
Proceedings of the Seminar

Machine Learning, Theory and
Applications

University of Colorado, Colorado Springs

August 8, 2014

Editors: Jugal Kalita Qing Yi, Rory Lewis, Kristen
Walcott, and Terrance Boult

Funded by

National Science Foundation

1

Personalized Learned Model to Predict Being Under
the Influence

Miguel Alemán
Department of Electrical and Computer Engineering

University of Puerto Rico at Mayagüez

Abstract—This paper focuses on the personalization of a mobile
application called RU Influenced. This personalization will allow
us to measure whether the user is under the influence of alcohol
or other drugs like marijuana. The Android platform provides
a set of sensor technologies that we can use to estimate a blood-
alcohol concentration equivalent influence factor. The structure
of this application includes two mobile-based cognitive tests
called the Digital Symbol Substitution Test (DSST) and STROOP
Test and a reaction time test called the Stop Light Test. This
application will provide a set of tools for self-monitoring where
users can self-quantify their state and avoid being charged with
Driving Under the Influence (DUI).

Index Terms—DSST test, STROOP test, Stop Light Test,
Machine Learning, Drunk Driving, driving under the influence.

I. INTRODUCTION

This paper describes an effort intended to create a powerful
tool for end-users to assess their level of impairment and avoid
driving and other dangerous activities when they are under the
influence. According to the National Highway Traffic Safety
Administration (NHTSA), nearly 40% of the drivers killed in
fatal crashes are under a high-level of influence [1]. Moreover,
the socioeconomic impact of driving under the influence is
staggering, with a 2006 study estimating it at $129.7 billion in
the U.S. Currently, the most common methods used by police
units include NHSTA-standardized field sobriety tests and a
breath-alcohol test. However, breathalyzers are too expensive
for most people to own. For these reasons, we want to provide
tools that can decrease these numbers radically and can also
easily be obtained by the users.

Currently, twenty-one states including Colorado and the
District of Columbia have laws legalizing marijuana in some
form. Drugs such as marijuana have no easy field test; most
of these drugs require blood-based analysis. Therefore, it
is necessary to come up with new methods to identify if
an individual is under the influence of these drugs. With a
personalized model, we expect to increase the chance that
impairment can be accurately determined.

II. PREVIOUS WORK

Several studies have shown that the DSST and STROOP
tests are measures of cognitive functions correlated with levels
of impairments or intoxication [2] [3]. However, we are the
first group to research the concept of individualized baselines
for DSST and STROOP testing. To do this, we have person-
alized an application called RU Influenced that includes both

of these cognitive tests. The Stop Light test, a test measuring
reaction time, is also included in this application.

A. The Digital Symbol Substitution Test (DSST)

The DSST is frequently used to measure associative abilities
[4]. This test is normally administered as a paper-and-pencil
task where an individual is given numbers between one and
nine and a symbol below each number. On the same page,
the subject is given a series of random numbers from one to
nine and below each number, there is a blank space where
the subject draws the symbol appropriate for each digit, see
Figure 1. The subject needs to correctly complete a fixed
number of questions as fast as he/she can.

Fig. 1. DSST: Paper-and-pencil task

B. The STROOP Test

The STROOP effect is a demonstration of interference in
the reaction time of a task [5]. This test consists of a list of
colors printed with a different ink color not denoted by the
name. For example, the word ‘pink’ is printed in blue ink,
see Figure 2. It has been shown that naming the color of the
word takes longer and is more prone to errors if the name of
the color is not printed in the color denoted by the word [5].
Another study has shown that intoxicated people need more
time to complete the whole series of words than people who
are not under the influence [6].

2

Fig. 2. STROOP Test: List of colors

C. Stop Light Test

The Stop Light Test is a driving response test which
measures response times to a range of driving-relevant signs,
e.g., stop light colors, randomly appearing signs, and obstacles.
There are no studies at the moment that show a relation
between this test and level of impairment or intoxication.
However, we decided to study and measure this test with
respect to the others. For our implementation of this test, we
are only considering change in stop light colors, see Figure 3.

Fig. 3. Stop Light Test: Change in stop light colors

III. PROBLEM STATEMENT

The main goal of this project is to use the RU Influenced
application to gather enough data to be able to build a
personalized model that can predict the level of influence of
a user. One of our long-term goals is to be able to correlate
this level of influence with a blood alcohol level. There are
many variables that we need to consider with respect to the
data. For example, one day the subject might perform poorly
on one of the tests, but on a subsequent day, he can get much
better. This is called learning effect. On the other hand, let’s
say that we are testing the application with a 20-year-old man
and a 60-year-old woman. There is a high probability that the
20-year-old man will exhibit a better reaction time than the
60-year-old woman, but that does not mean that the woman is
under the influence. These are some difficulties that we need
to overcome.

IV. ANDROID IMPLEMENTATION

It is widely known fact that the number of Android users
is growing exponentially [7]. The Android platform provides

a set of features and technologies very useful for this study.
For these reasons, we decided to implement this application
using the Android platform. The general framework of RU
Influenced consists of six main screens: add or select user,
user state, start screen, DSST Implementation, STROOP Test
Implementation and Stop Light Test Implementation, see Fig-
ure 4.

Fig. 4. General Framework

A. Add and Select User

After the user accepts a waiver of liability, a screen will
appear asking to select an existing user account or add a new
one, see Figure 5. If the user decides to add a new user
account, a consent form will appear providing all the necessary
information and purposes of this study. The users can either
accept or decline this form. If the consent form is accepted,
a new screen will appear with a few text fields asking for a
username, age and gender. The username is asked to provide
the users with a list of user accounts and will not be used
for data collection, as all data will be completely anonymous.
Users can also delete user accounts from this screen. If the
user selects an existing user account, the user state screen
will appear.

B. User State

In this particular screen, the user is asked a few questions to
determine what sort of state the user’s mind is in. This helps
associate the data with a particular state. For the purposes of
this study, we expect the subjects to be sober, but we cannot
guarantee that they will in fact be sober. For these reasons, we
decided to include an area where the user can specify if he/she
has been drinking or if he/she has been using marijuana, see
Figure 6. After the user provides all the necessary information
the start screen will appear.

3

Fig. 5. Add and Select User Screen

Fig. 6. User State Screen

C. Start Screen

The start screen contains a few options: start, settings and
help. If the user selects start, the Digital Symbol Substitution
Test will begin, followed by the Stop Light Test and the
STROOP Test. On the other hand, if the user selects help,
an HTML view containing instructions on how to perform the
tests will appear, see Figure 7.

Fig. 7. Start and Help Screens

D. DSST Implementation

As mentioned above, this test is normally used as a paper-
and-pencil task; however, there are many ways of implement-
ing a mobile-based version of this test. For this study, we
decided to use the match-nomatch approach. The program
presents the user with two rows of random symbols. Each
column of symbols are “matching.” Two symbols from that
set will appear in the center of the screen. If they are in the
same column, the user has to press the match button; otherwise
the user has to press the “no match” button. The objective is
to press the correct button as fast as possible, see Figure 8.
After this test is completed, the Stop Light Test will begin.

Fig. 8. DSST Implementation

E. Stop Light Test Implementation

In this screen, a stop light will change color each time
the user presses a button. The yellow light will be lit when
changing from the green color, but it will not necessarily
change from yellow to red because this will be predictable for
users. Instead, the light colors change randomly. The subject
needs to press the accelerate button when the green light is on
and the brake button when the red light is on, see Figure 9.
After this test is completed, the STROOP Test will begin.

Fig. 9. Stop Light Test Implementation

F. STROOP Test Implementation

For this test, we were able to implement a mobile-based
system where the user hears the words/colors and has to select
them on the screen, see Figure 10. After this test is completed,
the application proceeds to store the data and goes back to the
start screen, where users can perform the tests again or simply
close the application.

4

Fig. 10. STROOP Test Implementation

V. DATA STORAGE

To be able to collect the data, we need to use a database
system. The Android platform does not interact directly with
remote databases but instead uses an SQLite database unique
to each application and which can only be accessed inside that
application. For the purpose of this study, this will not be very
useful since we need to access the collected data outside the
application to be able to apply machine learning algorithms
to it. Therefore, it is necessary to use a remote database.
To achieve this, we use PHP scripts. Through PHP scripts,
it is possible to establish a connection between an Android
application and a remote MySQL database. The Android
platform uses HTTP requests to connect with the PHP scripts,
and the PHP scripts are able to send and receive data from the
remote database.

VI. EXPERIMENTS

For this study, we were able to collect data from participants
between the ages of 19 and 22. The RU Influenced application
was downloaded into their Android devices in order to collect
data for a period of two weeks. As mentioned above, all
participants were encouraged to be sober when taking the tests,
this is because one of our goals is to build a personalized
model that can learn a user’s characteristics when he/she is
sober. For the data collection, we used the process described
in the Data Storage section. The measured time and accuracy
of the results (among other features such as age, gender,
mood, last time he/she ate, last time he/she slept, how long
did he/she sleep, time of the day, date, trial number, etc.)
were stored in a remote database. Four more questions were
asked to the participants in case they were drinking alcohol
or using marijuana, however, since they were all sober, all
these questions had a value of zero. All results were stored
anonymously.

VII. TECHNICAL APPROACH

The essential function of this application is to predict a level
of influence of a user. In other words, we need a numeric value
that can be correlated with the level of influence that we want
to find. For this reason, a supervised learning algorithm such
as multiple linear regression [8] seems like a good approach
for this problem.

A. Multiple Linear Regression

In order to perform multiple linear regression in our data, we
first need to establish our attributes and our dependent variable.
Since the data that we have is not completely numeric, we
first changed some attributes from nominal to numeric, e.g.,
gender, and mood. For our dependent variable we are using a
combination of the results denoted as score.

score = 100 (α1+α2+α3)
3 − 10 (τ1+τ2+τ3)

3

The α- and τ -values are the accuracy and time average of
each test, respectively. Using multiple linear regression will
allow us to obtain a predicted score value of a new instance.

ŷ = β0 + β1x1 + β2x2 + · · ·+ βkxk

So far we are assuming that the relation between the
attributes and the dependent variable is completely linear. In
real practice this is not true. One of this research questions
is how the results change with respect to time. We will see
these effects in the Results section. However, we first need to
find an implementation that can produce the weight of each
attribute in order to predict a new score value.

B. Implementation

It is known for a fact that regression coefficients can be
obtained from the equation

b = (X ′X)−1X ′Y

where X, Y, and b are matrices of the attributes values,
class values, and the coefficients values, respectively. However,
there are different ways or methods that can be used to
obtain these coefficients [9] [10]. For the purposes of this
project and taking into account that the models will be build
on an Android device, we decided to use Singular Value
Decompostion (SVD). It has been proven that SVD is a
very useful technique for a number of applications including
regression [10]. To simplify this problem and take advantage
of the technologies that are available, we are using OpenCV
(Open Source Computer Vision) for Android [11]. This library
contains different functions of performing SVD that allow us
to obtain the regression coefficients of a model very quickly.

C. Main Idea

After we have our model, we are going to be able to predict
the score of a new instance. Now, when a user performs the
tests we will obtain two different scores, the real score and the
score predicted by the model. The next stage of this project is
to observe the difference between these two values and relate
this difference with a level of influence. To be able to do this
we will need to collect data from participants that are under

5

the influence. This stage of the project will be carried out as
future work.

The goal of building a individualized model is to be able
to apply domain adaptation [12]. This technique consists of
taking a learned model that was trained with a lot of data from
one source domain and adapt it to a different target domain.
In other words, we want to analyze smaller groups of people,
calculate separate models for each group or clusters, and then
map new users into an appropriate cluster.

VIII. RESULTS

There are two main questions that we expect to answer with
these results. The first is something that we mentioned earlier,
the learning effect. As expected, we can observe that this effect
exists in our data, see Figure 11.

Fig. 11. Learning Effect

From this figure we can infer that the relation between
the trial number and the score is not linear but logarithmic.
This means that our model is no longer linear regression, we
need to add some non-linear elements, making it a non-linear
regression model. However, after a certain number of attempts
the data behaves constant.

The second questions that we expect to answer is how these
results vary according to time of the day. Again, by plotting
the data, see Figure 12 we can see that in fact the results vary
according to time of the day. For this reason, we are using a
third order polynomial in our time data to take into account
this daily variation.

It is important to mention that according to the data that
we have so far, we cannot infer that the results vary according
to the mood of a person, see Figure 13. From this figure, we
can observe that there is no significant difference in the results
between people who are tired or sleepy and people who are
happy or calm. However, we will need more data to conclude
that this feature is not relevant for our study.

By adding non-linear elements to our data we have im-
proved our model; however, we still need more data for train-
ing and testing. In terms of performance, the SVD libraries
of OpenCV seem like the best approach to solve this kind of
regression problems on an Android device.

Fig. 12. Daily Variation

Fig. 13. Mood Variation

IX. FUTURE WORK

This application is intended to have a fourth test. This test
will be an automated gaze analysis: specifically, the well-
known and widely used Horizontal Gaze Nystagmus (HGN)
[13]. Irregular motion while tracking at off-angle gazes is
an uncontrollable motor reflex when someone is intoxicated,
causing the eye to jitter when tracking an object. For this
reason, we strongly believe that a phone-based version of this
test will be very useful for end-users. One longer-term goal of
this application is to be potentially used by third parties, e.g.
police officials.

X. CONCLUSION

In general, RU Influenced will allow users to have an idea
of their level of influence. After we collect data from users
that are under the influence we will be able to give the user
an estimate of their level of influence. When we collect this
additional data, we expect to observe a significant difference
between users who are sober and users who are not. However,
from the results obtained so far we can infer many things. As
we mentioned in the Results section we were able to prove that
the learning effect exists in our data as well as daily variation
of the scores obtained by the users.

6

ACKNOWLEDGMENT

We would like to thank the National Science Foundation
(NFS) REU Grant 1359275 for sponsoring this research.

REFERENCES

[1] R. S. Kennedy, J. J. Turnage, G. G. Rugotzke, and W. P. Dunlap, “In-
dexing cognitive tests to alcohol dosage and comparison to standardized
field sobriety tests,” Journal of Studies on Alcohol and Drugs, vol. 55,
no. 5, p. 615, 1994.

[2] S. J. Heishman, K. Arasteh, and M. L. Stitzer, “Comparative effects of
alcohol and marijuana on mood, memory, and performance,” Pharma-
cology Biochemistry and Behavior, vol. 58, no. 1, pp. 93–101, 1997.

[3] T. Brumback, D. Cao, and A. King, “Effects of alcohol on psychomotor
performance and perceived impairment in heavy binge social drinkers,”
Drug and alcohol dependence, vol. 91, no. 1, pp. 10–17, 2007.

[4] D. R. McLeod, R. R. Griffiths, G. E. Bigelow, and J. Yingling, “An
automated version of the digit symbol substitution test (dsst),” Behavior
Research Methods & Instrumentation, vol. 14, no. 5, pp. 463–466, 1982.

[5] C. M. MacLeod and P. A. MacDonald, “Interdimensional interference
in the stroop effect: Uncovering the cognitive and neural anatomy of
attention,” Trends in cognitive sciences, vol. 4, no. 10, pp. 383–391,
2000.

[6] R. Gustafson and H. Kallmen, “Effects of alcohol on cognitive perfor-
mance measured with stroop’s color word test,” Perceptual and motor
skills, vol. 71, no. 1, pp. 99–105, 1990.

[7] N. Gandhewar and R. Sheikh, “Google android: An emerging software
platform for mobile devices,” International Journal on Computer Sci-
ence and Engineering, vol. 1, no. 1, pp. 12–17, 2010.

[8] L. S. Aiken, S. G. West, and S. C. Pitts, “Multiple linear regression,”
Handbook of psychology, 2003.

[9] W. Gander, “Algorithms for the qr decomposition,” in Seminar für
Angewandte Mathematik: Research report, 1980.

[10] J. Mandel, “Use of the singular value decomposition in regression
analysis,” The American Statistician, vol. 36, no. 1, pp. 15–24, 1982.

[11] G. Bradski, “Opencv,” Dr. Dobb’s Journal of Software Tools, 2000.
[12] S. Ben-David, J. Blitzer, K. Crammer, F. Pereira et al., “Analysis of

representations for domain adaptation,” Advances in neural information
processing systems, vol. 19, p. 137, 2007.

[13] S. E. Busloff, “Can your eyes be used against you? the use of the
horizontal gaze nystagmus test in the courtroom,” Journal of Criminal
Law and Criminology, pp. 203–238, 1993.

1

Personalized Learned Model to Predict Being Under
the Influence

Miguel Alemán
Department of Electrical and Computer Engineering

University of Puerto Rico at Mayagüez

Abstract—This paper focuses on the personalization of a mobile
application called RU Influenced. This personalization will allow
us to measure whether the user is under the influence of alcohol
or other drugs like marijuana. The Android platform provides
a set of sensor technologies that we can use to estimate a blood-
alcohol concentration equivalent influence factor. The structure
of this application includes two mobile-based cognitive tests
called the Digital Symbol Substitution Test (DSST) and STROOP
Test and a reaction time test called the Stop Light Test. This
application will provide a set of tools for self-monitoring where
users can self-quantify their state and avoid being charged with
Driving Under the Influence (DUI).

Index Terms—DSST test, STROOP test, Stop Light Test,
Machine Learning, Drunk Driving, driving under the influence.

I. INTRODUCTION

This paper describes an effort intended to create a powerful
tool for end-users to assess their level of impairment and avoid
driving and other dangerous activities when they are under the
influence. According to the National Highway Traffic Safety
Administration (NHTSA), nearly 40% of the drivers killed in
fatal crashes are under a high-level of influence [1]. Moreover,
the socioeconomic impact of driving under the influence is
staggering, with a 2006 study estimating it at $129.7 billion in
the U.S. Currently, the most common methods used by police
units include NHSTA-standardized field sobriety tests and a
breath-alcohol test. However, breathalyzers are too expensive
for most people to own. For these reasons, we want to provide
tools that can decrease these numbers radically and can also
easily be obtained by the users.

Currently, twenty-one states including Colorado and the
District of Columbia have laws legalizing marijuana in some
form. Drugs such as marijuana have no easy field test; most
of these drugs require blood-based analysis. Therefore, it
is necessary to come up with new methods to identify if
an individual is under the influence of these drugs. With a
personalized model, we expect to increase the chance that
impairment can be accurately determined.

II. PREVIOUS WORK

Several studies have shown that the DSST and STROOP
tests are measures of cognitive functions correlated with levels
of impairments or intoxication [2] [3]. However, we are the
first group to research the concept of individualized baselines
for DSST and STROOP testing. To do this, we have person-
alized an application called RU Influenced that includes both

of these cognitive tests. The Stop Light test, a test measuring
reaction time, is also included in this application.

A. The Digital Symbol Substitution Test (DSST)

The DSST is frequently used to measure associative abilities
[4]. This test is normally administered as a paper-and-pencil
task where an individual is given numbers between one and
nine and a symbol below each number. On the same page,
the subject is given a series of random numbers from one to
nine and below each number, there is a blank space where
the subject draws the symbol appropriate for each digit, see
Figure 1. The subject needs to correctly complete a fixed
number of questions as fast as he/she can.

Fig. 1. DSST: Paper-and-pencil task

B. The STROOP Test

The STROOP effect is a demonstration of interference in
the reaction time of a task [5]. This test consists of a list of
colors printed with a different ink color not denoted by the
name. For example, the word ‘pink’ is printed in blue ink,
see Figure 2. It has been shown that naming the color of the
word takes longer and is more prone to errors if the name of
the color is not printed in the color denoted by the word [5].
Another study has shown that intoxicated people need more
time to complete the whole series of words than people who
are not under the influence [6].

2

Fig. 2. STROOP Test: List of colors

C. Stop Light Test

The Stop Light Test is a driving response test which
measures response times to a range of driving-relevant signs,
e.g., stop light colors, randomly appearing signs, and obstacles.
There are no studies at the moment that show a relation
between this test and level of impairment or intoxication.
However, we decided to study and measure this test with
respect to the others. For our implementation of this test, we
are only considering change in stop light colors, see Figure 3.

Fig. 3. Stop Light Test: Change in stop light colors

III. PROBLEM STATEMENT

The main goal of this project is to use the RU Influenced
application to gather enough data to be able to build a
personalized model that can predict the level of influence of
a user. One of our long-term goals is to be able to correlate
this level of influence with a blood alcohol level. There are
many variables that we need to consider with respect to the
data. For example, one day the subject might perform poorly
on one of the tests, but on a subsequent day, he can get much
better. This is called learning effect. On the other hand, let’s
say that we are testing the application with a 20-year-old man
and a 60-year-old woman. There is a high probability that the
20-year-old man will exhibit a better reaction time than the
60-year-old woman, but that does not mean that the woman is
under the influence. These are some difficulties that we need
to overcome.

IV. ANDROID IMPLEMENTATION

It is widely known fact that the number of Android users
is growing exponentially [7]. The Android platform provides

a set of features and technologies very useful for this study.
For these reasons, we decided to implement this application
using the Android platform. The general framework of RU
Influenced consists of six main screens: add or select user,
user state, start screen, DSST Implementation, STROOP Test
Implementation and Stop Light Test Implementation, see Fig-
ure 4.

Fig. 4. General Framework

A. Add and Select User

After the user accepts a waiver of liability, a screen will
appear asking to select an existing user account or add a new
one, see Figure 5. If the user decides to add a new user
account, a consent form will appear providing all the necessary
information and purposes of this study. The users can either
accept or decline this form. If the consent form is accepted,
a new screen will appear with a few text fields asking for a
username, age and gender. The username is asked to provide
the users with a list of user accounts and will not be used
for data collection, as all data will be completely anonymous.
Users can also delete user accounts from this screen. If the
user selects an existing user account, the user state screen
will appear.

B. User State

In this particular screen, the user is asked a few questions to
determine what sort of state the user’s mind is in. This helps
associate the data with a particular state. For the purposes of
this study, we expect the subjects to be sober, but we cannot
guarantee that they will in fact be sober. For these reasons, we
decided to include an area where the user can specify if he/she
has been drinking or if he/she has been using marijuana, see
Figure 6. After the user provides all the necessary information
the start screen will appear.

3

Fig. 5. Add and Select User Screen

Fig. 6. User State Screen

C. Start Screen

The start screen contains a few options: start, settings and
help. If the user selects start, the Digital Symbol Substitution
Test will begin, followed by the Stop Light Test and the
STROOP Test. On the other hand, if the user selects help,
an HTML view containing instructions on how to perform the
tests will appear, see Figure 7.

Fig. 7. Start and Help Screens

D. DSST Implementation

As mentioned above, this test is normally used as a paper-
and-pencil task; however, there are many ways of implement-
ing a mobile-based version of this test. For this study, we
decided to use the match-nomatch approach. The program
presents the user with two rows of random symbols. Each
column of symbols are “matching.” Two symbols from that
set will appear in the center of the screen. If they are in the
same column, the user has to press the match button; otherwise
the user has to press the “no match” button. The objective is
to press the correct button as fast as possible, see Figure 8.
After this test is completed, the Stop Light Test will begin.

Fig. 8. DSST Implementation

E. Stop Light Test Implementation

In this screen, a stop light will change color each time
the user presses a button. The yellow light will be lit when
changing from the green color, but it will not necessarily
change from yellow to red because this will be predictable for
users. Instead, the light colors change randomly. The subject
needs to press the accelerate button when the green light is on
and the brake button when the red light is on, see Figure 9.
After this test is completed, the STROOP Test will begin.

Fig. 9. Stop Light Test Implementation

F. STROOP Test Implementation

For this test, we were able to implement a mobile-based
system where the user hears the words/colors and has to select
them on the screen, see Figure 10. After this test is completed,
the application proceeds to store the data and goes back to the
start screen, where users can perform the tests again or simply
close the application.

4

Fig. 10. STROOP Test Implementation

V. DATA STORAGE

To be able to collect the data, we need to use a database
system. The Android platform does not interact directly with
remote databases but instead uses an SQLite database unique
to each application and which can only be accessed inside that
application. For the purpose of this study, this will not be very
useful since we need to access the collected data outside the
application to be able to apply machine learning algorithms
to it. Therefore, it is necessary to use a remote database.
To achieve this, we use PHP scripts. Through PHP scripts,
it is possible to establish a connection between an Android
application and a remote MySQL database. The Android
platform uses HTTP requests to connect with the PHP scripts,
and the PHP scripts are able to send and receive data from the
remote database.

VI. EXPERIMENTS

For this study, we were able to collect data from participants
between the ages of 19 and 22. The RU Influenced application
was downloaded into their Android devices in order to collect
data for a period of two weeks. As mentioned above, all
participants were encouraged to be sober when taking the tests,
this is because one of our goals is to build a personalized
model that can learn a user’s characteristics when he/she is
sober. For the data collection, we used the process described
in the Data Storage section. The measured time and accuracy
of the results (among other features such as age, gender,
mood, last time he/she ate, last time he/she slept, how long
did he/she sleep, time of the day, date, trial number, etc.)
were stored in a remote database. Four more questions were
asked to the participants in case they were drinking alcohol
or using marijuana, however, since they were all sober, all
these questions had a value of zero. All results were stored
anonymously.

VII. TECHNICAL APPROACH

The essential function of this application is to predict a level
of influence of a user. In other words, we need a numeric value
that can be correlated with the level of influence that we want
to find. For this reason, a supervised learning algorithm such
as multiple linear regression [8] seems like a good approach
for this problem.

A. Multiple Linear Regression

In order to perform multiple linear regression in our data, we
first need to establish our attributes and our dependent variable.
Since the data that we have is not completely numeric, we
first changed some attributes from nominal to numeric, e.g.,
gender, and mood. For our dependent variable we are using a
combination of the results denoted as score.

score = 100 (α1+α2+α3)
3 − 10 (τ1+τ2+τ3)

3

The α- and τ -values are the accuracy and time average of
each test, respectively. Using multiple linear regression will
allow us to obtain a predicted score value of a new instance.

ŷ = β0 + β1x1 + β2x2 + · · ·+ βkxk

So far we are assuming that the relation between the
attributes and the dependent variable is completely linear. In
real practice this is not true. One of this research questions
is how the results change with respect to time. We will see
these effects in the Results section. However, we first need to
find an implementation that can produce the weight of each
attribute in order to predict a new score value.

B. Implementation

It is known for a fact that regression coefficients can be
obtained from the equation

b = (X ′X)−1X ′Y

where X, Y, and b are matrices of the attributes values,
class values, and the coefficients values, respectively. However,
there are different ways or methods that can be used to
obtain these coefficients [9] [10]. For the purposes of this
project and taking into account that the models will be build
on an Android device, we decided to use Singular Value
Decompostion (SVD). It has been proven that SVD is a
very useful technique for a number of applications including
regression [10]. To simplify this problem and take advantage
of the technologies that are available, we are using OpenCV
(Open Source Computer Vision) for Android [11]. This library
contains different functions of performing SVD that allow us
to obtain the regression coefficients of a model very quickly.

C. Main Idea

After we have our model, we are going to be able to predict
the score of a new instance. Now, when a user performs the
tests we will obtain two different scores, the real score and the
score predicted by the model. The next stage of this project is
to observe the difference between these two values and relate
this difference with a level of influence. To be able to do this
we will need to collect data from participants that are under

5

the influence. This stage of the project will be carried out as
future work.

The goal of building a individualized model is to be able
to apply domain adaptation [12]. This technique consists of
taking a learned model that was trained with a lot of data from
one source domain and adapt it to a different target domain.
In other words, we want to analyze smaller groups of people,
calculate separate models for each group or clusters, and then
map new users into an appropriate cluster.

VIII. RESULTS

There are two main questions that we expect to answer with
these results. The first is something that we mentioned earlier,
the learning effect. As expected, we can observe that this effect
exists in our data, see Figure 11.

Fig. 11. Learning Effect

From this figure we can infer that the relation between
the trial number and the score is not linear but logarithmic.
This means that our model is no longer linear regression, we
need to add some non-linear elements, making it a non-linear
regression model. However, after a certain number of attempts
the data behaves constant.

The second questions that we expect to answer is how these
results vary according to time of the day. Again, by plotting
the data, see Figure 12 we can see that in fact the results vary
according to time of the day. For this reason, we are using a
third order polynomial in our time data to take into account
this daily variation.

It is important to mention that according to the data that
we have so far, we cannot infer that the results vary according
to the mood of a person, see Figure 13. From this figure, we
can observe that there is no significant difference in the results
between people who are tired or sleepy and people who are
happy or calm. However, we will need more data to conclude
that this feature is not relevant for our study.

By adding non-linear elements to our data we have im-
proved our model; however, we still need more data for train-
ing and testing. In terms of performance, the SVD libraries
of OpenCV seem like the best approach to solve this kind of
regression problems on an Android device.

Fig. 12. Daily Variation

Fig. 13. Mood Variation

IX. FUTURE WORK

This application is intended to have a fourth test. This test
will be an automated gaze analysis: specifically, the well-
known and widely used Horizontal Gaze Nystagmus (HGN)
[13]. Irregular motion while tracking at off-angle gazes is
an uncontrollable motor reflex when someone is intoxicated,
causing the eye to jitter when tracking an object. For this
reason, we strongly believe that a phone-based version of this
test will be very useful for end-users. One longer-term goal of
this application is to be potentially used by third parties, e.g.
police officials.

X. CONCLUSION

In general, RU Influenced will allow users to have an idea
of their level of influence. After we collect data from users
that are under the influence we will be able to give the user
an estimate of their level of influence. When we collect this
additional data, we expect to observe a significant difference
between users who are sober and users who are not. However,
from the results obtained so far we can infer many things. As
we mentioned in the Results section we were able to prove that
the learning effect exists in our data as well as daily variation
of the scores obtained by the users.

6

ACKNOWLEDGMENT

We would like to thank the National Science Foundation
(NFS) REU Grant 1359275 for sponsoring this research.

REFERENCES

[1] R. S. Kennedy, J. J. Turnage, G. G. Rugotzke, and W. P. Dunlap, “In-
dexing cognitive tests to alcohol dosage and comparison to standardized
field sobriety tests,” Journal of Studies on Alcohol and Drugs, vol. 55,
no. 5, p. 615, 1994.

[2] S. J. Heishman, K. Arasteh, and M. L. Stitzer, “Comparative effects of
alcohol and marijuana on mood, memory, and performance,” Pharma-
cology Biochemistry and Behavior, vol. 58, no. 1, pp. 93–101, 1997.

[3] T. Brumback, D. Cao, and A. King, “Effects of alcohol on psychomotor
performance and perceived impairment in heavy binge social drinkers,”
Drug and alcohol dependence, vol. 91, no. 1, pp. 10–17, 2007.

[4] D. R. McLeod, R. R. Griffiths, G. E. Bigelow, and J. Yingling, “An
automated version of the digit symbol substitution test (dsst),” Behavior
Research Methods & Instrumentation, vol. 14, no. 5, pp. 463–466, 1982.

[5] C. M. MacLeod and P. A. MacDonald, “Interdimensional interference
in the stroop effect: Uncovering the cognitive and neural anatomy of
attention,” Trends in cognitive sciences, vol. 4, no. 10, pp. 383–391,
2000.

[6] R. Gustafson and H. Kallmen, “Effects of alcohol on cognitive perfor-
mance measured with stroop’s color word test,” Perceptual and motor
skills, vol. 71, no. 1, pp. 99–105, 1990.

[7] N. Gandhewar and R. Sheikh, “Google android: An emerging software
platform for mobile devices,” International Journal on Computer Sci-
ence and Engineering, vol. 1, no. 1, pp. 12–17, 2010.

[8] L. S. Aiken, S. G. West, and S. C. Pitts, “Multiple linear regression,”
Handbook of psychology, 2003.

[9] W. Gander, “Algorithms for the qr decomposition,” in Seminar für
Angewandte Mathematik: Research report, 1980.

[10] J. Mandel, “Use of the singular value decomposition in regression
analysis,” The American Statistician, vol. 36, no. 1, pp. 15–24, 1982.

[11] G. Bradski, “Opencv,” Dr. Dobb’s Journal of Software Tools, 2000.
[12] S. Ben-David, J. Blitzer, K. Crammer, F. Pereira et al., “Analysis of

representations for domain adaptation,” Advances in neural information
processing systems, vol. 19, p. 137, 2007.

[13] S. E. Busloff, “Can your eyes be used against you? the use of the
horizontal gaze nystagmus test in the courtroom,” Journal of Criminal
Law and Criminology, pp. 203–238, 1993.

Stencil Code Optimization for GPUs Through
Machine Learning

Adam Barker
University of Colorado at Colorado Springs

abarker2@uccs.edu

Abstract—The microprocessor field today has begun to reach
its limits as power and thermal constraints have been met and
no longer can much leverage of increasing the processor’s clock
speed be achieved. Thus, much of the scientific and engineering
community has shifted to using many-core architectures, such as
GPUs, in order to do parallel computations. This paper focuses
on the use of genetic algorithms to guide the optimization of
stencil codes on NVIDIA’s Compute Unified Device Architecture
(CUDA) based GPUs and GPGPUs. In particular, we have
implemented two separate stencil kernels (Jacobi 7 point and
27 point) in CUDA with each implementation parameterized
for several optimiation parameters (thread blocking and loop
unrolling factors). We then used a genetic algorithm to find
optimal configurations for each kernel. This genetic algorithm
is one part of our proposed solution of using an optimization
framework incorporating the genetic algorithm to auto-tune
automatically optimized stencil codes. Our results show that using
a genetic algorithm to auto-tune stencil code optimizations is a
valid approach of generating near-optimal configurations in a
much more timely fashion than an exhaustive search.

I. INTRODUCTION

As microprocessors reach the power wall, benefits of in-
creasing the clock frequency are no longer achieveable as the
cost to system stability and cooling is too much to warrant
the increase in performance [1]. This has shifted the focus
of the parallel community to many-core architectures, such as
those found in Graphical Processing Units (GPUs), as they are
comprised of a few hundred or thousand simple cores that are
capable of performing highly-parallel computations with much
more throughput than a typical multi-core system. However,
developing parallel algorithms for GPUs can be no simple task
for developers as developers must have a firm understanding of
the underlying architecture and hardware properties in order
to correctly write programs that correctly take advantage of
these properties. Thus, there is a desire to develop a method
to automatically apply optimizations to GPU programs in order
to avoid the necessity of understanding the complexities of the
hardware and architecture of the system.

Recently, in order to meet this desire, researchers have
devloped several methods in order to automatically tune or
automatically generate optimized codes for both GPUs and
multi-core systems. However, as more optimizations are dis-
covered, the search space the auto-tuner must search through
grows to an amount where auto-tuning is no longer viable as
the number of possible combinations of parameters becomes
too large to effectively search through. This then sets the
perfect stage for a machine learning application to predict

the optimal code instead as it does not have to go through
the entire search space, but rather make predictions based on
previous results.

This work presents a method to use genetic algorithms
in order to discover optimized configurations of parameter-
ized CUDA stencil (nearest-neighbor) codes – a class of
algorithms that typically work in structured grids to perform
computations, such as finite-difference methods for solving
parital differential equations, on a node within the grid by
doing computations on the neighbors around the given node.
Our work focuses on a simple 3D heat equation using two
different stencil codes as the training set for a genetic algo-
rithm to search through a search space of several thousand
combinations of possible optimization parameters. Although
stencil codes are important as scientific computations, they
also provide a unique opportunity for hardware benchmarking
as they are computationally simple and require a large use of
memory, allowing for benchmarking of instruction-level and
data-level parallelism [3]. These codes greatly benefit being
run on GPUs as the parallel forms of these codes contain a
great deal of instruction level parallelism which translates well
to SIMD architectures, which are present on GPUs.

This research is the development of the optimal configu-
ration generator portion of the framework detailed in Figure
1. The auto-optimization framework will be used to optimize
existing stencil codes using machine learning in order to
predict optimal tuning parameters that will be given to the
optimizer which will apply these optimizations to the given
stencil code and then output the optimized version of the
given code. This is done so that developers can easily write
unoptimized code for use in their programs and then run this
auto-tuning framework on their code in order to use optimized
code that correctly fits within their existing program.

In order to train the machine learning portion of the con-
figuration generator, we implemented two stencil kernels to
be used across three separate GPUs. The stencil codes we
implemented were a 7 point and 27 point Jacobi iterative
stencil codes and then parameterized the relevant optimizations
that the genetic algorithms would find configurations for so
that the fitness test for the genetic algorithm could change
these parameters easily before compiling and running.

The optimization parameters considered for the generation
of the search space that we used were the number of threads
to use in the computation, and the distance to unroll the
inner loop in our code. This inner-loop arises from our use

Fig. 1. Overview of auto-optimization framework

of 2.5D blocking, a thread blocking optimization that allows
for threads to only be launched in a single plane of the 3D data,
and then stream through the remaining axis as the computation
goes on. This search space consists of 60 different thread
configurations and 192 different loop unrolling configurations,
giving us a search space of 11,520 possible combinations.
Although the size of this search space is relatively small for
most machine learning applications, one must consider the
time it takes to compile the code as on our system, typical
complilation time is 3 seconds, meaning that an exhaustive
search through the search space would take more than 9 hours,
whereas our use of a genetic algorithm took on average 8
minutes to find an optimized configuration.

Our contribution is a genetic algorithm that is capable
of tuning optimizations on parameterized stencil codes. This
genetic algorithm can effectively tune these codes to find near-
optimal configurations for the applied optimizations in a very
short amount of time, making it an effective method to use
for auto-tuning stencil code optimizations.

The rest of the paper is organized into four sections: related
work, tuning framework, experimental results, and conclusions
and future work. In related work, other research that has
been done in the field is presented and summarized along
with how it is utilized in this research. The tuning framework
section goes into more detail of stencil codes, optimizations,
and the genetic algorithm that we used. Experimental results
includes the experimental setup and the results we obtained
from running our implementation on three different systems
as well as a discussion of these results. Conclusions and future
work summarizes this research and presents the outlook of
incorporating it into future work.

II. RELATED WORK

There exists significant research to automatically tune opti-
mized stencil codes in order to find the best configuration of
parameters for such optimizations [1], [3], [8], [11]. Datta et all
have demonstrated the usefulness of optimizations with auto-
tuning techniques as a means to effectively optimize stencil
codes on both CPUs and GPUs [3]. Their work provides
an effective base for the challenges of optimizing and auto-
tuning stencil codes. Gana et all cite this work as their

basis for using machine learning to optimize CPU stencil
codes. In their research, they used a genetic algorithm in
combination with the KCCA algorithm to perform quick
searches through the parameter space of 4 × 107 different
combinations. They managed to effectively auto-tune stencil
codes on CPUs in two hours using their method [5]. Zhang
and Mueller also researched auto-tuning and auto-generation
of optimized stencil codes specifically for GPUs and GPU
clusters which provides a more specific list of optimizations
that are specifically used for GPU stencil code optimizations
that were used in this research. In particular, their descriptions
of 7-point and 27-point stencils, along with shared memory
and register allocation for optimization were used throughout
our research. [11].

Many optimizations have been developed over the years for
stencil codes [2], [6], [7], [9], [10]. Nguyen et all provided
a state-of-the art stencil code optimization that uses a com-
bination of 2.5D thread blocking combined with 1d temporal
blocking to create what they have called 3.5D blocking which
provides throughput increases on GPUs of about two times
what prior research had claimed [10]. In our research, we
used their excellent description of 2.5D blocking as one of
our optimizations for the genetic algorithm to automatically
tune. Nguyen et all’s research can also be parameterized by
changing the amount of temporal blocking to perform, thus
allowing a search space to be created for this optimization
which was incorporated into this research.

III. OPTIMIZATION FRAMEWORK

A. Stencil Codes

Stencil codes are primarily used to solve partial differential
equations in order to perform simulations such as heat flow
or electromagnetic field propogation [3]. Most methods for
solving these partial differential equations use iterative sweeps
through spatial data, performing nearest-neighbor computa-
tions which are called stencils. Each node in the computation
is weighted based on distance from the central node, which
allows for the solving partial differential equations by switch-
ing these weights for the coefficients used in the solver. Using
this structure, methods are created for different types of partial

differential equation solvers such as Jacobi iterative methods,
which are the stencil codes we used in this research.

Fig. 2. A 6-point Von-Neuman stencil (credit: wikipedia.org)

As the data sizes used for stencil computations typically
range outside the size of available cache memory, there is
a large emphasis on data reuse and data-level parallelism in
order to fully optimize stencil codes. This can cause portability
issues as memory speeds and sizes can differ widely system
to system, causing the need to use different parameters for
optimizations on different architectures. This then produces a
demand for a method to automatically tune stencil code opti-
mizations on each architecture in order to enhance portability
of the codes.

Auto-tuning of stencil kernels has become a fairly large area
of study in order to work around the necessity of knowledge
of the low-level specifications of the architecture in order to
optimize the kernel. However, these auto-tuners may have
to look in a parameter space that is upwards of 40 million
combinations that may take months to fully check every single
one for optimal performance [3]. This then creates a demand
for a faster optimization process that is still automated in
order to create a process that is viable for industry use.
Thus, machine learning may be a good option for automatic
optimization as it can use reinforcement learning paired with
statistical machine learning and genetic algorithms in order
to explore the parameter space much faster. Using machine
learning may also overcome another downfall of auto-tuning
in that each auto-tuner is generally programmed for one
architecture, whereas a learner can learn architectures as well
and correctly optimize for them.

B. Optimizations

In this research, we applied two types of optimizations to
our stencil codes to be used in the tuning phase. The first
optimization we used was 2.5D blocking. 2.5D blocking is an
optimization for thread blocking of 3D stencil codes that only
blocks in the x and y axes of the structured grid. Each thread
then streams through the remaining z-axis, allowing for data-
reuse of data already fetched by the thread earlier to fulfill

data requirements. This optimization reduces the amount of
global store and load instructions as threads can keep some
data in the registers for quick access for several computations
instead of fetching data from global memory each time a
node must be calculated. The second optimization used is
loop unrolling. Due to the nature of 2.5D blocking in that
it must stream through the z-axis via a loop, this loop can
be unrolled in order to provide more data-level parallelism
and keep threads from becoming idle. These optimizations
must be tuned in order to be fully optimized. 2.5D blocking
takes two parameters: an x-axis blocking dimension and a
y-axis blocking dimension. For a 2563 grid, there are 60
different configurations of 2.5D blocking. For loop unrolling,
the maximum unroll length allowed by the compiler is 192
iterations. By combining these two search spaces, the genetic
algorithm used for tuning these optimizations searches through
a search space containing 11,520 different configurations.

C. Genetic Algorithms

Genetic algorithms are a set of algorithms that mimic the
natural selection process in order to find solutions to problems.
Genetic algorithms do this by generating an initial population
that generally consists of randomly generated individuals that
contain randomly generated values for each parameter that will
be searched. Each individual in the population then undergoes
a selection process by which the fitness of their parameters
that they contain is evaluated. The most fit individuals are
then selected to be mutated and mated with each other in
order to generate the next generation of individuals. This then
continues until the population either converges to a singular
value or the number of set generations is reached.

In this research, we used an initial population of ten indi-
viduals each with a chromosome (parameter set) containing
three parameters – thread blocking for the x and y axes
and loop unrolling factor. This population then underwent
ten generations in order to get the individuals to converge
on one value. The best performing individual was saved and
then returned at the end of the generation process as the
best configuration for the given optimizations. All of this was
done using the Distributed Evolutionary Algorithms in Python
(DEAP) project [4]. It allowed for use of built-in algorithms
for the mating, mutating, and selection processes.

IV. EXPERIMENTAL RESULTS

A. Goal

The goal of this experiment is to determine if genetic
algorithms are a viable approach to tuning stencil code op-
timizations faster than other methods of tuning. The genetic
algorithm used must be able to produce an optimal or near-
optimal configuration for the optimized stencil code in a
reasonable amount of time in contrast to the time it takes for
an exhaustive search method to find the optimal configuration.

B. Setup

The setup we used to perform the experiments on consisted
of three GPUs: one GPGPU (Tesla C2050) and two standard

GPUs (GTX 480, 680). Figure 3 details the theoretical peak
FLoating-point OPeration (FLOP) rate determined by the
number of cores (α) multiplied by the clock rate of each core
(δ) multiplied by the number of FLOPs that can be performed
each clock cycle (γ).

α× δ × γ = GFLOPS/sec

Fig. 3. Theoretical peak FLOP rate equation.

