) Build generation models
9) Create configuration file
GIZA++ is a tool which attempts to align the words from

one corpus which their equivilant, or equivilants in another.
When translating from one language to another, this is a
difficult task, since one word in one language may correspond
to several words in another. However, when translating from
tweets to normal English, this is a fairly trivial task, since
most of the words have a one to one mapping. Step 3 simply
uses heuristics to increase the accuracy of the word alignmetns
suggested by Giza. The result of all this is step 4, a lexical
translation table. This table simply gives the probability for
w(e|t), where e is an English word, and t is a word in
Twitter English. Based on this lexical translation table, and the
alignments created by GIZA++, Step 6 can created a phrase
translation table, which is similar to the lexical translation
table, except that it contains the probabilities of phrases in a
tweet being translated as a particular English phrase. Steps 7
and 8 refer to steps which are relevant to the change in word
order that comes from translation, and reverse translations.
These steps are not relevant to the processes being discussed
in this paper and so will not be discussed.

Before Moses can be used to produce translation, it must
be trained on a data set, so that it can learn the rules that
govern the translation. Training Moses requires a corpus in
the target language, from which an n-gram language model
(LM) is built. In this experiment, the LM was built from the
Open American National Corpus (OANC)[7], a corpus of 15
million words from a variety of contexts. Moses also requires a
set of parallel corpora, one in the source and one in the target
language. This posed a significant problem, since there are
currently no annotated tweets which could be used as corpora.
To resolve this issue, a set of parallel SMS corpora was used.
These corpora were created by [8], who generously made them
available for use in this experiment. The corpora consist of
approximately 18,000 text messages, gathered from various
sources. They were annotated by the two authors of [8], who
did not use inter-annotator agreement to validate their results.
While this would be an issue if this were a translation problem,
normalizing text messages and Twitter posts is a much more
akin to correcting grammar than translating text from one
language to another, and so inter-annotator agreement is not
necessary.

2) Translation: Since the task at hand is not truly transla-
tion from one language to another, several of Moses’ default
settings have to be tweaked in order create a high quality
translation. The first is the distortion limit. Translating from
one language to another often requires heavy reordering of
the words. By default, Moses will allow the reordering of
phrases up to 7 words long. This feature would be useful in a
situation involving translating into a target language that had a
word order very dissimilar to the source language. However, in
this context, Twitter English lines up at almost a one-to-one
ratio with normal English. Several settings were tested, and

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 70

FINAL PAPER, JULY 29, 2010 5

the results indicated that the distortion limit made very little
difference, similar to the findings in [8]. They used Moses for
the normalization of text messages, and found that most of
the phrases learned by the system only involved a one-to-one
mapping. So even when the translation model was allowed to
alter the word order, it chose not too.

Each element of the translation module of Moses is
weighted. The weights of the translation model tell Moses how
much emphasis should be placed on certain factors, such as
the n-gram ordering derived from the language module, in the
translation process. By adjusting the weight of the language
model (LM), it was found that the BLEU scores could be
increased by approximately .4 if the LM had a weight of .3,
instead of its default weight of 1. This means that the n-grams
generated from the OANC were not considered very important
when translating. This makes sense, given that there is very
little overlap between the domain of the OANC and the domain
of this project.

An additional feature in Moses is the recaser. The recaser
was originally designed to correctly case text if it had been
translated in lowercase. In previous experiments on SMS
normalization, the issue of case was ignored. However, it is
very important in tweet normalization, because tweets contain
so many proper nouns. In this experiment, the recaser was
trained on the LM built from the OANC. When the tweets were
originally translated into English, all previously seen tokens
were lowercased. This was because the original capitalization
of a tweet is not a reliable indicator of the true capitalization.
Twitter users frequently use capitalization as emphasis, by
either capitalizing the entirety of a word, or the first letter of
a series of words. Unknown tokens were left in their original
case, because they were most likely to be proper nouns or
acronyms.

The recaser uses techniques similar to those outlined in
[12]. This involves building a trigram language model, and
using that to compute the probabilities of the most likely case
[12]. For example, new is almost always lowercased, but when
it is followed by York, it is almost always capitalized. This
technique seems to be very successful in correctly casing the
text, except when commonly seen words appear in a novel
sequence that requires them to be capitalized. For example,
the tweet @user1941 The film I really want to see at the
mo is Men Who Stare at Goats was translated as “The film
i really want to see at the moment is men who stare at
goats”, because the tokens men, who, stare, and goats were
almost exclusively lowercased in the OANC. However, in
situations where Twitter users forgot to capitalize commonly
used proper nouns, the system preformed very well. The tweet
HOME ALONE RT @user3413 : I’m craving for christmas
movies!! any suggestion?? was translated as Home alone I am
craving for Christmas movies! Any suggestion?, successfully
lowercasing the capitalized text at the start, and uppercasing
the proper noun “Christmas.”

V. EVALUATION

The goodness of a translation is judged is using the BLEU
score. The BLEU score is a tool designed for evaluating

the accuracy of translations from one language to another.
A BLEU score requires a gold standard, which contains the
translations as done by human. This file is compared against
a machine translated version, and is then assigned a score
between 0 and 1. A score of 1 would indicate that the machine
translated version is exactly the same as the human translated
version, while 0 means that the two versions are very different.
The language of a tweet is so different from the normalized
result that this tool should provide an accurate indication of
how well the translation worked. Below are the BLEU scores
of the translation before and after normalization. NIST, an
alternate MT scoring metric, scores are included in the table,
so that future papers who choose to evaluate their work with
NIST will have a baseline to compare their results against.

TABLE II
EVALUATION OF RESULTS

BLEU scores NIST scores
Before Normalization 0.6799 10.5693
After Normalization 0.7985 11.7095

The results indicate that the normalization process had
a significant effect on BLEU scores, increasing them by
18%. Since Twitter normalization has never been undertaken
before, there are no results against which these scores can be
compared. The closest available data is data regarding SMS
normalization. Below is a table of several papers on SMS
normalization and the BLEU scores they achieved.

TABLE III
SMS NORMALIZATION SCORES

Kobus et al. Karthik and
Krawczyk

Chourhury
et al.

Before
Normalization

n/a .54 .57

After
Normalization

approx. .8 .8611 .8070

These data shows that tweets appear to have much higher
initial BLEU scores. This supports the theory that tweets do
not have as many orthographical errors as SMS messages.
Acronym usage and misspelling are much more common in
SMS than in tweets. This is demonstrated in [8], where they
were able to boost the BLEU score of a test set from .562 to
.794 by simply performing a search and replace for common
texting acronyms. In comparison, the preprocessing module
of this normalization system, which included a very similar
search and replace, only boosted the initial score of .6799 to
.7324. This seems to suggest that while SMS may contain
more errors to begin with, they contain a far more regular
pattern of errors. The difficult part of tweet normalization
is removing noisy elements which prevent the tweet from
being mapped to an English syntax. So, while SMS and tweet
normalization are attempting to achieve similar goals, the
problems they attempt to solve are actually fairly different.

A. Sample Translations.
Below are several translations generated by the normaliza-

tion system. The <URL> tag signifies that the original tweet
contained a URL in that location.

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 71

FINAL PAPER, JULY 29, 2010 6

Original: @user3419 nay lol y u say dat?&wat u doing
2day?

Post-normalization: No, why did you say that? What you
doing today?

Original: 1001 colors: Contemporary art from Iran <URL>
#Iran #culture #Art

Post-normalization: 1001 colors: contemporary art from
Iran <URL>.

Original: it’s soo quiet, it’s like I’m goin die
Post-normalization: It is so quiet, it is like i am going to

die.

Original: #worstfeeling buyin a fresh laptop..then ur screen
blowz out :((

Post-normalization: worst feeling is buying a fresh laptop..
then your screen blowz out.

Original:This is superb Grape+apple splash with manggo
juice, super!

Post-normalization: This is superb grape + Apple splash
with mango juice, Super!

Original: @user31903 u n ur fam can n if u interested ill
b n touch w u bout it

Post-normalization: You and your family can and if you
interested Ill be and touch with you about it.

Original: RT: @user4191 BEAUTIFUL CREATURES has
a new #website designed by @user4192!

Post-normalization: Beautiful creatures has a new website
designed by @user4192!

From these tweets, it is apparent that the syntactic dis-
ambiguation module of the preprocessor is able to discern
whether the syntactically ambiguous elements in the tweet are
necessary or not. The model successfully removes it when it
has no direct mapping to English syntax, and keeps it when it
is necessary. The output of the normalization system produces
much more readable results, removing extraneous noise that
doesn’t map to English syntax.

However, there are some issues with the normalization
system. There are some orthographic errors that are not caught.
The orthographic normalization system does not deal with
phonetic substitutions very well, such as blowz instead of
blows. Dealing with these requires a very sophisticated model,
such as the one created by [6]. We feel that these errors are rare
enough that the additional computational complexity required
by these models is not justified in this system. However, future
work attempting to improve the quality of the results could
implement a system like this.

VI. POSSIBLE IMPROVEMENTS

A. Metrics

One possible area of improvement involves finding a better
metric to evaluate noisy text normalization. While previous

researchers studying SMS normalization have chosen to eval-
uate their results with the BLEU metric, it might not be
the best choice. The BLEU scoring metric was designed for
evaluating translations from one language to another, not for
evaluating the results of noisy text normalization. Because
of this, a better BLEU score does not necessarily mean a
better translation. For example, the subjectivity of the human
annotators could cause substantial variation in BLEU scores.
In papers such as [8] their corpora was only annotated by
two people. The fact that there were 10 annotators could
have lead to inconsistencies in the scoring data. For example,
although annotators were instructed to expand contractions,
some annotators chose to translate Im as I’m, instead of I
am. BLEU scores are obtained by comparing the similarities
between n-grams of the hypothesized translation and gold
standards, so errors such as this could have detrimental effects
on the score, despite the fact that “I’m” and “I am” are
grammatically equivalent.

Even if we ignore the issue of the applicability of BLEU
as an evaluator itself, there are still several problems with the
BLEU metric itself. The relationship between BLEU scores
and human judgment is questionable. Papers such as [16] have
suggested that an increase in BLEU score may not correlate
with an increase in translation quality. In fact, on a test of
several machine translation systems, the correlation between
human and BLEU scores was found to be as low as .38 in some
cases. One example where the BLEU score performed poorly
was on the tweet @user12493 I’m following u now should I
hold on tight?. The translation generated by the normalization
system was I’m following you now, should I hold on tight”.
This seems like a perfectly acceptable translation. However,
the human annotator translated the tweet as I’m following you.
Now, should I hold on tight?. BLEU scores this translation at
.43. However, both translations are acceptable.

B. Corpora

Besides improving the scoring metric, there are several ways
in which the translation process can be improved. The easiest
improvement would be to use tweets as training data, instead
of text messages. Constructing an annotated twitter corpora
would be a difficult and time consuming task, but would allow
the MT model to do much of the work done in the preproces-
sor, such as syntactic disambiguation of @username or #tag.
Providing more detailed data would also improve the quality
of the results. Moses has the ability to incorporate additional
lexical information such as PoS tags into its translation model.
Including this information would allow Moses to create more
sophisticated rules governing the translation from tweets to
English.

A better language model would also improve the quality of
the translation results. The current corpus used to build the
language model, the OANC is not especially representative of
the structure of tweets, as evidenced by the fact that decreasing
its weight in the translation process from 1 to .3 resulted in
an better results. Perhaps a language model built from text
messages, or tweets, would be better. This study attempted
to build a LM from the SMS corpora provided by [8], but it

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 72

FINAL PAPER, JULY 29, 2010 7

did not improve the quality of the results. However, this is
probably due to the fact that the OANC contains magnitudes
more data than the SMS corpus. If an SMS corpus of sufficient
size could be obtained, it would probably create a much more
applicable language model.

