

Proceedings of the Seminar

Artificial Intelligence, Natural
Language Processing and

Information Retrieval

University of Colorado, Colorado Springs

August 5, 2011

Editors: Jugal Kalita and Terrance Boult

Funded by

National Science Foundation

Automatic Extension of a Lexical Ontology
Using Web Resources

James Austrow
The Ohio State University

154 W 12th Avenue
Columbus, OH 43210

austrow.1@osu.edu

ABSTRACT
Lexical ontologies, or databases of words and their relation-
ships, are valuable tools for a variety of natural language
processing applications. Their costly construction and main-
tenance times, however, limit their scope and ease of de-
velopment. This causes them to be difficult to keep up to
date with current terminology and concepts. We develop
and compare several procedures for automatically updating
an existing lexical ontology, focusing on WordNet, based on
Wikipedia articles. An appropriate hypernym for each ar-
ticle must be found in order to maintain the hierarchical
structure of WordNet, so the different methods we compare
focus on different ways to determine this hypernym.

Categories and Subject Descriptors
D.2.8 [Software]: Software Engineering—performance met-
rics; H.4 [Information Systems]: Applications—miscella-
neous

General Terms
Experimentation, Performance

Keywords
ontology

1. INTRODUCTION
Lexical ontologies have proven to be very useful in the field
of natural language processing. The structure of grouping
synonymous word senses together into synsets and arranging
them in a graph of relationships such as hypernym-hyponym
pairs provides much semantic information that is not ap-
parent from the words themselves. However, one drawback
of these systems is that they are typically constructed and
maintained by hand, requiring costly effort. One such on-
tology in common use today is WordNet [1], which will be
the focus of this research.

We aim to investigate approaches overcoming the costly

maintenance time of lexical ontologies by automatically inte-
grating information found on the web. Wikipedia is a user-
edited source of words and concepts, updated more or less
in real time. The fact that it is a relatively current source of
information makes it attractive for the purpose of keeping a
comprehensive ontology such as WordNet updated. Various
methods of incorporating word relation data from Wikipedia
will be explored.

The remainder of this paper is organized as follows. Section
2.1 describes previous work that is related to this research.
Section 2.3 describes the general approach this research is
based on and outlines improvements we have made. Section
2.4 details how the methods are implemented. Section 2.5
explains how the results of this research are tested and de-
tails the results of the experiment. Section 2.6 shows what
future improvements we plan on making. Finally, Section 3
is the conclusion.

1.1 Related Work
The ideas of this research are based heavily on the work of
Jiang et al, who propose a method of incorporating articles
from Wikipedia into WordNet [3]. They rely on category
information from the article to determine its hypernym and
achieved encouraging results. However, in a few cases their
algorithm detects an incorrect sense of the hypernym within
WordNet or identifies a bad category as the most likely hy-
pernym and thus misclassifies the article. Therefore, alter-
nate methods of hypernym extraction are considered. Sang
[6], building on the work of Hearst [2] and Snow et al. [7],
describes a method of hypernym extraction based on fixed
patterns of text. Additionally, Kleigr et al. [4] note that
there are several patterns unique to Wikipedia articles that
can aid in hypernym identification.

2. EXTENDING WORDNET
2.1 Method
The method of Jiang et. al. is used to automatically extend
WordNet with Wikipedia entries. This involves compiling
the categories of each article that appear in WordNet as
potential hypernyms of the article. The definition of each
potential hypernym (from WordNet) and the text of the ar-
ticle are compared for concept similarity to determine the
best match. If no category of the article appears in Word-
Net, the head term of each category is considered instead,
and the original category of the chosen hypernym is inserted
into WordNet as well.

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 1

One of the difficulties of this method is that it is quite slow.
A similarity measure must be computed between each pair
of concepts appearing in the Wikipedia article and in the
WordNet definition of the current candidate, and the total
number of concepts in this set is frequently over two thou-
sand. We suggest that the time to run this algorithm can
be vastly reduced while maintaining most of the accuracy
by only using the concepts from a summarization of the
Wikipedia text, such as the first paragraph [5]. As the first
paragraph is typically an overview of the topic, most of the
more relevant concepts should appear there.

However, the main difficulty of their method is hypernym
determination, so additional means of hypernym extraction
from text are applied and compared. These new sources of
potential hypernyms improve the pool of candidates, leading
to an increased likelihood that the correct hypernym can be
selected. Looking for fixed patterns in the text of the article
should help to identify the hypernym [6]. Furthermore, the
first sentence of most articles generally indicates a good hy-
pernym, giving it as “[title of article] is a [hypernym] which
[elaboration]” or something similar. This pattern is gener-
ally consistent across Wikipedia, especially for larger and
more popular articles [2].

2.2 Implementation
The general algorithm for extending WordNet is as follows:

1. Obtain a Wikipedia article which is not already in
WordNet

2. Collect potential hypernyms and add all synsets that
contain words found this way to a candidate pool

3. For each candidate synset, compute the matching score
between its definition and the text of the Wikipedia
article [3]

4. Insert the article into WordNet under the synset with
the best matching score

This process is graphically illustrated in Figure 1.

We examine improvements that can be made in steps two
and three. In step three, we look at improving the speed
of the matching score computation by limiting the number
of concepts that need to be compared to only those in the
first paragraph of Wikipedia text. This has an interesting
impact on the accuracy of the resulting hypernyms, which
will be further elaborated in the Experiment section.

Furthermore, in step two, we look at ways to improve the
quality of the hypernym candidates. The original method
uses the categories of the article as hypernym candidates,
but the categories do not always make good hypernyms. For
example, that method often chooses“birth”or“death”as hy-
pernyms for people because their article has a category such
as “1963 Births.” Thus, alternate sources for the hypernym
must be considered. The second noun phrase in the first sen-
tence of the article tends to be a good hypernym candidate
and generally appears in a predictable location in the parse
tree of that sentence, as shown in Figure 2. In this example,
we would like to extract “tone poem” from the tree; to do

Figure 1: Flowchart for adding Wikipedia articles
to WordNet.

this, we can retrieve the head of the noun phrase under the
verb phrase under the root of the tree. The tree in Figure
3 illustrates this. Any article whose first sentence follows
this “is a” construct will have this kind of structure in its
parse tree. After retrieving this word or phrase, we take the
best-matching synset that contains it as the hypernym for
the article.

To extract the hypothesized hypernym from the parse tree,
a specific set of rules is followed for descending the children
of each node in the tree, based on the part of speech tag.
Those rules are as follows:

1. Start at the S root

2. If there is an S child, select it (to select the first clause
of complex sentences)

3. Select the VP child

4. Select the NP child. If successful, stop

5. If no NP child, try VP child, then NP child

6. If still unsuccessful, try S child, then VP, then NP

The goal of this procedure is to find the first noun phrase
after the subject of the sentence, which is likely to be a hy-
pernym [2]. It was found experimentally that these patterns
cover the majority of sentences that we have some hope of
parsing using this method. After obtaining this noun phrase,
the following procedure is applied:

1. If this node has a PP child and it is the word “of,”
select that node

2. Select the NP child. If there is no NP child, select the
original NP node

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 2

Figure 2: Tree structure of a typical first sentence
in a Wikipedia article: “An American in Paris is a
symphonic tone poem by the American composer
George Gershwin, written in 1928.”

3. If a new NP node was found this way, repeat the pro-
cedure

The goal of this step is to follow the “[article] is a type of
[hypernym]” pattern, which seems to be fairly common. Af-
ter performing these steps, we end up with a noun phrase
node in the parse tree. To obtain the WordNet hypernym
from the noun phrase, the following is performed:

1. Retrieve the head word of the noun phrase. This is the
working hypernym

2. Find the word just before the head word in the orig-
inal sentence and add it to the front of the working
hypernym

3. If this working hypernym does not appear in WordNet,
remove the newly added word and return the working
hypernym. Otherwise, repeat from step 2.

This handles cases such as the “An American in Paris” ex-
ample above, where “tone poem” appears in WordNet but
“symphonic tone poem” does not.

Sometimes the original head term does not appear in Word-
Net. This is corrected for in a hybrid method we also tested,
which simply places the output of the parse tree method in
the pool of candidates. If the retrieved hypernym is not in
WordNet, it will simply use the categories as per the Jiang
et. al. method.

Figure 3: Relevant portion of the same tree with
head words annotated and path to hypernym high-
lighted.

2.3 Experiment
As the method of extending WordNet with Wikipedia is be
based on the work of Jiang et. al. [3], the results were
tested using the same method as them. A random sample
of the new additions were be taken and scored by human
readers on a 5-point scale. The original results scored an
average of 4.26 (Good). The three methods we tested are: a
version of the original method which only uses the first para-
graph of the article in concept matching; the parse tree ex-
traction method described previously; and a hybrid method
which combines the two approaches by inserting the result
of the parse tree method into the candidate pool of the first
method.

The version which uses only the first paragraph for concept
matching proves to be much faster than using the whole text
of the article as shown in table 1. Case studies showing the
change in accuracy are given in Tables 2 and 3. Accuracy
seems to have fallen for a few articles, but interestingly, ac-
curacy improved for some other articles. We suggest that
this improvement is caused by the fact that the body of the
article may contain elaboration about a specific feature of
the main topic and skews the matching computation towards
that facet. This can be seen for the “America the Beauti-
ful”article especially, which was mistakenly put under“Pikes
Peak” in the old method. “Barbra Streisand songs” is not the
best hypernym, but the new algorithm at least was able to
put it under “song, strain” rather than “peak, crown, crest,

Table 1: Speed comparison between different
amounts of article text used

Text Used Articles Processed in Five Hours
Whole Article 7

First Paragraph 3347

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 3

Table 2: Case study of the original method of hy-
pernym extraction

Wikipedia
Article

Category WordNet Hyper-
nym

An American
in Paris

1928 composi-
tions

musical com-
position, opus,
composition,
piece, piece of
music

Animalia
(book)

Puzzle books book, volume

Allan Dwan 1981 deaths death
America the
Beautiful

Pikes Peak peak, crown,
crest, top, tip,
summit

Albert Syd-
ney Johnston

1862 deaths death, last

top, tip, summit,” so it certainly is an improvement. Using
only the first paragraph may have the effect of keeping the
concepts used to compute the matching score closer to the
overall topic of the article. The new method in which the
hypernym is extracted from a parse of the first sentence is
showing mixed results. It is able to correctly identify hy-
pernyms that the original method do not, but it also misses
many others that the original method identifies correctly.
Case studies of this method are shown in Table 4.

The three methods were each run long enough to process
100,000 Wikipedia articles. Of these, a random sample of
300 results were selected from each method. Three volun-
teers were recruited to grade these samples, using the same
scale as used by Jiang et. al. The same 300 entries were used
across all three methods in order to better compare results.
The results from each volunteer were then averaged to ob-
tain the final scores for each method. The average score over
the whole dataset for each method is given in Table 5, while
Table 6 shows the individual score breakdown. All of the
new methods have a lower average than the original (Jiang
et. al.) method. The loss in accuracy for the summarized
method is understandable given its dramatic speed increase,
but the parse tree search method clearly is underperform-
ing in its current state. The hybrid method improves on it
slightly. One issue with the parse tree method is that the
rule for following the preposition “of” down to the next noun
phrase frequently caused the algorithm to go right past the
real hypernym; thus, the rule is not applicable in all situa-
tions. This highlights one of the weaknesses of the fixed rule
approach that is used here.

2.4 Future Work
The main improvement that could be made to these methods
would be to make the parse tree search much more flexible
by using machine learning to decide where in the parse tree
the hypernym is most likely to be. The fixed rule approach
is not nearly flexible enough to handle the large variety of
sentence structures that occur in Wikipedia articles, even
just in the first sentence. If a good set of features to test
could be developed, it seems likely that large improvements
could be made to this method.

Table 3: Case study of the faster version of the orig-
inal method

Wikipedia
Article

Category WordNet Hyper-
nym

An American
in Paris

1928 composi-
tions

constitution,
composition,
physical compo-
sition, makeup,
make-up

Animalia
(book)

Puzzle books book, rule book

Allan Dwan Writers from On-
tario

writer

America the
Beautiful

Barbra Streisand
songs

song, strain

Albert Syd-
ney Johnston

United States
Military
Academy alumni

alumnus, alumna,
alum, graduate,
grad

Table 4: Case study of the parse tree method
Wikipedia Article WordNet Hypernym

Allan Dwan conductor, music director,
director

America the Beauti-
ful

song, strain

Albert Sydney John-
ston

career, calling, vocation

Citizen Kane film
Commonwealth of
England

republic

Groucho Marx comedian, comic
Miss Marple character, reference, charac-

ter reference

The matching score computation also stands to be improved.
In some cases, even when the correct hypernym is chosen out
of the candidates, an incorrect sense of that word is chosen
from WordNet because of its matching score. For example,
as seen in Table 3, the algorithm correctly found “character”
as the hypernym word for“Miss Marple,”but chose the sense
“character, reference, character reference” rather than the
more correct “fictional character, fictitious character, char-
acter.” This suggests that the degree of matching between
the Wikipedia text and the candidate’s WordNet definition
may not be the best measure to use. Furthermore, the use
of a true word sense disambiguation algorithm is likely to
improve these results.

3. CONCLUSION
The usefulness of lexical ontologies is well documented, their
main downside being only the cost and human effort required
to create and update them. If such an ontology could be pro-
duced automatically, this downside would be all but elim-
inated. Furthermore, the expansion of user-edited sources
of information on the web has greatly incentivised their use
as comprehensive lexical ontologies, but so far no technique
exists to effectively automatically compile the information
they contain. This research has taken steps towards the

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 4

Table 5: Average scores for the three methods (and
original method)

Method Average Score
Original 4.26
Category 3.88

Parse Tree 3.42
Hybrid 3.45

Table 6: Evaluation results for the three methods
(and original method)

Method Excellent Good Fair Neutral Bad

Original 193 47 26 12 22
Category 102 100 64 29 5

Parse Tree 39 134 64 40 23
Hybrid 45 111 91 41 12

automatic extraction of word relations required to build an
ontology from web sources like Wikipedia. The testing done
here demonstrates a few approaches that are not quite flex-
ible enough for this purpose but hint at improvements to be
made in the future.

Acknowledgement
The research reported in this document has been funded
partially by NSF grants CNS-0958576 and CNS-0851783.

4. REFERENCES
[1] C Fellbaum. WordNet: An Electronic Lexical Database.

The MIT Press, Cambridge, MA, 1998.

[2] Marti A. Hearst. Automatic acquisition of hyponyms
from large text corpora. In Proceedings of the 14th
conference on Computational linguistics - Volume 2,
COLING ’92, pages 539–545, Stroudsburg, PA, USA,
1992. Association for Computational Linguistics.

[3] S Jiang, L Bing, B Sun, Y Zhang, and W Lam.
Enhancing ontology actively and learning the concept
granularity agilely: Keeping yourself current.

[4] Tomás̆ Kleigr, Vojtĕch Svátek, Krishna Ch, Jan
Nemrava, and Ebroul Izquierdo. Wikipedia as the
premiere source for targeted hypernym discovery, 2010.

[5] Aleksander Kolcz, Vidya Prabakarmurthi, and Jugal
Kalita. Summarization as feature selection for text
categorization, 2001.

[6] Erik Tjong Kim Sang. Extracting hypernym pairs from
the web. In Proceedings of the 45th Annual Meeting of
the ACL on Interactive Poster and Demonstration
Sessions, ACL ’07, pages 165–168, Stroudsburg, PA,
USA, 2007. Association for Computational Linguistics.

[7] Rion Snow, Daniel Jurafsky, and Andrew Y. Ng.
Learning syntactic patterns for automatic hypernym
discovery. In Neural Information Processing Systems,
2004.

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 5

Evaluating Methods for Summarizing Twitter Posts

Gary Beverungen
St. Mary’s College of Maryland

16800 Point Lookout Rd.
St. Mary’s City, MD

gebeverungen@smcm.edu

Jugal Kalita
University of Colorado at Colorado Springs

1420 Austin Bluffs Pkwy
Colorado Springs, CO

kalita@eas.uccs.edu

ABSTRACT
Microblogs like Twitter1 are becoming increasingly popular
and serve as a source of ample data on breaking news, pub-
lic opinion, etc. However, it can be hard to find relevant,
meaningful information from the enormous amount of ac-
tivity on a microblog. Previous work has explored the use
of clustering algorithms to create multi-post summaries as a
way of understanding the vast amount of microblog activity.
Clustering of microblog data is notoriously difficult because
of non-standard orthography, noisiness, limited sets of fea-
tures, and ambiguity as to the correct number of clusters.
We examine several methods of making standard natural
language processing techniques more amenable to the do-
main of Twitter including normalization, term expansion,
improved feature selection, noise reduction, and estimation
of the number of natural clusters in a set of posts. We show
that these techniques can be used to improve the quality of
extractive summaries of Twitter posts, providing valuable
tools for understanding and utilizing microblog data.

Keywords
microblogs, normalization, extractive summarization, term
expansion, clustering

1. INTRODUCTION
Microblogging is a relatively new form of communication,
providing both new opportunities and new challenges for
Natural Language Processing (NLP). Microblogs such as
Twitter may have as many as 2.5 million posts per day about
a variety of topics and from a diverse set of users. One could
mine this data to discover public opinion [13], breaking news,
sentiment analysis [14], or even predict the stock market [4].
Clearly there is the potential for vast amounts of useful data
to be found from microblog posts. Unfortunately, standard
approaches to NLP often fail in the domain of microblog
posts, and it is not clear which techniques for extracting
and utilizing microblog data are most useful. Clearly it is

1http://www.twitter.com

WSDM’11, February 9–12, 2011, Hong Kong, China.

necessary to determine which tools will be most helpful in
making use of microblog data. We explore the use of clus-
tering as a means of detecting important subtopics in sets of
Twitter posts and selecting posts which are representative
of the activity on that topic.

Several obstacles stand in the way of processing microblog
posts such as those on Twitter. First, Twitter posts are
highly non-standard. While most standard NLP techniques
were developed for long, structured, grammatical text, Twit-
ter is short, colloquial, and ungrammatical. Users frequently
misspell words either unintentionally (teh, waht) or inten-
tionally, by expanding words, abbreviating words, or us-
ing lexical/numeric substitutions (loooovveeeee, rly, c u l8r).
Twitter posts also frequently contain other non-standard to-
kens such as acronyms (lol, smh), hash tags (#beatcancer,
#iusuallylieabout), user tags (@nina1983), or Twitter spe-
cific terminology indicating“re-tweeted”posts (RT) and trend-
ing topics (TT). This poses a problem for NLP techniques,
since two posts with alternate spellings of some word may
not be considered related, when in fact they are. While
normalization of Twitter posts remains a difficult problem,
progress has been made by those like Kaufmann and Kalita
[12] and Han and Baldwin [10]. We use the techniques de-
veloped in Kaufmann and Kalita to normalize Twitter posts
and hopefully improve the effectiveness of other NLP tech-
niques.

Second, Twitter posts are very short, no more than 140 char-
acters and typically not more than ten words or so. Unfor-
tunately, this means that Twitter posts are feature sparse,
and that comparisons between posts will be difficult. This
is especially problematic for clustering, which is highly sen-
sitive to the features chosen for comparison. This problem
could be alleviated by expanding terms in the twitter posts
to include relevant similar terms (essentially adding addi-
tional features), selecting more descriptive features (e.g. just
named entities), using n-grams instead of unigrams, or some
combination of the three.

Additionally, even with good features Twitter posts could be
hard to cluster. One challenge of clustering in general is de-
termining how many clusters are “inherent” in the data set.
Most clustering algorithms require the number of clusters
to be specified ahead of time, but it is not always obvious
what that number should be. Choosing incorrectly can lead
to suboptimal clustering of data, splitting coherent clusters
into multiple clusters or grouping distinct clusters into one.

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 6

Luckily, several methods for determining the “correct” num-
ber of clusters exist, including those by Tibshirani et al.[18]
and Ben-Hur et al. [2]. Ideally, these methods would allow
us to determine the number of salient subtopics and generate
summaries that more accurately reflect the posts.

However, even if we can identify relevant subtopics in a set
of Twitter posts, there will still be many posts which do not
fit well into any subtopic or cluster. Undoubtedly, there will
be many posts that are largely unrelated to other posts in
the data set. These outliers may have a negative impact on
the ability of the clustering algorithms to correctly identify
subtopics, and hurt summarization overall. Thus it may be
beneficial to try to remove outliers and other noisy posts
from the data set before using other NLP techniques.

This paper presents preliminary attempts at making the do-
main of microblog posts more ammenable to NLP techniques
by combining techniques for tackling each of the challenges
described above.

2. PREVIOUS WORK
2.1 Normalizing Posts
As mentioned, microblog posts are notoriously hard to pro-
cess computationally, containing frequent misspellings, un-
familiar named entities, OOV words, improvised abbrevia-
tions, slang, and novel lexography. Converting the post to
standard English would improve processing. Research has
used the noisy channel model, wherein normalizing noisy
text T to a standard form S by assuming T is an error of S.
The most likely S is found by finding the probability of T be-
ing an error of S time the probability of S occurring. In other
words, Smax = argmax(P (S|T)) = argmax(P (T |S)P (S)).
Various approaches have been made to characterize the error
model, P (T |S), including edit distance [5] and letter trans-
formation [7]. Machine translation may be able to assist
with normalization [12]. Part-of-speech (POS) parsers cre-
ated for Twitter [9] might be able to give additional informa-
tion about ambiguous words. We utilize the normalization
tool developed by Kaufmann et. al. [12].

2.2 Clustering
Previous work by Sharifi et al. [17, 16] has explored the topic
of multi-post extractive microblog summarization. They
explored frequency based, graph based, and cluster based
methods of selecting multiple posts that conveyed informa-
tion about a given topic without being redundant. They
found that ROUGE-N scores and human evaluation did not
provide an obvious choice of one summarizer over another
[1]. In fact, most multi-post summarizers did not perform
significantly differently from a simple Most Recent summa-
rizer. However, clustering algorithms could be improved in
a number of ways, as described here.

2.2.1 Determining the Number of Clusters
The clustering algorithms used in Sharifi et al. [1] were fairly
basic, and there remains room for improvement. One limi-
tation of the clustering algorithms used in Sharifi et al. [17]
is that they generate a specific number of clusters that must
be determined before running the algorithm. This means
that an arbitrary number of clusters must be chosen for a
set of microblog posts, regardless of the actual distribution

of posts. Although Sharifi et al. determined that most users
thought four clusters was appropriate, the optimal number
of clusters likely varies from topic to topic. Ben-Hur et al.
have used a stability based method for determining the num-
ber of clusters in data, building off of the idea that a good
clustering should be stable, consistent, and robust to noise.
[2] Alternatively, Tibshirani et al. have used the gap statis-
tic, a measure of within cluster dispersion of a clustering
compared to an expected value, to determine the correct
number of clusters. [18] Using these methods, we may be
able cluster microblog posts in a way that more accurately
reflects relevant sub-topics.

2.2.2 Choosing Features
In addition to using different clustering techniques, it may
be possible to improve results by improving the way in which
posts are compared. It may be the case that simple word
level similarity doesn’t capture what humans perceive to
be the important aspects of sentence similarity. Hatzivas-
siloglou et al. have shown that including information about
the NP heads, named entities, events, and other informa-
tion included in the sentences, it is possible to improve the
quality of clusters [11]. Alternatively, limiting features to
certain parts of speech (Nouns, Verbs) may significantly cut
down on the extraneous features in the posts. Using a Part-
of-Speech (POS) tagger, like the one developed by Gimpel
et al. would allow us to do just that. [9] Additionally, some
authors have looked at expanding posts by adding highly re-
lated terms, thus overcoming the feature sparsity of Twitter
posts. Perez-Tellez et al. use pointwise mutual information
to determine which words are most similar to ones already
in the post. [15] Chen et al. use a similar technique, but
also use inforation from Wikipedia to expand posts. [6] By
improving the feature vector to more accurately reflect per-
ceived similarity, we may be able to improve the effectiveness
of clustering, and thus, the quality of the resulting summary.

3. METHODS
3.1 Data
Our data set includes 50 topics selected from Twitter’s list
of Trending Topics. For each topic, posts are selected by
taking 1500 posts from the Twitter API and processing them
as follows:

1. Convert HTML encoded characters to ASCII.

2. Discard any posts that aren’t in English. (Defined as
containing at least 40% English Words.)

3. Discard a post if there has already been another post
by the same user.

4. Discard a post if it is spam.

5. Reduce number of posts by taking the most recent 100.

3.2 Normalization
This process can is described in greater detail in [?]Sharifi-
MS.

For normalization, we utilize the normalized developed by
Kaufmann and Kalita. [12] Their method uses a combina-
tion of lexical normalization, syntactic disambiguation, and

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 7

statistical machine translation to convert Twitter posts from
their noisy, non-standard, ungrammatical form to something
resembling more standard texts.

3.3 Clustering
Previously, Sharifi et al. have experimented with several
types of clustering algorithms. [1] They found that, of the
algorithms they tested, bisecting k-means was the most ef-
fective at producing summaries. Thus, that is the clustering
we will be using for our purposes. For the remainder of this
paper, when we refer to clustering a set of Twitter posts, we
a referring to bisecting k-means clustering.

3.4 Determining the Optimal Number of Clus-
ters

3.4.1 Non-counting Method
As a control, and to facilitate comparing our results with
those in Sharifi et al. [1], we implement a trivial cluster
counter which determines that there should be four clusters
regardless of the data. Four clusters was chosen to imitate
the method of clustering in Sharifi et al.

3.4.2 Stability Based Method
In order to determine the number of “inherent” clusters in
a set of Twitter posts, we chose to implement Ben-Hur et
al.’s stability based method. [2] The crux of the algorithm
is that a good clustering of data should be relatively stable
and robust to noise. While a suboptimal clustering may be
clustered differently every time the clustering algorithm is
run, a good clustering should produce roughly the same re-
sult every time. Additionally, even if a small amount of the
data is removed, as long as all the clusters are adequately
represented, a good clustering should still be able to find
the “correct” clutsering. Thus, but clustering random sub-
samples of a data set and comparing the similarity of the
clusterings for different numbers of clusters, we should be
able to get a good estimate for which number of clusters
is the most stable, and thus most apt to fit the data. A
description of the implementation of the algorithm is as fol-
lows:

Given: Data Set ← X,F loat← f for k = 2tokmax do
for i = 1 to num iterations do

Sub1 = subsample(X, f)
Sub2 = subsample(X, f)
Cluster1 = cluster(Sub1)
Cluster1 = cluster(Sub2)
Similarity(k,i) = Sim(Cluster1, Cluster2)

end for
end for

: Algorithm for determining the average similarity
of two samples of the data set for each number of
clusters, k

The similarity function returns a measure of the similarity
of two clusterings. To compute said similarity, first we con-
struct an nn matrix, where n is the number of posts in the
clusterings and each entry in the matrix, (i,j) is defined as:

1: if posts i and j are in the same cluster

0: otherwise.

Once we have obtained matricies for each clustering, M1

and M2 respectively, we let Nij be the number of entries in
which M1 and M2 have the values i and j, respectively. The
similarity measure is then defined as the Jaccard coefficient:

N11

N01 +N10 +N11
. (1)

Thus, after running the algorithm described above, we have
a list of i similarities between clusterings for each possible
number of clusters k. The k we ultimately choose is the
one for which the average of each of the i similarities is the
greatest.

3.4.3 Gap Statistic
As an alternative to the Stability Based method we im-
plement the Gap Statistic method described in Tibshirani
et al. [18] The gap statistic makes use of the measure of
within cluster dispersion. For each cluster Cr in a clus-
tering, nr = |Cr| and Dr = Σi,i′∈Crdii′ where dii′ is the
squared Euclidean distance between posts i and i′. Within
cluster dispersion for a clustering of k clusters is then

Wk = Σk
r=1

1

2nr
Dr. (2)

Conventional wisdom has it that when there is a sharp de-
crease in the within cluster dispersion, the correct number
of clusters has been found. Tibshirani et al. calculate an
expected withing cluster dispersion using a null reference
data set, and determine how far below that value the real
data falls. As our null reference, we generate a set of posts
each with length equal to the average length of posts in the
real data set. Each word in each null reference post is cho-
sen at random, uniformly across all words seen in the real
data set. For each value of k, we cluster the null reference
set b times and compute the withing cluster dispersion, W ∗k ,
for each clustering, as well as average within cluster disper-
sion, W ∗k avg, and the standard deviation of the dispersions,
W ∗k stddev. We then cluster the real data set and calulate the
within cluster dispersion, Wk. The gap statistic is defined
as

Gap(k) = W ∗k avg −Wk (3)

and the chosen value of k is the smallest value for which the
following inequality holds

Gap(k) ≥ Gap(k + 1)−W ∗k stddev. (4)

3.5 Feature Selection
3.5.1 Term Expansion

In order to overcome the small size of microblog posts, we
expand the post to include terms similar to other terms in
the post. We follow the methods described in Tellez-Perez
et al. [15] Given a set of posts, X = p1, p2, . . . pn, we find the
Pointwise Mutual Information (PMI) for each pair of terms,
ti, tj ∈ pn found in the posts

PMI(ti, tj) =
P (ti, tj)

P (ti)P (tj)
(5)

For each term ti in a post pn, Tellez-Perez et al. find the PMI
between that term and each other term found in X. Any

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 8

term tj for which PMI(ti, tj) is greater than some threshold
value is added to the post pn. This process is repeated for
each post in X. While Tellez-Perez et al. set the threshold
value manually, we found that the PMI between a pair of
posts varied greatly depending on the set of posts X. De-
pending on the topic, the average PMI and the variation in
PMI could vary greatly. Thus, we set it as the one standard
of deviation above the average PMI of all pairs of posts in
X.

3.5.2 N-Grams
In effort to pick up on the more nuanced relationships be-
tween terms in a post, we used n-grams as features instead of
simple unigrams. Posts that contain the same words in the
same order are more likely to be related than posts that sim-
ply have the same words contained somewhere in the post.
By comparing posts using n-grams instead of or in addition
to unigrams we may be able to get a more nuanced mea-
sure of similarity between posts. For a post p with terms
t1, t2, . . . ti ∈ p we define the n-grams of p as

n1 = (t1, t2, . . . tn), n2 = (t2, t3, . . . tn+1), . . . ni−n =
(ti−n+1, . . . ti−1, ti).

We experiment with using unigrams, bigrams, and trigrams,
and a combination of unigrams, bigrams, and trigrams.

3.6 Noise Reduction
As another method of improving the validity of cluster, we
investigate noise reduction. The goal of noise reduction is to
remove posts that do not fit well into any cluster. This can
be determined in a number of ways, but for our purposes
we define this as any post for which the average distance to
another post is more than one standard of deviation more
than the population average. Average distance from post i
to another post is defined as:

Di =

1nΣj∈Sd(i, j)(6)where S is the set of posts to be summa-
rized, n = |S|, and d(x,y) is the squared Euclidean distance
between posts i and j. This value is calculated for every post
in S, and any post for which the value is one standard of
deviation above the average value is removed.

3.7 Evaluation
3.7.1 Cluster Validity

The end goal of each of these methods is to produce good
clusters of Twitter data and thus descriptive summaries of
each Twitter topic. Therefore, we will evaluate the effec-
tiveness of each technique in terms of the cluster quality
and quality of the overall summary. To measure the validity
of a particular clustering we use a modified Dunn’s Index, as
described in Bezdek Pal. [3] Dunn’s Index is the ratio of the
minimum between cluster distance to the maximum within
cluster dispersion. The assumption is that a good cluster-
ing will produce well separated clusters and clusters that
are densely packed. While Bezdek Pal offer several defini-
tions of cluster distance and dispersion, we use the following

definitions, which they cite as among the most effective. In-
tercluster distance Dis,t of two clusters, S and T , is defined
as

Dis,t =
1

|S||T |Σx∈S,yd(x, y) (7)

where d(x,y) is the squared Euclidean distance between posts
x and y. Within cluster dispersion, DwS , of a cluster, S, is
defined as

DwS = 2(
Σx∈Sd(x, µs)

|S|) (8)

where µs is the mean of the feature vectors of the posts in
S. Thus, Dw is essentially twice the average distance of
a post in S from the mean of S. Given a set of clusters
X = C1, C2, . . . Cn the modified Dunn’s Index is then

DI =
argmins,t∈X(Dis,t)

argmaxs∈X(Dws)
. (9)

4. RESULTS
To determine the effectiveness of each strategy, we perform
an ANOVA and test for main effects for each strategy (nor-
malization method, cluster counting method, noise reduc-
tion method, and feature selection). Thus, we perform the
clustering process for each of the 50 data sets for every
combination of methods (2 normalization methods 3 cluster
counting methods 2 noise reduction methods 5 feature selec-
tion methods = 60 total methods of clustering). SPSS ver-
sion 19 was used to perform the ANOVA with α = .05andpost−
hoctestsperformedusingTukey′sHSD.Theresultsbelowshowthemaineffectsforeachstrategy.Therewerenosignificantinteractioneffects.

4.1 Normalization
Normalization had a small but statistically significant ef-
fect on overall cluster validity. Surprisingly, normalizing the
posts led to decreased clustering performance. Normalized
posts had an average cluster validity of .817, whereas the
non-normalized posts had a validity of .835, as seen in Fig-
ure 4.1. Thus, we note that normalizing posts does not
drastically impact the clustering of Twitter data.

Graph.jpg

Figure 1: The mean cluster validity for normalized
and non-normalized posts. The effect is small but
significant.

4.2 Cluster Counting Method
We found that the Gap Statistic method of evaluating the
number of clusters significantly outperformed both the base-
line and stability based methods. Surprisingly, the stability

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 9

Graph.jpg

Figure 2: The mean cluster validity for each of the
different methods of counting the correct number of
clusters. There were significant differences between
each method of counting clusters.

Graph.jpg

Figure 3: The mean cluster validity with and with-
out noise reduction. Noise reduction significantly
improved results.

based method produced the worst clusters. Upon further
analysis, we found that the stability based method tended
to favor larger numnbers of clusters, drastically decreasing
the intercluster distance and increasing Dunn’s Index. The
gap statistic produced an average cluster validity of .959, the
stability based method .668, and the baseline method .851,
with significant differences between each method, as shown
in Figure 4.2

4.3 Noise Reduction
The noise reduction method described above significantly
improved cluster validity scores. The noise reduction method
had an average cluster validity score of .862 as opposed to
the a cluster validity of .789 for clusters with no noise re-
duction. These results can be seen in figure 4.3.

4.4 Feature Selection
Two feature selection methods showed significant improve-
ment over the rest, bigram feature selection and trigram
feature selection. A table with the means for each feature
selection method can be found in table 4.4. Bigrams per-
formed significantly better than either unigrams, the com-
bination of unigrams, bigrams and trigrams, and term ex-

Feature Selection Method Average Cluster Validity
Unigrams .792
Bigrams .869
Trigrams .868

Combination .806
Term Expansion .793

Table 1: The mean cluster validities for each method
of feature selection.