GPU Architecture Peak FLOP rate
GTX 480 Fermi 1344 GFLOP/s

Tesla C2050 Fermi 1030 GFLOP/s
GTX 680 Kepler 3250 GFLOP/s

Fig. 4. Peak GFLOP rate of GPUs (single precision)

The genetic algorithm was run on two stencil kernels: a 27
point Jacobi stencil and a 7 point Jacobi stencil. This genetic
algorithm was used on each of the GPUs and was trained
on the GTX 480 using the 7 point stencil. After the initial
training, no values of the genetic algorithm were changed in
order to generate the final results. The genetic algorithm used
a three-gene chromosome to find configurations. The first two
genes were for thread blocking dimensions along the x and y
axes each being a power of two and their combined product
could not exceed 210 (60 combinations for 2563 grid size). The
third gene was for loop unrolling which was an integer from
1-192 for unroll length. The combined search space consisted
of 11,520 different combinations the algorithm could possibly
generate. This genetic algorithm was then run to create ten
generations based on an initial population of ten individuals
in order to find a configuration for each optimized stencil code
that was close to the optimal value that was found through an
exhaustive search of the search space.

an+1
i,j,k = α(ani,j,k + ani±1,j,k + ani,j±1,k + ani,j,k±1)

Fig. 5. 7-point Jacobi stencil equation.

an+1
i,j,l = α(ani,j,k) + β(ani±1,j,k + ani,j±1,k + ani,j,k±1) +

γ(ani±1,j±1,k + ani,j±1,k±1 + ani±1,j,k±1) + ε(ani±1,j±1,k±1)

Fig. 6. 27-point Jacobi stencil equation.

The equations in figures 5 and 6 detail a typical 7-point
and 27-point Jacobi stencil where a is the input grid, n is the
iteration, and α, β, γ, ε are coefficients multiplied upon the
neighborhood sum. The ±1 symbols are used to save space
in writing out each i+ 1 and i− 1 for each i, j, k within the
array of nodes.

C. Results

The graphs in Figure 7 are of the average performance in
GFLOPS/sec of the population per generation. The red line is
of the performance of the 7 point stencil code and the blue

line is of the 27 point stencil code. The two dashed lines in
each graph show the optimal configuration performance for
each stencil code. The optimal configuration was found by
performing an exhaustive search through the parameter search
space.

Fig. 7. Genetic algorithm average fitness of each generation for the three
GPUs on both stencil kernels. The solid lines are for the average population
fitness by generation for the 27-point stencil (blue) and 7-point stencil (red).
The dashed lines show the optimal configuration throughput rate.

Fig. 8. Best configurations found by genetic algorithm vs the absolute best configuration found by exhaustive search for each stencil and GPU.

These results show the effectiveness of a genetic algo-
rithm approach to auto-tuning stencil code optimizations as
it generally only took 3–4 generations for each stencil code
to be near-optimal. It should also be noted that these results
only show the average performance of the entire population
per generation, not the best candidates. The best candidates
shown in Figure 8 of the population were typically within
3% of the optimal performance found for each stencil kernel
by the 10th population. The initial population for the genetic
algorithm consisted of only ten members. Due to the small
search space size, this small number of members was still
able to quickly converge to a near-optimal configuration for
each kernel. The small search size also allowed for us to
check our results through exhaustive search as doing so took
about 4–5 hours per kernel for each GPU. This speed is in
contrast to the average eight minute execution time for the
genetic algorithm to generate all ten generations and find a
near-optimal configuration. These speeds differ in terms of
which CPU is used to compile each code, but the large gap
in performance still persists for each CPU, regardless of its
speed.

However, these results show that each kernel could only
reach up to a maximum of 100 GFLOPS/sec for the 27
point stencil on the Tesla C2050, which is far lower than
the 450 GFLOPS/sec produced by Bergstra et all [2] on the
same model of GPU. This is due to the optimizations that
were used in our stencil codes as they are the main bottle-
neck of performance for the stencil code. Our optimizations
still contain thread divergence in the code, and is thus less
optimized compared to Bergstra et all’s kernel which contains
no thread divergence. For future work on this research, more
optimizations will be considered so that the results will be
closer to current stencil code performance.

V. CONCLUSIONS AND FUTURE WORK

This work demonstrates the effectiveness of using a genetic
algorithm in order to find near-optimal configurations for
stencil code optimizations across multiple GPUs with differ-
ing architectures. This result allows for enhanced portability
of stencil code optimizations to differing architectures in a
timely fashion as the tuning phase was demonstrated to be
much faster than exhaustive search alternatives as the genetic
algorithm took, on average, eight minutes to generate all ten
generations of the population in contrast to the 4–5 hour run
time of the exhaustive search.

In the future, we would incorporate more parameters for
use in the chromosome for the genetic algorithm in order to
generate a search space worthy of using a machine learning
technique to traverse it instead of exhaustive search being a
viable method to use. We will also develop more parts to
the auto-optimization framework from figure 1 such as the
optimizer and stencil code classifier. This is in the hopes that
a functional framework can be created such that it may be used
to optimize existing stencil codes that are in use today and be
continually optimized as more stencil code optimizations are
found.

REFERENCES

[1] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James
Gebis, Parry Husbands, Kurt Keutzer, David A Patterson, William Lester
Plishker, John Shalf, Samuel Webb Williams, et al. The landscape of
parallel computing research: A view from berkeley. Technical report,
Technical Report UCB/EECS-2006-183, EECS Department, University
of California, Berkeley, 2006.

[2] J. Bergstra, N. Pinto, and D. Cox. Machine learning for predictive auto-
tuning with boosted regression trees. 2012.

[3] Kaushik Datta, Mark Murphy, Vasily Volkov, Samuel Williams, Jonathan
Carter, Leonid Oliker, David Patterson, John Shalf, and Katherine
Yelick. Stencil computation optimization and auto-tuning on state-of-
the-art multicore architectures. In Proceedings of the 2008 ACM/IEEE
Conference on Supercomputing, SC ’08, pages 4:1–4:12, Piscataway,
NJ, USA, 2008. IEEE Press.

[4] Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gard-
ner, Marc Parizeau, and Christian Gagné. DEAP: Evolutionary algo-
rithms made easy. Journal of Machine Learning Research, 13:2171–
2175, jul 2012.

[5] Archana Ganapathi, Kaushik Datta, Armando Fox, and David Patterson.
A case for machine learning to optimize multicore performance. In First
USENIX Workshop on Hot Topics in Parallelism (HotPar09), 2009.

[6] Justin Holewinski, Louis-Noël Pouchet, and P. Sadayappan. High-
performance code generation for stencil computations on gpu architec-
tures. In Proceedings of the 26th ACM International Conference on
Supercomputing, ICS ’12, pages 311–320, New York, NY, USA, 2012.
ACM.

[7] Julien Jaeger and Denis Barthou. Automatic efficient data layout for
multithreaded stencil codes on cpu sand gpus. 20th Annual International
Conference on High Performance Computing, 0:1–10, 2012.

[8] J. Meng and K. Skadron. Performance modeling and automatic ghost
zone optimization for iterative stencil loops on gpus. In Proceedings
of the 23rd international conference on Supercomputing, page 256265.
ACM, 2009.

[9] Paulius Micikevicius. 3d finite difference computation on gpus using
cuda. In Proceedings of 2Nd Workshop on General Purpose Processing
on Graphics Processing Units, GPGPU-2, pages 79–84, New York, NY,
USA, 2009. ACM.

[10] Anthony Nguyen, Nadathur Satish, Jatin Chhugani, Changkyu Kim, and
Pradeep Dubey. 3.5d blocking optimization for stencil computations
on modern cpus and gpus. In Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’10, pages 1–13, Washington, DC, USA, 2010.
IEEE Computer Society.

[11] Yongpeng Zhang and Frank Mueller. Auto-generation and auto-tuning
of 3d stencil codes on gpu clusters. In Proceedings of the Tenth
International Symposium on Code Generation and Optimization, CGO
’12, pages 155–164, New York, NY, USA, 2012. ACM.

ACKNOWLEDGEMENTS

This research is supported by NSF grant 1359275.

1

RSSE: A New Method of Distributing Datasets and
Machine Learning Software

Michael Gohde
Vision and Security Technology Lab

University of Colorado at Colorado Springs
Colorado Springs, Colorado

mgohde@uccs.edu

Abstract—Among the challenges faced by machine learning

researchers today is that of distributing the datasets and al-

gorithms used in their research. This problem arises mostly

from the limitations involved in hosting datasets on servers

outside of their origin. RSSE (Really Simple Syndication for

Experiments) is intended to provide a message-based system with

which researchers can share their data and algorithms.

I. INTRODUCTION

RSSE draws on existing standards, namely XML and
RSS, to facilitate easier communication and distribution of
data among researchers. While RSSE is not an extension to
the existing RSS standard[6], it is intended to be similar in
general conventions and syntax to RSS. As such, it extends the
concept of RSS, which is that of message-based syndication
involving a client “reader” application and a message server
established by an institution. RSSE is designed so that
messages can be written either by researchers themselves or
by automated tools.

Due to current copyright and IP law, it is often difficult
or impossible for institutions and researchers to directly
distribute external datasets used during computation[4]. Some
large dataset providers, such as Yahoo, explicitly prohibit
the redistribution of the dataset itself, instead allowing the
dataset to be distributed in the form of links[5]. Such datasets
usually allow users to cache the data locally. By providing
a consistent system by which data and software can be
distributed using messages containing URLs and checksums,
RSSE should enable institutions to easily monitor and expand
on the work supplied by other institutions. Furthermore, by
passing URLs to datasets rather than the datasets themselves,
experiments can be run by other institutions while still
respecting the Intellectual Property rights of the dataset’s
source.

RSSE will work in a similar fashion to RSS (Really Simple
Syndication), with some exceptions. As such, a researcher
or automated utility would generate an XML file using
RSSE tags and serve it over the HyperText Transfer Protocol
(HTTP). Such an XML file would contain the project’s title, a
brief description of the project itself or changes made recently,
several URLs, and checksums for the relevant URLs. Each
URL should usually refer to a datasets involved during the

course of research. One possibility, however, is that some of
the URLs could refer to source code or compiled Java classes,
which would, in turn, be executed locally to verify the results
of the computation. When an XML file containing RSSE data
is posted, client programs could proceed to download the
file, parse its contents, then perform a predetermined set of
actions, such as downloading all of the datasets and source
code involved in the remote experiment. For a graphical
representation of the data transfers involved, see figure 1.
(figure 1)

II. PREVIOUS WORK

RSSE draws primarily off of the existing RSS standard[6].
Due to its flexible nature and widespread use, RSS has already
utilized as a basis for distributing information to research
librarians in an organized fashion[2]. A similar system fea-
turing a dedicated message and client-based infastructure was
implemented to distribute climactic data, however it did not
explicitly use RSS, rather it directly exposed a database to a
network[3].

III. IMPLEMENTATION

A. Implementation History

For this project, a reference implementation of the RSSE
reader and file generation utility were written. As RSSE will
be an open standard, the implementation discussed here exists
solely as a reference for other future implementers to follow.

The first stage of the implementation was considering what
tags would be acceptable for each RSSE file. These tags are
listed in Table 1. The tags were determined after considering
the minimum set of data necessary to represent a message.
The most important tags involved are the dataset tag, the
checksum tag, and the checksumtype tag. The dataset and
checksum tags are self explanatory. The checksumtype tag will
contain a string value representing the hashing algorithm used
to generate the checksum on the server’s side.

The second stage was the implementation of the RSSE
reader program. This application was implemented before the
RSSE message generation program because of the relative ease
in manually writing RSSE files as opposed to manually reading
RSSE files. Upon starting, a command line specification was
drawn up based on all of the tags and operations expected of

2

the program. The command line interface was implemented
first, due to the ease in doing so. Command line options
are not included here as it should only be necessary for
future implementations to utilize the base set of RSSE tags as
opposed to implementing full compatibility. This was followed
by the implementation of a GUI, which extended the features
of the command line interface.

Once the graphical component of the RSSE Reader was
complete, work started on the RSSE Generator. Because all of
the features of RSSE were fairly stable by this point, the RSSE
generator was far easier to implement. Unfortunately, due to
time constraints, the generator does not yet have scripting
support, however that has become a priority in the near future.

While each program is currently stable enough for general
use, there are some UI elements that do need improvement
due to their obtuse or erratic behavior. The most obvious of
which is the difference in graphical styles between the reader
and file generation utility.

Upon completing the first few revisions of the RSSE refer-
ence implementation, the project was demonstrated to a group
of machine learning researchers. Based on their suggestions,
the RSSE version 0.03 specification was drawn up with several
enhancements in the form of four new tags and three new sets
of attributes. These new tags should enable both researchers
and end users to benefit from increased tailoring to various
conditions and systems. The new features are mentioned in
separate tables. Upon starting work on this version of the
specification, it became very clear that each version of RSSE
would in the future cause rendering and generation problems
on prior and future versions of the RSSE reference implemen-
tation. Because of this, the <rsse> tag now carries an attribute
specifying the expected minimum version code necessary to
render a given RSSE message. The version encoding scheme
is elaborated in Table IV.

B. Reasons For Using The Technologies Used

While doing the project, it became clear that it may be
necessary at some point to justify the use of Java and XML
as the primary language and data framework of the application,
respectively.

Firstly, Java was selected as the primary implementation
language due to its feature-set. Java has extensive support
for reading and parsing XML files, which proved invaluable
for the project as a whole. Furthermore, Java provides easy
to use networking and graphical user interface APIs, which
contributed to the quick implementation of the project. Finally,
the project’s code should be easily readable to a wide array
of programmers due to the similarities in syntax and usage
between Java and other programming languages.

XML was selected mostly because it is very easy for
humans and computers alike to read and parse. By using plain-
text instead of binary for messages, it allowed the developer
to write test messages to pass to the reader before the file
generation utility was complete. Furthermore, while it was not
a clear focus in the beginning of the project, XML allows for a
significant level of complexity and flexibility, which allows the
RSSE standard to expand easily in the future. In the future, it is

likely that future implementers will write their own messages
in order to test their RSSE reader applications.

Fig. 1. The RSSE Reader Program

Fig. 2. The RSSE File Generation Program

Fig. 3. An early build of the RSSE Updater

C. Interface and Design

While the graphical user interface is in a very early devel-
opment stage, it is complete enough to be shown here. Please
refer to Fig. 1 for an example configuration of the Reader,
and Figure 2 for an example configuration of the Generator.
In both programs, there are clearly defined lists of values to be
modified and modifier buttons either on top of the lists or to

3

their side. This was done to associate the various modifiers
with the data involved, which should hopefully lend itself
to usability. The menu layout is very sparse, as most of the
functions encountered in the program are represented by the
buttons present. There are very few dynamic UI elements in
order to promote portability to low-power devices and older
operating systems. By providing unambiguous functions, the
RSSE reference applications should be very easy to learn.
Overall, this design aesthetic should prove helpful for the
purposes of providing a reference implementation from which
other implementations of the RSSE standard can be derived.

Tag Tag Value
<rsse> Tag used to denote an RSSE file.
<message> Tag used to mark the start of a message.

This allows for there to be more than one
message in each file.

<title> The title of the project.
<description> The project’s description.
<link> A website to be visited by the user. Could be

used to direct clients to more information.
<dataset direction=“in”> Represents a dataset. The direction attribute

is used to inform the user as to whether
the dataset was used in computation (value
“in”) or generated as the result of computa-
tion (value “out”).

<checksumtype> Represents the type of checksum to generate
and check.

<checksum> Represents an individual checksum. Will be
associated in the order of appearance of
datasets.

TABLE I
TAGS IMPLEMENTED BY THE RSSE REFERENCE SOFTWARE

Tag Tag Value
<update url=“url”> Tag that could be used to send updates to

the reader. Url attribute is used to mark the
URL of the update. The tag will contain the

<license> Tag that could be used to distribute exe-
cutable code if implemented.

<minspec> Tag representing the minimum specifica-
tions to run software bundled with a mes-
sage.

<compilable type=“type”> Tag that could be used to distribute code
with special compilation requirements.
TABLE II

TAGS ADDED IN RSSE VERSION 0.03

IV. CHALLENGES

While writing the checksumming portion of the program, it
became very clear that Java’s default IO functions were too
slow for the task. While it has not yet been implemented,
the project will eventually add support for Java’s NIO (Non-
blocking IO)[1], which should provide a high performance
framework for checksumming operations. Another challenge
encountered was that of determining how checksums should
be transmitted, as it is difficult to parse multiple attributes
in each tag. This problem was solved by associating each
checksum tag with dataset tags in the order that they appeared,
however this is more of a short-term solution that may require
the implementation of a complete XML parser within the
code. One of the clearest challenges is deciding on which tags

Attribute Tag Description
pdflatex <compilable> Allows for the inclusion of LATEX

documents.
makefile <compilable> Allows for the distribution of projects

utilizing makefiles.
javajar <compilable> Allows for the distribution of Java Jar

files.
executable <compilable> Allows for the direct distribution of

executable files. The reference imple-
mentation will never allow these files
to execute without a prompt.

gpuarch <minspec> Allows for researchers to specify dif-
ferent GPU architectures, such as Ke-
pler or GCN.

cpuarch <minspec> Allows for researcers to specify a
CPU architecture for specific opti-
mizations.

cputype <minspec> Allows for researchers to specify a
specific type of CPU to be used. Only
for heavy optimizations.

corecount <minspec> Allows for researchers to specify a
minimum number of cores to com-
fortably run multithreaded software.

minram <minspec> Allows for researchers to specify a
minimum amount of RAM as a float-
ing point number of gigabytes.

minstorage <minspec> Allows for researchers to specify a
minimum amount of free hard drive
space as a floating point number of
gigabytes.

osfamily <minspec> Allows for researchers to specity the
intended operating system family for
their software. This could be used
to prevent non-POSIX operating sys-
tems from attempting to compile the
software included.

TABLE III
ADDITIONAL ATTRIBUTES IMPLEMENTED IN VERSION 0.03

RSSE version RSSE Tag
v0.01 (Depreciated) <rsse>
v0.02 <rsse>
v0.03 <rsse version=”3”>
(Future releases) <rsse version=”(Version number*100)”>

TABLE IV
THE RSSE VERSION ENCODING SCHEME.

should be added to each version of the RSSE specification,
as it involves several decisions as to which features would
be easiest to implement, as well as which features would be
best for end-users. Overall, accepting suggestions from others
proved to be very beneficial to the project as a whole.

V. APPLICATIONS

RSSE has the potential to become a very valuable tool
for researchers, especially those who wish to use commercial
or otherwise difficult to distribute datasets. While RSSE is
intended to be used primarily by a machine learning and
computer vision audience, it has the potential to be used for
scientific research, namely in peer-review. As such, RSSE
need not be constrained to just distributing datasets. It has
the potential to distribute papers, code, or even precompiled
binaries to remote computers for independent verification of
results. While it is not the intent of the project, it can be
used to assist with distributed computing with only minimal
modifications.

4

Feature or Tag Information
Automatic Updates The reference RSSE implementation cur-

rently includes a very basic update utility.
In the future this utility will be improved
and expanded.

Compilation and Execu-
tion Support

In its current state, the RSSE reader can
only download executable or compilable ob-
jects from remote servers. Future revisions
will allow for proper compilation and exe-
cution of RSSE messages.

System Requirement
Checking

The RSSE reader is currently incapable of
checking system requirements. In the future,
support for this will be added.

Merge Checksum and
Dataset

Merging the dataset tag and the checksum
tag would streamline the distribution of
datasets.

Improving Checksum Per-
formance

Checksumming in the file generation pro-
gram is unacceptably slow.

Implementing more Min-
spec Tags

The minspec tag list is currently somewhat
incomplete.

Implementing Local
Caching

One of the long-term goals of this project is
to develop a caching system to avoid several
of the problems in distributing datasets.

Implementing the RSSE
Executor

RSSE will be functionally divided between
the Manager (what the reader is now) and
the Executor, which will fetch cached data
and try to process it.

Splitting the Reader The current RSSE Reader application is
currently insufficient for caching and the
constant update cycle needed by real-world
researchers. As such, it will be split into two
programs: The RSSE Reader and the RSSE
Manager. The RSSE Reader will act as a
graphical configuration utility for the RSSE
Generator. As such, most of the features of
the Reader will be merged into the Manager.

Updating Scripting Sup-
port

The RSSe file generator has great potential
to be scripted, especially in providing auto-
matic rapid updates to end users.

TABLE V
FEATURES TO BE IMPLEMENTED IN FUTURE RELEASES OF RSSE

Some clear distinctions need to be drawn between the RSSE
project and RSS, however. Its focus on academic pursuits
should be preserved and remain a primary goal. As such, other
applications, such as distributing newsfeeds or non-research
related data should be discouraged to avoid feature bloat. Such
feature bloat would make implementing additional readers and
file generators significantly more difficult than the standard is
designed to allow. However, other implementations should be
encouraged to deviate somewhat so that additional features can
later be brought into the mainstream RSSE specification.

VI. SUMMARY AND CONCLUSIONS

Provided that the RSSE project becomes widely adopted, it
will provide a clean, easy to use, and rapid means by which
researchers can share data. It has been designed with a clear
emphasis on having low barriers to entry. These low barriers
to entry should allow RSSE to become a de facto standard
in research and communication. Given such status, other
implementations of the reader and file generation programs
would likely be written with more features than could be
implemented here. Such implementations can be expected to
include features specific to various fields, such as some peer
review system for scientific research.

VII. ACKNOWLEDGEMENTS

I would like to thank Dr. Terrance Boult for proposing
the original idea for RSSE, as well as the machine learning
researchers who demonstrated a need for this software. I would
like to thank the NSF for providing funding for the REU
research program.

REFERENCES

[1] File i/o (featuring nio.2). http://docs.oracle.com/javase/tutorial/essential/
io/fileio.html. Accessed: 2014-07-03.

[2] Alexia D. Estabrook and David L. Rothma. Applications of rss in health
sciences libraries. Medical Reference Services Quarterly, 26(sup1):51–68,
2007. PMID: 17210549.

[3] Hannes Grobe, Michael Diepenbroek, Nicolas Dittert, Manfred Reinke,
and Rainer Sieger. Archiving and distributing earth-science data with
the pangaea information system. In DieterKarl Ftterer, Detlef Damaske,
Georg Kleinschmidt, Hubert Miller, and Franz Tessensohn, editors,
Antarctica, pages 403–406. Springer Berlin Heidelberg, 2006.

[4] Gerald Schaefer and Michal Stich. Ucid: an uncompressed color image
database, 2003.

[5] David A. Shamma. News: One hundred million creative commons flickr
images for research. http://labs.yahoo.com/news/yfcc100m/. Accessed:
2014-07-03.

[6] UserLand Software. Rss 2.0 specification, 2002.

Learning Patterns of Mobile Interface Design

George C. GUVERNATOR V
The College of William and Mary

Williamsburg, Virginia
gcguvernator@email.wm.edu

Abstract—Nothing for now. We’ll write our abstract last.

I. INTRODUCTION

Interface design is a crucial element in any software
project. Graphical interfaces allow for more intuitive human-
computer interaction but can challenge even the most skilled
developers as they take on the additional responsibilities of
a designer. In the world of mobile applications, where many
competing implementations of an idea are available to users,
design can play a key role in a user’s choice of application.
Additionally, limited and varying screen sizes, touch-based
interfaces, and limited resources all challenge the mobile in-
terface designer. It is our observation that, unfortunately, some
developers fail to spend ample time designing Graphical User
Interfaces (GUIs). This is especially true in academia, where
many of the most technically correct and well-implemented
software projects falter in this area, considering GUI design
an overly costly afterthought. In mobile applications, this can
mean that not all screen sizes, input methods, accessibility fea-
tures, and other mobile-exclusive considerations are accounted
for. As a result, developers lose many potential users from
otherwise well-written and well-executed projects.

Mobile application development presents unique challenges
beyond those faced when developing software with more tra-
ditional keyboard and mouse interfaces. On mobile platforms,
user interface design poses the unique challenge of restricted
screen space with respect to more conventional desktop or
console platforms and therefore has a greater influence on the
overall usability of the application. Additionally, developers
must keep in mind the variety of devices of different size
that their applications will run on. An interface built for a
15 by 10 cm tablet, for example, may not scale well to a 9
by 5 cm smartphone. Elements designed to be tapped on the
larger screen by human fingers or styli would become more
difficult to accurately activate on the smaller screen. Another
complication to developers are extensions to the platform’s
standard user interface, such as those used for accessibility
or universal access by users with physical disabilities. Finally,
fragmentation on the Android platform causes design and de-
velopment bugs, both from devices running different versions
of the Android platform which support different graphical
layout components, and from a variety of vendors building
their devices differently. The problem of Android device and
version fragmentation are discussed by Han et. al. [1] and
Degusta [2].

This research funded by a grant from the National Science Foundation
(1359275).

Facing these additional challenges of mobile development,
it is therefore important to understand both how mobile ap-
plications are designed and which identifiable design patterns
users prefer. The former can be accomplished given access
to an application’s source code, and the latter is theoretically
possible by scraping user ratings (both long-form text reviews
and one- to five-star numeric ratings) from Google Play, the
officially supported Android application repository. Given the
unique challenges of the mobile environment discussed above,
we assert that design is a significant factor reviewers consider
when rating an application. While many reviews center around
program functionality and stability, we believe there is enough
weight placed on design to show clear trends and allow for
correlative measurement.

In this research, we analyze the GUI design of a variety
of Android applications, allowing us to gather data and create
a characteristic model. We evaluate correlations between the
gathered design data and reported user experiences, such as
comments and ratings, as well as other potentially confounding
variables found in the application’s metadata from the appli-
cation repository.

To accomplish this, we scrape Android source code from
the F-Droid Web repository1 using a tool we developed called
fdscrape.2 Package names found with the source code on F-
Droid are also searched on Google Play, a non-free Android
application repository, and metadata such as user ratings,
comments, popularity, and size are scraped and associated with
each application. The combined source code and metadata,
collectively the F-Droid corpus, is run through a program
we have developed called AGUILLE.3 This tool analyzes the
structure of GUI markup language in the source code and
extracts and counts the individual elements used to construct
the interface, analyzing and combining data points to prepare
for machine learning analysis.

Finally, the analysis of AGUILLE and metadata found with
fdscrape are combined in a machine learning workflow in
Weka. The workflow leverages the power of the M5 model
tree to generate explainable branches and decision points that
are applied in an ordered hierarchical structure to determine
a potential rating for future applications. This is improved by
analyzing each application category separately and building
separate models for those categories with enough applications
to make valid predictions. This categorical discretization is a

1F-Droid can be accessed on the Web at https://f-droid.org/.
2Fdscrape is licensed under the GNU General Public License (version 3)

and is available on the Web at https://github.com/qguv/fdscrape.
3AGUILLE is licensed by the GNU General Public License (Version 3) and

is available on the Web at https://github.com/qguv/aguille.

https://f-droid.org/
https://github.com/qguv/fdscrape
https://github.com/qguv/aguille

key part of our experiment, see section IV on the following
page.

A summary of specific results should go here. It will

mirror the summary that will end up in the conclusion.

Further development could turn the predictive model into
a suggestive one. The models generated by the framework
described in this research could be a crucial addition to “In-
terface Builders,” [3] graphical applications designed to help
developers create graphical interfaces. Developers would have
a new, powerful tool suggesting subtle changes to their design
in order to better emulate the most popular and successful
graphical interfaces available today.

The main contributions of this research are as follows:

• Development of a framework of tools to gather layout
information of Android applications (section III)

• An empirical study correlating Android GUI design pat-
terns and the reported quality user experiences (section IV
on the following page)

• Analysis of recurring design patterns and trends in Android
GUI design (section V on page 4)

• Development of a predictive model for mobile GUI design
(section IV-B on page 4)

II. BACKGROUND

This section will be expanded to better explain where

our research fits in the field of related work discussed in

section VI on page 5.

Research on learning design patterns [4], [5] proves useful
when designing a predictive machine learning workflow. Both
Neural Networks and vanilla Decision Trees are discussed and
implemented in [5].

We began by correlating specific features and ratings
manually using straightforward linear regression in order to
test different weightings of features. Next, random forests
were used to gain insight on the sorts of decision points that
regression and model trees produce. We eventually settled on to
the M5 model tree to firm up final results and to allow trends to
be explained and described in human-friendly decision points
rather than difficult-to-describe coëfficient models or more
opaque random models.

A. Choosing Android

Though the concepts presented in this paper are applicable
to any graphical environment, we have chosen to work with the
Android mobile platform due to both the unique challenges of
a mobile environment discussed in section I on the preceding
page and the uniformity and availability of application source
code.

We feel the concepts presented in this paper would be
most advantageous to mobile developers, as user ratings,
our evaluative metric, can directly influence an application’s
ultimate success or failure. Android users must often choose
between similar implementations of the same tool. The Google
Play store in turn provides a system with which users can
rate applications and post feedback for developers and other
potential users. These user ratings help Android users to
narrow down their choices in a vastly competitive market.

Android is also ubiquitous among mobile device users.
The popularity of the platform continues to grow as new
users and developers adopt Android as their primary mobile
platform. With over 1.3 million4 Android applications on the
Google Play store at time of writing, the popularity of the
Android platform has provided us and will continue to provide
other research teams with ample data to search for significant
correlations and generalizations.

Finally, the somewhat constrained GUI design framework
in the Android platform (Android XML) allows for relatively
straightforward parsing of the application’s graphical layout
without needing to peek into the application’s logic.

Because of these unique properties of the Android plat-
form, we believe mobile applications will benefit most from
the preliminary results presented in this paper.

III. EXTRACTING DESIGN ELEMENTS

Before we can begin evaluating and correlating patterns, we
must first collect information on Android GUI design. Since
Android developers define graphical layouts in source code, we
decided to gather and interpret source code in order to gather
data about Android GUIs. We chose the free and open-source
Android software repository F-Droid as a source for Android
source code.

After gathering source data, we must extract the parts of the
source code pertaining to graphical layouts. We then analyze
those layouts to determine what built-in graphical elements the
developer chose to use in designing the application and in what
quantity and proportion.

After all layouts of all available applications in the reposi-
tory have been analyzed, the results are fed to a machine learn-
ing algorithm to make generalizations about which elements
affect others, which best predict ratings, and which carry little
meaning in the context of this study.

Finally, the performance of this machine learning system is
analyzed, and the workflow is tweaked to attempt to improve
prediction and correlation both between elements and against
user ratings.

A. Dataset Acquisition with fdscrape

We have developed a program (in Python) to enable mass
retrieval of Android source code to mine. We use F-Droid,
a software repository containing binaries and source code for
1,145 free and open-source Android applications. The majority
of these applications are also available on the official Android
application repository, the Google Play store.5 Because of this,
we have downloaded all available applications and their source
code from F-Droid as well as Google Play ratings and metadata
for the same applications, storing the data for analysis in the
machine learning step.6 This data is stored with the source
code of each application.

4According to Appbrain Stats, a Google Play metrics service. Visit
http://www.appbrain.com/stats/number-of-android-apps

for the latest statistic.
5The Google Play store can be accessed on the Web at

https://play.google.com/store.
6To accomplish this, we have cross-checked Java package names against

both F-Droid and the Google Play store.

http://www.appbrain.com/stats/number-of-android-apps
https://play.google.com/store

We originally chose to scrape only rating information from
Google Play. It was decided, however, that by saving more
of the metadata provided by Google Play and developers,
better predictions could be made by accounting for variables
beyond the scope of design. This permits meta-analysis of
our hypothesis, i.e. we can decide how much design affects
ratings and how much predictive accuracy to expect from our
model. We gather this data in order to compensate for any
confounding correlation that Google Play metadata may have
on determining rating.

Specifically, the developer-chosen application category
(e.g. Weather Application, Productivity Application, Action
Game, Puzzle Game, and others in table I) provides an effec-
tive way to analyze groups of applications at a time. It is our
hypothesis in RQ 1 that separate analysis within application
categories will yield more meaningful results. This has the
potential to greatly improve the accuracy of our predictive
algorithm and allows us to better understand what “good
design” entails in certain domains. For example, the same
elements that constitute good design for an action game might
exemplify bad design for a news application.

After omitting applications that were not on the Google
Play store, had no ratings, or did not host source on the
main F-Droid website, we collected the source code of 894
applications to build our dataset.

B. Tag Lexing & Extraction with AGUILLE

We have developed AGUILLE, the Android Graphical User
Interface Lazy LExer, to perform the Android source analysis
we originally hoped GUITAR would accomplish. The tool takes
in an application’s source code, finds the relevant Android
XML structure, and parses that structure into native Python
objects. Using these objects, AGUILLE calculates the frequency
with which each XML tag, or element, occurs in the appli-
cation. The graphical design of the application, therefore, is
reflected in the developer’s choice of graphical elements.

These frequencies are collected in a CSV file, along with
the metadata gathered with fdscrape. Lots of the scraped infor-
mation can be cached to speed up parses of entire repositories.

The tool is designed such that, should more sophisticated
calculations prove necessary, separate sub-commands could
easily be added. AGUILLE is open-source; anyone may extend
it by adding further subcommands or modifying its current
behavior.

C. Machine Learning with Weka

We make use of the Weka 3.7 Knowledge Flow envi-
ronment to create a machine learning workflow. Data from
AGUILLE is loaded separately by category. We drop categories
which contain less than one percent of all applications mined,
leaving the 20 categories described in table I.

IV. EMPIRICAL EVALUATION

The design of our experiment is such that two chief
research questions (RQs) may be addressed:

Applications

Category Name Number Percent

‘Tools’ 278 33.3%
‘Productivity’ 88 10.5%
‘Communication’ 67 8.0%
‘Personalization’ 34 4.1%
‘Books and Reference’ 32 3.8%
‘Game Puzzle’ 30 3.6%
‘Education’ 29 3.5%
‘Media and Video’ 29 3.5%
‘Music and Audio’ 25 3.0%
‘Entertainment’ 24 2.9%
‘Transportation’ 18 2.2%
‘Travel and Local’ 18 2.2%
‘Finance’ 17 2.0%
‘Game Arcade’ 17 2.0%
‘Health and Fitness’ 17 2.0%
‘Lifestyle’ 15 1.8%
‘News and Magazines’ 15 1.8%
‘Social’ 15 1.8%
‘Photography’ 13 1.6%
‘Libraries and Demo’ 11 1.3%

Total: 20 categories 792 94.7%

TABLE I. APPLICATIONS IN EACH MINED CATEGORY

1) What sort of design do applications have in common?
What sort of trends emerge when analyzing entire repos-
itories of applications?

2) Does separate analysis of applications by Google Play
category improve the quality of our predictive algorithm?
Does such separation give more meaningful generaliza-
tions when explaining the output of our decision tree?

Our goal in evaluating the accuracy and quality of our
predictions is twofold: to attempt to improve the ability of
our algorithm to predict user ratings and to make conclusions
how about individual elements affect user perception of an
application.

When evaluating the performance of our machine learning
workflow, we are looking for statistically significant correla-
tions with performance better than the 5–10% correlation we
see with naı̈ve sample algorithms.

We cannot expect anything near perfect prediction, as more
goes into a user’s choice of rating than design. We must
therefore focus on explainable output, such as that from a
decision tree, to try to explain the influence of design on
ratings.

A. Experiment Design

To be able to learn which design elements lead to the
best applications, we need a group of factors, or heuristic,

to evaluate, as well as a metric for determining what con-
stitutes a “good” application. This study uses the frequency
of use of Android XML tags in graphical layout source code
as a heuristic. Because the Android framework comes with
a rigidly-defined set of elements, XML tag (and therefore
element) frequency allows us to point to very specific design
choices to explain findings when learning correlations.

Android also allows developers to define their own
tag elements, but because scraping these developer-defined,
application-specific tags and properties involves parsing Java
logic and rendering the elements, this added complexity is
somewhat beyond the scope of this project. The application-
specific nature of these tags also means that they will most
likely not be of use when attempting to make correlations
between applications.

Although it may be possible to learn a more complex
heuristic over time, it would increase overhead and likely
introduce excessive complexity into our system. At this stage
of research, it is wiser to rely on the pre-designed elements
available to all Android applications to potentially determine
the quality of GUI design. We have found that element
frequency is sufficient to establish a statistically significant
correlation between the elements themselves and the evaluative
metric, Google Play ratings.

Potential alternative evaluative metrics could include un-
install rate and frequency, certain statistical functions on
the cumulative body of Google Play user ratings, or cross-
referenced reviews from established news sources. Google Play
ratings were trivial to scrape and analyze, as the data is publicly
available, so these public ratings serve as an initial metric
we use to establish the overall quality of an application. In
our algorithm, we can weigh the rating’s relevance depending
on how many users rated the application, a metric we also
obtained from the Google Play store. We might be more
confident in a metric to which many users contributed.

In early models, we found that the M5 model tree first
branched based on the amount of user ratings on Google Play.
The sub-trees after this split did not clearly resemble each
other; the branch reached by applications with few ratings gave
a counter-intuitive model, while the branch for applications
with a more substantial amount of ratings weighted elements
as we would expect. This suggests that the model’s predictive
accuracy increases substantially when more rating data is
available, as we would expect.

Our group of independent variables, the frequency of each
Android graphical element, will reflect the different propor-
tions of interactive Android widgets with respect to each other.
These interactive widgets are built-in to the Android platform
and include buttons, check-boxes, radio buttons, images, and
text. Additionally, these widgets can appear in different views,
all of which have different ways to specify how the widgets
will be laid out on the screen. All of these views and widgets
are part of our element count.

Of course, GUI design is hardly the only factor users
consider when rating a program. It is important to consider
major confounding variables (viz. quality of functionality,
stability, the ability of the program to solve a real problem)
and integrate Google Play’s qualitative long-form paragraph
review system. A naı̈ve but effective way to acknowledge

applications with known performance issues (and therefore
identify those applications whose low ratings have little to
do with design) involves searching for key terms occurring
abnormally frequently in text reviews. See table II for a list of
key words and phrases that could indicate poor performance
rather than poor design. Such key words and phrases are
likely to indicate that low ratings are due to factors outside
the realm of interface design. After gathering other metadata,
fdscrape counts the frequency of these key words and phrases
with respect to the available body of reviews. The calculated
frequencies of these words are fed into the machine learning
algorithm along with the tag frequency count from AGUILLE
and the metadata from fdscrape.

If our algorithm were to put significant weight on these
terms rather than the intended features in our heuristic, we
can safely chalk these up to poor application performance.
This gives a decision tree the option to discard obviously poor-
quality applications in an early decision node in order to focus
on the design factors we are interested in analyzing. If a more
sophisticated method than calculating tag frequency proves
necessary, we could take a naı̈ve Baysean approach, analyzing
the probability rather than the frequency of key phrases in
known or exemplary good and bad applications.

By acknowledging applications which have known issues
unrelated to design, observed ratings of the remaining appli-
cations in our dataset will better reflect design quality.

Key Phrase Possible Conclusion

‘incompatible’ Could indicate versioning or device com-
patibility issues for certain users.

‘uninstall’ Could indicate frustration with the appli-
cation or the inability for certain users to
un-install pre-installed software.

‘crash’ Could indicate stability issues.

‘slow’, ‘lag’ Could indicate resource overloading, fre-
quent Internet requests, or poor data struc-
ture implementation.

‘black screen’,
‘white screen’,
‘blank screen’

Could indicate initialization problems.

TABLE II. KEY WORDS AND PHRASES SUGGESTING POOR
PERFORMANCE

B. Experiment Results

Results would go here, once we decide what output of

which machine learning workflows to include.

V. DISCUSSION & CHALLENGES

The single most significant setback to this project has
been the failure of the Android fork of the GUITAR tool. We
have been forced to develop an in-house tool from scratch
in its place. It has taken weeks to develop AGUILLE to a
usable and dependable state. While new developments such
as those detailed in section IV-B show promising correlation

and prediction, preliminary results with primitive data did not
show expected trends. Specifically, before AGUILLE and our
machine-learning workflow became capable of more sophis-
ticated data transformations, the sample heuristic (viz. mean
amount of buttons per layout in each application) correlated
against average rating showed no statistically significant re-
sults.

After improvement to AGUILLE and the addition of meta-
data and tag phrases, statistically significant results surfaced.
Category discretization provided even better results, as dis-
cussed in section IV-B on the preceding page. We believe
further probing into consequential design decisions and fur-
ther sophistication of AGUILLE and the design heuristic will
continue to render reportable, statistically significant results.

For example, a further step up in sophistication involves
a report of what percentage of all available screen space is
occupied by widgets.

VI. RELATED WORK

Available research into the overlap of the machine learning
and user experience fields tends to concentrate on either GUI
testing or programming interface (API) design rather than
using machine learning to gain insight on the GUI design
patterns users favor. Much available research that does indeed
combine machine learning and user interface design aims
to design front-end applications for the non-statistician that
enable powerful data mining with little knowledge of the
implementation of machine learning algorithms.

Arlt et. al. [6] have written a chapter on various different
methods of parsing and testing GUIs. The research of Nguyen
et. al. [7] presents a tool called GUITAR to parse the structure
of an application’s GUI in order to generated automated tests
for that application. We were originally hopeful that GUITAR
or one of its derivatives could prove invaluable in gathering
GUI data to mine. Unfortunately, the Android-specific fork of
GUITAR has not been updated since the release of Android
2.2 and is therefore not compatible with the majority of
applications on F-Droid. Although much existing research [6],
[8], [9] makes use of GUITAR, our GUI-parsing tool had to be
developed from scratch as discussed in section III-B on page 3.

The approach posited by Yang et. al. [9] to programmati-
cally generate GUI models in mobile applications does not use
GUITAR in its entirely; rather, it analyzes GUI events using
GUITAR and calls these events directly on the application.
Similarly, Amalfitano et. al. [10] showcase “an automated
technique that tests Android apps via their [GUI].” Although
writing a GUI parser from scratch may have slowed down
development, using just one tool to rip the GUI of an Android
application where other teams have used many has helped to
simplify the process of gathering GUI data.

The research of Shi et. al. [4] and Ferenc et. al. [5] discusses
ways to better understand source code design patterns in Java
and C++, respectively. Our research aims to discover design
patterns in graphical interfaces, not implementation patterns
in source code, setting our research apart from other pattern-
based learning research.

Lieberman’s research [3] discusses the concept of an
“Interface Builder,” a graphical tool assisting a developer in

designing a user interface. He discusses Programming by

Example, where the developer “takes on the role of operating
the user interface in the same manner as the intended end-user
would, interacting with the on-screen interface components to
demonstrate concrete examples of how to use the interface.”
The application then learns and generalizes the developer’s
input to guess at the desired functionality. This research may
prove invaluable to future research where the “smart interface
builder” discussed above is being designed.

Papatheodorou’s research [11] focuses chiefly on using
machine learning to learn over time the sort of interface the
user may expect and to adapt to that knowledge. It may be
possible to use aspects of [11] to generalize the expectations
of a range of users or potential users during the design pro-
cess rather than after deployment, saving developers valuable
time to test and improve their software. Our work, however,
proposes a different approach to interface learning, requiring
no such lengthy data collection process from users. We learn
from freely available data, speeding up empirical research
and eschewing the technical challenges and privacy concerns
inherent in collecting data directly from users.

A promising, unique opportunity to combine the machine
learning and user experience fields is missing in available
research. We hope to open the door for future research to use
machine learning and data mining to analyze a wealth of exist-
ing information about user interfaces. This will help developers
of all platforms to better understand their users’ preferences
and peeves not only in graphical or mobile environment design
but also in the design of overall user experience. With more
intuition on user propensity and preference, developers can
design more natural, intuitive software.

VII. FUTURE WORK

Our model would determine the likely rating for a graphical
interface given the analyzed source of the application. Given a
prototype GUI designed by a developer in an interface builder,
the model could guess at a rating for the design based on trends
it found in other applications in the same category.

It could also be possible to use a genetic algorithm to
determine better positions and attributes for the interface
elements in the GUI. The algorithm would weigh a high rating
(as determined by the model) against changing the developer’s
design as little as possible, creating incremental changes to
generate potentially optimized versions of the developer’s
original layout.

VIII. CONCLUSION

We have discussed a method for learning the correlation be-
tween certain elements of GUI design, which we will analyze
with AGUILLE, and Google Play ratings, which we have mined
from the Web. This is improved when factoring in Google Play
metadata and discretizing applications by category. Because
of the importance of optimized, intuitive interface on smaller
devices, developers will benefit from insight from a model that
attempts to explain user behavior and preference.

A summary of specific results should go here. It will

mirror the summary that will end up in the introduction.

We are confident that further (perhaps automated) probing
will continue to reveal interesting relationships between dif-
ferent elements. After learning our model, we could predict
the quality of future interfaces. With future refinement, the
algorithm could suggest interface improvements by means of
a genetic process in an interactive interface builder.

REFERENCES

[1] D. Han, C. Zhang, X. Fan, A. Hindle, K. Wong, and E. Stroulia,
“Understanding android fragmentation with topic analysis of vendor-
specific bugs,” in Reverse Engineering (WCRE), 2012 19th Working

Conference on. IEEE, 2012, pp. 83–92.
[2] M. DeGusta, “Android orphans: Visualizing a sad history of support,”

2011.
[3] H. Lieberman, “Computer-aided design of user interfaces by example,”

in Computer-Aided Design of User Interfaces III. Springer, 2002, pp.
1–12.