C. Utilizing Additional Properties

There are additional ways in which semantic information
of tweets could be used to aid in the normalization process
that fall outside the scope of this paper. While there are
many acronymns that are standard across Twitter, there is
no official standard language. Because of this, it is difficult
to draw conclusions about the nature of the language used
on Twitter by looking at a large set of tweets. However, it
might be possible to use Moses to create localized translation
models by looking at smaller subsets of tweets. For example,
tweets from users who reside in a particular nation might
have their own set of slang. Tweets that are obtained from
Twitter include information about the users location, as well
as their country of orgin (if they have elected to include that
information). This information could be leveraged to create a
localized corpora which can more accurately translate slang
from a certain region.

There are other factors besides semantic information that
could be used to improve the quality of the translations.
Many papers such as [6] have used phonetic systems to do
orthogrpahic normalization, and have achieved a fair degree
of success. This approach could be combined with the ones
mentioned in this paper fairly easily. Additionally, heuristics
could be used to combine the possible outputs of a phonetic
system with the results of this system to decrease overall
error. For example, a phonetic system would realize that rite
is phonetic approximation of the word right. This would
help disambiguate between other possible spelling suggestions,
such as write. In turn, the semantic properties of the tweet
could be used to decide if the usage of rite is a mispelling or
not.

VII. CONCLUSION

In this paper, it was shown that combining statistical ma-
chine translation software with a preprocessor, it is possible
to remove the majority of noise from a tweet, and increase its
readability significantly. The benefits of this study are a novel
system which can successfully map a tweet to a syntactically
correct English sentence. It seems that the results of this study
are sufficiently accurate enough to allow tweets to be mined
for data. Additionally, now that the tweets conform to normal
English syntax, NLP tools such as part of speech taggers,
document summarizers, named entity recognizers, or semantic
role labelers should achieve much better performance.

The value of the work in this paper is in its applicability
to other procedures. One of the applications that should so
significant performance when combined with this tool is a
Twitter post summarizer. David Inoyue is currently working on
a program that produces multiple sentence summaraizes about
Twitter posts on one topic. The resulting summarizies are made
up of the tweets in that topic. Since the summaries are made

of tweets, normalizing them should make them significantly
more readable. David is currently in the process of measuring
the success of his summarizer, and when he is done we will
include the results that normalization had on this process in
this paper.

VIII. ACKNOWLEDGMENTS

The author of this paper would like to thank Karthik
Raghunathan and Stefan Krawczyk for making their SMS
corpora available.

REFERENCES

[1] The Edinburgh Twitter Corpus, Los Angeles, California, June 2010.
Computational Linguistics in a World of Social Media.

[2] The Nays Have It: Exploring Effects of Sentiment in Collaborative
Knowledge Sharing, Los Angeles, California, June 2010. Computational
Linguistics in a World of Social Media.

[3] AiTi Aw, Min Zhang, Juan Xiao, and Jian Su. A phrase-based statistical
model for sms text normalization. In Proceedings of the COLING/ACL
on Main conference poster sessions, pages 33–40, Morristown, NJ, USA,
2006. Association for Computational Linguistics.

[4] Daniel Billsus and Michael J. Pazzani. A personal news agent that
talks, learns and explains. In AGENTS ’99: Proceedings of the third
annual conference on Autonomous Agents, pages 268–275, New York,
NY, USA, 1999. ACM.

[5] James Martin Brian Locke. Named entity recognition: Adapting to
microblogging. Master’s thesis, University of Colorado, 2009.

[6] Monojit Choudhury, Rahul Saraf, Vijit Jain, Animesh Mukherjee,
Sudeshna Sarkar, and Anupam Basu. Investigation and modeling of the
structure of texting language. Int. J. Doc. Anal. Recognit., 10(3):157–
174, 2007.

[7] Nancy Ide and Catherine Macleod. The american national corpus: A
standardized resource for american english. In Proceedings of Corpus
Linguistics 2001, pages 831–836, 2001.

[8] Stefan Krawczyk Karthik Raghunathan. Investigating sms text nor-
malization using statistical machine translation. Stanford University,
Stanford, CA, 2009.

[9] Catherine Kobus, François Yvon, and Géraldine Damnati. Normalizing
sms: are two metaphors better than one? In COLING ’08: Proceedings of
the 22nd International Conference on Computational Linguistics, pages
441–448, Morristown, NJ, USA, 2008. Association for Computational
Linguistics.

[10] Phillip Koehn and Hieu Hoang. Moses: Open source toolkit for
statistical machine translation. Technical report, Annual Meeting of
the Association for Computational Linguistics (ACL), demonstration
session, Prauge, Czech Republic, June 2007.

[11] Balachander Krishnamurthy, Phillipa Gill, and Martin Arlitt. A few
chirps about twitter. In WOSP ’08: Proceedings of the first workshop
on Online social networks, pages 19–24, New York, NY, USA, 2008.
ACM.

[12] Lucian Vlad Lita, Abe Ittycheriah, Salim Roukos, and Nanda Kamb-
hatla. truecasing. In ACL ’03: Proceedings of the 41st Annual
Meeting on Association for Computational Linguistics, pages 152–159,
Morristown, NJ, USA, 2003. Association for Computational Linguistics.

[13] Sonja Nieben, Hermann Ney, and Lehrstuhl Fur Informatik Vi. Morpho-
syntactic analysis for reordering in statistical machine translation, 2001.

[14] Kriti Puniyani, Jacob Eisenstein, Shay Cohen, and Eric P. Xing. Social
links from latent topics in microblogs. In Conference on Social Media,
page 31, June 2010.

[15] Reuters. Twitter snags over 100 million users, eyes money-making.
April 2010.

[16] Ying Zhang, Stephan Vogel, and Alex Waibel. Interpreting bleu/nist
scores: How much improvement do we need to have a better system. In
In Proceedings of Proceedings of Language Resources and Evaluation
(LREC-2004, pages 2051–2054, 2004.

[17] Dejin Zhao and Mary Beth Rosson. How and why people twitter: the
role that micro-blogging plays in informal communication at work. In
GROUP ’09: Proceedings of the ACM 2009 international conference
on Supporting group work, pages 243–252, New York, NY, USA, 2009.
ACM.

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 73

1

Generating a Large, Freely-Available Dataset for
Face-Related Algorithms

Benjamin Mears
Amherst College

Abstract—Research in computer vision is data intensive. Over
the last decade, numerous datasets have been published, but in
many cases these datasets were carefully designed for specific
tasks, resulting in artificially easy sets of data.

In particular, datasets designed for the test of face detec-
tion and face recognition algorithms often are crafted under
constrained settings with predefined poses and illumination
conditions. And in many cases, individual research groups craft
their own datasets for testing and training, but do not make their
data publicly available, perhaps out of copyright concerns. Thus,
with no standard of comparison, results of different algorithms
are hard to compare since they may be trained and even tested
on different data. And further, much wasted effort is expeneded
on gathering face images each time a research group seeks to
design new face algorithms. And while to some extent these
problems have been mitigated for face recognition with the recent
introduction of the Labled Faces in the Wild dataset [1], the
difficulties remain unabated with face detection.

In this work, we seek to provide a large, freely available dataset
for face-related algorithms, and in particular face detectors.
By including images from existing datasets and significantly
suplementing these with images retrieved from the internet, we
provide a large set of data that can be used to test and compare
both existing and new algorithms.

I. INTRODUCTION

The field of computer vision requires a vast number of
images to test and compare algorithms. To be useful, these
images must be publicly available and organized in such a way
to allow researchers to compare results. Over the last decade,
numerous datasets have been released and widely utilized
by the computer vision community. The original Caltech-101
dataset consisted of images of 101 different objects. Images
were collected by graduate students using Google Image
Search and manually processed. On average 50 images for
each object class were collected [2]. More recently, a similar
dataset has been expanded to 256 objects. This dataset is more
challenging than Caltech-101, with less manual processing of
the images [3]. In their ImageNet, Deng et al. seek to associate
500-1000 images with each synset in WordNet for a total
of 50 million images. They use Amazon Mechanical Turk,
a platform in which tasks can be posted for users to complete
in return for monetary payment. The dataset currently consists
of 3.2 million images [4].

Among face datasets, many well-known collections have
been published. See Figure 2 for example images from
different datasets. The FERET dataset consists of grayscale
images of subjects in different poses. The dataset collection
process was relatively controlled, with all faces centered,
no subjects wearing glasses, and all images taken against

a plain background [5]. The CMU pose, illumination, and
expression database (PIE) consisted of over 40,000 images of
68 subjects taken under various illumination conditions and
with different poses and facial expressions. Faces are centered
in the images and the dataset is mostly aimed at testing
and training face recognition algorithms [6]. More recently, a
more comprehensive dataset, MULTI-PIE, has been collected
containing even more subjects under an expanded number of
illumination conditions and pose angles [7].

Over the past few years, the Labeled Faces in the Wild
(LFW) dataset has become the standard for testing and training
face recognition algorithms [1]. This set of images was derived
from the Faces in the Wild dataset which was collected from
Yahoo! News. Along with the images, possible name labels
were extracted from the associated image captions [8]. LFW
further refined the dataset in [8] by manually labeling a subset
of the images [1]. While these images were indeed collected
from the internet and as such contain a variety of backgrounds,
illumination conditions, and scales, faces were only included if
they were detected by a Viola-Jones face detector [9] provided
with the OpenCV library [10]. Thus the pose of the faces
included in LFW is limited by the range of poses that can
be detected by Viola-Jones. Further, while multiple cascades
are provided with the OpenCV library, each able to detect
different, although overlaping, subsets of faces, [1] only used
the haarcascade frontalface default.xml classifier cascade.

Compared to the number of datasets tailored to the task
of face recognition, very few datasets for face detection
algorithms are publicly available. One of the most well-known
is the MIT-CMU dataset. It consists of images collected by
researchers at CMU as part of their work in [11] and also by
Sung and Poggio at the AI/CBCL Lab at MIT. Yet, this set is
limited, with approximately 500 faces in around 200 images.
The Caltech 10,000 Web Faces dataset contains 10,524 faces
in 7,092 images and was collected by using common names in
Google Image Search [12]. While containing a large number
of faces, most are relatively prominent in the images and thus
easy to detect. Recently, researchers collected two challenging
collections of face images as part of their research in blurring
faces in street view images provided on Google Maps [13].
The first set, termed “Cities Face Set” contains 1,614 faces
sampled from 29,106 images taken on 162 days. Unfortu-
anately, due to the same privacy issues they are trying to
solve, the set could not be released publicly. Thus, they instead
created a second set termed the “Campus Face Set”consisting
of 15,075 faces of consenting individuals. While they admit
the latter set is not as challenging as the former since in the

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 74

2

Fig. 1: Image Pipeline Images URLs are first retrieved from
the internet then later downloaded and processed.

latter many of the individuals are looking direcly at the camera,
the “Campus Face Set” still remains a difficult dataset with a
variety of poses, scales, and in-plane rotations.

With a limited number of datasets tailored for face detection
publicly available, many researchers resort to collecting their
own images. In particular, while researchers may test on the
publicly available datasets such as MIT-CMU in order to
compare their detectors to previous approaches, a much larger
dataset is required for training and so much time, effort, and
financial resources must be spent on collecting a suitably-
sized training set. To alleviate the burden of data collection,
some resort to constructing additional synthesized face images
by rotating, mirroring, or performing other manipulations
on existing face images. For instance, [14] collected 10,000
images and then expanded the set to 40,000 images by mir-
roring, rotating, translating and scaling the existing images. In
[15], they collect over 30,000 frontal, 25,000 half-profile, and
20,000 full-profile faces. Clearly such data collection requires
a large amount of resources that could be better used to further
research on the detectors themselves.