Graph.jpg

Figure 4: The mean cluster validity for each method
of feature selection. Both bigrams and trigrams per-
formed significantly better than trigrams, combina-
tion, and term expansion. There were no other sig-
nificant differences.

pansion techniques. Likewise, Trigrams significantly out-
performed unigrams, the combination of unigrams, bigrams
and trigrams, and term expansion techniques. There was
no significant difference between bigrams and trigrams, nor
were there significant differences between any of the three
remaining techniques. A graph of the results can be seen in
Figure 4.4.

5. FUTURE WORK
Once we have obtained a multi-post extractive summary
from a set of microblog posts, there remains the question
of how to order the posts in a way that maximizes the co-
herence of the overall summary. We have done some prelim-
inary analysis of the feasibility of ordering posts, but found
that, when humans were asked to manually order posts se-
lected for a summary, the inter-rater correspondence was
only slightly more than the value expected by random or-
dering. However, the assumption that there is a single “cor-
rect” ordering is perhaps unfounded. There may be several
plausible, coherent orderings for a set of posts. More re-
search is needed to determine a good method for measuring
the coherency of a summary and finding good orderings.

We have focused exclusively on k-means clustering, specifi-
cally bisecting k-means. However, other types of clustering
algorithms exist. Heirarchical or density based algorithms
could just as easily be used to find structure in microblog
data. Additionally, density based clustering has the advan-
tage of being fairly robust to noise and obviates the need to
choose a number of clusters. However, density based clus-
tering has its own challenges and parameter that need to be

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 10

fine tuned. Since all of the mentioned clustering algorithms
still depend on good features and similarity measures, most
of the work in this paper could still apply, but further inves-
tigation is necessary to determine how efffective these other
clustering algorithms are at summarizing microblog data.

With term expansion, we have used only the pointwise mu-
tual information (PMI) technique, but other methods of ex-
panding the number of features in a post exist. Future work
could look at adding WordNet synonyms and/or hypernyms
to the posts to increase the number of features. Addition-
ally, some authors have looked at using linked web content
to find more information about a particular post. [8] Lastly,
we have looked at term expansion for the addition of un-
igrams based on the PMI with other unigrams. However,
this need not be the case. If a particular n-gram has a high
measure of PMI with any other n-gram, there is grounds for
adding it as well. Given the success of bigrams and trigrams
in generating good clustering, it might be worthwhile to look
into term expansion with bigrams and trigrams as well.

6. CONCLUSION
In this paper, we have explored several means of mitigating
the difficulty of processing microblog posts. We have ex-
amined methods of normalizing posts as a way of reducing
noise, extracting descriptive features from microblog posts,
and improving the effectiveness of existing clustering tech-
niques. As a result, we have generated relatively descriptive
summaries of particular topics in microblogs. Furthermore,
the techniques we have examined here could be used to make
many other NLP techniques more effective in the microblog
domain.

Acknowledgement
The research reported in this document has been funded
partially by NSF grants CNS-0958576 and CNS-0851783.

7. REFERENCES
[1] David Inouye Beaux Sharifi and Jugal Kalita.

Extractive summarization of twitter microblogs.
Under Revision for ACM Transactions for Speech and
Language Processing, 2011.

[2] Asa Ben-Hur, Andre Elisseeff, and Isabelle Guyon. A
stability based method for discovering structure in
clustered data. Pacific Symposium on Biocomputing.
Pacific Symposium on Biocomputing, pages 6–17,
2002.

[3] J. C. Bezdek and N. R. Pal. Some new indexes of
cluster validity. Systems, Man, and Cybernetics, Part
B: Cybernetics, IEEE Transactions on, 28(3):301–315,
January 1998.

[4] Johan Bollen, Huina Mao, and Xiao-Jun Zeng.
Twitter mood predicts the stock market. CoRR,
abs/1010.3003, 2010.

[5] Eric Brill and Robert C. Moore. An improved error
model for noisy channel spelling correction. pages
286–293, 2000.

[6] Qing Chen, Timothy Shipper, and Latifur Khan.
Tweets mining using wikipedia and impurity cluster
measurement. In ISI’10, pages 141–143, 2010.

[7] Bingqing Wang Fei Liu, Fuliang Weng and Yang Liu.
Insertion, deletion, or substitution? normalizing text

messages without pre-categorization nor supervision.
To be published in the proceedings of the Association
of Computational Linguistics, 2011.

[8] Yang Liu Fei Liu and Fuliang Weng. Why is “sxsw”
trending? exploring multiple text sources for twitter
topic summarization. To be published in the
proceedings of the Association of Computational
Linguistics, 2011.

[9] Kevin Gimpel, Nathan Schneider, Brendan O’Connor,
Dipanjan Das, Daniel Mills, Jacob Eisenstein, Michael
Heilman, Dani Yogatama, Jeffrey Flanigan, and
Noah A. Smith. Part-of-speech tagging for twitter:
Annotation, features, and experiments. In ACL (Short
Papers), pages 42–47. The Association for Computer
Linguistics, 2011.

[10] Bo Han and Timothy Baldwin. Lexical normalisation
of short text messages: Makn sens a # twitter. 2011.

[11] Vasileios Hatzivassiloglou, Luis Gravano, and
Ankineedu Maganti. An investigation of linguistic
features and clustering algorithms for topical
document clustering. In SIGIR, pages 224–231, 2000.

[12] Joseph Kaufmann and Jugal Kalita. Syntactic
normalization of twitter messages. pages 149–158,
December 2010.

[13] Brendan O’Connor, Ramnath Balasubramanyan,
Bryan R. Routledge, and Noah A. Smith. From Tweets
to Polls: Linking Text Sentiment to Public Opinion
Time Series. In Proceedings of the International AAAI
Conference on Weblogs and Social Media, 2010.

[14] Alexander Pak and Patrick Paroubek. Twitter as a
corpus for sentiment analysis and opinion mining. In
Nicoletta Calzolari (Conference Chair), Khalid
Choukri, Bente Maegaard, Joseph Mariani, Jan Odijk,
Stelios Piperidis, Mike Rosner, and Daniel Tapias,
editors, Proceedings of the Seventh conference on
International Language Resources and Evaluation
(LREC’10), Valletta, Malta, may 2010. European
Language Resources Association (ELRA).

[15] Fernando Perez-Tellez, David Pinto, John Cardiff, and
Paolo Rosso. On the difficulty of clustering company
tweets. In Proceedings of the 2nd international
workshop on Search and mining user-generated
contents, SMUC ’10, pages 95–102, New York, NY,
USA, 2010. ACM.

[16] B. Sharifi, M.-A. Hutton, and J.K. Kalita.
Experiments in microblog summarization. In Social
Computing (SocialCom), 2010 IEEE Second
International Conference on, pages 49 –56, aug. 2010.

[17] Beaux Sharifi. Automatic microblog classification and
summarization. Master’s thesis, University of
Colorado at Colorado Springs, 2010.

[18] Robert Tibshirani, Guenther Walther, and Trevor
Hastie. Estimating the number of clusters in a dataset
via the gap statistic. 63:411–423, 2000.

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 11

SU M M E R 2011 NSF R E U 1

A nalysis of Mental Health E xpression on Twitter
M ichael B illot, University of Colorado at Colorado Springs

Abstract—Since 2006 Twitter has existed as a platform which
allows users to broadcast brief textual messages of no more than
140 characters. These short pieces of text are known as tweets.
The most common purposes of tweets are daily conversations,
information sharing, news critiques, and updates about a Twitter
user’s life. By facilitating such content Twitter promotes a wide
array of emotional expression. In this research Twitter is queried
for tweets containing the keyword “depressed.” To begin analysis,
a collection of personal, expressive tweets will be gathered. These
collected tweets will contain content where the Twitter user
appears to be sincerely writing about their depression. Analysis
will be done by using human judges to score these expressive
tweets along the Profile of Mood States (PO MS) six dimensions
of mood. A corpus of words will be produced based on the
magnitude of scores for the six mood dimensions: tension, anger,
depression, vigor, confusion, and fatigue.

I. I N T R O D U C T I O N

T H E amount of information presented by Twitter is stag-
geringly vast. The number of daily posts has continuously

grown since it’s introduction in 2006. In November of 2010,
gigatweet was unable to continue its counting of tweets due to
technical changes made by Twitter. However, over the course
of the year prior, gigatweet documented a sustained increase
in tweets from a rate of around 300 tweets per second to a
rate of over 1000 tweets per second1. Within this mountain of
information there are a large number of tweets where users
are discussing and writing about mental health issues. A n
interesting subset of these tweets are those in which a Twitter
user explicitly shares his or her feelings about an experience
or affliction with a mental health issue. A desire to further
understand the nature of these tweets is what motivates this
research.

I I. M O T I V A T I O N

The primary motivation of this research is to better under-
stand the degree at which mental health issues are expressed
by Twitter users. The expressive tweets scored by PO MS will
illustrate which dimensions of mood are being experienced
by people sharing content about personal mental health. A
measure of mood could be complemented by lexical analysis
to draw conclusions about how a Twitter user’s language
is reflective of his emotional condition. Machine learning
techniques using the collection of tweets could help automate
the detection of similar ones in the future. The most profound
product of this research might be a computational tool that
automatically detects users who are habitually expressing
negative sentiments or mental health problems. A utomatic
detection would be invaluable for a longitudinal analysis of
these twitter users. A long term analysis could show the

1http://gigatweeter.com/analytics

reasons why people choose to user Twitter as platform to
share mental health issues. A long term analysis could also
give insight into the benefits and positive effects that people
experience from their expressive writing on Twitter.

I I I. R E L A T E D W O R K

Bollen et al. performed sentiment analysis research of all
public Twitter posts over a period of four months [1]. They
used a syntactic term based approach to measure the sentiment
of tweets via a psychometric instrument called PO MS. They
found that spikes in certain dimensions of sentiment could be
correlated with critical events such as the 2008 presidential
election and stock market fluctuations. This approach showed
that supervised learning is not the only viable way to perform
sentiment analysis of Twitter.

//Bollen and Pepe analyzed the mood expressed in 10,741
emails to the future [2]. To score the moods of the emails, they
used an extended Profile of Mood States metric. They extended
PO MS original 65 adjectives with WordNet 3.0 synonyms. The
extended list of PO MS words were then stemmed using the
Porter Stemmer. They scored the words

Pak and Paroubek used Twitter as a corpus for sentiment
analysis and opinion mining [3]. Their method studied the
POS tag distribution differences between positive, negative,
and neutral tweets. A multinomial Naive Bayes classifier based
on POS tags and n-grams was used. They concluded that a
Twitter user’s emotion is reflected in the syntactic structures
of their tweets.

Lu et al. created a framework which automatically con-
structs a context dependent sentiment lexicon [4]. A n unam-
biguous, gold standard sentiment lexicon is used as the basis.
The polarity of these sentiments are propagated into other
aspect-word pairs through language clues, a synonym antonym
dictionary, and overall review ratings. In conclusion they found
the framework could successfully learn new aspect dependent
sentiments. A lso, the coverage and accuracy of the general
lexicon was greatly improved by the sentiment lexicon.

I V. A PP R O A C H

Searching Twitter for posts containing the keyword “de-
pressed” returns many tweets. Between February 11, 2011
and March 9, 2011 over 247,000 tweets were returned by
continuously querying Twitter for “depressed.” A large portion
of this data is not relevant to the analysis of mental health
expression. Only a subset of these tweets contain examples of
users sincerely expressing their depression. The initial task is
to isolate at least 1000 of these relevant tweets in which users
seem to be expressing the emotional impact of depression.

The next step will be to score the set of at least 1000
expressive tweets. Scoring will be done by a group of human

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 12

SU M M E R 2011 NSF R E U 2

judges. The tweets will be scored along the six dimensions of
mood that are used in the Profile of Mood States scoring. It is
important to ensure the validity of the scoring by confirming
that the human judges are all scoring with like minds. A
sample of tweets will be presented to the judges to see how
well their PO MS scores agree with one another. If their PO MS
scoring is in agreement, then PO MS should be a good measure
to score the emotions and moods expressed in tweets.

The collection of PO MS scored tweets will then be lexically
analyzed. Through analysis a lexicon of common words and
syntactic groups of words could be shown to be common
features of these tweets. The weights of words in the lexicon
could correspond to the PO MS scores of their containing
tweets. This lexicon of features would be used to help ac-
curately identify similar tweets. The similarity of these tweets
could be determined by scoring them on how relevant their
words are to the content in the lexicon.

Once emotionally expressive tweets can be selected for with
some accuracy, then Twitter users expressing such emotions
will be monitored over time. The idea is to observe users
who are continuously and habitually writing tweets that are
related to their depression or negative feelings. Studying this
type tweeting behavior could give an understanding about what
effect users experience by sharing such emotions publicly on
Twitter. B y studying them over time it would be possible to
see fluctuations in their sentiments.

One other potential angle of approach would be to observe
the networks that Twitter users are embedded in. A twitter
user’s network would include those that she follows or her
followers. Perhaps a user who is continuously tweeting about
depression and negative sentiments is influenced by their
peers on Twitter. The idiom “misery loves company” could
be a phenomenon among groups of followers on Twitter.
A lternatively, users might express feelings of depression as a
way to call for help and support from their friends. E ither way,
there is a lot that can be learned about the group interaction
and the role it plays in mental health expression on Twitter.

A. Extending POMS
The PO MS test consists of sixty-five mood related adjec-

tives. Each of these sixty-five words are related to one of this
six dimensions of mood. The purpose of the PO MS list of
words is to find the words in tweets. For example, if the word
”angry” is contained in a tweet, then an anger-hostility mood is
probably expressed in the tweet. However, the sixty-five words
have limited coverage of the wide range of words that can be
expressive of mood. The PO MS list of words will be extended
with WordNet synonyms. The extended list should contain
more words that are representative of the six dimensions of
mood.

B. Scoring Tweets
The goal of scoring tweets is to score them along the six

dimensions of mood expressed in PO MS. The two options
for scoring methods are automatic scoring and human judge
scoring. The automated scoring will be done by using the
extended PO MS word list. For each tweet, a six dimension

PO MS mood vector will be calculated. Each vector will be of
the form tension-anxiety, anger-hostility, depression-dejection,
confusion-bewilderment, fatigue-inertia, vigor-activity. If a
tweet contains a word from the extended PO MS list, then the
respective dimension in its mood vector will be incremented.

The human judge scoring will involve scoring individual
tweets on a scale of one to five along the six mood dimensions.
Compared to the automatic scoring, human judges will be able
to spot subtle expression of mood in the text.

C . Lexicon Construction
The Twitter mood lexicon will be a set of features that

are most common in tweets. The features will be weighted
based on their PO MS scores. The feature weights could be
based on a combination of the automatic scores and human
scores. For example, all the words in a tweet scored as ”anger-
hostility” would contribute to their ”anger-hostility” weight in
the lexicon.

V. F U T U R E W O R K

There are two major possible applications for the Twitter
mood lexicon. Understanding the mood trends in a population.
Secondly, understanding an individual ’s mood. Investing an
individuals mood could be most valuable when studied over a
period of time.

V I. A C K N O W L E D G M E N T

NSF grants C NS-0958576 and C NS-0851783 have funded
the research reported in this paper.

R E F E R E N C E S

[1] J. Bollen, A . Pepe, and H. Mao, “ Modeling public mood and emo-
tion: Twitter sentiment and socio-economic phenomena,” CoRR, vol.
abs/0911.1583, 2009.

[2] A . Pepe and J. Bollen, “ Between conjecture and memento: shaping a
collective emotional perception of the future,” CoRR, vol. abs/0801.3864,
2008.

[3] A . Pak and P. Paroubek, “ Twitter as a corpus for sentiment analysis
and opinion mining,” in Proceedings of the Seventh conference on
International Language Resources and Evaluation (LRE C ’10), N. C. C.
Chair), K . Choukri, B. Maegaard, J. Mariani, J. Odijk, S. Piperidis,
M. Rosner, and D. Tapias, Eds. Valletta, Malta: European Language
Resources A ssociation (E L R A), may 2010.

[4] Y. Lu, M. Castellanos, U. Dayal, and C. Zhai, “A utomatic construction
of a context-aware sentiment lexicon: an optimization approach,” in
Proceedings of the 20th international conference on World wide web,
ser. W W W ’11. New York, N Y, USA : A C M, 2011, pp. 347–356.
[Online]. Available: http://doi.acm.org/10.1145/1963405.1963456

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 13

FINAL REPORT, AUGUST 5, 2011 1

Implementation of Soft Keyboards for Indic
Languages

Albert Brouillette

Abstract—The arrangement of letters on a keyboard deter-
mines the ease and efficiency of text input. On devices with limited
space, the keyboard layout can have an even greater impact on
effective data entry. Much research has been done proposing
techniques for optimizing Roman-alphabet keyboards, including
some for small devices. However, the large number of letters
in other alphabet systems makes this problem more complex.
Some alphabets can have as many as three times the number
of characters as English. This paper investigates techniques for
reducing the size of Indic keyboards while creating an optimized
layout. To facilitate this, we propose the implementation of
machine learning techniques such as the genetic algorithm in
developing optimized soft keyboards for mobile phones.

Index Terms—Soft keyboards, Indic languages, optimization,
genetic algorithms, Android development.

I. INTRODUCTION

AS technology has progressed over the past several
decades the world has gained the ability to process

a large amount of information in a short time. With these
developments comes the need for keyboards that allow users
to input text more efficiently. This need for faster keyboards
has been the focus of much research in recent years. While
much progress has been made in the development of optimized
keyboards for Roman-alphabet based languages, there has
been little work done with languages based on other alphabets.
As a result, many Indic languages have only rudimentary,
unoptimized keyboards. For the most part, these keyboards
have been inefficient and difficult to use.

The use of soft keyboards would allow users to input in-
formation without the actual existence of a physical keyboard.
The concept of the soft keyboard is that data can be input
through mouse clicks on an on-screen keyboard, or through a
touch-screen device[1]. In addition, the virtual keyboards can
be mapped to receive input from a standard physical keyboard.
The development of efficient soft keyboards is becoming an
increasingly attractive alternative for numerous applications.

Many of the current keyboards for Indic languages have
been developed around some form of the QWERTY-based
layout. While these keyboards can be functional, the greater
number of characters in the Indic languages make them
cumbersome and inefficient. Since soft keyboards do not have
any physical limitations, they can easily be modified and
programmed to reach a much more reasonable solution. These
soft keyboards can then be adapted and customized for specific
applications and devices.

At its root, the primary goal in any keyboard optimization
is simply allowing a user to choose the desired characters

A. Brouillette is with the Department of Computer Science, University of
Colorado, Colorado Springs, CO, 80918 USA e-mail: (abrouil2@uccs.edu).

as quickly as possible. In optimizing keyboards for Brahmic
scripts the most important obstacle to overcome is the large
number of characters in the languages. In an Indic language,
there can be well over 60 individual characters which can
be combined to form over 200 different ligatures. Many of
these ligatures bear only slight resemblance to the original
characters. Including every character and ligature would be
highly impractical because of its large size and the difficulty in
finding a specific letter. However, the opposite extreme, a small
keyboard with only vowels and consonants, would be similarly
unreasonable since it would require several characters to be
chosen at a time. An optimal solution would logically involve
a compromise between these extremes.

II. RELATED RESEARCH

Most of the previous research in the area of keyboard op-
timization has focused on optimizing English soft keyboards.
While there has not been extensive research specifically for op-
timizing Indic keyboards, the research into English keyboards
is valuable in finding techniques for optimizing any keyboard.

A. Keyboard Optimization

The earliest soft keyboards focused on variations of al-
phabetic and QWERTY layouts. While these keyboards were
effective for the technology at the time, many of the lay-
outs were apparently arbitrary attempts at organizing the
characters to conform to mechanical limitations. Since then,
much progress has been made, starting with MacKenzie’s
development of one of the first character-frequency optimized
layouts, the OPTI keyboard[1]. His approach was essentially
an application of Fitts’ law with a trial and error approach
to hand placing the characters based on frequently occur-
ring bigraphs. Those results were improved through the use
of algorithms adapted from applications of physics such as
Hook’s Law. The use of the Metropolis random walk algorithm
has further increased the efficiency of soft keyboards[2]. The
use of this algorithm with machine testing has enabled the
development of English keyboards with theoretical top typing
speeds of up to 42 wpm. More recently, soft keyboards have
reached a new level of efficiency through the development
and use of genetic algorithms[3]. These layouts have so far
produced the best results for optimal keyboards. Because of
the effectiveness of this algorithm, it is thought that similar
optimization techniques might be developed to further im-
prove these keyboards. While not widely used, ant colony
optimization has been implemented in developing keyboards
for handicapped users[4]. In comparison, research into the
development of soft keyboards for Indic languages is relatively

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 14

FINAL REPORT, AUGUST 5, 2011 2

primitive. Most examples seem to be designed simply for
utility with no thought toward efficiency. Some work has been
done in designing single layered keyboards similar to the
English layouts[5]. However, there are some problems with
this approach, due to the greater number of characters in these
languages. In working to optimize keyboards for Brahmic
scripts, the techniques developed for English keyboards are
inadequate and need to be modified. Recently it was proposed
that the development of layered keyboards would give a better
solution to the difficulty of a large number of necessary
characters[6][7][8]. At this point, this approach seems to give
the best results. These keyboards use pop-up menus to allow
users to access multiple characters from a single key. This
technique could potentially increase users input speed by
reducing the search time and distance between each character.

B. Adaptations for Cell Phones

Gong has done considerable research in optimizing English
keyboards for cell phones. One of the primary techniques
used for optimizing cell phone text input has been the idea
of putting multiple letters on each key. Letters are selected
either by pressing a key multiple times or by using a word-
prediction program to allow the selection of possible words
from a given combination of key-presses[9][10].

In our project, we have used a combination of these word-
prediction techniques with the layered keyboard research in
our efforts to reach an optimal Indic keyboard for mobile
devices.

III. OPTIMIZING KEYBOARDS

A simplistic approach for keyboard optimization would be
to simply use an exhaustive search and evaluate every possible
keyboard layout. However, for any given number of characters
n, there are n! possible combinations of the characters. For
languages of 60+ characters, this number quickly reaches
10100, making this approach impossible.

So far the best results for keyboard optimization have been
reached through the use of machine learning techniques. Our
approach to optimization in this project involves the use of the
Genetic Algorithm to generate optimized keyboard layouts.

A. Specific Design Decisions

The creation of these keyboards required some arbitrary
decisions to be made from the start. These decisions are
explained here.

Based on the results of earlier research it was decided that
the space-bar should be placed below the keyboard layout. The
distance from a given character to the space-bar is calculated
as the distance to the center of the space-bar. This compen-
sates for the fact that users will not necessarily choose the
shortest distance every time. Although, theoretically, multiple
optimized space-keys would give better results, the results
of experiments done by Zhai et al. showed that, given the
choice of four space-bars, users chose the optimum space bar
only 38-47% of the time. As an extra benefit, an arbitrarily
placed space-bar prevents inaccuracies in calculations due to

“free-warping”, a common error in keyboard evaluation where
the stylus enters the space-bar in one location and leaves in
an unrelated random location[2]. Finally an easily accessible
space-bar improves the users ease of learning a layout.

Another decision was to use a rectangular ‘grid’ keyboard
layout with each character occupying a square key. While
some other designs such as the Metropolis Keyboard have
used a hexagonal, honeycomb design, this rectangular layout
is the most familiar to users[2]. Additionally, this layout and
simplifies the comparison of our test results with results from
previous research which uses this layout.

B. Implementing the Genetic Algorithm

The genetic algorithm is a heuristic designed to imitate the
concept of natural selection. This algorithm is used to optimize
a function for which there might not actually be an optimal
solution. The general idea behind the genetic algorithm is
to create a random population of potential solutions. These
solutions are combined and mutated with the objective of
keeping the ‘good’ parts of each solution and combining them
toward a theoretical ‘optimum’.

There are three essential parts of this algorithm. First, there
is a population of potential solutions. These possible solutions
then need to be evaluated using a fitness function. Finally there
needs to be a method of reproduction that will change the
population of solutions over time. In any given generation,
the individual solutions are evaluated by the fitness function
and assigned a score. This score is based on its distance
from the theoretical optimum solution. A new population is
created including a percentage of the best solutions and adding
some new solutions made by combining and mutating the
best individuals. This process is repeated until an acceptable
maximum is reached.

Fig. 1. Illustration of the evolutionary cycle of a population of chromosomes
in a genetic algorithm.

In our implementation of the genetic algorithm, each indi-
vidual, known as a chromosome, represents a different key-
board layout. Each of these chromosomes holds a number of
genes equal to the number of characters in the given alphabet.
Each character in the alphabet is assigned an integer. Each of
the genes then contains one of these integers.

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 15

FINAL REPORT, AUGUST 5, 2011 3

Fig. 2. Illustration of a chromosome for the Assamese keyboard. The genes
are stored in a one dimensional list of integers while the genetic algorithm
is running. Once finished, it is converted to an x × y rectangular keyboard
layout with the first x genes representing the first row of keys, the second
group of x genes represents the second row, etc.

The chromosomes are scored with the highest score being
given to the layout with lowest mean time per character.
This way the fastest layouts are kept for the next generation.
Some of the chromosomes are then randomly selected to be
combined or mutated. These new chromosomes are included
with the fastest layouts in the next generation.

In testing the effectiveness of this algorithm, we used a
diagram to track the positions of the most frequently occurring
characters on the keyboard. In the first generation, the high
frequency characters were spread randomly across the layout.

Fig. 3. A diagram representing the layout of the most frequently used
characters in the first generation of the genetic algorithm. The characters are
represented by the numbers from 0-9 with 0 being the lowest frequency and
9 being the highest.

However, after 400 generations, it became apparent that the
most frequent characters were being clustered together near
the center of the keyboard.

Fig. 4. A diagram representing the layout of the most frequently used
characters after 400 generations of the genetic algorithm. The characters are
represented by the numbers from 0-9 with 0 being the lowest frequency and
9 being the highest.

Logically, it can be expected that most of the frequently
occurring digraphs consist of combinations of the most fre-
quent characters. A diagram tracking the position of the most
frequent character in relation to its most common digraphs
shows the digraphs getting closer together as the algorithm
progresses.

Fig. 5. A diagram representing the layout of the most frequently occurring
character in relation to its most common digraphs after 400 generations of
the genetic algorithm. The character is represented by an X its digraphs are
represented by the numbers from 0-9 where 0 is the least common and 9 is
the most common.

These results are consistent with the theoretical optimal
positioning of the frequently used characters and their digraphs
close together. Based on test results by earlier research, it is
expected that this pattern will continually be improved with
testing at a greater number of generations.

C. Parameter Changes

There are several parameters in the genetic algorithm that
can be adjusted to achieve optimal results for a given applica-
tion. These can include changes to the population size as well
modifications to the mutation rates and crossover functions.

In determining the best parameters for the genetic algorithm,
we performed several tests with the Bengali language, varying
the population size. The result of these tests showed that

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 16

FINAL REPORT, AUGUST 5, 2011 4

simply creating larger populations will not always give the
best results. The best keyboards were generated with a more
moderate population size.

Fig. 6. This graph shows the variation in typing speed with changes in
population. The typing speed was calculated after 100 stable generations.

Further testing showed that looking for a greater number
of stable generations gave the best indication of an optimal
keyboard. Stable generations are defined as generations with
a consistent highest score. Populations with a large number of
stable generations consistently generated the best keyboards.

Fig. 7. This graph shows the change in typing speed after different numbers
of stable generations. The typing speed was calculated after populations of
100 chromosomes.

IV. EVALUATION OF GENERATED KEYBOARDS

As keyboards are developed, they need to be evaluated in
order to compare them and determine how much improvement
has been made. By definition, an efficient keyboard is one
that allows users to input their text as quickly as possible.
Although human testing is necessary to determine the actual
effectiveness and learn-ability of a keyboard, the first step is
to compute theoretical upper and lower limits of typing speed.
The upper-bound is commonly calculated by using Fitts’ Law.
This number gives us an estimate of the typing speed for an
experienced user with minimal search time on each character.
The lower-bound can also be estimated using a combination
of Fitt’s Law and the Hick-Hyman Law. The result of this
calculation estimates the decision time for new users.

A. Fitts’ Law

Fitts’ Law models human movement and can be used to
predict the time required to move to a given target point. For

our application, we use this as a technique for determining the
average time in seconds the enter a character. This number can
then be used to calculate a theoretical upper-bound in words
per minute of input for the keyboards. This is the most widely
used method for evaluating English keyboards. An adaption
of Fitts’ Law has been made in order to find the average
time required to move between two characters, i and j, for a
given alphabet of n characters. This is done by looking at the
distance between the characters, Dij , as well as the frequency
of occurrence for that particular digraph, Pij . After assigning a
key width Wj , and an index of performance IP , the equation
for Fitts’ Law becomes:

t =

n∑
i=1

n∑
j=1

Pij

IP

[
log2

(
Dij

Wj
+ 1

)]
. (1)

We will use an IP of 4.9, as determined by earlier re-
search, in order to maintain a consistent comparison of our
progress[1].

In its most basic state, Fitts’ Law will only work for single
layered keyboards. However it has since been adapted to return
reasonable results for other layouts as well, including multi-
layered and menu based keyboards[11].

B. Hick-Hyman Law

The Hick-Hyman Law is used to predict the time required
for a human to make a decision based on a given number of
choices. In our application, this number is used to estimate
the typing speed for a novice user who would need to search
the keyboard to determine their next key-press. This number
gives us a more realistic estimate to compare to human testing
results.

In using the Hick-Hyman Law to evaluate our keyboards,
we are given n as the number of possible choices (in our
case the number of keys) and pi being the probability of a
given key being selected. The number b is a constant that is
determined through experimentation. This reaction time can
then be described by the equation:

T = b
n∑

i=1

pi log2(
1

pi
+ 1). (2)

The Hick-Hyman Law can be adapted to estimate the
decision time for both the base layer of the keyboard and
the hierarchical menus.

C. WPM calculation

In calculating an average number of words per minute,
the corpus of words is processed to determine the average
number of characters per word. From our corpus of the
Assamese language this number turns out to be approximately
6 characters per word. Given the calculated mean time per
character, the calculation for average words per minute is
simply: wpm = 60

6t

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 17

FINAL REPORT, AUGUST 5, 2011 5

V. TESTING ON OTHER INDIC LANGUAGES

In this section, we discuss our the results we have obtained
while developing soft keyboards for several other Indian
languages. The languages we work with are Bengali, Hindi,
Gujarati, Punjabi, Oriya, Kannada and Telugu. Of all the
languages we have investigated for this paper, the scripts used
by Assamese, Bengali, Hindi, Gujarati, Punjabi and Oriya
belong to the Northern branch of Brahmic scripts. Assamese
and Bengali use two variants of the Eastern Nagari script.
Hindi uses Devanagari script. Punjabi uses the Gurmukhi
script although it can be written using the Shamukhi script as
well. Gujarati and Oriya have their own individualized scripts.
Two of the languages, Kannada and Telugu use scripts that
belong to the Southern branch of Brahmi scripts. Each of these
languages have its own script.

For each language, we develop alphabetically sorted key-
boards, a flat GA-based soft keyboard and a layered GA-based
soft keyboard using the techniques we used for Assamese.

A. Bengali

For Bengali, each alphabetic layout tested for WPM results
listed the vowels before the consonants in alphabetical order.
The row ordering of three alphabetic layouts were tested: one
with the diacritics listed after the vowels and consonants,
one with the diacritics listed in between the vowels and
consonants, and one with the diacritics listed before the vowels
and diacritics. Row ordering means that each of the characters
was listed alphabetically left to right from the top row to the
bottom row. The best arrangement was row ordered and listed
the diacritics after the vowels and consonants, which yielded
an expected input speed of 22.19 WPM.

Diacritic Arrangement Words per minute Time per char
First-row diacritic 20.4 0.490

Center-row diacritic 21.0 0.476
End-row diacritic 22.2 0.451

Fig. 8. Variations in input speed for alphabetic layouts with different
arrangements of diacritics.

The best results of our genetically designed Bengali flat
keyboard yielded a theoretical input speed of 30.35 WPM as
predicted by Fitts Law. This was an 8 x 8 square keyboard
constructed with the following genetic algorithm parameters:
a population of 100 and 100 stable generations.

As discussed earlier in the paper, greater improvements
to input speeds can be achieved through the use of layered
keyboards. Thus for Bengali, we kept the consonants and
vowels on a base layer and a diacritic menu as a second layer
that could come up whenever a user clicked on a consonant
as done earlier for Assamese. The best genetically designed
layered keyboard for Bengali had a base layer of dimensions
7x6 and was genetically constructed from a population of
500 and 15 stable generations. It yielded an expected input
speed of 36.13 WPM. Adding a vowel menu in addition to
the diacritic menu for the layered keyboard made very little
difference for the layered keyboard. For Bengali, taking the

vowels out of the base layer of consonants and putting them
in their own separate menu decreased the expected speed by
only 0.04 WPM.

Fig. 9. The best layered Bengali keyboard. This keyboard was designed using
the genetic algorithm with a population of 500 and 15 stable generations.

B. Hindi

For Hindi, the same six alphabetic layout arrangements as in
Bengali were tested with Hindi characters. The layout with the
best expected input speed, which was 22.04 WPM, listed the
diacritics before the vowels and consonants and was column
ordered.

The best theoretical input speed generated from the ge-
netically designed Hindi flat keyboards was 29.01 WPM as
predicted by Fitts Law. This was also an 8 x 8 square
keyboard constructed with a population of 100 and 100 stable
generations. The same diacritic menu was made for the Hindi
layered keyboard using Hindi characters. The best genetically
designed layered keyboard for Hindi had a base layer of
dimensions 7 x 5 characters and was genetically constructed
from a population of 500 and 25 stable generations. It yielded
an expected input speed of 37.03 WPM. Both of these layered
keyboards offered an average 6.9 WPM improvement over the
expected WPM scores of the flat keyboard layouts and an
average 14.47 WPM improvement over the WPM scores of the
alphabetic layouts. For Hindi, having a vowel menu decreased
the expected input speed by only 0.7 WPM.

Future research may include testing the layered keyboard
layouts with and without a vowel menu on actual users to
determine whether a separate vowel menu can significantly
improve or worsen the efficiency of a layered keyboard for
the Bengali and Hindi languages.