[4] N. Shi and R. A. Olsson, “Reverse engineering of design patterns from
java source code,” in Automated Software Engineering, 2006. ASE’06.

21st IEEE/ACM International Conference on. IEEE, 2006, pp. 123–
134.

[5] R. Ferenc, A. Beszédes, L. Fülöp, and J. Lele, “Design pattern min-
ing enhanced by machine learning,” in Software Maintenance, 2005.

ICSM’05. Proceedings of the 21st IEEE International Conference on.
IEEE, 2005, pp. 295–304.

[6] S. Arlt, S. Pahl, C. Bertolini, and M. Schäf, “Trends in model-based
gui testing,” Advances in Computers, vol. 86, pp. 183–222, 2012.

[7] B. N. Nguyen, B. Robbins, I. Banerjee, and A. Memon, “Guitar: an
innovative tool for automated testing of gui-driven software,” Automated

Software Engineering, pp. 1–41, 2013.
[8] C. Hu and I. Neamtiu, “Automating gui testing for android applications,”

in Proceedings of the 6th International Workshop on Automation of

Software Test. ACM, 2011, pp. 77–83.
[9] W. Yang, M. R. Prasad, and T. Xie, “A grey-box approach for auto-

mated gui-model generation of mobile applications,” in Fundamental

Approaches to Software Engineering. Springer, 2013, pp. 250–265.
[10] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and

A. M. Memon, “Using gui ripping for automated testing of android
applications,” in Proceedings of the 27th IEEE/ACM International

Conference on Automated Software Engineering. ACM, 2012, pp.
258–261.

[11] C. Papatheodorou, “Machine learning in user modeling,” in Machine

Learning and Its Applications. Springer, 2001, pp. 286–294.

Learning User Behavior for Mobile Test Suite
Adequacy

Cody Kinneer
Allegheny College

Email: kinneerc@allegheny.edu

Abstract—Software development for mobile devices proceeds
at a rapid pace. Software as a service, rapid development, and
agile programming means that mobile applications are released
and updated quickly. As a result, developers have less time to
test their applications and cannot completely know the effects of
a change. Existing test suite adequacy criteria are insufficient in
this quickly changing environment.

In this paper, we develop a new behavior based test suite
adequacy criterion that adapts to user interactions with an
application in the wild. We evaluate the time and space overhead
of they system and perform an empirical study analyzing existing
Android test suites according to our behavior driven criterion.
Our analysis reveals that the two test suites focused testing on
infrequently used contexts, achieving behavioral adequacy scores
from 12 to 33 percent less than the probabilistic calling context
coverage. This shows the potential for substantial improvement
in the development of test suites for mobile applications.

I. INTRODUCTION

Developers frequently use test suites, a collection of test
cases, to ensure that the component under test performs
according to specification, or to ensure that accuracy does not
change over time. A test suite’s usefulness lies in its ability
to detect problems. With the rise of software as a service and
rapid development practices, test suites must be effective in
detecting important problems quickly. However, since it is not
known beforehand where a problem will occur, determining
the adequacy of a test suite is a challenging problem.

The most common test suite adequacy criterion is structural
coverage. These criteria, such as line or block coverage seek to
maximize the amount of code exercised by a test. Since a bug
needs to be executed to be exposed by a test, maximizing struc-
tural coverage is a reasonable strategy. However, this definition
of test suite adequacy suffers from not taking into account
the importance of the structure covered. Achieving complete
test coverage in practice is most often wishful thinking, and
structural adequacy fails to provide insight into what areas
of the application are more important to test. Furthermore,
a good test should resemble the conditions under which the
application will actually be used, but structural techniques say
nothing about the realism of a test.

Another approach to test adequacy is fault-finding. This
consists of introducing faults into an application, and then
determining which tests tend to find the greatest number of
faults. Mutation testing is one such technique. However, in
practice, mutation testing speaks to the ability of a test to find
faults in a certain structure. It cannot tell us what structures
are more important to search for faults in.

With the rise of new software engineering paradigms such
as software as a service, agile, and rapid development, these
criteria fail to keep up with the pace of software development.
This is particularly true of Android applications. According to
Android’s website, there are 7 Android API’s in use [1]. The
rate of change of the Android OS itself is a testament to the
rapid development of Android applications.

These adequacy measures could be improved by taking into
account the way users interact with the application after it is
deployed. A behavior driven adequacy criterion confers two
benefits. Firstly, if the purpose of application is to be used by
a user base, then more frequently utilized components are more
important than those that are less frequently used. A problem
that occurs in a more frequent use area will affect more users.
Additionally, a test suite’s similarity to observed user behavior
favors tests that are more similar to the conditions that the
application will be exposed to in the wild.

Previous work in model-based software testing applied
Markov chain models to software testing [2], [3], [4]. These
works discuss how a Markov chain used to model software
usage could be useful for input generation, software specifi-
cation, and statistical software testing. However, they do not
address the issue of how the model should be generated, and
do not focus on test suite adequacy.

In this paper, we present a new test suite adequacy criterion
that takes into account learned user behavior in the wild. By
collecting data from users actually interacting with an appli-
cation, we learn a Markov chain that models user behavior.
This model can be continuously updated to respond to changes
in the users’ interactions. We then determine a test suites
adequacy by its similarity to the constructed user behavior
model.

We seek to determine how well test suites for Android
applications reflect real user behavior. We evaluate our tech-
nique in terms of time and space overhead for a collection of
Android applications, and evaluate the test suite adequacy of
the applications using our proposed criterion.

The contributions of this paper are therefore as follows,

• A new behavior driven test suite adequacy criterion
(section III).

• An implementation of the criterion for Android appli-
cations (section III and section IV).

• An empirical study evaluating the overhead of the
implementation (section IV).

• An evaluation of several Android applications’ test
suites using the new criterion (section IV).

II. BACKGROUND

To calculate behavioral adequacy, a technique called prob-
abilistic calling context [5] is used for profiling and a Markov
chain is used for modeling.

Profiling

Calculating a behavioral criterion requires that an appli-
cation’s behaviors be profiled. A program’s behavior can be
thought of as the collection of its function calls, which makes
profiling based on these calls a reasonable choice for modeling
application behavior.

Probabilistic calling context (PCC) is a profiling strategy
developed by Bond and McKinley [5]. PCC attempts to assign
an integer to every unique stack state. This system is useful
because it can be computed efficiently, only 3% overhead is
reported in the literature. An example of a stack state that
could be represented by PCC is shown in Figure 1. This figure
shows an example stack state inspired by the K-9 Mail email
application. First, MAIN is called, which is assigned a PCC
value of zero. Then, MAIN calls CHECKEMAIL, (hereafter, we
will use → to signify a function call). The next PCC is cal-
culated from the last PCC and the name of the CHECKEMAIL
function. Thus, the next PCC value is meant to represent the
sequence MAIN → CHECKEMAIL. If CHECKEMAIL were to
return to MAIN, then the PCC value would also return to zero.
Instead however, CHECKEMAIL calls ITERATEACCTS, so the
next PCC value is calcuated from the previous PCC value and
the next function name. When a function is called, the next
PCC value is given by

nextPCC = currentPCC ∗ 3 + currentContext

where currentContext is an integer that represents the current
context, such as a hash value of the called function name.

Markov Chains

A Markov chain is a state based system where the next
state depends only upon the current state [6]. An example is
shown in Figure 2. The nodes in the graph represent states,
and the edges represent the transition probabilities. Starting at
the MAIN state, there is an 80% chance of transitioning to the
READ state and a 20% chance of transitioning to the SEND
state.

Markov chains have been used to model expected user
behavior in model based testing [2], [4], [3]. However, these
techniques generally do not learn models from user behavior,
but reflect how the developer expects users to behave.

III. BEHAVIOR DRIVEN TEST SUITE ADEQUACY

Using PCC and Markov chains, we present a technique for
assessing a test suite’s adequacy based on how users interact
with the application being tested. Our technique for calculating
behavioral adequacy is shown in Figure 3.

First, the application is instrumented to collect data for
profiling user behavior. Because the application will be used

Stack PCC Value

main

checkEmail

0000000000

authenticate 1884906540

iterateAccts -1616488415

1994557092

Fig. 1. PCC value updating as methods are added to the stack.

main

read
0.80

send

0.20

0.10

archive
0.55

delete

0.35

1.00

1.00

1.00

Fig. 2. An example of a Markov chain behavior model inspired by K-9 Mail.

while this information is collected, the overhead incurred by
the user must be acceptably small. Additionally, the informa-
tion gathered must be useful in modeling user behavior. PCC
was chosen because it satisfies both of these requirements.
A program’s behavior can be thought of as the sequence of
functions that it calls, which makes profiling based on function
calls an appealing strategy for profiling behavior. Since PCC
takes into account the functions on the stack, it provides more
information than simply profiling based on function frequency,
while still maintaining low overhead. The instrumentation
calculates the current PCC value from the calling context,
and records each transition between PCCs. The application
is then released for use by the user base, and behavioral data
is collected in the form of these PCC transitions.

The developer then runs the application’s test suites on
the instrumented application. The transitions between PCCs

Android Device

Computer

Instrumented Application

Behavior Data

AspectJ aspect

AspectJ Weaver

Android Application

Instrumented Application

Test Suite

Analyser

Test Data

Adequecy Criterion

Fig. 3. Framework for a behavior driven test suite adequacy criterion.

observed during testing are recorded as well, giving test data
that characterizes the behavior of the test suite in terms of the
observed PCC transitions.

The user data is then aggregated and used to construct a
Markov chain where the nodes are PCC values and the edges
are the probability that a PCC value will transition into another
PCC value.

For example, suppose the data in the table below was
collected from users interacting with a simple email appli-
cation. Caller PCC represents the current PCC value, and
callee PCC represents the next PCC value. Rather than integer
representations, the names of functions on the stack are given
for explanatory purposes.

Caller PCC Callee PCC Frequency
MAIN MAIN → READ 80
MAIN MAIN → SEND 20
MAIN → SEND MAIN 20
MAIN → READ MAIN 8
MAIN → READ MAIN → READ → ARCHIVE 44
MAIN → READ MAIN → READ → DELETE 28
MAIN → READ → DELETE MAIN → READ 28
MAIN → READ → ARCHIVE MAIN → READ 44

This data would be converted to a Markov chain similar
to what is shown in Figure 2. In the example, the nodes

are function calls rather than PCC values for the sake of
explanation. For example, the ARCHIVE node represents the
context MAIN → READ → ARCHIVE. If the archive function
could be called in a different context, for example,MAIN →
SEND → ARCHIVE, that context would be represented by a
different PCC value. However, in this simplified example, each
function can only be called in one context.

For every caller PCC, there is an edge to each callee
PCC. The transition probabilities can be found by taking the
frequency of a given callee PCC divided by the sum of the
frequencies for the corresponding caller PCC. For example, for
the caller PCC MAIN, there are two possible callee PCCs. The
probability of transitioning to MAIN→ READ is 80

80+20 = 0.80.
Alternatively, the probability of transitioning to MAIN→ SEND
is 20

80+20 = 0.20.

To calculate test suite adequacy, the sum of edges in the
model observed during testing is divided by the sum of all
edges in the model. For example, consider the example Markov
chain shown in Figure 2.

If this Markov chain were constructed from user behavior,
then when the application was in the hands of users, READ is
called from MAIN 80% of the time while SEND is called 20%
of the time. If during testing we exercised MAIN → READ,

then we would have a behavioral adequacy of:

.8

.8 + .55 + .35 + .2 + .1 + 1 + 1 + 1
= .16

If instead, we tested MAIN → READ and READ → DELETE,
then our adequacy increases because we are covering more
code.

.8 + .35

.8 + .55 + .35 + .2 + .1 + 1 + 1 + 1
= .23

However, if we test MAIN → READ and READ → ARCHIVE
instead, then our adequacy increases further because ARCHIVE
is more likely to be used than DELETE.

.8 + .55

.8 + .55 + .35 + .2 + .1 + 1 + 1 + 1
= .27

This makes sense intuitively since testing more behaviors
increases the score, and testing more frequently used behaviors
further increases the score. Using this criterion, 100% ade-
quacy is achieved when every behavior observed by the user-
base is tested, and 0% is achieved when no behavior observed
in the user-base is tested.

IV. EMPIRICAL EVALUATION

To evaluate our proposed test suite adequacy criterion, we
implemented a system for calculating behavioral adequacy
for Android applications. The goals of the evaluation are as
follows.

1) Determine the time and space overhead of the online
behavioral profiling.

2) Determine the overhead associated with calculating
behavioral adequacy offline.

3) Evaluate the behavioral adequacy of existing Android
applications.

A. Experiment Design

To instrument applications, we used AspectJ because it
provides a way to quickly instrument Java and Android appli-
cations. An AspectJ aspect was written to calculate the PCC
value of the application at function calls. Only application
defined functions were considered, so Android system calls
and Java library calls were ignored. At each call, the current
PCC, the caller, and the next PCC, the callee, were stored as
a 64 bit value identifying a transition between PCC values.
The frequency of these transitions were recorded, and written
to a file upon an activity being paused, stopped, or destroyed.
This data was then sent to a desktop PC for processing. A Java
program was implemented to construct a Markov chain from
the PCC edges. The test suite under study was then executed
and the PCC edges collected on a per test basis. For structural
coverage, Android’s included EMMA tool was used.

Offline tasks were completed using a desktop running
Centos 6.5 with a quad-core 1.6GHz CPU and 16MB of
memory. User data was collected on an Asus Nexus 7 tablet
running Android 4.3 and a Samsung Galaxy SIII smartphone
running Android 4.1.1.

B. Case Studies

To conduct our evaluation, we selected several applications
from the F-Droid open source appstore. We attempted to select
well known applications with large test suites, however this
was difficult since few applications contained test suites. The
applications selected were K-9 Mail, and Github. K-9 Mail
is an email application that can connect to IMAP, POP3, and
SMTP servers to manage a user’s email accounts. Github is an
application that allows a Github user to interact with Github
on an Android device. It supports browsing repositories, com-
menting, and creating Gists and issues.

Application Files Classes Methods Lines
K-9 Mail 230 806 5671 35410
Github ? ? ? ?

C. Metrics

We evaluate runtime overhead in terms of percent change
in time. Space overhead in terms of percent change in source
code occupied space on disk. Structural coverage is given in
percent of code covered. Behavioral coverage is given as the
sum of exercised edges over the sum of all edges.

D. Experimental Results

To evaluate online runtime overhead, the benchmarks’ test
suites were executed five times, and the execution time was
measured with and without profiling instrumentation. The
average of the five trials was taken. The table below shows
the results, time is given in seconds.

Application Time Uninstrumented Time Instrumented Percent Change
K-9 Mail 4.482 10.385 132
Github 66.006 70.445 7

The large difference in percent change between the applica-
tions warrants additional investigation. A possible explanation
is that K-9’s test suite primarily tests backend code that tends
to complete very quickly, whereas Github’s test suite involves
testing UI elements, such as creating activities that is less
sensitive to the instrumentation.

To evaluate space overhead, the benchmarks binary size
was measured before and after instrumentation. Size is given
in megabytes.

Application Size Uninstrumented Size Instrumented Percent Change
K-9 Mail 2.91 3.35 15
Github 1.76 1.99 13

The size overhead between the two applications was about
the same, with both applications using around 14% more disk
space when instrumented.

To evaluate offline overhead, we measured the time needed
to build the model from user data, and determine behavioral
adequacy from the model.

To evaluate Android application test suites, we instru-
mented the benchmarks and allowed two users to interact
with the applications for one day. Afterwards, we profiled the
benchmarks’ test suites, and constructed a model from the user
data. We then calculated behavioral adequacy from the model
and test data. For comparison, we determined the structural

coverage of the benchmarks’ test suites using EMMA, and
the PCC coverage by dividing the number of PCC transitions
exercised by both the users and the tests and the number of
PCC transitions exercised by the users.

Application Behavioral Coverage PCC Coverage Method Coverage
K-9 Mail 0.00016 0.00024 7
Github 0.03824 0.04324 ?

E. Threats to Validity

The most significant thread to the validity of our evaluation
is the limited number of applications tested. The applications
selected for the evaluation may not represent all Android
applications. This problem can be alleviated by conducting a
larger study on a wider range of applications. Another threat
is the limited number of users participating in the study. The
users participating in the study may not be representative of
the rest of the user-base. The more the users interact with
an application, the more likely they are to exercise PCC
values not seen during testing, and thus decrease the score.
This means users interacting with an application longer than
normal will likely cause the behavioral adequacy to decrease.
Additionally, users interacting with the application for less time
than normal could cause the behavioral adequacy results to
be too optimistic. Alternatively, since behaviors exercised by
the test suite but not by the users are given a score of zero,
users exercising very little of the application may cause the
score to decrease. This issue can also be mitigated by a larger
experiment with many users to increase the chance that the
users represent an accurate sample of the larger user-base.

V. RELATED WORKS

Relative coverage is an alternative to traditional coverage
that takes context into account when determining coverage.
This is useful in software as a service systems where only a
portion of a larger service is used by an application. From
the perspective of the smaller application, some features the
larger service provides are not used, and thus, irrelevant. These
features do not need to be tested, and therefore should not
be considered when determining coverage. Relative coverage
excludes these unused feature from the coverage equation.

Miranda and Bertolino’s work [7] on Social Coverage is
the most similar to our work. They propose a system inspired
by relative coverage that determines coverage according to
context. Relative coverage systems rely on the developer to
select which features are relevant, while social coverage, like
us, uses observed user behavior to determine what features
are important. Social coverage collects user data and can
find similar users. The features used by these users might
be relevant to the application. These features are taken into
account when calculating social coverage.

The Synoptic system [8] also has similarities to our work.
Synoptic is a tool that can infer finite state models from reading
execution logs. Like us, they construct a model based on user
behavior. However, synoptic requires the application log states,
and is thus more suited to a high level model, whereas we
model based on calling context. Additionally, we apply the
learned model to test suite adequacy while Synoptic focuses
on analysing logs.

The Gamma system presented by Orso et al. [9] attempts
to enable remote monitoring of software after its deployment.
Gamma does attempt to address the issue of runtime overhead,
and allows for the costs of instrumentation to be shared among
users. The developer can specify what type of information they
are interested in, and the Gamma system divides the task of
collecting this information among the userbase. Additionally,
Gamma allows for its instrumentation to be modified by an
update.

Bond and McKinley [5] introduced a technique for decreas-
ing the costs of tracking a programs calling context called
probabilistic calling context. This system allows a calling
context to be represented as an integer that is easy to cal-
culate and well suited to anomaly detection applications. The
technique consists of a function that takes as input the current
probabilistic calling context and an integer representation of
the current context. It then outputs an integer representing the
current probabilistic calling context. The function produces
outputs that are uniformly distributed, so that the chance of
conflict is low, and the order of the contexts is taken into
account.

In a later work, Bond et al. [10] present a technique for
calculating the entire calling context from the probabilistic
calling context. This technique has the advantage of being
able to reconstruct the calling context offline, however, some
dynamic information is needed make a search of the context
space feasible, which requires additional overhead of 10-20%.

Elbaum et al. [11] present a study showing how software
evolution affects code coverage. The study shows how even
small changes can have a large impact. This work is similar
to ours in that we are concerned with the performance of
structural adequacy criteria in evolving software environments.

Whittaker presented a series of papers [2], [3], [4] on using
markov chains in software testing, including input generation,
software specification, and statistical software testing.

Andrews et al. [12] present a paper analyzing the usefulness
of mutation testing. The study shows that mutation testing
creates faults similar to real faults. The abc compiler provides a
way to perform AspectJ instrumentation on Android bytecode
without access to the source code [13].

VI. CONCLUSION

Android applications exist in a rapidly changing environ-
ment. Traditional test suite adequacy criteria such as struc-
tural coverage and fault finding adequacy provide insufficient
guidance to developers in such a rapid development cycle.
As an alternative, we propose a behavior driven test suite
adequacy criterion that can adapt to changes in the environment
when assessing an applications test suite. By instrumenting
behavior on applications running in the wild, a markov chain
is constructed that models user behavior. This behavioral data
is then compared with data obtained during the execution
of a test suite to determine the test suites adequacy. A case
study of two applications suggests that there is potential for
major improvement in the quality of test cases for mobile
applications. A more comprehensive empirical study is needed
to explore the technique’s run-time overhead and evaluate the
adequacy of additional application’s test suites.

ACKNOWLEDGMENT

This work is supported by NSF REU Grant 1359275.

REFERENCES

[1] Android, “Dashboards,” http://developer.android.com/about/dashboards/index.html,
Jul. 2014.

[2] J. A. Whittaker and J. H. Poore, “Markov analysis of software specifi-
cations,” ACM Trans. Softw. Eng. Methodol., vol. 2, no. 1, pp. 93–106,
Jan. 1993.

[3] J. A. Whittaker and M. G. Thomason, “A markov chain model for
statistical software testing,” IEEE Trans. Softw. Eng., vol. 20, no. 10,
pp. 812–824, Oct. 1994.

[4] J. Whittaker, “Stochastic software testing,” Annals of Software Engi-
neering, vol. 4, no. 1, pp. 115–131, 1997.

[5] M. D. Bond and K. S. McKinley, “Probabilistic calling context,”
SIGPLAN Not., vol. 42, no. 10, pp. 97–112, Oct. 2007.

[6] J. G. Kemeny and J. L. Snell, Finite markov chains. van Nostrand
Princeton, NJ, 1960, vol. 356.

[7] B. Miranda and A. Bertolino, “Social coverage for customized test
adequacy and selection criteria,” in Proceedings of the 9th International
Workshop on Automation of Software Test, ser. AST 2014. New York,
NY, USA: ACM, 2014, pp. 22–28.

[8] I. Beschastnikh, J. Abrahamson, Y. Brun, and M. D. Ernst, “Synoptic:
Studying logged behavior with inferred models,” in Proceedings of the
19th ACM SIGSOFT Symposium and the 13th European Conference on
Foundations of Software Engineering, ser. ESEC/FSE ’11. New York,
NY, USA: ACM, 2011, pp. 448–451.

[9] A. Orso, D. Liang, M. J. Harrold, and R. Lipton, “Gamma system:
Continuous evolution of software after deployment,” in Proceedings of
the 2002 ACM SIGSOFT International Symposium on Software Testing
and Analysis, ser. ISSTA ’02. New York, NY, USA: ACM, 2002, pp.
65–69.

[10] M. D. Bond, G. Z. Baker, and S. Z. Guyer, “Breadcrumbs: Efficient
context sensitivity for dynamic bug detection analyses,” SIGPLAN Not.,
vol. 45, no. 6, pp. 13–24, Jun. 2010.

[11] S. Elbaum, D. Gable, and G. Rothermel, “The impact of software
evolution on code coverage information,” in Proceedings of the IEEE
International Conference on Software Maintenance (ICSM’01), ser.
ICSM ’01. Washington, DC, USA: IEEE Computer Society, 2001,
pp. 170–.

[12] J. Andrews, L. Briand, and Y. Labiche, “Is mutation an appropriate tool
for testing experiments? [software testing],” in Software Engineering,
2005. ICSE 2005. Proceedings. 27th International Conference on, May
2005, pp. 402–411.

[13] S. Arzt, S. Rasthofer, and E. Bodden, “Instrumenting android and java
applications as easy as abc,” in Runtime Verification, ser. Lecture Notes
in Computer Science, A. Legay and S. Bensalem, Eds. Springer Berlin
Heidelberg, 2013, vol. 8174, pp. 364–381.

1

Diagnosis of Autism Spectrum Disorders Using an
Interactive Diagnosis Program

Tate Krejci, Student, UCCS

Abstract—Asperger Spectrum Disorders (ASD) affect a rel-
atively large portion of the population, causing difficulty in
learning appropriate behaviors for various social situations. Tests
to diagnose ASD require an expert, and symptoms can often be
mistaken for other mental disorders leading to under-diagnosis.
Therefore, the application of a machine learning algorithm in
an interactive environment such as a program will potentially
increase the amount of successful diagnoses of ASD. The suc-
cessful implementation of such a program will not only increase
the likelihood of successfully diagnosing ASD, but also increase
our understanding of ASD.

I. INTRODUCTION

Autism Spectrum Disorders affect approximately one in two
hundred and fifty people, causing difficulty in the acquisition
and understanding of normal social protocols [1]. Many cases
go unnoticed or misdiagnosed as there is no definitive way
to diagnose an ASD over other mental disorders without
excessive trial and error [2]. Furthermore, early detection of
ASD in children requires expert evaluation, and cannot easily
be carried out by parents or teachers [3]. Therefore, an easily
and cheaply distributable application for the detection of ASD
using a machine learning algorithm has the potential to detect
more cases of ASD at earlier ages, and potentially provide
further insights into symptoms of ASD. A program can yield
potentially greater results as a program can be tailored to
be interactive and captivating to its target age group. This
allows for greater amounts of data to be collected than if the
application was of a less interactive nature.

The latest edition of the DSM (Diagnostic and Statistical
Manual of Mental Disorders), the DSM 5 has grouped the pre-
viously distinct disorders of Asperger Syndrome and Autism
into the same disorder, known as an Autism Spectrum Disorder
(ASD). Because of this, it is vital to determine where on the
spectrum an afflicted person lies to ensure they receive the help
that they specifically need. A person with severe ASD will
demonstrate symptoms commonly associated with Autism,
while a person with mild ASD will have symptoms similar
to Asperger Syndrome. Differentiating the patients based on
severity will ensure the correct type of help is provided. Thus
an interactive program that can not only differentiate between
a person with ASD and one without it, but can also provide
insight into the severity of a patients disorder will prove to be
a valuable tool.

II. PREVIOUS WORK

The detection of mental disorders through the use of pro-
grams has been considered before and effectively applied

to children with ADHD, exhibiting a success rate of ap-
proximately seventy-five percent with the use of a machine
learning algorithm [4]. The bulk of the work done on ASD has
been to identify the symptoms of ASD, the predominant one
being inability to learn proper social protocol through normal
social interactions [5]. However mild ASD remains harder to
diagnose than severe ASD as the signs are far more subtle,
especially for those with high functioning Autism [6]. Fur-
thermore, symptoms of ASD can have multiple implications,
making determining if a disorder is in fact ASD difficult [7].
More symptoms of ASD include unusual patterns of interest
and behavior often leading to children with ASD seeming
distant or inattentive [8]. While the symptoms of ASD are well
known and progress has been made in its diagnosis, there still
exists no definitive way to determine if a disorder is within
the Autism spectrum of disorders or something else entirely.

III. SOCIAL LEARNING THEORY AND ASD

The primary function of ASD is to impair the ability
of those affected to learn appropriate social behaviors the
way unaffected individuals learn. Social Learning Theory
is the theory that explains by what methods people learn
what social behaviors are acceptable and what behaviors are
not, though currently little is actually known about how this
process actually occurs. Examples of these social behaviors
include knowing to look somebody in the eye when they are
speaking to you or knowing not to talk over someone else
[9]. Detection techniques today involve qualitative question
and answer sessions, with little in the way of quantitative
data to support one diagnosis over another, often leading to
misdiagnosis [2]. This is exacerbated by the fact that there
is no medication to treat ASD, so doctors cannot try varying
medications to determine the true disorder, as is often the case
when diagnosing ADHD. With the spectrum of high IQ ASD
to low IQ ASD, doctors and psychologists find it difficult to
create a definitive list of symptoms [9], meaning a machine
learning algorithm has the potential to discover new patterns
to assist in the diagnosis of ASD.

IV. METHODOLOGY

A. The program and Machine Learning Algorithms

To identify quantitative indicators of ASD, it will be neces-
sary to use a supervised machine learning algorithm to group
data collected during the program. The type of algorithm used
will depend on what kind of data the program will collect,
although it is likely that a type of clustering algorithm will help
group ASD users together and help identify them. This will

2

hopefully allow the algorithm to discover new data sets that
group together people suffering from ASD. Because of this,
the testing phase of the program will be of utmost importance
to ensure a large enough data set is collected to effectively
predict whether a person has an ASD. To collect data, the
program can measure variables such as answers provided,
response time and mouse movements. The program will collect
this data when the user is presented with social situations in
which the correct response will not be readily evident to a
person with an ASD. During early trials, the program can be
tuned to give the maximum amount of data per encounter,
and additional features can be added as needed. Programs of
this style have already been implemented for the diagnosis
of ADHD, with a success rate of approximately seventy-five
percent [4].

B. Creating the Tests and Data Sets

Unlike some machine learning projects, total control over
the data collection will be possible in this project. This
means that designing the tests in the program will be as
important, if not more important than fine tuning a machine
learning algorithm. If the tests do not collect pertinent data
that distinguishes people suffering from ASD, it is unlikely
that even a well tuned algorithm could give a meaningful
prediction. Therefore, extensive testing of the tests themselves
will be a vital portion of creating a program for the diagnosis
of ASD. To ensure the questions are well tuned, initial testing
will occur only on people who do not show symptoms of
ASD. With this data, it will be possible to determine what
questions are effective because people without ASD should
answer well written questions in the same way as other people
without ASD. Once questions and scenarios have been verified
through this method, they can be tested on people with ASD to
determine if they can separate them out from regular people.

To create tests that capture relevant data, it has been
necessary to partner with experts in psychology, specifically
ASD and social learning theory. With their help, it has been
possible to create scenarios in the program where the user
is presented with options that indicate if they suffer from
ASD or not. For example, the user could be presented with a
situation where they will make differing choices based on their
empathy for the characters in the program. People with ASD
will likely show less empathy than those without it, as a lack
of empathy is one of the characteristics of ASD [10]. Experts
have expedited the process of creating tests that capture data
relevant to the diagnosis of ASD. There is also the possibility
to test some of the non-social aspects of ASD in a program
such as the abnormal ways in which a person with ASD will
focus on different tasks. Expert advice has been used to ensure
that all the tests that have been implemented so far are true
measures of ASD.

There are many symptoms that can indicate ASD such as
deficits in executive functions [9]. This makes it possible to as-
sess the severity of ASD in a given person by determining how
impaired their executive functions are. Somebody with mild
symptoms will likely show less impairment than somebody
with severe symptoms [9]. To determine executive function

impairment, an ordering section has been implemented where
the user is shown multiple pictures of a scene and asked
to select them in the order they think is best. This test can
be developed to assess ASD specifically by using pictures
portraying social interactions. Another test currently in the
program shows the user a picture of a social interaction and
asks them questions about it. Specifically, it probes the user’s
knowledge of what the various people in the picture think
about one another, which is generally a challenge for people
with ASD. The program also keeps track of the time taken
to complete each individual question, meaning there is a
possibility to filter out people with ASD based on the time
taken to complete the various tests. Currently the program
also includes the Coolidge Autism Symptoms Survey (CASS)
which has already proven to be effective at diagnosing ASD
[11]. This means that the program can build off of an already
successful tool while adding new methods of diagnosis which
are capable of measuring metrics that a pen and paper survey
cannot.

C. Targets for the program

ASD manifests in different ways based on the person’s age
making it important to target a specific age group initially to
develop both the program and the algorithm [12]. This will
simplify the initial design of the program as it will only have
to include tests for that specific age group, and not all possible
age groups. For this reason the final program will be targeted
toward 3rd grade age students. This is the age when most
students have gained sufficient experience reading to take text
based tests, and is regarded as the age when the symptoms
of mild ASD first become visible [9]. This also means that
the program will help those with ASD get help as soon as
possible, greatly increasing their quality of life in later years.

An important note is that children in this age group are
just beginning to read, so its important that any test targeted
at them not accidentally test reading ability and comprehen-
sion. To do this it will be necessary to keep the amount
of reading needed to a minimum, have a parent help the
child, or implement a voice-over feature. For initial testing, a
researcher will likely be present to answer any questions about
the application, meaning that in initial phases of testing, the
amount of reading is not a major concern. This is especially
important when analyzing the amount of time it took to
complete each question. A voice-over function that could
read aloud questions and answers would serve to make the
time to read prompts constant, so time taken to complete a
question would be due primarily to thinking time. Another
viable option is to make the tests use pictures for both prompts
and answers, although doing so affects the kinds of data that
can be collected. The final program will feature both voice
overs and picture based tests to ensure reading ability is not
an aspect of the data that is collected.

Due to the difficulty of conducting trials on children, initial
tests have been conducted on a number of colleagues (8) to
determine if questions are answered consistently by people
who can be considered to be free of ASD. This assumption
can be made because those undergoing initial testing are using

3

an application designed for young children, and have a high
probability of selecting answers that indicate they do not have
ASD. This means that if a specific question is not answered
consistently, it is likely a confusing or ambiguous question
and should be rethought. Early testing also provides feedback
on the general design of the application, all of which will
lead to a far more refined application when official trials do
begin and gives a partial data set to begin training the learning
algorithm. Early testing has also provided valuable insight into
how often ’normal’ people make mistakes on the tests, which
will be valuable information when training the algorithm.

D. Implementation

To make the program easily distributable and appealing
to the largest audience, the program has been developed for
PCs using a Windows environment. Windows has many well
established frameworks for creating interactive programs such
as Unity and XNA Studio, simplifying the development of a
program for a Windows platform. The program will primarily
perform data collection, and if successful diagnosis, but it will
prove unwieldy for the program to also store and process data
at larger scales. Initially the program will store data locally
for simplicity, but later can send data to a data storage system.
When the program is completed with the testing phase, it can
be deployed to a web based player. This will allow the program
to be accessed by a website, removing the need for users to
install a piece of software to use it.

The program will consist of two main parts, the test portion
and the data processing portion. The testing portion will
consist of all the tests designed to gather data to determine
a diagnosis. This portion will also include the CASS which
can be treated separately internally as a cross check within the
program the validity of the results for unknown cases. The
second portion will be the data analysis portion which will
handle all of the data processing. While the program is in the
testing phase, the program will be separate from the testing
portion so it can be fine tuned without having use the testing
portion. Later, the data processing portion will be added at the
end of the testing portion so it can give users an immediate
result as well as integrate the data provided by them.

An important feature of the program will be the artwork
used, as many of the tests will require specific ideas to be
conveyed through pictures. At the start of the project, it is
impractical to use custom artwork so images found on the
Internet will be used in the early iterations of the program.
While these may not convey a message perfectly, early testing
should determine their efficacy. From early testing it will be
evident what types of image question combinations work the
best, and early testing can be based on these findings. If the
results of the testing are positive, later versions of the program
can include custom artwork. This will allow greater control of
the messages conveyed by the pictures and will allow for more
customization in the scenarios that are presented. Currently,
some scenarios can not be implemented due to restrictions in
the types of art available, so attaining custom art will likely
increase the performance of the program once it is acquired.

E. Current Tests

Currently two different types of tests have been imple-
mented in the application which each have multiple individual
questions. The first type of test presents the user with multiple
pictures that together depict a task or social interaction from
beginning to end. The user clicks on each tile in the order that
they think is best. This test serves to test the user’s executive
functions, which is lacking in many people with ASD, as
well as their understanding of social situations [9]. Both the
answers and the time taken to complete the question are stored
by the application. Fig. 1 on the following page shows a screen
shot of one of the questions in the ordering portion of the
application. The second type of test implemented shows the
user a picture of some social interaction and gives them a
prompt and a series of answers. Some of the answers delve
into what the people in the picture are actually thinking, which
is how people without ASD should answer. The other answers
have less to do with what the people in the pictures are actually
thinking, and are likely to be chosen by people with ASD.
Fig. 2 on the next page shows a screen shot of one of the
questions in the intentions portion of the application. It should
be noted that the artwork in the screen shots is not the artwork
that will be included in the final iteration of the application.
The current artwork was chosen based on availability so that
prototyping and initial testing could begin rapidly.

V. LEARNING ALGORITHM

The essential function of the program is to determine
whether a person has ASD. This means that there are two
classes to map results to: ASD or non-ASD. Because of this,
it seems a classification algorithm lends itself to the problem.
Since classification generally follows a supervised structure,
example data from people with and without ASD is necessary.
This works out well as determining the efficacy of the various
tests will mean testing the program on people with ASD before
the learning algorithm is even implemented.

To first determine an effective learning algorithm, it is nec-
essary to consider how the data collected should be processed.
The program will consist of various tests with multiple parts,
many of which will feature multiple choice questions. It is
likely that scoring each different test and using a score from
each test as the parameters for classification will be most ef-
fective. This way the number of variables is limited. However,
if this proves ineffective it may also be possible to use every
answer for the classification or perhaps use a regression type
algorithm on the results pertaining to individual tests. The key
issue will be making the number of parameters small enough
for efficiency, while retaining meaning.

A Naive Bayes classifier will be used as the algorithm as
it is effective at taking many parameters and calculating the
probability of a class based on those. Because it functions by
summing the probabilities that each individual attribute leads
to a specific class, it will automatically give each answer a
weight based on how effective it is at classifying ASD or
non-ASD. This will hopefully add even more value to the
program, as each test will affect the final outcome based on
its efficacy. Another function of a Naive Bayes algorithm is

4

Fig. 1. Ordering Test

Fig. 2. Intentions Test

that the probability of a given parameter resulting in a specific
class is not dependent on previous parameters. This may be
seen as a hindrance in some cases however, the answer to one
question does not have any impact on the answer to another. In
this case, the disregard of previous answers serves to simplify
the algorithm, making it more efficient. The fact that prior
probabilities are disregarded likely will have no effect on
overall results. The equation below shows the Bayes rule, off
of which the Naive Bayes algorithm is based.

p(A|B) =
p(B|A)p(A)

p(B)

To use this algorithm, you sum the probabilities of each
element giving a certain class based on weight. Thus it is
possible for it to be effective with large amounts of data
and will hopefully give good results when implemented. As
mentioned before, it is important not only to classify users
as ASD positive or negative, but also give a measure of the
severity of their affliction.

The naive assumption of the Bayes algorithm removes the
denominator of the equation, representing the assumption that
the individual probabilities of each element of the classifier are
independent of each other. As the answers to a given question

5

TABLE I
INITIAL RESULTS FROM NON-ASD SUBJECTS

Question Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 ASD
Participant 0 B C A A B B B B C C B C A A C A C N
Participant 1 C C A A B B B B C C A C A A C A C N
Participant 2 B C A A B B B B C C B C A A C A C N
Participant 3 B C A A B B B B C C B C A C C A C N
Participant 4 C C A A B B B B C C B C A A C A C N
Participant 5 B C A A C B B B C C A C A A C A C N
Participant 6 C C A A B B B B C C A C A A C A C N
Participant 7 C D A A B B B B C C B C A A C A C N
Participant 8 C C A A B B B B C C A C A A C A C N

are unlikely to affect one another, the naive assumption seems
a safe assumption to make for this application. To determine
the probability of a given class, the probabilities that each
individual property lead to a given class are multiplied together
and this is then multiplied by the probability of a given class
and is shown in the formula below where S is a selection of
n attributes.

p(A|S) =
n∑

n=1

p(Sn|A) ∗ p(B)

VI. INITIAL RESULTS

At this time, the main tests that have been conducted have
been to assess the efficacy of various styles of questions
and tests. Currently, children with a diagnosis of ASD are
unavailable for testing, so tests have been conducted with
colleagues. Because they do not have diagnoses of ASD,
testing them provides an insight into the responses of non
impaired persons. If the answers provided by them generally
match for a specific question, the question is at least effective
at grouping users without ASD together. This testing will help
filter out questions that are ambiguous and give inconsistent
data. When a test has been verified as consistent, more tests
can be created based on those. The next step will be to give
the refined tests to people with ASD to determine that they
are also effective at distinguishing them from non-impaired
people. TABLE I shows some of the preliminary data collected
from users who do not have ASD using the intentions test.
In this test, the user is presented with a picture of people
performing various actions. The user is provided a prompt and
a selection of answers. The answers each present a different
level of social awareness, so people with ASD will likely pick
the answers that show less social awareness.

Here the rows represent the answers submitted by each
participant and the columns represent each question in one
of the tests. For the most part, the answers are the same
as expected. Differing answers to the same question indicate
an ambiguous question that should be rethought so it is
consistently answered the same for all people without ASD.
The questions whose answers are all the same represent good
questions with a style that should be repeated when adding
new questions to this test. It should be noted that isolating
good styles is accomplished by using the same prompt and
image for a question and just varying the answer choices. The
focus for this particular test was on creating distinguishing

answers, which is why they were the factors that changed to
determine the efficacy.

To ensure that a naive Bayes algorithm is an appropriate
choice for the algorithm, test data was generated to represent
the answers of users who were suffering from ASD. This data
was generated pseudo-randomly with the goal of testing the
classifier in mind. These are not results from real people with
ASD. When this data was used with the data obtained from
colleagues, the algorithm classified eighty-seven percent of the
cases correctly. This means that as long as ASD users answer
questions in the predicted manner, a naive Bayes classifier will
successfully distinguish between ASD and non-ASD users.
With the implementation of further tests, and the collection
of more data, hopefully this number can be further increased
in the future.

VII. TIME LINE

At this point the core functionality of the program has
been implemented. Multiple tests are completed and a Naive
Bayes classifier has been added to provide in application
results for users. Future work will involve collecting real
data to train the classifier using children of an appropriate
age. Another important task will be to improve the existing
tests, and add new tests. More tests will make the application
a more comprehensive test of ASD, likely increasing the
accuracy of the diagnosis. Existing tests can also be expanded
as limited art assets have made the test sections relatively
short. With the acquisition of custom art, more tests can be
devised and existing tests will have greatly increased accuracy.
This is because with custom art, variables that can affect a
person’s answer can be easily eliminated. Once the application
has reached a polished state, and preliminary data has been
gathered, the program can be exported to a web player. This
will means that more people will have access to the program
which will provide more diverse training data and hopefully
further improve the algorithm’s accuracy.

VIII. GOALS

The completion of the prototype of the program will allow
for small scale data collection and testing of the program. This
will involve identifying a test group, and determining what
member of that group suffer from ASD. From there, a naive
Bayes algorithm can be applied to the data and used to identify
patterns indicative of ASD. If the algorithm can successfully
predict ASD in the targeted age group, it can be deployed on

6

a larger scale to collect more data to improve the algorithm
and it can be modified to support various target age groups.
With enough success, the program could be further modified
for use as not only a diagnostic tool, but as a treatment for
patients with ASD.

Deployment to a larger scale will involve extensive testing
and polishing of the existing program to come up with a
complete suite of tests measuring many different aspects of
ASD in distinct ways. Once the program reaches this point,
and with university approval, the program can be exported to a
web browser so it can be taken online and collect data online.
It can then be modified to also give a suggestion of a diagnosis
of ASD so it can be used by real people online. If the online
program proves successful, it may be possible to create more
diagnostic tools for the various mental illnesses that exist.

IX. CONCLUSION

The successful implementation of a machine learning al-
gorithm to diagnose ASD will provide parents and doctors
with a more effective means of diagnosing and helping those
suffering from ASD. It also has the potential to vastly increase
our understanding of the symptoms of ASD and perhaps
provide clues to its causes and increase our understanding
of social learning. The use of a program as the primary
platform for the test will increase patient interaction with the
application, leading to a greater quality and quantity of the
data collected.

REFERENCES

[1] B. J. Tonge, A. V. Brereton, K. M. Gray, and S. L. Einfeld, “Behavioural
and emotional disturbance in high-functioning autism and asperger
syndrome,” Autism, vol. 3, no. 2, pp. 117–130, 1999.

[2] B. G. Haskins and J. A. Silva, “Asperger’s disorder and criminal
behavior: forensic-psychiatric considerations,” Journal of the American
Academy of Psychiatry and the Law Online, vol. 34, no. 3, pp. 374–384,
2006.

[3] O. Teitelbaum, T. Benton, P. K. Shah, A. Prince, J. L. Kelly, and
P. Teitelbaum, “Eshkol–wachman movement notation in diagnosis: The
early detection of asperger’s syndrome,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 101, no. 32,
pp. 11 909–11 914, 2004.

[4] S. Srivastava, M. Heller, J. Srivastava, M. Kurt Roots, and J. Schumann,
“Tangible games for diagnosing adhd–clinical trial results.”

[5] L. Wing, “Asperger’s syndrome: a clinical account.” Psychological
medicine, 1981.

[6] P. Howlin and A. Asgharian, “The diagnosis of autism and asperger
syndrome: findings from a survey of 770 families,” Developmental
Medicine & Child Neurology, vol. 41, no. 12, pp. 834–839, 1999.

[7] D. V. Bishop, “Autism, asperger’s syndrome and semantic-pragmatic
disorder: Where are the boundaries?” International Journal of Language
& Communication Disorders, vol. 24, no. 2, pp. 107–121, 1989.

[8] A. Klin and F. R. Volkmar, “Asperger’s syndrome,” Handbook of autism
and pervasive developmental disorders, vol. 2, pp. 88–125, 1997.