Recently, there has been a trend to use services such as
Google Image Search or Yahoo! Images as a source for
images. For instance, as part of their FaceTracer project,
Kumar et al. assembled a database of over 3 million faces
using online sources such as Google Images and Flickr [16].
Yet, many of these services place restrictions on the number
of images retrieved. For instance, Google Images restricts its
searches to the first 1000 images [17]. Various approaches
have been used to get around these limitations. For instance,
in addition to the images directly returned by the image
search engines, [17] also downloads the other images present
on the webpages containing the returned images. And [18]
attempts to circumvent these limitations by both using a lexical
database to generate related queries and translating queries
into other languages for use in other regional websites such as
http://www.google.es. By crawling the web directly, we avoid
the need for such work-arounds and are able to collect a large
number of images in a short amount of time.

In this work, we seek to alleviate the burden of data col-
lection for development of face algorithms while at the same
time creating an extensive, challenging dataset. We augment
existing datasets with images retrieved from the internet. To
avoid copyright and privacy concerns, we do not provide the
images themselves, neither for existing datasets nor for images
retrieved from the internet. Rather, in the user interface, we
provide a means to create machine-dependent file paths for
images from existing datasets and provide image URLs for

TABLE I: Existing Datasets currently included in our Database

Labeled Faces in the Wild
http://vis-www.cs.umass.edu/lfw/
MIT-CMU Frontal Faces
http://vasc.ri.cmu.edu//idb/html/face/frontal images/index.html
MIT-CMU Profile Faces
http://vasc.ri.cmu.edu//idb/html/face/profile images/index.html
Caltech Faces 1999
http://www.vision.caltech.edu/html-files/archive.html
MIT-CBCL
http://cbcl.mit.edu/software-datasets/heisele/facerecognition-database.html
ORL
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
Caltech 10,000 Web Faces
http://www.vision.caltech.edu/Image Datasets/Caltech 10K WebFaces/

those images retrieved from the internet.

II. SOURCES OF IMAGES

To compile an extensive, freely available set of images, we
leverage two sources: existing, publicly available datasets and
images retrieved and indexed from the internet.

A. Existing Datasets
As discussed in the introduction, the computer vision field

has expended much effort to compile various datasets for
face recognition and detection. These sets of images represent
a valuable resource and when publicly available, should be
incorporated into our database of face images.

To avoid copyright and privacy concerns, and to also
ensure that the original compilers receive due credit, we do
not directly provide the images themselves. Instead, links to
the original datasets are supplied. All datasets can then be
downloaded to a “base” folder on the user’s system. Then,
when researchers download the dataset information from our
user interface, the file paths can be customized based on
the location of the “base” directory and whether the source
machine is Unix or Windows based. A list of datasets currently
included in our database is included in Table I.

B. Internet Images
Clearly the internet is an extensive resource for images. Yet,

concerns over copyright and privacy issues often make it diffi-
cult to share images retrieved from the internet among different
research groups. To alleviate these concerns, we provide URLs
to the images, rather than the images themselves.

1) Data Retrieval From the Internet: The crawler used to
gather image URLs is based on the Internet Archive’s open-
source Heritrix project [19]. It has been modified to extract im-
age URLs along with associated information from the source
page. We provide the crawler with a seed list of URLs obtained
from a subset of the Open Directory (http://dmoz.org). As
the modified Heritrix crawler fetches webpages, it retrieves
any image URLs found in the HTML. Along with the image
URL, it also stores the time the URL was extracted along
with the source page. As noted by Ziou and Bernardi, textual
information may also prove useful in an image database [20].

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 75

3

(a) Campus Face Set (b) CMU-MIT (c) FERET

(d) LFW (e) MULTI-PIE (f) PIE

Fig. 2: Example Images from Various Datasets

Thus along with the other image information, we also store
the title of the page from which the image was extracted and
any alt text included in the image tag.

The images themselves are then separately downloaded and
processed. Note that although we download the images in
order to mine further information from the images, these
downloaded images are not provided directly to outside re-
search groups. Downloading the images separately from the
crawler carries two advantages. First, it ensures that errors or
delays in downloading images do not slow or cause fatal errors
in the crawler itself. Second, by introducing a gap between
when the image URL is retrieved and when the image is itself
downloaded, we ensure that the image link itself is relatively
stable.

After the image has been downloaded, its dimensions and
color encoding (grayscale or color) are stored. Then, various
processing steps, as described in Section III, are performed on
the images to further refine the database.

III. PROCESSING OF IMAGES

While we seek to store a large variety of images in the
database, there are still some undesireable images that should
be excluded. Once an image is downloaded, it is then pro-
cessed to determine whether it will remain in the database.

A. Eliminating Duplicates
A single image may be found on the web on many different

sites. To reduce the amount of URLs stored, only a single copy

(a) (b)

Fig. 3: False Duplicates Example of a false duplicate pair

of each image should be stored in the database. Yet, an image
may be stored on different servers with different URLs so a
priori, there is no simple way to determine whether an image
is already in the database.

The naive way to determine the uniqueness of an image is
to do a pixel by pixel comparison with images already stored
in the database. Alternatively, a hash value can be computed
and stored along with the image URL. Ideally, these hashes
should have a high probability of being unique and be quick to
compute. Many methods have been proposed to hash images.
Xiang et al. use a histogram based approach, working on
grey scale images [21]. In their Replicated Image Detector
System, Chang et al. use features based on Debauchies wavelet
coefficients to index images [22]. They then use these indexes

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 76

4

Fig. 4: Example Duplicates Examples of duplicate images
found in a small run of the crawler.

to find copies of query images. While [22] and [21] take a
more global approach in describing images, Ke et al. take a
local approach. They use a Difference of Gaussian detector
to detect local interest points and use PCA-SIFT to compute
feature vectors for interest points. They then index these
descriptors and use this information to achieve over 99%
accuracy on near-duplicate detection and sub-image retrieval
[23].

Many of the schemes discussed above are designed for
security purposes (ex. copy detection) and are not necessar-
ily well-suited for a collection of face images. With many
near-duplicate detection systems, there is a tradeoff between
the number of near-duplicate pairs and the number of false
duplicate pairs detected. In this application, we lean towards
a method that is more discriminative. That is, we seek to
have as few false duplicate pairs as possible at the expense
of not excluding some near-duplicate pairs. Indeed, for some
applications it is desireable to have near-duplicates included in
a dataset. For instance, in face recognition, algorithms must be
able to recognize faces under different illumination conditions,
poses, and scales. We thus use a histogram based method that
is easily implemented, efficient, and discriminative.

To detect duplicates, we compute a hash value for each
image. This hash value is then used as a unique key in
the database. Images are first resized to 256X256 so each
dimension is divisible by high powers of 2. Images are resized
using OpenCV with bilinear interpolation. Then, we apply a
Gaussian filter to the image. As noted by [21], applying a
low pass filter helps to make the hash scheme more robust to
artifacts introduced due to image compression.

To compute the hash value, the image is divided into 8
regions. In each region, an 8-bin, normalized histogram of
pixel values is computed. Similarly, for each region, an 8-bin,
normalized histogram of edge orientations is computed. The
edge orientations are computed by applying Scharr filters to
calculate the discrete y− and x−derivatives and then taking
the arctan of the quotient of the two derivatives. Note that
a value is included only if its magnitude is above a certain
threshold value.

Then, using these histogram values, a 32 bit hash value is
constructed based on pairwise comparisons of bins in each
histogram. Note that in order to limit the hash value to 32
bits, the bit values for each histogram could not simply be
concatenated since this would require 8 ∗ 2 ∗

(8
2

)
= 448 bits.

Instead, the hash values computed from each histogram are
summed together resulting in a

(8
2

)
+ log2 8 = 32 bit hash

TABLE II: Summary of total number of images retrieved and
subsequently removed

Images URLs crawled 31,515 100%
Images Excluded 8,468 26.9%
Duplicates Removed 933 3.0%

Total Images 22,568 70.2%

value. While in theory, summing the individual hash values
can result in very different pictures having the same hash,
in practice this problem is not observed. See Figure 5 for
the algorithm. Note that when computing histograms, soft-
binning is used. Soft-binning solves the discretization problem
of values near histogram bin boundaries being assigned to a
single bin. With soft-binning, weighted votes are assigned to
each bin based on the distance of the value from adjacent bin
centers.

See Figure 4 for examples of images that were retrieved
multiple times by the crawler and Figure 3 for an example of
a pair of false duplicates.

B. Removing Undesired Images
While crawling the web, a large percentage of the retrieved

images are logos, image buttons, and other design elements
for websites. To remove these unwanted images, we use height
and width cutoffs along with so called “stop images.” Together
with removing images that are unable to be downloaded,
we remove approximately 30% of the image URLs retrieved
during the crawl. See Table II for a summary of the number
of images retrieved and subsequently excluded during a small
sample run of the crawler.

1) Height and Width Cutoffs: Using the approach discussed
by Ziou and Kherfi, images with a width below θw or height

hash = 0
for i = 0 to 7 do
histV = computeValueHistogram(REGION(i))
histE = computeEdgeHistogram(REGION(i))
count = 0
for j = 0 to 7 do

for k = j + 1 to 7 do
if histV (j) ≥ histV (k) then
hash+ = 2count

else
hash+ = 0

end if
if histE(j) ≥ histE(k) then

hash+ = 2count

else
hash+ = 0

end if
count++

end for
end for

end for
Fig. 5: Hash Algorithm

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 77

5

below θh are removed from the database [20].
2) “Stop Images”: Similar to the approach taken in Natural

Language Processing of ignoring words such as “it” and “the,”
a list of words that have a high probability of indicating
unwanted images was constructed. These include words such
as “logo,” “footer,” and “banner.” Images with at least one of
these words anywhere in their URL are then passed over by
the web crawler.

3) Removing Graphics: Another useful filter would dis-
criminate between graphics and photos. There has been much
research into discriminating between large classes of images.
Athitsos et al. note that there are certain features that can
help to distinguish between photographs and graphics. For
instance, graphics tend to have large regions of constant color
while photos tend to have more noise. Other observations
include that graphics tend to have sharper edges and more
saturated colors [24]. Lienhart and Hartmann extended this
work, training classifiers to distinguish between photos, photo-
like images (ex. ray-traced computer graphics), presentation
slides/scientific posters, and cartoons. Using intuitive features
such as the prevalent color, orientation of edges, and the total
number of colors, they achieve accuracy rates upwards of 99%
[25].

Similar to [25] and [24], a variety of features were computed
for use in the classfier. First, a normalized color histogram was
constructed with 32X32X32 bins and the image was converted
to HSV space. Then using the original image, the HSV image,
and the color histogram, various features were extracted:

• The bin number and count of the most prevalent color.
• Total number of nonzero bins in the color histogram
• The average hue value.
• Based on a pixel neighbor metric, d = |r1 − r2|+ |g1 −

g2|+ |b1 − b2|, the percentage of pixels with d > 0
• The percentage of pixels with d > θ, with θ = 50.
• Width to height ratio of the image.

AdaBoost was then used to train a classifer. Real AdaBoost,
as implemented in the OpenCV library, was used. As described
in [26], the basic idea of AdaBoost is to train T weak clas-
sifiers. In the OpenCV implementation, each weak classifier
is a decision tree. With each iteration, training examples that
have been misclassified by previous classifiers are given more
weight. And in the final classifier, each weak classifier is
weighted according to its accuracy on the training data. The
basic algorithm is given below (adapted from [26]):

1) D1(i) = 1/m, i = 1, ...,m
2) For t = 1, ..., T

a) Find the classifier ht that minimizes the Dt(i)
weighted error:
ht = argminhj∈H(εj) where εj =

∑m
i=1 Dt(i) for

yi $= hj(xi) as long as εj < .5.
b) Set the ht voting weight:

αt = (1/2) log ((1− εt)/εt).
c) Update the data point weights:

Dt+1(i) = [Dt(i) exp (−αtyiht(xi))]/Zt, where
Zt is a normalization factor.