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 18

FINAL REPORT, AUGUST 5, 2011 6

Keyboard
Type
Language

Flat
Alphabetic
(WPM/CPM)

Layered
Alphabetic
(WPM/CPM)

Flat GA-
Designed
(WPM/CPM)

Layered GA-
Designed
(WPM/CPM)

Assamese 25.1 / 0.399 33.9 / 0.295 34.2 / 0.292 40.2 / 0.249
Bengali 22.7 / 0.440 26.6 / 0.377 30.3 / 0.330 36.1 / 0.277
Hindi 25.8 / 0.465 34.5 / 0.348 34.4 / 0.349 43.7 / 0.275
Gujarati 22.2 / 0.449 24.5 / 0.407 29.8 / 0.335 31.7 / 0.315
Punjabi 26.5 / 0.453 29.9 / 0.402 34.9 / 0.343 39.9 / 0.300
Oriya 16.7 / 0.450 19.4 / 0.386 23.5 / 0.319 26.7 / 0.281
Kannada 14.7 / 0.455 17.1 / 0.386 20.2 / 0.330 22.8 / 0.292
Telugu 15.8 / 0.474 19.1 / 0.393 22.7 / 0.331 25.6 / 0.294

Fig. 10. Expected Upper Bound of Input Speeds in WPM/CPM for Various Languages. The numbers were computed using Fitt’s Law only.

Keyboard
Type
Language

Flat
Alphabetic
(WPM/CPM)

Layered
Alphabetic
(WPM/CPM)

Flat GA-
Designed
(WPM/CPM)

Layered GA-
Designed
(WPM/CPM)

Assamese 9.70 / 1.031 13.3 / 0.754 10.8 / 0.924 14.1 / 0.708
Bengali 9.42 / 1.061 12.5 / 0.800 10.5 / 0.956 14.3 / 0.700
Hindi 10.8 / 1.111 15.4 / 0.782 12.1 / 0.992 17.5 / 0.685
Gujarati 9.24 / 1.082 11.9 / 0.838 10.1 / 0.986 13.2 / 0.757
Punjabi 11.0 / 1.092 14.0 / 0.857 12.0 / 0.997 15.7 / 0.764
Oriya 6.99 / 1.073 9.24 / 0.811 7.73 / 0.970 9.44 / 0.795
Kannada 6.06 / 1.101 7.75 / 0.860 6.85 / 0.974 8.44 / 0.790
Telugu 6.87 / 1.092 8.84 / 0.848 7.69 / 0.976 9.89 / 0.758

Fig. 11. Expected Lower Bound of Input Speeds in WPM/CPM for Various Languages. The numbers were computed using Fitt’s Law and Hick-Hyman’s
Law.

Fig. 12. The best layered Hindi keyboard. This keyboard was designed using
the genetic algorithm with a population of 500 and 25 stable generations.

C. Other languages

We tested our algorithm with five other languages in order to
detect some trends in their development and draw conclusions
about the variations in input speed. Each language was tested
with four different keyboard arrangements. Our first step
was to evaluate keyboards with an unoptimized, alphabetic
arrangement as a basis for comparison. These keyboards were
developed with both flat and layered designs. We then used
the genetic algorithm to develop optimized flat and layered
keyboards.

1) Gujarati: For the Gujarati language, our corpus had an
average of approximately 6 characters per word which we
used to calculate words per minute from the average time per
character. The alphabetic layouts yielded an upper-bound of
0.449 seconds per character or 22.2 WPM for the flat keyboard
and 0.407 seconds per character or 24.5 WPM with the layered
keyboard. After optimization using the Genetic Algorithm, the
results improved to 0.335 seconds per character or 29.8 WPM
for the flat keyboard and 0.315 seconds per character or 31.7
WPM with the layered keyboard.

2) Punjabi: For the Punjabi language, our corpus had an
average of approximately 5 characters per word which we
used to calculate words per minute from the average time per
character. The alphabetic layouts yielded an upper-bound of
0.453 seconds per character or 26.5 WPM for the flat keyboard
and 0.395 seconds per character or 30.4 WPM with the layered
keyboard. After optimization using the Genetic Algorithm, the
results improved to 0.343 seconds per character or 34.9 WPM
for the flat keyboard and 0.300 seconds per character or 39.9
WPM with the layered keyboard.

3) Oriya: For the Oriya language, our corpus had an
average of approximately 8 characters per word which we
used to calculate words per minute from the average time per
character. The alphabetic layouts yielded an upper-bound of
0.450 seconds per character or 16.7 WPM for the flat keyboard
and 0.386 seconds per character or 19.4 WPM with the layered
keyboard. After optimization using the Genetic Algorithm, the
results improved to 0.319 seconds per character or 23.5 WPM

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 19

FINAL REPORT, AUGUST 5, 2011 7

for the flat keyboard and 0.281 seconds per character or 26.7
WPM with the layered keyboard.

4) Kannada: For the Kannada language, our corpus had
an average of approximately 9 characters per word which we
used to calculate words per minute from the average time per
character. The alphabetic layouts yielded an upper-bound of
0.455 seconds per character or 14.7 WPM for the flat keyboard
and 0.386 seconds per character or 17.1 WPM with the layered
keyboard. After optimization using the Genetic Algorithm, the
results improved to 0.330 seconds per character or 20.2 WPM
for the flat keyboard and 0.292 seconds per character or 22.8
WPM with the layered keyboard.

5) Telugu: For the Telugu language, our corpus had an
average of approximately 8 characters per word which we
used to calculate words per minute from the average time per
character. The alphabetic layouts yielded an upper-bound of
0.474 seconds per character or 15.8 WPM for the flat keyboard
and 0.393 seconds per character or 19.1 WPM with the layered
keyboard. After optimization using the Genetic Algorithm, the
results improved to 0.331 seconds per character or 22.7 WPM
for the flat keyboard and 0.294 seconds per character or 25.6
WPM with the layered keyboard.

D. Summary

In analyzing these test results, we were able to draw a few
basic conclusions regarding the optimization process.

Looking at the numbers, we notice that the Oriya language
shows the greatest improvement after optimization, giving the
lowest time per character, while the improvement for the
Gujarati language was somewhat less significant. One expla-
nation for these results considers the relative frequencies of
characters in the two languages. The most frequently occurring
character in the Oriya language has a relative frequency of
approximately 8.6%. In Gujarati, the most frequent character
has a relative frequency of 5.9%. Considering Figure 4 we
can see that the optimized keyboard has the most frequent
characters clustered together near the center. Our conclusion
is that languages with a small number of high frequency
characters have a greater potential to be optimized. It can be
surmised that languages with characters that have nearly equal
frequencies require the user to travel a greater average distance
between each character.

Additionally, it can be seen that Gujarati has a smaller
improvement between its layered and flat layouts when com-
pared to the other languages. One reason for this could be
the higher frequency of the diacritics in this language. The
Kannada language, which showed the highest improvement in
its layered layout, also has the lowest frequency of diacritics.
Essentially, the smaller number of diacritics means less use of
the menu making the layering more effective.

Other than these minor variations, the results from the
optimization tests of these languages are all very similar in
their progress. Graphing the results of the tests all of the
languages show very similar improvement over an increasing
number of generations.

Fig. 13. A graph of the improvement in input speed for the 5 languages
over 5000 generations.

VI. ANDROID KEYBOARD DESIGN

As we worked to develop Android soft keyboards from
our optimized layouts we had several challenges to overcome
first. Our first step was to find a suitable format to install the
keyboards on the Android phone. Once we had actually tested
the keyboards in their basic form, we did several experiments
in an attempt to modify the designs for more practical use on
the actual device.

A. General Keyboard Framework

There has been considerable research done in the develop-
ment of frameworks for soft keyboards on Android phones
and there have been many keyboard applications created. The
tool we are using for this project is the AnySoftKeyboard
app1. This is a free application that is easily available to
users. In addition, it supports the development of plug-ins for
other languages. Using this tool allows us to quickly test our
keyboard layouts and make them available on-line for human
testing.

Using this tool as our structure, we have created an AnySoft-
Keyboard plug-in for the Assamese language. This keyboard
was designed using the genetic algorithm test code.

1https : //market.android.com

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 20

FINAL REPORT, AUGUST 5, 2011 8

Fig. 14. This Assamese keyboard was implemented as an AnySoftKeyboard
plug-in. It was designed by the genetic algorithm after 50 generations. The
diacritics are placed in a pop-up menu.

The keyboard was designed to be used with a diacritic layer.
This diacritic layer is implemented as a menu that pops up
when a consonant key is held down.

Fig. 15. The diacritic pop-up menu. The menu appears when a consonant
key is held down.

An additional feature supported by AnySoftKeyboard is
predictive test entry. We implemented this by running a
program to process the corpus and create a list of words and
their frequencies. This data was then used to create the binary
dictionary used by the AnySoftKeyboard program. The word
predictions appear as a menu at the top of the screen after at
least two characters have been entered.

Fig. 16. The word prediction menu. This menu appears after at least two
characters have been entered.

B. Experiments With Keyboard Dimensions

Our initial keyboard designs were functional on the Android
device. However, the dimensions of the keyboard ended up
obstructing parts of the text entry. In an effort to make the
keyboard more practically usable, we tried several different

variations in the dimensions of the keyboard. The best layout
we found consisted of longer, more narrow format.

Our original design consisted of a nearly square layout of
8×8 or 8×7 keys. We ran the genetic algorithm and tested a
layered keyboard with dimensions of 5× 10 keys. The results
of these tests showed only a minimal reduction in typing speed,
while the ease of using the keyboard was greatly improved.
Running a test over 500 generations, we got results of 36.9
WPM for the rectangular keyboard compared to the 40.2 WPM
with the square layout.

The main side-effect of this layout is the key-size in this
format. In order to position the keys in this layout we had to
reduce their size. This reduces the accuracy for most users and
results in more errors.

C. Text Input From Two Points

After running tests with rectangular keyboards, we exper-
imented with modifying the genetic algorithm program to
optimize for text input with two fingers.

The basic layout we chose consisted of a long rectangular
shape with the assumption that each finger or input point
occupying an essentially square section of the keyboard. The
logic behind the implementation of the genetic algorithm relies
on the assumption that each input point is only used in its
square.

Fig. 17. Basic shape of keyboard for two finger input. Each finger is
responsible for pressing the keys in one of the squares.

Because of the complexity of this problem, at this point we
have only been able to roughly estimate a lower bound for text
entry speed. There are essentially two cases to be considered
in the calculation of the fitness function: First the case of
digraphs that consist of two characters in the same square.
And secondly, the case of digraphs where the characters occur
in different squares.

To take care of the first case, the fitness function uses Fitt’s
Law to calculate an average time per character for each input
point in each square. In the second case, it is assumed that
each character requires a decision time calculated using the
Hick-Hyman Law as well as the time for the input point to
move to the desired key.

Using this algorithm, we were able to develop a two input
keyboard for the Assamese that we estimate to have a lower
bound of text input around 22.6 WPM.

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 21

FINAL REPORT, AUGUST 5, 2011 9

Fig. 18. Android keyboard designed for two finger input. This keyboard has
a lower bound of text input estimated to be 22.6 WPM.

Looking at the locations of the most frequent characters
we can see two clusters being form in the location of the two
input points. There seems to be a nearly equal number of high
frequency characters on each side.

Fig. 19. A diagram representing the layout of the most frequently used
characters after optimization by the genetic algorithm. The characters are
represented by the numbers from 0-9 with 0 being the lowest frequency and
9 being the highest. The frequently used characters appear to be forming two
clusters around the two input points.

These results are consistent with a comment made in a
paper by Zhai et al.[12]. In this paper, they mention that
the QWERTY keyboard is most effective when used for two-
handed input because of the frequency of alternation between
the two hands. The algorithm that we implemented gives a
higher score to keyboards that more frequently alternate hands.

D. Future Work

The optimized keyboards that we generated for the Android
phone performed considerably better than the alphabetic al-
ternatives. However, even after adding the diacritic layer, the
number of keys is simply to large for the size of the Android
phone. An area for future research would be to experiment
with putting multiple characters on each key. It would be
desirable to be able to optimize keyboards given a physically
constrained number of keys. This might be the best option
for creating effective cell phone keyboards for languages with
large numbers of characters.

Another area for continued research would be to investigate
the development of keyboards optimized for the specific needs
of other devices such as the iPad and the iPhone.

VII. CONCLUSION

The versatility of soft keyboards makes them an ideal
research tool in seeking optimal layouts for Indic languages.
The programs developed to predict the best keyboard layouts
can be easily reused to generate optimal keyboard layouts
for other languages. Analysis of the keyboards generated
by implementing the genetic algorithm was done by using
Fitts’ Law and the Hick-Hyman Law to estimate input speed.
Based on these results, we were able to demonstrate how
the efficiency of a keyboard is improved when the keys are
arranged based on character and digraph frequencies.

The results of our tests with the various Indian languages
show the keyboards developed by the genetic algorithm to be
comparable in efficiency for all of the languages tested. It
can be assumed that these techniques will be easily adapted
to create optimized keyboards for many other languages that
have large numbers of characters.

ACKNOWLEDGMENT

The research reported in this document has been funded
partially by NSF grants CNS-0958576 and CNS-0851783.

REFERENCES

[1] S. MacKenzie and S. X. Zhang, “The design and evaluation of a high-
performance soft keyboard,” Proceedings of the SIGCHI conference on
Human factors in computing systems: the CHI is the limit, pp. 25–31,
1999.

[2] S. Zhai, M. Hunter, and B. A. Smith, “The metropolis keyboard -
an exploration of quantitative techniques for virtual keyboard design,”
Proceedings of the 13th annual ACM symposium on User interface
software and technology, pp. 119–128, 2000.

[3] M. Raynal and N. Vigouroux, “Genetic algorithm to generate optimized
soft keyboard,” CHI’05 extended abstracts on Human factors in com-
puting systems, pp. 1729–1732, 2005.

[4] S. Colas, N. Monmarché, P. Gaucher, and M. Slimane, “Artificial ants for
the optimization of virtual keyboard arrangement for disabled people,”
pp. 87–99, 2007.

[5] V. Varma and V. Sowmya, “Design and evaluation of soft keyboards for
telugu,” ICON 2008: 6th International Conference on Natural Language
Processing, 2008.

[6] A. Rathod and A. Joshi, “A Dynamic Text Input scheme for phonetic
scripts like Devanagari,” Proceedings of Development by Design (DYD),
2002.

[7] S. Shanbhag, D. Rao, and R. K. Joshi, “An intelligent multi-layered
input scheme for phonetic scripts,” Proceedings of the 2nd international
symposium on Smart graphics, pp. 35–38, 2002. [Online]. Available:
http://doi.acm.org/10.1145/569005.569011

[8] L. Hinkle, M. Lezcano, and J. Kalita., “Designing soft keyboards for
brahmic scripts,” ICON 2010: International Conference on Natural
Language Processing, pp. 191–200, 2010.

[9] J. Gong, “Improved text entry for mobile devices : alternate keypad
designs and novel predictive disambiguation methods,” Northeastern
University Boston, MA, USA, 2007.

[10] M. Selander and E. Svensson, “Predictive text input for indic scripts,”
Citeseer, 2009.

[11] S. Matsui and S. Yamada, “Genetic algorithm can optimize hierarchical
menus,” pp. 1385–1388, 2008.

[12] S. Zhai, P. Kristensson, and B. Smith, “In search of effective text input
interfaces for off the desktop computing,” Interacting with Computers,
vol. 17, no. 3, pp. 229–250, 2005.

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 22

Named Entity Extraction From the Colloquial
Setting of Twitter

Cassaundra Doerhmann
University of Colorado at Colorado Springs,

Colorado

Abstract—This paper suggests a study of Named Entity Recog-
nition (NER) as it applies to Twitter and strategies that can be
used to make NER systems more successful in colloquial settings
such as Twitter. Named Entities are named nouns which fall into
the catagories following: People, Locations, and Organizations.
The strategies explored are useing a text normalizer to shape the
text into a format that NER programs can recognize and cross
checking classifiers to increase the precision of NER tools.

I. INTRODUCTION

Named Entity Recognition is widely used in many different
kinds of natural language processing tasks. Named Entity
Recognition (NER) is the process of extracting and organizing
the names of people, places, and organizations into groups
based on commonality [4]. In the area of natural language
proccessing many research projects need to identitfy the
named entities in order to extract information and relations
from texts. Therefore, this process of identifying named
entities is necessary for research in the area of natural
language proccessing. These named entities can be found by
grammar and capitalization patterns but is improved when
machine learning is implemented to capture different phrasing
of these sentences. For example terms such as “graduated
from”, “worked at”, and “studied at” all suggest that there
is a high probability of the prior word being a name [8].
Furthermore, the personal titles such as “Mr.”, “Dr.”, and
“President” suggest that a named entity follows immediately
[2].

TABLE I
EXAMPLE SENTENCES

President Obama spoke to the troops today.
Mary graduated from Brown.

John vacationed in Spain for the summer.

TABLE II
CLASSIFICATION OF NAMED ENTITIES

Person Organization Location
Obama - -
Mary Brown -
John - Spain

Interest in Named Entity Recognition is growing rapidly
because of its overwhelming relation to information extraction
and to AI strategies. In this project, we attempt to identify and
categorize the named entities from Twitter posts.
Twitter posts, also called tweets, have a maximum length of
140 characters, and users often, due to the limited length,
forsake grammar and capitalization rules, replacing grammat-
ically correct phrases for slang. Twitter is a huge source of
information and therefore it is necessary to discover a way
to make these tweets understandable and extract the named
entities which are mentioned in these Twitter posts. This
will greatly improve the ability of natural language tools to
accurately execute the tasks that they are designed to perform.
This will allow for better research in the area of natual
language processing, especially when in relation to non-normal
texts such as blogs, twitter posts, and other texts not written
in standard English. Named entity recognition has been used
in Natural Language Proccessing (NLP) before, but the focus
of these projects has been primarily on texts which are written
in standadrd English.
The task of NLP becomes much harder when the text is not
written in standard English. Thus it is necessary to have a new
system of Named Entity Recognition which takes into account
the non-standard laguage used in these colloquial sources.

II. MOTIVATION

Because of the popularity of social networking in today’s
society, Twitter is quickly becoming the fastest updated source
of news in our world today. Not only is it so quickly updated,
but the amount of data held within these tweets can be used as
a huge resource. With an average of 200 million tweets a day,
Twitter often reports the major happenings of the world before
the news has the time to broadcast. Because of the immense
amount of information contained within these tweets, they,
with a little analysis, could be used for many different research
projects. However, analysis of this data could be much faster
and more accurate if the text was first normalized and the
named entities were identified.
The normalization and named entity recognition of Twitter
posts could be beneficiall in many different settings. One of
the main applications of NER to the real world is information
extraction. Because Twitter is such a large source of data
with a huge range of topics, it is a great text to draw
from in Information Extraction (IE). NER with a basis of

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 23

normalization will make information extraction much simpler
to accomplish.

III. TWITTER

Twitter is a micro-blogging social networking site which
is greatly useful for Information Extraction and other such
Natural Language Proccesing tasks because it is a huge
database for information written by the average person. These
tweets are also a source of information for research because
they are posted very quickly after the involved events have
occurred. However, this massive amount of data is very hard
to analyze because of a few differences between Twitter text
and the text of standard English.
Tweets are restricted to 140 characters, and because of this
restriction, its users need to express their social goings-on in
as few words as possible.
Thus words are often mispelled, either accidentally or to
shorten length, acronyms are substitued for phrases, and non-
grammatical scentence structures are used instead of those
that are conventional. This often thwarts the identification or
labeling of the words in these Twitter posts.
Twitter has grown from 5,000 tweets per day, in the
opening year of this social micro-blogging site in 2007,
to a starteling 200 million tweets per day in 2011. It is
because of this massive growth that Twitter is becoming too
large of source of data to be ignored by the research of the day.

IV. PROBLEM DEFINITION

There are many Named Entity Recognition tools already in
existence which are available on the web. So why not use one
of those? Normal NER tools are very ineffective when used on
Twitter posts. NER tools depend greatly on sentence structure
and context to determine named entities. However, tweets are
short in nature and tend to be wildly grammatically incorrect.
Because of the little context in tweets and the sloppy sentence
structure, a normal NER tool performs poorly, and a different
approach must be taken.
The purpose of this project is to test the effectiveness of using
a normalizer as a preproccessor to a NER tool. And, if time
permits, to consolidate both the normalizer and Named Entity
Recognition tools in to one single NER super-tool. The use of
a normalizer should increase the effectiveness of the NER tool
because, although the context is still very low, the grammatical
changes will increase the usability of the sentence structure in
the recognition process.
This project also intends to increase the effectiveness of a
NER tool through the use of cross-referencing classifiers.
Multiple classifiers which are trained on different data, such
as CRF classifiers, should allow for more accurate results.
These classifiers would be able to increase the Recall and
Percision because each classifier would find named entities
where the other had missedand each would overlook falsely
catagorized tokens where one had been mistaken. Thus more
named entities would be able to be pulled from a given set of
tweets, while less tokens would be falsly recognized

V. RELATED RESEARCH

A. Named Entity Recognition

Up untill now, the majority of the study of Named
Entity Recognition has been in relation to documents on
the web. Lui et al. implemented a classifier based approach
to NER [12]. They used a combination of both K-Nearest
Neighbors (KNN) and Conditional Random Fields (CRF)
based classifiers. However, Downey et al. used a statistical
model to extract these named entities from the web. This
approach out-performed a semi-supervised CRF by 73 percent
[4]. While still other methods of functional relations were
implemented by Hasegawa et al. by tagging named entities
and learning the context behind named entities which occur
in a similar phrase [7].

There are three significant measurements which are used
to evaluate the effectiveness of a NER program.

• Precision (P): Precision is the proportion of the number
of correctly identified named entities to the total number
of entities identified (the sum of the number of correctly
identified and incorrectly identified named entities).

P =
Ncorrect

Ncorrect +Nincorrect
(1)

• Recall (R): The recall is the proportion of correctly
identified named entities to the total number of named
entities (the Key count).

R =
Ncorrect

Nkey
(2)

• F-Measure (F): The F-Measure is a measurement
involving both R and P as combined in the following
equation.

F =
2RP

R+ P
(3)

TABLE III
NAMED ENTITY STRATEGIES

Strategy Precision Recall F-Measure
CRF on standard texts 91.7 92.0 91.8
CRF on Twitter text 46.3 45.3 45.8

Combined CRF and KNN on Twitter texts 81.6 77.8 80.2

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 24

Fig. 1. Twitter usage in tweets per day

B. Conditional Random Fields
Conditional Random Fields are a type of classifier which

involves a probabalistic graphical model and is often used
in Natural Language Proccessing. This model is used most
often for assigning labels to data. It is implemented in place
of Hidden Markov Models.
This classifier uses a large amount of training data to draw
from as its knowlage base, and then, based on that training
data a probabalistic model is formed. Thus, when text is fed
into this Condidtional Random Field model, the probabalistic
model created by the training data can be used to determine
how a spesific word should be tagged or how a sentence should
be parsed.

Fig. 2. Y and X of Conditional Random Fieldsl

A Conditional Random Field is similar to a Markov Random
Field contained on a random variable X which represents
the observation sequences. We define G = (V,E) to be a
undirected graphical model such that there exists a node n
in V which in turn correspends to another random variable
Yn in the set of Y [?].

C. Text Normalization
Because Tweets are often written in colloquial English with

shortened and altered words, normal NER tools are very

unsucessful at determining named entities. This difficulty is
also due to the short nature of these Twitter posts, because
they have very little context. Liu et al. states that the aim of
text normalization is to substitue meaning-consistent standard
English for non-standard tokens [11]. There are several ways
in which non-standard tokens are used in Tweets according to
Kaufmann and Kalita [10].

• The shortening of words
• Spelling errors
• Repetition for emotion

The meaning of shortened words can be found by consulting
tables of text acronyms constructed during the research of
Choudhury et al. on the structure of texting language [3].
Spelling errors are checked by looking at near letters for
reverse order. While repetition of lettedsr is addressed by
reducing to 3 repeated letters and checking against other
sources [10].
The process of the normalization tool which is used in this
project can be seen in figure 2 [10].

Text Normalization is not necessary for NER when the
source is simply documents on the web, but when our source
is moved to colloquial language sites such as Twitter, conven-
tional machine learning doesn’t perform well [6]. Because of
this, text normalization is necessary for successful results.

VI. APPROACH

In this project, a normalizer which translated the text
into standard English was used in partnership with a voting
CRF classifyer system. These voting classifiers are classifiers
which all come up with results on the same selection of text
and then, based on the summed results, one classification is
reached.

This type of classification is used in the research of Ekbal
and Bandyopadhyay [9]. By using this voting system they
were able to gain fantastic results of 92.03 in F-measure when

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 25

Fig. 4. The process path of a tweet once it has been introduced to the system

Fig. 3. The process path of the normalization tool

evaluating Named Entity Recognition for Indic laguages.
Thus, due to the success of Named Entity Recognition
on Twitter posts in our project, we had decided to also
experiment with the use of voting classifiers in addition to
normalized Twitter posts.

Cross referenced Conditional Random Fields classifiers were
used; however, each classifier had been trained on a different
set of training data which gave this system more information
to draw from. This did increase the effectivness of the given
system by .3 percent and will allow for even better results in
the future.
During this process a tweet goes through many changes.
Table IV shows an example of an actual tweet’s changes as
it runs through the system.

In previous research by Liu et al CRF and KNN classifiers
are combined to create a better NER system, because the
f-measure of NER tools drops from 90.8% to 45.8% when
used on tweets. In their project they were able to increase the
f-measure on tweets to 80.2% when combining the previously
mentioned classifiers.

However, The results of this project show that the use of a
normalizer with a simple CRF classified NER tool raises the
f-measure on tweets to 83.6%. This shows that not only does
a normalizer increase the effectiveness of a NER tool, but it
can increase it so that it outpreforms a NER tool developed
specifically for tweets.

This is a great improvement, and, through the voting tecniques
we used with three differently trained Conditional Random
Fields classifyers, we were able to increase the F-measure by
.3 %. Overall, in this paper we were able to increase the the
total F-measure of a NER tool used on twitter posts to 83.9%.
This should greatly improve the studies of twitter in the field
of Natural Language Proccessing in the future.

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 26

TABLE IV
TWEET NORMALIZATION AND NAMED ENTITY RECOGNITION

Wowwwwwwwww!!! U guys R done with all the Harry Potter books? lol I hardly finished one!!!!
wow You guys R done with all the Harry Potter books? lol I hardly finished one!!!!
Wow you guys are done with all the Harry Potter books? i hardly finished one!!!!
Wow you guys are done with all the Harry Potter books? I hardly finished one!

Person: Harry Potter

TABLE V
NAMED ENTITY STRATEGIES INCLUDING THIS STATE OF THE ART SYSTEM

Strategy Precision Recall F-Measure
CRF on standard texts 91.7 92.0 91.8
CRF on Twitter text 46.3 45.3 45.8

Combined CRF and KNN on Twitter texts 81.6 77.8 80.2
Triple Voting CRF on Normalized Twitter texts 84.4 83.4 83.9

Fig. 5. The F-measure of Compared NER Systems Having Only a CRF Clas-
sifier, Having Dual Classifiers, Having a Normalizer with a CRF Classifier,
and Having a Noramlizer with a Triple Voting CRF Classifier Respectively

VII. IMPROVMENTS

A. This project

In this project we set out to increase the effectiveness of a
Named Entity Recognition tool on tweets. In order to do this
we first created a program which stripped the raw tweets from
the tags that are included with them when they are dumped
into a file.
This program considered the common characteristics of these
tweets and removed the unnessisary peices, the tags. After this,
these tweets, which were then just raw tweet text, were placed
in the file which input to the Twitter Normalizer.
After this program was completed it was time to set up the

Twitter Normalizer, provided by a previous paper written by
Kaufmann and Kalita [10]. It took some work to transfer the
program to this system, but soon it was in place. A method
was then added which would send the normalized text into the
input file for the NER tool and run that code.
After this the tweet file would run through the normalizer three
times, each with a different CRF classifier which had been
traind on different training data. Finally, the classifiers would
vote, and any token on which at least two of the classifiers
had aggreed as a named entity was considered as such. All
those with one or less votes were disregarded.

B. Future projects
There are many future impovements which would be greatly

benificial for Named Entity Recognition as it applies to
Twitter. Future Improvements include the following:

• Implementing a CRF KNN voting NER which could be
combined with the NER tool, (possibly with the addition
of a third classifier which would help in the case of ties.)

• Add into the Normalization tool a checker which would
take into account common slang and common shortend
words which are not included in the program at present.

• Package all of the system into an exicutable .jar file to
allow for easier protability and access.

• Create a GUI from which the entire system can be run
allowing for easier use by those who do not have an in
depth knowlage of programming.

VIII. CONCLUSION

This project has greatly improved the productivity of NER
tools on non-standard text such as posts from the micro-

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 27

blogging site of Twitter. The addition of a normalization tool
for tweets allowed for these posts to be translated into standard
text which made analysis easier. The voting of differently
trained classifiers allowed for higher recall and precition,
resulting in an overal higher F-measure on this programs
ability to recognise named entities in tweets.
Named Entity Recognition is a large part of information
extraction and these advances in relation to NER from Twitter
posts will help with many future research problems. Being
able to determine if a word that is mentioned in a text is a
named person, location, or organization is a huge step forward
in Information Extraction and will greatly help analysis of any
posts on Twitter. This will be useful in future research such as
that involving Natural Language Proccessing and Information
Extraction.
Because of this improvement many more research oppertuni-
ties in this field will be able to be executed in a much more
accurate fashion than in previous such projects. Overall we
would judge this project to be a success, and hope that it will
bring help to many future projects in this field

REFERENCES

[1] M. Banko, M Cafarella, S. Soderland, M. Broadhead, O. Etzioni. 2007.
Open Information Extraction from the Web. In Procs. of IJCAI 2007.

[2] M. Cafarella, D. Downey, S. Soderland, O. Etzioni. 2005. KnowItNow:
Fast, Scalable Information Extraction from the Web. In Procs. of the
Human Language and Technology Conference 2005.

[3] M.Choudhury, R. Saraf, V. Jain, A. Mukherjee, S. Sarkar, A. Basu. 2007.
Investigation and modeling of the structure of texting language. Int. J.
Dpc. Ama;. REcognit., 10(3):157-174, 2007.

[4] D. Downey, M. Broadhead, O. Etzioni. 2007. Locating Complex Named
Entities in Web Text. In Procs. of IJCAI 2007.

[5] O. Etzioni, M. Cafarella, D. Downey, A. Popescu, T. Shaked, S.
Soderland, D. Weld, A. Yates. 2005. Unsupervised Named-Enitiy Exs-
traction from the Web: An Expirimental Study. Artificial Intelligence,
165(1):91134, 2005.

[6] B. Han, T. Baldwin. 2011. Lexical Normalizations of Short Text Messages:
Makn Sens a #twitter. In Proc. of ACL-HLT 2011.

[7] T. Hasegawa, S. Sekine, R. Grishman. 2004. Discovering Relations among
Named Entities from Large Corpora. In Proc. of the 42nd Annual Meeting
on Association for Computational Linguistics 2004.

[8] H.M. Wallach. 2004. Conditional Random Fields: An Introduction. Uni-
versity of Pennsylvania. CIS Technical Report MS-CIS-04-21.

[9] A. Ekbal, S. Bandyopadhyay. 2009. Voted NER System using Appropriate
Unlabeled Data. In Proc. of the 2009 Named Entities Workshop: Shared
Task on Translaiteration (NEWS 2009), ACL-IJCNLP, pp. 210 (2009)

[10] M. Kaufmann, J. Kalita. 2010. Synatactic Normalization of Twitter
Messaqges. International Conference on Natural Language Proccessing
(ICON 2011), Kharagpur, India, December, pp. 149-158.

[11] F. Lui, F. Weng, B. Wang, Y. Lui. 2011. Insertion, Deletion, or
Substitution? Normalizing Text Messages without Pre-categorization nor
Supervision. In the Proc. of The 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technologies

[12] X. Liu, F. Wei, S. Zhang, M. Zhou. 2011 Recognising Named Entities
in Tweets. Harbin Institute of Technology, Harbin, China.

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 28

Automatically Generating Large Freely Available Image Datasets
From the Web

Spencer Fonte
University of Colorado Colorado Springs

1420 Austin Bluffs Pkwy, Colorado Springs, CO USA 80918
spencer.fonte@knights.ucf.edu

Abstract

Although there are a few standard datasets in the
computer vision community, there are several issues
with creating new more challenging datasets. Most of
these issues stem from privacy and copyright concerns.
This project extends on work done by Mears [1] to de-
velop a new paradigm for collecting and sharing image
datasets. In this paradigm, only links to online images
are shared using image feeds. Filters can be created
and used to produce a new feed that is a subset of an
already existing feed, allowing for the easy creation of
a specific dataset by using an existing broader dataset
feed or the cleaning up of a feed generated by a web
crawler. The system consists of three main parts: a
dataset feed generator, a feed subscriber, and a contest
engine which will allow computer vision contests to be
participated in in real time. Architectures for all three
parts are provided in this paper and the first two have
been implemented. The framework presented in this pa-
per aids in the creation of new computer vision datasets
that contain a large number of images, are more rep-
resentative of the real world, and are less subject to
copyright and privacy issues.

1. Introduction

Computer Vision experiments require a large num-
ber of images for training and testing algorithms. Cre-
ating large datasets that are publicly available can be
challenging due to privacy and copyright issues. Most
current public datasets are staged photos taken for the
purpose of creating a dataset [2, 3, 4, 5, 6]. The images
in these datasets do not reflect most of the images peo-
ple encounter in the digital world today. Efforts have
been made to use images found on the web to construct
datasets, an example being Labeled Faces in the Wild
[7] which is a dataset of facial images of famous people

Figure 1. Example Image From Labeled Faces in the Wild

collected from the web. This type of dataset provides
images for facial recognition tasks that are more analo-
gous with average facial images taken in the real world.
An example image of Tim Allen from Labeled Faces in
the Wild is shown in Figure 1. However, there is only
an average of around 2.3 images for each person in the
dataset. This can be an issue because machine learning
algorithms require a lot of data to train. This project
seeks to create a paradigm and tool set that allows for
the easy creation of large datasets from the web.

Recent work exploring dataset bias [8] highlights
that in dataset competitions, algorithms often over-
adapt to the peculiarities of a dataset and lose their
generality. This work experiments with training and
testing on different datasets for object recognition and
shows a significant drop in performance. They also
discuss the problem with computer vision datasets
not being representative of the real world. Our work
solves these problems by generating living and breath-
ing datasets from the web. Not only will this prevent
over-adapting to datasets, but these images will be rep-
resentative of the real world.

This project extends work done by Mears [1] and
aims to create a system that generates large datasets of
images from the web while avoiding privacy and copy-
right issues. To avoid copyright and privacy issues, the
datasets will not be composed of image data but in-

1

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 29

stead of links that point to freely available images on
the internet.

A large mass of images without any organization
would not be very useful to researchers, so the system
must provide a way to clean up the data. This will be
done by allowing anyone to be able to create a filter. A
filter will take in any existing stream and will output
a subset of it as a new stream. Streams will be able to
be filtered based on characteristics of the meta data,
the image itself, or both the image and meta data.