[9] M. G. Winner, Thinking About You Thinking About Me. Think Social
Pub, 2007.

[10] I. Dziobek, K. Rogers, S. Fleck, M. Bahnemann, H. R. Heekeren, O. T.
Wolf, and A. Convit, “Dissociation of cognitive and emotional empathy
in adults with asperger syndrome using the multifaceted empathy test
(met),” Journal of autism and developmental disorders, vol. 38, no. 3,
pp. 464–473, 2008.

[11] C. S. R. D. L. S. Frederick L. Coolidge, Peter D. Marle and P. Monaghan,
“Psychometric properties of a new measure to assess autism spectrum
disorder in dsm-5,” American Journal of Orthopsychiatry, vol. 83, no. 1,
p. 126–130, 2013.

[12] C. Koning and J. Magill-Evans, “Social and language skills in adolescent
boys with asperger syndrome,” Autism, vol. 5, no. 1, pp. 23–36, 2001.

UNIVERSITY OF COLORADO AT COLORADO SPRINGS REU PROJECT FINAL PAPER. 11 JULY 2014. 1

Simplified Statement Extraction Using Machine
Learning Techniques

Conor McGrory, Princeton University

Abstract—The automatic generation of basic, factual questions
from a single sentence of text is a problem in the field of natural
language processing (NLP) that has received a considerable
amount of attention in the past five years. Some studies have
suggested splitting this problem into two parts: first, decomposing
the source sentence into a set of smaller, simple sentences, and
then transforming each of these sentences into a question. This
paper outlines a novel method for the first part, combining two
techniques recently developed for related NLP problems. Our
method uses a trained classifier to determine which phrases of
the source sentence are potential answers to questions, and then
creates different compressions of the sentence for each one.

I. INTRODUCTION

Asking questions is one of the most fundamental ways that
human beings use natural language. When someone studies a
foreign language, many of the first utterances they learn are
basic questions. The ability of a speaker to form a grammatical
question — to request a specific piece of information from
another party — is indispensable in most practical situations
involving basic communication. Over the past five years,
there has been a significant amount of new research towards
developing computer systems that can automatically generate
basic questions from input text. This is referred to in the
literature as the problem of Question Generation (QG), and
it has many potential applications in education, including the
development of computerized tutoring systems and the genera-
tion of basic reading comprehension questions for elementary-
level students. Although some studies in the past have tried
to generate questions based on whole blocks of text [1], the
majority of recent work done on QG has focused on the
problem of generating factual questions from a single sentence
of input.

Early attempts to solve this problem used complicated sets
of grammatical rules to transform the input sentence directly
into a question [2]. However, in 2010, Heilman and Smith
[3] suggested separating the problem into two steps: first,
simplifying the source sentence, and then transforming it into a
question. The advantage of this approach is that grammatical
rules are much better at transforming simple sentences into
questions than they are at transforming complex ones. Our
paper outlines a method for preforming the first step in this
process, which we refer to as the problem of Simplified
Statement Extraction (SSE).

Conor McGrory is participating in a National Science Foundation REU
at the University of Colorado at Colorado Springs, Colorado Springs, CO,
80918. e-mail: cmcgrory@princeton.edu

II. PRIOR WORK

In a paper also published in 2010 [4], Heilman and Smith
developed a rule-based SSE algorithm that extracted multiple
simple sentences from a source sentence. This algorithm recur-
sively applied a set of transformations to the a phrase structure
tree representation of the input sentence to generate the simple
statements. By extracting multiple simplified statements from
the source sentence, they greatly increased the number of
possible questions that could be generated and the percentage
of words from the input sentence that appeared in one of the
output statements [4].

Two problems in NLP that are related to QG are cloze
question generation and sentence compression. A cloze ques-
tion is a type of question commonly used to test a student’s
comprehension of a text, where the student is asked, after
reading the text, to complete a given sentence by filling in
a blank with the correct word. One example could be the
question

A is a conceptual device used in computer
science as a universal model of computing processes.

In this case, the answer would be Turing machine. Because
these questions are commonly used in testing, and require no
syntactic rearrangement of the source sentence (just deletion
of a specific phrase), they seem like an easy place to apply
QG techniques. However, selecting which phrase or phrases
in the sentence to delete is somewhat difficult. A question like

A Turing Machine a conceptual device used in com-
puter science as a universal model of computing processes.

with the verb is as the answer would be completely useless
to a student interested in testing their knowledge of basic com-
puter science. An automatic cloze question generator needs to
have some way of distinguishing informative questions from
extraneous ones. Because the quality of a cloze question can
depend on complicated relationships between a large number
of factors (syntax, semantics, etc.), distinguishing quality of a
question is a good task for a machine learning system. Becker
et al.[5] did this by training a logistic regression classifier
on a corpus of questions paired with human judgements of
their quality. The classifier was able to identify 83 percent of
the high-quality sentences correctly and only misidentified 19
percent of low-quality questions as high quality[5].

Sentence compression is the problem of transforming an
input sentence into a shorter version that is grammatical and
retains the most important semantic elements of the original.
This can be used to generate summaries or headlines for large
blocks of text. Various methods have been developed to attack
this problem. Knight and Marcu [6] used a statistical language

UNIVERSITY OF COLORADO AT COLORADO SPRINGS REU PROJECT FINAL PAPER. 11 JULY 2014. 2

model where the input sentence is treated as a noisy channel
and the compression is the signal, while Clarke and Lapata [7]
used a large set of constituency parse tree manipulation rules
to generate compressions.

Filippova and Strube [8] developed a sentence compression
system where the compressed sentence is generated by pruning
the dependency parse tree of the input sentence. Using the
Tipster corpus, they calculated the conditional probabilities of
specific dependencies occurring after a given head word. These
were used, in combination with data on the frequencies of the
words themselves, to calculate a score for each dependency in
the tree. They then formulated the problem of compressing
the sentence as an integer linear program. Each variable
corresponded to a dependency in the tree. A value of 1 meant
the dependent word of that dependency would be preserved
in the compression, and a value of 0 meant that it would
be deleted. Constraints were added to the linear program to
restrict the structure and length of the compression, and the
objective function set to be maximized was the sum of the
scores of the preserved dependencies.

The central assumption made by Fillippova and Strube’s
method is that the frequency with which a particular depen-
dency occurs after a given word is a good indicator of its
grammatical necessity. For example, transitive verbs like chase
require direct objects, so the frequency of the dobj dependency
after the head word chase in the corpus is very high. Although
chase can also be the governor of a prepositional phrase,
this is not grammatically necessary, so there will be many
more instances in the corpus where chase does not govern
a prepositional phrase, resulting in the frequency of the prep
dependency after chase to be lower.

III. PROBLEM DEFINITION

In explaining our system, it will help to have a formal
definition of the problem. We will define the problem of
simplified statement extraction as follows:

For a source sentence S, create a set of simplified statements
{si...sn} that are semantic entailments of S. A sentence is
considered to be a simplified statement if it is a declarative
sentence (a statement) that can be directly transformed into
a question-answer pair (QA pair) without any compression.
Ideally, the interrogative transformations of the generated {si}
should include as many as possible of the set of QA pairs
a human being could generate given S. We will call the
ratio of computer-generated, grammatical QA pairs to human-
generated QA pairs the coverage of the system.

IV. SOLUTION

As Becker et al. [5] showed with their work on cloze
questions, there are certain phrases in S that make sense as
answers to questions and others that do not. The fundamental
idea behind our SSE system is that knowledge of which
phrases in S are good answers can inform the compression
process, preventing us from missing important information and
thereby maximizing coverage. We divide the SSE problem
into two parts: first identifying potential answers, and then
generating for each of these answers a compression of S where

that answer is preserved. These compressions form the set {si}
of simplified statements. Because each one of these statements
will ultimately be transformed into a question with the given
answer, our goal when compressing for a particular answer
is to find the shortest grammatical compression of S that
contains the given answer. This will ensure that each selected
answer is preserved in at least one of the simplified statements
and that these statements will contain minimal amounts of
extraneous information.

To select potential answers from the input sentence, we use
a slightly modified version of Becker et al.’s cloze question
generation system [5]. Because all questions are essentially
requests for specific pieces of information, determining which
phrases in S make good answers to a standard grammatical
question is very similar to determining which phrases make
good blank spaces for a cloze question. Once we have the
set of possible answers, we use a more substantially modified
version of Filippova and Strube’s dependency tree pruning
method [8] to generate the set of shortest grammatical com-
pressions of S that contain each of the answers.

V. ANSWER SELECTION

We designed and implemented the answer selection system
using the Stanford NLP Toolkit [9] and the Weka machine
learning software [10]. It uses the corpus of sentences, QA
pairs, and human judgments developed by Becker et al.[5] to
train a classifier to find the nodes in the parse tree of the input
sentence that are most likely viable answers to questions. Our
implementation performs two basic functions. First, it has the
ability to read in the corpus, calculate a set of features and
determine a final classification for each potential answer, and
output this data set as an .arff file (the standard file format
used by Weka). When the program needs to find the good
answers in an input sentence, it loads the classifier from the
file, determines all grammatically possible answer phrases in
the input sentence (this is based on a set of constraints given
by Becker et al. [5]), and uses the classifier to determine which
of these phrases are good answers.

A. Feature Set

The Stanford NLP Toolkit [9] provides us with two very
useful tools for describing the grammatical structure of a
sentence: a Penn Treebank style constituency parse tree and the
Stanford dependency relations [11]. The Stanford dependency
relations are a set of grammatical relations between governor
and dependent words in a sentence. Some examples include
verb-subject, verb-indirect object, noun-modifier, and noun-
determiner. Essentially, it is a dependency grammar with more
specific information than which words a given word governs
and which words it depends on. The relations also have a
set hierarchy. For example, the verb-subject, verb-object, and
verb-adverbial modifier relations are all instances of the parent
relation predicate-argument. This enables the user to work at
different levels of detail. For our purposes, we used the 56
basic relations defined in the Stanford library to categorize all
of our dependencies.

UNIVERSITY OF COLORADO AT COLORADO SPRINGS REU PROJECT FINAL PAPER. 11 JULY 2014. 3

We used many of the same features as Becker et al.[5] did,
but because we used a different NLP package to implement
our system (we used Stanford’s, they used a toolkit devel-
oped by Microsoft), some of our features were significantly
different. At this point, we have also implemented far fewer
features than they did. Our features can be divided into three
basic categories: token count features, syntactic features, and
semantic features.

The token count features we used were the exact same as
those used by Becker et al. This category contained 5 features
which had to do with the length of the answer in comparison
to the length of the sentence, like the raw lengths of both and
the length of the answer as a percentage of the length of the
question.

The syntactic features were calculated using the con-
stituency parse tree. Currently, our system uses three syntactic
features: the Penn part-of-speech tag of the word that comes
immediately before the answer in the sentence, the tag of the
word that comes immediately after, and the set of tags of words
contained in the answer phrase.

The semantic features use the Stanford dependencies system
and are completely different than the semantic features used
by Becker et al. The purpose of these is to determine the
grammatical role the answer phrase plays within the sentence.
We currently have four semantic features implemented: the
dependency relation between the head of the answer phrase
and its governor in the sentence, the set of relations between
governors in the answer and dependents not in the answer,
the set of relations with both governors and dependents in the
answer, and the distance in the constituency tree between the
answer node and its maximal projection.

B. Classifier

The classifier used in our system is the Weka Logistic
classifier [12]. Because each instance is classified as either
”Good” or ”Bad”, this is a binary logistic regression classifier,
similar to the one used by Becker et al. However, Becker et. al
also used L2 regularization (adding a constant multiple of the
L2 norm of the regression coefficients to the error function as
a penalty for overfitting), which we have not yet implemented.

C. Human Judgments

The corpus provided by Becker et al. consists of slightly
over 2,000 sentences, each with a selected answer phrase
and four human judgments of the quality of the answer.
Human judges could rate answers as either ”Good”, ”Okay”,
or ”Bad”. Because the classifier requires that each instance be
classified in only one category, we had our program use the
four judgments to calculate a score for each answer, which we
then used to determine how to classify it in the data set. A
”Good” rating added 0.25 to the score, an ”Okay” added 0.125,
and a ”Bad” rating added nothing. This score is then compared
to the threshold value (a pre-set constant in the program). If
the score is greater than or equal to this value, the answer is
classified in the data set as ”Good”. Otherwise, it is classified
as ”Bad”.

VI. RESULTS

We used the program to produce a data set from the Becker
et al. corpus [5]. This data set was created using a threshold
value of 1.0 (all four human judges have to rate the sentence as
”Good”). Then, using Weka, a random sample of the sentences
was drawn from this data to produce a subset with a comprable
amount of ”Good” and ”Bad” sentences. This set contained a
total of 582 instances, 278 of which were ”Good” and 304 of
which were ”Bad”. We tested both the Weka Logistic classifier
[12] and the Weka Simple Logistic classifier on the data using
10-fold cross-validation.

The statistics we were most concerned with were the correct
classification rate (the number of correctly classified instances
divided by the total number of classified instances), the true
positive rate (the number of correctly classified ”Good” in-
stances divided by the total number of ”Good” instances),
and the false positive rate (the number of incorrectly clas-
sified ”Bad” instances divided by the total number of ”Bad”
instances). We also looked at the Weka-generated ”confusion
matrix,” which summarizes the classifications.

For the Logistic classifier, the correct classification rate
was 72.3%, the true positive rate was 78.4%, and the false
positive rate was 33.2%. For the confusion matrix (which is
normalized), we have:

Classified ”Good” Classified ”Bad”
”Good” 218 60

”Bad” 101 203
In total, 54.8% of the instances were labeled ”Good” and

45.2% were labeled ”Bad”.
For the Simple Logistic classifier, the correct classification

rate was 74.2%, the true positive rate was 81.3%, and the false
positive rate was 32.2%. For the confusion matrix, we have:

Classified ”Good” Classified ”Bad”
”Good” 226 52

”Bad” 98 206
In total, 55.7% of the instances were labeled ”Good” and

44.3% were labeled ”Bad”.
Becker et. al were able to get a true positive rate of 83%

and a false positive rate of 19% at the equal error rate [5].
Although their false positive rate is lower, the true positive
rate of our system is definitely comparable to theirs.

VII. SENTENCE COMPRESSION

To compress S into the different simplified statements, we
used a modified version of the integer linear programming
(ILP) model described by Filippova and Strube [8]. We first
calculated probabilities of dependencies occurring after head
words and used this as an estimate of the grammatical neces-
sity of different dependencies given the presence of a head
word. Along with all of the constraints placed on the ILP in
the original model, we added an extra constraint that ensures
the preservation of the answer phrase in the compression.
We then used a linear program solver to solve the ILP for
all length values between 0 and the length of S, generating
a set of compressions of S with all possible lengths. From
these compressions, we used a 3-gram model to calculate the
Mean First Quartile (MFQ) grammaticality metric described
by Clark et al. [13]. Compressions with an MFQ value lower

UNIVERSITY OF COLORADO AT COLORADO SPRINGS REU PROJECT FINAL PAPER. 11 JULY 2014. 4

than a threshold were deemed grammatical, and the shortest
of these was selected as the final compression of S for the
given answer.

A. Dependency Probabilities

In order to be more precise, we used a larger set of Stanford
dependencies to calculate the conditional probabilities than we
did for the feature set in the selection part of the system.
The extra dependencies included in this set were collapsed
dependencies [11], which are created when closed-class words
like and, of, or by are made part of the grammatical relation,
producing dependencies like conj and, prep of, and prep by.

To calculate the frequencies of dependencies after certain
head words, we used a pre-parsed section of the Open Amer-
ican National Corpus [14]. Filippova and Strube [8] used
part of the TIPSTER corpus to calculate their frequencies,
but we lacked the computational resources to parse the data
ourselves, so we used the pre-parsed data. The frequency of
a dependency in our system is defined as the the number of
words in the document that are governors of at least one of
these dependencies. If a dependency appears more than once
for a given governor word (e.g. if a noun is modified by two
prepositional phrases), our program will only increase its count
by one. This prevents the frequency of a dependency following
a given head word from ever exceeding the frequency of the
head word itself.

To prevent rounding errors, we used a smoothing function
when calculating the probabilities from the frequency data.
If we let f(`|h) be the frequency with which dependency of
type ` occurs with head word h in the corpus, and let fh be
the frequency of word h in the corpus, then we define the
smoothed probability P(`|h) to be

P(`|h) = log2(
f(`|h)

fh
+ 1)

Because fh ≥ f(`|h) and fh, f(`|h) ≥ 0, f(`|h)

fh
∈ [0, 1].

Therefore, because

log2(x+ 1) ∈ [0, 1]∀x ∈ [0, 1]

we know that P(`|h) ∈ [0, 1] for all possible ` and h.
Finally, to avoid problems that come with probability values

of zero, our system linearly maps the P(`|h) values from [0, 1]
to [10−4, 1].

B. Integer Linear Program

Like Filippova and Strube [8], we formulate the compres-
sion problem as an ILP. For each dependency in the parse
tree (say, the dependency with the Stanford type `, holding
between head word h and dependent word w), we create a
variable x`h,w. These variables must each take on a value of
0 or 1 in the solution, where dependencies whose variables
are equal to 1 are preserved in the resulting compression and
dependencies whose variables are equal to 0 are deleted, along
with their dependent words. The ILP maximizes the objective
function

f(X) =
∑
x

x`h,w · P(`|h) · t(`, P(`|h))

where t is the tweak function, which corrects discrepancies
between frequency and grammatical necessity that occur with
some specific types of dependencies. For example, conjunc-
tions (conj) occur very frequently in written English, but
they are generally not necessary for the grammaticality of a
sentence. Often, deleting parts of conjunctions can actually
be an effective way to compress a sentence. Multiplying a
particular probability by t linearly maps the range of that value
from [0, 1] to [min`,max`]. The tweak function is defined as

t(`, P(`,h)) = max` −min`(1 +
1

P(`,h)
)

where
minconj = 0.0,maxconj = 0.4

,
mindet = 0.4,maxdet = 1.0

,
minposs = 0.5,maxposs = 1.0

, and
min` = 0.0,max` = 1.0

for all other dependencies, which means that t(`, P(`,h)) = 1
for all dependencies besides conjunctions, determiners and
possessives. Our tweak function replaces the importance func-
tion used in Filippova and Strube’s objective function [8].

Filippova and Strube also used two constraints in their
model to preserve tree structure and connectedness in the
compression:

∀w ∈W,
∑
h,`

x`h,w ≤ 1

∀w ∈W,
∑
h,`

x`h,w −
1

|W |
∑
u,`

x`w,u ≥ 0

and one to restrict the length of the final compression to α:∑
x

x`h,w ≤ α

To ensure that all of the words in the pre-selected answer A
are also preserved, we include in our model the extra constraint

∀w ∈ A,
∑
h,`

x`h,w ≥ 1

We solved these integer linear programs using lp solve [15],
an open-source LP and ILP solver.

C. Shortest Grammatical Compression

In order to find the shortest grammatical compression of S,
our system first finds a solution to the ILP for S and A for
every value of α (the maximum length constraint parameter)
between the length of S and the length of A. Because the
constraints also specify that every word in A is preserved in
the compression, any model where α is less than the length
of A would have no solution.

Although all solutions to the ILP are connected dependency
trees, some of the actual sentences created by linearizing these
trees will not be grammatical. To determine the grammaticality

UNIVERSITY OF COLORADO AT COLORADO SPRINGS REU PROJECT FINAL PAPER. 11 JULY 2014. 5

Fig. 1. Simulation Results

Fig. 2. Simulation Results

of the compressions, we use the MFQ metric, which is based
on a 3-gram model created using the Berkeley Language
Model Toolkit [16] and trained on the OANC text. This metric
was shown to work well at distinguishing grammatically well-
formed sentences from ungrammatical ones by Clarke et al.
[13]. It considers the log-probabilities of all of the n-grams
in the given sentence, selects the first quartile (25% with the
lowest values), and calculates the mean of the ratios of each n-
gram log-probability over the unigram log-probability of that
n-gram’s head word. The larger the MFQ value is, the less
likely the sentence is to be grammatical.

Our system looks through the list of different length com-
pressions and selects the shortest compression with an MFQ
value less than a specified threshold (for our 3-gram model,
we used a threshold of 1.14). This compression is returned as
the simplified statement extracted from S for the answer A.

D. Results

We have not yet been able to conduct a test of the
compression system, because testing the grammaticality of
the generated compressions and their coverage of the set
of possible simplified statements requires the use of a large
number of human judges. However, the basic functionality of
the compression system can at least be demonstrated with
some sample outputs from the compressor. In each of the
outputs, the sentence and answer are specified at the top, and
then each row contains a potential compression and its MFQ
value (labeled as ’S’ on the readout).

Figure 1 shows a perfect compression of the sentence Bill
drives his car to the park every morning. In the list of
generated compressions, the one ultimately selected is clearly
the shortest grammatical compression of the input sentence.

The output in Figure 2 is still grammatical, but there is one
shorter compression in the list that is also grammatical, but was
not identified by the program. This is because the MFQ value
for Bill drives to the park every morning was 1.136, which
is slightly less than the threshold of 1.14. Examples like this
make it clear that tuning the gramamticality threshold is very
important.

Figure 3 is not grammatical, but there is a grammatical
sentence in the compression list only one word longer than the

Fig. 3. Simulation Results

compression that was selected. The chosen compression had a
higher MFQ score than the true shortest grammatical sentence,
but because it was shorter, it was chosen nonetheless.

VIII. CONCLUSION

The key principle around which our system is built is that
selecting the answer at the beginning of the QG process and
using them to guide SSE can improve the coverage of the
system. We implemented the machine learning-based approach
for answer selection used by Becker et al. [5] and developed a
way to compress a sentence while leaving a specified answer
phrase intact. Although we have not yet been able to perform
large scale tests on this system where the output is rated by
human judges, we have generated some good output sentences.
Once our implementation is perfected and tuned, we will
perform more powerful and complete tests.

This system will soon be integrated with Jacob Zerr’s Part-
of-Speech Pattern Matching system for direct declarative-to-
interrogative transformation to produce a full, functional, QG
system.

REFERENCES

[1] Kunichika, Hidenobu, Tomoki Katayama, Tsukasa Hirashima, and Akira
Takeuchi. ”Automated question generation methods for intelligent English
learning systems and its evaluation.” In Proceedings of ICCE2004, pp.
2-5. 2003.

[2] Wolfe, John H. ”Automatic question generation from text-an aid to
independent study.” In ACM SIGCUE Outlook, vol. 10, no. SI, pp. 104-
112. ACM, 1976.

[3] Heilman, Michael, and Noah A. Smith. ”Good question! statistical rank-
ing for question generation.” In Human Language Technologies: The 2010
Annual Conference of the North American Chapter of the Association for
Computational Linguistics, pp. 609-617. Association for Computational
Linguistics, 2010.

[4] Heilman, Michael, and Noah A. Smith. ”Extracting simplified statements
for factual question generation.” In Proceedings of QG2010: The Third
Workshop on Ques-tion Generation, p. 11. 2010.

[5] Becker, Lee, Sumit Basu, and Lucy Vanderwende. ”Mind the gap:
learning to choose gaps for question generation.” In Proceedings of the
2012 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pp. 742-751.
Association for Computational Linguistics, 2012.

[6] Knight, Kevin, and Daniel Marcu. ”Statistics-based summarization-step
one: Sentence compression.” In AAAI/IAAI, pp. 703-710. 2000.

[7] Cohn, Trevor, and Mirella Lapata. ”Sentence Compression as Tree
Transduction.” Journal of Artificial Intelligence Research 34 (2009): 637-
674.

[8] Filippova, Katja, and Michael Strube. ”Dependency tree based sentence
compression.” In Proceedings of the Fifth International Natural Language
Generation Conference, pp. 25-32. Association for Computational Lin-
guistics, 2008.

[9] Stanford NLP Toolkits, http://nlp.stanford.edu/software.
[10] Holmes, Geoffrey, Andrew Donkin, and Ian H. Witten. ”Weka: A

machine learning workbench.” In Intelligent Information Systems, 1994.
Proceedings of the 1994 Second Australian and New Zealand Conference
on, pp. 357-361. IEEE, 1994.

UNIVERSITY OF COLORADO AT COLORADO SPRINGS REU PROJECT FINAL PAPER. 11 JULY 2014. 6

[11] De Marneffe, Marie-Catherine, and Christopher D. Manning.
”Stanford typed dependencies manual.” URL http://nlp. stanford.
edu/software/dependencies manual. pdf (2008).

[12] Le Cessie, Saskia, and J. C. Van Houwelingen. ”Ridge estimators in
logistic regression.” Applied statistics (1992): 191-201.

[13] Clark, Alexander, Gianluca Giorgolo, and Shalom Lappin. ”Statistical
representation of grammaticality judgements: the limits of n-gram mod-
els.” CMCL 2013 (2013): 28.

[14] Ide, Nancy, and Catherine Macleod. ”The american national corpus: A
standardized resource of american english.” In Proceedings of Corpus
Linguistics 2001, vol. 3. 2001.

[15] Berkelaar, Michel. ”lpSolve: Interface to Lp solve v. 5.5 to solve
linear/integer programs.” R package version 5, no. 4 (2008).

[16] Pauls, Adam, and Dan Klein. ”Faster and smaller n-gram language
models.” In Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technologies-Volume
1, pp. 258-267. Association for Computational Linguistics, 2011.

1

Extreme Value Theory and Visual Recognition
Rachel Moore

Department of Computer Science
University of Colorado, Colorado Springs

Abstract – The fields of machine learning and psychology
have begun to merge, particularly in the subject of vision
and recognition. This paper proposes an experiment on
human recognition and categorization, using arbitrary
images as stimuli. The data will be fitted to an Extreme
Value Theory based model, which we hope will give clearer
incite into the ways humans categorize novel information.

Index Terms – Recognition, Category Learning, Machine
Learning, Extreme Value Theory, Cognitive Psychology.

I. INTRODUCTION

Training set selection is one of the most crucial steps in
machine learning. If one wishes for a machine to identify
images of apples, only providing images of oranges during
training is, in most cases, counter productive. Traditionally,
training sets have been selected so that was a wide array of
data, so that the training set would closely match a gaussian, or
normal, distribution [1]. However, this can become expensive,
particularly in tasks that require labeled data for supervised
learning. An extensive amount of data is also needed, as
smaller sets are less likely to have a normal distribution, which
can cause high variance responses and inconclusive results [1].

There have been many advances in the area of training data
selection, but there is still a need for methods that select the
best training data from small datasets. Simple methods like
bootstapping can be used to generate new data in cases of
small data sets. Many of these methods do not work with
certain learning models [1] [2]. To understand what makes
an effective training set, it is important to study how training
affects the ultimate categorization. One way of doing this is
to study recognition and categorization in humans.

The ability to categorize is one of the most crucial skills
we develop as children. Despite its importance, the way
we organize information is still a mystery. There are many
models of categorical learning in psychology, and more are
in development. Studies, such as the one done by Hsu and
Griffiths [3] (discussed in Section II), have given some insight
into the category learning process, and have yielded interesting
results. However, the Gaussian models currently being used
on these types of experiments are not capturing the extremes
in the data, or the participants’ bias towards one category or
another. From our research, Extreme Value based models in
machine learning have been shown to be a better predictor of
human response frequency than Gaussian models. In summary,
there are 4 main contributions of this paper:

• Extreme Value Theory and its application.
• Empirical evaluations and metrics for this research.

• Experimental results
• The future of this work.

II. BACKGROUND

In this section, we discuss Extreme Value Theory (EVT) and
its applications, as well as studies involving categorization and
EVT modeling. We will also explore psychological research
involving categorical learning, which will be the basis for our
experiments.

A. Extreme Value Theory

The extreme value theorem states that a function with a
continuous and closed interval will have a minimum and max-
imum value [4] [5]. EVT has been implemented as a statistical
model in many different fields of research. Hugueny, Clifton,
and Tarassenko [6] used EVT as the basis to create a new
model for intelligent patient monitors. The current monitors
they reviewed set off false alarms constantly, to the point that
hospital staff ignored them. The model they proposed would be
less likely to do this, as the EVT-based model would be able
to differentiate between truly non-extreme changes in vitals
and clear abnormality. EVT has also been used in machine
learning to normalize recognition scores [7], which may skew
distributions due to outliers.

This research seeks to establish a new EVT-based model of
visual recognition and categorization. Particularly, this model
may be instrumental for tasks that wish to replicate human
information processing. There are three types of extreme value
distributions:

Type 1, Gumbel-type distribution:

PR[X ≤ x] = exp[−ex−µ/σ]. (1)

Type 2, Fréchet-type distribution:

PR[X ≤ x] =

{
0, x < µ,

exp
{
−x−µσ

−ξ}
x≥ µ. (2)

Type 3, Weibull-type distribution:

PR[X ≤ x] =

{
exp

{
−x−µσ

ξ
}
, x≤ µ

0 x> µ
(3)

where µ, σ(> 0) and ξ(>s 0) are the parameters [5].
EVT-based models can be used as replacements for Binary

and Gaussian models, as EVT-models are able to include
multiple classes, and do not rely heavily on norms (see Fig. 1).
This can also be helpful in the case of training set selection.
For example, say there is a set images of apples that need
to be categorized into 2 groups: green granny smith and red

2

delicious. While the first and last apple groups have green and
red skin tones, respectively, with slight variations in color.
However, in this set of apples are a few fuji apples, whose
colors range from ruddy green to orange red, and might be
categorized into either of the other apple groups. To make the
best predictions on which category each apple belongs to, we
can use the EVT to find the apples at the groups’ decision
boundaries, i.e. the most and least red red delicious apples,
and the most and least green granny smith apples. From this
we can create a training data set. When these clear decision
boundaries are known, anything that lies outside of them, say
a greenish red fuji apple, can be categorized as a true outlier
or part of a third class in the data.

(a) Binary Discriminative Model (b) Per class Gaussian Model + Bayesian decision (c) EVT Fit for the min and max tail of each
class + Bayesian decision

x

1

0p(
y

=
 y
2|x
)

x

1

0
x

1

0

x

Y1 Y2 Y3

training

y1’’ y2’ y3’y2’’ y3’’y1’

training

x

y1 y2 ??

training

Fig. 1. Example of data selected with EVT. Courtesy of Boult

B. Prior Research in Human Visual Recognition

In a two part study, Cohen, Nosofsky, and Zaki [8] exam-
ined the effects of class variability on categorization. They
hypothesized that the generalized context model (GCM), used
to calculate the probability that an item will be categorized
into one class or another, would substantially underestimate
the degree to which participants would classify stimuli into the
categories of high variance (we discuss GCM in greater detail
in Section V). They found that the middle stimuli (items that
were in between the low variance and high variance classes)
were classified into the higher variance category, with the
probability of up to .73. The GCM estimated the probability
to be as low as .35, significantly below what was indicated by
the data.

Hsu and Griffins [3] conducted a study in which the partici-
pants were taught two alien “languages”, consisting of simple
images of line segments. Class A had short, low variance line
segments, which only differed slightly from one another. Class
B had much longer, high variance line segments, in which each
line’s length was very different from the others. Participants
were put into either a generative learning condition or a
discriminative learning condition, which varied by the way the
training images were presented. In the generative condition,
two different cartoon aliens would appear on the screen to
indicate which line belonged to which tribe’s language. In
the discriminative condition, one cartoon alien appeared as
a single translator, indicating which language was language
was on the screen. After training, participants were shown
line segments that were between the lengths of the low and
high variance classes and asked to categorize them.

As with Cohen, Nosofsky, and Zaki’s [8] study, the results
showed that the participants had a strong bias toward the high
variance class (Class B), clustering the middle stimuli with
the more diverse lines. They found that their Gaussian-based

model did not fit their data accurately, and therefore wondered
if the Gaussian assumption did not reflect this type of human
recognition.

III. EMPIRICAL EVALUATIONS

In this section, we discuss our experimental designs, as well
as the metrics and technical approach of our study.

In a pilot study, Boult et. al 1 analyzed the data from Hsu
and Griffins’ [3] study using an EVT model. Because of the
bias toward the high variance class, they believed that an EVT-
based model would match human data in a more concise way
(see Fig. 2) than Gaussian models.

Fig. 2. Comparison of Gaussian and EVT-based models with human data.
Courtesy of Boult.

For the second half of this pilot study, we have collected our
own data. Our experiment expanded on Hsu and Griffins’ [3]
study, but used EVT-based models. We hope our model will
paint a clearer and more accurate picture of the way humans
categorize unfamiliar stimuli. Another possible extraneous
factor in Hsu and Griffiths’ [3] study is the way the alien
interpreters (the categories) were presented. Those in their
generative group were clearly shown when the category had
changed, as the aliens changed depending on the sign. In the
discriminative group, there was a single alien which never left
the screen, and so the participants may not have noticed the
sign change. We have duplicated some of their stimuli to test
for this factor (see Fig. 3).

A. Metrics and Design

Our research uses models based on the extreme value distri-
butions. Scheirer et al. [7] define extreme value distributions
as “... limiting distributions that occur for the maximum
(or minimum, depending on the data) of a large collection
of random observations from an arbitrary distribution.” In
the case of visual recognition and categorization in humans,
instead of removing the outliers or having them skew the
results, one can normalize them, possibly allowing for a better
fitted prediction.

For our experiment, we referred to the generalized extreme
value (GEV) distribution, or the combined Gumbel, Frechet,
and Weibull distributions. GEV is defined as

GEV (t)=

{
1
λe

−v−1/k

v−(1/k+1) k 6=0
1
λe

−(x+e−x) k=0
(4)

1Personal Communication

3

where x is equal to t−τ
λ , v is equal to (1+k t−τλ), and k,λ,

and τ are the shape, scale, and location parameters.
For stimuli, we created a set of 2 dimensional Non-uniform

rational B-spline (NURBS) shapes. NURBS are mathemati-
cally based shapes, and can be manipulated through functions
and interpolation. In a NURBS parametric form, ”... each of
the coordinates of a point on a curve is represented separately
as an explicit function of an independent parameter” [9]

C(u)=(x(u),y(u)) a≤u≤b (5)

Where “C(u) is a vector-valued function of the independent
variable u”, which is within the interval [a,b] (usually normal-
ized to [0,1]) [9]. The NURBS we created look similar to ink
blots. Each group of images had points that were interpolated
to create a set with two clear classes, and another that was
somewhere between those two classes (see Fig. 3 and 4).
Four groups of shapes were used, and each group contained
17 images. These stimuli acted as distractor tasks. The other

Fig. 3. Example of images duplicated from our NURBs stimuli.

stimuli were white lines of varying lengths, place inside of a
black circle. Each set had a total of 18 images. These were
based on the stimuli in Hsu and Griffiths’ [3] study (see Fig.
5). These stimuli were placed into 3 conditions: generative,
discriminative, and enhanced tails.

Fig. 4. Example of images from training classes A and B, and a testing
image. Courtesy of Boult.

For the experiment itself, we used a program called Psy-
choPy, version 1.80 2. PsychoPy is open source psychophysics
software, developed by Piece [10].

Fig. 5. Example of images duplicated from Hsu and Griffiths’ [3].

There were 8 participants total, some of whom took the
experiment on multiple occasions. From them, we gathered
30 trials for each of the 3 conditons. Our participants were
asked to categorize a series of images into one of two groups,
Group 0 or Group 1, and told that there was to be a training
component where they would be shown the images and their
respective categories, and a testing component where they
would label the images themselves. The groups had a separate
training set or training style, and testing set. For every group,
the participants were trained on the 10 shapes at extrema, 5
from each tail. They were then tested on those same shapes,
along with the shapes from the middle of the set, some of
which were repeated to make up a total of 20 shapes per
training. All trials were repeated, for a total of 20 trial blocks.

IV. DATA ANALYSIS

We recorded which middle stimuli were categorized into
Group 0 or 1, and the frequency to which these stimuli were
placed in these groups (see Fig. 9). The EVT-based model was
fitted to the data. It reflected the biases the participants have
in categorization, as it did in the pilot study.

A. Factor 1: The Generative Condition

In the generative condition, participants were shown the
training stimuli. The training set consisted of lines that were in
high variance and low variance categories. The low variance
lines were 110, 120, 130, 140, and 150 pixels in length, while

2Accessed here: http://www.psychopy.org

4

the lines in the high variance category were 300, 375, 450,
525, and 600 pixels in length. During training, a box appeared
0.5 sec before before the stimuli, indicating which group the
image belonged to. After the stimulus appeared, both the box
and the image remained on the screen for 1.5 sec. This was
repeated for all 10 stimuli in the training set.

The testing set was comprised of the training set, as well
as a set of “middle” stimuli with line lengths of 167, 183,
200, 216, 233, 250, 267, and 283 pixels. The probability
that each of these lines would be categorized into the high
variance category was 0.17, 0.20, 0.33, 0.4, 0.53, 0.70, 0.77,
0.90, respectfully. The data fit our model well, with the main
deviation being at line length 267 (see Fig. 6). Out of the three
conditions, this condition was the closest fit to our EVT-based
model.

Fig. 6. Comparison of our EVT model with human data for the generative
condition.

B. Factor 2: The Discriminative Condition

In the discriminative condition, participants were shown the
same training and testing stimuli as the generative condition.
However, the indicator box remained on the screen throughout
the training session, with only the text changing. Each image
still remained on the screen for 1.5 sec. For this condition,
the probability that each of the middle stimuli would be
categorized into the high variance category was 0.13,0.23,
0.30, 0.37, 0.63, 0.67, 0.83, and 0.90, respectively. The data for
this condition also fit our model well, with the main deviation
being at line length 233 (see Fig. 7).

C. Factor 3: The Enhanced Tails Condition

The final training set of lines contained the set of low
variance lines as the generative and discriminative conditions,
but the high variance lines had an elongated tail, with pixel
lengths of 300, 375, 450, 600, and 800. The training set up
was identical to that of the generative condition. For this
condition, the probability that each of the middle stimuli would
be categorized into the high variance category was 0.00,0.10,
0.20, 0.20, 0.43, 0.53, 0.60, 0.77, respectively. This shows

Fig. 7. Comparison of our EVT model with human data for the discriminative
condition.

a shift towards the low variance category. We trained the
model on the same set of training data used for the previous
conditions for a better visual representation of the bias towards
the low variance category (see Fig. 8).

Fig. 8. Comparison of our EVT model with human data for the enhanced
tails condition.

D. Comparison

In this section, we will compare the generative, discrim-
inative, and the enhanced tails conditions, and discuss the
statistical analysis for the experiment. Fig. 9 is a summary of
the probabilities of each condition. The error bars indicate the
variance of each line lengths probability. Both the generative
and discriminative categories had similar trends. The variance
of the generative, discriminative, and enhanced tails conditions
were 0.073, 0.083, and 0.072, respectively.

V. FUTURE WORK

For our future research, we will incorporate measurements
from the NURBS shapes. Because these shapes are mathemat-
ically based, the stimuli’s dimensions can be easily applied to

5

Fig. 9. Probability of categorization of middle stimuli into the high variance
category for the generative, discriminative, and enhanced tails conditions.

probability models. One such model, which was mentioned in
Section II, is the generalized context model (GCM), which
states that ”For the case of two categories A and B, the
probability that a given stimulus X is classified in category A
is given by

P (A|X)=
βaη

α
XA

βAηαXA+(1−βA)ηαXB
(6)

where βA is a response bias toward category A and ηXA and
ηXB are similarity measures of stimulus X toward all stored
exemplars of categories A and B, respectively” [11].

Because our stimuli are so diverse, we plan to make at
least one other variation on the current experiment. This may
involve changing the task difficulty, the time length, or varying
the amount of stimuli in the training sessions.

VI. CONCLUSION

This paper proposed a new EVT based model for visual
recognition. For our purposes, we hope our model will prove
to be consistent and accurate in predicting human recognition
and categorization. If it is shown to be both of these things,
the model could be used to select training sets for machine
learning more efficiently, as EVT-based models focus on
training data at the extremes, which may cut down on costs
of supervised learning. We have seen that EVT-based models
can be applied to both generative and discriminative learning
situations. We believe that EVT-based models should also be
insensitive to the difference between categorical and perceptual
learning. With more research, our model may be applied to
other human learning tasks, not just visual recognition.

ACKNOWLEDGEMENT

I would like to acknowledge Dr. Walter Scheirer, Dr. David
Cox, and the team of scientists at Harvard University, who

have greatly contributed to this project. I would also like to
thank Dr. Terrance Boult, Dr. Lori James, Dr. Kristen Walcott-
Justice, and Dr. Jugal Kalita for their invaluable guidance. This
project is being supported by NSF REU Grant 1359275.

REFERENCES

[1] E. Alpaydin, Introduction to machine learning. MIT press, 2004.
[2] I. H. Witten, E. Frank, and A. Mark, “Hall (2011).” data mining:

Practical machine learning tools and techniques,” 2011.
[3] A. S. Hsu, T. L. Griffiths et al., “Effects of generative and discriminative

learning on use of category variability,” in Proceedings of the 32nd
Annual Conference of the Cognitive Science Society, 2010, pp. 242–
247.

[4] M. K. Nasution, “The ontology of knowledge based optimization,” arXiv
preprint arXiv:1207.5130, 2012.

[5] S. Kotz and S. Nadarajah, Extreme value distributions: Theory and
applications. World Scientific, 2000, vol. 31.

[6] S. Hugueny, D. A. Clifton, and L. Tarassenko, “Probabilistic patient
monitoring with multivariate, multimodal extreme value theory,” in
Biomedical Engineering Systems and Technologies. Springer, 2011,
pp. 199–211.

[7] W. Scheirer, A. Rocha, R. Micheals, and T. Boult, “Robust fusion:
extreme value theory for recognition score normalization,” in Computer
Vision–ECCV 2010. Springer, 2010, pp. 481–495.

[8] A. L. Cohen, R. M. Nosofsky, and S. R. Zaki, “Category variability,
exemplar similarity, and perceptual classification,” Memory & Cognition,
vol. 29, no. 8, pp. 1165–1175, 2001.

[9] L. Piegl and W. Tiller, “The nurbs book,” Monographs in Visual
Communication, 1997.

[10] “Psychopy—psychophysics software in python,” Journal of Neuro-
science Methods, vol. 162, no. 1–2, pp. 8 – 13, 2007. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0165027006005772

[11] T. Smits, G. Storms, Y. Rosseel, and P. De Boeck, “Fruits and veg-
etables categorized: An application of the generalized context model,”
Psychonomic Bulletin & Review, vol. 9, no. 4, pp. 836–844, 2002.

Using Hidden Markov Models and Spark to
Mine ECG Data

Jamie O’Brien
Saint Mary’s College of Maryland

St. Mary’s City, Maryland
Email: jcobrien@smcm.edu

Abstract—New potential risk factors for cardioembolic strokes
are being considered in the medical community. The presence of
these factors can be determined by reading an electrocradiogram
(ECG). Manual ECG analysis can take hours. We propose
combining accurate Hidden Markov Model (HMM) techniques
with Apache Spark to improve the speed of ECG analysis. The
potential exists for developing a fast classifer for these risk
factors.

I. INTRODUCTION

The proliferation of medical data in modern hospitals pro-
vides a rich environment for data mining. Electrocardiograms
(ECGs) provide a wealth of information that can be used
to diagnose cardiovascular diseases (CVDs). In Agarwal and
Soliman [1], it is suggested that the ECG can be used to detect
cardioembolic stroke risk factors. Aside from those factors
included in the Framingham Risk Score, emerging factors
include:

1) cardiac electrical/structural remodeling,
2) higher automaticity,
3) heart rate & heart rate variability.

Currently, the manual analysis of ECG patterns is time-
consuming. It can take several hours to complete Acharya et
al [2].

II. PROBLEM STATEMENT

We want to find a better method of detecting the emerging
risk factors listed in Section I. We want to combine an effective
Hidden Markov Model (HMM) classifier for ECGs with the
fast, distributed processing power of Apache Spark.

A. Atrial Fibrillation—A Verified Stroke Risk

In atrial fibrillation (AF), the heart’s atrial walls do not
produce an organized contraction—instead, they quiver [3].
Even though AF is a component of the Framiningham Stroke
Risk Score [4], it is often undetected; the condition has evaded
detection even in patients known to have paroxysmal atrial
fibrilation. The detection rates may vary depending on the
algorithms used, but seem to improve with longer monitoring
times [5]. The difficulty of accurately detecting AF motivates
the search for additional stroke risk factors.

B. Hidden Markov Models

Hidden Markov Models (HMMs) have been used with
great effect in classifying ECGs. Andereão et al were able
to demonstrate an accuracy of 99.97% in detecting the QRS
complex of the heartbeat [6]. Their approach was to create
a general model of the heartbeat, and then tune the model to
each individual by using data from the first 20 seconds of their
ECG. The general model of the heartbeat was composed of
discrete states representing the P, Q, R, S, and T waves, the
PQ and ST intervals, and the isoline. Andreão et al’s work
was able to detect premature ventricular contractions (PVCs).
We hope to use a similar model for detecting ectopic beats
and bundle blocks.