Fig. 6: Example Missclassified Images Examples of both
false positives and false negatives

The final classfier is given by:

H(x) = sign

(
T∑

t=1

αtht(x)

)
(1)

The classifier was trained with approximately 1000 positive
examples and 1000 negative examples. These images were
retrieved from the web via the crawler. It was then tested on a
total of 1500 images. Overall, it achieved a 90.2% true positive
and 88.4% true negative detection rate. While these results
are lower than that reported in [25], the dataset used to train
and test our classifier was retrieved entirely from the web and
contained a vast variety of images. In particular, the photos
retrieved varied widely. For instance, some photos contained
full shots of outdoor or indoor scenes while others were of
consumer products taken against a plain background. Some
examples of misclassified images are given in Figure 6. In
contrast to the varied photos in our dataset, the photos used
in [25] were all of nature.

IV. DETECTING FACES

By itself, a large database of internet images would prove
relatively useless. Thus, faces must be detected in the im-
ages, either automatically with existing detectors or manually
through human anotations. The use of Viola-Jones based face
detectors is discussed in the following subsection while the
use of human annotaiton is discussed in Section VI.

A. Viola-Jones Face Filters
OpenCV is an open source project supported by Intel. It

provides a large library of functions for use in computer vision
research and applications [10]. Included in the OpenCV library
is an implemented method of the Viola-Jones face detection
algorithm [9]. The Viola-Jones method uses Haar-like features
based on sums and differences of rectangular regions in the
image and trains a cascade of classifiers based on these
features. See Figure 8 for examples of Haar-like features. Since
the set of Haar-like features defined by [9] is overcomplete,
they use Ada-Boost to select the most dsicriminative features
and to train the classifiers. The goal is to quickly eliminate
large portions of an image that are very unlikely to contain

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 78

6

faces so later classifiers have to search a smaller region of the
image. Portions of the image, if any, that make it through the
entire cascade of classifiers are then chosen as faces.

OpenCV comes built with five different frontal-face,
cascade-based filters. Four are based closely on Viola-Jones,
using Ada-Boost with Haar-like features and differ based on
the data and variant of Ada-Boost used in training. The fifth
also uses a cascade of classifiers trained with Ada-Boost, but
instead of Haar-like features, uses local binary patterns (LBP).
LBP features were introduced by Ojala et al. as a means to
describe local texture patterns [27]. LBP creates a description
of a 3X3 pixel patch by thresholding the outer pixels using
the center pixel value. See Figure 7 for an example calculation
of an LBP feature.

Note that to help reduce the number of false positives, we
run the face detectors only on those images classified as being
photos by the algorithm discussed in Section III-B3. See Table
III for statistics on the number of faces detected by each filter
in a total of 12,521 images classified as being photos by the
algorithm in Section III-B3.

TABLE III: Statistics on number of faces detected in a total
of 12,521 images by the different cascades. False positive rate
was determined by manually classifying 540 of the results
returned by each classifer.

Cascade # Faces Detected False Positive Rate
frontalface alt tree 1,748 24.6%
frontalface alt 2,376 29.8%
frontalface alt2 3,069 57.0%
frontalface default 5,833 47.6%
lbpcascade frontalface 3,132 65.9%

Note that the statistics on the false positive rate are some-
what misleading since it was simply computed by dividing
the number of incorrect faces by the total number of faces
returned by the classifier. Yet, in detecting faces the Viola-
Jones classifier scans across the entire image at multiple scales,
resulting in up to thousands of windows scanned for each im-
age. Thus, the false positive rate would be significantly lower
for the cascades if it was computed based on the total number
of windows scanned. Further, a majority of the false postives
came from a small subset of the images. This was because
the classifer was set to detect faces as small as 30X30 pixels.
For smaller images, this was a reasonable threshold but for
larger images, faces this small are much more unlikely. Thus,
a small threshold resulted in a very large number of windows
scanned, and hence a proportionally larger number of false
positives. Indeed, when a relative threshold of one eighth of
the image width and height was set, the false positive rate for
the frontal alt tree classifier was reduced from 24.6% to 7.7%.
Yet, this lower false detection rate also comes with a tradeoff
as many of the smaller, harder to detect faces are missed by
the classifier. For instance, based on the false positive rate
of 24.6% and 7.7% for the frontal alt tree cascade with the
differently defined thresholds, the former returns 1,318 correct
faces while the latter returns 1,119 correct faces. Thus, rather
than provide a single filter for each cascade, multiple filters
are provided for each cascade, each with different parameters

Fig. 7: LBP LBP features are generated by thresholding the
pixels of a 3X3 patch with the center pixel

that affect the tradeoff between the number of faces returned
and the false detection rate.

V. USER INTERFACE

To provide researchers with an interface to access image
data, a site has been designed where researchers can access
precompiled datasets or choose to build their own. For custom
datasets, users can choose to include existing datasets, such as
CMU PIE [6] or LFW [1] and choose to filter internet images
using any of the Haar face cascades provided with OpenCV.
Researchers can then preview the internet images, excluding
undesired ones from their dataset. Preview images are resized
to a width of 150 pixels and an appropriately scaled height to
maintain the original aspect ratio. The preview images show
detected faces so that false positives may be excluded and are
also linked to the original image. Further, since small faces
may be hard to see in some of the images, users can roll
over the images to see a magnified image of just the detected
face itself. Additionally, users can choose to label faces not
detected by the provided detectors and add the faces to their
datasets. Note that due to copyright and privacy concerns,
images from existing datasets cannot be previewed in the
interface. The custom-made datasets can also be accessed by
other researchers although they can only be edited by the
original creator.

Once a pre-defined dataset has been chosen or a custom
dataset created, researchers can then download the image
information as an XML file. For internet images, the URL to
the image, rather than the actual image file itself, is provided.
For images from existing datasets, researchers specify a base
directory where local copies of the datasets are stored on
their machine and specify whether their machine is Unix or
Windows based. Appropriate file paths are then generated in
the XML file. Also included in the XML file is any assocated
labeling of the images. Different databases include different
standards for labeling faces. For instance, the MIT-CMU
dataset includes eye, mouth and nose coordinates while LFW
includes only name labels for the images. For each image,
we store all available labeling data and in the generated XML
file include the labels along with the associated image path or
URL.

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 79

7

Fig. 8: Example of Haar-like features Four different Haar-
like features. Black regions are subtracted from white regions

VI. CONCLUSION AND FUTURE EXTENSIONS

A time- and resource-intensive task in computer vision is
gathering data for use in algorithm design. Indeed, some of the
most cited papers in computer vision are of datasets that have
been compiled and made publicly available [2], [1], [5], [7],
[6]. The wide use of such datasets is evidence that researchers
seek both a common benchmark to compare their algorithms
to the work of others and also to eliminate the redundant
collection of testing and training datasets. And while many
publicly available datasets exist, much effort is still wasted
among research groups gathering similar data for training and
testing.

In this work, we seek to alleviate the burden of data
collection in the development of face-related algorithms. We
leverage the work of existing face datasets by gathering the
existing dataset information into a central location and then
expand upon these sets by crawling the web to find additional,
and often more challening images. In doing so, we create an
extensive, difficult set of face images that can be used for a
variety of face-related algorithms.

We have developed our database in such a way to allow for
future incremental improvements in both the data collection
process and the features provided to the end users. For
instance, one area of improvement could be the use of human
verification of face images detected on the internet. Indeed,
as noted by [13], face detection is far from a solved problem
and consequently, it is undesireable to rely solely on existing
detectors to gather face images from the web. Yet, labeling data
by hand is a tedious and time consuming task. Recently, the
Amazon Mechanical Turk service has become a popular way
to achieve large amounts of labeling accurately, inexpensively,
and quickly. For instance, Kumar el al. used the service to label
over 125,000 examples of various human face attributes [28].
And [4] used Amazon Mechanical Turk to label images for
use in their ImageNet dataset.

The service allows researchers to post tasks, called “HITS,”
for human “workers” to complete. The requesters set the
payment reward to give workers and can restrict the workers
who can complete their tasks based on qualifications such
as country of residence. Further, requesters only have to pay

for work they consider satisfactory. Amazon Mechanical Turk
provides various APIs to programmitcally create new “HITS.”
Thus, in future versions of the user interface, not only could
we further refine pre-defined datasets by submitting “HITS” to
Amazon Mechanical Turk, but we could also allow researchers
to automatically submit their custom-designed datasets to the
service to be verified.

Additionally, we currently only utilize Viola-Jones based
face detectors to collect face images form the internet. Yet,
a wide variety of other face detectors exist in the literature
([15], [14], [13]) along with commercial detectors ([29], [30])
that could be used to further extend the range of face images
included in the database.

To summarize, we provide an extensive database of face
images that is freely available for researchers to use for face
related algorithms. By providing such a large store of images
in a central location, we aim to reduce the collective time
and resources devoted to data collection among the computer
vision field.

REFERENCES

[1] G. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “Labeled faces
in the wild: A database for studying face recognition in unconstrained
environments,” University of Massachusetts, Amherst, Technical Report,
vol. 57, no. 2, pp. 07–49, 2007.

[2] L. Fei-Fei, R. Fergus, and P. Perona, “Learning generative visual models
from few training examples: An incremental bayesian approach tested
on 101 object categories,” Computer Vision and Image Understanding,
vol. 106, no. 1, pp. 59–70, 2007.

[3] G. Griffin, A. Holub, and P. Perona, “Caltech-256 object category
dataset,” 2007.

[4] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei, “ImageNet:
a large-scale hierarchical image database,” 2009.

[5] P. Phillips, H. Moon, P. Rauss, and S. Rizvi, “The FERET evaluation
methodology for face-recognition algorithms,” in 1997 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, 1997.
Proceedings., 1997, pp. 137–143.

[6] T. Sim, S. Baker, and M. Bsat, “The CMU pose, illumination, and ex-
pression database,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, pp. 1615–1618, 2003.

[7] R. Gross, I. Matthews, J. Cohn, T. Kanade, and S. Baker, “The CMU
multi-pose, illumination, and expression (Multi-PIE) face database,”
Technical report, Robotics Institute, Carnegie Mellon University, 2007.
TR-07-08, Tech. Rep.

[8] T. Berg, A. Berg, J. Edwards, M. Maire, R. White, Y. Teh, E. Learned-
Miller, and D. Forsyth, “Names and faces in the news,” 2004.

[9] P. Viola and M. Jones, “Rapid Object Detection using a Boosted Cascade
of Simple,” in Proc. IEEE CVPR 2001. Citeseer.

[10] G. Bradski, “The OpenCV Library–An opensource library for processing
image data,” Dr. Dobbs Journal, pp. 120–125, 2000.

[11] T. Kanade, S. Baluja, and H. Rowley, “Rotation Invariant Neural
Network-Based Face Detection,” 1997.

[12] M. Fink, R. Fergus, and A. Angelova, “Caltech 10, 000 web faces,”
http://www.vision.caltech.edu/Image Datasets/Caltech 10K Web
Faces/.

[13] A. Frome, G. Cheung, A. Abdulkader, M. Zennaro, B. Wu, A. Bissacco,
H. Adam, H. Neven, and L. Vincent, “Large-scale Privacy Protection in
Google Street View,” California, EUA, 2009.

[14] L. Zhang, R. Chu, S. Xiang, S. Liao, and S. Li, “Face detection based
on multi-block lbp representation,” Advances in Biometrics, pp. 11–18,
2007.

[15] C. Huang, H. Ai, Y. Li, and S. Lao, “High-performance rotation invariant
multiview face detection,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, pp. 671–686, 2007.

[16] N. Kumar, P. Belhumeur, and S. Nayar, “FaceTracer: A search engine
for large collections of images with faces,” in Proceedings of the 10th
European Conference on Computer Vision: Part IV. Citeseer, 2008, p.
353.