The system will consist of three main parts; a feed
generator, a feed subscriber, and a contest engine. To
create these three main parts, a web crawler, down-
loader, filter creator, feed generator, database, and
interface between Matlab, Python, or any other lan-
guage that a researcher writes code in and the system
are necessary. Some of these parts have already been
created by Mears [1]. This includes the web crawler,
downloader, and some filters. Mears never got a fully
functional system working, and we rewrite some of the
things he has created. In subsequent sections we will
discuss what we have modified and have added to cre-
ate a functioning system and also what extra features
and ideas will be explored once the project in complete.
Figure 2 shows a use case diagram for the system.

2. Previous Work and Differences

Although this is a continuation of Mears’ work there
will be significant differences. The system we will cre-
ate will be more general and modular and will be more
of a framework that will allow researchers to create any
type of dataset they would like.

2.1. Web Crawler and Downloader
Mears [1] had modified the Heritrix3 web crawler

[9] to gather links and alt text from images on the web
along with the website title. He had also created a
database to store the information in and then has writ-
ten a downloader to download the images in order to
analyze them. We will keep the project in one lan-
guage, Python. We wrote a webcrawler from scratch
instead of modifying and existing web crawler. This al-
lows our web crawler to be easily customized and used
for creating any time of dataset.

2.2. Filters
Mears had implemented a way to detect and remove

duplications using a hashing method from [10] [11]. He
also used the OpenCV [12] version of the Viola-Jones
face detector [13]. He also had found and interesting
way to detect logos an such from [14] [15]. Instead
of creating filters for specific tasks, we create a filter

!"#$%#&'#(&)*+%#",

!"$(+&(#-&$'.&
/#'#"$%#&$&)##.

01-,2"*-#&%3&$&)##.

43('+3$.&*5$/#,&)"35&
$&)##.

6$"%*2*7$%#&*'&23'%#,%

88#9%#'.,:

881,#,::

88#9%#'.,:

88#9%#'.,:

;#,#$"2<#",&
4$%$,#%
!"#$%3",

Figure 2. Use case diagram of the system

template that allows for the easy generation of new
filters. We also provide examples of filters.

3. Architecture

As stated previously the system is composed of three
main parts. Below they will be discussed in detail.

3.1. Dataset Generator
The architecture for a typical dataset generator is

shown in Figure 3. It is composed of two parts, a
crawler and a filter. It takes as input a list of seed
websites for the web crawler, with this list the web
crawler will crawl the web and output the URL and
meta data for every image it finds. The format of this
output is a custom comma separated value feed.

It is unlikely that a dataset creator will want a
dataset of all images found on the web. Thus in the
typical case a filter will be used to prune the feed gener-
ated by the crawler. A filter could prune results based
on any criterion on the image or meta data. For exam-
ple a dataset creator may want to only include images

2

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 30

!"#$% &'%()"

*'+(,-.,
/))0,$)1+'()+

23#4),56*,
7,3)(#,0#(#

23#4),56*,
7,3)(#,0#(#

Figure 3. Architecture of Dataset Generator

in which the alt text from the image included the word
’rabbit’.

A more complicated example could be that a dataset
creator only wants images of faces. They may choose
to accomplish this by creating a filter that downloads
images from the web crawler feed then running a face
detector on those images with a low confidence thresh-
old. The feed outputted from this filter would then
contain images of faces and also a lot of false positives.
The dataset creators could then create another filter
that would take in the feed outputted by the previously
described filter and would then create a new filter that
utilizes Amazon Mechanical Turk and only outputs a
feed of image URLs and meta data of verified images
of faces.

As one can see, the architecture of the system is
designed in a way that it is very flexible. In the typical
case a web crawler will provide the first feed, but this
does not have to be the case. As long as there is a URL
to access the image a dataset creator could generate
a feed from any source. Also it should be observed
that filters can be chained together and be complex.
We provide a template to generate simple filters but
researchers may choose to create very complex filters on
their own, like the Amazon Mechanical Turk example
discussed above. Remember a filter just takes in a feed
and outputs a feed that is a subset of its input.

3.2. Feed Subscriber
The architecture for the Feed Subscriber is shown in

Figure 4. It takes in a URL of a feed that is generated
by a Dataset Generator. Feeds are just a standardized
file format the first step is to parse the feed file. Once
it is parsed any new image information in the feed will
then be sent to a module that checks a local database.
If the image and its meta data are not in the database,
then the image will be downloaded and inserted into
the database.

We plan on supporting common database manage-
ment systems (DBMS). If the user does not want to
use a DBMS, then SQLite will be used. Since the sys-
tem will be very modular if the user wants to use some
other non-supported storage system they can just mod-
ify the modules that check the database and insert into

the database.
Once a user subscribes to a feed they will start down-

loading the dataset. There could potentially be an issue
if multiple research groups want to compare their al-
gorithms and they all subscribed at different times. It
is our hope that since disk space is cheap, researchers
will subscribe early to feeds that they have a potential
interest in. If it is the case that research groups wish-
ing to compare algorithms have subscribed at different
times a more recent subset of the feed can be used.

3.3. Contest Engine
Figure 5 shows the architecture of the user side of

the Contest Engine. The Contest Engine allows com-
puter vision contests to be preformed in real time. Pre-
vious to the contest, the contest host can provide a
training feed which would include ground truth. Then
during the contest, the contest host would provide a
test feed. The research groups participating in the con-
test would use the Contest Engine which will first sub-
scribe to the test feed then check their local database
for the image, download it if necessary, perform their
algorithm on the image, and finally output their results
as a feed.

The motivation behind the contest engine is to pre-
vent participants in a contest from over adapting to
the dataset. Sometimes participants in contests will
have algorithms that specifically adapted to the dataset
being used. This does not help push the area of the
contest to be better as the winning algorithm may be
very good on the dataset being used in the contest but
perform poorly in general. The contest engine will al-
low contest to be carried out and since the dataset is
live from the web and constantly changing participants
must solve the general problem at hand.

We describe the architecture for the contest engine
above but we did not implement it. This would be
great future work.

4. Implementation

This project aims to be cross platform and to be
easy to modify. All of the components are written in
Python. The project uses some open source libraries

3

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 31

!"#$%&'($)'&
*+

,(-.'()*/01*)2#
34&.##*#*

35)6#&789&
:&5#2)&*)2)

;)<=#&>?9
@##*&789

35)6#&789&
:&5#2)&*)2)

Figure 4. Architecture of Feed Subscriber

!"#$%&'($)'&
*+

,(-.'()*/01*)2#
34&.##*#*

35)6#&789&
:&5#2)&*)2)

;)<=#&>?9
@##*&789

35)6#&789&
:&5#2)&*)2)

35)6#
9()*&A5)6#
3.2(&1<(6<)5

#B6&;C2"(./?)2')+
80.&D'6(

35)6#
8#=0'2&A.&

4##*

Figure 5. Architecture of Contest Engine

and these will be bundled with the project.

4.1. Dataset Generator
4.1.1 Web Crawler

The dataset generator is organized into a Python script
for the web crawler and another script for the filter.
The web crawler script utilizes a feed class. The web
crawler begins by putting one or more “seed” URLs
into a pool. Then a URL is selected from the pool and
its content is downloaded and parsed for links. The
found links are then added to the URL pool. Beautiful
Soup is used to find all the images that the web page
refers to. Relative links and image references are both
made absolute. Every image link found along with the
URL of the web page it was found on, its alt text, and
the current time are formed into a tuple which is then
added to a list in the feed class. After visiting a web
page the crawler calls a publish method on the feed
class. This outputs the contents of the feed to a file as
comma separated values.

The web crawler does not strive to be extremely
fast. It is not multi-threaded, it even pauses for a few
seconds after it visits each site. We do not strive for
speed in the web crawler because it generates a feed
which subscribers must read, parse, download images,
and process images from. If the web crawler performs
at a significantly quicker rate than the subscribers the
amount of ”new” unchecked items in the feed will in-
crease. A result of this is that the time between the
web crawler placing an image URL in the feed and the

time that URL is checked by the subscriber can be a
significantly long time, this can result in links no longer
be active or accurate which is undesirable.

4.1.2 Feed Format

The feed is contained in a custom comma separated
value file. The first line of the feed file contains the
Unix time for the last update to the feed. This allows
the file to be quickly checked for updates as only one
line needs to be read. The second line contains the
name of the feed. The third line contains the URL
where the feed is located. The fourth line contains a
short description of the feed. Then there is a blank
line and the sixth line contains the names of the fields
for each entry separated by commas, the first entry
is always the date of the entry. Each line after that
contains a line for each entry in the feeds. There is an
entry for every image reference. Bellow is a sample of
a feed.

1311712160
Bikes vs. Mobiles
http://www.anexample.com
Bikes and mobile Phone pictures from Craigslist

date pub,img url,site linked from,alt text

Then the feed would contain all the entries on sep-
arate lines. These are too long with all the URLs to
show an example for in a sensible way.

4

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 32

4.1.3 Filters

Filters must subscribe to an existing feed in order to
filter its results. This may be a feed being used for an-
other dataset or the feed being generated by the web
crawler. To subscribe to a feed the filter framework pe-
riodically opens the feed file of the feed it is subscribing
to. It checks the first line of the feed file which con-
tains the time the file was last updated. If this time is
greater than the time of the last check the filter frame-
work subscriber will parse and process the feed file line
by line until it reaches the entries it has already pro-
cessed.

The filters themselves are implemented in a func-
tional manner. Each filter is a function. These func-
tions can be chained together by having one filter call
another one. Every time a new entry is parsed from
the feed, the first function in the filter chain is called
and is passed the data for the entry. To create filters
easily Open CV or the Python Imaging Library can
be imported and their functionality can be used within
the filter functions.

4.2. Subscriber
The subscriber periodically checks a feed for new

image URLs and if there are new image URLs it will
download them and store their meta data in a database.
The subscriber is implemented in Python like the rest
of the project. In the same way the filter subscribes to
feeds the subscriber only needs to check the first line of
the feed file in order to determine if any changes have
been made. If there have been updates the subscriber
only reads the file until it has read all the new entries
it has not yet read before. The database being used
currently in a Sqlite3 database. The Python library
is used to create and interact with the database file.
The images are downloaded into a standard directory
and the paths to the images are stored in the database
with the other meta data related to the image and the
website it was found on. This allows quick querying on
the image meta data and then a simply using the path
to retrieve the image data if it is desired.

5. Observations

To test the current system, which consists of a web
crawler that generates feeds and a filter which sub-
scribes to a feed and filters the results, we inserted
code into the filter code to display the output of the
filter. We first used a filter that simply outputs ev-
erything from the feed it reads. When running this
filter on the output from the web crawler it is clear
how messy the images on the web are. A significant
proportion of the images found are styling elements of

websites, this includes logos, images for tool bars, and
one-by-one pixel images used to make shapes of one
color. Some examples are show in Figure 6.

Figure 6. Examples of logos found when crawling the web

We begin experimenting with other simple filters.
We observed that a filter which only keeps images
in which their size in each dimension is over a cer-
tain threshold is very effective at eliminating logos and
other images for styling websites. However we want
to reiterate that the system does and will not filter
out these images by default. Although we will include
this filter to be used, some people may want to cre-
ate datasets that include these images. Our system is
made to be flexible and easily modifiable.

On a small set of 434 websites 20418 images are re-
ferred to. This averages to 47 images per site. However
most of these images are just logos and other features
used to style web pages, and also avatars. The his-
togram in Figure 7 shows the minimum dimension size
for each image found.

6. Testing and Applications

In order to test the system and demonstrate its po-
tential uses we have crawled the web to create feeds,
filtered these feeds, and subscribed to these feeds. We
started out with choosing a seed and generating a feed
based on the web crawler unrestrictedly crawling, and
then using a basic filter to filter our small images as
discussed in the previous section.

6.1. Craiglist: Bikes vs. Mobile Phones Dataset

To demonstrate how customizable the system is and
to show a potential application we limited the web
crawler to Craigslist classifieds web pages for bikes and
mobile phones. Then we subscribed to this feed and
downloaded the images and meta data. The result of
this is a simple example dataset that could be used for
object detection of mobile phones and bicycles. We let
the subscriber download images for a few hours and
the number of images acquired is shown in the follow-
ing table.

5

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 33

0 500 1000 1500 2000 2500
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Figure 7. Histogram showing the minimum dimension size
for each image

Bikes Mobile Phones
Unique images with files 15717 11137

All unique images 16040 11356
Total entries in database 31578 22493

In the table above the first row shows the number of
actual unique image files downloaded that we also gath-
ered meta data for. The second row shows the number
of unique images that were entered into the feed but
that the subscriber failed to download, we end up with
the meta data but no image file for these images. The
last row in the table is the number of entries of meta
data that were entered into the database from the sub-
scriber.

The reason for such a large discrepancy is that the
feed generator has an entry for each unique pair of im-
ages URL and the URL of the web page it was referred
to from. It is not uncommon for the same image to be
used on multiple web pages. This is especially true of
logos that appear on every web page within a web site.

Figure 8 shows some images that were collected as
part of this example. It is clear that they are more
representative of images of mobile phones and bicycles
that people generally encounter.:

6.2. Future Work

In the future this project can be extended in several
ways. Although a basic architecture was described in

this paper the contest engine has not yet been imple-
mented. This would be a good first extension to this
work.

In this paper we show that the described and imple-
mented framework can be used to create datasets from
Craigslist. In the future more example datasets should
be generated from the framework, this would help test
the framework and also make researchers more likely to
use it for dataset generation and acquisition in the fu-
ture. This is important since multiple research groups
must be convinced to subscribe to a dataset feed for the
feed to be useful. Ebay would be a good contender for
testing out the framework, it has very well defined cate-
gories, is always being updates, and has a large number
of images. We believe it would be a good resource for
creating a object recognition dataset.

After the contest engine it should be used to hold
a basic example contest. This will provide more in-
formation on the properties of datasets created using
the system and will allow the differences between live
datasets and old standard datasets to be explored.

Another extension of this project would be to add
a graphical user interface. As of now the interface is
command line based. This extension could make using
the system more intuitive. A web based interface would
also be worth exploring as it would be cross platform
and allow for people to monitor and control the system
off site with ease.

As discussed previously the system is not multi-
threaded. Even though we do not view this as a large
disadvantage, it could be explored. If the web crawler
and feed generator were made mutli-threaded it would
be necessary to make the filter framework and the sub-
scriber to also be multi-threaded to avoid the problem
of the subscriber being unable to keep up with the rate
at which a feed was being added to.

We believe our feed format can handle hundreds of
thousands of entries in a feed. To make the reading
of feeds more efficient one could split the feed up into
multiple files and create a directory file. Then when
the feed is read first the directory file would be read
and then the appropriate feed file would be read. This
would prevent having files that are enormous.

References

[1] B. Mears, “Generating a Large, Freely-Available
Dataset for Face-Related Algorithms.” [On-
line]. Available: http://www.cs.uccs.edu/∼kalita/
work/reu/REUFinalPapers2010/Mears.pdf

[2] L. Fei-Fei, R. Fergus, and P. Perona, “Learning
generative visual models from few training exam-
ples: An incremental bayesian approach tested

6

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 34

Figure 8. Example images from our bikes vs. mobile phones dataset

on 101 object categories,” Computer Vision and
Image Understanding, vol. 106, no. 1, pp. 59–70,
2007.

[3] G. Griffin, A. Holub, and P. Perona, “Caltech-256
object category dataset,” 2007.

[4] R. Gross, I. Matthews, J. Cohn, T. Kanade, and
S. Baker, “The CMU multi-pose, illumination,
and expression (Multi-PIE) face database,” Tech-
nical report, Robotics Institute, Carnegie Mellon
University, 2007. TR-07-08, Tech. Rep.

[5] T. Sim, S. Baker, and M. Bsat, “The CMU pose,
illumination, and expression database,” IEEE
Transactions on Pattern Analysis and Machine
Intelligence, pp. 1615–1618, 2003.

[6] P. Phillips, H. Moon, P. Rauss, and S. Rizvi,
“The FERET evaluation methodology for face-
recognition algorithms,” in 1997 IEEE Computer
Society Conference on Computer Vision and Pat-
tern Recognition, 1997. Proceedings., 1997, pp.
137–143.

[7] G. Huang, M. Ramesh, T. Berg, and E. Learned-
Miller, “Labeled faces in the wild: A database for
studying face recognition in unconstrained envi-
ronments,” University of Massachusetts, Amherst,
Technical Report, vol. 57, no. 2, pp. 07–49, 2007.

[8] A. Torralba and A. Efros, “Unbiased Look at
Dataset Bias,” in Proc. IEEE CVPR 2011.

[9] K. Sigurdwwon, M. Stack, and I. Rani-
tovic. Heritrix user manual. Internet Archive.
[Online]. Available: http://crawler.archive.org/
articles/user\ manual/index.html

[10] S. Xiang, H. Kim, and J. Huang, “Histogram-
based image hashing scheme robust against ge-
ometric deformations,” in Proceedings of the 9th
workshop on Multimedia & security. ACM, 2007,
p. 128.

[11] M. Mıhçak and R. Venkatesan, “New iterative geo-
metric methods for robust perceptual image hash-
ing,” Security and Privacy in Digital Rights Man-
agement, pp. 13–21.

[12] G. Bradski, “The OpenCV Library–An open-
source library for processing image data,” Dr.
Dobbs Journal, pp. 120–125, 2000.

[13] P. Viola and M. Jones, “Rapid Object Detec-
tion using a Boosted Cascade of Simple,” in Proc.
IEEE CVPR 2001. Citeseer.

[14] A. Hartmann, “Classifying images on the web
automatically,” Journal of Electronic Imaging,
vol. 11, no. 4, pp. 1–0, 2002.

7

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 35

[15] V. Athitsos, M. Swain, and C. Frankel, “Distin-
guishing photographs and graphics on the world
wide web,” in IEEE Workshop on Content-Based
Access of Image and Video Libraries, 1997. Pro-
ceedings, 1997, pp. 10–17.

8

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 36

1

Can Summarization Improve Question Quality?
Bethany Griswold, University of Colorado Colorado Springs

Abstract— This project focuses on the generation of questions
based on Wikipedia articles, as well as the ranking of the
questions based on the content therein. A Wikipedia article
was first processed through a question generator, which ranked
questions generated based on grammatical correctness and com-
prehensibility of the question. Named entities throughout the
Wikipedia article were counted, consolidated, and ranked based
on the number of times the entities occurred in the article. Then
each question was ranked based on the number and significance
of named entities within the sentence. The score given to a
question for content relevance was averaged with the score for
grammar and comprehensibility, and then a final ranking was
done. Another system was also done where the Page Rank
algorithm was used on the questions with presence of named
entities used as the feature vector, and then the score given to a
sentence for page rank was averaged with the grammar score and
ranking was done based on the resulting scores. The resulting
set of ranked questions were compared against each other and
against the results of the Question Generator itself.

I. I N T R O D U C T I O N

Wikipedia, a website devoted to the collection and main-
tenance of a vast amount of knowledge, has in recent years
increased in its reliability as an on-line reference. Many other
web-based document sites have also emerged as potential
educational resources for teachers. However, unlike traditional
textbooks, most of these do not have practice and content
questions that can be used to test the knowledge and un-
derstanding of students who have read the document [1].
A utomatic generation of such questions is an interesting and
useful problem. Questions will be formulated using a pre-
existing system by Heilman [1]. This is how the algorithm
is described:
”Each of the sentences from the source text is expanded into
a set of derived declarative sentences (which also includes the
original sentence) by altering lexical items, syntactic structure,
and semantics. [...] a set of transformations derive a simpler
form of the source sentence by removing phrase types such as
leading conjunctions, sentence-level modifying phrases, and
appositives. [...] [The] implementation also extracts a set of
declarative sentences from any finite clauses, relative clauses,
appositives, and participial phrases that appear in the source
sentence. [...] In the second step, the declarative sentences
derived in step 1 are transformed into sets of questions by a
sequence of well-defined syntactic and lexical transformations
(subject-auxiliary inversion, WH -movement, etc.). It identifies
the answer phrases which may be targets for WH-movement
and converts them into question phrases. [...] The transfor-
mation from answer to question is achieved by applying a
series of general-purpose rules. [...] Eight Tregex expressions
mark phrases that cannot be answer phrases due to WH-
movement constraints. [...] We iteratively remove each possible
answer phrase and generate possible question phrases from

it. [...] Each question is scored according to features of the
source sentence, the input sentence, the question, and the
transformations used in its generation.”
This process is shown in F igure 1.
Ranking of content will be done by calculating significance
of named entities and their density within a sentence and
averaging that score with the score given to each sentence by
Heilman’s algorithm. We will also use a Page Rank algorithm
with feature vectors of Named Entities within the article as
an additional scoring method for relevance. These entities
will be taken from data extracted using a pre-existing system
which has succeeded in extracting temporal and geospatial
information [2].

I I. M O T I V A T I O N

Recent methods of automatically generating questions do so
by means of direct sentence manipulation to produce natural
language questions in English [3]. Sentences in a document
are manipulated to replace known entities with question words
(who, what, when). The sentence is then rearranged by the
system so that it is more likely to be grammatically correct,
and the most likely to be grammatically correct are displayed
to a user to choose from. B y contrast, our method attempts first
to obtain the sentences most likely to be dense with content
most central to the article, and focuses on ranking by content
importance and relevance. The question generator will still
rank for grammatical correctness, but then the questions will
be re-ranked to account for relevance.

I I I. PR I O R W O R K

There has been a variety of work previously on question
generation from textual content in the past. One method is
based on manipulating the structure of each sentence in an
article to generate one or more questions, then ranking the
questions based on grammatical correctness and importance.
This is the ”over-generate and rank” method, on which this re-
search will be partially based [3]. A nother method is question
generation for the particular domain of vocabulary assessment
[4]. There are also some tools and research on which this
project relies. The first is the Geografikos system, which
extracts temporal and geospatial data and then tags sentences
to indicate when and where they happened [2] [5]. We are
also following prior work of using summarization for feature
selection as a first step to a further goal. Where our goal is
question generation sorted by importance, it has previously
been used for text categorization [6]. We also used the Page
Rank algorithm as an additional content importance ranking
system [7], [8].

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 37

F ig. 1. Heilman’s O vergenerate and Rank Process

I V. PR O J E C T G O A L S

Our ultimate goal is to generate concise questions about
historical articles which are ranked based on the strength of
their relation to the core ideas of an article.
A t the start, we strip a Wikipedia article down to plain text.
A s an example, use an article on the Battle of Fredericksburg.
Here is an excerpt from that article:
”The battle was the result of an effort by the Union Army to
regain the initiative in its struggle against Lee’s smaller but
more aggressive army. Burnside was appointed commander
of the Army of the Potomac in November, replacing Maj.
Gen. George B. McClellan. Although McClellan had stopped
Lee at the Battle of Antietam in September, President of
the United States—President Abraham Lincoln believed he
lacked decisiveness, did not pursue and destroy Lee’s army
in Maryland, and wasted excessive time reorganizing and re-
equipping his army following major battles.”
The question generation tool created by Heilman generates
questions and ranks them based on the structure of the
question. Following are the top four ranked questions from
Heilman’s question generator, given the article on the Battle
of Fredericksburg:

• When was Burnside appointed commander of the A rmy
of the Potomac?

• Who was Burnside appointed in November?
• What was Burnside appointed commander of of the

Potomac in November?
• What was Burnside appointed commander of the A rmy

in November?
A ll of these questions are generated from the same sentence,
but only the first one is really a grammatically good question.
None of them are questions that address a very central concept

of what, when, and where the battle was or why it happened.
From a summarizer, we would hope to preserve as important
a sentence such as the first in the given paragraph:
”The battle was the result of an effort by the Union Army to
regain the initiative in its struggle against Lee’s smaller but
more aggressive army.”
Such a question could be, ”What was the battle a result of?”
We have multiple potential methods to try and accomplish this.
We used two methods of ranking for relevance based on
named entities. For each of these, the article is process
through Heilman’s question generator first, in order to get
the grammar score. The first analyzed the text for named
entities, ranked them, and used their presence within a given
sentence to determine the importance of that sentence to the
text overall. This is done by counting up the number of times
a named entity is mentioned within an article and giving that
named entity a score of that number. Then each sentence
is given a score determined by all the scores of the named
entities within that sentence divided by the length of the
sentence overall. This score is averaged with the grammar
score determined by Heilman’s algorithm and the resulting
questions are ranked, with the highest scored question first and
the lowest scored question last. The second method uses the
Page Rank algorithm, which determines relevant and similar
sentences based on the similarity of what named entities each
has. These processes are shown in F igure 2. The diagrams
show that following each process, the score for relevance is
averaged with Heilman’s score. We also used a fairly simple
method for comparison, which consists of processing the entire
text through a summarizer and then processing the summary
through a question generator, as in F igure 3.

2

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 38

F ig. 2. Ranking Process for N E Based Content Ranking and Page Rank Based Ranking. A ny summarization algorithm can be run on a body of text before
sending through this process in attempt to acheive better results.

F ig. 3. Summary Based Ranking Process

V. E V A L U A T I O N

The top 50, 25, and 10 questions, fair numbers of questions
for a quiz or test, produced by our six current methods of
ranking were rated by one person each on four different
features. The first feature is difficulty, which we are testing to
see if there is a trend between method of question generation
and difficulty of questions. We hope we can pick out questions
out of a corpus for a particular grade level. The second feature
is relevance, which tests whether or not understanding of the
particular question is important or vital to understanding of
the article as a whole. We hypothesize that most questions
rated highly for content by our algorithm should on average
be rated highly for the relevance feature by our evaluators.
The third feature is precision, which is the degree to which
the evaluator understands what the question is asking and feels
that the question is comprehensible and grammatically. We feel
that high ratings for precision will closely correspond to a high
ranking in Heilman’s algorithm.
A ll evaluators were given the full text of the article on the
Battle of Fredericksburg, along with the top 50 questions
produced by one of the methods of ranking. Each ranking
method was given to one person only. We decided not to allow
one person to evaluate more than one set of questions, as we

were concerned that a previous set of questions they had read
would influence their opinion of the current set of questions.
We also did not tell them the ranking method we used, in case
assumption of one set having a better ranking method would
influence their evaluation of the questions.
There is a bit of a conflict in doing these evaluations, as strong
readers may be best suited to assess vagueness, relevance, and
completeness, but their high reading level may cause their
judgments of difficulty to be very low. We do not have the
resources, however, to poll a wide variety of reading levels,
so while this point must still be evaluated, the bias of the
evaluators must be taken into account. We may also be able
to get better results if we are able to have each question set
evaluated by a greater number of people, so that the ratings
are less influenced by individual skill level.
The methods of question ranking which we decided to give
out for evaluation are as follows:

• Question generation from the full text and no further
ranking.

• Question generation from the first and last paragraph
summary of the full text and no further ranking.

• Question generation from the full text, followed by
Named Entity based content ranking.

• Question generation from the first and last paragraph
summary of the full text, followed by Named Entity based
ranking.

• Question generation from the full text, followed by Page
Rank based content ranking.

• Question generation from the first and last paragraph
summary of the full text, followed by Page Rank based
content ranking.

3

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 39

D ifferent Summarizers could be used in place of the very
simple reduction to the first and last paragraph of the text,
if a more intelligent summarization system was desired.

V I. R E S U LT S

One observation given to us by some of the evaluators was
that questions generated that required simply yes or no answers
were almost too easy to be good questions. Since this is not
accounted for in the rankings, a binary of whether something
is an acceptable or good question, we may want to do some
evaluations in the future that do address this, or otherwise
use the feature of Heilman’s algorithm that limits output to
questions that cannot be answered by true or false before doing
any more ranking and evaluation.
The average scores on each quality for the top 50, 25, and 10
generated questions are shown in the graph in F igure 4. Set 1 is
the question generation from the full text followed by Named
Entity ranking. Set 2 is the set produced by summarizing the
text by using the first and last paragraph before generating
questions from the summary and then processing the questions
through N E based raking. Set 3 was obtained by processing the
full text through the question generator, but no other ranking
was done. Set 4 is similar, but the text undergoes first and last
paragraph summarization first. Set 5 is the full text processed
through the question generator and then ranked using the Page
Rank algorithm. Set 6 also uses the Page Rank algorithm, but
starts out with a first and last paragraph summary.
There were some interesting features of the rankings in com-
parison to each other. We anticipated that when summarizing
and ranking based on named entities, overall relevance of the
top 50 ranked questions to the central points of the article
would be improved from algorithms that focused primarily on
comprehensible grammar. However, as you can see in F igure
4, this is not always the case. The questions in set 3 were
ranked most highly for relevance to the article. However, set 3
was the set produced by Heilman’s algorithm only, and nothing
was actively done to promote more significant questions in the
ranks. In fact, it seems that on average, no feature of the top
questions was significantly improved from the base question
generation by counting named entities and altering the ranking
of questions based on density and significance of named
entities or by summarizing the text before question generation.
However, compared to a simple summarization before question
generation, summarization followed by question generation
and N E based content ranking shows a marked improvement
in precision, relevance, and completeness, as you can see from
set 2 and set 4 in F igure 4.
Seeing that the overall average rating of features did not
improve with our added content ranking systems, we also did
some analysis of the evaluations on a case-by-case basis, with
regards to the trends of how well certain features were ranked
as an evaluator goes down the list of questions. We expected
that the questions near the top of the list would be higher rated
in all features except perhaps difficulty than those near the
bottom of the list. However, as you can see in F igures 5 and 6,
this is not the case in any generalizable way. Set 3 has only a
slight tendency toward both better precision ratings and better

F ig. 5. Relevance scores for all sets of questions generated for the top 50, 25,
and 10 questions. Only the questions in set 4 shows improvement of question
relevance ratings with increased selectivity of questions.

F ig. 6. Precision scores for all sets of questions generated for the top
50, 25, and 10 questions. Sets 3 and 5 are the only sets of questions that
show improvement of question precision ratings with increased selectivity of
questions.

relevance ratings in earlier questions, and this is, once again,
the set that we did not perform any additional rankings on. The
failure of all the additionally content ranked sets we believed
was likely due to content scores being averaged with grammar
scores, so that many of the questions may be very strong in one
sense, which compensates enough statistically for weakness in
another feature to allow it to be placed high in the rankings. To
test this hypothesis, we superimposed the rating for precision,
which should be most closely tied to ratings for grammar and
comprehensibility, on top of the ratings for relevance, which
should be closely tied to algorithmic ranking of content. This
is shown in F igure 7. If it was the case that our algorithmic
content ranking matched up with human evaluation of content
importance or centrality, Heliman’s algorithmic grammar and
comprehensibility ranking matched up with human evaluation
of precision, and the averaging of these features was causing
promotion of bad questions, we would see a nearly polar
opposite ranking on the other feature for questions rated very
high in a single feature late in the rankings or very low on
a single feature earlier in the rankings. We once again do
not see this in a definite enough trend to make a conclusive
statement about whether this is the case. However, it is once
again possible that given a high degree of variability in ratings
due to variability in skill levels, more evaluators could prove
useful in giving a more accurate assessment of each corpus of
questions.
A nother feature we wanted to consider looking into was
whether we could use certain summarization methods to
automatically extract questions with a certain level of difficulty
from a large corpus of questions. On this task, we got fairly
reasonable results. The questions with the highest difficulty
came from set 1, which generated questions from the full text

4

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 40

F ig. 4. Average ratings for features of top 50 questions generated by rating methods

F ig. 7. Precision scores superimposed on top of relevance scores. We supposed that we could be getting low ratings on questions ranked in the top 50 due to
a polarity between the grammatical correctness and article relevance giving a question a decent score and rating. While some cases show that low precision
scores are counterbalanced by high relevance scores and vice versa, this is by no means an overarching theme in our current data and we cannot assume this
is the cause of a lack of downward trend in acceptability of questions in lower rankings of questions.

5

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 41

and then re-ranked based on N E counts. The questions with
the lowest difficulty came from set 2, which underwent the
same process as set 1, but first was summarized to content
only in the first and last paragraph. Set 1 likely has a high
degree of difficulty in part because questions were generated
from the entire body of the text, where there are many minute
details that could be difficult to retain throughout the course of
reading the document. Yet this may not be entirely true, since
the questions from Set 3 were deemed slightly less difficult
than those from set 4, despite that Set 4 was summarized while
Set 3 was not and the process for generating and ranking the
questions was otherwise identical.

V I I. C O N C L U S I O N

Neither simple summarization before nor content ranking
based on Named Entity counts after question generation shows
any obvious improvement in question quality, article relevance,
or completeness of a question set in evaluating understanding
of an article. Only a very slight improvement in precision
was seen from the sets with named entity counting and no
summarization and page rank ranking and no summarization.
This could be due to the averaging of scores for content
and grammar quality resulting in promotion of questions that
are very good in one feature and very poor in another, but
analysis of the ranking data does not give conclusive support
for this hypothesis. It is also possible that more sophisticated
summarizers could show an improvement, or that using a
voting method of rating rather than an average content and
grammar score method could eliminate promotion of questions
with poor scores in one feature or the other. Further evaluation
may also need to be done on our current set of data in
order to determine how heavily individual ability played a
part in initial rankings of questions, and we may also want
to have a binary evaluation of questions being acceptable or
unacceptable. Until further evaluation proves otherwise, we
must conclude that Named Entity significance and density
evaluation on questions does not help to improve the content
quality and overall acceptability of generated questions.

V I I I. F U T U R E W O R K

To optimize on the different strengths and weaknesses of
each method, we hope to combine various methods in a voting
system in order to rank key questions highly and attempting
to maintain good, comprehensible grammatical structure. It is
possible that using a voting system between the top ranked
questions using Heilman’s algorithm and those ranked by any
number of ranking systems based on relevance will be more
effective than averaging scores in bringing questions to the
top which are both fairly relevant and fairly grammatical. It
could avoid retrieving questions that are highly grammatical
but completely irrelevant or highly relevant but incomprehen-
sible. Currently, we have a voting algorithm implemented,
but several result sets must still be generated from it and
evaluations must be gathered from a group of people.
It would also be beneficial to attempt to improve results
by using a wider variety of summarizers before question

generation. One such summarizer is the M E A D summa-
rizer [9]. Summarization algorithms are meant to compress
a document down to the essential and central information,
and so more sophisticated summarization than first and last
paragraph summarization could potentially result in a drastic
improvement in result relevance. However, it’s also possi-
ble that summarization could cause an increase in overall
ambiguity of the questions. This is partially due to there
being simply fewer sentences which Heilman’s algorithm can
rank for grammar and comprehensibility, and partially because
summarization inherently removes information, and lack of
enough information is what leads to ambiguity.
It is possible that the quality, utility, and relevance of the
results and ratings we obtained from our evaluators was
substantially decreased by the low number of evaluators we
had altogether. In order to gain better results for analysis and
ensure that the ability of the individuals rating sets produced
by various methods is not disproportionately skewing the data
to make it appear that certain methods are better than others,
a few things need to be done. The first is that it is essential
to have a greater number of people do further ratings on our
current results, so that we can do a more accurate evaluation on
the usefulness of various methods for articles like that on the
Battle of Fredericksburg. Then, we must produce evaluation
forms for other articles, which should not be a difficult task,
since we have all algorithms in place, and also distribute
those to a number of people. It could be that while the basic
grammar-only ranking is best for very complex articles like
that on the Battle of Fredericksburg for producing acceptable
questions, articles that are shorter or longer, simpler or more
complex, or more or less technical would have significantly
better questions resulting from a different ranking process.
If this is the case, these features could be analyzed in the
documents and incorporated into the voting algorithm.
F inally, we should attempt to determine what features in a
sentence lead to a high level of difficulty. Since the purpose
of generating questions is to assist in developing content for
education, it would be helpful if it were possible to develop an
algorithm that would attempt to sift through a set of questions
to find those appropriate for a particular grade level. This may
require deeper analysis of not only grammatical structure and
Named Entity significance, but also analysis of vocabulary to
determine if the general language of a question, or perhaps
a full article, is appropriate for a certain age, grade level or
reading level.