C. Apache Hadoop

Hadoop pairs a high-bandwidth distrubted file system with
MapReduce programming Svachko et al [7]. This allows for a
task to be broken up across many computers, the components
calculated independently, and the results collected. In this way,
Hadoop may improve the performance of signal processing
tasks. This performance improvement is the core of the Cloud-
wave system described in Jayapandian et al [8]. The authors of
that work used Hadoop to process multimodal bioinformatic
data. A stand-alone machine was able to process 10 signals in
22-36 minutes. Their Hadoop cluster was able to process the
same data in 4-6 minutes.

D. Apache Spark as a replacement for Hadoop MapReduce

While the Cloudwave system described in Jayapandian
et al [8] is impressive, the highly iterative nature of data
mining tasks may cause significant overhead under Hadoop’s
MapReduce architecture. Apache Spark avoids this issue by
using the concept of resilient distributed datasets (RDDs).
These RDDs can be cached in memory. This make the data
available for iterative and parallel programming alike without
having to be constantly reloaded Zaharia et al [9].

III. METHOD

The in-progress research explores the applicability of Hid-
den Markov Models on ECG readings, with the goal of
detecting the emerging factors mentioned in [1]. Here we note
the strategy for constructing our system.

We obtained ECG signals from the QT Database (QTDB),
using the WaveForm Database application suite. We also

obtained two sets of annotations: one, marked atr, contains
annotations that marks beats as normal, or as having some ab-
normality (preventricular contraction, for instance); the second
set of annotations, marked pu0, contains waveform markers,
such as p, t, and N (for normal qrs complex). Any records
from the QTDB that did not contain annotations from atr
were excluded, as we would not be able to verify our results
against them.

We transformed the pu0 annotations to provide clearer
information. The standard for annotating waves is to open
a wave with a paren, note the wave, and then close it with
a paren. For instance, the p wave would be marked by
the annotations (, p,). We wrote a script to process these
annotations, and change them to the form pBegin, p, pEnd,
so that all parenthesis were removed. This meant that the
annotations themselves could now become a set of states for
use in a Hidden Markov Model. The states derived from the
annotations were: pBegin, p, pEnd, q, r, q, tBegin, t, tEnd,
unknownBegin, and unknownEnd.

However, we found that it was not practical to simply map
the states annotated in pu0 to the beat classifications annotated
in atr. When attempting to map the state sequence to PVC,
for instance, no significant correlation could be found in a
sample of PVC beats. We hypothesized that the duration of the
states was also significant. It may be necessary to mark states
as being faster or slower than normal. The duration between,
for instance, pBegin and pEnd could tell us if the p wave were
of normal duration.

With this in mind, we are determining a way to map the
ECG signal itself to states. In [10], we find an algorithm for
decomposing ECG signals into line segments. This algorithm
moves a dynamically-sized window along the ECG signal. The
window checks the distance between the endpoints and every
point in-between, using normalized distances where needed.
We can adjust the allowed error to accomodate noisy signals.

We modify this algorithm to output a list of 4-tuples of
the form (starting point, length, mean of segment, standard
deviation of segment). This converts the continuous ECG
signal into a set of data points. We must then convert this set
of data points into states that correspond with the waveforms
of the heart beat: the p wave, qrs complex, t wave, and the
intervals between them.

IV. THE CLASSIFICATION PROCESS

We begin by slicing an ECG signal between its R-R inter-
vals. We then take a slice and segment it using the algorithm
described in [10]. These segments are then labeled by the state
they most match, using a decision tree. The progression of
states is treated as an observation, and fed into the HMM
to determine which beat type most accurately matches the
observation.

V. FURTHER WORK

This work will not be complete until the HMM itself is built
and can be tested. In anticipation of this, we have separated
the QTDB into a training set comprising approximately 80%

of the annotated data, and a testing set with the remaining
approximately 20%. The training set is composed of five sub-
groups, each approximately 20% of the size of the training
set. We intend to use these sub-groups for cross-validation.

After the model is built and its performance is evaluated, we
can begin the construction of the Apache Spark implementa-
tion of the model. The purpose of this will be to compare the
performance of the Spark implementation against the locally-
run implementation. The parameters for this experiment will
be determined when the HMM itself is complete.

VI. CONCLUSION

This research may provide a effective method for detecting
the emerging risk factors for a cardioembolic stroke mentioned
in section I. This would assist researchers who are investigat-
ing these risk factors.

ACKNOWLEDGMENT

We would like to thank the National Science Foundation
(NSF) for their generous grant, and the University of Colorado,
Colorado Springs for hosting the Research Experience for
Undergrads (REU) program.

REFERENCES

[1] S. Argwal and E. Soliman, “Ecg abnormali-
ties and stroke incidence,” 2013. [Online]. Available:
http://www.medscape.com/viewarticle/808752

[2] R. Acharya, A. Kumar, P. Bhat, C. Lim, N. Kannathal, and S. Krish-
nan, “Classification of cardiac abnormalities using heart rate signals,”
Medical and Biological Engineering and Computing, vol. 42, no. 3, pp.
288–293, 2004.

[3] F. H. Martini, J. L. Nath, and E. F. Bartholomew, Fundamentals of
Anatomy and Physiology (9th Edition). Benjamin Cummings, 1 2011.

[4] F. H. Study, “Stroke,” https://www.framinghamheartstudy.org/risk-
functions/stroke/stroke.php, (Visited on 07/14/2014).

[5] M. A. Rosenberg, M. Samuel, A. Thosani, and P. J. Zimetbaum, “Use
of a noninvasive continuous monitoring device in the management of
atrial fibrillation: a pilot study,” Pacing and Clinical Electrophysiology,
vol. 36, no. 3, pp. 328–333, 2013.

[6] R. V. Andreão, B. Dorizzi, and J. Boudy, “Ecg signal analysis through
hidden markov models,” Biomedical Engineering, IEEE Transactions
on, vol. 53, no. 8, pp. 1541–1549, 2006.

[7] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in Mass Storage Systems and Technologies
(MSST), 2010 IEEE 26th Symposium on. IEEE, 2010, pp. 1–10.

[8] C. P. Jayapandian, C.-H. Chen, A. Bozorgi, S. D. Lhatoo, G.-Q.
Zhang, and S. S. Sahoo, “Cloudwave: Distributed processing of big
data from electrophysiological recordings for epilepsy clinical research
using hadoop,” in AMIA Annual Symposium Proceedings, vol. 2013.
American Medical Informatics Association, 2013, p. 691.

[9] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: cluster computing with working sets,” in Proceedings of the 2nd
USENIX conference on Hot topics in cloud computing, 2010, pp. 10–10.

[10] A. Koski, “Modelling ecg signals with hidden markov models,” Artificial
intelligence in medicine, vol. 8, no. 5, pp. 453–471, 1996.

FINAL REPORT FOR REU PROGRAM AT UCCS, SUMMER 2014 1

Question Generation using Part of Speech
Information

Jacob Zerr, Texas A&M University

Abstract—When testing students on knowledge from a story
or article, a human must interpret the text to generate English
questions. The difficulty in automating this process is producing a
computational algorithm that can fully account for the syntactic
and semantic complexities of human languages. Most approaches
use big, costly semantic tools such as WordNets to achieve
their semantic accuracy and rule-based approaches to achieve
their syntactic accuracy. We propose an approach for generating
knowledge-testing questions from textual English using machine
learning to use part of speech pattern matching without using
any large semantic tools.

I. INTRODUCTION

Many attempts have been made to automate interpreting
natural human languages, most of which have taken some
small sub-problem and attempted to solve it. One such sub-
problem is manipulating sentences to create question-answer
pairs from a sentence, which we will be addressing. The
main difficulty of question generation is that the method
must maintain both semantic and syntactic accuracy. When
formatting a question, we will need to change the structure
of the sentence, add and remove words, change the tense
or part of speech of words, or other complex operations.
Moreover, through these operations we must keep the semantic
integrity of the statement and select the correct answer to the
resultant question. However, the applications of a proficient
question generator could span domains from automated edu-
cation tools to better AI conversation generation. We propose
a new method of question generation that uses part of speech
(POS) pattern matching based off of Inversion Transduction
Grammars (ITG) from a sentence and question-answer pair
corpus. We restrict our input to sentences containing one
independent clause with the thought that this approach would
work on any input if compressed first.

II. PROBLEM DEFINITION

Our input will be any collection of English sentences
containing one independent clause. The sentences should be
well formed and in correct English grammar for best results.
The output will be a set of question-answer pairs that should
be asking about the contextual knowledge of the original text.
The output questions should also be grammatically correct.
Here are a couple examples.

Jacob Zerr is participating in a National Science Foundation REU at the
University of Colorado at Colorado Springs, Colorado Springs, CO 80918.

email: zerr2@tamu.edu

• John drove the car to work. → Who drove the car to
work? John

• The pump is now operational. → Is the pump operational?
Yes

• He waters the garden every day. → What does he do
every day? waters the garden

III. RELATED WORK

Question generation was brought to the attention of the nat-
ural language processing community by Wolfe [4] in 1976. He
outlined the purpose and applications of a question generator
and the potential challenges. Since then, many have produced
question generators of a limited focus. Papasalouros [1] creates
only multiple choice questions by producing a set of similar
sentences where a key word has been replaced in the wrong
selections. This reduces the complexity of the problem by
avoiding interrogative sentence structure. Brown [3] focuses
only on questions that test vocabulary and uses a WordNet
to increase their question complexity without losing semantic
accuracy. They also use part of speech (POS) tagging to
maintain the syntactic accuracy of the question. Kunichika [2]
provides the most general approach of all by dissecting both
the syntactic and semantic structure of the original sentence
before producing the question. After looking at both of these,
their algorithm has a broad spectrum of questions it can
generate about the original declarative sentence. However, this
approach relies heavily on the accuracy of the interpretation
of the sentence using tools like WordNets that may not be
accurate in all cases. These are three representations of the
current best solutions, none of which use machine learning.
Our approach will rely heavily on a POS tagger for which we
will be using the Stanford Parser outlined in Toutanove [9].
On a different note, Heilman [5] ranks generated questions
which may be considered as a useful addition to our question
generation process later on in our development.

IV. INVERSION TRANSDUCTION GRAMMARS

Inversion Transduction Grammars are grammars that map
two languages simultaneously and generally follow the format
of a context free grammar. The main difference is the angle
brackets in the grammar denote that the symbols should be
read in left-to-right order for the first language and right-to-
left for the second. This allows for the grammar to successfully
map two languages with different part of speech orderings like
SOV, SVO, or VSO languages. From there the lexicon has
word pairs, one from each of the two languages, that should
be direct translations of each other. This method uses basic

FINAL REPORT FOR REU PROGRAM AT UCCS, SUMMER 2014 2

word-to-word translations and the fact that most languages
use similar part of speech models, just in a different order,
to achieve an accurate machine translation. Wu [6] explains
these grammars in detail and shows how they can be used
as an accurate form of machine translation. Both Goto [7]
and Neubig [8] use these techniques to successfully perform
machine translations between complex languages.

V. OUR APPROACH

A. Producing POS Pattern Templates from the Corpus

The main approach that we will be pursuing to convert
our declarative sentences to questions is through a POS
pattern matching approach based off of ITGs. Though ITGs
have mainly been used to convert a parsed sentence into
another language, we will be using it to convert between
declarative English and interrogative English. The difficulty
in this process is that ITGs rely on the structure of the two
sentences to be similar in all but ordering. However, there
are structural parts of interrogative English that are not in
declarative English and vice verse. Our approach will avoid
this by ignoring the tree structure of the grammar and just
map the movement of different phrases from the sentence to
the question.

The first major step of processing our corpus instances is
to identify the phrases that stay consistent in the transition
from declarative sentence to question-answer pair. We do
this by searching the instance for phrases of the exact same
wording starting from the largest possible phrases and then
incrementally decreasing the size until all of the common
phrases have been identified. We call this process chunking.
Figure 1 shows such an instance and the phrases that have
been identified after chunking has been completed.

Figure 1. Sample of chunking the common phrases from an instance in our
corpus.

Notice that there may be phrases in the sentence, question,
or answer that are not in any of the other parts of the instance;
in this case in the forest and What. These are kept and used
by the algorithm in the process of finalizing the template; this
will be explained later.

Our algorithm also can identify phrases that appear in
all three parts of the instance as a part of the chunking
process. This helps create templates for questions that quiz
on adjectives of the sentence while still maintaining accuracy.
Figure 2 is an example of such an instance where plate is
repeated in all three parts of the instance to ensure that the
answer makes sense.

Figure 2. Sample of chunking an instance where a phrase is repeated in all
three parts of an instance. This helps produce templates of questions that quiz
on adjectives in the input sentence while still keeping accuracy.

Now that we have chunked our instances, we need to
determine the part of speech of each of the phrases included in
the sentence portion of the instance. For this we will be using
the Stanford POS tagger [9]. There are two main approaches to
attempting to tag these phrases with a POS: parsing it within
the original context of the sentence or parsing it out of context.
When parsing it out of context, we can conveniently get a
single POS for the phrase. However, you forfeit accuracy with
this method because the Stanford Parser solves ambiguities
internally and it may return the wrong POS in an ambiguous
case. For this reason, we chose to parse the phrase within the
context of the original sentence. However, this is slightly more
difficult, because we will now have to search the grammar
parse tree of the whole sentence produced by the Stanford
Parser. Our method for this was to search for the node of
the tree that was the deepest ancestor of all of the words in
the phrase. An example of this is shown in Figure 3. Here
we can see that we identify the POS for the enemy of as a
Noun Phrase in the context of the sentence The weasel was
the enemy of all birds in the forest.

S

NP VP

DT

The

VBD NP

was NP PP

IN NP

of

NN

weasel

DT

the

NN

enemy NP PP

IN NP

in

NNS

birds

DT

all DT NN

the forest

Figure 3. Our method for finding the POS of a phrase involves finding the
deepest common ancestor of the words of the phrase. Here we can see the
enemy of is being labeled as a Noun Phrase.

With this method of POS tagging, we then will label every
phrase in the original sentence. This includes any phrases that

FINAL REPORT FOR REU PROGRAM AT UCCS, SUMMER 2014 3

were not repeated in the question or the answer. The result of
this process from the example used in Figure 1 is shown in
Figure 4.

Figure 4. The example from Figure 1 with its sentence chunks labeled with
their POS.

After the sentence chunks have been labeled, we drop all of
the phrases that appeared in the sentence part of the instance.
The phrases that only appeared in the question or answer are
left as a part of the template. This is the final step of producing
our POS template from an instance in our corpus. This process
is completed for every instance in the corpus before we start
trying to use these templates on our input sentences. Figure 5
shows this last step on our example.

Figure 5. The final step of preparing the templates is drop all of the phrases
that appeared in the sentence. Phrases that were just in the question or answer
remain.

B. Generating Questions

Once we have converted the instances of our corpus into
POS pattern matching templates, we can begin to try to fit
input sentences into our templates. We do this by simply seeing
if the input sentence can be divided into phrases that, when
tagged with a POS, match the template. If we do find a match,
we reorder the phrases by using the template’s question-answer
ordering to produce our question-answer pair. An example of
a sentence fitting the template we produced above is in Figure
6.

An interesting question that arose from this pattern matching
method is which type of POS tagging we would use for this
part of the algorithm, in-context or out-of-context. Initially,
it seemed clear that we should follow the same method we
did in producing our corpus and use in-context. However,

Figure 6. A sentence being matched to our example template and the question-
answer pair it produced.

when experimenting with out-of-context we sometimes would
produce a wrongful tag to a phrase that would fit a template.
The expectation was that from an erroneous matching we
would produce an inaccurate question, but this was not always
the case. Figure 7 shows an input sentence matching to the
template we produced above with render erroneously being
labeled a Noun Phrase, however the produced question is ac-
curate. We explored this question and our answer is discussed
later in the results section.

Figure 7. A sentence being wrongfully tagged and matched to our example
template may still produce an accurate question-answer pair.

As a last note, if our algorithm can divide an input sentence
to match a template more than one way, then it will produce
a different question for each different legitimate divisions. An
example of this is shown below in Figure 8.

An interesting observation on our method is that because we
are simply reordering phrases, we keep the same vernacular of
the original sentence. We have been operating in the domain
of children’s stories for this project and often times children
stories will have odd wording that is not common vernacular
anymore. These odd phrases will always be reflected in our
output. The example in Figure 7 uses phrases like render
assistance whereas most people would simply say help. This
can be both a good and bad attribute of our approach. The
good part is that our questions may contain slang or improper
words of spoken English that takes our questions to a semantic
level not normally achievable by a computer. However, it also
can sometimes cause problems if these words are wrongfully

FINAL REPORT FOR REU PROGRAM AT UCCS, SUMMER 2014 4

Figure 8. If a sentence can be divided in more than one way to match a
template then the algorithm will produce a different question for each way.

tagged and will miss the factual tone of SAT-style questions
that a user may want because of odd diction in the original
sentence.

Also, it is important to note that we restricted our input to
sentences containing one independent clause. This is neces-
sary, because with additional clauses the accuracy of our POS
tagging for phrases goes drastically down. For instance, if we
divide our input in a way that a phrase is an entire clause
it may be be given a POS label of Sentence, which is too
general for our templates to produce good results. Typically,
the larger the phrases become, the higher up the parse tree
you will have to go for a deepest common ancestor, and the
less specificity of POS tags we will have. Thus, in order to
maintain reasonable levels of accuracy, we must limit our input
to one clause sentences.

VI. DATASETS

A large part of our work was producing and manipulating
the corpus that defined our POS matching templates. This
corpus is a collection of instances that map a sentence to a
question-answer pair. Initially our corpus had 254 instances.
From initial testing using this corpus we observed several
things; a small corpus could produce an ample number of
questions even with just one sentence inputted, often the same
questions were produced more than once, and some instances
in our corpus were better at producing accurate sentences than
others. From these observations we decided to stop expanding
the corpus and to actually start eliminating some instances.

Firstly, we had learned that some of the instances in our cor-
pus were producing the same templates. Thus we went through
and found the instances producing the duplicate templates and
deleted them. An example of this was the template below had
been produced 34 times. After 93 deleting instances that were
producing duplicate templates our corpus had been reduced
down to 161 instances.

NP VP → Who VP ? NP

Secondly, we observed that some templates produced by our
instances were much better at producing successful question-
answer pairs than others. To test this theory we ran our corpus
against some preliminary testing examples and confirmed this.
Some templates were producing many consistently accurate
questions, some produced very few questions, and others
produced many inaccurate questions. Based on these results we
eliminated any instance from our corpus that was producing
questions at a twenty percent accuracy level or worse. This
reduced our corpus down to just 129 instances.

Contrary to most forms of corpus-based machine learning,
we found this corpus to be more than enough to produce a high
number of different questions and a wide breadth of different
types of questions. This is one of the largest advantages of our
approach; it takes a comparatively tiny amount of data to get
good results especially when compared to most of the other
approaches that use large WordNets or other large semantic
tools.

VII. RESULTS

We analyzed and made improvements based off the syntactic
and semantic accuracy of the output of our approach. The
proportion of output instances that are grammatically correct,
accurately quizzes the reader on the original knowledge, and
has the corresponding answer will be our main metric of
success. We used unbiased volunteer evaluators that judged
each produced question-answer pair on whether they were
syntactic and semantic accurate or not. Our evaluators are
native English speakers that are in the process of attaining a
Bachelors Degree, thus they have a firm knowledge of the
English language. Our input were single independent clause
sentences from children’s stories such as The Princess and the
Pea, The Boy Who Cried Wolf, and other such children stories.

A. POS Tagging Methods

We would first like to address the question we presented
earlier on whether POS tagging on our input sentences should
be done in-context or out-of-context. We would first like to
note that we used only in-context tagging for creating our
templates so that we could create accurately tagged templates.
However, as we noted before, we produced accurate questions
using both methods when tagging the input sentences. Based
off of this we decided to experiment using four different
methods for determining the POS to tag the sentence phrases:
using the in-context tag (IC), using the out-of-context tag
(OC), using a POS tag only if the two methods agreed
(IC && OC), and using either method to try to fit a sentence
into a template (IC || OC). We tried these four methods on
a 20 sentence input children’s story.

Based off of the above results we chose to use the
IC || OC method for the rest of our work because of the
greatly increased total solution production despite a very
similar accuracy rate. Based off of the numbers above, this
method was producing, on average, 7.25 accurate questions
per inputted sentence.

FINAL REPORT FOR REU PROGRAM AT UCCS, SUMMER 2014 5

Table I
POS TAGGING METHODS

Method Accurate Total Percent
IC 94 160 58.75
OC 87 150 58.00

IC && OC 58 90 60.00
IC || OC 145 243 59.67

B. Overall Accuracy

For our final accuracy test, we used an input 48 sen-
tences long from children’s stories. We produced an output
of 435 question-answer pairs. This means that we averaged
9.06 question-answer pairs per inputted sentence. This puts
into perspective that our corpus, at 129 instances, really can
perform like a large semantic tool despite its small size. The
produced question-answer pairs were assessed by 4 evaluators
that ranged the accuracy from 57.01% to 59.67% with an
average of 58.36%. This result is also encouraging considering
the previous work in this area. Brown [3] produced an accuracy
rate from 52.86% to 64.52% and Papasalourous [1] produced
an accuracy of 75% from his best strategy, but averaged an
accuracy of 47.55% between all of their strategies. It is also
interesting to note that both of these approaches were slightly
more restricted in domain than our approach and they both
relied on advanced wordnets in order to maintain semantic
accuracy.

VIII. POSSIBLE FUTURE WORK

A possible extension of this work would be automatically
analyzing the questions produced and ranking them in some
way. Depending on the accuracy of the rankings we may be
able to achieve a higher accuracy of the questions that are
ranked in some top fraction of the produced questions.

IX. CONCLUSION

By using a relatively simple machine learning method with
a small dataset, we were able to out-perform previous rule-
based methods that used large semantic tools. If used with
an accurate sentence compressor, we believe this method
for generating questions would be extremely accurate and
convenient. Our approach is also not domain-specific and thus
can be used in anything from automated education tools to
better AI conversation generation.

REFERENCES

[1] A. Papasalouros, K. Kanaris, and K. Kotis. ”Automatic Generation Of
Multiple Choice Questions From Domain Ontologies.” In e-Learning, pp.
427-434. 2008.

[2] H. Kunichika, T. Katayama, T. Hirashima, and A. Takeuchi. ”Automated
question generation methods for intelligent English learning systems and
its evaluation.” In Proceedings of International Conference of Computers
in Education 2004, pp. 2-5, Hong Kong, China, 2003.

[3] J. Brown, G. Frishkoff, and M. Eskenazi. ”Automatic question generation
for vocabulary assessment.” In Proceedings of the conference on Human
Language Technology and Empirical Methods in Natural Language Pro-
cessing, pp. 819-826, Vancouver, Canada, Association for Computational
Linguistics, 2005.

[4] J. Wolfe ”Automatic question generation from text-an aid to independent
study.” In ACM SIGCUE Outlook, vol. 10, no. SI, pp. 104-112, ACM,
1976.

[5] M. Heilman, and N. Smith. ”Good question! statistical ranking for
question generation.” In Human Language Technologies: The 2010 An-
nual Conference of the North American Chapter of the Association for
Computational Linguistics, pp. 609-617, Los Angeles, USA, Association
for Computational Linguistics, 2010.

[6] D. Wu. ”Stochastic inversion transduction grammars and bilingual parsing
of parallel corpora.” In Computational Linguistics 23, pp 377-403, 1997.

[7] I. Goto, M. Utiyama, and E. Sumita. ”Post-Ordering by Parsing with
ITG for Japanese-English Statistical Machine Translation.” In ACM
Transactions on Asian Language Information Processing (TALIP) 12, no.
4, 2013.

[8] G. Neubig, T. Watanabe, S. Mori, and T. Kawahara. ”Substring-based
machine translation.” In Machine Translation 27, no. 2, pp 139-166, 2013.

[9] K. Toutanova, D. Klein, C. D. Manning, and Y. Singer. ”Feature-rich part-
of-speech tagging with a cyclic dependency network.” In Proceedings of
the 2003 Conference of the North American Chapter of the Association
for Computational Linguistics on Human Language Technology, Volume
1, pp 173-180, Edmonton, Canada 2003.

Stencil Code Optimization for GPUs Through
Machine Learning

Adam Barker
University of Colorado at Colorado Springs

abarker2@uccs.edu

Abstract—The microprocessor field today has begun to reach
its limits as power and thermal constraints have been met and
no longer can much leverage of increasing the processor’s clock
speed be achieved. Thus, much of the scientific and engineering
community has shifted to using many-core architectures, such as
GPUs, in order to do parallel computations. This paper focuses
on the use of genetic algorithms to guide the optimization of
stencil codes on NVIDIA’s Compute Unified Device Architecture
(CUDA) based GPUs and GPGPUs. In particular, we have
implemented two separate stencil kernels (Jacobi 7 point and
27 point) in CUDA with each implementation parameterized
for several optimiation parameters (thread blocking and loop
unrolling factors). We then used a genetic algorithm to find
optimal configurations for each kernel. This genetic algorithm
is one part of our proposed solution of using an optimization
framework incorporating the genetic algorithm to auto-tune
automatically optimized stencil codes. Our results show that using
a genetic algorithm to auto-tune stencil code optimizations is a
valid approach of generating near-optimal configurations in a
much more timely fashion than an exhaustive search.

I. INTRODUCTION

As microprocessors reach the power wall, benefits of in-
creasing the clock frequency are no longer achieveable as the
cost to system stability and cooling is too much to warrant
the increase in performance [1]. This has shifted the focus
of the parallel community to many-core architectures, such as
those found in Graphical Processing Units (GPUs), as they are
comprised of a few hundred or thousand simple cores that are
capable of performing highly-parallel computations with much
more throughput than a typical multi-core system. However,
developing parallel algorithms for GPUs can be no simple task
for developers as developers must have a firm understanding of
the underlying architecture and hardware properties in order
to correctly write programs that correctly take advantage of
these properties. Thus, there is a desire to develop a method
to automatically apply optimizations to GPU programs in order
to avoid the necessity of understanding the complexities of the
hardware and architecture of the system.

Recently, in order to meet this desire, researchers have
devloped several methods in order to automatically tune or
automatically generate optimized codes for both GPUs and
multi-core systems. However, as more optimizations are dis-
covered, the search space the auto-tuner must search through
grows to an amount where auto-tuning is no longer viable as
the number of possible combinations of parameters becomes
too large to effectively search through. This then sets the
perfect stage for a machine learning application to predict

the optimal code instead as it does not have to go through
the entire search space, but rather make predictions based on
previous results.

This work presents a method to use genetic algorithms
in order to discover optimized configurations of parameter-
ized CUDA stencil (nearest-neighbor) codes – a class of
algorithms that typically work in structured grids to perform
computations, such as finite-difference methods for solving
parital differential equations, on a node within the grid by
doing computations on the neighbors around the given node.
Our work focuses on a simple 3D heat equation using two
different stencil codes as the training set for a genetic algo-
rithm to search through a search space of several thousand
combinations of possible optimization parameters. Although
stencil codes are important as scientific computations, they
also provide a unique opportunity for hardware benchmarking
as they are computationally simple and require a large use of
memory, allowing for benchmarking of instruction-level and
data-level parallelism [3]. These codes greatly benefit being
run on GPUs as the parallel forms of these codes contain a
great deal of instruction level parallelism which translates well
to SIMD architectures, which are present on GPUs.

This research is the development of the optimal configu-
ration generator portion of the framework detailed in Figure
1. The auto-optimization framework will be used to optimize
existing stencil codes using machine learning in order to
predict optimal tuning parameters that will be given to the
optimizer which will apply these optimizations to the given
stencil code and then output the optimized version of the
given code. This is done so that developers can easily write
unoptimized code for use in their programs and then run this
auto-tuning framework on their code in order to use optimized
code that correctly fits within their existing program.

In order to train the machine learning portion of the con-
figuration generator, we implemented two stencil kernels to
be used across three separate GPUs. The stencil codes we
implemented were a 7 point and 27 point Jacobi iterative
stencil codes and then parameterized the relevant optimizations
that the genetic algorithms would find configurations for so
that the fitness test for the genetic algorithm could change
these parameters easily before compiling and running.

The optimization parameters considered for the generation
of the search space that we used were the number of threads
to use in the computation, and the distance to unroll the
inner loop in our code. This inner-loop arises from our use

Fig. 1. Overview of auto-optimization framework

of 2.5D blocking, a thread blocking optimization that allows
for threads to only be launched in a single plane of the 3D data,
and then stream through the remaining axis as the computation
goes on. This search space consists of 60 different thread
configurations and 192 different loop unrolling configurations,
giving us a search space of 11,520 possible combinations.
Although the size of this search space is relatively small for
most machine learning applications, one must consider the
time it takes to compile the code as on our system, typical
complilation time is 3 seconds, meaning that an exhaustive
search through the search space would take more than 9 hours,
whereas our use of a genetic algorithm took on average 8
minutes to find an optimized configuration.

Our contribution is a genetic algorithm that is capable
of tuning optimizations on parameterized stencil codes. This
genetic algorithm can effectively tune these codes to find near-
optimal configurations for the applied optimizations in a very
short amount of time, making it an effective method to use
for auto-tuning stencil code optimizations.

The rest of the paper is organized into four sections: related
work, tuning framework, experimental results, and conclusions
and future work. In related work, other research that has
been done in the field is presented and summarized along
with how it is utilized in this research. The tuning framework
section goes into more detail of stencil codes, optimizations,
and the genetic algorithm that we used. Experimental results
includes the experimental setup and the results we obtained
from running our implementation on three different systems
as well as a discussion of these results. Conclusions and future
work summarizes this research and presents the outlook of
incorporating it into future work.

II. RELATED WORK

There exists significant research to automatically tune opti-
mized stencil codes in order to find the best configuration of
parameters for such optimizations [1], [3], [8], [11]. Datta et all
have demonstrated the usefulness of optimizations with auto-
tuning techniques as a means to effectively optimize stencil
codes on both CPUs and GPUs [3]. Their work provides
an effective base for the challenges of optimizing and auto-
tuning stencil codes. Gana et all cite this work as their

basis for using machine learning to optimize CPU stencil
codes. In their research, they used a genetic algorithm in
combination with the KCCA algorithm to perform quick
searches through the parameter space of 4 × 107 different
combinations. They managed to effectively auto-tune stencil
codes on CPUs in two hours using their method [5]. Zhang
and Mueller also researched auto-tuning and auto-generation
of optimized stencil codes specifically for GPUs and GPU
clusters which provides a more specific list of optimizations
that are specifically used for GPU stencil code optimizations
that were used in this research. In particular, their descriptions
of 7-point and 27-point stencils, along with shared memory
and register allocation for optimization were used throughout
our research. [11].

Many optimizations have been developed over the years for
stencil codes [2], [6], [7], [9], [10]. Nguyen et all provided
a state-of-the art stencil code optimization that uses a com-
bination of 2.5D thread blocking combined with 1d temporal
blocking to create what they have called 3.5D blocking which
provides throughput increases on GPUs of about two times
what prior research had claimed [10]. In our research, we
used their excellent description of 2.5D blocking as one of
our optimizations for the genetic algorithm to automatically
tune. Nguyen et all’s research can also be parameterized by
changing the amount of temporal blocking to perform, thus
allowing a search space to be created for this optimization
which was incorporated into this research.

III. OPTIMIZATION FRAMEWORK

A. Stencil Codes

Stencil codes are primarily used to solve partial differential
equations in order to perform simulations such as heat flow
or electromagnetic field propogation [3]. Most methods for
solving these partial differential equations use iterative sweeps
through spatial data, performing nearest-neighbor computa-
tions which are called stencils. Each node in the computation
is weighted based on distance from the central node, which
allows for the solving partial differential equations by switch-
ing these weights for the coefficients used in the solver. Using
this structure, methods are created for different types of partial

differential equation solvers such as Jacobi iterative methods,
which are the stencil codes we used in this research.

Fig. 2. A 6-point Von-Neuman stencil (credit: wikipedia.org)

As the data sizes used for stencil computations typically
range outside the size of available cache memory, there is
a large emphasis on data reuse and data-level parallelism in
order to fully optimize stencil codes. This can cause portability
issues as memory speeds and sizes can differ widely system
to system, causing the need to use different parameters for
optimizations on different architectures. This then produces a
demand for a method to automatically tune stencil code opti-
mizations on each architecture in order to enhance portability
of the codes.

Auto-tuning of stencil kernels has become a fairly large area
of study in order to work around the necessity of knowledge
of the low-level specifications of the architecture in order to
optimize the kernel. However, these auto-tuners may have
to look in a parameter space that is upwards of 40 million
combinations that may take months to fully check every single
one for optimal performance [3]. This then creates a demand
for a faster optimization process that is still automated in
order to create a process that is viable for industry use.
Thus, machine learning may be a good option for automatic
optimization as it can use reinforcement learning paired with
statistical machine learning and genetic algorithms in order
to explore the parameter space much faster. Using machine
learning may also overcome another downfall of auto-tuning
in that each auto-tuner is generally programmed for one
architecture, whereas a learner can learn architectures as well
and correctly optimize for them.

B. Optimizations

In this research, we applied two types of optimizations to
our stencil codes to be used in the tuning phase. The first
optimization we used was 2.5D blocking. 2.5D blocking is an
optimization for thread blocking of 3D stencil codes that only
blocks in the x and y axes of the structured grid. Each thread
then streams through the remaining z-axis, allowing for data-
reuse of data already fetched by the thread earlier to fulfill

data requirements. This optimization reduces the amount of
global store and load instructions as threads can keep some
data in the registers for quick access for several computations
instead of fetching data from global memory each time a
node must be calculated. The second optimization used is
loop unrolling. Due to the nature of 2.5D blocking in that
it must stream through the z-axis via a loop, this loop can
be unrolled in order to provide more data-level parallelism
and keep threads from becoming idle. These optimizations
must be tuned in order to be fully optimized. 2.5D blocking
takes two parameters: an x-axis blocking dimension and a
y-axis blocking dimension. For a 2563 grid, there are 60
different configurations of 2.5D blocking. For loop unrolling,
the maximum unroll length allowed by the compiler is 192
iterations. By combining these two search spaces, the genetic
algorithm used for tuning these optimizations searches through
a search space containing 11,520 different configurations.

C. Genetic Algorithms

Genetic algorithms are a set of algorithms that mimic the
natural selection process in order to find solutions to problems.
Genetic algorithms do this by generating an initial population
that generally consists of randomly generated individuals that
contain randomly generated values for each parameter that will
be searched. Each individual in the population then undergoes
a selection process by which the fitness of their parameters
that they contain is evaluated. The most fit individuals are
then selected to be mutated and mated with each other in
order to generate the next generation of individuals. This then
continues until the population either converges to a singular
value or the number of set generations is reached.

In this research, we used an initial population of ten indi-
viduals each with a chromosome (parameter set) containing
three parameters – thread blocking for the x and y axes
and loop unrolling factor. This population then underwent
ten generations in order to get the individuals to converge
on one value. The best performing individual was saved and
then returned at the end of the generation process as the
best configuration for the given optimizations. All of this was
done using the Distributed Evolutionary Algorithms in Python
(DEAP) project [4]. It allowed for use of built-in algorithms
for the mating, mutating, and selection processes.

IV. EXPERIMENTAL RESULTS

A. Goal

The goal of this experiment is to determine if genetic
algorithms are a viable approach to tuning stencil code op-
timizations faster than other methods of tuning. The genetic
algorithm used must be able to produce an optimal or near-
optimal configuration for the optimized stencil code in a
reasonable amount of time in contrast to the time it takes for
an exhaustive search method to find the optimal configuration.

B. Setup

The setup we used to perform the experiments on consisted
of three GPUs: one GPGPU (Tesla C2050) and two standard

GPUs (GTX 480, 680). Figure 3 details the theoretical peak
FLoating-point OPeration (FLOP) rate determined by the
number of cores (α) multiplied by the clock rate of each core
(δ) multiplied by the number of FLOPs that can be performed
each clock cycle (γ).

α× δ × γ = GFLOPS/sec

Fig. 3. Theoretical peak FLOP rate equation.

GPU Architecture Peak FLOP rate
GTX 480 Fermi 1344 GFLOP/s

Tesla C2050 Fermi 1030 GFLOP/s
GTX 680 Kepler 3250 GFLOP/s

Fig. 4. Peak GFLOP rate of GPUs (single precision)

The genetic algorithm was run on two stencil kernels: a 27
point Jacobi stencil and a 7 point Jacobi stencil. This genetic
algorithm was used on each of the GPUs and was trained
on the GTX 480 using the 7 point stencil. After the initial
training, no values of the genetic algorithm were changed in
order to generate the final results. The genetic algorithm used
a three-gene chromosome to find configurations. The first two
genes were for thread blocking dimensions along the x and y
axes each being a power of two and their combined product
could not exceed 210 (60 combinations for 2563 grid size). The
third gene was for loop unrolling which was an integer from
1-192 for unroll length. The combined search space consisted
of 11,520 different combinations the algorithm could possibly
generate. This genetic algorithm was then run to create ten
generations based on an initial population of ten individuals
in order to find a configuration for each optimized stencil code
that was close to the optimal value that was found through an
exhaustive search of the search space.

an+1
i,j,k = α(ani,j,k + ani±1,j,k + ani,j±1,k + ani,j,k±1)

Fig. 5. 7-point Jacobi stencil equation.

an+1
i,j,l = α(ani,j,k) + β(ani±1,j,k + ani,j±1,k + ani,j,k±1) +

γ(ani±1,j±1,k + ani,j±1,k±1 + ani±1,j,k±1) + ε(ani±1,j±1,k±1)

Fig. 6. 27-point Jacobi stencil equation.

The equations in figures 5 and 6 detail a typical 7-point
and 27-point Jacobi stencil where a is the input grid, n is the
iteration, and α, β, γ, ε are coefficients multiplied upon the
neighborhood sum. The ±1 symbols are used to save space
in writing out each i+ 1 and i− 1 for each i, j, k within the
array of nodes.

C. Results

The graphs in Figure 7 are of the average performance in
GFLOPS/sec of the population per generation. The red line is
of the performance of the 7 point stencil code and the blue

line is of the 27 point stencil code. The two dashed lines in
each graph show the optimal configuration performance for
each stencil code. The optimal configuration was found by
performing an exhaustive search through the parameter search
space.

Fig. 7. Genetic algorithm average fitness of each generation for the three
GPUs on both stencil kernels. The solid lines are for the average population
fitness by generation for the 27-point stencil (blue) and 7-point stencil (red).
The dashed lines show the optimal configuration throughput rate.

Fig. 8. Best configurations found by genetic algorithm vs the absolute best configuration found by exhaustive search for each stencil and GPU.

These results show the effectiveness of a genetic algo-
rithm approach to auto-tuning stencil code optimizations as
it generally only took 3–4 generations for each stencil code
to be near-optimal. It should also be noted that these results
only show the average performance of the entire population
per generation, not the best candidates. The best candidates
shown in Figure 8 of the population were typically within
3% of the optimal performance found for each stencil kernel
by the 10th population. The initial population for the genetic
algorithm consisted of only ten members. Due to the small
search space size, this small number of members was still
able to quickly converge to a near-optimal configuration for
each kernel. The small search size also allowed for us to
check our results through exhaustive search as doing so took
about 4–5 hours per kernel for each GPU. This speed is in
contrast to the average eight minute execution time for the
genetic algorithm to generate all ten generations and find a
near-optimal configuration. These speeds differ in terms of
which CPU is used to compile each code, but the large gap
in performance still persists for each CPU, regardless of its
speed.

However, these results show that each kernel could only
reach up to a maximum of 100 GFLOPS/sec for the 27
point stencil on the Tesla C2050, which is far lower than
the 450 GFLOPS/sec produced by Bergstra et all [2] on the
same model of GPU. This is due to the optimizations that
were used in our stencil codes as they are the main bottle-
neck of performance for the stencil code. Our optimizations
still contain thread divergence in the code, and is thus less
optimized compared to Bergstra et all’s kernel which contains
no thread divergence. For future work on this research, more
optimizations will be considered so that the results will be
closer to current stencil code performance.

V. CONCLUSIONS AND FUTURE WORK

This work demonstrates the effectiveness of using a genetic
algorithm in order to find near-optimal configurations for
stencil code optimizations across multiple GPUs with differ-
ing architectures. This result allows for enhanced portability
of stencil code optimizations to differing architectures in a
timely fashion as the tuning phase was demonstrated to be
much faster than exhaustive search alternatives as the genetic
algorithm took, on average, eight minutes to generate all ten
generations of the population in contrast to the 4–5 hour run
time of the exhaustive search.

In the future, we would incorporate more parameters for
use in the chromosome for the genetic algorithm in order to
generate a search space worthy of using a machine learning
technique to traverse it instead of exhaustive search being a
viable method to use. We will also develop more parts to
the auto-optimization framework from figure 1 such as the
optimizer and stencil code classifier. This is in the hopes that
a functional framework can be created such that it may be used
to optimize existing stencil codes that are in use today and be
continually optimized as more stencil code optimizations are
found.

REFERENCES

[1] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James
Gebis, Parry Husbands, Kurt Keutzer, David A Patterson, William Lester
Plishker, John Shalf, Samuel Webb Williams, et al. The landscape of
parallel computing research: A view from berkeley. Technical report,
Technical Report UCB/EECS-2006-183, EECS Department, University
of California, Berkeley, 2006.

[2] J. Bergstra, N. Pinto, and D. Cox. Machine learning for predictive auto-
tuning with boosted regression trees. 2012.

[3] Kaushik Datta, Mark Murphy, Vasily Volkov, Samuel Williams, Jonathan
Carter, Leonid Oliker, David Patterson, John Shalf, and Katherine
Yelick. Stencil computation optimization and auto-tuning on state-of-
the-art multicore architectures. In Proceedings of the 2008 ACM/IEEE
Conference on Supercomputing, SC ’08, pages 4:1–4:12, Piscataway,
NJ, USA, 2008. IEEE Press.

[4] Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gard-
ner, Marc Parizeau, and Christian Gagné. DEAP: Evolutionary algo-
rithms made easy. Journal of Machine Learning Research, 13:2171–
2175, jul 2012.

[5] Archana Ganapathi, Kaushik Datta, Armando Fox, and David Patterson.
A case for machine learning to optimize multicore performance. In First
USENIX Workshop on Hot Topics in Parallelism (HotPar09), 2009.

[6] Justin Holewinski, Louis-Noël Pouchet, and P. Sadayappan. High-
performance code generation for stencil computations on gpu architec-
tures. In Proceedings of the 26th ACM International Conference on
Supercomputing, ICS ’12, pages 311–320, New York, NY, USA, 2012.
ACM.

[7] Julien Jaeger and Denis Barthou. Automatic efficient data layout for
multithreaded stencil codes on cpu sand gpus. 20th Annual International
Conference on High Performance Computing, 0:1–10, 2012.

[8] J. Meng and K. Skadron. Performance modeling and automatic ghost
zone optimization for iterative stencil loops on gpus. In Proceedings
of the 23rd international conference on Supercomputing, page 256265.
ACM, 2009.

[9] Paulius Micikevicius. 3d finite difference computation on gpus using
cuda. In Proceedings of 2Nd Workshop on General Purpose Processing
on Graphics Processing Units, GPGPU-2, pages 79–84, New York, NY,
USA, 2009. ACM.

[10] Anthony Nguyen, Nadathur Satish, Jatin Chhugani, Changkyu Kim, and
Pradeep Dubey. 3.5d blocking optimization for stencil computations
on modern cpus and gpus. In Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’10, pages 1–13, Washington, DC, USA, 2010.
IEEE Computer Society.

[11] Yongpeng Zhang and Frank Mueller. Auto-generation and auto-tuning
of 3d stencil codes on gpu clusters. In Proceedings of the Tenth
International Symposium on Code Generation and Optimization, CGO
’12, pages 155–164, New York, NY, USA, 2012. ACM.

ACKNOWLEDGEMENTS

This research is supported by NSF grant 1359275.

1

RSSE: A New Method of Distributing Datasets and
Machine Learning Software

Michael Gohde
Vision and Security Technology Lab

University of Colorado at Colorado Springs
Colorado Springs, Colorado

mgohde@uccs.edu

Abstract—Among the challenges faced by machine learning

researchers today is that of distributing the datasets and al-

gorithms used in their research. This problem arises mostly

from the limitations involved in hosting datasets on servers

outside of their origin. RSSE (Really Simple Syndication for

Experiments) is intended to provide a message-based system with

which researchers can share their data and algorithms.