[17] F. Schroff, A. Criminisi, and A. Zisserman, “Harvesting image databases
from the web,” 2007.

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 80

8

[18] B. Collins, J. Deng, K. Li, and L. Fei-Fei, “Towards scalable dataset
construction: An active learning approach,” Computer Vision–ECCV
2008, pp. 86–98, 2008.

[19] J. E. Halse, G. Mohr, K. Sigurdsson, M. Stack, and P. Jack.
Heritrix user manual. Internet Archive. [Online]. Available: http:
//crawler.archive.org/articles/developer\ manual/index.html

[20] M. Kherfi, D. Ziou, and A. Bernardi, “Image retrieval from the world
wide web: Issues, techniques, and systems,” ACM Computing Surveys
(CSUR), vol. 36, no. 1, pp. 35–67, 2004.

[21] S. Xiang, H. Kim, and J. Huang, “Histogram-based image hashing
scheme robust against geometric deformations,” in Proceedings of the
9th workshop on Multimedia & security. ACM, 2007, p. 128.

[22] E. Chang, J. Wang, C. Li, and G. Wiederhold, “RIME: A replicated
image detector for the world-wide web,” in Proc. of SPIE Symposium
of Voice, Video, and Data Communications, vol. 3527. Citeseer, 1998,
pp. 58–67.

[23] Y. Ke, R. Sukthankar, and L. Huston, “Efficient near-duplicate detection
and sub-image retrieval,” in ACM Multimedia, vol. 2004. Citeseer,
2004.

[24] V. Athitsos, M. Swain, and C. Frankel, “Distinguishing photographs and
graphics on the world wide web,” in IEEE Workshop on Content-Based
Access of Image and Video Libraries, 1997. Proceedings, 1997, pp. 10–
17.

[25] A. Hartmann, “Classifying images on the web automatically,” Journal
of Electronic Imaging, vol. 11, no. 4, pp. 1–0, 2002.

[26] G. Bradski and A. Kaehler, Learning opencv. O’Reilly, 2008.
[27] T. Ojala, M. Pietikainen, and D. Harwood, “A comparative study of

texture measures with classification based on featured distributions,”
Pattern Recognition, vol. 29, no. 1, pp. 51–59, 1996.

[28] N. Kumar, A. Berg, P. Belhumeur, and S. Nayar, “Attribute and simile
classifiers for face verification,” in IEEE International Conference on
Computer Vision (ICCV). Citeseer, 2009.

[29] “Omron: Okao vision,” http://www.omron.com/rd/vision/01.html, 2008.
[30] M. Nechyba and H. Schneiderman, “PittPatt face detection and tracking

for the CLEAR 2006 evaluation,” Multimodal Technologies for Percep-
tion of Humans, pp. 161–170, 2007.

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 81

 1

Abstract - In this paper we describe how to create a multilingual
lexical resource using corpora. This resource will be available to
researchers and the public using a web interface. The input data
includes millions of words in different languages. These words
will of course have to go through some preprocessing before
finally being uploaded to a MySQL database. Keeping the data
indexed is crucial and will allow easy access and quick searches.
The searchable information will include the number of
occurrences of a particular word, significant bigrams and
trigrams that include this word, significant right or left
neighbors, parts-of-speech for words, relationship graph among
the words and example sentences where this word appears. This
can all be done creating four to five tables for each language,
which we will be using. Later on a user based dictionary will be
created to add another aspect to this linguistic recourse. We will
create a different database for each language as it seems the most
convenient. The data will stress languages like Slovak and
Assamese, but will also include other languages like Czech,
English, Polish, Bengali and Kannada. The reason for creating
this website is creating a resource for languages that are not as
common to find recourses for on the web.

I. INTRODUCTION

This project is intended to create a large linguistic library of
words, their uses and their definitions for those who speak an
Indic and Slavic languages, but our initial focus will include
languages like Assamese and Slovak. A website will be cre-
ated to allow the user to research relationships among words
in terms of occurrences, bigram or trigram frequencies, and
significant right or left neighbors; part of speech for words and
usages of the words in different part of speech; and will also
allow the user to add definitions to a user based dictionary.
Another feature that will be developed will include the ability
to search for root words. After all this is finished the website
should show about two pages worth of information for every
word entered. Part of speech tagging will be a challenge and
we will either use an existing POS tagger or work on to de-
velop a new one. All the information for these different op-
tions will be extracted from the corpora that are free around
the web. This will be a great resource for those who want to:

• have access search engine for lexical resources
• get statistical information about your query word
• have access to lexical information on uncommon lan-

guages like Slovak and Assamese.

II. RELATED WORK
A project has been started by the Leipzig University, Com-
puter Science Institute in the turn of the millennium and their
website now receives more than 170,000 monthly visits. They
have come up in their proposal with a table that shows how
many words are in their main corpora (see Table 1). [4][1]
Obviously with the languages we will be using, we will not
have as many courses, but using Wikipedia dumps and free
corpora we will works ourselves up to a nice number. Bie-
mamn wanted to create a flexible website that allows people
from around the world to research relationships among words.
He also created a great standard of comparison for new web-
sites.

Table 1

 German English Italian Korean
Word Tokens 500 Mill. 260 Mill. 140 Mill. 38 Mill.
Sentences 36 Mill. 13 Mill. 9 Mill. 2.3 Mill.
Word Types 9 Mill. 1.2 Mill. 0.8 Mill. 3.8 Mill.

Another future addition might include graphing the relation-
ships of word. Hatzigeorgiu created a project that displays the
data about this. In his paper he describes how world length
and occurrences show up on a graph. When he mapped out
word length against the number of occurrences he came out
with some pretty interesting results. It will be fascinating to
see how it is mapped out in Slovak and Assamese, and other
Indic and Slavic languages. This is another thing that might be
added to our website later on. [3]

III. DATA RECOURSES

A. Data Sources
The main and only source of the data is free corpora which are
available on the web or have been developed by universities.
These collections of text provide anywhere from 2 million to
36 million sentences in each language. The corpora that we
will be using include the American National Corpus and Slo-
vak National Corpus for the beginning and later on expand the
languages to mostly Indic and Slavic languages, like Assa-
mese, Bengali, Kannada and Czech, Polish. Another option for
more text to work with will include extracting Wikipedia arti-

Creating a Multilingual Lexical Resource
Richard Seliga

School of Computer Science
University of Colorado, Colorado Springs

Colorado Springs, Colorado 80920
rseliga@uccs.edu

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 82

 2

cles in their respective languages. Here is some of the data we
obtained from the three languages so far (see table 2).

Table 2

 English Slovak Assamese
Word Tokens 11.1 Mill. 17.7 Mill. 2.431 Mill.
Sentences 1.8 Mill. 2 Mill. .
Word Types 0.23 Mill. 0.94 Mill. 0.21 Mill.

The American National Corpus1 contains over 6000 docu-
ments while the Emille2 corpus, developed by the University
of Lancaster one is much smaller. The 17.7 million words in
the Slovak language were obtained from a XML Wikipedia
dump. We used this Wikipedia dump because the Slovak na-
tional corpus is not as accessible as we first thought.

B. Text preprocessing
All the text processing in our project will be done using Perl,
since it has great capabilities with word processing. In this
section we will describe the steps to construct a text database

1. Create a two dimensional array of strings that includes
the sentence and their respectable words.

2. Strip all punctuation from the text document.
Each word will have the index of what sentence it is in and the
index of the position in the sentence. This will eliminate get-
ting inaccurate data. This is necessarily because the end of a
sentence and a beginning of another is not a bigram. The next
step will involve counting the number of accurateness of each
word in the documents and sending this data into a database of
unigrams which will include the primary key of the unigrams,
the spelling of the word and how many times it has occurred
in the corpus. The index will provide us with an easy way to
connect two or three words. The connecting of words will be
based on the significant right or left neighbors of the word.
This will create collocation which is the occurrence of two or
more words within a sentence or a document. We will keep
count of this data and display it on request of the user. By in-
dexing the sentences, we will create a table including the id of
the sentence and merge it with the unigram table to display
what unigrams appear in what sentences. One of the other
tables we will create is a root table, which will display the root
word.

A. Creating the Database
The database will be one of the most crucial parts of this pro-
ject. It will supply our users with quick responses to their que-
ries which will be accessed through a web interface. The main
table will be the unigram table. The unigram table will include
the id, spelling and the count. To get bi-grams and trigrams all
that will be done is connect two and three word ids. The sen-
tences will be in another table and the only relation it will
have to the unigram table is that it receives the data from the
same document collection.

1American National Corpus {http://www.americannationalcorpus.org/}
2The Emille Corpus{www.ling.lancs.ac.uk/corplang/emille/}

Most available sentence splitters are not very good and some-
times cause errors with one word sentences. This problem will
be avoided by querying only sentences between a certain char-
acter lengths. Indexing the data will make it extremely quick
to access, and will keep the users happy. The entity relation-
ship diagram can be seen for our data can be seen on figure 1
and some of the most popular unigrams in the English lan-
guage can be seen it table 3.

Table 3

Figure 1

IV. FUTURE WORK

A. POS Tagging
Using a part of speech tagging algorithm we will create an-
other resource for our users. It will show the word queried by
the user and see what POS it is and display it. This will be
different for the Slovak language as it has a much more com-
plex grammar. We will start with Slovak, but later extend the
work to other Slavic languages and one or more Indic lan-
guages. The biggest problem of tagging the Slovak language is
that the tools for the Slovak language are underdeveloped
since Slovakia claimed its independence from Czechoslovakia
in 1993 and most of the people that did research did it in
Czech. On the positive side, the Slovak language is very simi-
lar to Czech and a POS tagger has been created named ajka for
the Czech language.

1) Czech POS Tagging:
For illustration, let’s assume word-form zdi (walls). One of

the morphological annotations corresponds to the genitive

ID SPELLING COUNT ID SPELLING COUNT
1 the 721015 41 is 121803
21 of 385945 33 for 115616
49 and 298341 159 with 85187
11 to 268803 213 as 76022
35 in 241763 71 on 70113
4 a 235332 7 by 67411
40 that 132009 247 was 64532

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 83

 3

singular for feminine nouns, other to the dative, vocative and
locative singular, or nominative and accusative plural of the
same word. The other corresponds to the imperative of singu-
lar of the verb and so on. Each morphological category (case,
gender, number...) may take a set of possible values (gender -
masculine animate, masculine inanimate, neuter, and femi-
nine). The morphological annotations of a word form repre-
sent the combinations of morphological categories for the par-
ticular part of speech classes. [7] This creates a lot of different
variations and will make the tagging extremely tough.

B. User Input Definitions
One of the later on additions to this website will include the
ability for the user to enter their own definition of the word.
Then the definition will be run through a Spam filter and if it
successfully runs through it then the definition will be added
to the website automatically and be viable by the users. One of
the options that we see is using a summarizing posts algorithm
to summarize the contents of the user entry and combine this
to create some very reliable definitions.

C. Word Relation Graphs
Another future addition to this website will include a diagram
between different words and their most common neighbors.
Even though this seems simple, connecting the words neigh-
bors and their neighbors’ neighbors all within one graph will
become quite complex and difficult to display properly. Figure
3 shows the graph located on wortzchatz[4]. We will try to
make our relationship model a little different this. Also the
bolder the line, the more occurrences are related to this sub-
ject.

Figure 2

D. Other Minor Additions
Some of the minor additions that would be added in the future
is that every word displayed on the site would beside it have
its count in the corpus and if clicked would display the defini-
tion of the word.

V. EXPERIMENTS
Some of the experiments so far have included testing of a
website that connects to a database and searches for the most
common bigrams and trigrams. The results posted look very
promising. The text documents tested included punctuation
marks, random lines and double spaces. After testing the same
code on the Slovak and Assamese language we had to tweak
our code a little to use different encoding. Following this we
had 3 databases with all the information needed. Subsequent
to testing, we tested some different way to display sentences
and we figured out that most sentences that are important are
between 50 to 120 characters and this helped us displaying
some very good data.