A C K N O W L E D G E M E N T

The research reported in this document has been funded
partially by NSF grants C NS-0958576 and C NS-0851783.

R E F E R E N C E S

[1] M. Heilman, “A utomatic factual question generation from text,” Ph.D.
dissertation, Carnegie Mellon University, 2011.

[2] R. Chasin, D. Woodward, and J. K alita, Machine Intelligence. Narosa
Publishing, 2011, ch. E xtracting and D isplaying Temporal Entities from
H istorical A rticles, pp. 1–13.

[3] M. Heilman and N. Smith, “ Good question! statistical ranking for
question generation.” Los A ngeles: C iteseer, 2010, pp. 609–617.

6

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 42

[4] J. Brown, G. Frishkoff, and M. Eskenazi, “A utomatic question generation
for vocabulary assessment,” in Proceedings of the conference on Human
Language Technology and Empirical Methods in Natural Language
Processing. A ssociation for Computational L inguistics, 2005, pp. 819–
826.

[5] J. Witmer and J. K alita, “ E xtracting geospatial entities from wikipedia,”
in Third IEEE on Semantic Computing. Berkely, C A : ICSC 2009,
September 2009, pp. 450–457.

[6] A . Kolcz, V. Prabakarmurthi, and J. K alita, “Summarization as feature
selection for text categorization,” in Proceedings of the tenth international
conference on Information and knowledge management. A C M, 2001,
pp. 365–370.

[7] G. Erkan and D. Radev, “ Lexrank: Graph-based lexical centrality as
salience in text summarization,” Journal of Artificial Intelligence Re-
search, vol. 22, no. 1, pp. 457–479, 2004.

[8] R. M ihalcea and P. Tarau, “ Textrank: Bringing order into texts,” in
Proceedings of EMNLP, vol. 4. Barcelona: A C L, 2004, pp. 404–411.

[9] D. Radev, T. A llison, S. B lair-Goldensohn, J. B litzer, A . Çelebi, S. D im-
itrov, E. Drabek, A . Hakim, W. Lam, D. L iu, J. Otterbacher, H. Q i,
H. Saggion, S. Teufel, M. Topper, A . Winkel, and Z. Zhang, “ M E A D -
a platform for multidocument multilingual text summarization,” in LREC
2004, L isbon, Portugal, May 2004.

7

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 43

Summarization of Historical Articles Using
Temporal Event Clustering

James Gung
Department of Computer Science

University of Colorado at Colorado Springs
Colorado Springs, Colorado 80918

Abstract—In this paper, we investigate the use of temporal
information for improving extractive summarization of historical
articles. Our method timestamps every sentence in an article, then
clusters the sentences based on their temporal similarity. Each re-
sulting cluster is assigned an importance score which can then be
used as a weight in traditional sentence ranking techniques. We
cluster thirteen Wikipedia articles describing historical events.
Twelve out of thirteen of the clusterings correctly identify the
main events of the articles. Temporal importance weighting offers
consistent improvements over baseline systems.

I. INTRODUCTION

As the sheer quantity of available information grows, the
ability to rapidly locate the salient points in documents be-
comes increasingly valuable. Manually filtering through large
documents for relevant information is a difficult and time-
consuming task. The automatizing of text summarization has
therefore become an extremely important area of research.

Extractive summarization involves selecting the k sentences
that best summarize a document. Extensive research has gone
into determining which features of text documents are useful
for calculating the importance of sentences, as well as how to
use these features [1]. Little work, however, has considered the
importance of temporal information towards single document
summarization. This is likely because many text documents
have very few explicit time features and do not necessarily
describe topics in chronological order, thus making reliable
time feature interpolation for each sentence an impractical
expectation.

Historical articles, such as Wikipedia articles describing
wars, battles, or other major events, possess characteristics that
lend themselves towards time interpolation for each sentence.
Historical articles tend to contain many explicit time features
relative to other kinds of articles. Additionally, historical
articles tend to describe events in chronological order. This
further increases the reliability of time feature interpolation.

The motivation of our investigation is based on two basic
assumptions pertaining to the structure of historical articles.
First, historical articles tend to focus on a single central
event, despite mentioning numerous other events of lesser
importance. The importance of other events can then be judged
by their temporal distance from this central event. Second,
important events in an article will be described in greater
detail, employing more sentences than less important events.
We propose a method that exploits these assumptions.

Given an article where every sentence is assigned an explicit
timestamp, we cluster the sentences based on their temporal
similarity. That is, each cluster should contain sentences de-
scribing events that occurred around the same general times-
pan. We cluster the sentences by creating a hierarchical set
of event boundaries using novelty scores as discussed in [2].
Based on the previous two assumptions, the largest cluster
pertains to the central event of the article. Each cluster is
assigned an importance score based on cluster size, spread,
and distance from the cluster describing the central event of
the article.

This paper investigates the value of this temporal-based
score towards automatic summarization, specifically focusing
on historical articles. We investigate whether or not the score
can be used as a weight in traditional sentence ranking tech-
niques to improve summarization quality. For testing purposes,
we implement TextRank as a baseline system.

II. RELATED WORK

Considerable work has gone into designing and improving
extractive summarization techniques. These techniques look at
various features of the text, such as word or phrase frequency,
sentence position, or sentence to sentence cohesion.

Event-based summarization is a more recent approach to
summary generation. Filatova et al. [3] introduced atomic
events as a useful extractable feature for extractive summariza-
tion. Atomic events are defined as named entities connected
by a relation such as a verb or action noun. Events are
then selected for summary by applying a maximum coverage
algorithm to minimize redundancy while maintaining coverage
of the major concepts of the document. Vanderwende et
al. [4] identity events as triples (consisting of two nodes
and a relation) similarly to [3]. PageRank is then used to
determine the relative importance of these triples represented
in a graph. Sentence generation techniques are applied towards
summarization, achieving results competitive with extractive
summarization. We identify events in sentences for temporal
extraction, but consider only one time interval per sentence.

Limited work has explored the use of temporal information
for summarization. Lim et al. take advantage of the explicit
time information given in multi-document summarization
(MDS) for sentence extraction and detection of redundant
sentence, ordering input documents by time [6]. They base
their technique on the observation that important sentences

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 44

tend to occur in in time slots containing more documents
and time slots occurring at the end and beginning of the
documents set. Using traditional methods for extraction of
important sentences, they select topic sentences for each time
slot, giving higher weights based on the above observation.

Wu et al. use time features towards extractive summarization
[7]. They extract events from the text that consist of event
elements, the arguments in an event, and event terms, the
actions. Each event is then placed on a timeline divided into
intervals consistent with the timespan of the article. Each
element and event term receives a weight corresponding to the
total number of elements and event terms located in each time
interval the event element or term occupies. Each sentence is
then scored by the total weight of event elements and terms
it contains. Encouraging results are reported.

Clustering of events based on time has also received little
attention. Cooper et al. investigate clustering towards orga-
nizing timestamped digital photographs [5]. They present a
method that first calculates the temporal similarity between all
pairs of photographs at multiple time scales. These values are
stored in a chronologically ordered matrix. Cluster boundaries
are determined by calculating novelty scores for each set of
similarity matrices. These are then used to form the final
clusters. We adopt this clustering method for clustering our
timestamped sentences.

III. APPROACH

A. Overview

The goal of our method is to give each sentence in an article
a temporal importance score that can be used as a weight in
traditional sentence ranking techniques. To do this, we need
to gain an idea of the temporal structure of events in an
article. In other words, we want to identify groups of sentences
describing events that occurred in the same general timespan.
A score must then be assigned to each group corresponding
to the importance of the group’s timespan to the article as a
whole. Each sentence in a particular group will be assigned
the same temporal importance score, necessitating the use of
a sentence ranking technique to find a complete summary.

B. Temporal Information Extraction

Relatively accurate timestamps for events in an article are
needed for this method to be applicable. Timestamp interpola-
tion accuracy depends on the temporal linearity and number of
explicit time features in a particular article. Thus, this method’s
usefulness is dependent on these factors.

For the purposes of this article, we use a temporal expres-
sion normalizer to extract the explicit time features. Heideltime
is a rule-based system that uses sets of regular expressions
to extract time features [8]. Events that occur between each
Heideltime-extracted timestamp are naively assigned times-
tamps consisting of when the prior timestamp ends and the
subsequent timestamp begins. This method of temporal ex-
traction is not reliable, but serves the purposes of testing as
a reasonable baseline for temporal extraction systems. As the

precision increases, the performance of our system should also
improve.

C. Temporal Clustering

Clustering is a method for discovering structure in unstruc-
tured datasets. To cluster our sentences into temporally-related
groups, we adopt a clustering method proposed by Cooper et
al. for grouping digital photograph collections based on time.

SK(i, j) = exp

(
−|ti − tj |

K

)
(1)

Inter-sentence similarity is calculated between every pair
of sentences. The similarity measure is based inversely upon
the distance between the central time of the sentences (shown
in 1). The similarity scores are calculated at varying granu-
larities of time. If the article focuses on a central event that
occurs over only a few hours, such as the assassination of
John F. Kennedy, the best clustering will generally be found
from similarities calculated using a smaller time granularity.
Conversely, articles with central events spanning several years,
such as the American Civil War, will generally be clustered
using similarities calculated at larger time granularities.

The similarities are placed in a matrix and organized
chronologically in order of event occurrence time. The re-
sulting matrix is structured such that entries close to the
diagonal of the matrix are among the most similar and the
actual diagonal entries are maximally similar (diagonal entries
correspond to similarities between the same sentences).

To calculate temporal event boundaries, Cooper et al. de-
scribe a method for calculating novelty scores [5]. A checker-
board kernel in which diagonal regions contain all positive
weights and off-diagonal regions contain all negative weights
is correlated along the diagonal of the similarity matrix. The
weights of each entry in the kernel are calculated from a
Gaussian function such that the most central entries have the
highest (or lowest in the off-diagonal regions) values. The
result is maximized when the kernel is located on temporal
event boundaries. In relatively uniform regions, the positive
and negative weights will cancel each other out, resulting
in small novelty scores. Where there is a gap in similarity,
presumably at an event boundary, off diagonal squares will be
dissimilar, thus increasing the novelty score [2]. In calculating
novelty scores with each set of similarity scores, we obtain a
hierarchical set of boundaries. With each time granularity, we
have a potential clustering option.

In order to choose the best clustering, we calculate a
confidence score for each boundary set, then choose the
clustering with the highest score, as suggested in [5]. This
score is the sum of intercluster similarities between adjacent
clusters subtracted from the sum of intracluster similarities as
seen in Equation 4. A high confidence score then suggests low
intercluster similarity and high intracluster similarity.

IntraS(BK)S =

|Bk|−1∑
l=1

bl+1∑
i,j=bl

SK(i, j)

(bl+1 − bl)2
(2)

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 45

Fig. 1. Similarity matrices at varying K displayed as heat maps, darker representing more similar entries. Similarities scores calculated with higher values
of K correspond to broader time scales (months vs. days). Left to right, K is increased by a factor of 10 at each iteration.

Fig. 2. A gaussian-tapered kernel used to calculate novelty scores. This is slid along the diagonal of each similarity matrix, calculating a novelty score
for each sentence. Positive diagonal regions correlate with high intracluster similarity entries. Negative off-diagonal regions multiply by the low intercluster
similarity entries, resulting in higher total novelty scores at temporal event boundaries.

InterS(BK)S =

|Bk|−2∑
l=1

bl+1∑
i=bl

bl+2∑
j=bl+1

SK(i, j)

(bl+1 − bl)(bl+2 − bl+1)

(3)

ConfidenceS(BK) =

IntraS(BK)S − InterSBK)S
(4)

D. Estimating Clustering Paramaters

There are several parameters we must consider before
clustering the sentences. Historical articles describing wars
will generally have much larger timespans than articles de-
scribing battles. Looking at battles at a broad time granularity
applicable to wars may not produce a meaningful clustering.
Thus, it is worthwhile for us to estimate the temporal structure
of each article before clustering. The time granularity for each
clustering is controlled by the K parameter in the similarity
function between sentences. To find multiple clusterings, we

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 46

start at a base K, then increment K by a multiplier for each
new clustering. We calculate the base K using the standard
deviation for event times in the article. Measuring the spread
of events in the article gives us an estimate of what time scale
we should use for measuring similarity.

E. Calculating Temporal Importance

We use three metrics to calculate the importance of a cluster
towards a summary. The first metric is based on the size of
the cluster (5). This is partially motivated by the assumption
that more important events will be described in greater detail,
thus producing larger clusters. The second metric (6) is based
on the distance from the cluster’s centroid to the centroid
of the largest cluster, corresponding to the central event of
the article. This metric is motivated by the assumption that
historical articles have a central event which is described in
the greatest detail. The third metric is based on the spread
of the cluster (7). Clusters with large spreads are unlikely to
pertain to the same event, and should therefore be penalized.

Size(Ci) =
|Ci|
|Cmax|

(5)

Sim(Ci) = exp

(
−|tCiCentroid − tMaxClusterCentroid|

m

)
(6)

Spread(Ci) = exp

(
− σCi

n ∗ (tmax − tmin)

)
(7)

The parameters m and n serve to weight the importance of
these measures and are assigned based on the spread of events
in an article.

The three measures are weighted and multiplied together to
obtain a final importance score, working in tandem to ensure
that the importance measure will still be valid even if the
largest cluster does not correspond to the central event of the
article. If the central event is broken up into multiple clusters,
they will likely be located nearby each other. If the largest
cluster does not correspond to the central event, following our
assumption that the central event is described in the greatest
detail, it will likely consist of many spread out smaller events,
resulting in a greater spread and a decreased importance score.
Conversely, clusters corresponding to the central event will be
more concentrated relative to the length of the article, and be
rated as more important.

F. Final Sentence Ranking

Each sentence is assigned a temporal importance score
equal to the importance score of the cluster to which it
belongs. To find a complete ranking of the sentences, we
need to apply a traditional sentence ranking technique. Any
automatic summarization technique that ranks its sentences
with specific numerical scores can potentially be augmented
with our temporal importance weight.

WS(Vi) = (1−d)+d∗
∑

Vj∈In(Vi)

wj,i∑
vk∈Out(Vj)

wj,k
WS(Vj)

(8)
Existing graph-based methods for sentence ranking apply

Google’s PageRank algorithm to rank sentence importance [9].
Sentences are represented as nodes on a graph. Some measure
of similarity between each of the sentences is calculated,
such as cosine similarity or the number of shared open-class
words between each pair of sentences [10]. Edges are placed
between sentence pairs with similarities above a particular
threshold. After giving each node an arbitrary score, the
algorithm iteratively calculates the scores of each node based
on the scores of neighboring nodes. This score is weighted
by the ratio of the weight of the edge between a neighboring
node and the current node divided by the total weight of all
edges leaving the neighboring node. These weighted scores
are then summed to determine the score of the current node
(Equation 8). We set a damping factor d to 0.85, which in
the context of PageRank is used to model the probability
of randomly jumping to another page. The scores of each
node after convergence indicate the relative importance of each
sentence.

Similarity(Si, Sj) =
|{wk|wk ∈ Si&wk ∈ Sj}|
log(|Si|) + log(|Sj |)

(9)

We choose to use TextRank in our experiments. Our simi-
larity measure is calculated using the number of shared named
entities and nouns between sentences as seen in Equation 9.
For identification of named entities, we use Stanford NER
[11]. It is straightforward to weight the resulting TextRank
scores for each sentence using their cluster’s temporal impor-
tance.

IV. EXPERIMENTAL RESULTS

Evaluation of summaries is traditionally accomplished using
ROUGE, Recall-Oriented Understudy for Gisting Evaluation
[12]. ROUGE automatically determines the quality of sum-
maries by comparing them to human-created ideal summaries
based on measures such as number of overlapping n-grams,
word sequences or word pairs. To apply ROUGE, we use
human-annotated summaries of the articles we wish to evalu-
ate. These were obtained by asking volunteers to choose what
they consider to be the most important sentences from each
article.

Using these human-annotated summaries as gold standards,
we compare the performance of sentence ranking systems with
and without temporal weighting. ROUGE-N computes the
number of co-occurring N-grams in the system summary and
set of gold standard reference summaries. This is divided by
the total number of N-grams in the set of reference summaries.
Thus this is a recall-oriented measure. We evaluate using
ROUGE-2 bigram matching.

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 47

A. Clustering

The Wikipedia articles we test each contain a topic sentence
stating the timespan of the main event described by the article.
This provides an easy way to determine whether or not a
clustering is successful. If the largest cluster contains the
timespan of the main event described by the topic sentence,
we consider the clustering to be successful (so long as the
clustering isn’t trivial). The articles vary greatly in length.
Also, the ratio of sentences with time features to sentences
without is considerably varied. We would expect the temporal-
weighted summaries of articles with larger ratios to have more
reliable clusterings than those of articles with smaller ratios as
they contain more temporal information to interpolate from.

Out of thirteen articles, twelve were successful clusterings
by the above criterion. Only Nickel Grass was clustered poorly,
the clustering algorithm dividing the main event into two
clusters. It is of interest to note that Nickel Grass had one of
lowest ratios of sentences containing time features to sentences
without, which possibly explains the poor clustering.

B. Temporal Importance Weighting

We test our TextRank implementation on thirteen Wikipedia
articles, with and without temporal importance weighting. The
articles vary widely in length and ratio of sentences containing
time features to sentences without. Each article has at least two
human-annotated gold standard summaries for use in ROUGE.

We observe consistent improvements for the articles using
the TextRank system with temporal importance weighting
over the bare TextRank implementation. In general, articles
containing sentences that TextRank ranked highly, but that
contain sentences occurring at significantly different times
than the central events of the articles observe significant
improvements. Although the content of these sentences is
highly related to the rest of the article, they should not be
included in the summary since the events they contain occur
nowhere near the main event temporally.

In 1904, the United Spanish War Veterans was created from
smaller groups of the veterans of the Spanish American War.

Fig. 3. An initially highly ranked sentence excluded from the final summary
due to low temporal importance

Similarly to the TextRank system, our random ranking
system observes small improvements when augmented with
temporal importance weighting. The results, however, are more
mixed. It is likely that additional human-annotated summaries
are necessary for conclusive results. The gold standard sum-
maries widely vary in length and content, displaying the
inherent subjectivity and difficulty involved in evaluation.

V. CONCLUSIONS AND FUTURE WORK

The novelty-based clustering method worked extremely well
for our purposes. Out of thirteen articles, twelve were clustered
such that the temporal bounds of the main events composed
or belonged to the largest clusters. These results can likely
be improved upon using more advanced temporal extraction

TABLE I
RESULTS OF CLUSTERING ON the Battle of Fredericksburg, ONLY EXPLICIT

TIME FEATURES.

Centroid: 09/01/1862
09/01/1862 Although McClellan had stopped Lee at the Battle of Anti-

etam in September, President Abraham Lincoln believed...
Centroid: 11/14/1862

11/01/1862 Burnside was appointed commander of the Army of the
Potomac in November, replacing Maj. Gen. George...

11/09/1862 Burnside, in response to prodding from Lincoln and General-
in-Chief Maj. Gen. Henry W. Halleck, planned...

11/16/1862 The Union Army began marching on November 15, and the
first elements arrived in Falmouth on November 17.

11/21/1862 By November 21, Lt. Gen. James Longstreet’s Corps had
arrived near Fredericksburg, and Jackson’s was....

11/25/1862 The first pontoon bridges arrived at Falmouth on November
25, much too late to enable the Army of the Potomac...

Centroid: 12/13/1862
12/13/1862 The Battle of Fredericksburg, fought in and around Freder-

icksburg, Virginia, from December 11 to December 15...
12/13/1862 The Union Army suffered terrible casualties in futile frontal

assaults on December 13 against entrenched Confederate...
12/09/1862 On December 9, he wrote to Halleck, ”I think now the enemy

will be more surprised by a crossing immediately...
12/11/1862 Union engineers began to assemble six pontoon bridges on

the morning of December 11, two just north of the town...
12/11/1862 Eventually his subordinates convinced Burnside to send land-

ing parties over in the boats that evening to secure...
12/12/1862 Over the course of December 11 to December 12, Burnside’s

men deployed outside the city and prepared to attack...
12/13/1862 The battle opened south of the city at 8:30 a.m. on December

13, when Franklin sent two divisions from the Left...
12/13/1862 By 10 a.m., a thick fog began to lift, and the initially sluggish

movements picked up speed.
12/13/1862 The initial assaults west of Fredericksburg began at 11 a.m.

as French’s division moved along the Plank Road...
12/13/1862 Griffin’s division renewed the attack at 3:30 p.m., followed

by Humphrey’s division at 4 p.m.
12/13/1862 At dusk, Getty’s division assaulted from the east and was also

repulsed.
12/13/1862 Thousands of Union soldiers spent the cold December night

on the fields leading to the Heights, unable to move...
12/14/1862 The armies remained in position throughout the day on

December 14, when Burnside briefly considered leading...
12/14/1862 That afternoon, Burnside asked Lee for a truce to attend to

his wounded, which Lee graciously granted.
12/15/1862 The next day the Federal forces retreated across the river, and

the campaign came to an end.
12/13/1862 Stationed at the stone wall by the sunken road below Marye’s

Heights, Kirkland had a close up view to the suffering...
12/13/1862 The Cincinnati ”Commercial” wrote, ”It can hardly be in

human nature for men to show more valor...

and interpolation methods, as our baseline method used a very
naive heuristic for interpolating between time features prone
to error.

The temporal importance weighting had mixed results with
both TextRank and random ranking. The average ROUGE
score between all articles was modestly increased, but not
significantly. Several single articles showed significant im-
provement when the ranked sentences were weighted with
temporal importance measures. However, improvement was
not uniform across all thirteen articles. We attribute decreases
in ROUGE scores to poor clusterings. This demonstrates the
importance to this method of finding good clusterings, and
consequently correctly extracting and interpolating temporal

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 48

TABLE II
ROUGE SCORES FOR AN IMPLEMENTATION OF TEXTRANK WITH AND

WITHOUT TEMPORAL WEIGHTING.

ROUGE-2
System TextRank Weighted TextRank
Chancellorsville 0.26495 0.26305
Chickamauga 0.23206 0.22856
Coral Sea 0.34436 0.29591
First Barbary 0.17499 0.14087
Fredericksburg 0.12713 0.05555
Gulf War 0.33408 0.32225
Hampton Roads 0.21486 0.21486
Korean War 0.26084 0.23666
Nickel Grass 0.38962 0.33268
Spanish American 0.32889 0.32373
Vicksburg 0.25000 0.23118
War of 1812 0.20970 0.20960
Whiskey Rebellion 0.21573 0.21573

TABLE III
ROUGE SCORES FOR RANDOMLY SCORED SUMMARIES WITH AND

WITHOUT TEMPORAL WEIGHTING.

ROUGE-2
System Random Weighted Random
Chancellorsville 0.25159 0.23051
Chickamauga 0.13787 0.16213
Coral Sea 0.17349 0.25397
First Barbary 0.16882 0.12637
Fredericksburg 0.10565 0.09929
Gulf War 0.20082 0.16227
Hampton Roads 0.29714 0.19302
Korean War 0.23441 0.21803
Nickel Grass 0.14003 0.14003
Spanish American 0.27194 0.23872
Vicksburg 0.15585 0.19626
War of 1812 0.28849 0.27814
Whiskey Rebellion 0.10308 0.14556

information. Further testing and additional human-annotated
summaries are necessary for conclusive results with regard to
temporal importance weighting.

It may also be fairly easy to predict the success of using
this temporal weight a priori to summarization of an article.
A small ratio of explicit time features to sentences (less than
0.15) indicates that the temporal interpolation process may
not be very accurate. Many other measures can be considered.
The linearity of time features is also a good indication of
the success of temporal extraction. More chronological event
description will reduce the risk of errors in temporal inter-
polation. The spread of time features in an article is also a
clue to the success of our weighting method. A greater spread
indicates that more events will occur farther from the main
event of the article necessitating the use of our weighting
scheme to filter out unimportant sentences from the summary.
Prediction of temporal weighting success would allow for the
potential of improving summarization without a great risk of
reducing the quality of the summaries by assigning incorrect
importance weights.

We have naively assigned a time interval to each sentence.
Individual events within sentences are not considered sepa-

rately. Future work might individually extract events from
each sentence, assigning time intervals to each event. For
summarization purposes, the most representative event should
be chosen for clustering.

Given the success of clustering major temporal events in
historical articles, many directions in future work can be
taken. It would be useful to augment timeline generation
techniques using the hierarchical set of temporal event bound-
aries produced by the clustering algorithm. Timelines might
be constructed at multiple scales, selecting important events
representative of each cluster to display at each granularity,
allowing the user to progressively zoom in on temporal regions
and be provided with more detailed information representative
of the region.

Additional sentence importance measures might be explored
using the temporal clusterings. Summarization in the vein of
maximum coverage, based upon maximally covering topics
using a minimal number of sentences, might be explored using
temporal boundaries to designate topics.

An alternative approach to clustering the sentences would
be to incorporate a content-based similarity measure in the
distance measure for the clustering algorithm. This additional
dimension would allow for identification of major events that
occurred simultaneously but in different clusters. Such an
approach would be useful in articles describing events that
occurred in parallel.

We presented a method for weighting sentences based on
their temporal importance. Sentences are clustered based on
the times of events occurring within them. The largest cluster
is designated the major event of the article, and other clusters
are scored based upon their distance from this cluster, their
size, and their spread. Sentences are weighted based on the
score of the cluster to which they belong. This weight is used
to augment a traditional sentence ranking method, TextRank.
We test summarization systems with and without this temporal
importance weight, observing modest improvements.

ACKNOWLEDGEMENTS

The research reported in this document has been funded
partially by NSF grants CNS-0958576 and CNS-0851783.

REFERENCES

[1] V. Gupta and G. S. Lehal. A survey of text summarization extractive
techniques. Journal of Emerging Technologies in Web Intelligence,
2(3):258–266, August 2010.

[2] J. Foote and M. Cooper. Media segmentation using self-similarity
decomposition. Proceedings of SPIE, 5021:167–175, 2003.

[3] E. Filatova and V. Hatzivassiloglou. Event-based extractive summariza-
tion. In Text Summarization Branches Out: Proceedings of the ACL-04
Workshop, pages 104–111, Barcelona, Spain, July 2004. Association for
Computational Linguistics.

[4] L. Vanderwende. Event-centric summary generation. In DUC 2004, 2004.
[5] M. Cooper, J. Foote, A. Girgensohn, and L. Wilcox. Temporal event

clustering for digitial photo collections. ACM Transactions on Multimedia
Computing, Communications and Applications, 1(3):269–288, August
2005.

[6] J.-M. Lim, I.-S. Kang, J.-H. J. Bae, and J.-H. Lee. Sentence extraction
using time features in multi-document summarization. Information
Retrievel Technology, pages 82–93, 2005.

[7] M. Wu, W. Li, Q. Lu, and K.-F. Wong. Event-based summarization using
time features. In CICLing 2007, pages 563–574, 2007.

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 49

[8] J. Strötgen and M. Gertz. Heideltime: High quality rule-based extraction
and normalization of temporal expressions. In Proceedings of the 5th
International Workshop on Semantic Evaluation, ACL 2010, pages 321–
324, Uppsala, Sweden, July 2010.

[9] D. R. Radev and G. Erkan. Lexrank: graph-based centrality as salience
in text summarization. In Journal of Artificial Intelligence Research,
volume 22, pages 457–479, 2004.

[10] R. Mihalcea and P. Tarau. Textrank: Bringing order into texts. In
Proceedings of EMNLP, volume 4, pages 404–411. Barcelona: ACL,
2004.

[11] J. R. Finkel, T. Grenager, and C. Manning. Incorporating non-local
information into information extraction systems by gibbs sampling.
Proceedings of the 43nd Annual Meeting of the Association for Com-
putational Linguistics, pages 363–370, 2005.

[12] C.-Y. Lin. Rouge: A package for automatic evaluation of summaries.
In Workshop On Text Summarization Branches Out, 2004.

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 50

1

Pareto Optimal User Interface Design
Sujay Jayakar

Abstract—User interface design is more an art than a science,
yet developers do not have the luxury of designing unique inter-
faces for every user’s needs. Therefore, in situations where soft-
ware designers cannot accommodate the entirety of user diversity,
optimization based approaches can fill in the gaps. We present a
method of designing interfaces using multi-objective optimization.
When performing our static optimization computation, we defer
forcing trade offs between different objectives, yielding a set of
Pareto optimal solutions. Once the user has declared his or her
preferences, a secondary ordering on the Pareto set can then
find a unique optimal interface for that individual. Since we
perform most of the optimization beforehand, we can incorporate
global characteristics that real time implementations struggle
to capture. The benefit of our approach is largely practical.
The computation we perform, the optimization with respect to
multiple objectives, could be performed similarly in theory by
constraining all of the objectives save one and using the current
approaches to single-objective based user interface optimization.
This alternative approach, however, is unfeasibly expensive in
the face of many, opposing objectives, and exploiting the multi-
objective nature of the problem cuts down on the time needed
substantially. Furthermore, our approach intelligently distributes
the computational burden of optimization between design time
and run time, which stands in sharp contrast with the monolithic
run time only and design time only approaches.

I. INTRODUCTION

COMPUTER user interfaces are typically designed by
hand by software designers, who aim to maximize the

utility of their software to their user base. Artificial intelligence
researchers have long proposed to leave this optimization to
the computer. This suggestion has been met with skepticism
from the HCI community. We acknowledge the difficulty of
procuring acceptable machine designed interfaces, but there re-
main situations where such automatically generated interfaces
are appropriate. Interface designers typically target a single
class of user and platform, with no variance allowed. We
propose using the technique of multi-objective optimization
to introduce a new level of flexibility in a program’s inter-
face. The quality of interfaces is governed by a plethora of
objectives, which are often orthogonal and hard to compare.
Traditional approaches force a trade off between these ob-
jectives during the optimization phase, which may lead to a
solution that does not suit the user’s preferences. Trade offs
may take the form of some linear combination of the different
objectives with varying weights: The problem remains of
intelligently choosing the weights, and even with all possible
weights, single-objective optimization may not identify all
optimal solutions. Our solution, on the other hand, defers
this trade-off to the end user, whose choices can single out
a particular solution for his or her needs.

II. RELATED RESEARCH

Multi-objective optimization is a rich field of research with
many novel approaches. The first algorithm we will employ

6/16/11 10:28 AMpareto_front.svg

Page 1 of 1file:///Users/dsj36/Dropbox/UCCS%20REU/pareto_front.svg

C

Pareto

A

B

f2(A) < f2(B)

f1

f2

f1(A) > f1(B)

Fig. 1. An illustration of multi-objective optimization with respect to two
objectives, f1 and f2. The boxes represent feasible solutions, and the darkened
solutions form the Pareto optimal set. Note that moving from A to B improves
f2 at the cost of f1. Source: WIKIPEDIA

is a multi-objective genetic algorithm entitled NSGA-II [1].
Given additional time, we will explore the effects of using
alternate algorithms, such as evolutionary covariance matrix
adaptation and the Metropolis algorithm [2] [3]. We will
use the ECSPY toolkit for multi-objective optimization as a
common basis for evaluating these different solvers.

On a more general level, the idea of creating machine-
designed interfaces through optimization has an extensive
research history. Automated design has been attempted since
the 1980s with projects such as COUSIN, MICKEY, and
HUMANOID [4] [5] [6]. Zhai designed a keyboard using
a sophisticated physically based method derived from the
Metropolis algorithm [7]. Hinkle employed genetic algorithms
to design keyboards for Brahmic scripts, a difficult problem
that involved the allocation of over 3,000 character combina-
tions [8]. Gajos and Weld took a different approach with their
SUPPLE software, which designs interfaces in real-time with
respect to a user’s history [9].

III. PROBLEM DESCRIPTION

In this paper, we reduce the task of user interface design
to multi-objective optimization. Formally, we have a set of
feasible interface designs S and a sequence of objective
functions fi : S !→ R+ which we would like to optimize.
Using the fi, we induce a partial order # on S by the
typical Pareto criterion. A solution a Pareto dominates another
solution b if a is at least as good as b with respect to each
objective function fi, and a is strictly better than b for at least
one of them. It is straightforward to show that # is, in fact,
a partial order. From this partial order, we say a solution s
is Pareto optimal if it is not Pareto dominated by any other
solution. Our goal is to find the set of all Pareto optimal

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 51

2

solutions S∗, which we will designate as the Pareto front.
Intuitively, there are no more “free lunches” past the Pareto
front: Improving one of the objectives requires worsening at
least one of the others.

Once the Pareto optimal set has been identified, the user
can supply his or her own ordering #U on the Pareto front,
identifying a single optimal solution. The user’s preference #U

encodes the trade offs the user is willing to make between the
different objectives. Since most of the optimization has been
done statically ahead of time, identifying the optimal solution
with respect to #U is trivial.

For this project, we chose to use evolutionary algorithms
to generate the Pareto optimal set. For our results on multi-
objective optimization on Indic language keyboards, the set
generated was robust to restrictions on individual objectives,
meeting our goals of adaptability to user needs. However,
our task in general of using multi-objective optimization to
design interfaces does not require the use of genetic algo-
rithms, and fairly simple dynamic programming approaches
to multi-objective optimization exist [10]. Since our problem
representation lends itself well to evolutionary computation,
we focused on only the genetic algorithmic approach.

We choose to represent solutions as mappings from abstract
interface specifications to concrete widget representations. The
core of an abstract interface lies in primitive types, denoted by
τ , which request integers, strings, floats, and Booleans from
users. A designer can add a constraint Cτ over the domain of a
primitive type to form a constrained type 〈τ, Cτ 〉. Types can be
composed into container types {τ1, τ2, . . . , τn} that represent
some semantic grouping of interface elements.

A potential solution maps an abstract interface represen-
tation to a concrete description in terms of widgets. Each
platform is a set of GUI widgets that are available to the
programmer. An interface description specifies the implemen-
tation of each abstract element in terms of widget choice and
parameters. Given different objectives, solutions will intelli-
gently choose widgets, preserve container groupings, and tune
widget parameters.