I. INTRODUCTION

RSSE draws on existing standards, namely XML and
RSS, to facilitate easier communication and distribution of
data among researchers. While RSSE is not an extension to
the existing RSS standard[6], it is intended to be similar in
general conventions and syntax to RSS. As such, it extends the
concept of RSS, which is that of message-based syndication
involving a client “reader” application and a message server
established by an institution. RSSE is designed so that
messages can be written either by researchers themselves or
by automated tools.

Due to current copyright and IP law, it is often difficult
or impossible for institutions and researchers to directly
distribute external datasets used during computation[4]. Some
large dataset providers, such as Yahoo, explicitly prohibit
the redistribution of the dataset itself, instead allowing the
dataset to be distributed in the form of links[5]. Such datasets
usually allow users to cache the data locally. By providing
a consistent system by which data and software can be
distributed using messages containing URLs and checksums,
RSSE should enable institutions to easily monitor and expand
on the work supplied by other institutions. Furthermore, by
passing URLs to datasets rather than the datasets themselves,
experiments can be run by other institutions while still
respecting the Intellectual Property rights of the dataset’s
source.

RSSE will work in a similar fashion to RSS (Really Simple
Syndication), with some exceptions. As such, a researcher
or automated utility would generate an XML file using
RSSE tags and serve it over the HyperText Transfer Protocol
(HTTP). Such an XML file would contain the project’s title, a
brief description of the project itself or changes made recently,
several URLs, and checksums for the relevant URLs. Each
URL should usually refer to a datasets involved during the

course of research. One possibility, however, is that some of
the URLs could refer to source code or compiled Java classes,
which would, in turn, be executed locally to verify the results
of the computation. When an XML file containing RSSE data
is posted, client programs could proceed to download the
file, parse its contents, then perform a predetermined set of
actions, such as downloading all of the datasets and source
code involved in the remote experiment. For a graphical
representation of the data transfers involved, see figure 1.
(figure 1)

II. PREVIOUS WORK

RSSE draws primarily off of the existing RSS standard[6].
Due to its flexible nature and widespread use, RSS has already
utilized as a basis for distributing information to research
librarians in an organized fashion[2]. A similar system fea-
turing a dedicated message and client-based infastructure was
implemented to distribute climactic data, however it did not
explicitly use RSS, rather it directly exposed a database to a
network[3].

III. IMPLEMENTATION

A. Implementation History

For this project, a reference implementation of the RSSE
reader and file generation utility were written. As RSSE will
be an open standard, the implementation discussed here exists
solely as a reference for other future implementers to follow.

The first stage of the implementation was considering what
tags would be acceptable for each RSSE file. These tags are
listed in Table 1. The tags were determined after considering
the minimum set of data necessary to represent a message.
The most important tags involved are the dataset tag, the
checksum tag, and the checksumtype tag. The dataset and
checksum tags are self explanatory. The checksumtype tag will
contain a string value representing the hashing algorithm used
to generate the checksum on the server’s side.

The second stage was the implementation of the RSSE
reader program. This application was implemented before the
RSSE message generation program because of the relative ease
in manually writing RSSE files as opposed to manually reading
RSSE files. Upon starting, a command line specification was
drawn up based on all of the tags and operations expected of

2

the program. The command line interface was implemented
first, due to the ease in doing so. Command line options
are not included here as it should only be necessary for
future implementations to utilize the base set of RSSE tags as
opposed to implementing full compatibility. This was followed
by the implementation of a GUI, which extended the features
of the command line interface.

Once the graphical component of the RSSE Reader was
complete, work started on the RSSE Generator. Because all of
the features of RSSE were fairly stable by this point, the RSSE
generator was far easier to implement. Unfortunately, due to
time constraints, the generator does not yet have scripting
support, however that has become a priority in the near future.

While each program is currently stable enough for general
use, there are some UI elements that do need improvement
due to their obtuse or erratic behavior. The most obvious of
which is the difference in graphical styles between the reader
and file generation utility.

Upon completing the first few revisions of the RSSE refer-
ence implementation, the project was demonstrated to a group
of machine learning researchers. Based on their suggestions,
the RSSE version 0.03 specification was drawn up with several
enhancements in the form of four new tags and three new sets
of attributes. These new tags should enable both researchers
and end users to benefit from increased tailoring to various
conditions and systems. The new features are mentioned in
separate tables. Upon starting work on this version of the
specification, it became very clear that each version of RSSE
would in the future cause rendering and generation problems
on prior and future versions of the RSSE reference implemen-
tation. Because of this, the <rsse> tag now carries an attribute
specifying the expected minimum version code necessary to
render a given RSSE message. The version encoding scheme
is elaborated in Table IV.

B. Reasons For Using The Technologies Used

While doing the project, it became clear that it may be
necessary at some point to justify the use of Java and XML
as the primary language and data framework of the application,
respectively.

Firstly, Java was selected as the primary implementation
language due to its feature-set. Java has extensive support
for reading and parsing XML files, which proved invaluable
for the project as a whole. Furthermore, Java provides easy
to use networking and graphical user interface APIs, which
contributed to the quick implementation of the project. Finally,
the project’s code should be easily readable to a wide array
of programmers due to the similarities in syntax and usage
between Java and other programming languages.

XML was selected mostly because it is very easy for
humans and computers alike to read and parse. By using plain-
text instead of binary for messages, it allowed the developer
to write test messages to pass to the reader before the file
generation utility was complete. Furthermore, while it was not
a clear focus in the beginning of the project, XML allows for a
significant level of complexity and flexibility, which allows the
RSSE standard to expand easily in the future. In the future, it is

likely that future implementers will write their own messages
in order to test their RSSE reader applications.

Fig. 1. The RSSE Reader Program

Fig. 2. The RSSE File Generation Program

Fig. 3. An early build of the RSSE Updater

C. Interface and Design

While the graphical user interface is in a very early devel-
opment stage, it is complete enough to be shown here. Please
refer to Fig. 1 for an example configuration of the Reader,
and Figure 2 for an example configuration of the Generator.
In both programs, there are clearly defined lists of values to be
modified and modifier buttons either on top of the lists or to

3

their side. This was done to associate the various modifiers
with the data involved, which should hopefully lend itself
to usability. The menu layout is very sparse, as most of the
functions encountered in the program are represented by the
buttons present. There are very few dynamic UI elements in
order to promote portability to low-power devices and older
operating systems. By providing unambiguous functions, the
RSSE reference applications should be very easy to learn.
Overall, this design aesthetic should prove helpful for the
purposes of providing a reference implementation from which
other implementations of the RSSE standard can be derived.

Tag Tag Value
<rsse> Tag used to denote an RSSE file.
<message> Tag used to mark the start of a message.

This allows for there to be more than one
message in each file.

<title> The title of the project.
<description> The project’s description.
<link> A website to be visited by the user. Could be

used to direct clients to more information.
<dataset direction=“in”> Represents a dataset. The direction attribute

is used to inform the user as to whether
the dataset was used in computation (value
“in”) or generated as the result of computa-
tion (value “out”).

<checksumtype> Represents the type of checksum to generate
and check.

<checksum> Represents an individual checksum. Will be
associated in the order of appearance of
datasets.

TABLE I
TAGS IMPLEMENTED BY THE RSSE REFERENCE SOFTWARE

Tag Tag Value
<update url=“url”> Tag that could be used to send updates to

the reader. Url attribute is used to mark the
URL of the update. The tag will contain the

<license> Tag that could be used to distribute exe-
cutable code if implemented.

<minspec> Tag representing the minimum specifica-
tions to run software bundled with a mes-
sage.

<compilable type=“type”> Tag that could be used to distribute code
with special compilation requirements.
TABLE II

TAGS ADDED IN RSSE VERSION 0.03

IV. CHALLENGES

While writing the checksumming portion of the program, it
became very clear that Java’s default IO functions were too
slow for the task. While it has not yet been implemented,
the project will eventually add support for Java’s NIO (Non-
blocking IO)[1], which should provide a high performance
framework for checksumming operations. Another challenge
encountered was that of determining how checksums should
be transmitted, as it is difficult to parse multiple attributes
in each tag. This problem was solved by associating each
checksum tag with dataset tags in the order that they appeared,
however this is more of a short-term solution that may require
the implementation of a complete XML parser within the
code. One of the clearest challenges is deciding on which tags

Attribute Tag Description
pdflatex <compilable> Allows for the inclusion of LATEX

documents.
makefile <compilable> Allows for the distribution of projects

utilizing makefiles.
javajar <compilable> Allows for the distribution of Java Jar

files.
executable <compilable> Allows for the direct distribution of

executable files. The reference imple-
mentation will never allow these files
to execute without a prompt.

gpuarch <minspec> Allows for researchers to specify dif-
ferent GPU architectures, such as Ke-
pler or GCN.

cpuarch <minspec> Allows for researcers to specify a
CPU architecture for specific opti-
mizations.

cputype <minspec> Allows for researchers to specify a
specific type of CPU to be used. Only
for heavy optimizations.

corecount <minspec> Allows for researchers to specify a
minimum number of cores to com-
fortably run multithreaded software.

minram <minspec> Allows for researchers to specify a
minimum amount of RAM as a float-
ing point number of gigabytes.

minstorage <minspec> Allows for researchers to specify a
minimum amount of free hard drive
space as a floating point number of
gigabytes.

osfamily <minspec> Allows for researchers to specity the
intended operating system family for
their software. This could be used
to prevent non-POSIX operating sys-
tems from attempting to compile the
software included.

TABLE III
ADDITIONAL ATTRIBUTES IMPLEMENTED IN VERSION 0.03

RSSE version RSSE Tag
v0.01 (Depreciated) <rsse>
v0.02 <rsse>
v0.03 <rsse version=”3”>
(Future releases) <rsse version=”(Version number*100)”>

TABLE IV
THE RSSE VERSION ENCODING SCHEME.

should be added to each version of the RSSE specification,
as it involves several decisions as to which features would
be easiest to implement, as well as which features would be
best for end-users. Overall, accepting suggestions from others
proved to be very beneficial to the project as a whole.

V. APPLICATIONS

RSSE has the potential to become a very valuable tool
for researchers, especially those who wish to use commercial
or otherwise difficult to distribute datasets. While RSSE is
intended to be used primarily by a machine learning and
computer vision audience, it has the potential to be used for
scientific research, namely in peer-review. As such, RSSE
need not be constrained to just distributing datasets. It has
the potential to distribute papers, code, or even precompiled
binaries to remote computers for independent verification of
results. While it is not the intent of the project, it can be
used to assist with distributed computing with only minimal
modifications.

4

Feature or Tag Information
Automatic Updates The reference RSSE implementation cur-

rently includes a very basic update utility.
In the future this utility will be improved
and expanded.

Compilation and Execu-
tion Support

In its current state, the RSSE reader can
only download executable or compilable ob-
jects from remote servers. Future revisions
will allow for proper compilation and exe-
cution of RSSE messages.

System Requirement
Checking

The RSSE reader is currently incapable of
checking system requirements. In the future,
support for this will be added.

Merge Checksum and
Dataset

Merging the dataset tag and the checksum
tag would streamline the distribution of
datasets.

Improving Checksum Per-
formance

Checksumming in the file generation pro-
gram is unacceptably slow.

Implementing more Min-
spec Tags

The minspec tag list is currently somewhat
incomplete.

Implementing Local
Caching

One of the long-term goals of this project is
to develop a caching system to avoid several
of the problems in distributing datasets.

Implementing the RSSE
Executor

RSSE will be functionally divided between
the Manager (what the reader is now) and
the Executor, which will fetch cached data
and try to process it.

Splitting the Reader The current RSSE Reader application is
currently insufficient for caching and the
constant update cycle needed by real-world
researchers. As such, it will be split into two
programs: The RSSE Reader and the RSSE
Manager. The RSSE Reader will act as a
graphical configuration utility for the RSSE
Generator. As such, most of the features of
the Reader will be merged into the Manager.

Updating Scripting Sup-
port

The RSSe file generator has great potential
to be scripted, especially in providing auto-
matic rapid updates to end users.

TABLE V
FEATURES TO BE IMPLEMENTED IN FUTURE RELEASES OF RSSE

Some clear distinctions need to be drawn between the RSSE
project and RSS, however. Its focus on academic pursuits
should be preserved and remain a primary goal. As such, other
applications, such as distributing newsfeeds or non-research
related data should be discouraged to avoid feature bloat. Such
feature bloat would make implementing additional readers and
file generators significantly more difficult than the standard is
designed to allow. However, other implementations should be
encouraged to deviate somewhat so that additional features can
later be brought into the mainstream RSSE specification.

VI. SUMMARY AND CONCLUSIONS

Provided that the RSSE project becomes widely adopted, it
will provide a clean, easy to use, and rapid means by which
researchers can share data. It has been designed with a clear
emphasis on having low barriers to entry. These low barriers
to entry should allow RSSE to become a de facto standard
in research and communication. Given such status, other
implementations of the reader and file generation programs
would likely be written with more features than could be
implemented here. Such implementations can be expected to
include features specific to various fields, such as some peer
review system for scientific research.

VII. ACKNOWLEDGEMENTS

I would like to thank Dr. Terrance Boult for proposing
the original idea for RSSE, as well as the machine learning
researchers who demonstrated a need for this software. I would
like to thank the NSF for providing funding for the REU
research program.

REFERENCES

[1] File i/o (featuring nio.2). http://docs.oracle.com/javase/tutorial/essential/
io/fileio.html. Accessed: 2014-07-03.

[2] Alexia D. Estabrook and David L. Rothma. Applications of rss in health
sciences libraries. Medical Reference Services Quarterly, 26(sup1):51–68,
2007. PMID: 17210549.

[3] Hannes Grobe, Michael Diepenbroek, Nicolas Dittert, Manfred Reinke,
and Rainer Sieger. Archiving and distributing earth-science data with
the pangaea information system. In DieterKarl Ftterer, Detlef Damaske,
Georg Kleinschmidt, Hubert Miller, and Franz Tessensohn, editors,
Antarctica, pages 403–406. Springer Berlin Heidelberg, 2006.

[4] Gerald Schaefer and Michal Stich. Ucid: an uncompressed color image
database, 2003.

[5] David A. Shamma. News: One hundred million creative commons flickr
images for research. http://labs.yahoo.com/news/yfcc100m/. Accessed:
2014-07-03.

[6] UserLand Software. Rss 2.0 specification, 2002.

Learning Patterns of Mobile Interface Design

George C. GUVERNATOR V
The College of William and Mary

Williamsburg, Virginia
gcguvernator@email.wm.edu

Abstract—Nothing for now. We’ll write our abstract last.

I. INTRODUCTION

Interface design is a crucial element in any software
project. Graphical interfaces allow for more intuitive human-
computer interaction but can challenge even the most skilled
developers as they take on the additional responsibilities of
a designer. In the world of mobile applications, where many
competing implementations of an idea are available to users,
design can play a key role in a user’s choice of application.
Additionally, limited and varying screen sizes, touch-based
interfaces, and limited resources all challenge the mobile in-
terface designer. It is our observation that, unfortunately, some
developers fail to spend ample time designing Graphical User
Interfaces (GUIs). This is especially true in academia, where
many of the most technically correct and well-implemented
software projects falter in this area, considering GUI design
an overly costly afterthought. In mobile applications, this can
mean that not all screen sizes, input methods, accessibility fea-
tures, and other mobile-exclusive considerations are accounted
for. As a result, developers lose many potential users from
otherwise well-written and well-executed projects.

Mobile application development presents unique challenges
beyond those faced when developing software with more tra-
ditional keyboard and mouse interfaces. On mobile platforms,
user interface design poses the unique challenge of restricted
screen space with respect to more conventional desktop or
console platforms and therefore has a greater influence on the
overall usability of the application. Additionally, developers
must keep in mind the variety of devices of different size
that their applications will run on. An interface built for a
15 by 10 cm tablet, for example, may not scale well to a 9
by 5 cm smartphone. Elements designed to be tapped on the
larger screen by human fingers or styli would become more
difficult to accurately activate on the smaller screen. Another
complication to developers are extensions to the platform’s
standard user interface, such as those used for accessibility
or universal access by users with physical disabilities. Finally,
fragmentation on the Android platform causes design and de-
velopment bugs, both from devices running different versions
of the Android platform which support different graphical
layout components, and from a variety of vendors building
their devices differently. The problem of Android device and
version fragmentation are discussed by Han et. al. [1] and
Degusta [2].

This research funded by a grant from the National Science Foundation
(1359275).

Facing these additional challenges of mobile development,
it is therefore important to understand both how mobile ap-
plications are designed and which identifiable design patterns
users prefer. The former can be accomplished given access
to an application’s source code, and the latter is theoretically
possible by scraping user ratings (both long-form text reviews
and one- to five-star numeric ratings) from Google Play, the
officially supported Android application repository. Given the
unique challenges of the mobile environment discussed above,
we assert that design is a significant factor reviewers consider
when rating an application. While many reviews center around
program functionality and stability, we believe there is enough
weight placed on design to show clear trends and allow for
correlative measurement.

In this research, we analyze the GUI design of a variety
of Android applications, allowing us to gather data and create
a characteristic model. We evaluate correlations between the
gathered design data and reported user experiences, such as
comments and ratings, as well as other potentially confounding
variables found in the application’s metadata from the appli-
cation repository.

To accomplish this, we scrape Android source code from
the F-Droid Web repository1 using a tool we developed called
fdscrape.2 Package names found with the source code on F-
Droid are also searched on Google Play, a non-free Android
application repository, and metadata such as user ratings,
comments, popularity, and size are scraped and associated with
each application. The combined source code and metadata,
collectively the F-Droid corpus, is run through a program
we have developed called AGUILLE.3 This tool analyzes the
structure of GUI markup language in the source code and
extracts and counts the individual elements used to construct
the interface, analyzing and combining data points to prepare
for machine learning analysis.

Finally, the analysis of AGUILLE and metadata found with
fdscrape are combined in a machine learning workflow in
Weka. The workflow leverages the power of the M5 model
tree to generate explainable branches and decision points that
are applied in an ordered hierarchical structure to determine
a potential rating for future applications. This is improved by
analyzing each application category separately and building
separate models for those categories with enough applications
to make valid predictions. This categorical discretization is a

1F-Droid can be accessed on the Web at https://f-droid.org/.
2Fdscrape is licensed under the GNU General Public License (version 3)

and is available on the Web at https://github.com/qguv/fdscrape.
3AGUILLE is licensed by the GNU General Public License (Version 3) and

is available on the Web at https://github.com/qguv/aguille.

https://f-droid.org/
https://github.com/qguv/fdscrape
https://github.com/qguv/aguille

key part of our experiment, see section IV on the following
page.

A summary of specific results should go here. It will

mirror the summary that will end up in the conclusion.

Further development could turn the predictive model into
a suggestive one. The models generated by the framework
described in this research could be a crucial addition to “In-
terface Builders,” [3] graphical applications designed to help
developers create graphical interfaces. Developers would have
a new, powerful tool suggesting subtle changes to their design
in order to better emulate the most popular and successful
graphical interfaces available today.

The main contributions of this research are as follows:

• Development of a framework of tools to gather layout
information of Android applications (section III)

• An empirical study correlating Android GUI design pat-
terns and the reported quality user experiences (section IV
on the following page)

• Analysis of recurring design patterns and trends in Android
GUI design (section V on page 4)

• Development of a predictive model for mobile GUI design
(section IV-B on page 4)

II. BACKGROUND

This section will be expanded to better explain where

our research fits in the field of related work discussed in

section VI on page 5.

Research on learning design patterns [4], [5] proves useful
when designing a predictive machine learning workflow. Both
Neural Networks and vanilla Decision Trees are discussed and
implemented in [5].

We began by correlating specific features and ratings
manually using straightforward linear regression in order to
test different weightings of features. Next, random forests
were used to gain insight on the sorts of decision points that
regression and model trees produce. We eventually settled on to
the M5 model tree to firm up final results and to allow trends to
be explained and described in human-friendly decision points
rather than difficult-to-describe coëfficient models or more
opaque random models.

A. Choosing Android

Though the concepts presented in this paper are applicable
to any graphical environment, we have chosen to work with the
Android mobile platform due to both the unique challenges of
a mobile environment discussed in section I on the preceding
page and the uniformity and availability of application source
code.

We feel the concepts presented in this paper would be
most advantageous to mobile developers, as user ratings,
our evaluative metric, can directly influence an application’s
ultimate success or failure. Android users must often choose
between similar implementations of the same tool. The Google
Play store in turn provides a system with which users can
rate applications and post feedback for developers and other
potential users. These user ratings help Android users to
narrow down their choices in a vastly competitive market.

Android is also ubiquitous among mobile device users.
The popularity of the platform continues to grow as new
users and developers adopt Android as their primary mobile
platform. With over 1.3 million4 Android applications on the
Google Play store at time of writing, the popularity of the
Android platform has provided us and will continue to provide
other research teams with ample data to search for significant
correlations and generalizations.

Finally, the somewhat constrained GUI design framework
in the Android platform (Android XML) allows for relatively
straightforward parsing of the application’s graphical layout
without needing to peek into the application’s logic.

Because of these unique properties of the Android plat-
form, we believe mobile applications will benefit most from
the preliminary results presented in this paper.

III. EXTRACTING DESIGN ELEMENTS

Before we can begin evaluating and correlating patterns, we
must first collect information on Android GUI design. Since
Android developers define graphical layouts in source code, we
decided to gather and interpret source code in order to gather
data about Android GUIs. We chose the free and open-source
Android software repository F-Droid as a source for Android
source code.

After gathering source data, we must extract the parts of the
source code pertaining to graphical layouts. We then analyze
those layouts to determine what built-in graphical elements the
developer chose to use in designing the application and in what
quantity and proportion.

After all layouts of all available applications in the reposi-
tory have been analyzed, the results are fed to a machine learn-
ing algorithm to make generalizations about which elements
affect others, which best predict ratings, and which carry little
meaning in the context of this study.

Finally, the performance of this machine learning system is
analyzed, and the workflow is tweaked to attempt to improve
prediction and correlation both between elements and against
user ratings.

A. Dataset Acquisition with fdscrape

We have developed a program (in Python) to enable mass
retrieval of Android source code to mine. We use F-Droid,
a software repository containing binaries and source code for
1,145 free and open-source Android applications. The majority
of these applications are also available on the official Android
application repository, the Google Play store.5 Because of this,
we have downloaded all available applications and their source
code from F-Droid as well as Google Play ratings and metadata
for the same applications, storing the data for analysis in the
machine learning step.6 This data is stored with the source
code of each application.

4According to Appbrain Stats, a Google Play metrics service. Visit
http://www.appbrain.com/stats/number-of-android-apps

for the latest statistic.
5The Google Play store can be accessed on the Web at

https://play.google.com/store.
6To accomplish this, we have cross-checked Java package names against

both F-Droid and the Google Play store.

http://www.appbrain.com/stats/number-of-android-apps
https://play.google.com/store

We originally chose to scrape only rating information from
Google Play. It was decided, however, that by saving more
of the metadata provided by Google Play and developers,
better predictions could be made by accounting for variables
beyond the scope of design. This permits meta-analysis of
our hypothesis, i.e. we can decide how much design affects
ratings and how much predictive accuracy to expect from our
model. We gather this data in order to compensate for any
confounding correlation that Google Play metadata may have
on determining rating.

Specifically, the developer-chosen application category
(e.g. Weather Application, Productivity Application, Action
Game, Puzzle Game, and others in table I) provides an effec-
tive way to analyze groups of applications at a time. It is our
hypothesis in RQ 1 that separate analysis within application
categories will yield more meaningful results. This has the
potential to greatly improve the accuracy of our predictive
algorithm and allows us to better understand what “good
design” entails in certain domains. For example, the same
elements that constitute good design for an action game might
exemplify bad design for a news application.

After omitting applications that were not on the Google
Play store, had no ratings, or did not host source on the
main F-Droid website, we collected the source code of 894
applications to build our dataset.

B. Tag Lexing & Extraction with AGUILLE

We have developed AGUILLE, the Android Graphical User
Interface Lazy LExer, to perform the Android source analysis
we originally hoped GUITAR would accomplish. The tool takes
in an application’s source code, finds the relevant Android
XML structure, and parses that structure into native Python
objects. Using these objects, AGUILLE calculates the frequency
with which each XML tag, or element, occurs in the appli-
cation. The graphical design of the application, therefore, is
reflected in the developer’s choice of graphical elements.

These frequencies are collected in a CSV file, along with
the metadata gathered with fdscrape. Lots of the scraped infor-
mation can be cached to speed up parses of entire repositories.

The tool is designed such that, should more sophisticated
calculations prove necessary, separate sub-commands could
easily be added. AGUILLE is open-source; anyone may extend
it by adding further subcommands or modifying its current
behavior.

C. Machine Learning with Weka

We make use of the Weka 3.7 Knowledge Flow envi-
ronment to create a machine learning workflow. Data from
AGUILLE is loaded separately by category. We drop categories
which contain less than one percent of all applications mined,
leaving the 20 categories described in table I.

IV. EMPIRICAL EVALUATION

The design of our experiment is such that two chief
research questions (RQs) may be addressed:

Applications

Category Name Number Percent

‘Tools’ 278 33.3%
‘Productivity’ 88 10.5%
‘Communication’ 67 8.0%
‘Personalization’ 34 4.1%
‘Books and Reference’ 32 3.8%
‘Game Puzzle’ 30 3.6%
‘Education’ 29 3.5%
‘Media and Video’ 29 3.5%
‘Music and Audio’ 25 3.0%
‘Entertainment’ 24 2.9%
‘Transportation’ 18 2.2%
‘Travel and Local’ 18 2.2%
‘Finance’ 17 2.0%
‘Game Arcade’ 17 2.0%
‘Health and Fitness’ 17 2.0%
‘Lifestyle’ 15 1.8%
‘News and Magazines’ 15 1.8%
‘Social’ 15 1.8%
‘Photography’ 13 1.6%
‘Libraries and Demo’ 11 1.3%

Total: 20 categories 792 94.7%

TABLE I. APPLICATIONS IN EACH MINED CATEGORY

1) What sort of design do applications have in common?
What sort of trends emerge when analyzing entire repos-
itories of applications?

2) Does separate analysis of applications by Google Play
category improve the quality of our predictive algorithm?
Does such separation give more meaningful generaliza-
tions when explaining the output of our decision tree?

Our goal in evaluating the accuracy and quality of our
predictions is twofold: to attempt to improve the ability of
our algorithm to predict user ratings and to make conclusions
how about individual elements affect user perception of an
application.

When evaluating the performance of our machine learning
workflow, we are looking for statistically significant correla-
tions with performance better than the 5–10% correlation we
see with naı̈ve sample algorithms.

We cannot expect anything near perfect prediction, as more
goes into a user’s choice of rating than design. We must
therefore focus on explainable output, such as that from a
decision tree, to try to explain the influence of design on
ratings.

A. Experiment Design

To be able to learn which design elements lead to the
best applications, we need a group of factors, or heuristic,

to evaluate, as well as a metric for determining what con-
stitutes a “good” application. This study uses the frequency
of use of Android XML tags in graphical layout source code
as a heuristic. Because the Android framework comes with
a rigidly-defined set of elements, XML tag (and therefore
element) frequency allows us to point to very specific design
choices to explain findings when learning correlations.

Android also allows developers to define their own
tag elements, but because scraping these developer-defined,
application-specific tags and properties involves parsing Java
logic and rendering the elements, this added complexity is
somewhat beyond the scope of this project. The application-
specific nature of these tags also means that they will most
likely not be of use when attempting to make correlations
between applications.

Although it may be possible to learn a more complex
heuristic over time, it would increase overhead and likely
introduce excessive complexity into our system. At this stage
of research, it is wiser to rely on the pre-designed elements
available to all Android applications to potentially determine
the quality of GUI design. We have found that element
frequency is sufficient to establish a statistically significant
correlation between the elements themselves and the evaluative
metric, Google Play ratings.

Potential alternative evaluative metrics could include un-
install rate and frequency, certain statistical functions on
the cumulative body of Google Play user ratings, or cross-
referenced reviews from established news sources. Google Play
ratings were trivial to scrape and analyze, as the data is publicly
available, so these public ratings serve as an initial metric
we use to establish the overall quality of an application. In
our algorithm, we can weigh the rating’s relevance depending
on how many users rated the application, a metric we also
obtained from the Google Play store. We might be more
confident in a metric to which many users contributed.

In early models, we found that the M5 model tree first
branched based on the amount of user ratings on Google Play.
The sub-trees after this split did not clearly resemble each
other; the branch reached by applications with few ratings gave
a counter-intuitive model, while the branch for applications
with a more substantial amount of ratings weighted elements
as we would expect. This suggests that the model’s predictive
accuracy increases substantially when more rating data is
available, as we would expect.

Our group of independent variables, the frequency of each
Android graphical element, will reflect the different propor-
tions of interactive Android widgets with respect to each other.
These interactive widgets are built-in to the Android platform
and include buttons, check-boxes, radio buttons, images, and
text. Additionally, these widgets can appear in different views,
all of which have different ways to specify how the widgets
will be laid out on the screen. All of these views and widgets
are part of our element count.

Of course, GUI design is hardly the only factor users
consider when rating a program. It is important to consider
major confounding variables (viz. quality of functionality,
stability, the ability of the program to solve a real problem)
and integrate Google Play’s qualitative long-form paragraph
review system. A naı̈ve but effective way to acknowledge

applications with known performance issues (and therefore
identify those applications whose low ratings have little to
do with design) involves searching for key terms occurring
abnormally frequently in text reviews. See table II for a list of
key words and phrases that could indicate poor performance
rather than poor design. Such key words and phrases are
likely to indicate that low ratings are due to factors outside
the realm of interface design. After gathering other metadata,
fdscrape counts the frequency of these key words and phrases
with respect to the available body of reviews. The calculated
frequencies of these words are fed into the machine learning
algorithm along with the tag frequency count from AGUILLE
and the metadata from fdscrape.

If our algorithm were to put significant weight on these
terms rather than the intended features in our heuristic, we
can safely chalk these up to poor application performance.
This gives a decision tree the option to discard obviously poor-
quality applications in an early decision node in order to focus
on the design factors we are interested in analyzing. If a more
sophisticated method than calculating tag frequency proves
necessary, we could take a naı̈ve Baysean approach, analyzing
the probability rather than the frequency of key phrases in
known or exemplary good and bad applications.

By acknowledging applications which have known issues
unrelated to design, observed ratings of the remaining appli-
cations in our dataset will better reflect design quality.

Key Phrase Possible Conclusion

‘incompatible’ Could indicate versioning or device com-
patibility issues for certain users.

‘uninstall’ Could indicate frustration with the appli-
cation or the inability for certain users to
un-install pre-installed software.

‘crash’ Could indicate stability issues.

‘slow’, ‘lag’ Could indicate resource overloading, fre-
quent Internet requests, or poor data struc-
ture implementation.

‘black screen’,
‘white screen’,
‘blank screen’

Could indicate initialization problems.

TABLE II. KEY WORDS AND PHRASES SUGGESTING POOR
PERFORMANCE

B. Experiment Results

Results would go here, once we decide what output of

which machine learning workflows to include.

V. DISCUSSION & CHALLENGES

The single most significant setback to this project has
been the failure of the Android fork of the GUITAR tool. We
have been forced to develop an in-house tool from scratch
in its place. It has taken weeks to develop AGUILLE to a
usable and dependable state. While new developments such
as those detailed in section IV-B show promising correlation

and prediction, preliminary results with primitive data did not
show expected trends. Specifically, before AGUILLE and our
machine-learning workflow became capable of more sophis-
ticated data transformations, the sample heuristic (viz. mean
amount of buttons per layout in each application) correlated
against average rating showed no statistically significant re-
sults.

After improvement to AGUILLE and the addition of meta-
data and tag phrases, statistically significant results surfaced.
Category discretization provided even better results, as dis-
cussed in section IV-B on the preceding page. We believe
further probing into consequential design decisions and fur-
ther sophistication of AGUILLE and the design heuristic will
continue to render reportable, statistically significant results.

For example, a further step up in sophistication involves
a report of what percentage of all available screen space is
occupied by widgets.

VI. RELATED WORK

Available research into the overlap of the machine learning
and user experience fields tends to concentrate on either GUI
testing or programming interface (API) design rather than
using machine learning to gain insight on the GUI design
patterns users favor. Much available research that does indeed
combine machine learning and user interface design aims
to design front-end applications for the non-statistician that
enable powerful data mining with little knowledge of the
implementation of machine learning algorithms.

Arlt et. al. [6] have written a chapter on various different
methods of parsing and testing GUIs. The research of Nguyen
et. al. [7] presents a tool called GUITAR to parse the structure
of an application’s GUI in order to generated automated tests
for that application. We were originally hopeful that GUITAR
or one of its derivatives could prove invaluable in gathering
GUI data to mine. Unfortunately, the Android-specific fork of
GUITAR has not been updated since the release of Android
2.2 and is therefore not compatible with the majority of
applications on F-Droid. Although much existing research [6],
[8], [9] makes use of GUITAR, our GUI-parsing tool had to be
developed from scratch as discussed in section III-B on page 3.

The approach posited by Yang et. al. [9] to programmati-
cally generate GUI models in mobile applications does not use
GUITAR in its entirely; rather, it analyzes GUI events using
GUITAR and calls these events directly on the application.
Similarly, Amalfitano et. al. [10] showcase “an automated
technique that tests Android apps via their [GUI].” Although
writing a GUI parser from scratch may have slowed down
development, using just one tool to rip the GUI of an Android
application where other teams have used many has helped to
simplify the process of gathering GUI data.

The research of Shi et. al. [4] and Ferenc et. al. [5] discusses
ways to better understand source code design patterns in Java
and C++, respectively. Our research aims to discover design
patterns in graphical interfaces, not implementation patterns
in source code, setting our research apart from other pattern-
based learning research.

Lieberman’s research [3] discusses the concept of an
“Interface Builder,” a graphical tool assisting a developer in

designing a user interface. He discusses Programming by

Example, where the developer “takes on the role of operating
the user interface in the same manner as the intended end-user
would, interacting with the on-screen interface components to
demonstrate concrete examples of how to use the interface.”
The application then learns and generalizes the developer’s
input to guess at the desired functionality. This research may
prove invaluable to future research where the “smart interface
builder” discussed above is being designed.

Papatheodorou’s research [11] focuses chiefly on using
machine learning to learn over time the sort of interface the
user may expect and to adapt to that knowledge. It may be
possible to use aspects of [11] to generalize the expectations
of a range of users or potential users during the design pro-
cess rather than after deployment, saving developers valuable
time to test and improve their software. Our work, however,
proposes a different approach to interface learning, requiring
no such lengthy data collection process from users. We learn
from freely available data, speeding up empirical research
and eschewing the technical challenges and privacy concerns
inherent in collecting data directly from users.

A promising, unique opportunity to combine the machine
learning and user experience fields is missing in available
research. We hope to open the door for future research to use
machine learning and data mining to analyze a wealth of exist-
ing information about user interfaces. This will help developers
of all platforms to better understand their users’ preferences
and peeves not only in graphical or mobile environment design
but also in the design of overall user experience. With more
intuition on user propensity and preference, developers can
design more natural, intuitive software.

VII. FUTURE WORK

Our model would determine the likely rating for a graphical
interface given the analyzed source of the application. Given a
prototype GUI designed by a developer in an interface builder,
the model could guess at a rating for the design based on trends
it found in other applications in the same category.

It could also be possible to use a genetic algorithm to
determine better positions and attributes for the interface
elements in the GUI. The algorithm would weigh a high rating
(as determined by the model) against changing the developer’s
design as little as possible, creating incremental changes to
generate potentially optimized versions of the developer’s
original layout.

VIII. CONCLUSION

We have discussed a method for learning the correlation be-
tween certain elements of GUI design, which we will analyze
with AGUILLE, and Google Play ratings, which we have mined
from the Web. This is improved when factoring in Google Play
metadata and discretizing applications by category. Because
of the importance of optimized, intuitive interface on smaller
devices, developers will benefit from insight from a model that
attempts to explain user behavior and preference.

A summary of specific results should go here. It will

mirror the summary that will end up in the introduction.

We are confident that further (perhaps automated) probing
will continue to reveal interesting relationships between dif-
ferent elements. After learning our model, we could predict
the quality of future interfaces. With future refinement, the
algorithm could suggest interface improvements by means of
a genetic process in an interactive interface builder.

REFERENCES

[1] D. Han, C. Zhang, X. Fan, A. Hindle, K. Wong, and E. Stroulia,
“Understanding android fragmentation with topic analysis of vendor-
specific bugs,” in Reverse Engineering (WCRE), 2012 19th Working

Conference on. IEEE, 2012, pp. 83–92.
[2] M. DeGusta, “Android orphans: Visualizing a sad history of support,”

2011.
[3] H. Lieberman, “Computer-aided design of user interfaces by example,”

in Computer-Aided Design of User Interfaces III. Springer, 2002, pp.
1–12.

[4] N. Shi and R. A. Olsson, “Reverse engineering of design patterns from
java source code,” in Automated Software Engineering, 2006. ASE’06.

21st IEEE/ACM International Conference on. IEEE, 2006, pp. 123–
134.

[5] R. Ferenc, A. Beszédes, L. Fülöp, and J. Lele, “Design pattern min-
ing enhanced by machine learning,” in Software Maintenance, 2005.

ICSM’05. Proceedings of the 21st IEEE International Conference on.
IEEE, 2005, pp. 295–304.

[6] S. Arlt, S. Pahl, C. Bertolini, and M. Schäf, “Trends in model-based
gui testing,” Advances in Computers, vol. 86, pp. 183–222, 2012.

[7] B. N. Nguyen, B. Robbins, I. Banerjee, and A. Memon, “Guitar: an
innovative tool for automated testing of gui-driven software,” Automated

Software Engineering, pp. 1–41, 2013.
[8] C. Hu and I. Neamtiu, “Automating gui testing for android applications,”

in Proceedings of the 6th International Workshop on Automation of

Software Test. ACM, 2011, pp. 77–83.
[9] W. Yang, M. R. Prasad, and T. Xie, “A grey-box approach for auto-

mated gui-model generation of mobile applications,” in Fundamental

Approaches to Software Engineering. Springer, 2013, pp. 250–265.
[10] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and

A. M. Memon, “Using gui ripping for automated testing of android
applications,” in Proceedings of the 27th IEEE/ACM International

Conference on Automated Software Engineering. ACM, 2012, pp.
258–261.

[11] C. Papatheodorou, “Machine learning in user modeling,” in Machine

Learning and Its Applications. Springer, 2001, pp. 286–294.

Learning User Behavior for Mobile Test Suite
Adequacy

Cody Kinneer
Allegheny College

Email: kinneerc@allegheny.edu

Abstract—Software development for mobile devices proceeds
at a rapid pace. Software as a service, rapid development, and
agile programming means that mobile applications are released
and updated quickly. As a result, developers have less time to
test their applications and cannot completely know the effects of
a change. Existing test suite adequacy criteria are insufficient in
this quickly changing environment.

In this paper, we develop a new behavior based test suite
adequacy criterion that adapts to user interactions with an
application in the wild. We evaluate the time and space overhead
of they system and perform an empirical study analyzing existing
Android test suites according to our behavior driven criterion.
Our analysis reveals that the two test suites focused testing on
infrequently used contexts, achieving behavioral adequacy scores
from 12 to 33 percent less than the probabilistic calling context
coverage. This shows the potential for substantial improvement
in the development of test suites for mobile applications.

I. INTRODUCTION

Developers frequently use test suites, a collection of test
cases, to ensure that the component under test performs
according to specification, or to ensure that accuracy does not
change over time. A test suite’s usefulness lies in its ability
to detect problems. With the rise of software as a service and
rapid development practices, test suites must be effective in
detecting important problems quickly. However, since it is not
known beforehand where a problem will occur, determining
the adequacy of a test suite is a challenging problem.

The most common test suite adequacy criterion is structural
coverage. These criteria, such as line or block coverage seek to
maximize the amount of code exercised by a test. Since a bug
needs to be executed to be exposed by a test, maximizing struc-
tural coverage is a reasonable strategy. However, this definition
of test suite adequacy suffers from not taking into account
the importance of the structure covered. Achieving complete
test coverage in practice is most often wishful thinking, and
structural adequacy fails to provide insight into what areas
of the application are more important to test. Furthermore,
a good test should resemble the conditions under which the
application will actually be used, but structural techniques say
nothing about the realism of a test.

Another approach to test adequacy is fault-finding. This
consists of introducing faults into an application, and then
determining which tests tend to find the greatest number of
faults. Mutation testing is one such technique. However, in
practice, mutation testing speaks to the ability of a test to find
faults in a certain structure. It cannot tell us what structures
are more important to search for faults in.

With the rise of new software engineering paradigms such
as software as a service, agile, and rapid development, these
criteria fail to keep up with the pace of software development.
This is particularly true of Android applications. According to
Android’s website, there are 7 Android API’s in use [1]. The
rate of change of the Android OS itself is a testament to the
rapid development of Android applications.

These adequacy measures could be improved by taking into
account the way users interact with the application after it is
deployed. A behavior driven adequacy criterion confers two
benefits. Firstly, if the purpose of application is to be used by
a user base, then more frequently utilized components are more
important than those that are less frequently used. A problem
that occurs in a more frequent use area will affect more users.
Additionally, a test suite’s similarity to observed user behavior
favors tests that are more similar to the conditions that the
application will be exposed to in the wild.

Previous work in model-based software testing applied
Markov chain models to software testing [2], [3], [4]. These
works discuss how a Markov chain used to model software
usage could be useful for input generation, software specifi-
cation, and statistical software testing. However, they do not
address the issue of how the model should be generated, and
do not focus on test suite adequacy.

In this paper, we present a new test suite adequacy criterion
that takes into account learned user behavior in the wild. By
collecting data from users actually interacting with an appli-
cation, we learn a Markov chain that models user behavior.
This model can be continuously updated to respond to changes
in the users’ interactions. We then determine a test suites
adequacy by its similarity to the constructed user behavior
model.

We seek to determine how well test suites for Android
applications reflect real user behavior. We evaluate our tech-
nique in terms of time and space overhead for a collection of
Android applications, and evaluate the test suite adequacy of
the applications using our proposed criterion.

The contributions of this paper are therefore as follows,

• A new behavior driven test suite adequacy criterion
(section III).

• An implementation of the criterion for Android appli-
cations (section III and section IV).

• An empirical study evaluating the overhead of the
implementation (section IV).

• An evaluation of several Android applications’ test
suites using the new criterion (section IV).

II. BACKGROUND

To calculate behavioral adequacy, a technique called prob-
abilistic calling context [5] is used for profiling and a Markov
chain is used for modeling.

Profiling

Calculating a behavioral criterion requires that an appli-
cation’s behaviors be profiled. A program’s behavior can be
thought of as the collection of its function calls, which makes
profiling based on these calls a reasonable choice for modeling
application behavior.

Probabilistic calling context (PCC) is a profiling strategy
developed by Bond and McKinley [5]. PCC attempts to assign
an integer to every unique stack state. This system is useful
because it can be computed efficiently, only 3% overhead is
reported in the literature. An example of a stack state that
could be represented by PCC is shown in Figure 1. This figure
shows an example stack state inspired by the K-9 Mail email
application. First, MAIN is called, which is assigned a PCC
value of zero. Then, MAIN calls CHECKEMAIL, (hereafter, we
will use → to signify a function call). The next PCC is cal-
culated from the last PCC and the name of the CHECKEMAIL
function. Thus, the next PCC value is meant to represent the
sequence MAIN → CHECKEMAIL. If CHECKEMAIL were to
return to MAIN, then the PCC value would also return to zero.
Instead however, CHECKEMAIL calls ITERATEACCTS, so the
next PCC value is calcuated from the previous PCC value and
the next function name. When a function is called, the next
PCC value is given by

nextPCC = currentPCC ∗ 3 + currentContext

where currentContext is an integer that represents the current
context, such as a hash value of the called function name.

Markov Chains

A Markov chain is a state based system where the next
state depends only upon the current state [6]. An example is
shown in Figure 2. The nodes in the graph represent states,
and the edges represent the transition probabilities. Starting at
the MAIN state, there is an 80% chance of transitioning to the
READ state and a 20% chance of transitioning to the SEND
state.

Markov chains have been used to model expected user
behavior in model based testing [2], [4], [3]. However, these
techniques generally do not learn models from user behavior,
but reflect how the developer expects users to behave.

III. BEHAVIOR DRIVEN TEST SUITE ADEQUACY

Using PCC and Markov chains, we present a technique for
assessing a test suite’s adequacy based on how users interact
with the application being tested. Our technique for calculating
behavioral adequacy is shown in Figure 3.