VI. APPROACH TO SOLVING PROBLEMS
Our approach to solving the problems will involve using the
scripting language Perl. It is very good with text manipulation
and that is what this project needs. Using Perl we first figured
out how to count the letter frequencies and word frequencies.
Currently we are working on bigrams and trigrams matching
by finding out the word that comes before or after the word
entered by the user. We will achieve the frequencies by check-
ing the database during insertion. After this is finished we will
start working on a basic sentence splitter that will allow us to
create a database of sentences. Part of speech tagging will be
the final part of this project. After all this has been tested and
is working we will implement the different languages and start
working on the website. What we did first was made our
document available for extraction of information by deleting
out some of the punctuation and other unnecessary content.
When this was finished, the extraction was quite simple using
a foreach statement. What we did was put my text document
into an array of words and later on used a while loop to look
for the appropriate word, while keeping a counter of how
many words there are before the current word. When the word
was finally found we just looked for the word that had an in-
dex of one higher than the counter and one lower than the
counter. The solution for the parts of speech tagging will be
very interesting to figure out.

VII. SLOVAK LANGUAGE

A. Slovak Morphology
Like most other Slavic languages, and contrary to English or
German. Slovak is an inflected language. Basically, there are
three major types of word-forming processes inflection, deri-
vation, and compounding. Inflection refers to the systematic
modification of a stem by means of prefixes and suffixes. In-
flected forms express morphological distinctions like case or
number, but do not change meaning or POS. In contrast, the
process of derivation usually causes change in meaning and
often changes of POS. Compounding deals with the process of
merging several word bases to form a new word.

B. Slovak Data Collected
Some of the data collected from the Wikipedia dump has very
good size and quality. In table 4 you can see the most common

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 84

 4

words in our Slovak database. Since the sentence structure in
Slovak is very similar to the one in English we used our Eng-
lish splitter and the results looked very good. The only prob-
lem that we ran into was that our Wikipedia dump included a
lot of Wikipedia titles and this counted as sentences. We
avoided displaying these by only selecting the sentences that
had above a certain character count. This proved to be a solu-
tion to that problem and after testing some words the data dis-
played proved to be good sentences.

Table 4

ID SPELLING COUNT
119 v 575566
136 a 517223
154 na 295515
132 sa 286466
116 je 257444
120 roku 109615
190 aj 99273

VIII. ASSAMESE LANGUAGE

A. Assamese Data Collected
We used an Assamese corpus which was not huge in size but
it had a lot of quality text. It was all pre parsed and was a
freeze to use. In table 5 you can see the most common words
in our Assamese database. Since the Assamese language uses
Eastern Nagari Script we had to change our code to a different
encoding to handle it. The data displayed looked great.

Table 5

IX. WORD LENGTH VS. NUMBER OF OCCURRENCES

A. English

X. CONCLUSION AND FUTURE ADDITIONS
Part of speech tagging is going to be one of the more challeng-
ing topics addressed and implemented into the website. Horak,
the developer of this tagger uses a similar tool that has been
used for the Czech language [5]. It’s called AJKA and has
been developed by Sedlacek. He describes three major parts of
word-forming processes: inflection, derivation, and com-
pounding. Inflection refers to the systematic modification of a
stem by means of prefixes and suffixes. Inflected forms ex-
press morphological distinctions like case or number, but do
not change meaning or POS. In contrast, the process of deriva-
tion usually causes change in meaning and often change of
POS[6]. Compounding all of these together causes problems
that are unlike anything in the English language.

In conclusion getting this project will be very challenging and
time consuming to work properly. This project would be a
good challenge for an intermediate programmer. The final
product is something that I am very much looking forward too
as it will be extremely satisfying. The final thoughts on this
project and some later additions would include an on screen
keyboard pop up that would allow users in India, where the
amount of characters is so extreme it forces the population to
only type in English causing only ten percent of the population
to have access to computers. Another addition would be a dic-
tionary that would allow the users to enter the definition in
their own language through this on screen keyboard and make
the site a very good resource that is user based.

REFERENCES
[1] U. Quasthoff and M. Richter and C. Biemann, Corpus Portal for Search in

Monolingual Corpora, Leipzig, Germany: Augustusplatz 11, 04109,
2006.

[2] L. Egghe, The distribution of N-grams, Akadmiai Kiad, Budapest, 2000.
[3] N Hatzigeorgiu, G Mikros, and G Carayannis, Word Length, Word
 Frequencies and Zipfs Law in the Greek Language, Maroussi,
 Greece, 2001.
[4] U. Quasthoff and M. Richter and C. Biemann, Language- Independent
 Methods for Compiling Monolingual Lexical Data, Leipzig,
 Germany: Augustusplatz 11, 04109, 2004.
[5]A. Hork, L. Gianitsov, M. imkov, M. motlk, and R. Garabk, Slovak
 National Corpus, Ludovt tr Institute of Linguistics, Slovak Academyof
 Sciences Bratislava, Slovakia, 2004.
[6]Radek Sedlacek and Pavel Smrz, LA New Czech Morphological

 Analyser ajka, Faculty of Informatics, Masaryk University Brno Bota
 nicka 68a, 602 00 Brno, Czech Republic, 2001.

[7]Jan Hajic and Barbora Hladka, Czech Language Processing – PoS Tagging,
Institute of Formal and Applied Linguistics Charles University Malos-
transk nm. 25 118 00 Prague, Czech Republic

[8] Benot Sagot, Automatic Acquisition of a Slovak Lexicon from a Raw
Corpus, INRIA-Rocquencourt, Projet Atoll, Domaine de Voluceau,
Rocquencourt B.P. 105 78 153 Le Chesnay Cedex, France

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 85

1

Extraction and Visualization of Temporal
Information and Related Named Entities from

Wikipedia
Daryl Woodward

University of Colorado, Colorado Springs
1420 Austin Bluffs Pkwy Colorado Springs, CO 80918

daryl.woodward@gmail.com

Abstract—This paper addresses our process in generating a
tool that extracts named entities and events from a document
and visualizes them in ways beneficial to someone learning about
the topic. The ultimate goal is to present a user with many of the
key events and their associated people, places, and organizations
within a document that will quickly give users an idea of the
contents of an article. For testing, we use a set of historical
Wikipedia articles which focus on topics such as the American
Civil War. These articles have high occurrences of all types of
named entities along with many events with clearly defined time
spans. For initial named entity extraction, we incorporate the
Stanford NLP CRF into our project. In recognizing location
names in this subject area, it only achieves an f-measure of 57.2%.
The list of locations is geocoded through Google Geocoder and
will be disambiguated through a tree structure in the future.
A final f-measure of 79.1% is determined which represents the
precision and accuracy of our package in successfully grounding
the extracted locations. The grounded locations are then grouped
with other named entities related to an event through sentence-
level association. Visualization is currently done through Google
Maps and the Timeline SIMILE project developed at MIT. We
plan to add the capability to geospatially and temporally refine
article searches in Wikipedia and make our tool usable on other
online corpora.

I. INTRODUCTION

The Internet has given mankind an efficient method of
sharing information. As the amount of data increases, we
need ways to express it effectively, especially for learning.
Visualization can sometimes offer a level of understanding not
inherent in reading the text alone. By generating a tool that
extracts information open to various types of visualization,
we facilitate the addition of future features for our tool and
new tools all together. Over the past couple of decades, the
Internet has gained a foothold in various aspects of people’s
every day lives all over the world. One of the most influential
features of the Internet is the ability to easily collaborate in
generating information. A perfect example was the creation of
the wiki. A wiki offers an ideal environment for the sharing
of information while allowing for a form of peer review that
is not present in many privately operated websites. The largest
wiki that exists today is Wikipedia. Only recently created in
2001, the English Wikipedia has already grown to over 3.3
million articles 1. Wikipedia is only one of many corpora that

1http://en.wikipedia.org/wiki/Wikipedia

can be mined for knowledge and displayed in concise form.
Some examples of other corpora reside in the genres of news
articles, journals, books, blogs, etc. It should be noted however,
that although such online sources can offer a great deal of
information, readers often need quick, decisive information
from an article without reading the whole thing. Thus begins
the motivation of our work.

II. MOTIVATION

Our work begins with a focus on extracting knowledge
from Wikipedia. After the tool has been fully evaluated on
this corpus, testing will be extended to archived news articles
and then RSS (Really Simple Syndication) feeds. Although
Wikipedia offers a basic article structure and ways for au-
thors to relate articles together, tools have been and should
continue to be created to automate the extraction of important
information from these articles. With over a thousand articles
being created per day2, Wikipedia has the potential to be used
in many educational environments. One task that needs to
be implemented is the creation of a knowledge base where
key facts can be identified extremely efficiently, especially
from different online sources. If various encyclopedias are
analyzed, much of the same information should be pulled out
by this sort of tool. Thus, a researcher could easily verify or
disprove information from a single source. This task however,
has various obstacles associated with it.

III. BACKGROUND INFORMATION AND RELATED WORK

In regard to querying and extracting knowledge from
Wikipedia, Auer and Lehmann demonstrated an efficient algo-
rithm for categorizing articles and extracting information from
Wikimedia templates [1]. Such information may be effective
in general queries but does not extract deep enough content to
be applied to the visualization in our work. It may however,
prove to be useful in the expansion of search features in the
future. The idea of extracting information from the predefined
Wikipedia data structure may be applied to this work but will
be more difficult when templates and tags do not exist in the
documents being processed (in other corpora). Similarly, Mi-
halcea and Csomai developed a keyword extraction algorithm

2http://en.wikipedia.org/wiki/Wiki#History

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 86

2

to identify important words from within a document and link
them to their respective Wikipedia pages [2]. This can aid in
future work as it can help identify pages related to the target
document that should be processed alongside it to get a more
complete set of important information.

A variety of approaches have been applied to NER since
MUC-6 in 19953 including Hidden Markov Models, Con-
ditional Random Fields, Maximum Entropy models, Neural
Networks, and Support Vector Machines (SVM). The extrac-
tion of named entities continues to invite new methods, tools,
and publications. Basic named entity extraction is performed
in [3] and [4]. Both of these works focus on the extrac-
tion/visualization of named entities from RSS feeds.

Specifically, Chen et al. performs Named Entity Recognition
with a “regularized maximum entropy classifier with Viterbi
decoding” [4] and achieves an f-measures of over 88% in
regard to geospatial entities. Our goal is to achieve recall
in the same area after initial extraction, but with people and
organizations as well. Precision can be sacrified in the realm of
geospatial entities as many of the inaccuracies will be weeded
out when the places are geocoded.

[3] uses an interesting disambiguation process in their
geospatial resolution process. Nearby named entities are used
to disambiguate more specific places. An example is a state
being used to determine exactly which city is being referenced.
In addition,NE’s previously extracted in the document are also
used to reinforce the score of a particular instance of a place
name. For example, if a particular region in the U.S. has been
previously referenced and a new named entity arises that could
be within that region or in Europe, it will be weighted more
towards being the instance within that region in the U.S. The
basic design of our GUI is based off of the GUI referenced in
[4].

SVMs have shown significant promise for the task of NER.
[5] demonstrated an SVM that achieved an f-measure of 0.954
for location entities in Wikipedia articles, and an f-measure
of 0.884 across all NE classes. Although research into text
classification and NER has found that SVMs provide good
performance on NER tasks, HMMs can produce similar results
with minimal training.

Hidden Markov Models (HMMs) have also shown excellent
results. [6] demonstrated that a Character-level HMM can
identify both English and German named entities with an f-
measure of 0.899 and 0.735 for location entities in testing data,
respectively. [7] evaluated a HMM and HMM-based chunk
tagger on the MUC-6 and MUC-7 English NE tasks, achieving
f-measures of 0.966 and 0.941, respectively.