IV. IMPLEMENTATION

A. Abstract UI
The user interface design process here begins with the

abstract representation of the user interface, provided by the
application designer. We provide a simple XML representation
along with a parser that creates the Python abstract tree data
structure. The allowed container types are GenContainer
and IdContainer. The GenContainer type does not
enforce any structure on the relationships between its chil-
dren elements. The IdContainer type, on the other hand,
imposes the constraint that all of its children must have the
same presentation. Both container types take an ordered
argument as well as a name.

The primitive types currently supported are AbstrInt for
integers, AbstrFlt for floating point numbers, AbstStr for
strings, and AbstrBool for Booleans. The abstract integer
type takes a loRange argument and hiRange argument,
indicating the lower and upper bounds for the input. If they

<?xml version="1.0"?>
<GenContainer name="Classroom Management">
<IdContainer name="Light Bank" ordered="True">
<GenContainer name="Left">
<AbstrBool name="Light"></AbstrBool>
<AbstrFlt name="Level"></AbstrFlt>

</GenContainer>
<GenContainer name="Center">
<AbstrBool name="Light"> </AbstrBool>
<AbstrFlt name="Level"></AbstrFlt>

</GenContainer>
<GenContainer name="Right">
<AbstrBool name="Light"></AbstrBool>
<AbstrFlt name="Level"></AbstrFlt>

</GenContainer>
</IdContainer>
<GenContainer name="A/V Controls">
<GenContainer name="Projector">
<AbstrBool name="Power"></AbstrBool>
<AbstrStr name="Input"
allowed="Computer 1;Computer 2;Video">

</AbstrStr>
</GenContainer>
<AbstrBool name="Screen"></AbstrBool>

</GenContainer>
<AbstrStr name="Vent"
allowed="Off;Low;Med;High"></AbstrStr>

</GenContainer>

Fig. 3. The XML representation of the classroom user interface outlined in
Figure 2. Note that the description is entirely abstract: There are no references
to size or position other than the semantic groupings provided by the container
types.

are not specified, they default to 0 and 10, respectively. The
abstract float type takes the same arguments and defaults to
the same values.

The abstract string type serves two purposes. First, if the
allowed parameter is left empty, the program requests a
string from the user in the form of a text input. Second, the
developer can indicate a list of allowed choices in the form
of a semicolon separated string. Therefore, if the allowed
parameter is nonempty, the program will present the user with
a choice between different strings. The abstract Boolean type
does not take any arguments other than its name.

If the developer wishes, he or she can specify a description
of the element for internal use by providing a documentation
string between the opening and closing tags for a particular
element. These do not appear in the final implementation, but
may be useful for debugging and development.

Although this approach is limited to static user interfaces,
such as control panels and input interfaces, the hierarchical
approach derived from combining nested containers with basic
action-driven types allows for a great deal of expressive power.
Given the flexibility of our abstract framework and the KIVY
library1, adding functionality for dynamic interfaces would not
prove to be difficult.

B. Constraints
Fundamental to any genetic algorithm chromosome repre-

sentation is a set of constraints on the legal values of the

1http://www.kivy.org

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 52

3

Classroom

Light Bank

Left

Light Level

Center

Light Level

Right

Light Level

A/V Controls

Projector

Power Input

Screen

Vent

Level

Fig. 2. The abstract representation of the classroom user interface detailed in SUPPLE. Nodes of the tree are container types, represented as sequences of
their children. Container types, such as “Light Bank” admit constraints. For example, the presentation of “Left,” “Center,” and “Right,” must all be identical.
Leaves of the tree represent primitive types.

alleles. Our set of constraints is especially complicated due to
the tree based nature of our problem. Each abstract element
can have a set of allowed widgets, and each widget has a set
of constraints on its presentation. Therefore, the number of
alleles in a given chromosome is not constant, as mutating one
widget to another can change the number of alleles. Therefore,
we choose to abstract away the details of these constraints to
a generic constraint class. This class provides the functionality
for storing a constraint’s allowed values as well as randomly
generating a value for the chromosome.

The constraint class facilitates the choice between both dif-
ferent widget elements and different values for those widgets.
Since we have wrapped up the myriad individual constraints
within a constraint class, the length of a chromosome remains
the same, making the genetic operators much more manage-
able.

C . Constraint Trees and Arrays
To make the interface between the abstract representation

and the chromosomes dictating a particular UI presentation,
we need to interpret the abstract tree as a set of constraints on
the UI search space. We accomplish this transformation using
a collection of rewrite rules on the abstract tree.

We begin by specifying the set of allowed interface widgets
and their properties. These choices are largely dictated by
KIVY, the user interface library we decided to use for this
project. The first is a slider, which has three constraints:
orientation, lower bound, and higher bound. The second is
a switch, which does not have any constraints. The third is
a button, which takes a group name as a constraint. Buttons
within the same group are presented together, and, much like a
radio button, choosing one button disengages any other buttons
in its group. The toggle element has a similar group constraint.
The final primitive widget is the text input field, which has a
constraint indicating whether multi-line input is allowed.

We currently have two layout widgets implemented. The
first is the BoxLayout, which organizes widgets in a linear
fashion. The choice between a vertical or horizontal presen-
tation is encoded as a Boolean constraint. Each child element
has a floating point constraint associated that represents the
size hint passed to KIVY.

The GridLayout layout widget arranges its children
widgets in a grid pattern. For a container of n elements, the
grid constraint chooses the number of columns c and rows r

Classroom

BoxLayout

Orientation Element Sizes

GridContainer

Grid Layout

Fig. 4. The UI widgets and constraints associated with a single abstract
element. Each element of the constraint tree is paired with sub-tree like this
one. Optimizing over trees, much less nested trees, is not straightforward
with a genetic algorithm, so we pack the constraint tree into a corresponding
constraint array.

such that r × c = n. These factors are passed along as the
allowed values for the column and row parameters. Currently,
we have chosen to only allow multiples, which may lead to
strange results if, for example, the number of children widgets
is prime. In this case, the designer should add blank padding
elements. At the moment, all columns and rows are required
to be the same size, which is obtained by dividing the widget’s
space evenly.

The abstract tree derived from the XML parse is then
traversed using the following rewrite rules.

GenContainer → {BoxLayout,GridContainer}
IdContainer → {BoxLayout,GridContainer}

AbstrInt → {Slider, TextInput}
AbstrF lt → {Slider, TextInput}
AbstrStr → {TextInput}

AbstrBool → {Toggle, Switch}

After the rewriting process has completed, each element
has a set of associated widgets. Each widget, in turn, has a
set of constraints, forming a tree-like structure per abstract
element. As noted before, we need to turn this tree into a
genetic algorithm friendly array data structure. This process
is completed by the makeArray method which traverses the
tree in preorder, keeping a parent pointer for each element
to facilitate tree construction. Since the structure of the tree
is preserved under all transformations, the preorder traversal
is identical for all chromosomes. This invariant allows us
to splice chromosomes together without fear of generating a

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 53

4

{BoxLayout, GridContainer}

{BoxLayout, GridContainer}

{BoxLayout, GridContainer}

{Toggle, Switch} {Slider, TextInput}

Center

...

Right

...

Fig. 5. A portion of the constraint tree created after rewriting the abstract
tree from the XML parse. Each element has a set of associated constraints,
as detailed in Figure 4.

malformed tree. This constraint array produced in the tree un-
winding is kept throughout the entire algorithm, as generating
new nodes under, for example, the mutation operator requires
the enumeration of allowed values provided by the constraint
array.

D . Genetic Operators and the Algorithm
Once we have this constraint array in hand, we can generate

chromosomes randomly using our generator operator, which
iterates over the constraints and produces satisfying values.
This functionality is implemented by a function class, which
internally stores the constraint array as a template for the
chromosomes upon initialization. This object is then passed
to the ECSPY library2, which generates the initial population.

The second operator is the combinator, which takes two
chromosomes and returns two children chromosomes that are
the product of combining its parents. Because of our previous
design choices, the implementation of this operator is no more
difficult than typical array-based evolutionary operators. Our
implementation is a simple implementation of single-point
crossover that randomly chooses a crossover point within
the chromosome and then splices the two parents in both
combinations to produce the two offspring, which are returned
to the genetic algorithm.

The final operator is the mutator, which takes a chromosome
and alters it with some fixed probability µ, which is set by the
user at the beginning of the computation. The mutator operator
traverses the chromosome array, marking a node for alteration
with probability µ. The nodes marked for alteration are then
replaced with a new node instances from their corresponding
constraint array node. This approach helps the algorithm
explore the search space while ensuring mutated solutions are
still legal user interfaces.

The final component remaining for the genetic algorithm is
the set of fitness functions, which are the heart of our multi-
objective approach. We implemented two fitness functions as
examples, but any function can be used, so long as it takes a
chromosome and returns a floating point number. The first is
the size evaluator, which, roughly, returns the size remaining
in the device after the interface has been rendered. More
precisely, the evaluator requires that the interface code be in
the following format.

2http://code.google.com/p/ecspy

<GenContainer name = "Device Wrapper">
<GenContainer name = "Whitespace">

</GenContainer>
<GenContainer name = "UI">

[UI description]
[specified by user]

</GenContainer>
</GenContainer>

The function then returns the size of the “Whitespace”
container, which is to be maximized. This function heavily
depends on the size tree implementation in the rendering
module, which will be described later. The nature of this
objective fits closely with the goal of designing keyboards
for mobile devices, which live in a fixed width region on the
bottom of a phone’s screen. Maximizing the size available to
the device for other purposes marks an optimal solution.

The second evaluator is based on Fitts’ law, which gives a
theoretical estimate of the time needed to navigate the interface
[11]. More specifically, it gives us the mean time needed to
type two characters using some form of pointing device. The
distance between each key is divided by the width of the
target key and then added to one. The logarithm, base two,
of this result is then weighted by the frequency of this pair
of characters and then divided by the “Index of Performance”
(IP), which we, in order to maintain consistency with previous
research, set at 4.9. Therefore, the mean time to type a
character is

t =
n∑

i=1

n∑

j=1

Pij

IP

[
log2

(
Dij

Wj
+ 1

)]
.

This computation first requires a dictionary of the pairwise
distance of the characters. To provide this data, we interface
the evaluator again with the rendering module of our library.
For each chromosome passed to the evaluator, the function
rebuilds the UI tree from the chromosome, traverses the
tree, computing the size of each element, and then builds a
dictionary mapping element names to their sizes and positions.
This dictionary is also used to compute the width data for each
element.

The pairwise frequencies are read in from a text file pro-
vided by the user. In our implementation for the Assamese
language, manipulating Unicode characters proved to be diffi-
cult, so we mapped each Unicode character to a unique integer.
These integers are then passed around the optimization routine
in place of the actual Assamese characters and then substituted
in final rendering process.

We used the ECSPY library’s implementation of the NSGA
II algorithm. The library was flexible enough to accommo-
date our mutator, combinator, and generator classes described
above. Each class was instantiated with the relevant constraint
array and then passed to the optimization routine.

Specifically, we used our own mutators, generators, and
combinators along with the generation_termination
terminator and the file_observer observer, which inter-
mittently dumped statistics about the evolutionary algorithm as

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 54

5

Fig. 6. A simple, abstracted example of a keyboard interface designed in
the KIVY UI framework.

well as a list of the individuals in the population to a file. Since
we ensured that our operators did not generate any illegitimate
solutions, the nsga2.bounder was not needed and was set
to an identity function.

E . UI Implementation
The KIVY framework for Python provides an excellent cross

platform framework for implementing the results from the
genetic algorithm. The library’s simplicity makes it perfect
for our algorithm, which focuses on static interfaces. Another
benefit is that KIVY supports both desktop and Android
applications, allowing us to perform actual tests on devices
with especially relevant size constraints.

There is a direct correspondence between the widgets cho-
sen in the rewrite rules described previously and the widgets
available in the KIVY library. From the side of understanding
the UI library, we have designed simple demonstrations in an
abstract manner that will hopefully interface well with our
chromosome specification.

The process of generating a KIVY interface from a chro-
mosome generated by the evolutionary algorithm is involved.
As noted before in our discussion on our evaluation functions,
the first task is to generate a size tree which maps elements
to their position and size.

This task is accomplished by first rebuilding the chromo-
some tree from the linear array specified by the chromosome.
This is largely a matter of traversing the array and reconnecting
the parent pointers generated from the tree unwinding during
the formation of the constraint array. We then proceed from
the root node, taking the total interface size from the problem
configuration. If the current node is a BoxLayout element,
the children sizes are determined by their weights wi.

widthi =
widthparent ∗ wi∑

wi

heighti =
heightparent ∗ wi∑

wi

Similarly, the permutation information is read from the chro-
mosome. The permutation constraint for a container of n
elements is a permutation of the sequence {0, 1, . . . , n−1} that
maps the array index of the child to its position. One relevant
concern with this approach is that the number of permutations
for a container of n children grows as n!, which may exceed
the period of the random number generator used. If this
is the case, the entire solution space may not be explored,
which may adversely affect problems sensitive to element

permutation (such as keyboards). Fortunately, the Mersenne
twister generator used in our implementation has a period
that well exceeds 62!, where 62 is the number of keys in our
example.

The case for GridContainers is similar. We read in the
number of columns and rows from the generated list of factors
encoded in the constraint array. For now, the heights and
widths of the rows and columns are assumed to be uniform,
so determining the sizes and positions of the children is not
difficult.

widthi =
widthparent

ncols

heighti =
heightparent

ncols

Finally, if an element is a base type, it simply inherits its size
from its immediate parent. Now that the sizes and positions
have been determined, we are finally in a position to build the
KIVY representation of the interface. The buildWidgets
method takes the sizes from the size tree previously built and
sets the appropriate size attributes for the newly generated
widget. The method then recursively calls itself on all of the
element’s children to form the widget hierarchy, which is then
passed to KIVY to create an application.

V. RESULTS

We focused our multi-objective approach on the task of
designing optimal keyboards for Indic languages to fit in
with previous research. More specifically, we aimed to design
keyboards for platforms on which space is at a premium.
Therefore, our two objectives were speed of use, as determined
by Fitts’ law, and keyboard size.

As such, we coded an optimized version of our multi-
objective algorithm to focus on keyboards alone. We first
designed an optimized chromosome that is just an array of
integers and floats. The first sixty-two elements are integers
that represent the permutation of the keys, as with our abstract
approach from before. The next number is a float that repre-
sents the normalized height of the device and ranges from zero
to one.

A. Keyboard Implementation
Generation of these chromosomes is straightforward, as we

simply create an array of integers ranging from 0 to n − 1,
where n is the number of characters in the desired language,
and then shuffle the array. Next, we append a random number
from zero to one to represent the height of the user interface.

Mutation is similar. With probability µ, we shuffle the
first n elements of the array using the built in library func-
tion random.shuffle. Finally, we choose another random
floating point number between zero and one for the height
parameter.

We use ECSPY’s built in differential crossover combinator
to create children chromosomes from parent chromosomes.
Since the crossover method does not guarantee that the results
will be legitimate permutations of {0, 1, . . . , n−1}, we wrote

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 55

6

Fig. 7. The Pareto optimal front for an Assamese keyboard design problem on
a mobile device. Note that decreasing the mean time per keystroke requires
increasing the size of the keyboard, indicating that the two objectives are
opposing, as conjectured earlier. Therefore, imposing a maximum size on the
keyboard implicitly bounds the maximum efficiency of the keyboard. Now that
we have this set in hand, we can, at run time, determine the size constraints
for the user and then choose the best solution that satisfies these constraints
and maximizes the other objective.

a bounder function that takes an illegitimate chromosome and
restores our preferred invariants.

The bounding function first considers the first n−1 elements
that correspond to the key permutation. It identifies which keys
are missing and which keys are repeated. It then randomly
assigns missing keys to repeat positions until all keys are
present. Finally, it ensures that the final element, the floating
point number representing the height of the keyboard, is within
the interval (0, 1].

The evaluators used are identical to the Fitts’ law evaluator
and size evaluation described in the previous section on
abstract interfaces. The pairwise frequencies were read in from
the Assamese corpus generated from WIKIPEDIA articles.

The Assamese language has 62 characters, all of which must
be accommodated on the onscreen keyboard. Each character
is associated with a pop up box of conjoints, which were
designed by hand and not by the algorithm. This approach was
taken from the work by Hinkle, who used a single objective
genetic algorithm in a similar spirit [8].

B. D ata
We present the Pareto fronts generated by our algorithm

running on the Assamese keyboard. There is a clear trade off
between size and efficiency, especially once the size becomes
especially small. The generation of this set took roughly 12
hours of computation, but once it has been generated, the
process of identifying the optimal solution with respect to a
particular constraint is instantaneous.

The Pareto frontier was unexpectedly well behaved. Given
the complex nature of our optimization problem, we did not
expect such a well behaved convex frontier. Furthermore,
when viewed on a logarithmic plot, the frontier is linear,
which may be related to the log term in Fitts’ law and the
linear dependence on the height of the chromosome. Although

Fig. 8. A logarithmic plot of the Pareto frontier from the previous figure.
The trade off between size and efficiency only becomes relevant with smaller
sizes, so expanding the horizontal axis renders the plot much more readable.

Fig. 9. The keyboard generated when the normalized size constraint of 0.3
was imposed. This keyboard has a fitness of 0.848804 according to Fitts’ law,
which corresponds to 14.14 words per minute.

we have no proof of convexity, it would be interesting to
explore the results of using convex optimization routines,
which are much quicker and more robust than our evolutionary
algorithms, on this specific optimization problem.

To visualize the results of the keyboard optimization, we
developed a special renderer for this problem. We present the
keyboard with each key colored according to a heat map that
represents the frequency of the character encoded by that key.
The heat map legend is presented in the first keyboard. The
frequencies of the characters were read in from corpus data
and then normalized to one.

After relaxing the size constraint past 0.5, increasing the
allowed size of the device did not improve its efficiency, and
the optimal solution satisfying the constraint remained the
same.

C . Gujarati Keyboard
In addition to running our algorithm on the Assamese

language, we developed keyboards for the Gujarati language
as well. The Gujarati language has 64 base characters, while

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 56

7

Fig. 10. The keyboard generated when the normalized size constraint of 0.4
was imposed. This keyboard has a fitness of 0.799940 according to Fitts’ law,
which corresponds to 15.00 words per minute.

Fig. 11. The keyboard generated when the normalized size constraint of 0.5
was imposed. This keyboard has a fitness of 0.781674 according to Fitts’ law,
which corresponds to 15.35 words per minute.

Assamese has 62. Therefore, the same 8 × 8 configuration
worked, although the Gujarati keyboard did not have the
blank spaces in the corners that the Assamese keyboard did.
The mean time per keystroke derived from Fitts’ law for
the Gujarati keyboards was higher than the solutions for the
Assamese keyboards.

We produced similar plots for the Pareto front for the
Gujarati keyboard problem. The Pareto front is fairly similar
to the Assamese front in that it is convex and exponential.
Since the optimization problems use the same chromosome
encoding and fitness functions, the similarity is unsurprising.

As with the Assamese problem, relaxing the size constraint
past 0.5 did not significantly increase the efficiency of the
keyboards. We present three keyboards here in the Gujarati
language using the same size constraints from the previous
problem.

VI. CONCLUSIONS

Casting user interface design as a numerical optimization
problem is hardly a new approach, but increasing the richness

Fig. 12. The Pareto optimal front for the Gujarati keyboard design problem
on a mobile device. The front is monotone and convex, just as the Pareto
front for the Assamese keyboard design problem.

Fig. 13. As before, plotting the Pareto front on a semi-logarithmic plot
reveals its simple exponential figure.

Fig. 14. The Gujarati keyboard generated under the size constraint of 0.3.
This keyboard has a mean time per keystroke of 1.193138 seconds, which
corresponds to 10.06 words per minute.

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 57

8

Fig. 15. The Gujarati keyboard generated under the size constraint of 0.4.
This keyboard has a mean time per keystroke of 1.140539 seconds, which
corresponds to 10.52 words per minute.

Fig. 16. The Gujarati keyboard generated under the size constraint of 0.5.
This keyboard has a mean time per keystroke of 1.091797 seconds, which
corresponds to 10.99 words per minute.

of the optimization by simultaneously considering multiple
objectives has produced offline algorithms that, in spite of their
offline nature, can still be responsive to users’ needs. This
approach yields a good compromise between entirely static
methods that entirely determine the interface ahead of time
and fully real-time approaches whose objectives must conform
to their heuristics.

Our results with keyboard design confirmed our hypothesis:
Multi-objective evolutionary algorithms can identify a Pareto
front that represents trade offs between the opposing objec-
tives. Constraining all but one of the objectives then provides
an efficient way to optimize relative to the users’ needs while
benefiting from the flexibility of static offline optimization
algorithms.

ACKNOWLEDGMENTS

The research reported in this document has been funded
partially by NSF grants CNS-0958576 and CNS-0851783.

REFERENCES

[1] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A Fast and Elitist
Multiobjective Genetic Algorithm: NSGA-II,” IE E E Transactions on
Evolutionary Computation, April 2002.

[2] C. Igel, N. Hansen, and S. Roth, “Covariance Matrix Adaptation for
Multi-objective Optimization,” Evolutionary Computation, 2007.

[3] J. Vrugt, H. Gupta, W. Bouten, and S. Sorooshian, “A Shuffled Com-
plex Evolution Metropolis Algorithm for Optimization and Uncertainty
Assessment of Hydrologic Model Parameters,” 2003.

[4] P. J. Hayes, P. A. Szekely, and R. A. Lerner, “Design Alternatives for
User Interface Management Systems Based on Experience with Cousin,”
in C HI ’85: Proceedings of the SIG C HI Conference on Human Factors
in Computing Systems, New York, NY, 1985, pp. 169 – 175.

[5] D. R. Olsen, “A Programming Language Basis for User Interface,” in
C HI ’89: Proceedings of the SIG C HI Conference on Human Factors in
Computing Systems, New York, NY, 1989, pp. 171 – 176.

[6] P. A. Szekely, P. Luo, and R. Reches, “Facilitating the Exploration
of Interface Design Alternatives: The Humanoid Model of Interface
Design,” in C HI ’92: Proceedings of the SIG C HI Conference on Human
Factors in Computing Systems, New York, NY, 1992, pp. 507 – 515.

[7] S. Zhai, M. Hunter, and B. Smith, “The Metropolis Keyboard–An
Exploration of Quantitative Techniques for Virtual Keyboard Design,”
2000.

[8] L. Hinkle, M. Lezcano, and J. Kalita, “Designing Soft Keyboards for
Brahmic Scripts,” in International Conference on Natural Language
Processing, Kharagpur, India, 2010, pp. 191–200.

[9] K. Gajos, D. Weld, and J. Wobbrock, “Automatically Generating Per-
sonalized User Interfaces with SUPPLE,” Artificial Intelligence, 2010.

[10] R. Kltzler, “Multiobjective dynamic programming,” Optimization, vol. 9,
pp. 423–426, 1978.

[11] P. Fitts, “The information capacity of the human motor system in control-
ling the amplitude of movement,” Journal of Experimental Psychologyu,
1954.

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 58

1

An Unsupervised Method for Generating Parallel
Corpora for Medium and High Density Languages

Max Kaufmann

Abstract—Parallel corpora are an extremely useful
tool in many natural language processing tasks. However,
it is often difficult, impossible, or expensive to obtain
parallel corpora for certain language pairs. We propose
an unsupervised method that is capable of automatically
creating high quality parallel corpora, as well as
bilingual lexicons. The outlined method is also capable
of automatically augmenting the size of the corpora. The
resulting parallel corpora are made freely available for
download.

Index Terms: Wikipedia, Parallel Corpora, DBpedia

I. INTRODUCTION

The Wikipedia project has resulted in an un-
precedented amount of collaboration to create an
astounding number of authoritative documents. It
is a one of the largest free collections of humans
knowledge in existence, and because of this it has
received much media attention. But there is another
aspect of Wikipedia that receives much less atten-
tion. Wikipedia is a large, if not the largest, multi-
lingual repository. Articles in Wikipedia, especially
for the more popular topics, are often written in a
multitude of languages. However, these articles are
not direct translations of each other, so Wikipedia
is not a truly parallel corpora. Previous literature
has referred to it as a document-aligned corpora or
noisy parallel corpora [1] . While the articles are
usually semantically similar, they can vary widely
in their structure as well as syntax. This makes
the task of creating parallel corpora from these
articles fairly difficult. However, several projects
such as DBpedia and OmegaWiki have organized
the knowledge available on Wikipedia in a format
that makes it easier to extract aligned sentences. By
utilizing these resources, we can build a collection
of parallel corpora for a large number of language
pairs. In this paper, we will attempt to extract all
information that would aid in NLP tasks involv-
ing two languages, such as machine translation or

relationship extraction. The end result is a set of
parallel corpora as well as a bilingual lexicon for
each language pair.

II. MOTIVATION

Parallel corpora are used in all types of mul-
tilingual research, especially in Machine Transla-
tion (MT) tasks. However, creating these corpora
is an arduous task for several reasons. Creating
parallel corpora requires humans who are proficient
in both the source and target language(s). These
translators usually are compensated in some form,
which means that parallel corpora generation is
both expensive and time consuming. Given that the
strength of any MT system, particularly statistical
MT systems, hinges largely on the quality and
size of parallel corpora, we believe that automatic
parallel corpora generation could greatly aid the task
of machine translation by reducing the dependency
on human generated corpora. The costs of creating
parallel corpora are further exacerbated by the fact
that as time goes on, new corpora have to be
generated to account for changes in both languages.
A parallel corpora generated 100 years ago would
have far less utility in a machine translation task
than a corpora made in the past 5 years.

The corpora generated by our approach attempt
suffer much less from the previously mentioned
flaws. The approach which we will discuss creates
parallel corpora and lexicons by extracting and
organizing information from two sources: DBpedia
and OmegaWiki. Both of these projects are currently
active, which suggests that as time goes on they
will continue to grow in size and accuracy. The
only costs associated with creating parallel corpora
from these sources are the initial cost of creating
the programs that create the corpora, and the com-
putational cost of running them. These costs are
minor compared with the expense invested in paying
human translators to generate the parallel corpora.

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 59

2

Our research is further motivated by the fact
that, despite the importance of parallel corpora,
they are somewhat difficult to obtain. Despite the
problems previously discussed, there are many par-
allel corpora available on the web. However, there
are several problems with these corpora. First of
all, they are not always free. The Linguistic Data
Consortium1 is one the largest unified providers of
parallel corpora. However, membership is required
to download these corpora. The cheapest member-
ship is $1,000, while the most expensive is $24,000.
The second issue is that the majority of these par-
allel corpora only exist for more popular language
pairs. When attempting to translate from two very
popular languages, such as English-German, finding
parallel corpora is not difficult. But finding parallel
corpora for languages pairs such as Thai-Greek is
considerably more difficult. The parallel corpora
resulting from this research will include corpora for
small languages, and potentially language pairs for
which parallel corpora do not exist. The size of the
corpora may be small, depending on the size of the
Wikipedias of the respective languages, but due to
the self-modifying nature of these parallel corpora,
they will be capable of automatically growing as
their Wikipedias grow.

III. PREVIOUS WORK

As far as we are aware, there have been no
public projects which attempt to extract parallel cor-
pora from this particular combination of resources.
However, several projects have tackled the issue
of multilingual retrieval from Wikipedia to build
parallel corpora. One such example is [2]. They
tested two approaches for aligning sentences from
Dutch-English Wikipedia. Their first approach used
an already existing SMT system to translate the
Dutch article into English. They then compared the
similarity of the sentences between the English arti-
cle and the Dutch article (which was translated into
English). The second approach create a bilingual
lexicon by leveraging the fact that articles across
languages translated the titles into English. They
then used this lexicon and compared the sentences
by computing their lexical similarity. While com-
puting lexical similarity is an extremely effective
way to measure multilingual sentence similarity, as
evidence by [3], using an already made machine

1http://www.ldc.upenn.edu/

translation system appears rather impractical. The
purpose of parallel corpora generation is to create
a statistical machine translation, and if one already
exists, and is capable of doing a decent job of trans-
lating a Wikipedia article, then there seems little
utility in generating parallel corpora. This approach
also lacks extensibility, because one cannot always
assume that a MT system will already exist to aid
in the translation. In their study, they found that the
bilingual lexicon approach was, unsurprisingly, less
accurate then the MT approach. This is potentially
due to the fact that lexical similarity, especially
when computed with an incomplete lexicon, is not
powerful enough to truly capture sentence similarity.
One of the main problems with their approach is that
too many possible sentences candidates were gener-
ated. They compared every sentence in a Wikipedia
article to every sentence in the L2 article, resulting
in 80 million candidate pairs [2].

[3] used the lexicon methodology outlined in
[2], but also attempted to utilize character lengths to
compute sentence similarity to align Persian-English
Wikipedias. They used the statistical model created
by [4] to figure out the approximate correlation
between the length of an English sentence and the
length of a Persian sentence. Doing this, they were
able to discard translation pairs that were too long or
too short to actually be translations. This approach
shortens the number of possible candidates signif-
icantly, which solves the problem of overmatching
presented in [2].

Both of the previous approaches have only dealt
with aligning one language pair, and it has al-
ways been from L1-English or English-L1. This
phenomenon is not unique to these papers, the
large majority of Wikipedia alignment work has
focused on aligning Wikipedia in one language to
English Wikipedia. Even projects that have used
more than 2 languages, such as [1] have always
had English as one of the languages. [1] at-
tempted to align Spanish-English, German-English
and Bulgarian-English Wikipedias by building a
Maximum-Entropy classifier to determine if sen-
tences from aligned articles were parallel or not.
However, their classifier was trained on seed parallel
data. Seed data may not always available, especially
for small language pairs, and so their approach is
not as general as the one we will outline here. We
will use techniques similar to theirs for extracting
parallel sentences from Wikipedia, but with seed

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 60

3

data that we have generated ourselves.

IV. RESOURCES

We aim to produce high quality parallel corpora
for a wide variety of language pairs, and to achieve
that we leveraged two sources of comporable cor-
pora: DBpedia2 and OmegaWiki3. These resources
are described in more detail below:

A. OmegaWiki
OmegaWiki describes itself as a c̈ollaborative

project to produce a free, multilingual dictionary
in every language, with lexicological, termino-
logical and thesaurus information.̈ It has entries
for many sense-disambiguated words (each sense-
disambiguated words is called an ëxpression)̈. Each
entry includes a translation of the expression and
its definition in several languages. An entry may
also include information for certain grammatical
information about an expression such as its POS
tag, gender, corresponding Wikipedia article, and
hypernms/hyponyms. A database including all of
this information is freely downloadable. We have
downloaded this database, and have created a pro-
gram that, given a language pair, can extract all of
the expressions in both languages, as well as the
corresponding grammatical information available.
We also extract the definitions of each expression
and if they are available in L1 and L2, add them to
our parallel corpora.

B. DBpedia
The DBpedia project is an attempt to take the

data in Wikipedia and turn it into a structured
representation of knowledge. We exploit the fact
that during their attempts to turn Wikipedia into an
ontology, DBPedia generates automatically gener-
ates short and long summaries, called abstracts for
each entry in the ontology. While these abstracts are
not entirely parallel, they may contain parallel data.
Our approach leverages these abstracts, and attempts
to find parallel sentences using the method escribed
in the next section. DBpedia contains both long
abstracts, which may be 5-10 sentences in length,
as well as short abstracts, which are generally 1-
2 sentences. The DBpedia ontology also has a

2http://wiki.dbpedia.org/
3http://www.omegawiki.org

l̈abelf̈ields from which we can extract additional
vocabulary of L1 and L2. The l̈abelf̈ield which
contains the Wikipedia title of the article for every
language it is available in. The Wikipedia article
titles are direct translations.

V. PARALLEL CORPORA GENERATION

There are several differences between the
two resources we are exploiting (DBpedia and
OmegaWiki). The first is that DBpedia contains
a large amount of noisy data, while OmegaWiki
contains a much smaller amount of clean data. This
is due to the fact that DBpedia data is generated au-
tomatically, while OmegaWiki data is created by hu-
man contributors. Therefore, our approach will first
extract the higher quality data from OmegaWiki,
and then use that data to aid in gathering data
from DBpedia. As previously stated, the two fields
that contain helpful information in OmegaWiki are
the word translations, and definitions. Therefore,
we first extract all parallel words and definitions
for a given language pair. We then leverage the
parallel words extracted from OmegaWiki to build
a bilingual lexicon. However, for smaller languages,
this method does not often yield a large lexicon.

Since OmegaWiki does not provide enough data
for multilingual experiments, we turn to DBpedia as
an additional source of parallel data. DBpedia itself
does not contain any parallel data, however there is
comparable data that we can exploit to gain parallel
data. We posit that since the a pair of abstracts for a
given entry in DBpedia are semantically similar, we
might find syntactically parallel sentences in these
abstracts to add to our corpora. However, parallel
data will not necessarily be found in corresponding
sentences, so extraction is not a trivial task. If
we are attempting to extract English and Chinese
parallel sentences, the first sentence in the English
abstract may be parallel to the third sentence in
the Chinese abstract. To solve this issue, we align
each sentence in an L1 DBpedia abstract to every
sentence in the corresponding L2 DBpedia abstract.
This guarantees that all potential parallel sentence
pairs are considered. However, this alignment suf-
fers from two problems. First, it requires that the
abstracts, which are in paragraph form, are split
into sentences. To solve this problem, we use the
Lingua sentence splitter4, which has support for

4http://code.google.com/p/corpus-tools/

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 61

4

splitting Catalan, Dutch, English, French, German,
Greek, Italian, Portuguese, and Spanish sentences.
The second issue that arises from aligning sentences
between abstracts is that it creates a significant
amount of non parallel data. If we are aligning two
abstracts, one with 4 sentences, and one with 7,
we generate 28 sentence pairs, even though there
can only be 4 parallel sentences. To solve this, we
use HunAlign, a multi lingual open source parallel
sentence aligner.

A. HunAlign
HunAlign [5] was originally created to detect

whether sentences between Hungarian and English
are parallel. However, the algorithm has been ex-
tended to work for any language pair. HunAlign
primarily uses Gale-Church sentence alignment al-
gorithm, which detects parallel sentences by com-
paring their length. However, if a bilingual dictio-
nary exists, it can be used to compute the lexical
similarity of sentences. We construct a bilingual
lexicon by first getting all of the parallel words for
a given language pair from OmegaWiki. We then
concatenate the l̈abelf̈ield from DBpedia, which rep-
resents the titles of the article. We use this bilingual
lexicon as the dictionary for HunAlign. We then run
HunAlign on all of the sentence pairs generated
in the previous step. HunAlign then generates a
probability, p, between 0 and 1 which represents
the likelihood that the sentences are parallel pairs.
To ensure that our translations are truly parallel, we
only accept values of p > .99. The end result is a
set of parallel sentences between a given language
pair.