First, the application is instrumented to collect data for
profiling user behavior. Because the application will be used

Stack PCC Value

main

checkEmail

0000000000

authenticate 1884906540

iterateAccts -1616488415

1994557092

Fig. 1. PCC value updating as methods are added to the stack.

main

read
0.80

send

0.20

0.10

archive
0.55

delete

0.35

1.00

1.00

1.00

Fig. 2. An example of a Markov chain behavior model inspired by K-9 Mail.

while this information is collected, the overhead incurred by
the user must be acceptably small. Additionally, the informa-
tion gathered must be useful in modeling user behavior. PCC
was chosen because it satisfies both of these requirements.
A program’s behavior can be thought of as the sequence of
functions that it calls, which makes profiling based on function
calls an appealing strategy for profiling behavior. Since PCC
takes into account the functions on the stack, it provides more
information than simply profiling based on function frequency,
while still maintaining low overhead. The instrumentation
calculates the current PCC value from the calling context,
and records each transition between PCCs. The application
is then released for use by the user base, and behavioral data
is collected in the form of these PCC transitions.

The developer then runs the application’s test suites on
the instrumented application. The transitions between PCCs

Android Device

Computer

Instrumented Application

Behavior Data

AspectJ aspect

AspectJ Weaver

Android Application

Instrumented Application

Test Suite

Analyser

Test Data

Adequecy Criterion

Fig. 3. Framework for a behavior driven test suite adequacy criterion.

observed during testing are recorded as well, giving test data
that characterizes the behavior of the test suite in terms of the
observed PCC transitions.

The user data is then aggregated and used to construct a
Markov chain where the nodes are PCC values and the edges
are the probability that a PCC value will transition into another
PCC value.

For example, suppose the data in the table below was
collected from users interacting with a simple email appli-
cation. Caller PCC represents the current PCC value, and
callee PCC represents the next PCC value. Rather than integer
representations, the names of functions on the stack are given
for explanatory purposes.

Caller PCC Callee PCC Frequency
MAIN MAIN → READ 80
MAIN MAIN → SEND 20
MAIN → SEND MAIN 20
MAIN → READ MAIN 8
MAIN → READ MAIN → READ → ARCHIVE 44
MAIN → READ MAIN → READ → DELETE 28
MAIN → READ → DELETE MAIN → READ 28
MAIN → READ → ARCHIVE MAIN → READ 44

This data would be converted to a Markov chain similar
to what is shown in Figure 2. In the example, the nodes

are function calls rather than PCC values for the sake of
explanation. For example, the ARCHIVE node represents the
context MAIN → READ → ARCHIVE. If the archive function
could be called in a different context, for example,MAIN →
SEND → ARCHIVE, that context would be represented by a
different PCC value. However, in this simplified example, each
function can only be called in one context.

For every caller PCC, there is an edge to each callee
PCC. The transition probabilities can be found by taking the
frequency of a given callee PCC divided by the sum of the
frequencies for the corresponding caller PCC. For example, for
the caller PCC MAIN, there are two possible callee PCCs. The
probability of transitioning to MAIN→ READ is 80

80+20 = 0.80.
Alternatively, the probability of transitioning to MAIN→ SEND
is 20

80+20 = 0.20.

To calculate test suite adequacy, the sum of edges in the
model observed during testing is divided by the sum of all
edges in the model. For example, consider the example Markov
chain shown in Figure 2.

If this Markov chain were constructed from user behavior,
then when the application was in the hands of users, READ is
called from MAIN 80% of the time while SEND is called 20%
of the time. If during testing we exercised MAIN → READ,

then we would have a behavioral adequacy of:

.8

.8 + .55 + .35 + .2 + .1 + 1 + 1 + 1
= .16

If instead, we tested MAIN → READ and READ → DELETE,
then our adequacy increases because we are covering more
code.

.8 + .35

.8 + .55 + .35 + .2 + .1 + 1 + 1 + 1
= .23

However, if we test MAIN → READ and READ → ARCHIVE
instead, then our adequacy increases further because ARCHIVE
is more likely to be used than DELETE.

.8 + .55

.8 + .55 + .35 + .2 + .1 + 1 + 1 + 1
= .27

This makes sense intuitively since testing more behaviors
increases the score, and testing more frequently used behaviors
further increases the score. Using this criterion, 100% ade-
quacy is achieved when every behavior observed by the user-
base is tested, and 0% is achieved when no behavior observed
in the user-base is tested.

IV. EMPIRICAL EVALUATION

To evaluate our proposed test suite adequacy criterion, we
implemented a system for calculating behavioral adequacy
for Android applications. The goals of the evaluation are as
follows.

1) Determine the time and space overhead of the online
behavioral profiling.

2) Determine the overhead associated with calculating
behavioral adequacy offline.

3) Evaluate the behavioral adequacy of existing Android
applications.

A. Experiment Design

To instrument applications, we used AspectJ because it
provides a way to quickly instrument Java and Android appli-
cations. An AspectJ aspect was written to calculate the PCC
value of the application at function calls. Only application
defined functions were considered, so Android system calls
and Java library calls were ignored. At each call, the current
PCC, the caller, and the next PCC, the callee, were stored as
a 64 bit value identifying a transition between PCC values.
The frequency of these transitions were recorded, and written
to a file upon an activity being paused, stopped, or destroyed.
This data was then sent to a desktop PC for processing. A Java
program was implemented to construct a Markov chain from
the PCC edges. The test suite under study was then executed
and the PCC edges collected on a per test basis. For structural
coverage, Android’s included EMMA tool was used.

Offline tasks were completed using a desktop running
Centos 6.5 with a quad-core 1.6GHz CPU and 16MB of
memory. User data was collected on an Asus Nexus 7 tablet
running Android 4.3 and a Samsung Galaxy SIII smartphone
running Android 4.1.1.

B. Case Studies

To conduct our evaluation, we selected several applications
from the F-Droid open source appstore. We attempted to select
well known applications with large test suites, however this
was difficult since few applications contained test suites. The
applications selected were K-9 Mail, and Github. K-9 Mail
is an email application that can connect to IMAP, POP3, and
SMTP servers to manage a user’s email accounts. Github is an
application that allows a Github user to interact with Github
on an Android device. It supports browsing repositories, com-
menting, and creating Gists and issues.

Application Files Classes Methods Lines
K-9 Mail 230 806 5671 35410
Github ? ? ? ?

C. Metrics

We evaluate runtime overhead in terms of percent change
in time. Space overhead in terms of percent change in source
code occupied space on disk. Structural coverage is given in
percent of code covered. Behavioral coverage is given as the
sum of exercised edges over the sum of all edges.

D. Experimental Results

To evaluate online runtime overhead, the benchmarks’ test
suites were executed five times, and the execution time was
measured with and without profiling instrumentation. The
average of the five trials was taken. The table below shows
the results, time is given in seconds.

Application Time Uninstrumented Time Instrumented Percent Change
K-9 Mail 4.482 10.385 132
Github 66.006 70.445 7

The large difference in percent change between the applica-
tions warrants additional investigation. A possible explanation
is that K-9’s test suite primarily tests backend code that tends
to complete very quickly, whereas Github’s test suite involves
testing UI elements, such as creating activities that is less
sensitive to the instrumentation.

To evaluate space overhead, the benchmarks binary size
was measured before and after instrumentation. Size is given
in megabytes.

Application Size Uninstrumented Size Instrumented Percent Change
K-9 Mail 2.91 3.35 15
Github 1.76 1.99 13

The size overhead between the two applications was about
the same, with both applications using around 14% more disk
space when instrumented.

To evaluate offline overhead, we measured the time needed
to build the model from user data, and determine behavioral
adequacy from the model.

To evaluate Android application test suites, we instru-
mented the benchmarks and allowed two users to interact
with the applications for one day. Afterwards, we profiled the
benchmarks’ test suites, and constructed a model from the user
data. We then calculated behavioral adequacy from the model
and test data. For comparison, we determined the structural

coverage of the benchmarks’ test suites using EMMA, and
the PCC coverage by dividing the number of PCC transitions
exercised by both the users and the tests and the number of
PCC transitions exercised by the users.

Application Behavioral Coverage PCC Coverage Method Coverage
K-9 Mail 0.00016 0.00024 7
Github 0.03824 0.04324 ?

E. Threats to Validity

The most significant thread to the validity of our evaluation
is the limited number of applications tested. The applications
selected for the evaluation may not represent all Android
applications. This problem can be alleviated by conducting a
larger study on a wider range of applications. Another threat
is the limited number of users participating in the study. The
users participating in the study may not be representative of
the rest of the user-base. The more the users interact with
an application, the more likely they are to exercise PCC
values not seen during testing, and thus decrease the score.
This means users interacting with an application longer than
normal will likely cause the behavioral adequacy to decrease.
Additionally, users interacting with the application for less time
than normal could cause the behavioral adequacy results to
be too optimistic. Alternatively, since behaviors exercised by
the test suite but not by the users are given a score of zero,
users exercising very little of the application may cause the
score to decrease. This issue can also be mitigated by a larger
experiment with many users to increase the chance that the
users represent an accurate sample of the larger user-base.

V. RELATED WORKS

Relative coverage is an alternative to traditional coverage
that takes context into account when determining coverage.
This is useful in software as a service systems where only a
portion of a larger service is used by an application. From
the perspective of the smaller application, some features the
larger service provides are not used, and thus, irrelevant. These
features do not need to be tested, and therefore should not
be considered when determining coverage. Relative coverage
excludes these unused feature from the coverage equation.

Miranda and Bertolino’s work [7] on Social Coverage is
the most similar to our work. They propose a system inspired
by relative coverage that determines coverage according to
context. Relative coverage systems rely on the developer to
select which features are relevant, while social coverage, like
us, uses observed user behavior to determine what features
are important. Social coverage collects user data and can
find similar users. The features used by these users might
be relevant to the application. These features are taken into
account when calculating social coverage.

The Synoptic system [8] also has similarities to our work.
Synoptic is a tool that can infer finite state models from reading
execution logs. Like us, they construct a model based on user
behavior. However, synoptic requires the application log states,
and is thus more suited to a high level model, whereas we
model based on calling context. Additionally, we apply the
learned model to test suite adequacy while Synoptic focuses
on analysing logs.

The Gamma system presented by Orso et al. [9] attempts
to enable remote monitoring of software after its deployment.
Gamma does attempt to address the issue of runtime overhead,
and allows for the costs of instrumentation to be shared among
users. The developer can specify what type of information they
are interested in, and the Gamma system divides the task of
collecting this information among the userbase. Additionally,
Gamma allows for its instrumentation to be modified by an
update.

Bond and McKinley [5] introduced a technique for decreas-
ing the costs of tracking a programs calling context called
probabilistic calling context. This system allows a calling
context to be represented as an integer that is easy to cal-
culate and well suited to anomaly detection applications. The
technique consists of a function that takes as input the current
probabilistic calling context and an integer representation of
the current context. It then outputs an integer representing the
current probabilistic calling context. The function produces
outputs that are uniformly distributed, so that the chance of
conflict is low, and the order of the contexts is taken into
account.

In a later work, Bond et al. [10] present a technique for
calculating the entire calling context from the probabilistic
calling context. This technique has the advantage of being
able to reconstruct the calling context offline, however, some
dynamic information is needed make a search of the context
space feasible, which requires additional overhead of 10-20%.

Elbaum et al. [11] present a study showing how software
evolution affects code coverage. The study shows how even
small changes can have a large impact. This work is similar
to ours in that we are concerned with the performance of
structural adequacy criteria in evolving software environments.

Whittaker presented a series of papers [2], [3], [4] on using
markov chains in software testing, including input generation,
software specification, and statistical software testing.

Andrews et al. [12] present a paper analyzing the usefulness
of mutation testing. The study shows that mutation testing
creates faults similar to real faults. The abc compiler provides a
way to perform AspectJ instrumentation on Android bytecode
without access to the source code [13].

VI. CONCLUSION

Android applications exist in a rapidly changing environ-
ment. Traditional test suite adequacy criteria such as struc-
tural coverage and fault finding adequacy provide insufficient
guidance to developers in such a rapid development cycle.
As an alternative, we propose a behavior driven test suite
adequacy criterion that can adapt to changes in the environment
when assessing an applications test suite. By instrumenting
behavior on applications running in the wild, a markov chain
is constructed that models user behavior. This behavioral data
is then compared with data obtained during the execution
of a test suite to determine the test suites adequacy. A case
study of two applications suggests that there is potential for
major improvement in the quality of test cases for mobile
applications. A more comprehensive empirical study is needed
to explore the technique’s run-time overhead and evaluate the
adequacy of additional application’s test suites.

ACKNOWLEDGMENT

This work is supported by NSF REU Grant 1359275.

REFERENCES

[1] Android, “Dashboards,” http://developer.android.com/about/dashboards/index.html,
Jul. 2014.

[2] J. A. Whittaker and J. H. Poore, “Markov analysis of software specifi-
cations,” ACM Trans. Softw. Eng. Methodol., vol. 2, no. 1, pp. 93–106,
Jan. 1993.

[3] J. A. Whittaker and M. G. Thomason, “A markov chain model for
statistical software testing,” IEEE Trans. Softw. Eng., vol. 20, no. 10,
pp. 812–824, Oct. 1994.

[4] J. Whittaker, “Stochastic software testing,” Annals of Software Engi-
neering, vol. 4, no. 1, pp. 115–131, 1997.

[5] M. D. Bond and K. S. McKinley, “Probabilistic calling context,”
SIGPLAN Not., vol. 42, no. 10, pp. 97–112, Oct. 2007.

[6] J. G. Kemeny and J. L. Snell, Finite markov chains. van Nostrand
Princeton, NJ, 1960, vol. 356.

[7] B. Miranda and A. Bertolino, “Social coverage for customized test
adequacy and selection criteria,” in Proceedings of the 9th International
Workshop on Automation of Software Test, ser. AST 2014. New York,
NY, USA: ACM, 2014, pp. 22–28.

[8] I. Beschastnikh, J. Abrahamson, Y. Brun, and M. D. Ernst, “Synoptic:
Studying logged behavior with inferred models,” in Proceedings of the
19th ACM SIGSOFT Symposium and the 13th European Conference on
Foundations of Software Engineering, ser. ESEC/FSE ’11. New York,
NY, USA: ACM, 2011, pp. 448–451.

[9] A. Orso, D. Liang, M. J. Harrold, and R. Lipton, “Gamma system:
Continuous evolution of software after deployment,” in Proceedings of
the 2002 ACM SIGSOFT International Symposium on Software Testing
and Analysis, ser. ISSTA ’02. New York, NY, USA: ACM, 2002, pp.
65–69.

[10] M. D. Bond, G. Z. Baker, and S. Z. Guyer, “Breadcrumbs: Efficient
context sensitivity for dynamic bug detection analyses,” SIGPLAN Not.,
vol. 45, no. 6, pp. 13–24, Jun. 2010.

[11] S. Elbaum, D. Gable, and G. Rothermel, “The impact of software
evolution on code coverage information,” in Proceedings of the IEEE
International Conference on Software Maintenance (ICSM’01), ser.
ICSM ’01. Washington, DC, USA: IEEE Computer Society, 2001,
pp. 170–.

[12] J. Andrews, L. Briand, and Y. Labiche, “Is mutation an appropriate tool
for testing experiments? [software testing],” in Software Engineering,
2005. ICSE 2005. Proceedings. 27th International Conference on, May
2005, pp. 402–411.

[13] S. Arzt, S. Rasthofer, and E. Bodden, “Instrumenting android and java
applications as easy as abc,” in Runtime Verification, ser. Lecture Notes
in Computer Science, A. Legay and S. Bensalem, Eds. Springer Berlin
Heidelberg, 2013, vol. 8174, pp. 364–381.

1

Diagnosis of Autism Spectrum Disorders Using an
Interactive Diagnosis Program

Tate Krejci, Student, UCCS

Abstract—Asperger Spectrum Disorders (ASD) affect a rel-
atively large portion of the population, causing difficulty in
learning appropriate behaviors for various social situations. Tests
to diagnose ASD require an expert, and symptoms can often be
mistaken for other mental disorders leading to under-diagnosis.
Therefore, the application of a machine learning algorithm in
an interactive environment such as a program will potentially
increase the amount of successful diagnoses of ASD. The suc-
cessful implementation of such a program will not only increase
the likelihood of successfully diagnosing ASD, but also increase
our understanding of ASD.

I. INTRODUCTION

Autism Spectrum Disorders affect approximately one in two
hundred and fifty people, causing difficulty in the acquisition
and understanding of normal social protocols [1]. Many cases
go unnoticed or misdiagnosed as there is no definitive way
to diagnose an ASD over other mental disorders without
excessive trial and error [2]. Furthermore, early detection of
ASD in children requires expert evaluation, and cannot easily
be carried out by parents or teachers [3]. Therefore, an easily
and cheaply distributable application for the detection of ASD
using a machine learning algorithm has the potential to detect
more cases of ASD at earlier ages, and potentially provide
further insights into symptoms of ASD. A program can yield
potentially greater results as a program can be tailored to
be interactive and captivating to its target age group. This
allows for greater amounts of data to be collected than if the
application was of a less interactive nature.

The latest edition of the DSM (Diagnostic and Statistical
Manual of Mental Disorders), the DSM 5 has grouped the pre-
viously distinct disorders of Asperger Syndrome and Autism
into the same disorder, known as an Autism Spectrum Disorder
(ASD). Because of this, it is vital to determine where on the
spectrum an afflicted person lies to ensure they receive the help
that they specifically need. A person with severe ASD will
demonstrate symptoms commonly associated with Autism,
while a person with mild ASD will have symptoms similar
to Asperger Syndrome. Differentiating the patients based on
severity will ensure the correct type of help is provided. Thus
an interactive program that can not only differentiate between
a person with ASD and one without it, but can also provide
insight into the severity of a patients disorder will prove to be
a valuable tool.

II. PREVIOUS WORK

The detection of mental disorders through the use of pro-
grams has been considered before and effectively applied

to children with ADHD, exhibiting a success rate of ap-
proximately seventy-five percent with the use of a machine
learning algorithm [4]. The bulk of the work done on ASD has
been to identify the symptoms of ASD, the predominant one
being inability to learn proper social protocol through normal
social interactions [5]. However mild ASD remains harder to
diagnose than severe ASD as the signs are far more subtle,
especially for those with high functioning Autism [6]. Fur-
thermore, symptoms of ASD can have multiple implications,
making determining if a disorder is in fact ASD difficult [7].
More symptoms of ASD include unusual patterns of interest
and behavior often leading to children with ASD seeming
distant or inattentive [8]. While the symptoms of ASD are well
known and progress has been made in its diagnosis, there still
exists no definitive way to determine if a disorder is within
the Autism spectrum of disorders or something else entirely.

III. SOCIAL LEARNING THEORY AND ASD

The primary function of ASD is to impair the ability
of those affected to learn appropriate social behaviors the
way unaffected individuals learn. Social Learning Theory
is the theory that explains by what methods people learn
what social behaviors are acceptable and what behaviors are
not, though currently little is actually known about how this
process actually occurs. Examples of these social behaviors
include knowing to look somebody in the eye when they are
speaking to you or knowing not to talk over someone else
[9]. Detection techniques today involve qualitative question
and answer sessions, with little in the way of quantitative
data to support one diagnosis over another, often leading to
misdiagnosis [2]. This is exacerbated by the fact that there
is no medication to treat ASD, so doctors cannot try varying
medications to determine the true disorder, as is often the case
when diagnosing ADHD. With the spectrum of high IQ ASD
to low IQ ASD, doctors and psychologists find it difficult to
create a definitive list of symptoms [9], meaning a machine
learning algorithm has the potential to discover new patterns
to assist in the diagnosis of ASD.

IV. METHODOLOGY

A. The program and Machine Learning Algorithms

To identify quantitative indicators of ASD, it will be neces-
sary to use a supervised machine learning algorithm to group
data collected during the program. The type of algorithm used
will depend on what kind of data the program will collect,
although it is likely that a type of clustering algorithm will help
group ASD users together and help identify them. This will

2

hopefully allow the algorithm to discover new data sets that
group together people suffering from ASD. Because of this,
the testing phase of the program will be of utmost importance
to ensure a large enough data set is collected to effectively
predict whether a person has an ASD. To collect data, the
program can measure variables such as answers provided,
response time and mouse movements. The program will collect
this data when the user is presented with social situations in
which the correct response will not be readily evident to a
person with an ASD. During early trials, the program can be
tuned to give the maximum amount of data per encounter,
and additional features can be added as needed. Programs of
this style have already been implemented for the diagnosis
of ADHD, with a success rate of approximately seventy-five
percent [4].

B. Creating the Tests and Data Sets

Unlike some machine learning projects, total control over
the data collection will be possible in this project. This
means that designing the tests in the program will be as
important, if not more important than fine tuning a machine
learning algorithm. If the tests do not collect pertinent data
that distinguishes people suffering from ASD, it is unlikely
that even a well tuned algorithm could give a meaningful
prediction. Therefore, extensive testing of the tests themselves
will be a vital portion of creating a program for the diagnosis
of ASD. To ensure the questions are well tuned, initial testing
will occur only on people who do not show symptoms of
ASD. With this data, it will be possible to determine what
questions are effective because people without ASD should
answer well written questions in the same way as other people
without ASD. Once questions and scenarios have been verified
through this method, they can be tested on people with ASD to
determine if they can separate them out from regular people.

To create tests that capture relevant data, it has been
necessary to partner with experts in psychology, specifically
ASD and social learning theory. With their help, it has been
possible to create scenarios in the program where the user
is presented with options that indicate if they suffer from
ASD or not. For example, the user could be presented with a
situation where they will make differing choices based on their
empathy for the characters in the program. People with ASD
will likely show less empathy than those without it, as a lack
of empathy is one of the characteristics of ASD [10]. Experts
have expedited the process of creating tests that capture data
relevant to the diagnosis of ASD. There is also the possibility
to test some of the non-social aspects of ASD in a program
such as the abnormal ways in which a person with ASD will
focus on different tasks. Expert advice has been used to ensure
that all the tests that have been implemented so far are true
measures of ASD.

There are many symptoms that can indicate ASD such as
deficits in executive functions [9]. This makes it possible to as-
sess the severity of ASD in a given person by determining how
impaired their executive functions are. Somebody with mild
symptoms will likely show less impairment than somebody
with severe symptoms [9]. To determine executive function

impairment, an ordering section has been implemented where
the user is shown multiple pictures of a scene and asked
to select them in the order they think is best. This test can
be developed to assess ASD specifically by using pictures
portraying social interactions. Another test currently in the
program shows the user a picture of a social interaction and
asks them questions about it. Specifically, it probes the user’s
knowledge of what the various people in the picture think
about one another, which is generally a challenge for people
with ASD. The program also keeps track of the time taken
to complete each individual question, meaning there is a
possibility to filter out people with ASD based on the time
taken to complete the various tests. Currently the program
also includes the Coolidge Autism Symptoms Survey (CASS)
which has already proven to be effective at diagnosing ASD
[11]. This means that the program can build off of an already
successful tool while adding new methods of diagnosis which
are capable of measuring metrics that a pen and paper survey
cannot.

C. Targets for the program

ASD manifests in different ways based on the person’s age
making it important to target a specific age group initially to
develop both the program and the algorithm [12]. This will
simplify the initial design of the program as it will only have
to include tests for that specific age group, and not all possible
age groups. For this reason the final program will be targeted
toward 3rd grade age students. This is the age when most
students have gained sufficient experience reading to take text
based tests, and is regarded as the age when the symptoms
of mild ASD first become visible [9]. This also means that
the program will help those with ASD get help as soon as
possible, greatly increasing their quality of life in later years.

An important note is that children in this age group are
just beginning to read, so its important that any test targeted
at them not accidentally test reading ability and comprehen-
sion. To do this it will be necessary to keep the amount
of reading needed to a minimum, have a parent help the
child, or implement a voice-over feature. For initial testing, a
researcher will likely be present to answer any questions about
the application, meaning that in initial phases of testing, the
amount of reading is not a major concern. This is especially
important when analyzing the amount of time it took to
complete each question. A voice-over function that could
read aloud questions and answers would serve to make the
time to read prompts constant, so time taken to complete a
question would be due primarily to thinking time. Another
viable option is to make the tests use pictures for both prompts
and answers, although doing so affects the kinds of data that
can be collected. The final program will feature both voice
overs and picture based tests to ensure reading ability is not
an aspect of the data that is collected.

Due to the difficulty of conducting trials on children, initial
tests have been conducted on a number of colleagues (8) to
determine if questions are answered consistently by people
who can be considered to be free of ASD. This assumption
can be made because those undergoing initial testing are using

3

an application designed for young children, and have a high
probability of selecting answers that indicate they do not have
ASD. This means that if a specific question is not answered
consistently, it is likely a confusing or ambiguous question
and should be rethought. Early testing also provides feedback
on the general design of the application, all of which will
lead to a far more refined application when official trials do
begin and gives a partial data set to begin training the learning
algorithm. Early testing has also provided valuable insight into
how often ’normal’ people make mistakes on the tests, which
will be valuable information when training the algorithm.

D. Implementation

To make the program easily distributable and appealing
to the largest audience, the program has been developed for
PCs using a Windows environment. Windows has many well
established frameworks for creating interactive programs such
as Unity and XNA Studio, simplifying the development of a
program for a Windows platform. The program will primarily
perform data collection, and if successful diagnosis, but it will
prove unwieldy for the program to also store and process data
at larger scales. Initially the program will store data locally
for simplicity, but later can send data to a data storage system.
When the program is completed with the testing phase, it can
be deployed to a web based player. This will allow the program
to be accessed by a website, removing the need for users to
install a piece of software to use it.

The program will consist of two main parts, the test portion
and the data processing portion. The testing portion will
consist of all the tests designed to gather data to determine
a diagnosis. This portion will also include the CASS which
can be treated separately internally as a cross check within the
program the validity of the results for unknown cases. The
second portion will be the data analysis portion which will
handle all of the data processing. While the program is in the
testing phase, the program will be separate from the testing
portion so it can be fine tuned without having use the testing
portion. Later, the data processing portion will be added at the
end of the testing portion so it can give users an immediate
result as well as integrate the data provided by them.

An important feature of the program will be the artwork
used, as many of the tests will require specific ideas to be
conveyed through pictures. At the start of the project, it is
impractical to use custom artwork so images found on the
Internet will be used in the early iterations of the program.
While these may not convey a message perfectly, early testing
should determine their efficacy. From early testing it will be
evident what types of image question combinations work the
best, and early testing can be based on these findings. If the
results of the testing are positive, later versions of the program
can include custom artwork. This will allow greater control of
the messages conveyed by the pictures and will allow for more
customization in the scenarios that are presented. Currently,
some scenarios can not be implemented due to restrictions in
the types of art available, so attaining custom art will likely
increase the performance of the program once it is acquired.

E. Current Tests

Currently two different types of tests have been imple-
mented in the application which each have multiple individual
questions. The first type of test presents the user with multiple
pictures that together depict a task or social interaction from
beginning to end. The user clicks on each tile in the order that
they think is best. This test serves to test the user’s executive
functions, which is lacking in many people with ASD, as
well as their understanding of social situations [9]. Both the
answers and the time taken to complete the question are stored
by the application. Fig. 1 on the following page shows a screen
shot of one of the questions in the ordering portion of the
application. The second type of test implemented shows the
user a picture of some social interaction and gives them a
prompt and a series of answers. Some of the answers delve
into what the people in the picture are actually thinking, which
is how people without ASD should answer. The other answers
have less to do with what the people in the pictures are actually
thinking, and are likely to be chosen by people with ASD.
Fig. 2 on the next page shows a screen shot of one of the
questions in the intentions portion of the application. It should
be noted that the artwork in the screen shots is not the artwork
that will be included in the final iteration of the application.
The current artwork was chosen based on availability so that
prototyping and initial testing could begin rapidly.

V. LEARNING ALGORITHM

The essential function of the program is to determine
whether a person has ASD. This means that there are two
classes to map results to: ASD or non-ASD. Because of this,
it seems a classification algorithm lends itself to the problem.
Since classification generally follows a supervised structure,
example data from people with and without ASD is necessary.
This works out well as determining the efficacy of the various
tests will mean testing the program on people with ASD before
the learning algorithm is even implemented.

To first determine an effective learning algorithm, it is nec-
essary to consider how the data collected should be processed.
The program will consist of various tests with multiple parts,
many of which will feature multiple choice questions. It is
likely that scoring each different test and using a score from
each test as the parameters for classification will be most ef-
fective. This way the number of variables is limited. However,
if this proves ineffective it may also be possible to use every
answer for the classification or perhaps use a regression type
algorithm on the results pertaining to individual tests. The key
issue will be making the number of parameters small enough
for efficiency, while retaining meaning.

A Naive Bayes classifier will be used as the algorithm as
it is effective at taking many parameters and calculating the
probability of a class based on those. Because it functions by
summing the probabilities that each individual attribute leads
to a specific class, it will automatically give each answer a
weight based on how effective it is at classifying ASD or
non-ASD. This will hopefully add even more value to the
program, as each test will affect the final outcome based on
its efficacy. Another function of a Naive Bayes algorithm is

4

Fig. 1. Ordering Test

Fig. 2. Intentions Test

that the probability of a given parameter resulting in a specific
class is not dependent on previous parameters. This may be
seen as a hindrance in some cases however, the answer to one
question does not have any impact on the answer to another. In
this case, the disregard of previous answers serves to simplify
the algorithm, making it more efficient. The fact that prior
probabilities are disregarded likely will have no effect on
overall results. The equation below shows the Bayes rule, off
of which the Naive Bayes algorithm is based.

p(A|B) =
p(B|A)p(A)

p(B)

To use this algorithm, you sum the probabilities of each
element giving a certain class based on weight. Thus it is
possible for it to be effective with large amounts of data
and will hopefully give good results when implemented. As
mentioned before, it is important not only to classify users
as ASD positive or negative, but also give a measure of the
severity of their affliction.

The naive assumption of the Bayes algorithm removes the
denominator of the equation, representing the assumption that
the individual probabilities of each element of the classifier are
independent of each other. As the answers to a given question

5

TABLE I
INITIAL RESULTS FROM NON-ASD SUBJECTS

Question Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 ASD
Participant 0 B C A A B B B B C C B C A A C A C N
Participant 1 C C A A B B B B C C A C A A C A C N
Participant 2 B C A A B B B B C C B C A A C A C N
Participant 3 B C A A B B B B C C B C A C C A C N
Participant 4 C C A A B B B B C C B C A A C A C N
Participant 5 B C A A C B B B C C A C A A C A C N
Participant 6 C C A A B B B B C C A C A A C A C N
Participant 7 C D A A B B B B C C B C A A C A C N
Participant 8 C C A A B B B B C C A C A A C A C N

are unlikely to affect one another, the naive assumption seems
a safe assumption to make for this application. To determine
the probability of a given class, the probabilities that each
individual property lead to a given class are multiplied together
and this is then multiplied by the probability of a given class
and is shown in the formula below where S is a selection of
n attributes.

p(A|S) =
n∑

n=1

p(Sn|A) ∗ p(B)

VI. INITIAL RESULTS

At this time, the main tests that have been conducted have
been to assess the efficacy of various styles of questions
and tests. Currently, children with a diagnosis of ASD are
unavailable for testing, so tests have been conducted with
colleagues. Because they do not have diagnoses of ASD,
testing them provides an insight into the responses of non
impaired persons. If the answers provided by them generally
match for a specific question, the question is at least effective
at grouping users without ASD together. This testing will help
filter out questions that are ambiguous and give inconsistent
data. When a test has been verified as consistent, more tests
can be created based on those. The next step will be to give
the refined tests to people with ASD to determine that they
are also effective at distinguishing them from non-impaired
people. TABLE I shows some of the preliminary data collected
from users who do not have ASD using the intentions test.
In this test, the user is presented with a picture of people
performing various actions. The user is provided a prompt and
a selection of answers. The answers each present a different
level of social awareness, so people with ASD will likely pick
the answers that show less social awareness.

Here the rows represent the answers submitted by each
participant and the columns represent each question in one
of the tests. For the most part, the answers are the same
as expected. Differing answers to the same question indicate
an ambiguous question that should be rethought so it is
consistently answered the same for all people without ASD.
The questions whose answers are all the same represent good
questions with a style that should be repeated when adding
new questions to this test. It should be noted that isolating
good styles is accomplished by using the same prompt and
image for a question and just varying the answer choices. The
focus for this particular test was on creating distinguishing

answers, which is why they were the factors that changed to
determine the efficacy.

To ensure that a naive Bayes algorithm is an appropriate
choice for the algorithm, test data was generated to represent
the answers of users who were suffering from ASD. This data
was generated pseudo-randomly with the goal of testing the
classifier in mind. These are not results from real people with
ASD. When this data was used with the data obtained from
colleagues, the algorithm classified eighty-seven percent of the
cases correctly. This means that as long as ASD users answer
questions in the predicted manner, a naive Bayes classifier will
successfully distinguish between ASD and non-ASD users.
With the implementation of further tests, and the collection
of more data, hopefully this number can be further increased
in the future.

VII. TIME LINE

At this point the core functionality of the program has
been implemented. Multiple tests are completed and a Naive
Bayes classifier has been added to provide in application
results for users. Future work will involve collecting real
data to train the classifier using children of an appropriate
age. Another important task will be to improve the existing
tests, and add new tests. More tests will make the application
a more comprehensive test of ASD, likely increasing the
accuracy of the diagnosis. Existing tests can also be expanded
as limited art assets have made the test sections relatively
short. With the acquisition of custom art, more tests can be
devised and existing tests will have greatly increased accuracy.
This is because with custom art, variables that can affect a
person’s answer can be easily eliminated. Once the application
has reached a polished state, and preliminary data has been
gathered, the program can be exported to a web player. This
will means that more people will have access to the program
which will provide more diverse training data and hopefully
further improve the algorithm’s accuracy.

VIII. GOALS

The completion of the prototype of the program will allow
for small scale data collection and testing of the program. This
will involve identifying a test group, and determining what
member of that group suffer from ASD. From there, a naive
Bayes algorithm can be applied to the data and used to identify
patterns indicative of ASD. If the algorithm can successfully
predict ASD in the targeted age group, it can be deployed on

6

a larger scale to collect more data to improve the algorithm
and it can be modified to support various target age groups.
With enough success, the program could be further modified
for use as not only a diagnostic tool, but as a treatment for
patients with ASD.

Deployment to a larger scale will involve extensive testing
and polishing of the existing program to come up with a
complete suite of tests measuring many different aspects of
ASD in distinct ways. Once the program reaches this point,
and with university approval, the program can be exported to a
web browser so it can be taken online and collect data online.
It can then be modified to also give a suggestion of a diagnosis
of ASD so it can be used by real people online. If the online
program proves successful, it may be possible to create more
diagnostic tools for the various mental illnesses that exist.

IX. CONCLUSION

The successful implementation of a machine learning al-
gorithm to diagnose ASD will provide parents and doctors
with a more effective means of diagnosing and helping those
suffering from ASD. It also has the potential to vastly increase
our understanding of the symptoms of ASD and perhaps
provide clues to its causes and increase our understanding
of social learning. The use of a program as the primary
platform for the test will increase patient interaction with the
application, leading to a greater quality and quantity of the
data collected.

REFERENCES

[1] B. J. Tonge, A. V. Brereton, K. M. Gray, and S. L. Einfeld, “Behavioural
and emotional disturbance in high-functioning autism and asperger
syndrome,” Autism, vol. 3, no. 2, pp. 117–130, 1999.

[2] B. G. Haskins and J. A. Silva, “Asperger’s disorder and criminal
behavior: forensic-psychiatric considerations,” Journal of the American
Academy of Psychiatry and the Law Online, vol. 34, no. 3, pp. 374–384,
2006.

[3] O. Teitelbaum, T. Benton, P. K. Shah, A. Prince, J. L. Kelly, and
P. Teitelbaum, “Eshkol–wachman movement notation in diagnosis: The
early detection of asperger’s syndrome,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 101, no. 32,
pp. 11 909–11 914, 2004.

[4] S. Srivastava, M. Heller, J. Srivastava, M. Kurt Roots, and J. Schumann,
“Tangible games for diagnosing adhd–clinical trial results.”

[5] L. Wing, “Asperger’s syndrome: a clinical account.” Psychological
medicine, 1981.

[6] P. Howlin and A. Asgharian, “The diagnosis of autism and asperger
syndrome: findings from a survey of 770 families,” Developmental
Medicine & Child Neurology, vol. 41, no. 12, pp. 834–839, 1999.

[7] D. V. Bishop, “Autism, asperger’s syndrome and semantic-pragmatic
disorder: Where are the boundaries?” International Journal of Language
& Communication Disorders, vol. 24, no. 2, pp. 107–121, 1989.

[8] A. Klin and F. R. Volkmar, “Asperger’s syndrome,” Handbook of autism
and pervasive developmental disorders, vol. 2, pp. 88–125, 1997.

[9] M. G. Winner, Thinking About You Thinking About Me. Think Social
Pub, 2007.

[10] I. Dziobek, K. Rogers, S. Fleck, M. Bahnemann, H. R. Heekeren, O. T.
Wolf, and A. Convit, “Dissociation of cognitive and emotional empathy
in adults with asperger syndrome using the multifaceted empathy test
(met),” Journal of autism and developmental disorders, vol. 38, no. 3,
pp. 464–473, 2008.

[11] C. S. R. D. L. S. Frederick L. Coolidge, Peter D. Marle and P. Monaghan,
“Psychometric properties of a new measure to assess autism spectrum
disorder in dsm-5,” American Journal of Orthopsychiatry, vol. 83, no. 1,
p. 126–130, 2013.

[12] C. Koning and J. Magill-Evans, “Social and language skills in adolescent
boys with asperger syndrome,” Autism, vol. 5, no. 1, pp. 23–36, 2001.

UNIVERSITY OF COLORADO AT COLORADO SPRINGS REU PROJECT FINAL PAPER. 11 JULY 2014. 1

Simplified Statement Extraction Using Machine
Learning Techniques

Conor McGrory, Princeton University

Abstract—The automatic generation of basic, factual questions
from a single sentence of text is a problem in the field of natural
language processing (NLP) that has received a considerable
amount of attention in the past five years. Some studies have
suggested splitting this problem into two parts: first, decomposing
the source sentence into a set of smaller, simple sentences, and
then transforming each of these sentences into a question. This
paper outlines a novel method for the first part, combining two
techniques recently developed for related NLP problems. Our
method uses a trained classifier to determine which phrases of
the source sentence are potential answers to questions, and then
creates different compressions of the sentence for each one.

I. INTRODUCTION

Asking questions is one of the most fundamental ways that
human beings use natural language. When someone studies a
foreign language, many of the first utterances they learn are
basic questions. The ability of a speaker to form a grammatical
question — to request a specific piece of information from
another party — is indispensable in most practical situations
involving basic communication. Over the past five years,
there has been a significant amount of new research towards
developing computer systems that can automatically generate
basic questions from input text. This is referred to in the
literature as the problem of Question Generation (QG), and
it has many potential applications in education, including the
development of computerized tutoring systems and the genera-
tion of basic reading comprehension questions for elementary-
level students. Although some studies in the past have tried
to generate questions based on whole blocks of text [1], the
majority of recent work done on QG has focused on the
problem of generating factual questions from a single sentence
of input.

Early attempts to solve this problem used complicated sets
of grammatical rules to transform the input sentence directly
into a question [2]. However, in 2010, Heilman and Smith
[3] suggested separating the problem into two steps: first,
simplifying the source sentence, and then transforming it into a
question. The advantage of this approach is that grammatical
rules are much better at transforming simple sentences into
questions than they are at transforming complex ones. Our
paper outlines a method for preforming the first step in this
process, which we refer to as the problem of Simplified
Statement Extraction (SSE).

Conor McGrory is participating in a National Science Foundation REU
at the University of Colorado at Colorado Springs, Colorado Springs, CO,
80918. e-mail: cmcgrory@princeton.edu

II. PRIOR WORK

In a paper also published in 2010 [4], Heilman and Smith
developed a rule-based SSE algorithm that extracted multiple
simple sentences from a source sentence. This algorithm recur-
sively applied a set of transformations to the a phrase structure
tree representation of the input sentence to generate the simple
statements. By extracting multiple simplified statements from
the source sentence, they greatly increased the number of
possible questions that could be generated and the percentage
of words from the input sentence that appeared in one of the
output statements [4].

Two problems in NLP that are related to QG are cloze
question generation and sentence compression. A cloze ques-
tion is a type of question commonly used to test a student’s
comprehension of a text, where the student is asked, after
reading the text, to complete a given sentence by filling in
a blank with the correct word. One example could be the
question

A is a conceptual device used in computer
science as a universal model of computing processes.

In this case, the answer would be Turing machine. Because
these questions are commonly used in testing, and require no
syntactic rearrangement of the source sentence (just deletion
of a specific phrase), they seem like an easy place to apply
QG techniques. However, selecting which phrase or phrases
in the sentence to delete is somewhat difficult. A question like

A Turing Machine a conceptual device used in com-
puter science as a universal model of computing processes.

with the verb is as the answer would be completely useless
to a student interested in testing their knowledge of basic com-
puter science. An automatic cloze question generator needs to
have some way of distinguishing informative questions from
extraneous ones. Because the quality of a cloze question can
depend on complicated relationships between a large number
of factors (syntax, semantics, etc.), distinguishing quality of a
question is a good task for a machine learning system. Becker
et al.[5] did this by training a logistic regression classifier
on a corpus of questions paired with human judgements of
their quality. The classifier was able to identify 83 percent of
the high-quality sentences correctly and only misidentified 19
percent of low-quality questions as high quality[5].

Sentence compression is the problem of transforming an
input sentence into a shorter version that is grammatical and
retains the most important semantic elements of the original.
This can be used to generate summaries or headlines for large
blocks of text. Various methods have been developed to attack
this problem. Knight and Marcu [6] used a statistical language

UNIVERSITY OF COLORADO AT COLORADO SPRINGS REU PROJECT FINAL PAPER. 11 JULY 2014. 2

model where the input sentence is treated as a noisy channel
and the compression is the signal, while Clarke and Lapata [7]
used a large set of constituency parse tree manipulation rules
to generate compressions.

Filippova and Strube [8] developed a sentence compression
system where the compressed sentence is generated by pruning
the dependency parse tree of the input sentence. Using the
Tipster corpus, they calculated the conditional probabilities of
specific dependencies occurring after a given head word. These
were used, in combination with data on the frequencies of the
words themselves, to calculate a score for each dependency in
the tree. They then formulated the problem of compressing
the sentence as an integer linear program. Each variable
corresponded to a dependency in the tree. A value of 1 meant
the dependent word of that dependency would be preserved
in the compression, and a value of 0 meant that it would
be deleted. Constraints were added to the linear program to
restrict the structure and length of the compression, and the
objective function set to be maximized was the sum of the
scores of the preserved dependencies.

The central assumption made by Fillippova and Strube’s
method is that the frequency with which a particular depen-
dency occurs after a given word is a good indicator of its
grammatical necessity. For example, transitive verbs like chase
require direct objects, so the frequency of the dobj dependency
after the head word chase in the corpus is very high. Although
chase can also be the governor of a prepositional phrase,
this is not grammatically necessary, so there will be many
more instances in the corpus where chase does not govern
a prepositional phrase, resulting in the frequency of the prep
dependency after chase to be lower.

III. PROBLEM DEFINITION

In explaining our system, it will help to have a formal
definition of the problem. We will define the problem of
simplified statement extraction as follows:

For a source sentence S, create a set of simplified statements
{si...sn} that are semantic entailments of S. A sentence is
considered to be a simplified statement if it is a declarative
sentence (a statement) that can be directly transformed into
a question-answer pair (QA pair) without any compression.
Ideally, the interrogative transformations of the generated {si}
should include as many as possible of the set of QA pairs
a human being could generate given S. We will call the
ratio of computer-generated, grammatical QA pairs to human-
generated QA pairs the coverage of the system.

IV. SOLUTION

As Becker et al. [5] showed with their work on cloze
questions, there are certain phrases in S that make sense as
answers to questions and others that do not. The fundamental
idea behind our SSE system is that knowledge of which
phrases in S are good answers can inform the compression
process, preventing us from missing important information and
thereby maximizing coverage. We divide the SSE problem
into two parts: first identifying potential answers, and then
generating for each of these answers a compression of S where

that answer is preserved. These compressions form the set {si}
of simplified statements. Because each one of these statements
will ultimately be transformed into a question with the given
answer, our goal when compressing for a particular answer
is to find the shortest grammatical compression of S that
contains the given answer. This will ensure that each selected
answer is preserved in at least one of the simplified statements
and that these statements will contain minimal amounts of
extraneous information.

To select potential answers from the input sentence, we use
a slightly modified version of Becker et al.’s cloze question
generation system [5]. Because all questions are essentially
requests for specific pieces of information, determining which
phrases in S make good answers to a standard grammatical
question is very similar to determining which phrases make
good blank spaces for a cloze question. Once we have the
set of possible answers, we use a more substantially modified
version of Filippova and Strube’s dependency tree pruning
method [8] to generate the set of shortest grammatical com-
pressions of S that contain each of the answers.