The approach we took however is the implementation of
the Conditional Random Field provided by the Stanford NLP
Group (Covered in more depth in Approach-Tools). We chose
this tool because it has satisfactory performance and accuracy.
Achieving results close to 90%, the CRF is publicly available,
already trained, easily integrated into the Geografikos package,
and currently seems to be quite efficient.

3http://cs.nyu.edu/cs/faculty/grishman/muc6.html

IV. APPROACH

Our focus is on extracting information from a corpus of
historical Wikipedia articles. These have high occurrences of
dates, times, people, places, etc. that make up events. Such
information can be very valuable in evaluating historical topics
as these can often be lengthy, sometimes dry articles. We
have identified six major steps in representing this sort of
information:

1) Extract temporal information which identifies when an event
occurs

2) Tag the locations (in regard to the article) of these events
3) Extract named entities and relate them to their respective

events
4) Save information back into a database
5) Combine the information for visualization on a map
6) List events and associated entities, perhaps incorporating as-

sociated pictures
The overall goal is to generate a two part GUI. The first part
emphasizes the visualization of locations. It consists of a map
generated by the Google Maps Javascript API4. To the side is
a list of locations shown on the maps, each clickable to center
and zoom the map on that location. Individual markers on the
map are clickable at which point an infobox will be displayed
with relevant information about the location, including a list
of events that occurred there. Clicking an event should open
an infobox about the event in the second part of the GUI.
This second part is a timeline that is displayed with what
we have identified as the most important events of an article.
Each event is clickable to display text extracts from the article
and links to zoom in on associated locations. A sliding bar
will separate the two and the bar itself will have adjustable
endpoints. This bar can then be moved from left to right along
the overall timespan of all events mentioned in the article. The
bar itself represents the time period the user is interested in. If
the starting point (left end) of the bar is adjusted all the way
to the left (aligning with the least recent event mentioned in
the article) and the right end of the bar aligns with the most
recent time mentioned in the article, then all events will be
visualized on the timeline and their associated locations will
all be plotted on the map. This is shown in Figure 1.

A. Fusion Table Approach
1) Introduction: Here, we discuss a useful tool for visual-

izing geospatial data but not efficient enough to include in our
final implementation. Fusion Tables is a Google Labs project
available for anyone with a Google account5. Fusion Tables
are online database tables which can be queried and updated
through simple POST and GET commands over the internet.
Google has an API called Google Data Protocal (GData)
which “is a REST-inspired technology for reading, writing,
and modifying information on the web.” 6. This eases the
online interaction between a developer’s program and Google’s
online applications. For this project, we initially attempted to
use Fusion Tables due to its simple integration into Google
Maps. Google Maps allows the addition of an “overlay layer”

4urlhttp://code.google.com/apis/maps/documentation/javascript/
5http://tables.googlelabs.com
6http://code.google.com/apis/gdata/

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 87

3

Fig. 1. Basic Format of GUI

that automatically pulls geospatial data straight from a Fusion
Table. Our first attempt at visualizing information was by
storing data both offline in a MySQL database and online
in these Fusion Tables. The data stored online was much
more minimal and consisted only of the geospatial information
associated with locations. Two online tables were created
similar to their offline counterparts. These are listed below
with their associated columns: With this format we can do

Pages Table
page id loc ids

Locations Table
loc id loc name loc lat loc lng loc street loc city loc state loc country sent id

searches by article or location. One example is to retrieve all
locations mentioned in one article by matching:
pages.id = query.id and page.loc_ids = locations.loc_id

Fusion Tables also offers various sharing options where one
can not only share raw data but visualizations just as easily. For
example we can choose to identify the latitude and longitude
columns as a pair that make up a location. Then we can just
click on a Map button to map all the places or embed a map in
our own application using GData. A user can also easily join
tables together. Part of the locations table is shown in Figure
2.

B. Implementation
Figure 3 shows a map of all locations found in the Battle of

Fredericksburg and Nickel Grass articles. This is just a simple

Fig. 2. Locations Fusion Table

example where all locations in the table are added to the map
as a Fusion Table Layer. Without any additional code, the
map will automatically include the infoboxes that display any
other information stores in the table upon clicking a marker.
Although the use of Fusion Tables is convenient, the speed
of processing was quite slow. In addition to initially mining
an article for geospatial entities, about a half second to a full
second was taken per query or update to the online tables. This
time was significantly decreased by multithreading this portion
of processing. One thread managed the pages table and the
other managed the locations table. Using more than one thread
to access one table generated errors, even when short delays
were added in. Ultimately, we decided not to continue using
Fusion Tables as this added minutes to the processing time for
each article but it could be useful for smaller applications.

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 88

4

Fig. 5. Website Workflow

Fig. 3. Fusion Table Map

C. Front End

The current approach we have focuses on maintaining per-
formance and a stable foundation for public use. The frontend
is a Ruby on Rails Application which focuses on displaying
information to the user. The maps shown on the webpage use
geospatial information saved in an offline database. Before
the map is displayed, a user can see when the article was last
processed, if ever. They may then choose to add an update to
the queue, which is managed by a JRuby thread completely
independent of the front end. The queue is simply a table in
the same database used to store geospatial data that consists
of two columns. One is the id of the article that needs to be
processed and the other is the time entered into the queue. The
table will be consistently queried for the least recent addition
to the queue and the JRuby thread will actively update articles.
We currently only have one thread processing articles as we
experienced problems with multithreading this task. As soon as
an article begins to be processed, it is removed from the queue
to avoid processing the same article multiple times in parallel
when multiple threads are implemented. When idle, we plan
to have the thread perform maintenance that will begin with
the list of articles in our test set. For each test page, the thread

Fig. 4. World War II Map

will follow links to other articles found in the page up to a
certain depth and process them. The thread will then return to
the next test page and do the same. Once these are done, we
will probably have it focus on processing articles that have not
yet been processed once. The basic workflow for the frontend
is shown in Figure 5.

To demonstrate the power of automated extraction and
visualization, the World War II article has been recently
processed and the map for the article is shown in Figure
4. An infobox is generated for each marker which has the
geographical information and the sentence the location was
extracted from. The amount of work it would take to hand
tag each of these places and add in this sort of information
would be extensive. Our program can extract and visualize this
information faster we could read a section in the article.

D. Named Entity Recognition

When we choose to “Process” an article as shown in Figure
5, we begin with Witmer’s Geografikos package from his
work in [8] for the disambiguation and geocoding of place
names. It should be noted that Witmer’s SVM does not identify

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 89

5

people and organizations. Thus, a new tool has been integrated
into the package for the identification of named entities.
We have decided to implement the named entity extraction
tool designed by the Stanford Natural Language Processing
Group7. This package uses a conditional random field (CRF)
for named entity recognition (NER) which achieved an f-
measure of over 85% for all named entities when tested on the
CoNLL 2003 test data [9]. The CRF achieved an f-measure of
over 88% in location extraction, substantially higher than the
initial phase of Witmer’s SVM (67.5%). The disambiguation
phase of Witmer’s work seems to be very effective but requires
some modification to work with this new tool. Taking the
approach defined in [8], we will also be implementing a tree
structure to weight and disambiguate various possibilities for
the correct geospatial entities associated with the extracted
names. This process has been improved by:

• Improving the module that cleans wikipedia markup
• Updating the Google Geocode ruby gem to work with

Google Maps API v3
• Updating the gem to also return multiple possible loca-

tions for a query
• Creating a cache for Google Geocoder to reduce online

interaction
• Using a more accurate named entity recognizer which

replaced his SVM
• Adding database support for people and organizations
• Incorporated sentence indices into all named entity object

models
We would also like to parallelize the process to use multiple
threads to optimize speed in the future.

V. PROGRESS AND RESULTS

The following list shows our initially proposed tasks for this
project:

1) Integrate Stanford NER toolkit into Geografikos package
2) Generate map UI to simply plot all extracted places
3) Write cache for geocoder, parallelize as much as possible
4) Associate named entities with extracted events
5) Develop GUI with temporal sliding bar

Items 1,2, and 3 have been successfully implemented. So far,
the Stanford NER toolkit has been performing similarly overall
to the LingPipe HMM. The CRF initially encountered errors
when processing Gulf War, so these results were excluded
from the figures below. In addition, the Fredericksburg article
seems to be an abnormality in geocoded results, however it
was left in with an f-measure of only 6% because no signs
of errors in processing have been found. Raw results are
shown in I and post-geocoding results are shown in II. If
the Fredericksburg article is dropped from evaluation, post-
geocoding the f-measure increases by about 3% when using
the Stanford CRF. A comparison between the performance
between the CRF and HMM are shown in Figure 6. These
articles were used as they were the ones chosen to compare the
HMM and SVM in our previous paper. Since the generation of
these results, changes have been made to the clean, markup-
free text used by the NER and all further stages. The Gulf

7urlhttp://nlp.stanford.edu/

TABLE I
RAW GEOSPATIAL NE RESULTS

Precision Recall F-Measure
HMM Results 0.489 0.615 0.523
CRF Results 0.579 0.575 0.572

TABLE II
RESOLVED GEOSPATIAL NE RESULTS

Precision Recall F-Measure
HMM Results 0.878 0.734 0.796
CRF Results 0.954 0.695 0.791

War article, among other articles that caused problems earlier
can now be processed successfully. Some previous errors were
due to errors in expanding Wikipedia infoboxes which allowed
us to generate an extensive list of related Wikipedia articles.
For now, we have removed infobox expansion and simply
delete infoboxes from articles and do no further processing on
them. Changes like these have drastically changed the markup-
free versions of the articles. Our method in evaluating the
performance of the NER alone and the geocoding process was
heavily dependent on the generated cleaned text matching the
hand tagged data. Thus, statistics are not being generated at
this point but based on the human examination of results, we
can see it has not reduced performance.

It should be noted that the new CRF results make use of the
cache which should not effect these statistics but decreased
the number of online geocoding queries by 70%. Since the
majority of locations can be found in the cache, we have
also eliminated a great number of delays that are normally
required to avoid running into Google Geocoder’s throughput
limits. At the moment, this delay is set to 0.1 seconds so
we end up saving a few seconds per article. More detailed
performance evaluations still need to be made to more clearly
identify how well the cache has improved efficiency. Initially,
once a place was geocoded and resolved once, it was assumed
that all future references to the name of that location were
referencing the same geospatial entity. This means that if there
are two different places mentioned with the same name, both
will appear as the first one geocoded. We have since fixed this
problem by saving the list of results returned by the geocoder,
rather than the specific location identified after disambiguation.

Named entities have been associated with events through
their location in a sentence. If for example, a location and
event are both identified in the third sentence of an article, they
are assumed to be related. When visualizing this information,
one event can have many locations associated with it and
one location can also relate to various events. One of the
problems with our process is that many specific location
instances are being missed. Even if a location is identified
in one sentence, it may not have been tagged a location in
another sentence that actually has an event is in. For example
if the city of Denver is tagged as a location in sentence 3
and saved to the database, future examples of Denver are not
automatically tagged because of its initial identification. Thus,
if an actual event happens in Denver and is correctly tagged, no

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 90

6

Fig. 6. Basic Format of GUI

re-processing of the sentence is done to confirm that no other
NE’s exist in it. We plan on fixing this issue in the future.