VI. RESULTS

We tested our method on several language pairs.
Our goal was to create to a system which was
capable of creating parallel corpora for uncommon
language pairs. Since our system did not require any
linguistic knowledge of the language pairs, exclud-
ing the ability to determine where sentences ended,
we expected that it would perform equally well on
extracting parallel data from similar and distinct
languages. For the purposes of this experiment, we
define languages as similar languages as languages
from the same family (e.g., romance, germanic,
hellenic) and distinct languages as languages from
different families. Below are tables showing the

data generated for several language pairs from 3
language families. The language pairs are described
using their ISO 639-1 codes.

Language
Pair

Parallel
Words

Parallel
Sen-
tences

Family

DE-AF 2,151 5,559 Germanic
DE-SV 31,918 17,482 Germanic
EN-DE 69,210 13,213 Germanic
EN-ES 343,416 51,421 Mixed
EN-HI 17,234 1,550 Mixed
PL-UK 99,758 7,150 Slavic
RU-IT 51,496 11,251 Mixed

VII. EVALUATION

From Table 1, we can conclude several things
about the effectiveness of our method. Overall, more
parallel sentences tend to be produced when the two
languages are from similar families. The exception
to this is EN-ES, which is probably due to the
fact that the English and Spanish are the first and
third largest Wikipedia’s, respectively. This doesn’t
reflect on the effectiveness of our method, and is
probably just due to the initial sizes of the corpora.
It is also interesting to note that RU-IT performed
significantly well, despite them being languages
from different families. This is probably due to the
size of the corpora.

A. Comparison to Other Corpora
It is difficult to evaluate the quality of a parallel

corpora by any other metric other than looking at its
size. Therefore, we will compare our corpora with
two existing free parallel corpora.

There are several parallel corpora which are
freely available. These corpora were all generated
automatically. The smallest of these is Europarl,
which contains aligned sentences between 11 Euro-
pean languages and English [6]. This corpora suffers
from the same flaw as [2] and [3], which is that
it only contains data aligned between English and
another language.

The second is JRC-ACQUIS [7]. [7] contains
parallel corpora for 22 languages, which were gen-
erated by running HunAlign on a series of EU
documents. Below is a table comparing the size of
the parallel data generated using our algorithm to
the size of the two previous parallel corpora.

Despite the fact that we offer smaller parallel
corpora than the two previous sources, there are sev-
eral features that our corpora has that the previous

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 62

5

corpora lack. First, our corpora are self-updating,
meaning that its size grows automatically. Both
DBpedia and OmegaWiki are constantly increas-
ing the size of their databases, and making that
data publicly available. Our algorithm can use this
updated data to generate bigger parallel corpora.
Secondly, both of these corpora were generated
from European Union legal documents. This means
that, while they offer substantial amounts of data,
it does not cover a wide variety of domains. Our
corpora are based on Wikipedia, which covers many
domains.

VIII. FUTURE WORK

The method used to generate parallel corpora
in this paper, while only applied to several lan-
guage pairs, is highly extensible. DBPedia has 97
languages, which means that there are a massive
number of parallel corpora that could be generated
using this algorithm. The approach we outlined here
performs fairly well in extracting data from similar
language pairs, but future work could improve its
robustness on languages from distinct languages.
One way to do that involves translating through
three languages to create artificial parallel data. For
example, if we have a large volume of English-Hindi
sentences, and a large volume of English-Bengali
parallel sentences, it would be possible to create
new Bengali-Hindi aligned sentences by translating
through English as an intermediary language.

Another way to improve this system would be
to actually exploit Wiktionary to add grammatical
data to the parallel corpora. Wiktionary contains
translations, which could augment the size of the
generated corpora, but it also contains grammatical
information, such as case, part of speech, and conju-
gations for its entries. This grammatical information
could be incorporated into HunAlign to help decide
whether sentences are parallel or not, and it could
be incorporated into the published parallel corpora
to make them more useful to researchers.

IX. CONTRIBUTIONS

In this experiment, we have outlined an algorithm
for extracting parallel sentence data from DBPedia
and OmegaWiki. This algorithm is capable of ex-
tracting parallel data from comparable documents
with almost no previous linguistic knowledge. We
have produced large parallel corpora and lexicons

for common language pairs, and medium sized
corpora and lexicons for distinct language pairs.
We have created several parallel corpora for lan-
guages which previously did not have parallel cor-
pora.Furthermore, these corpora are freely available
and can be used in many multilingual NLP tasks.
This algorithm extracts data from resources which
are continually growing, so as these resource grow,
so will the size of the parallel corpora and lexicons
generated.

REFERENCES

[1] J. R. Smith, C. Quirk, and K. Toutanova, “Extracting
parallel sentences from comparable corpora using document
level alignment,” Stroudsburg, PA, USA, pp. 403–411,
2010. [Online]. Available: http://portal.acm.org/citation.cfm?
id=1857999.1858062

[2] S. F. Adafre and M. de Rijke, “Finding similar sentences across
multiple languages in wikipedia,” in 11 Conference of the Euro-
pean Chapter of the Association for Computational Linguistics,
2006.

[3] M. Mohammadi and N. GhasemAghaee, “Building bilingual
parallel corpora based on wikipedia,” in Proceedings of the 2010
Second International Conference on Computer Engineering and
Applications - Volume 02, ser. ICCEA ’10. Washington, DC,
USA: IEEE Computer Society, 2010, pp. 264–268. [Online].
Available: http://dx.doi.org/10.1109/ICCEA.2010.203

[4] W. A. Gale and K. W. Church, “A program for aligning
sentences in bilingual corpora,” in Proceedings of the 29th
annual meeting on Association for Computational Linguistics,
ser. ACL ’91. Stroudsburg, PA, USA: Association for
Computational Linguistics, 1991, pp. 177–184. [Online].
Available: http://dx.doi.org/10.3115/981344.981367

[5] K. Tóth, R. Farkas, and A. Kocsor, “Sentence alignment
of hungarian-english parallel corpora using a hybrid
algorithm,” Szeged, Hungary, Hungary, pp. 463–478, January
2008. [Online]. Available: http://portal.acm.org/citation.cfm?id=
1466514.1466522

[6] P. Koehn, “Europarl: A multilingual corpus for evaluation of
machine translation,” University of Souther california, Tech.
Rep., 2002.

[7] R. Steinberger, B. Pouliquen, A. Widiger, C. Ignat, T. Erjavec,
and D. Tufiş, “The jrc-acquis: A multilingual aligned parallel
corpus with 20+ languages,” pp. 2142–2147, 2006.

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 63

Towards Time Inference for Timeline Generation of
Historical Wikipedia Articles

Michael Mara
Computer Science Department

Williams College
Williamstown, MA 01267

Email: mtm1@williams.edu

Abstract—In this paper, we combine several temporal infor-
mation extraction techniques to generate timelines from histor-
ical Wikipedia articles. We extend HeidelTime to significantly
increase precision and recall of temporal expression extraction
in our domain, while modestly increasing performance in other
domains. We then use a Markov Logic Network acting on time
points, and a simple heuristic to assign explicit time intervals
to every event in an article, improving performance significantly
from prior work.

I. INTRODUCTION

This paper involves temporal information extraction and
inference. Information extraction (IE) is the problem of ex-
tracting easily processed relational data from unstructured
plain text. Research in this area has increased to keep pace with
the ever-growing body of information-rich natural language
content available on the internet. Temporal information extrac-
tion and inference from plain text is a critical and daunting task
for natural language processing researchers, but as Ling and
Weld [1] note, most information extraction research ignores
the temporal information inherently tied to any non-static
facts. They go on to acknowledge the literature on temporal
expressions in natural language is vast , but mostly focus on
specific subproblems, rather than tackling temporal IE as a
whole. This paper will attempt to tackle full temporal IE.
The motivating application is improving the accuracy of the
automated timelines generated by EVOGATE, developed by
Chasin and Woodward, which is currently used to create a
map and timeline of events from historical wikipedia articles
[2]. This involves very accurate temporal expression extrac-
tion, and accurately inferring the time intervals of events in
plaintext.

II. RELATED RESEARCH

A focal point for temporal information extraction research
was the 2007 TempEval challenge [3], which asked participant
to focus on three tasks:

Task A For a restricted set of event terms, identify tempo-
ral relations between events and all time expres-
sions appearing in the same sentence. (NOTE:
The restricted set of event terms is to be spec-
ified by providing a list of root forms. Time
expressions will be annotated in the source, in
accordance with TIMEX3.)

Task B For a restricted set of event terms, identify tem-
poral relations between events and the Document
Creation Time (DCT). (NOTE: The restricted set
of events will be the same as for Task A. DCTs
will be explicitly annotated in the source.)

Task C Identify the temporal relations between contigu-
ous pairs of matrix verbs. (NOTE: matrix verbs,
i.e. the main verb of the matrix clause in each
sentence, will be explicitly annotated in the
source.)

Many approaches have yielded fair success on these tasks
or similar tasks, such as Conditional Random Fields, Markov
Logic Networks, and rule-based approaches [4]. Yoshikawa et
al. [5] succeeded in getting the highest F-score on all three
tasks by jointly solving them with Markov Logic Networks.
However, solving these tasks is not sufficient for generating a
useful timeline from plaintext.

One drastically limiting factor is the relations specified
by the TempEval guidelines are a small subset of the Allen
interval-algebra relations, which are qualitative relations be-
tween two sets of time intervals, such as BEFORE, or OVER-
LAPS. [6] This is obviously insufficient for timelines, which
require exact points in time or time intervals, specified by
either a single time or a beginning and end time, for every
event displayed.

According to the official Wikipedia style guide, temporal
expressions relating to the time of authorship should be
avoided except for current events articles 1. Thus Task B is
not highly relevant for our purposes, and our approach this
summer disregards document creation time all together. Tasks
A and C, however, will certainly be a part of any complete
temporal extraction scheme.

1http://en.wikipedia.org/

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 64

Other promising approaches to temporal information extrac-
tion not focused specifically on the TempEval tasks include
the hybrid Markov Logic Network and deep semantic parsing
approach of Ling and Weld [1] for developing the tightest
set of temporal bounds for every event in an article directly
implied by the text. One major emphasis of Ling and Weld’s
work is that they assigned times to events only if the times
were directly implied by the text. For many applications, a
sufficient criterion is to be reasonably sure of time bounds.
Wikipedia in particular, by its nature of being editable by
anyone, is subject to factual errors (though not significantly
more than standard encyclopedias [7]). Thus direct implication
may be a stricter criterion than we would want for developing
timelines based on information in Wikipedia.

Another unique approach is aggregating massive amounts of
search data from the web combined with shallow parsing to
create fuzzy sets representing time intervals for events. [8] This
approach is notable for explicitly encoding the uncertainty of
time bounds of events.

III. PROBLEM DESCRIPTION

Our problem is to create a program to take a Wikipedia
article as input, and output the events in the text along with
an explicit temporal interval for each one. This output can
then be displayed by the EVOGATE system on a timeline. In
order to accomplish this, we will need to extract the sparse
temporal information in the text and extrapolate the start and
end points for each event.

IV. TEMPORAL EXPRESSION EXTRACTION

A. HeidelTime

We use HeidelTime, developed by Strotgen and Gertz[9], to
extract all temporal expressions from the wikipedia articles.
HeidelTime is an easily extendable rule-based temporal ex-
pression extraction system based on regular expressions. Each
extracted expression is annotated with its type, value, and the
rule it was found with. In the 2010 TempEval-2 challenge2,
HeidelTime was used to tackle task A: Determine the extent
of the time expressions in a text as dened by the TimeML
timex3 tag. In addition, determine value of the features type
and val. The possible values of type are time, date, duration,
and set; the value of val is a normalized value as dened by
the timex2 and timex3 standard.

Two versions of HeidelTime were tested, one optimized
for precision, and one optimized for recall. In the extraction
portion, both versions of HeidelTime outperformed their com-
petitors, with an F-score of 86%. In addition, the precision-
optimized version had the highest accuracy in assigning the
value attribute (85%), as well as a respectable accuracy of
(96%) for the type attribute. The publicly available Heidel-
Time version is a slightly improved version of the precision
optimized version submitted for TempEval-2. The results for
all three versions can be seen in Table ??.

2http://semeval2.fbk.eu/

HeidelTime uses hand-crafted rules for temporal expression
extraction and normalization. The extraction rules are based
on regular expressions, but can also take into account part-
of-speech (POS) constraints on the tokens extracted. For this
reason, HeidelTime is used in a pipeline, with a POS tagger
directly before it. Every extraction rule is coupled with a
normalization rule, which takes the extracted expression and
produces a normalized value as defined by the timex2 and
timex3 standard. Extraction rules make use of expression re-
sources, which are simply reusable regular expressions that are
categorized and named. For example, the expression resource
reSeason (invoked in the extraction rules as ”%reSeason”) is

reSeason = ([Ss]pring|[Ss]ummer|[Ff]all|[Aa]utumn|[Ww]inter).

Note that ’[]’ denotes that exactly one of the expressions inside
occurs, and ’|’ is a boolean OR. Thus ”%reSeason” matches
the appropriate strings denoting seasons, such as ”spring” and
”Autumn.”

Normalization rules take the extraction rules and create an
expression representing the value of the extracted expression.
They make use of normalization resources. Normalization re-
sources are just a mapping between extracted expressions and
their normalized value. For example, a portion of normSeason
is:

”Summer”, ”SU”

”fall”, ”FA”

which denote a mapping from ”Summer” to ”SU” and ”fall” to
”FA”. Assuming ”%reYear4Digit” stands for four consecutive
digits, a full rule could then be

EXTRACTION = ”%reSeason%reY ear4Digit”,

NORMALIZATION = group(2)−normSeason(group(1))

group(x) denotes the expression from the xth regular ex-
pression resource in the extraction rule. An example of an
extraction and normalization of this rule would be ”Summer
2011” is extracted and normalized to ”2011-SU” in line with
the timex2 and timex3 guidelines.

HeidelTime also supports ”negative” rules. These rules are
identical to others, except the normalization value is simply
”REMOVE.” This signals to HeidelTime to surpress any
positive matches which overlap with an expression captured
by the negative rule. An example of how such a rule would
be used is to stop ”2000 people” from being extracted as the
year 2000.

HeidelTime supports underspecified values during the ex-
traction step. An example of an underspecified value is
”UNDEF-July.” In this case, in a post processing step, Heidel-
Time uses the last specified time or the document creation time
to fill in the missing values. The choice to use the document
creation time is specified when running the program. For
news articles, using the DCT greatly improves results, but for
historical articles, DCT are usually irrelevant.

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 65

Chancellorsville
Default HeidelTime Augmented HeidelTime

Precision 0.892857143 0.980392157
Recall 0.980392157 0.980392157
F-score 0.934579439 0.980392157

TABLE I
OUR RULE ADDITIONS IMPROVED PRECISION BY 0.09 WHILE LEAVING

RECALL UNCHANGED, RESULTING IN A SIGNIFICANT F-SCORE INCREASE
OF 0.05.

Fredericksburg
Default HeidelTime Augmented HeidelTime

Precision 0.933333333 0.948717949
Recall 0.810810811 1.000000000
F-score 0.867768595 0.973684211

TABLE II
IN THIS ARTICLE OUR RULE ADDITIONS RESULTED IN PERFECT RECALL

AND A SLIGHT IMPROVEMENT TO PRECISION, RESULTING IN A
SIGNIFICANT F-SCORE INCREASE OF 0.11.

B. Improving HeidelTime

We tested HeidelTime in its publicly-available form on our
article pool. In our initial tests, we checked the HeidelTime
results of two articles, the battle of Chancellorsville and the
Battle of Fredericksburg. Our trial runs demonstrated a few
shortcomings of the system as-is. It missed some reason-
ably common time formats (such as ”830 a.m.”), and some-
times failed to extract durations. More significantly, especially
for historical articles detailing troop movements, much like
Chasin’s approach, it mistakenly extracts ”march” when it does
not refer to the month, which throws off the accuracy of the
values for subsequent underspecified expressions. There were
various other minor errors as well.

HeidelTime keeps its code separate from the rules and
resources it uses, so additions to the system are easy and
involve no compilation. We began by adding a few new rules
to the system, to cover for the most obvious shortcomings
during our trial run. We then ran a preliminary comparison of
the original system and our augmented version on two of our
articles. The results (displayed in Tables I and II) show that
our augmented version drastically improves both precision and
recall.

These results were exciting, however, we wished to make
sure that our new rules weren’t overly specific to our do-
main, and we wanted a more rigorous testing environment.
Thankfully, the Ruprecht-Karl University Heidelberg Database
Systems Research Group’s website, maintained by Gertz,
contains testing and evaluation scripts for HeidelTime based
on a number of corpora, including the TempEval-2 dataset,
Timebank 1.2, and the WikiWars corpus.

The TempEval-2 English dataset is actually based on the
Timebank 1.2 dataset, and is an order of magnitude smaller.
Thus Timebank 1.2 results can provide a more robust evalua-
tion of our changes.

The WikiWars corpus[10] is a collection of 22 war articles
from Wikipedia, with temporal expressions annotated with

timex2.3 Both Timebank and the TempEval-2 dataset are com-
prised of newswire articles. Historical articles are significantly
different in style and presentation, and improvements on the
results run on a corpus comprised solely of such articles is
more likely to translate into improvements in extraction for
our Wikipedia articles than improvements specific to newswire
articles.

The evaluation scripts4 provide precision, recall, and F-
score results for five categories: Extraction (lenient), Extrac-
tion (strict), Normalization (value attribute), Extraction and
Normalization (lenient and value attribute), and Extraction
and Normalization (strict and value attribute). Strict extraction
means for an expression extraction to be a true positive the
expression must exactly match that of the gold standard. Le-
nient extraction relaxes this constraint to be that the extracted
expression must overlap with the gold standard expression.
The Normalization category requires the value of the extracted
expression to exactly match that of the gold standard, and
the combined categories require the extracted expression to
meet the criteria of both of the component categories. The
scripts also provide an easy to analyze document detailing
each expression, and its value for both the gold standard and
the results of the HeidelTime extraction. This allows us to
easily analyze what changes improve the system the most.

Thus we began the iterative process of adding, removing,
and modifying rules, expression resources, and normalization
resources, and comparing the results on the WikiWars dataset.
We continued this process for over 50 iterations. Our results
can be seen in Table ??. The value attribute recall and
precision remained largely the same, with massive gains in
all other areas. Recall improved the most, with an 8.1%
improvement in lenient extent, and a 9.1% improvement in
strict extent. However, all other values improved by at least
3%.

These were quite substantial results, but we wanted to make
sure our gains were not because of specializing HeidelTime
specifically for historical wikipedia articles, at the cost of
precision and recall for other datasets. In order to guard against
this, we tested our adjusted HeidelTime on the TimeBank 1.2
dataset. Our results, though not showing as dramatic of gains
as on the WikiWars dataset, nevertheless show no decrease
in accuracy or precision in any category, and, indeed show
modest recall gains of over a full percent in both the lenient
and strict extents. This gives us some confidence that our
modifications are not over specialized.

Finally, we tested our improved HeidelTime on our pool of
Wikipedia articles, taking a random sample of 200 sentences.
The results will appear in a table in the final version of this
paper.

C. Further Improvements
There are plenty of patterns we could still add to Hei-

delTime to further increase precision and accuracy, and con-
tinuing our iterative improvement process would likely yield

3Available for download free of charge from http://www.timexportal.info/
4Available on http://dbs.ifi.uni-heidelberg.de/

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 66

WikiWars
Default HeidelTime Augmented HeidelTime Improvement

Lenient Extent
Precision 0.940 = 94.0% 0.974 = 97.4% +0.034 = +3.4%

Recall 0.821 = 82.1% 0.902 = 90.2% +0.081 = +8.1%
F-score 0.877 = 87.7% 0.937 = 93.7% +0.060 = +6.0%

Strict Extent
Precision 0.851 = 85.1% 0.901 = 90.1% +0.050 = +5.0%

Recall 0.743 = 74.3% 0.834 = 83.4% +0.091 = +9.1%
F-score 0.793 = 79.3% 0.866 = 86.6% +0.073 = +7.3%

Value
Precision 0.896 = 89.6% 0.896 = 89.6% +0.000 = +0.0%

Recall 0.900 = 90.0% 0.902 = 90.2% +0.002 = +0.2%
F-score 0.898 = 89.8% 0.899 = 89.9% +0.001 = +0.1%

Lenient Extent + Value
Precision 0.842 = 84.2% 0.872 = 87.2% +0.030 = +3.0%

Recall 0.736 = 73.6% 0.808 = 80.8% +0.072 = +7.2%
F-score 0.785 = 78.5% 0.839 = 83.9% +0.054 = +5.4%

Strict Extent + Value
Precision 0.787 = 78.7% 0.826 = 82.6% +0.039 = +3.9%

Recall 0.688 = 68.8% 0.764 = 76.4% +0.076 = +7.6%
F-score 0.734 = 73.4% 0.794 = 79.4% +0.060 = +6.0%

TABLE III
A COMPARISON OF THE DEFAULT HEIDELTIME AND OUR MODIFIED HEIDELTIME ON THE WIKIWARS DATASET. OUR CHANGES LEFT THE PRECISION

AND RECALL OF THE VALUE ATTRIBUTE NEARLY UNTOUCHED, WHILE DRASTICALLY IMPROVING PRECISION AND RECALL IN ALL OTHER AREAS.

TimeBank 1.2
Default HeidelTime Augmented HeidelTime Improvement

Lenient Extent
Precision 0.905 = 90.5% 0.907 = 90.7% +0.002 = +0.2%

Recall 0.914 = 91.4% 0.928 = 92.8% +0.014 = +1.4%
F-score 0.909 = 90.9% 0.917 = 91.7% +0.008 = +0.8%

Strict Extent
Precision 0.835 = 83.5% 0.835 = 83.5% +0.000 = +0.0%

Recall 0.843 = 84.3% 0.854 = 85.4% +0.011 = +1.1%
F-score 0.839 = 83.9% 0.844 = 84.4% +0.005 = +0.5%

Value
Precision 0.862 = 86.2% 0.862 = 86.2% +0.000 = +0.0%

Recall 0.862 = 86.2% 0.862 = 86.2% +0.000 = +0.0%
F-score 0.862 = 86.2% 0.862 = 86.2% +0.000 = +0.0%

Lenient Extent + Value
Precision 0.780 = 78.0% 0.782 = 78.2% +0.002 = +0.2%

Recall 0.788 = 78.8% 0.800 = 80.0% +0.012 = +1.2%
F-score 0.784 = 78.4% 0.791 = 79.1% +0.07 = +0.7%

Strict Extent + Value
Precision 0.732 = 73.2% 0.732 = 73.2% +0.000 = +0.0%

Recall 0.740 = 74.0% 0.747 = 74.7% +0.007 = +0.7%
F-score 0.736 = 73.6% 0.739 = 73.9% +0.003 = +0.3%

TABLE IV
A COMPARISON OF THE DEFAULT HEIDELTIME AND OUR MODIFIED HEIDELTIME ON THE TIMEBANK 1.2 DATASET. ONCE AGAIN OUR CHANGES LEFT

THE PRECISION AND RECALL OF THE VALUE ATTRIBUTE NEARLY UNTOUCHED, THIS TIME HAVING MODEST PRECISION GAINS AND DECENT RECALL
IMPROVEMENTS IN ALL OTHER AREAS.

increasingly accurate results. One change that would immedi-
ately increase value precision in the WikiWars dataset is full
support for years in BC. We’ve add the extraction patterns,
however, years BC are currently ignored for the purposes of
post-processing underspecified values.

However, there are two large areas currently keeping preci-
sion and recall. First is inconsistent gold standard labeling.
For example, in the WikiWars dataset, ”the same time” is
labelled in every occurrence as a temporal expression. In the
TimeBank 1.2 dataset, on the other hand, although ”the same
time” occurs many times in similar contexts to the appearances
in the WikiWars articles, it is never annotated as a temporal
expression. Currently we simply disregard this expression, but
adding it in would instantly increase extraction recall on the
WikiWars dataset a non-negligible amount, while simultane-
ously decreasing extraction precision in the TimeBank 1.2
dataset.

The other, larger area, can be improved without modifying

datasets. Currently the underspecified value post-processing
step fills in the underspecified value with data from the last
fully specified temporal expression. This causes errors, such as
normalizing an expression of ”January” following ”December
2008” to ”2008-01”, when it should be ”2009-01”. Such errors
are then propagated until the next temporal expression that
specifies the exact year. Inaccurate post-processing is what
leads to the greatest number of errors in the value attribute. A
slightly more sophisticated heuristic may be able to drastically
improve value recall and precision, and a significantly more
sophisticated system, perhaps deriving temporal relations, or
simply using lexicographical clues could perhaps increase
value precision and recall to near-perfect levels.

V. EVENT EXTRACTION

We extract events from the Wikipedia articles by using
Evita, developed by Pustejovsky et al. as an event recog-
nizer for question/answer systems. The events extracted by

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 67

Evita are mostly action verbs, but alse include some nouns
and adjectives that indicate events occurred. Evita, part of
the TARSQI toolkit5, annotates events with polarity, aspect,
modality, tense, non-finite morphology, class, which we can
use to filter events that are unlikely to be temporally located.
We used Evita off-the-shelf; for more information, read the
original paper introducing Evita[11].

VI. TEMPORAL RELATION EXTRACTION

In order to order events relative to each other, we use a
Markov Logic Network to generate the most likely set of
temporal relations. Markov Logic Networks, introduced by
Domingos et al. [12] are an extension of first order logic with
probabilities other than one (true) or zero (false). Formulas
hold probabilistically, so its simple to encode soft rules and
probabilistic inference. The example given in [5] of a soft
formula is

futureTense(e) =⇒ !beforeDCT (e),

that an event in the future tense is likely, but not certain, to
be temporally located after the document creation time.

The de facto standard for temporally annotated corpora is
the TimeBank 1.2 corpus (also used in our temporal expression
extraction tests). The TimeBank corpus consists of about 300
newswire articles human-annotated with temporal events and
expression and relations between them, given in Allen interval
algebra notation. Allen notation consists of 13 qualitative
relations between two intervals, which are depicted in Figure
1. As mentioned earlier, the TempEval tasks used a very small
subset of these relations, and most temporal extraction research
has avoided using the full set of relations. Ideally, our Markov
Logic Network should only need to generate one type of
relation. Thankfully, as noted by [1], if we treat every temporal
event as an interval with a start and end point, then all thirteen
relations can be represented by inequalities between the start
and end points of the two intervals. This means we can set out
to only find after(a, b), which we take to mean a is after or
at the same time as b. We can encode equality between two
time points a and b as

after(a, b) AND after(b, a).

For an example of an Allen relation encoded with these
inequalities, consider the two intervals A = [a0, a1] and
B = [b0, b1], where A finishes B. This is equivalent to:

after(a0, b0) AND after(b1, a1) AND after(a1, b1)

Similar conversions can be created for all 13 Allen relations.
Using these conversions, we can use TimeBank for our training
data.

The atoms for our Markov Logic Network are the events
from Evita and the time expressions from HeidelTime. There
are two main categories of features of our Markov Logic
Network. The first is an apriori after relation among the
atoms from HeidelTime. Since HeidelTime exactly temporally

5Download details available at http://www.timeml.org/site/tarsqi/toolkit/download.html

Fig. 1. An illustration of the 13 Allen interval relations. All of the relations
depicted except equality have inverses.

locates time expressions, we can generate after relations such
as January 1952 is after December 1951 before running the
MLN. We code the hard rule

apriori after(x, y) =⇒ after(x, y),

to ensure that the world outputted by our MLN still contains
these relations.

The other features are generated by the Stanford Parser [13].
The relevant soft formula we encode are of the form

dep(x, y) =⇒ after(point(x), point(y)),

following [1], where this is a second-order formula, where
point() is either the start or endpoint and dep stands for any
one of the 50+ Stanford dependency. Stanford dependencies
are relations between pairs of words in a sentence and are
generated by the Stanford parser [14]. Examples of Stanford
dependencies are dobj (direct object) and prep in (related by
the preposition ”in”).

We run the Stanford parser on the TimeBank train-
ing set, in order to learn the weights on these formulas.
The higher the learned weight, the more likely it is that
after(point(x), point(y)) is a relation in the final world
outputted by an MLN. A negative weight corresponds to a
formula that is actually likely to not hold. We only consider
the dependencies between events, or between temporal expres-
sions, or between one of each.

We also incorporate a global weighted formula softly en-
forcing transitivity:

after(a, b) AND after(b, c) =⇒ after(a, c).

This constraint is soft, because there are inconsistencies in
our training data that would break this constraint. This is
an unfortunate limitation, but one to be expected of a large
human-annotated corpus. Like Weld [1], we use a positive
prior for this transitivity rule, mostly because the gold dataset

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 68

often lack transitively closed relations that should be included
for complete information.

Unlike [1], we are not using a statistical relational learner
to improve results; as we rely on our a priori after relations to
pick up the slack. However, an intended extension for future
work is a feature relating main verbal events of adjacent
sentences. This will allow for more relations between sen-
tences, leading to higher recall and ultimately a more accurate
timeline.

Our results in using the MLN to generate temporal expres-
sions will be available in the final draft of this paper.

VII. SYNTHESIS

At this point we have two separate systems, a state-of-
the-art temporal expression extractor improving upon Heidel-
Time, and a temporal relation extractor, following the basic
implementation of the TIE system. We still need to integrate
the results of these two mostly separate systems, to generate
accurate timelines for Wikipedia articles. We show the results
of three different approaches.

A. Naive Approach

We first create a baseline by assigning events in a sen-
tence the tightest time-bounds of any date or time expression
extracted by HeidelTime in the same sentence. Any events
with no bounds after this process acquire bounds through a
simple heuristic as follows: determined lower bounds (start
points) are propagated forwards, upper bounds (end points)
are propagated backwards. If there are still undefined bounds,
they are filled in with the closest bound of their type in either
direction. Events with identical start bounds are assumed to
occur in the order in which they appear in the article. This fully
specifies all bounds in an article, so long as at least one upper
bound and one lower is specified by a temporal expression.
Since each temporal expression has a start and endpoint, this
means all bounds are specified so long as there is at least one
temporal expression in the entire article. This approach is near
identical to the one taken by Chasin.[2]

B. Basic Improvements

Our second approach uses some more data and basic
heuristics to improve accuracy. Events are only given the
time bounds of temporal expressions if there is a Stanford
dependency between the two. If there is a dependency between
an event and a duration expression, that event is determined
to have taken as long as the expression in question. Otherwise
temporal bounds are propagated as in the naive approach.

C. Incorporating the MLN

Our final and most sophisticated approach is largely similar
to the last approach. However, instead of propagating bounds
based on proximity in the original, bounds are propagated
using the after relations generated by the Markov Logic
Network.

D. Results
Our results can be seen in a table in the next draft of this

paper.

VIII. FUTURE WORK

There are several directions to take this work in the future
for whoever decides to extend this work. Feature selection
for the Markov Logic Network could lead to massive im-
provements in temporal relation extraction. A simple filter of
events unlikely to be temporally relevant could decrease the
problem size and difficulty. One could attempt to use fuzzy
sets or incorporate explicit uncertainty scores in order to get
more accurate timelines. Fuzzy sets, or uncertainty is easily
represented visually on a timeline by use of a gradient.

The most useful extension would be the creation of a gold
standard annotated corpus based on historical articles. The
training data for the Markov Logic Network consisted solely
of newswire articles, which are of a decidedly different nature
than a historical article, and a more domain-specific corpus
would be incredibly useful. WikiWars, though quite useful
for improving temporal expression extraction, lacks temporal
relation annotation, and thus cannot currently be used to
train our MLN. Also, any corpus creation where the articles
are annotated with explicit time intervals would open large
avenues of research. One such avenue would be trying to learn
how long certain events are likely to take using a machine
learning approach, and then using this information to estimate
the time interval durations in the timeline more accurately.

As mentioned in the temporal expression section of this
paper, improving HeidelTime is an area with several low-
hanging fruit. More accurate temporal expression extraction
will directly lead to more accurate timeline generation. This
project’s focus was mostly on improving HeidelTime, with
some effort going into creating a working Markov Logic
Network. Thus the synthesis section represents early first
efforts at creating good timelines from temporal expressions
and relations, and it is likely there are ways of improving the
timelines independently of improving expression or relation
extraction.

IX. CONCLUSION

We have presented significant improvements to HeidelTime,
creating what is currently the most accurate system for the
extraction of temporal expressions from historical articles. We
also reimplemented an MLN, most following in the footsteps
of TIE, for temporal relation extraction, and present decent
results. Finally, we presented early attempts to combine these
two systems in order to generate temporal bounds for all events
in a document, and gave suggestions for future improvements.

REFERENCES

[1] X. Ling and D. S. Weld, “Temporal information extraction,” AAAI, 2010.
[2] R. Chasin, D. Woodward, and J. Kalita, “Extracting and displaying

temporal entities from historical articles,” NCMT, 2011.
[3] M. Verhagen, R. J. Gaizauskas, F. Schilder, M. Hepple, J. Moszkowicz,

and J. Pustejovsky, “The tempeval challenge: identifying temporal
relations in text.” Language Resources and Evaluation, pp. 161–179,
2009.

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 69

[4] I. Mani, “Recent developments in temporal information extraction,”
RANLP 2003, 2003.

[5] K. Yoshikawa, S. Riedel, M. Asahara, and Y. Matsumoto, “Jointly
identifying temporal relations with markov logic,” in Proceedings of the
Joint Conference of the 47th Annual Meeting of the ACL and the 4th
International Joint Conference on Natural Language Processing of the
AFNLP: Volume 1 - Volume 1, ser. ACL ’09. Stroudsburg, PA, USA:
Association for Computational Linguistics, 2009, pp. 405–413. [Online].
Available: http://portal.acm.org/citation.cfm?id=1687878.1687936

[6] J. Allen, “Maintaining knowledge about temporal intervals,” C. ACM,
1983.

[7] J. Giles, “Internet encyclopedias go head to head,” Nature, 2005.
[8] S. Schockaert, M. De Cock, and E. Kerre, “Reasoning about fuzzy

temporal information from the web: towards retrieval of historical
events,” Soft Computing - A Fusion of Foundations, Methodologies and
Applications, vol. 14, pp. 869–886, 2010, 10.1007/s00500-009-0471-8.
[Online]. Available: http://dx.doi.org/10.1007/s00500-009-0471-8

[9] J. Strötgen and M. Gertz, “Heideltime: High quality rule-
based extraction and normalization of temporal expressions,”
in Proceedings of the 5th International Workshop on Semantic
Evaluation, ser. SemEval ’10. Stroudsburg, PA, USA: Association
for Computational Linguistics, 2010, pp. 321–324. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1859664.1859735

[10] P. Mazur and R. Dale, “Wikiwars: a new corpus for
research on temporal expressions,” in Proceedings of the 2010
Conference on Empirical Methods in Natural Language Processing,
ser. EMNLP ’10. Stroudsburg, PA, USA: Association for
Computational Linguistics, 2010, pp. 913–922. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1870658.1870747

[11] R. Saurı́, R. Knippen, M. Verhagen, and J. Pustejovsky, “Evita: A robust
event recognizer for qa systems,” Proceedings of HLT/EMNLP 2005, pp.
700–707, 2005.

[12] M. Richardson and P. Domingos, “Markov logic networks,” Machine
Learning, vol. 62, pp. 107–136, 2006, 10.1007/s10994-006-5833-1.
[Online]. Available: http://dx.doi.org/10.1007/s10994-006-5833-1

[13] D. Klein and C. D. Manning, “Fast exact inference with a factored
model for natural language parsing,” Advances in Neural Information
Processing Systems, vol. 15, pp. 3–10, 2003.

[14] M.-C. de Marneffe, B. MacCartney, and C. D. Manning, “Generating
typed dependency parses from phrase structure parses,” LREC 2006,
2006.

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 70

Experiments in Creating Bilingual Dictionaries
using Existing Dictionaries

Richard Seliga
Department of Computer Science

University of Colorado at Colorado Springs
Colorado Springs CO 80918

Abstract—The purpose of this project is to create a multilingual
dictionary that is available to people on the web and can translate
from any language in our database to another. There are around
6000 languages in the world. The biggest translation tool out
there today is Google translate which supports only around 60
languages. Another problem with translating is that most of the
dictionaries on the internet are between two common languages
like English, French or German. But what if you would like
to translate something from Slovak to Assamese? This project
will create a dictionary between these languages using the clique
(graph) theory, triangulation and using variables like language
family to get good translations.

I. INTRODUCTION

The plan for this project is to create a multilingual dictionary
focusing on the Slavic and Indic languages, since dictionaries
between these two families of languages are rare at best.
We will be doing this by using existing bilingual dictionaries
and using the worlds’ most common languages like English
or German as the common ground. The motivation for this
project is the fact that there are not many dictionaries between
languages like Slovak and Assamese but there are dictionaries
between English and Assamese or English and Slovak. This
project will create a dictionary where you can translate from
any language in our database to another.

A. Building Database of Bilingual Dictionaries

One of the issues we run into in the beginning is the fact
that there are not many dictionaries available on the internet.
We decide to build our database of dictionaries by querying
websites that offer bilingual dictionaries. Even though this
process is slow it is currently the only option. We also
used Wiktionary as a resource. The only issue with using
Wiktionary is that even though its very detailed the amount
of information for smaller languages is insufficient but its
still more then we get from querying the previous dictionary.
Wiktionary is a good resource because not only does it contain
language translation but it includes the senses which are very
important in creating our dictionary graph and getting good
results.

B. Creating a Dictionary between two Languages

We initially have two or more bilingual dictionaries which
are the Slovak-English dictionary and the Czech-English dic-
tionary. These dictionaries were created by querying the same
site with the same 58000 English words. The information

Fig. 1. In this figure we show a very simple example of translating between
Slovak and Czech using one common language and parts of speech as lines
in between these nodes. N = Noun. A = Adjective

stored includes the part of speech and the translation. The
problem we are foreseeing is the fact that this dictionary does
not show the sense of the translating word which is a vital
part in creating these dictionaries. We solve this problem by
querying Wiktionary.org and getting the senses for some of
these translations.

II. THE PROCESS USING THREE LANGUAGES

In this graph we see that the word zviera in Slovak has
three translation in English and they are all nouns, however the
word animal in English has more translations in Czech which
include adjectives as well as nouns. We ignore the adjectives
since the word in Slovak is a noun. The English word animal
has some other translations including zvı́ře and živočich. Beast
and Brute also translate to zvı́ře and since this is the most
active part of the graph we see that we can translate zviera to
zvı́ře. This does not seem too bad however in this graph we
are using simple words that do not have more then one sense.
So for example using the word heart can mean two or more
things in both Slovak or English and that is the problem we

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 71

Fig. 2. In this figure we create a clique. This clique includes the nodes quarter
in English, vierteldollar in German, štvrťdolár in Slovak and čtvrtdolár in
Czech. This is one of the simpler cliques we will use to find translations.

are trying to solve. In this graph it really is a ideal situation
as three English words translate to the same word in Czech
but this will not always be the case. During this project we
will start using 2 bilingual dictionaries and see if the results
improve as we enter in more variables which will include more
languages and the words senses.

III. THE PROCESS USING MORE THAN THREE LANGUAGES

When you do not have an ideal situation like in the Figure
1 you will most likely have to use more then one language
to get the correct translation. With this we will turn to clique
theory. A clique is a set of three or more nodes connected to
one another. In our case the words will be nodes which will
be connected to each other using translation, sense and part
of speech. From this we will create a similar graph to the one
in Figure 2.

In the graph above we are looking for a translation from
English to Czech. The word quarter however has a lot of
meanings in English and could be a problem to translate
correctly. This is where we cannot rely on part of speech
since the meaning of quarter could be miesto or štvrťdolár
which are both nouns. So this is where we could use multiple
languages to pinpoint the correct translation. Since we have
the senses, this is also not a complicated problem to pin point
the translation.

IV. COMPLICATION OF LACK OF DATA

The complication becomes when we lack the senses and
we are translating a word like quarter. Some of the possible
solutions to this problem could include:

• Creating word graphs using language families and sub-
families

– Using the Slovak language as an example we know
that it is part of the Slavic family of languages and
part of the west Slavic subfamily.

Fig. 3. In this figure we see the research done by Tim Gollins and Mark
Sanderson from University Of Sheffield. This was the earliest method of
creating dictionaries. However this was inaccurate.

• Looking and the age of the languages is also important, if
a language is reasonably young we know that it is more
influenced by the more popular languages like English.

– For example current day Poland, Czech and Slovak
republic at one point used the same language. Slovak
being the youngest of the three would be more
influenced by the worlds languages.

V. THE DATABASE AND THE TRANSLATION GRAPH

Since the number of nodes is over 300,000 using only 4
languages we needed to find an effective and fast way to store
the data. We have 4 tables in our database including a part of
speech table, language table, word table and dictionary table.
The dictionary table includes 2 words from the word table and
an edge which is the sense. This is shown in figure 4. The
language table includes the ID and text field which represents
the language. The same go’s with the part of speech table.
The word table are included the indexes of the word since
this is how we built our graph which includes 300,000 nodes,
4 bilingual dictionaries and 4 languages. Previous work puts
senses and converts them to ID’s which results in sense ID
inflation however we use the senses from Wiktionary.org and
store them as text.

A. Storing the Senses

We also query the 48,000 English words and store the
multiple senses of the English word into a database and the
language ID’s that include a translation. What we mean by
this is that Wiktionary.org does not have all the translations
but it still has quite a bit. This can be seen in figure 4.

VI. GRAPH THEORY

The way we will find translations is using graph theory
which in mathematical and computer science fields is the study
of graphs. A graph in our case will be a collection of nodes
connected to each other by edges/senses. Graphing these nodes
will create a huge graph with over 300,000 nodes using only 4

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 72

Fig. 4. This figure shows the Senses for the word Spring. There are multiple
translations for this words which you get by opening one of these tabs up.
This results in numerous translations in different languages.

Fig. 5. In this figure we have the database diagram of the tables

languages. Previous papers discussed completing graphs into
cliques to create translations of high accuracy. A clique is a
subgraph where each node has an edge between every other
node. For example if you have node 1,2 and 3 then node
1,2 have to be both connected to 3 and 2,3 have to be both
connected to 1 and so forth. This will form a clique. In relation
to our problem we can see that completing these kind of graphs
is very complicated when you lack data. The problem will be
finding the probability if we can complete the clique in a given
subgraph which will give us the correct translation most of the
time.

VII. PREVIOUS RESEARCH

This is a relatively new subject in the research world as the
earliest paper about this subject was in 2001 by Tim Gollins
and Mark Sanderson. There research provided us with a new
way to use online resources to create dictionaries between
languages. In 2010 however the University of Washington
came up with an idea of using graph theory to come up with
results that rival human translating. We believe combining
these two methods and making improvements will give us even
better results and create dictionaries between the worlds rarest
languages.

A. Triangulated Translation

Figure 3 shows how the University of Sheffield research
created dictionaries. However just using triangulation does
not produce the best results but at the time this was the
best method. [3] This was the very beginning of using other
dictionaries to create other dictionaries. However the problem
using this technique was the fact that for example the word
spring has a lot of different meanings, it can mean the
season or a water source. This however does not translate the
same way to the other languages and this is where a lot of
inaccuracies happen and that’s why it was not as effective as
the research done by University of Washington.

B. Probabilistic Inference

University of Washington has just recently created
algorithms who use senses and probabilities to get translations.
Since the point is to create a cliques from these nodes, the
research is not really about finding translations but about
completing the subgraphs into cliques to find the probability
of the translation. Their research shows that if you can find
these cliques there is a very high chance that the translation is
correct. The edges in these graphs use the senses which they
have from their dictionaries. Since the amount of resources
they have exceeds any previous research done it will be
tough to test the same algorithms. To solve this we will have
to change these algorithms to better suit a smaller dataset.
The dataset of University of Washington includes over 600
dictionaries, 60,000,000 edges and 10,000,000 nodes. They
use this data to build a giant graph on which they run their
analysis of probability. Algorithm 1 shows the algorithm to
obtain the probability.[1]

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 73

Fig. 6. This figure shows the Senses for the word Spring. There are multiple
translations for this words which you get by opening one of these tabs up.
This results in numerous translations in different languages.

VIII. RESULTS

A. One or Two Intermediate Languages Algorithm

In this algorithm we use one intermediate language to
translate from language A to language B. Our intermediate
language would be language C. To translate from A to B we
first translate from A to C and then from B - C. The way
we scored the translation from A to B is that we totalled the
number of the word with the same spelling at the end of
translating from B - C. We can see this in Fig. 6.
For the two intermediate languages we follow the same steps
as in the paragraph above, however instead of having one
intermediate language we have two. This improved our results
by .08. For such a simple algorithm we believe these results
are pretty good for something so simple. The languages used
for testing were Slovak, Czech, English and German. For the
one intermediate language we used Slovak → English →
Czech and for two intermediate languages we used Slovak →
(English,German) → Czech

Results Accuracy
1 intermediate language .63
2 intermediate languages .71

IX. FUTURE WORK

Even though the possibility of being able to translate from
one language in our database to another is a tall task on its
own in the future we would like to make additions to translate
documents. Some of the other options after finishing building
these dictionaries include creating a multilingual search engine
which would accept any language and return results in English.

A. Algorithm 3

This algorithm is more complicated but we believe it would
give us substantially better results. This algorithm will use
a database of at least ten multilingual dictionaries. This will
essentially create a big graph. A small part of this graph can
be represented by Fig. 1. What we will do after we generate
this graph is that we will take as many paths as possible to our
desired language from the original language. This will give us
a lot of different paths. What we analyse with this algorithm
is these paths. Some of the rules we have generated for these
different paths.

1) Consider the path length as a negative effect on the
accuracy

2) Consider the branching factor as a negative effect on the
accuracy

3) Translating between languages of the same family within
the path improves the accuracy.

4) Having the same sense and/or part of speech on the path
improves the accuracy.

This is a different approach then the work done at University
of Washington however implementing these changes on top
of their work could definitely improve already outstanding
results.

REFERENCES

[1] Mausam and S. Soderlang and O. Etzioni and D. S. Weld and K. Reiter
and M. Skinner, Panlingual lexical translation via probabilistic inference,
Essex, UK: Elsevier Science Publishers Ltd., 2010.

[2] Mausam and S. Soderlang and O. Etzioni and D. S. Weld and K. Reiter
and M. Skinner and J Bilmes, Compiling a Massive, Multilingual Dictio-
nary via Probabilistic Inference, Stroudsburg, PA, USA: Association for
Computational Linguistics, 2009.

[3] Tim Gollins and Mark Sanderson. Improving cross language retrieval
with triangulated translation, New Orleans, Louisiana, United States:
Proceedings of the 24th annual international ACM SIGIR conference on
Research and development in information retrieval 2001.

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 74

1

Vaulted Verification: A Scheme for Revocable Face
Recognition

Michael Wilber
University of Colorado, Colorado Springs

mwilber@uccs.edu

Abstract—As biometric authentication systems become com-
mon in everyday use, researchers are beginning to wonder about
the ethics of biometric recognition. In particular, this paper
outlines the need for a face recognition system that does not
compromise the privacy of the subjects being recognized. We
present a brief overview of current face verification systems
and discuss one such implementation. We also outline several
obstacles that must be overcome to protect SVM-based face
classifiers. To overcome these obstacles, we present a novel
protocol we call “Vaulted Verification” that allows a server to
authenticate a client’s biometric in a privacy preserving way.
Finally, we conclude with a small evaluation of performance,
discussion of some security implications, and ideas for future
work.

I. INTRODUCTION

FACE recognition systems are ubiquitous. The real-world
usefulness of a system that recognizes faces combined

with increasing computational power has led to an explosion
of research over the past few years. As a result, many different
face recognition systems enjoy widespread use in several
professional domains such as academia, security, data mining,
and information retrieval.

Given their ubiquity, it is important that face recognition
systems can both guarantee security and operate without
sacrificing individual privacy. This project seeks to build an
accurate, secure, and private face verification system. By “ac-
curate”, we mean that this system should correctly recognize
faces with no false positives. By “secure” and “private”, we
mean an individual should be able to revoke their identification
at any time and an attacker should not be able to reconstruct
information about the face if they somehow acquire a copy of
the template database. Finally, this system should operate well
under the speed and memory constraints imposed by modern
hardware.

Unfortunately, there are few existing verification packages
available that preserve privacy and security. Corporations are
beginning to grapple with the dilemma of ethical face recogni-
tion. With increased widespread use comes increased respon-
sibility and increased pressure to preserve customers’ privacy.
Recent events such as Facebook’s controversial widespread
deployment of automatic face recognition technology [1] are
beginning to raise questions about privacy in customers’
minds.

II. EXISTING FACE RECOGNITION SCHEMES

According to [2], there are three closely related problems
in the domain of automated face recognition:

• Pair matching. In this scheme, an algorithm decides
whether or not two separate photos are of the same
individual.

• Recognition, also known as identification, closed-set, or
“multi-class” recognition. A gallery is constructed con-
taining photos of several different people. The algorithm
takes a new photo of a subject and decides who it is,
selecting one out of the set of gallery subjects.

• Verification, also known as authentication, open-set
recognition, or “one-class” recognition, is where the
gallery consists of several images of a single subject.
The algorithm is given either an image of the subject or
an image of an impostor from an unknown universe of
impostors. The algorithm then decides whether the probe
image is of the subject in the gallery or is an impostor.

We concern ourselves with the last of these problems as it is
the issue addressed by most common biometrics systems. Our
face verification system is analogous to a fingerprint scanner
in the sense that it can be used to allow or deny an individual’s
access to a resource.

How can one build a face verifier that does not compromise
privacy? To answer this question, we will first present an
overview of current face verifiers. Then, we will describe the
privacy issues in Section III and present the preliminary results
of a novel protocol designed to overcome these issues.

Consider the following scenario: User Bob wishes to log
in to his bank account using his face. When Bob visits the
bank to enroll, his bank takes several pictures of his face.
They normalize these pictures and convert them into feature
vectors which are stored in the bank’s gallery database. To
authenticate a potential account holder’s photograph (probe),
the stored feature vectors are used to train a one-class SVM
classifier which then either accepts or rejects the probe.

A. Experimental protocol: Dataset composition

Several commonly used public-accessible datasets exist
for the purpose of studying facial recognition problems. In
particular, FERET [3] and LFW [2] are among the most
recognized, but they answer slightly different questions as
FERET is intended for closed-set recognition [3] and LFW
is primarily concerned with image pairing [2].

Because our experiments depend on machine learning clas-
sifiers that require three or four images to train each subject,
we chose the FERET240 set, a subset of FERET that contains
the subjects that have at least four images, as described in [4].

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 75

2

FERET240 is intended to test recognition problems rather than
verification problems (see Section II), so the following changes
were made to the test protocol: First, the test is repeated for
each of the 240 subjects. The total scores – true and false
positives and rejects – are summed and considered as scores
of the overall test. g pictures of the subject (usually three or
four depending on test) are considered to be the gallery, and
the rest of the subject’s pictures are considered the positive-
labeled probes. The impostors are all images of the other 239
subjects in the set.

B. Generating the feature vector: GRAB

For every classification, we must convert images into feature
vectors. For this project, we will use the GRAB descriptor [4]
as it has been shown to yield good accuracy on multi-class
recognition problems in the FERET and LFW datasets. GRAB
has also been used on open-set recognition problems similar
to the ones we face [5].

GRAB is a modification of linear binary patterns (LBP)
[4]. LBP works by splitting the image up into 64 sub-
windows [6]. A “feature histogram” is computed for each sub-
window, where each feature is found by thresholding each
pixel’s brightness against its eight neighbors, yielding an 8-
bit number. This means each pixel may possess one of 256
distinct feature “tags”. Each sub-window’s feature histogram
is then concatenated to form the final feature vector.

Fig. 1. A demonstration of GRAB neighbor preprocessing before windowed
histogram application. The two images on the left are of the same subject and
demonstrate intra-class variation; the three images on the right are of different
people and show inter-class variation.

GRAB works in much the same way but with some slight
differences. First, instead of sampling each pixel’s neighbors,
GRAB samples different-sized neighborhoods of pixels around
the target pixel. This makes GRAB less resistant to noise and
resolution changes than LBP [4]. Second, GRAB demands
that each pixel’s brightness must be at least a given threshold
brighter or darker than its neighborhood, whereas LBP only
compares the two pixels’ values by a simple “greater-than”
or “less-than” comparison. This ensures GRAB only finds
features important enough to yield high contrast changes.

C. Classification

Unfortunately, GRAB feature vectors may have nonlinear
intra-class variations. This means it is often impossible to
distinguish between two vectors of the same subject versus
two vectors across different subjects with a “nearest neighbor”

classifier. To work around this, machine learning techniques
such as support vector machines (SVM) are often used because
they can better distinguish these relationships [4], [7].

A binary SVM is trained against positive and negative fea-
ture vectors. The output is a support vector machine that, when
given an unknown feature vector, can distinguish whether it is
a member of the positive class or the negative class. Because
our problem involves verification rather than recognition, we
wish to use an SVM that can distinguish between the intended
subject and everyone else. Unfortunately, a binary classifier
is unfeasible because we cannot possibly know all of the
negative examples – this would require taking pictures of every
possible impostor. Thus, we use a one-class SVM, which can
distinguish between members and nonmembers of the gallery
set.

D. Preliminary evaluation results

We built the above system to establish a good baseline of
the kind of results we can expect. This baseline will show
us errors in our existing implementation and will reveal how
privacy-preserving mechanisms degrade verification scores.

TAR FAR
One-class SVM, linear kernel 71.09% 39.38%
Gaussian kernel (γ = 0.5) 78.80% 4.51%
Gaussian (γ = 0.75) 72.38% 3.26%
Gaussian (γ = 1) 65.73% 2.85%
Gaussian (γ = 2) 57.39% 2.41%
Gaussian (γ = 5) 50.96% 2.10%
Open-set SVM (γ=1, η=best rejected score) 80.09% 1.04%
η= 9

10
between rejected and accepted 64.6% 0.017%

η=Optimize recall when precision=.75 81.80% 0.89%
TABLE I

PRELIMINARY RESULTS OF A ONE-CLASS SVM VERIFICATION SCHEME.
TAR, FAR = TRUE ACCEPT RATE AND FALSE ACCEPT RATE

In Table II, a “true positive” is defined as correctly ac-
cepting an honest subject and a “false positive” is defined
as accidentally accepting an impostor. True positive and false
positive rates are obtained by taking the corresponding statistic
and dividing it by the respective number of classifications that
should have been accepted and rejected – for this experiment,
467 classifications should have matched and 251,906 should
have been rejected.

At a fundamental level, it is hard to pick the proper
parameters for a one-class SVM to achieve a desired level
of generality. Should the SVM match against all images?
All humans? All humans of a certain ethnicity? Images of
a certain subject? Only images of a certain subject with a
certain pose? Depending on the problem, all of these may be
desired classifiers. Very recent work with “open-set support
vector machines” is beginning to emerge as a possible solu-
tion. Open-set SVMs build upon one-class SVMs by using
“margin morphology” techniques to achieve a desired level
of generality by shrinking or expanding the 1-class SVM’s
decision function to minimize error [5]. This essentially works
by training a one-class SVM as usual and then providing
canonical negative examples. These do not impact the support
vectors or kernel parameters (as they would in a binary SVM);

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 76

3

instead, these canonical negatives provide a reference for the
desired generality of the classifier. Three experiments with an
open-set SVM classifier are included in Table II.

III. PRIVACY CONCERNS OF SVM-BASED RECOGNIZERS

Implementing a face verifier as per the above system may
satisfy the “accuracy” requirement in that the system will
ideally accept only the subject and reject impostors (please
humor us), but this system does not address the “security”
or “privacy” requirements. In other words, simply building an
SVM-based classifier is not enough to ensure the privacy of
the subject being classified. In our case, we want to protect
the final classifier itself because if an attacker could obtain
the SVM representation, he could conceivably consider local
maxima of the kernel function to produce a feature vector that
would be accepted by the SVM. Once the attacker has suitable
feature vectors, he could conceivably produce an image that
has the same GRAB features. Even if this image might not
look anything like the original subject, it would still be falsely
accepted because it would evaluate to a feature vector that the
kernel classified in the same way as the subject.

The literature discusses several ways of “protecting SVM
privacy”, but none of them are directly suitable to this problem
domain.

A. Previous approaches to SVM privacy protection

[8], [9] describe two secure ways of training an SVM
where multiple parties have different shards of the training
set. Unfortunately, both methods are secure only when there
are more than three parties. Also, though these methods protect
the training set, they do not address protecting the SVM itself
after training; it is assumed to be securely stored by a third
party – this is an assumption we cannot make.

[10] describes a way of post-processing a trained SVM to
protect privacy of the support vectors, but this approach only
works on Gaussian kernels because it discards terms of the
Gaussian function. In a sense, the final SVM produced by this
method trades privacy for accuracy. The final SVM still leaks
information about what types of vectors it classifies.

All three methods focused on problems such as medical
classifiers where the goal was to release the final classifier
while still protecting the privacy of individual patients’ support
vectors. The final SVM was left only slightly altered [10] or
completely unprotected [8], [9].

B. Fuzzy Vaults: Another approach to biometric privacy

Other previous work involving privacy-preserving biometric
matching includes the use of “fuzzy vaults”, where a secret
can be ‘locked’ in the coefficients of a polynomial and can
only be ‘unlocked’ if the subject provides a certain number of
biometric features. In theory, privacy is preserved by including
several ‘chaff’ features. The security of the scheme rests on an
attacker’s inability to guess the real features among the chaff.

Unfortunately, the literature contains both practical security
problems of fuzzy vaults [11] (outlined in Section III-C) and
information-theoretic weaknesses in certain implementations

of fuzzy-vaults [12], [13]. Our protocol includes many ideas
from fuzzy vaults but used in unconventional ways. As such,
we try to sidestep many of these issues.

Fuzzy vaults [14], an improvement of “fuzzy commitment”
[15], are cryptographic schemes that allow a user to conceal a
secret S using a set of elements A as a key. S can be decoded
by obtaining a sufficient number of elements of A. These
vaults are “fuzzy” because not all elements of A are required
to release S, the elements of A used to lock and unlock S can
differ by a small amount, and the elements of A can come in
any order. This is useful for biometric systems where noise,
reordering, and missing information are obstacles that must be
amended.

In brief, fuzzy vaults work by embedding the secret S
inside the coefficients of some polynomial F . To lock this
secret with set A = {A1, A2, . . . , Ak}, a list of pairs is
built: (A1, F (A1)); (A1, F (A2)), . . . , (Ak, F (Ak)). Addition-
ally, chaff points are added to this list by concatenating pairs
of random numbers (R1, R2), (R3, R4), . . . to the list such that
R∩A = ∅ and R∩ {F (Ai)|Ai ∈ A} = ∅. The list of pairs is
then permuted to remove ordering information.

Because an honest user has a sufficient subset of A, they can
easily tell which pairs are chaff and which pairs correspond
to (Ai, F (Ai)). From this, they can determine the coefficients
of F and decode the secret S embedded therein.

C. Shortcomings of Fuzzy Vaults

Unfortunately, using fuzzy vaults alone may not provide
adequate security for all applications. [12] explores the insecu-
rity of certain configurations of fuzzy vaults by presenting the
feasibility of better-than-brute-force attacks. Further, [11] lists
three potential attacks with potentially serious consequences:

• An attack via record multiplicity allows an attacker
to correlate the subject’s records across multiple vaults
by comparing the pairs of (Ai, F (Ai)) across each vault.
Common (or similar) pairs are more likely to be elements
of A and pairs that are dissimilar are likely to be chaff.
At best, the attacker’s search space is greatly reduced. At
worst, the attacker can piece together the elements of A
and by solving for F , the attacker can trivially decode
both secrets.

• A surreptitious key inversion attack allows the attacker
to recover the elements of A if he knows S. By building
a polynomial from the coefficients of S, he can trivially
determine which points lie on F and which are chaff.
From there, he can recover A. If the elements of A
are raw biometrics, the attacker has compromised the
subject’s privacy.

• An insidious substitution attack allows an attacker
to construct a fuzzy vault that silently authenticates
both him and the subject. This can be done with-
out alerting the subject that anything is wrong. To
do this, the attacker edits the stored fuzzy vault and
replaces the chaff points (R1, R2), (R3, R4), . . . with
(B1, F (B1)), (B2, F (B2)), . . . for his own set B. This
constructs a fuzzy vault where (Bi, F (Bi)) look like
chaff from the subject’s point of view and (Ai, F (Ai))

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 77

4

look like chaff to the attacker’s point of view. Thus, the
vault authenticates both subject and attacker without any
warning to the subject. Now the attacker can log in to
the subject’s account without the subject’s or the bank’s
knowledge.

IV. EVALUATION

To find out how well our Vaulted Verification protocol
performs, we implemented a preliminary version over the
course of the summer.

TAR FAR
N=64, Fuzzy search, chaff from random
person, required bits = 20

70.491% 6.549%

N=64, Required bits = 35 38.235% 0.508%
N=64, Required bits = 45 36.364% 0.052%
N=64, Required bits = 50 23.529% 0.000%

TABLE II
PRELIMINARY RESULTS OF THE VAULTED VERIFICATION PROTOCOL AS

APPLIED TO FACE RECOGNITION. IN THIS TABLE, TAR MEANS TRUE
ACCEPT RATE AND FAR MEANS FALSE ACCEPT RATE.

Table II presents preliminary results of several tests at
varying levels of sensitivity. Unfortunately, each test is very
computationally expensive and thanks to a power outage part-
way through, these results are representative but incomplete.

Each test follows the experimental protocol established in
Section II-A. For these tests, “required bits” depicts how
many bits of the challenge are required to authenticate. The
total template contained 64 bits. This allowed us to vary the
sensitivity.

In the table presented, the highest true accept ratio required
20 bits. This yields only 1,048,576 different possible keys
and is feasible for a brute-force search. In the real world,
we would require many more than 64 bits for an attacker
to guess. The next stage of our work involves trying larger-
scale experiments. Other improvements can also be made. For
example, several feature vectors of the subject can be used at
match time to improve confidence.

These impostor trials assume the attacker successfully sub-
verted SSL encryption along with all keys kept by a client.
These tests only test how well the biometric itself protects the
template and in a practical sense, a successful authentication
requires physical access to the client’s device. If the attacker
could get this far, they could likely obtain an image of the face
and authenticate easily anyway. That said, without working
face recognition, we have merely re-implemented two-factor
authentication. There are clearly many opportunities for future
improvement here.

V. GOALS, STATUS, AND ROADMAP

This phase of the project is nearing completion. Over the
course of the summer, we implemented the vaulted verification
protocol on top of the MFFR experiment framework. This
allows for easy experimentation and sweeping customiza-
tions to the experimental protocol. mffr is a modular facial
recognition pipeline descended from the “V1” codebase [17],
[18]. Our first task was to reproduce the GRAB experiment

[4] with the mffr pipeline as a quick sanity check. To do
this, we reimplemented GRAB in Python. This created a
unified pipeline for the future work of other lab mates. Our
implementation of the GRAB feature vectorization was pixel-
perfect with grab-c, the reference implementation. Though
we reimplemented the experiment as described, we achieved
inferior (but comparable) results and are working with the
author to improve recognition rates. This may yield improve-
ments for other areas of our pipeline as well.

Because mffr was only suited to recognition problems, as
the next step, we adapted mffr to handle face verification
problems as well. After all, the vaulted verification protocol
is a verification problem at heart, not a multiclass recognition
problem.

Once this was completed, we ran preliminary experiments
of an ordinary GRAB-based face verifier, the results of which
are presented in Table II. This provided a baseline of how well
a non-privacy-protecting scheme would work.

Date due Task description Status
— Implement GRAB feature vector descriptor

in mffr pipeline
Done

— Reproduce GRAB recognition experiment
[4] with mffr pipeline (as a sanity check)

Done (imperfect)

— Repurpose mffr pipeline for verification
challenges

Done

— Run preliminary experiments, gather base-
line with one-class SVM

Done

— Optimize/improve baseline Done
— Implement Open-set SVM Done
— Phase 1: Vaulted Verification protocol, first

iteration
Done (imperfect)

Aug 5 Final presentation and paper Done
Aug 15 Phase 2: Vaulted Verification protocol, re-

fine and harden
To do

Sept 15 Final ICB2012 submission deadline On track
TABLE III

SCHEDULE AND TARGET DATES

We then implemented the first draft of the vaulted verifica-
tion protocol, collecting preliminary results as seen in Table
II. This was intended to find various ways of defining chaff
and their impact on recognition scores.

The final product of this work will be a paper submitted
to ICB 2012, the 5th International Conference on Biometrics.
The submission deadline is September 15, and we hope to
have all work completed by then. This paper will describe the
details and implementation of our face verification system.
Time permitting, we will also describe possible approaches to
fingerprint verification.

Long-term goals of this work include commercialization
of a privacy-enhanced face recognition system, its imple-
mentation on mobile devices, and searches for further ideas
of improving the privacy protection scheme while raising
recognition rates.

VI. CONCLUSION

This paper demonstrated the need for a face recognition
system that earns users’ trust by allowing faces to be recog-
nized without knowing what those faces look like. To do this,
we started out by building a normal, ordinary face verification

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 78

5

system by using GRAB features and one-class SVMs. We then
implemented the “vaulted verification” protocol as a way of
protecting subjects’ privacy. We presented preliminary results
that demonstrate this protocol’s feasibility for face verification
and we outlined several possible ideas for improvement.

ACKNOWLEDGMENTS

The research reported in this document has been funded
partially by NSF grants CNS-0958576 and CNS-0851783.

REFERENCES

[1] “Facebook ‘face recognition’ feature draws privacy scrutiny,” ser.
Bloomberg News. New York Times, 2011.

[2] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “Labeled
faces in the wild: A database for studying face recognition in uncon-
strained environments,” University of Massachusetts, Amherst, Tech.
Rep. 07-49, October 2007.

[3] P. Phillips, H. Moon, S. Rizvi, and P. Rauss, “The feret evaluation
methodology for face-recognition algorithms,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 22(10), pp. 1090–1104,
2000.

[4] A. Sapkota, B. Parks, W. Scheirer, and T. Boult, “Face-grab: Face
recognition with general region assigned to binary operator,” in Com-
puter Vision and Pattern Recognition Workshops (CVPRW), 2010 IEEE
Computer Society Conference on, june 2010, pp. 82 –89.

[5] Anonymous, “Margin morphology and the open set svm,” Currently
under review for ICCV, Tech. Rep., 2011.

[6] T. Ahonen, A. Hadid, and M. Pietik?inen, “Face description with local
binary patterns: Application to face recognition,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 28, pp. 2037–2041,
2006.

[7] D. Fradkin and I. Muchnik, “Support vector machines for classification,”
Series in Discrete Mathematics and Theoretical Computer Science, Tech.
Rep., 2006.

[8] H. Yu, X. Jiang, and J. Vaidya, “Privacy-preserving svm using nonlinear
kernels on horizontally partitioned data,” in Proceedings of the 2006
ACM symposium on Applied computing, ser. SAC ’06. New York, NY,
USA: ACM, 2006, pp. 603–610.

[9] H. Yu, J. Vaidya, and X. Jiang, “Privacy-preserving svm classification
on vertically partitioned data,” in Advances in Knowledge Discovery
and Data Mining, ser. Lecture Notes in Computer Science, W.-K. Ng,
M. Kitsuregawa, J. Li, and K. Chang, Eds. Springer Berlin / Heidelberg,
2006, vol. 3918, pp. 647–656, 10.1007/11731139 74.

[10] K.-P. Lin and M.-S. Chen, “Releasing the svm classifier with privacy-
preservation,” in Proceedings of the 2008 Eighth IEEE International
Conference on Data Mining. Washington, DC, USA: IEEE Computer
Society, 2008, pp. 899–904.

[11] W. Scheirer and T. Boult, “Cracking fuzzy vaults and biometric encryp-
tion,” in Biometrics Symposium, 2007, sept. 2007, pp. 1 –6.

[12] P. Mihailescu, A. Munk, and B. Tams, “The fuzzy vault for fingerprints
is vulnerable to brute force attack.” in BIOSIG, ser. LNI, A. Brmme,
C. Busch, and D. Hhnlein, Eds., vol. 155. GI, 2009, pp. 43–54.

[13] E.-C. Chang, R. Shen, and F. W. Teo, “Finding the original point set
hidden among chaff,” in ASIACCS, 2006, pp. 182–188.

[14] A. Juels and M. Sudan, “A fuzzy vault scheme,” Designs, Codes and
Cryptography, vol. 38, pp. 237–257, 2006, 10.1007/s10623-005-6343-z.

[15] A. Juels and M. Wattenberg, “A fuzzy commitment scheme.” ACM
Press, 1999, pp. 28–36.

[16] V. Guruswami and M. Sudan, “Improved decoding of reed-solomon and
algebraic-geometric codes,” in Foundations of Computer Science, 1998.
Proceedings.39th Annual Symposium on, nov 1998, pp. 28 –37.

[17] B. Parks, “Mffr (multi-feature face recognition) user manual,” University
of Colorado at Colorado Springs, Tech. Rep., 2011.

[18] N. Pinto, J. J. DiCarlo, and D. D. Cox, “How far can you get on a modern
face recognition test set using only simple features?” IEEE Computer
Vision and Pattern Recognition (CVPR), 2009.

REU Site for Artificial Intelligence, Natural Language Processing and Information Retrieval

2011 University of Colorado, Colorado Springs 79

	01Cover
	Binder1.pdf
	Austrow
	Beverungen
	Billot
	Brouillette
	Doehermann
	Fonte
	Griswold
	Gung
	Jayakar
	Kaufmann
	Mara
	Seliga
	Wilber