VI. FUTURE EXPERIMENTS

To measure the performance of the tool we need to separate
it into the different parts. Currently, we use the same measures
for precision and recall of the NER as Witmer. However,
this only measures the precision and recall for locations. We
need to measure the performance of the NER for people
and organizations in this subject area as well. To do this we
will need to obtain various hand tagged historical Wikipedia
articles, a handful of which have already been tagged for
places. We need to add in tags for people and organizations
to about twenty hand tagged articles. If these tests go well,
we can also hand tag news articles in a similar fashion. To
assess the event extraction, we will need to hand tag important
events within the same document as the hand tagged NE’s. We
can then check to see if the phrase we pulled out to describe
the event included the NE’s, and whether the NER had even
identified them. Much of processing can be done before public
release of the tool as we are storing the information after
processing. Thus, we plan to process an initial set, if not all
the English Wikipedia articles we currently have access to.
This will probably be on the scale of hundreds of thousands
of articles, if not millions. Thus, we need to keep track of
the number of articles processed over time to measure the
throughput with these added features. We can also do this
to archived news articles. In addition, we will need multiple
testers to utilize the GUI and evaluate the helpfulness and
usability of the front end. We can measure these attributes
with a simple rating system, perhaps a 1 through 5 rating.

VII. FUTURE WORK

We have identified a number of ways to improve the
different aspects of our system:

1) Incorporate temporal refinement of events and locations dis-
played in the GUI

2) Evaluate the NER for all types of NE’s in our test articles
3) Display a picture of the people associated with an event
4) Retrieve and display information on these people (D.O.B.,

D.O.D., etc.)
5) Determine a “page focus” and use it to center the map, etc.
6) Rework the disambiguation of places
7) Implement sub-sentence level event detection
8) Add feature for retrieving article text straight from Wikipedia

Our plans for future work is still similar to the one initially
proposed. However, a much more specific implementation has
been planned along with many improvements we did not
originally foresee. We would like users to be able to search
articles and add them to a list. At any point, the user should
be able to choose to map all the locations. On the side of
the page, a list will be displayed with checkmarks next to
each article. At any time, the status of the checkmark will
represent the presence of that article’s locations on the map.
For example if I have the Battle of Fredericksburg article
selected, all the locations from the article should appear on the
map. If I uncheck it, those locations should disappear unless of
course, a location is also referenced in another selected article
that I have checked. Another tool may offer a user the option
to select a region on a map and a list of articles that reference
places within that area will be listed, if not spefic events that
occurred there.

Then of course there is the aspect of temporal information
as well. In regard to item 1, we wish to allow the refinement of
geospatial searches through temporal parameters. For example,
instead of displaying all events that occur in Denver, Colorado,
we can limit to showing events in the last ten years. This will
also allow us to eventually create a playback feature which
will allow one to see where events were occuring over time
in the context of articles.

In regard to items 3 and 4, retrieving this type of infor-
mation will be a complicated task. Many problems arise in
biographical information retrieval because the ambiguity of

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 91

7

names. Some historical figures may be returned at the top of
a list of results but the most likely figure may not always be the
one being referenced. We will look into disambiguating people
further in the future. For now, our idea for an approach in
Wikipedia articles is following Wikipedia links. A list of links
is extracted when the text of a page is cleaned of markup.
If a person is identified and a link matching that name is
also extracted, we can follow that link. If the person’s page is
confirmed to be about that person, we may be able to extract
information from Wikipedia infoboxes which follow a general
template dependent on the topic of the article.

Item 5 is very important in light of improving our GUI.
Amitay et al. discuss a method for determining a focus area
for a page by using first disambiguating place names [10].
They then each “geographic mention” is “disambiguated into
a taxonomy node” where places are scored for importance.
Ultimately, their method can make the distinction between
article that focuses on a very specific place or a larger region.
Their method can also retrieve multiple foci. Finding a page
focus can be used to center the map when it is initially created,
along with helping to categorize articles together that focus
on the same region. In the future, we would like to be able
to select a region on the map and see what articles reference
that region. Rather than having a broad list of articles, many
of which that only briefly mention a place and do not actually
focus on it, it would be beneficial to have a refined list of
articles in which that region is of significant importance.

The disambiguation of places refernced in item 7 is the
tree structure implemented by Witmer. Although the idea
was implemented at some point, we do not have access to
this portion of his code. Thus, it will be reworked and the
Geografikos package will be modified to handle multiple
locations returned by Google Geocoder, rather than only one.

Currently, only sentence level event detection has been
implemented. This means that if an event is detected within
a sentence, the event’s location in the article is labeled by
sentence and only one event can occur per sentence. This also
means that all named entities within that sentence are also
associated with that event. Thus, if one event constitutes one
half of the sentence and references a specific location at a
certain time while another event constitutes the other half at
another place at another time, everything is rolled into one
event that has both places associated with it but only one
time is chosen. Although much of the information will still be
gathered and displayed, we do lose some in the process. Thus,
we would like to improve our event detection and relation to
named entities so that it can handle sub-sentence information.

At the moment, the document text displayed when you
search for a Wikipedia article is the clean text generated
from our saved version of the article. This means that more
recent articles and updates are not currently in our database.
In addition, all the regular pictures, links, etc. displayed in an
article being viewed on the Wikipedia website are absent from
ours. In the future, we would like to port this application into
a plug-in or a frame that allows one to navigate Wikipedia
with regular convenience but have access to our database of
information and visualization tools. The search featuers of
Wikipedia and website overall are far more functional than

ours. Rather than implementing methods for duplicating their
features and actively updating our articles from their database,
we would like to make our application more independent.
This will also pave the way for portability to other online
sources of information, such as news articles. Modifying
our application to dynamically retrieve information from a
browser and process it would prove to be a much greater
benefit to users. The current problems associated with this
is that our object models are generated from data stored in
a database. A list of events and named entities is stored in
the database so that they are easily accessibly from a page
object. Handling multiple sources of online information that
is constantly changing will add a great deal of processing that
our system is not currently set up to manage. In addition,
each website will have different types of markup. Our current
system will only clean markup that is commonly found in
Wikipedia articles. As sources of information become less
structured, processing them and taking advantage of existing
features becomes a great deal harder. Infoboxes, Wikipedia
links to other articles, and peer review are some featuers that
we currently expect to be there. In the future, we will have to
take advantage of similar features or handle their absence to
help reduce the difference in quality between processing one
source or another.

VIII. DISCUSSION

This project has opened up a great many possibilities for
future work while still offering a utility that can be publically
accessible with few modifications. Although many improve-
ments will require time to implement, we have a very good
idea of where to take this tool. A very important factor seems
to be the quality of the named entity recognizer used in the
most initial stage of processing. By finalizing the module
that cleans markup from Wikipedia articles, we can justify
the dedication of time to hand tagging events and all named
entities in our training corpus and future corpora. We can then
evaluate the NER more accurately and begin experiments in
improving it by retraining its model. In addition, we have
found a few problems with Google Geocoder. Currently, a
region bias must be specified for geocoding results. The bias
currently defaults to the United States. This means that we
cannot geocode “Cambridge” and have the geocoder return
“Cambridge, UK” without explicitely changing the bias or
including “UK” in the query. Thus, we may need to change
geocoders or find a way around this if possible. In addition,
the google-geocode ruby gem has not been updated in the
online repostiroy to be compatible with the new Google Maps
API Javascript v3. We have already implemented this and
need to submit it for inclusion in the online gem repository.
Although the temporal refinement of locations and events
through the sliding bar shown in the proposed GUI has not
been implemented yet, we are very close to enabling this
feature. At this point, all of our initial goals will be met and
we can focus on new ones.

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 92

8

IX. CONCLUSION

Ultimately we have begun creation of a tool that allows the
extraction and visualization of important facts in an article.
Our corpus currently only consists Wikipedia articles but will
eventually be expanded to other encyclopedias and even other
forms of text. The goal is to enable users to gather a quick
overview of what places, people, and time periods are involved
in an article, whether to substitute or supplement the main text.
The project has required a level of cooperation to combine
work on event extraction and named entity extraction, but we
have successfully combined the information. We are nearing
a decently functional GUI that accurately and efficiently
displays extracted events and associated entities. The process
of actually extracting these events is currently slower than
planned, however extracting named entities is still running
in the terms of seconds. Most articles process between 5-20
seconds. Progress did slow down as the depth of the work
increased but many improvements and new ideas have surfaced
in the process. The GUI is not quite as polished and functional
as we originally hoped, but it should be completed a short
time after this summer. We have successfully associated events
and named entities and done basic visualization of these. The
work in the temporal refinement is currently the focus of the
work. There are many things we can do in the future, some
which will take minimal amounts of time and some that will
take longer. Taking into account the rate of progression this
summer, we should be able to implement most ideas listed in
future work during this upcoming fall semester. This of course,
is with only one person working on the project part time. The
website should be publically available and work relatively well
at the end of the summer and fully developed in winter.

REFERENCES

[1] S. Auer and J. Lehmann, “What have innsbruck and leipzig in common?
extracting semantics from wiki content,” in ESWC ’07: Proceedings of
the 4th European conference on The Semantic Web. Berlin, Heidelberg:
Springer-Verlag, 2007, pp. 503–517.

[2] R. Mihalcea and A. Csomai, “Wikify!: linking documents to encyclo-
pedic knowledge,” in CIKM ’07: Proceedings of the sixteenth ACM
conference on Conference on information and knowledge management.
New York, NY, USA: ACM, 2007, pp. 233–242.

[3] The Geospatial Web: How Geobrowsers, Social Software
and the Web 2.0 are Shaping the Network Society
(Advanced Information and Knowledge Processing).
Springer, 2007. [Online]. Available: http://www.amazon.
com/Geospatial-Web-Geobrowsers-Information-Processing/dp/
1846288266%3FSubscriptionId%3D0JYN1NVW651KCA56C102%
26tag%3Dtechkie-20%26linkCode%3Dxm2%26camp%3D2025%
26creative%3D165953%26creativeASIN%3D1846288266

[4] Y.-F. R. Chen, G. Di Fabbrizio, D. Gibbon, S. Jora, B. Renger, and
B. Wei, “Geotracker: geospatial and temporal rss navigation,” in WWW
’07: Proceedings of the 16th international conference on World Wide
Web. New York, NY, USA: ACM, 2007, pp. 41–50.

[5] W. Dakka and S. Cucerzan, “Augmenting wikipedia with named entity
tags,” IJCNLP, 2008.

[6] D. Klein, J. Smarr, H. Nguyen, and C. D. Manning, “Named entity
recognition with character-level models,” in Proceedings of the seventh
conference on Natural language learning at HLT-NAACL 2003. Mor-
ristown, NJ, USA: Association for Computational Linguistics, 2003, pp.
180–183.

[7] G. Zhou and J. Su, “Named entity recognition using an HMM-based
chunk tagger,” in Proc. 40th Annual Meeting of the Association for
Computational Linguistics (ACL 2002), 2002.

[8] J. Witmer and J. Kalita, “Extracting geospatial entities from wikipedia,”
IEEE International Conference on Semantic Computing, pp. 450–457,
2009.

[9] J. R. Finkel, T. Grenager, and C. Manning, “Incorporating non-local
information into information extraction systems by gibbs sampling,”
in ACL ’05: Proceedings of the 43rd Annual Meeting on Association
for Computational Linguistics. Morristown, NJ, USA: Association for
Computational Linguistics, 2005, pp. 363–370.

[10] E. Amitay, N. Har’El, R. Sivan, and A. Soffer, “Web-a-where: geo-
tagging web content,” in SIGIR ’04: Proceedings of the 27th annual
international ACM SIGIR conference on Research and development in
information retrieval. New York, NY, USA: ACM, 2004, pp. 273–280.

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2010 University of Colorado, Colorado Springs 93

	01Cover
	Arnosti
	Benhardus
	Billot
	Casses
	Chasin
	Dispoto
	I. INTRODUCTION
	II. PROBLEM STATEMENT
	III. RELATED RESEARCH
	IV. FEATURE EXTRACTION
	V. CONCEPT
	VI. AFFIX/ROOT EXTRACTION
	VII. ERROR CHECKING
	VIII. IMPLEMENTATION

	Hinkle
	Inouye
	Kaufmann
	Mears
	Seliga
	Woodward