V. ANSWER SELECTION

We designed and implemented the answer selection system
using the Stanford NLP Toolkit [9] and the Weka machine
learning software [10]. It uses the corpus of sentences, QA
pairs, and human judgments developed by Becker et al.[5] to
train a classifier to find the nodes in the parse tree of the input
sentence that are most likely viable answers to questions. Our
implementation performs two basic functions. First, it has the
ability to read in the corpus, calculate a set of features and
determine a final classification for each potential answer, and
output this data set as an .arff file (the standard file format
used by Weka). When the program needs to find the good
answers in an input sentence, it loads the classifier from the
file, determines all grammatically possible answer phrases in
the input sentence (this is based on a set of constraints given
by Becker et al. [5]), and uses the classifier to determine which
of these phrases are good answers.

A. Feature Set

The Stanford NLP Toolkit [9] provides us with two very
useful tools for describing the grammatical structure of a
sentence: a Penn Treebank style constituency parse tree and the
Stanford dependency relations [11]. The Stanford dependency
relations are a set of grammatical relations between governor
and dependent words in a sentence. Some examples include
verb-subject, verb-indirect object, noun-modifier, and noun-
determiner. Essentially, it is a dependency grammar with more
specific information than which words a given word governs
and which words it depends on. The relations also have a
set hierarchy. For example, the verb-subject, verb-object, and
verb-adverbial modifier relations are all instances of the parent
relation predicate-argument. This enables the user to work at
different levels of detail. For our purposes, we used the 56
basic relations defined in the Stanford library to categorize all
of our dependencies.

UNIVERSITY OF COLORADO AT COLORADO SPRINGS REU PROJECT FINAL PAPER. 11 JULY 2014. 3

We used many of the same features as Becker et al.[5] did,
but because we used a different NLP package to implement
our system (we used Stanford’s, they used a toolkit devel-
oped by Microsoft), some of our features were significantly
different. At this point, we have also implemented far fewer
features than they did. Our features can be divided into three
basic categories: token count features, syntactic features, and
semantic features.

The token count features we used were the exact same as
those used by Becker et al. This category contained 5 features
which had to do with the length of the answer in comparison
to the length of the sentence, like the raw lengths of both and
the length of the answer as a percentage of the length of the
question.

The syntactic features were calculated using the con-
stituency parse tree. Currently, our system uses three syntactic
features: the Penn part-of-speech tag of the word that comes
immediately before the answer in the sentence, the tag of the
word that comes immediately after, and the set of tags of words
contained in the answer phrase.

The semantic features use the Stanford dependencies system
and are completely different than the semantic features used
by Becker et al. The purpose of these is to determine the
grammatical role the answer phrase plays within the sentence.
We currently have four semantic features implemented: the
dependency relation between the head of the answer phrase
and its governor in the sentence, the set of relations between
governors in the answer and dependents not in the answer,
the set of relations with both governors and dependents in the
answer, and the distance in the constituency tree between the
answer node and its maximal projection.

B. Classifier

The classifier used in our system is the Weka Logistic
classifier [12]. Because each instance is classified as either
”Good” or ”Bad”, this is a binary logistic regression classifier,
similar to the one used by Becker et al. However, Becker et. al
also used L2 regularization (adding a constant multiple of the
L2 norm of the regression coefficients to the error function as
a penalty for overfitting), which we have not yet implemented.

C. Human Judgments

The corpus provided by Becker et al. consists of slightly
over 2,000 sentences, each with a selected answer phrase
and four human judgments of the quality of the answer.
Human judges could rate answers as either ”Good”, ”Okay”,
or ”Bad”. Because the classifier requires that each instance be
classified in only one category, we had our program use the
four judgments to calculate a score for each answer, which we
then used to determine how to classify it in the data set. A
”Good” rating added 0.25 to the score, an ”Okay” added 0.125,
and a ”Bad” rating added nothing. This score is then compared
to the threshold value (a pre-set constant in the program). If
the score is greater than or equal to this value, the answer is
classified in the data set as ”Good”. Otherwise, it is classified
as ”Bad”.

VI. RESULTS

We used the program to produce a data set from the Becker
et al. corpus [5]. This data set was created using a threshold
value of 1.0 (all four human judges have to rate the sentence as
”Good”). Then, using Weka, a random sample of the sentences
was drawn from this data to produce a subset with a comprable
amount of ”Good” and ”Bad” sentences. This set contained a
total of 582 instances, 278 of which were ”Good” and 304 of
which were ”Bad”. We tested both the Weka Logistic classifier
[12] and the Weka Simple Logistic classifier on the data using
10-fold cross-validation.

The statistics we were most concerned with were the correct
classification rate (the number of correctly classified instances
divided by the total number of classified instances), the true
positive rate (the number of correctly classified ”Good” in-
stances divided by the total number of ”Good” instances),
and the false positive rate (the number of incorrectly clas-
sified ”Bad” instances divided by the total number of ”Bad”
instances). We also looked at the Weka-generated ”confusion
matrix,” which summarizes the classifications.

For the Logistic classifier, the correct classification rate
was 72.3%, the true positive rate was 78.4%, and the false
positive rate was 33.2%. For the confusion matrix (which is
normalized), we have:

Classified ”Good” Classified ”Bad”
”Good” 218 60

”Bad” 101 203
In total, 54.8% of the instances were labeled ”Good” and

45.2% were labeled ”Bad”.
For the Simple Logistic classifier, the correct classification

rate was 74.2%, the true positive rate was 81.3%, and the false
positive rate was 32.2%. For the confusion matrix, we have:

Classified ”Good” Classified ”Bad”
”Good” 226 52

”Bad” 98 206
In total, 55.7% of the instances were labeled ”Good” and

44.3% were labeled ”Bad”.
Becker et. al were able to get a true positive rate of 83%

and a false positive rate of 19% at the equal error rate [5].
Although their false positive rate is lower, the true positive
rate of our system is definitely comparable to theirs.

VII. SENTENCE COMPRESSION

To compress S into the different simplified statements, we
used a modified version of the integer linear programming
(ILP) model described by Filippova and Strube [8]. We first
calculated probabilities of dependencies occurring after head
words and used this as an estimate of the grammatical neces-
sity of different dependencies given the presence of a head
word. Along with all of the constraints placed on the ILP in
the original model, we added an extra constraint that ensures
the preservation of the answer phrase in the compression.
We then used a linear program solver to solve the ILP for
all length values between 0 and the length of S, generating
a set of compressions of S with all possible lengths. From
these compressions, we used a 3-gram model to calculate the
Mean First Quartile (MFQ) grammaticality metric described
by Clark et al. [13]. Compressions with an MFQ value lower

UNIVERSITY OF COLORADO AT COLORADO SPRINGS REU PROJECT FINAL PAPER. 11 JULY 2014. 4

than a threshold were deemed grammatical, and the shortest
of these was selected as the final compression of S for the
given answer.

A. Dependency Probabilities

In order to be more precise, we used a larger set of Stanford
dependencies to calculate the conditional probabilities than we
did for the feature set in the selection part of the system.
The extra dependencies included in this set were collapsed
dependencies [11], which are created when closed-class words
like and, of, or by are made part of the grammatical relation,
producing dependencies like conj and, prep of, and prep by.

To calculate the frequencies of dependencies after certain
head words, we used a pre-parsed section of the Open Amer-
ican National Corpus [14]. Filippova and Strube [8] used
part of the TIPSTER corpus to calculate their frequencies,
but we lacked the computational resources to parse the data
ourselves, so we used the pre-parsed data. The frequency of
a dependency in our system is defined as the the number of
words in the document that are governors of at least one of
these dependencies. If a dependency appears more than once
for a given governor word (e.g. if a noun is modified by two
prepositional phrases), our program will only increase its count
by one. This prevents the frequency of a dependency following
a given head word from ever exceeding the frequency of the
head word itself.

To prevent rounding errors, we used a smoothing function
when calculating the probabilities from the frequency data.
If we let f(`|h) be the frequency with which dependency of
type ` occurs with head word h in the corpus, and let fh be
the frequency of word h in the corpus, then we define the
smoothed probability P(`|h) to be

P(`|h) = log2(
f(`|h)

fh
+ 1)

Because fh ≥ f(`|h) and fh, f(`|h) ≥ 0, f(`|h)

fh
∈ [0, 1].

Therefore, because

log2(x+ 1) ∈ [0, 1]∀x ∈ [0, 1]

we know that P(`|h) ∈ [0, 1] for all possible ` and h.
Finally, to avoid problems that come with probability values

of zero, our system linearly maps the P(`|h) values from [0, 1]
to [10−4, 1].

B. Integer Linear Program

Like Filippova and Strube [8], we formulate the compres-
sion problem as an ILP. For each dependency in the parse
tree (say, the dependency with the Stanford type `, holding
between head word h and dependent word w), we create a
variable x`h,w. These variables must each take on a value of
0 or 1 in the solution, where dependencies whose variables
are equal to 1 are preserved in the resulting compression and
dependencies whose variables are equal to 0 are deleted, along
with their dependent words. The ILP maximizes the objective
function

f(X) =
∑
x

x`h,w · P(`|h) · t(`, P(`|h))

where t is the tweak function, which corrects discrepancies
between frequency and grammatical necessity that occur with
some specific types of dependencies. For example, conjunc-
tions (conj) occur very frequently in written English, but
they are generally not necessary for the grammaticality of a
sentence. Often, deleting parts of conjunctions can actually
be an effective way to compress a sentence. Multiplying a
particular probability by t linearly maps the range of that value
from [0, 1] to [min`,max`]. The tweak function is defined as

t(`, P(`,h)) = max` −min`(1 +
1

P(`,h)
)

where
minconj = 0.0,maxconj = 0.4

,
mindet = 0.4,maxdet = 1.0

,
minposs = 0.5,maxposs = 1.0

, and
min` = 0.0,max` = 1.0

for all other dependencies, which means that t(`, P(`,h)) = 1
for all dependencies besides conjunctions, determiners and
possessives. Our tweak function replaces the importance func-
tion used in Filippova and Strube’s objective function [8].

Filippova and Strube also used two constraints in their
model to preserve tree structure and connectedness in the
compression:

∀w ∈W,
∑
h,`

x`h,w ≤ 1

∀w ∈W,
∑
h,`

x`h,w −
1

|W |
∑
u,`

x`w,u ≥ 0

and one to restrict the length of the final compression to α:∑
x

x`h,w ≤ α

To ensure that all of the words in the pre-selected answer A
are also preserved, we include in our model the extra constraint

∀w ∈ A,
∑
h,`

x`h,w ≥ 1

We solved these integer linear programs using lp solve [15],
an open-source LP and ILP solver.

C. Shortest Grammatical Compression

In order to find the shortest grammatical compression of S,
our system first finds a solution to the ILP for S and A for
every value of α (the maximum length constraint parameter)
between the length of S and the length of A. Because the
constraints also specify that every word in A is preserved in
the compression, any model where α is less than the length
of A would have no solution.

Although all solutions to the ILP are connected dependency
trees, some of the actual sentences created by linearizing these
trees will not be grammatical. To determine the grammaticality

UNIVERSITY OF COLORADO AT COLORADO SPRINGS REU PROJECT FINAL PAPER. 11 JULY 2014. 5

Fig. 1. Simulation Results

Fig. 2. Simulation Results

of the compressions, we use the MFQ metric, which is based
on a 3-gram model created using the Berkeley Language
Model Toolkit [16] and trained on the OANC text. This metric
was shown to work well at distinguishing grammatically well-
formed sentences from ungrammatical ones by Clarke et al.
[13]. It considers the log-probabilities of all of the n-grams
in the given sentence, selects the first quartile (25% with the
lowest values), and calculates the mean of the ratios of each n-
gram log-probability over the unigram log-probability of that
n-gram’s head word. The larger the MFQ value is, the less
likely the sentence is to be grammatical.

Our system looks through the list of different length com-
pressions and selects the shortest compression with an MFQ
value less than a specified threshold (for our 3-gram model,
we used a threshold of 1.14). This compression is returned as
the simplified statement extracted from S for the answer A.

D. Results

We have not yet been able to conduct a test of the
compression system, because testing the grammaticality of
the generated compressions and their coverage of the set
of possible simplified statements requires the use of a large
number of human judges. However, the basic functionality of
the compression system can at least be demonstrated with
some sample outputs from the compressor. In each of the
outputs, the sentence and answer are specified at the top, and
then each row contains a potential compression and its MFQ
value (labeled as ’S’ on the readout).

Figure 1 shows a perfect compression of the sentence Bill
drives his car to the park every morning. In the list of
generated compressions, the one ultimately selected is clearly
the shortest grammatical compression of the input sentence.

The output in Figure 2 is still grammatical, but there is one
shorter compression in the list that is also grammatical, but was
not identified by the program. This is because the MFQ value
for Bill drives to the park every morning was 1.136, which
is slightly less than the threshold of 1.14. Examples like this
make it clear that tuning the gramamticality threshold is very
important.

Figure 3 is not grammatical, but there is a grammatical
sentence in the compression list only one word longer than the

Fig. 3. Simulation Results

compression that was selected. The chosen compression had a
higher MFQ score than the true shortest grammatical sentence,
but because it was shorter, it was chosen nonetheless.

VIII. CONCLUSION

The key principle around which our system is built is that
selecting the answer at the beginning of the QG process and
using them to guide SSE can improve the coverage of the
system. We implemented the machine learning-based approach
for answer selection used by Becker et al. [5] and developed a
way to compress a sentence while leaving a specified answer
phrase intact. Although we have not yet been able to perform
large scale tests on this system where the output is rated by
human judges, we have generated some good output sentences.
Once our implementation is perfected and tuned, we will
perform more powerful and complete tests.

This system will soon be integrated with Jacob Zerr’s Part-
of-Speech Pattern Matching system for direct declarative-to-
interrogative transformation to produce a full, functional, QG
system.

REFERENCES

[1] Kunichika, Hidenobu, Tomoki Katayama, Tsukasa Hirashima, and Akira
Takeuchi. ”Automated question generation methods for intelligent English
learning systems and its evaluation.” In Proceedings of ICCE2004, pp.
2-5. 2003.

[2] Wolfe, John H. ”Automatic question generation from text-an aid to
independent study.” In ACM SIGCUE Outlook, vol. 10, no. SI, pp. 104-
112. ACM, 1976.

[3] Heilman, Michael, and Noah A. Smith. ”Good question! statistical rank-
ing for question generation.” In Human Language Technologies: The 2010
Annual Conference of the North American Chapter of the Association for
Computational Linguistics, pp. 609-617. Association for Computational
Linguistics, 2010.

[4] Heilman, Michael, and Noah A. Smith. ”Extracting simplified statements
for factual question generation.” In Proceedings of QG2010: The Third
Workshop on Ques-tion Generation, p. 11. 2010.

[5] Becker, Lee, Sumit Basu, and Lucy Vanderwende. ”Mind the gap:
learning to choose gaps for question generation.” In Proceedings of the
2012 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pp. 742-751.
Association for Computational Linguistics, 2012.

[6] Knight, Kevin, and Daniel Marcu. ”Statistics-based summarization-step
one: Sentence compression.” In AAAI/IAAI, pp. 703-710. 2000.

[7] Cohn, Trevor, and Mirella Lapata. ”Sentence Compression as Tree
Transduction.” Journal of Artificial Intelligence Research 34 (2009): 637-
674.

[8] Filippova, Katja, and Michael Strube. ”Dependency tree based sentence
compression.” In Proceedings of the Fifth International Natural Language
Generation Conference, pp. 25-32. Association for Computational Lin-
guistics, 2008.

[9] Stanford NLP Toolkits, http://nlp.stanford.edu/software.
[10] Holmes, Geoffrey, Andrew Donkin, and Ian H. Witten. ”Weka: A

machine learning workbench.” In Intelligent Information Systems, 1994.
Proceedings of the 1994 Second Australian and New Zealand Conference
on, pp. 357-361. IEEE, 1994.

UNIVERSITY OF COLORADO AT COLORADO SPRINGS REU PROJECT FINAL PAPER. 11 JULY 2014. 6

[11] De Marneffe, Marie-Catherine, and Christopher D. Manning.
”Stanford typed dependencies manual.” URL http://nlp. stanford.
edu/software/dependencies manual. pdf (2008).

[12] Le Cessie, Saskia, and J. C. Van Houwelingen. ”Ridge estimators in
logistic regression.” Applied statistics (1992): 191-201.

[13] Clark, Alexander, Gianluca Giorgolo, and Shalom Lappin. ”Statistical
representation of grammaticality judgements: the limits of n-gram mod-
els.” CMCL 2013 (2013): 28.

[14] Ide, Nancy, and Catherine Macleod. ”The american national corpus: A
standardized resource of american english.” In Proceedings of Corpus
Linguistics 2001, vol. 3. 2001.

[15] Berkelaar, Michel. ”lpSolve: Interface to Lp solve v. 5.5 to solve
linear/integer programs.” R package version 5, no. 4 (2008).

[16] Pauls, Adam, and Dan Klein. ”Faster and smaller n-gram language
models.” In Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technologies-Volume
1, pp. 258-267. Association for Computational Linguistics, 2011.

1

Extreme Value Theory and Visual Recognition
Rachel Moore

Department of Computer Science
University of Colorado, Colorado Springs

Abstract – The fields of machine learning and psychology
have begun to merge, particularly in the subject of vision
and recognition. This paper proposes an experiment on
human recognition and categorization, using arbitrary
images as stimuli. The data will be fitted to an Extreme
Value Theory based model, which we hope will give clearer
incite into the ways humans categorize novel information.

Index Terms – Recognition, Category Learning, Machine
Learning, Extreme Value Theory, Cognitive Psychology.

I. INTRODUCTION

Training set selection is one of the most crucial steps in
machine learning. If one wishes for a machine to identify
images of apples, only providing images of oranges during
training is, in most cases, counter productive. Traditionally,
training sets have been selected so that was a wide array of
data, so that the training set would closely match a gaussian, or
normal, distribution [1]. However, this can become expensive,
particularly in tasks that require labeled data for supervised
learning. An extensive amount of data is also needed, as
smaller sets are less likely to have a normal distribution, which
can cause high variance responses and inconclusive results [1].

There have been many advances in the area of training data
selection, but there is still a need for methods that select the
best training data from small datasets. Simple methods like
bootstapping can be used to generate new data in cases of
small data sets. Many of these methods do not work with
certain learning models [1] [2]. To understand what makes
an effective training set, it is important to study how training
affects the ultimate categorization. One way of doing this is
to study recognition and categorization in humans.

The ability to categorize is one of the most crucial skills
we develop as children. Despite its importance, the way
we organize information is still a mystery. There are many
models of categorical learning in psychology, and more are
in development. Studies, such as the one done by Hsu and
Griffiths [3] (discussed in Section II), have given some insight
into the category learning process, and have yielded interesting
results. However, the Gaussian models currently being used
on these types of experiments are not capturing the extremes
in the data, or the participants’ bias towards one category or
another. From our research, Extreme Value based models in
machine learning have been shown to be a better predictor of
human response frequency than Gaussian models. In summary,
there are 4 main contributions of this paper:

• Extreme Value Theory and its application.
• Empirical evaluations and metrics for this research.

• Experimental results
• The future of this work.

II. BACKGROUND

In this section, we discuss Extreme Value Theory (EVT) and
its applications, as well as studies involving categorization and
EVT modeling. We will also explore psychological research
involving categorical learning, which will be the basis for our
experiments.

A. Extreme Value Theory

The extreme value theorem states that a function with a
continuous and closed interval will have a minimum and max-
imum value [4] [5]. EVT has been implemented as a statistical
model in many different fields of research. Hugueny, Clifton,
and Tarassenko [6] used EVT as the basis to create a new
model for intelligent patient monitors. The current monitors
they reviewed set off false alarms constantly, to the point that
hospital staff ignored them. The model they proposed would be
less likely to do this, as the EVT-based model would be able
to differentiate between truly non-extreme changes in vitals
and clear abnormality. EVT has also been used in machine
learning to normalize recognition scores [7], which may skew
distributions due to outliers.

This research seeks to establish a new EVT-based model of
visual recognition and categorization. Particularly, this model
may be instrumental for tasks that wish to replicate human
information processing. There are three types of extreme value
distributions:

Type 1, Gumbel-type distribution:

PR[X ≤ x] = exp[−ex−µ/σ]. (1)

Type 2, Fréchet-type distribution:

PR[X ≤ x] =

{
0, x < µ,

exp
{
−x−µσ

−ξ}
x≥ µ. (2)

Type 3, Weibull-type distribution:

PR[X ≤ x] =

{
exp

{
−x−µσ

ξ
}
, x≤ µ

0 x> µ
(3)

where µ, σ(> 0) and ξ(>s 0) are the parameters [5].
EVT-based models can be used as replacements for Binary

and Gaussian models, as EVT-models are able to include
multiple classes, and do not rely heavily on norms (see Fig. 1).
This can also be helpful in the case of training set selection.
For example, say there is a set images of apples that need
to be categorized into 2 groups: green granny smith and red

2

delicious. While the first and last apple groups have green and
red skin tones, respectively, with slight variations in color.
However, in this set of apples are a few fuji apples, whose
colors range from ruddy green to orange red, and might be
categorized into either of the other apple groups. To make the
best predictions on which category each apple belongs to, we
can use the EVT to find the apples at the groups’ decision
boundaries, i.e. the most and least red red delicious apples,
and the most and least green granny smith apples. From this
we can create a training data set. When these clear decision
boundaries are known, anything that lies outside of them, say
a greenish red fuji apple, can be categorized as a true outlier
or part of a third class in the data.

(a) Binary Discriminative Model (b) Per class Gaussian Model + Bayesian decision (c) EVT Fit for the min and max tail of each
class + Bayesian decision

x

1

0p(
y

=
 y
2|x
)

x

1

0
x

1

0

x

Y1 Y2 Y3

training

y1’’ y2’ y3’y2’’ y3’’y1’

training

x

y1 y2 ??

training

Fig. 1. Example of data selected with EVT. Courtesy of Boult

B. Prior Research in Human Visual Recognition

In a two part study, Cohen, Nosofsky, and Zaki [8] exam-
ined the effects of class variability on categorization. They
hypothesized that the generalized context model (GCM), used
to calculate the probability that an item will be categorized
into one class or another, would substantially underestimate
the degree to which participants would classify stimuli into the
categories of high variance (we discuss GCM in greater detail
in Section V). They found that the middle stimuli (items that
were in between the low variance and high variance classes)
were classified into the higher variance category, with the
probability of up to .73. The GCM estimated the probability
to be as low as .35, significantly below what was indicated by
the data.

Hsu and Griffins [3] conducted a study in which the partici-
pants were taught two alien “languages”, consisting of simple
images of line segments. Class A had short, low variance line
segments, which only differed slightly from one another. Class
B had much longer, high variance line segments, in which each
line’s length was very different from the others. Participants
were put into either a generative learning condition or a
discriminative learning condition, which varied by the way the
training images were presented. In the generative condition,
two different cartoon aliens would appear on the screen to
indicate which line belonged to which tribe’s language. In
the discriminative condition, one cartoon alien appeared as
a single translator, indicating which language was language
was on the screen. After training, participants were shown
line segments that were between the lengths of the low and
high variance classes and asked to categorize them.

As with Cohen, Nosofsky, and Zaki’s [8] study, the results
showed that the participants had a strong bias toward the high
variance class (Class B), clustering the middle stimuli with
the more diverse lines. They found that their Gaussian-based

model did not fit their data accurately, and therefore wondered
if the Gaussian assumption did not reflect this type of human
recognition.

III. EMPIRICAL EVALUATIONS

In this section, we discuss our experimental designs, as well
as the metrics and technical approach of our study.

In a pilot study, Boult et. al 1 analyzed the data from Hsu
and Griffins’ [3] study using an EVT model. Because of the
bias toward the high variance class, they believed that an EVT-
based model would match human data in a more concise way
(see Fig. 2) than Gaussian models.

Fig. 2. Comparison of Gaussian and EVT-based models with human data.
Courtesy of Boult.

For the second half of this pilot study, we have collected our
own data. Our experiment expanded on Hsu and Griffins’ [3]
study, but used EVT-based models. We hope our model will
paint a clearer and more accurate picture of the way humans
categorize unfamiliar stimuli. Another possible extraneous
factor in Hsu and Griffiths’ [3] study is the way the alien
interpreters (the categories) were presented. Those in their
generative group were clearly shown when the category had
changed, as the aliens changed depending on the sign. In the
discriminative group, there was a single alien which never left
the screen, and so the participants may not have noticed the
sign change. We have duplicated some of their stimuli to test
for this factor (see Fig. 3).

A. Metrics and Design

Our research uses models based on the extreme value distri-
butions. Scheirer et al. [7] define extreme value distributions
as “... limiting distributions that occur for the maximum
(or minimum, depending on the data) of a large collection
of random observations from an arbitrary distribution.” In
the case of visual recognition and categorization in humans,
instead of removing the outliers or having them skew the
results, one can normalize them, possibly allowing for a better
fitted prediction.

For our experiment, we referred to the generalized extreme
value (GEV) distribution, or the combined Gumbel, Frechet,
and Weibull distributions. GEV is defined as

GEV (t)=

{
1
λe

−v−1/k

v−(1/k+1) k 6=0
1
λe

−(x+e−x) k=0
(4)

1Personal Communication

3

where x is equal to t−τ
λ , v is equal to (1+k t−τλ), and k,λ,

and τ are the shape, scale, and location parameters.
For stimuli, we created a set of 2 dimensional Non-uniform

rational B-spline (NURBS) shapes. NURBS are mathemati-
cally based shapes, and can be manipulated through functions
and interpolation. In a NURBS parametric form, ”... each of
the coordinates of a point on a curve is represented separately
as an explicit function of an independent parameter” [9]

C(u)=(x(u),y(u)) a≤u≤b (5)

Where “C(u) is a vector-valued function of the independent
variable u”, which is within the interval [a,b] (usually normal-
ized to [0,1]) [9]. The NURBS we created look similar to ink
blots. Each group of images had points that were interpolated
to create a set with two clear classes, and another that was
somewhere between those two classes (see Fig. 3 and 4).
Four groups of shapes were used, and each group contained
17 images. These stimuli acted as distractor tasks. The other

Fig. 3. Example of images duplicated from our NURBs stimuli.

stimuli were white lines of varying lengths, place inside of a
black circle. Each set had a total of 18 images. These were
based on the stimuli in Hsu and Griffiths’ [3] study (see Fig.
5). These stimuli were placed into 3 conditions: generative,
discriminative, and enhanced tails.

Fig. 4. Example of images from training classes A and B, and a testing
image. Courtesy of Boult.

For the experiment itself, we used a program called Psy-
choPy, version 1.80 2. PsychoPy is open source psychophysics
software, developed by Piece [10].

Fig. 5. Example of images duplicated from Hsu and Griffiths’ [3].

There were 8 participants total, some of whom took the
experiment on multiple occasions. From them, we gathered
30 trials for each of the 3 conditons. Our participants were
asked to categorize a series of images into one of two groups,
Group 0 or Group 1, and told that there was to be a training
component where they would be shown the images and their
respective categories, and a testing component where they
would label the images themselves. The groups had a separate
training set or training style, and testing set. For every group,
the participants were trained on the 10 shapes at extrema, 5
from each tail. They were then tested on those same shapes,
along with the shapes from the middle of the set, some of
which were repeated to make up a total of 20 shapes per
training. All trials were repeated, for a total of 20 trial blocks.

IV. DATA ANALYSIS

We recorded which middle stimuli were categorized into
Group 0 or 1, and the frequency to which these stimuli were
placed in these groups (see Fig. 9). The EVT-based model was
fitted to the data. It reflected the biases the participants have
in categorization, as it did in the pilot study.

A. Factor 1: The Generative Condition

In the generative condition, participants were shown the
training stimuli. The training set consisted of lines that were in
high variance and low variance categories. The low variance
lines were 110, 120, 130, 140, and 150 pixels in length, while

2Accessed here: http://www.psychopy.org

4

the lines in the high variance category were 300, 375, 450,
525, and 600 pixels in length. During training, a box appeared
0.5 sec before before the stimuli, indicating which group the
image belonged to. After the stimulus appeared, both the box
and the image remained on the screen for 1.5 sec. This was
repeated for all 10 stimuli in the training set.

The testing set was comprised of the training set, as well
as a set of “middle” stimuli with line lengths of 167, 183,
200, 216, 233, 250, 267, and 283 pixels. The probability
that each of these lines would be categorized into the high
variance category was 0.17, 0.20, 0.33, 0.4, 0.53, 0.70, 0.77,
0.90, respectfully. The data fit our model well, with the main
deviation being at line length 267 (see Fig. 6). Out of the three
conditions, this condition was the closest fit to our EVT-based
model.

Fig. 6. Comparison of our EVT model with human data for the generative
condition.

B. Factor 2: The Discriminative Condition

In the discriminative condition, participants were shown the
same training and testing stimuli as the generative condition.
However, the indicator box remained on the screen throughout
the training session, with only the text changing. Each image
still remained on the screen for 1.5 sec. For this condition,
the probability that each of the middle stimuli would be
categorized into the high variance category was 0.13,0.23,
0.30, 0.37, 0.63, 0.67, 0.83, and 0.90, respectively. The data for
this condition also fit our model well, with the main deviation
being at line length 233 (see Fig. 7).

C. Factor 3: The Enhanced Tails Condition

The final training set of lines contained the set of low
variance lines as the generative and discriminative conditions,
but the high variance lines had an elongated tail, with pixel
lengths of 300, 375, 450, 600, and 800. The training set up
was identical to that of the generative condition. For this
condition, the probability that each of the middle stimuli would
be categorized into the high variance category was 0.00,0.10,
0.20, 0.20, 0.43, 0.53, 0.60, 0.77, respectively. This shows

Fig. 7. Comparison of our EVT model with human data for the discriminative
condition.

a shift towards the low variance category. We trained the
model on the same set of training data used for the previous
conditions for a better visual representation of the bias towards
the low variance category (see Fig. 8).

Fig. 8. Comparison of our EVT model with human data for the enhanced
tails condition.

D. Comparison

In this section, we will compare the generative, discrim-
inative, and the enhanced tails conditions, and discuss the
statistical analysis for the experiment. Fig. 9 is a summary of
the probabilities of each condition. The error bars indicate the
variance of each line lengths probability. Both the generative
and discriminative categories had similar trends. The variance
of the generative, discriminative, and enhanced tails conditions
were 0.073, 0.083, and 0.072, respectively.

V. FUTURE WORK

For our future research, we will incorporate measurements
from the NURBS shapes. Because these shapes are mathemat-
ically based, the stimuli’s dimensions can be easily applied to

5

Fig. 9. Probability of categorization of middle stimuli into the high variance
category for the generative, discriminative, and enhanced tails conditions.

probability models. One such model, which was mentioned in
Section II, is the generalized context model (GCM), which
states that ”For the case of two categories A and B, the
probability that a given stimulus X is classified in category A
is given by

P (A|X)=
βaη

α
XA

βAηαXA+(1−βA)ηαXB
(6)

where βA is a response bias toward category A and ηXA and
ηXB are similarity measures of stimulus X toward all stored
exemplars of categories A and B, respectively” [11].

Because our stimuli are so diverse, we plan to make at
least one other variation on the current experiment. This may
involve changing the task difficulty, the time length, or varying
the amount of stimuli in the training sessions.

VI. CONCLUSION

This paper proposed a new EVT based model for visual
recognition. For our purposes, we hope our model will prove
to be consistent and accurate in predicting human recognition
and categorization. If it is shown to be both of these things,
the model could be used to select training sets for machine
learning more efficiently, as EVT-based models focus on
training data at the extremes, which may cut down on costs
of supervised learning. We have seen that EVT-based models
can be applied to both generative and discriminative learning
situations. We believe that EVT-based models should also be
insensitive to the difference between categorical and perceptual
learning. With more research, our model may be applied to
other human learning tasks, not just visual recognition.

ACKNOWLEDGEMENT

I would like to acknowledge Dr. Walter Scheirer, Dr. David
Cox, and the team of scientists at Harvard University, who

have greatly contributed to this project. I would also like to
thank Dr. Terrance Boult, Dr. Lori James, Dr. Kristen Walcott-
Justice, and Dr. Jugal Kalita for their invaluable guidance. This
project is being supported by NSF REU Grant 1359275.

REFERENCES

[1] E. Alpaydin, Introduction to machine learning. MIT press, 2004.
[2] I. H. Witten, E. Frank, and A. Mark, “Hall (2011).” data mining:

Practical machine learning tools and techniques,” 2011.
[3] A. S. Hsu, T. L. Griffiths et al., “Effects of generative and discriminative

learning on use of category variability,” in Proceedings of the 32nd
Annual Conference of the Cognitive Science Society, 2010, pp. 242–
247.

[4] M. K. Nasution, “The ontology of knowledge based optimization,” arXiv
preprint arXiv:1207.5130, 2012.

[5] S. Kotz and S. Nadarajah, Extreme value distributions: Theory and
applications. World Scientific, 2000, vol. 31.

[6] S. Hugueny, D. A. Clifton, and L. Tarassenko, “Probabilistic patient
monitoring with multivariate, multimodal extreme value theory,” in
Biomedical Engineering Systems and Technologies. Springer, 2011,
pp. 199–211.

[7] W. Scheirer, A. Rocha, R. Micheals, and T. Boult, “Robust fusion:
extreme value theory for recognition score normalization,” in Computer
Vision–ECCV 2010. Springer, 2010, pp. 481–495.

[8] A. L. Cohen, R. M. Nosofsky, and S. R. Zaki, “Category variability,
exemplar similarity, and perceptual classification,” Memory & Cognition,
vol. 29, no. 8, pp. 1165–1175, 2001.

[9] L. Piegl and W. Tiller, “The nurbs book,” Monographs in Visual
Communication, 1997.

[10] “Psychopy—psychophysics software in python,” Journal of Neuro-
science Methods, vol. 162, no. 1–2, pp. 8 – 13, 2007. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0165027006005772

[11] T. Smits, G. Storms, Y. Rosseel, and P. De Boeck, “Fruits and veg-
etables categorized: An application of the generalized context model,”
Psychonomic Bulletin & Review, vol. 9, no. 4, pp. 836–844, 2002.

Using Hidden Markov Models and Spark to
Mine ECG Data

Jamie O’Brien
Saint Mary’s College of Maryland

St. Mary’s City, Maryland
Email: jcobrien@smcm.edu

Abstract—New potential risk factors for cardioembolic strokes
are being considered in the medical community. The presence of
these factors can be determined by reading an electrocradiogram
(ECG). Manual ECG analysis can take hours. We propose
combining accurate Hidden Markov Model (HMM) techniques
with Apache Spark to improve the speed of ECG analysis. The
potential exists for developing a fast classifer for these risk
factors.

I. INTRODUCTION

The proliferation of medical data in modern hospitals pro-
vides a rich environment for data mining. Electrocardiograms
(ECGs) provide a wealth of information that can be used
to diagnose cardiovascular diseases (CVDs). In Agarwal and
Soliman [1], it is suggested that the ECG can be used to detect
cardioembolic stroke risk factors. Aside from those factors
included in the Framingham Risk Score, emerging factors
include:

1) cardiac electrical/structural remodeling,
2) higher automaticity,
3) heart rate & heart rate variability.

Currently, the manual analysis of ECG patterns is time-
consuming. It can take several hours to complete Acharya et
al [2].

II. PROBLEM STATEMENT

We want to find a better method of detecting the emerging
risk factors listed in Section I. We want to combine an effective
Hidden Markov Model (HMM) classifier for ECGs with the
fast, distributed processing power of Apache Spark.

A. Atrial Fibrillation—A Verified Stroke Risk

In atrial fibrillation (AF), the heart’s atrial walls do not
produce an organized contraction—instead, they quiver [3].
Even though AF is a component of the Framiningham Stroke
Risk Score [4], it is often undetected; the condition has evaded
detection even in patients known to have paroxysmal atrial
fibrilation. The detection rates may vary depending on the
algorithms used, but seem to improve with longer monitoring
times [5]. The difficulty of accurately detecting AF motivates
the search for additional stroke risk factors.

B. Hidden Markov Models

Hidden Markov Models (HMMs) have been used with
great effect in classifying ECGs. Andereão et al were able
to demonstrate an accuracy of 99.97% in detecting the QRS
complex of the heartbeat [6]. Their approach was to create
a general model of the heartbeat, and then tune the model to
each individual by using data from the first 20 seconds of their
ECG. The general model of the heartbeat was composed of
discrete states representing the P, Q, R, S, and T waves, the
PQ and ST intervals, and the isoline. Andreão et al’s work
was able to detect premature ventricular contractions (PVCs).
We hope to use a similar model for detecting ectopic beats
and bundle blocks.

C. Apache Hadoop

Hadoop pairs a high-bandwidth distrubted file system with
MapReduce programming Svachko et al [7]. This allows for a
task to be broken up across many computers, the components
calculated independently, and the results collected. In this way,
Hadoop may improve the performance of signal processing
tasks. This performance improvement is the core of the Cloud-
wave system described in Jayapandian et al [8]. The authors of
that work used Hadoop to process multimodal bioinformatic
data. A stand-alone machine was able to process 10 signals in
22-36 minutes. Their Hadoop cluster was able to process the
same data in 4-6 minutes.

D. Apache Spark as a replacement for Hadoop MapReduce

While the Cloudwave system described in Jayapandian
et al [8] is impressive, the highly iterative nature of data
mining tasks may cause significant overhead under Hadoop’s
MapReduce architecture. Apache Spark avoids this issue by
using the concept of resilient distributed datasets (RDDs).
These RDDs can be cached in memory. This make the data
available for iterative and parallel programming alike without
having to be constantly reloaded Zaharia et al [9].

III. METHOD

The in-progress research explores the applicability of Hid-
den Markov Models on ECG readings, with the goal of
detecting the emerging factors mentioned in [1]. Here we note
the strategy for constructing our system.

We obtained ECG signals from the QT Database (QTDB),
using the WaveForm Database application suite. We also

obtained two sets of annotations: one, marked atr, contains
annotations that marks beats as normal, or as having some ab-
normality (preventricular contraction, for instance); the second
set of annotations, marked pu0, contains waveform markers,
such as p, t, and N (for normal qrs complex). Any records
from the QTDB that did not contain annotations from atr
were excluded, as we would not be able to verify our results
against them.

We transformed the pu0 annotations to provide clearer
information. The standard for annotating waves is to open
a wave with a paren, note the wave, and then close it with
a paren. For instance, the p wave would be marked by
the annotations (, p,). We wrote a script to process these
annotations, and change them to the form pBegin, p, pEnd,
so that all parenthesis were removed. This meant that the
annotations themselves could now become a set of states for
use in a Hidden Markov Model. The states derived from the
annotations were: pBegin, p, pEnd, q, r, q, tBegin, t, tEnd,
unknownBegin, and unknownEnd.

However, we found that it was not practical to simply map
the states annotated in pu0 to the beat classifications annotated
in atr. When attempting to map the state sequence to PVC,
for instance, no significant correlation could be found in a
sample of PVC beats. We hypothesized that the duration of the
states was also significant. It may be necessary to mark states
as being faster or slower than normal. The duration between,
for instance, pBegin and pEnd could tell us if the p wave were
of normal duration.

With this in mind, we are determining a way to map the
ECG signal itself to states. In [10], we find an algorithm for
decomposing ECG signals into line segments. This algorithm
moves a dynamically-sized window along the ECG signal. The
window checks the distance between the endpoints and every
point in-between, using normalized distances where needed.
We can adjust the allowed error to accomodate noisy signals.

We modify this algorithm to output a list of 4-tuples of
the form (starting point, length, mean of segment, standard
deviation of segment). This converts the continuous ECG
signal into a set of data points. We must then convert this set
of data points into states that correspond with the waveforms
of the heart beat: the p wave, qrs complex, t wave, and the
intervals between them.

IV. THE CLASSIFICATION PROCESS

We begin by slicing an ECG signal between its R-R inter-
vals. We then take a slice and segment it using the algorithm
described in [10]. These segments are then labeled by the state
they most match, using a decision tree. The progression of
states is treated as an observation, and fed into the HMM
to determine which beat type most accurately matches the
observation.

V. FURTHER WORK

This work will not be complete until the HMM itself is built
and can be tested. In anticipation of this, we have separated
the QTDB into a training set comprising approximately 80%

of the annotated data, and a testing set with the remaining
approximately 20%. The training set is composed of five sub-
groups, each approximately 20% of the size of the training
set. We intend to use these sub-groups for cross-validation.

After the model is built and its performance is evaluated, we
can begin the construction of the Apache Spark implementa-
tion of the model. The purpose of this will be to compare the
performance of the Spark implementation against the locally-
run implementation. The parameters for this experiment will
be determined when the HMM itself is complete.

VI. CONCLUSION

This research may provide a effective method for detecting
the emerging risk factors for a cardioembolic stroke mentioned
in section I. This would assist researchers who are investigat-
ing these risk factors.

ACKNOWLEDGMENT

We would like to thank the National Science Foundation
(NSF) for their generous grant, and the University of Colorado,
Colorado Springs for hosting the Research Experience for
Undergrads (REU) program.

REFERENCES

[1] S. Argwal and E. Soliman, “Ecg abnormali-
ties and stroke incidence,” 2013. [Online]. Available:
http://www.medscape.com/viewarticle/808752

[2] R. Acharya, A. Kumar, P. Bhat, C. Lim, N. Kannathal, and S. Krish-
nan, “Classification of cardiac abnormalities using heart rate signals,”
Medical and Biological Engineering and Computing, vol. 42, no. 3, pp.
288–293, 2004.

[3] F. H. Martini, J. L. Nath, and E. F. Bartholomew, Fundamentals of
Anatomy and Physiology (9th Edition). Benjamin Cummings, 1 2011.

[4] F. H. Study, “Stroke,” https://www.framinghamheartstudy.org/risk-
functions/stroke/stroke.php, (Visited on 07/14/2014).

[5] M. A. Rosenberg, M. Samuel, A. Thosani, and P. J. Zimetbaum, “Use
of a noninvasive continuous monitoring device in the management of
atrial fibrillation: a pilot study,” Pacing and Clinical Electrophysiology,
vol. 36, no. 3, pp. 328–333, 2013.

[6] R. V. Andreão, B. Dorizzi, and J. Boudy, “Ecg signal analysis through
hidden markov models,” Biomedical Engineering, IEEE Transactions
on, vol. 53, no. 8, pp. 1541–1549, 2006.

[7] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in Mass Storage Systems and Technologies
(MSST), 2010 IEEE 26th Symposium on. IEEE, 2010, pp. 1–10.

[8] C. P. Jayapandian, C.-H. Chen, A. Bozorgi, S. D. Lhatoo, G.-Q.
Zhang, and S. S. Sahoo, “Cloudwave: Distributed processing of big
data from electrophysiological recordings for epilepsy clinical research
using hadoop,” in AMIA Annual Symposium Proceedings, vol. 2013.
American Medical Informatics Association, 2013, p. 691.

[9] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: cluster computing with working sets,” in Proceedings of the 2nd
USENIX conference on Hot topics in cloud computing, 2010, pp. 10–10.

[10] A. Koski, “Modelling ecg signals with hidden markov models,” Artificial
intelligence in medicine, vol. 8, no. 5, pp. 453–471, 1996.

FINAL REPORT FOR REU PROGRAM AT UCCS, SUMMER 2014 1

Question Generation using Part of Speech
Information

Jacob Zerr, Texas A&M University

Abstract—When testing students on knowledge from a story
or article, a human must interpret the text to generate English
questions. The difficulty in automating this process is producing a
computational algorithm that can fully account for the syntactic
and semantic complexities of human languages. Most approaches
use big, costly semantic tools such as WordNets to achieve
their semantic accuracy and rule-based approaches to achieve
their syntactic accuracy. We propose an approach for generating
knowledge-testing questions from textual English using machine
learning to use part of speech pattern matching without using
any large semantic tools.

I. INTRODUCTION

Many attempts have been made to automate interpreting
natural human languages, most of which have taken some
small sub-problem and attempted to solve it. One such sub-
problem is manipulating sentences to create question-answer
pairs from a sentence, which we will be addressing. The
main difficulty of question generation is that the method
must maintain both semantic and syntactic accuracy. When
formatting a question, we will need to change the structure
of the sentence, add and remove words, change the tense
or part of speech of words, or other complex operations.
Moreover, through these operations we must keep the semantic
integrity of the statement and select the correct answer to the
resultant question. However, the applications of a proficient
question generator could span domains from automated edu-
cation tools to better AI conversation generation. We propose
a new method of question generation that uses part of speech
(POS) pattern matching based off of Inversion Transduction
Grammars (ITG) from a sentence and question-answer pair
corpus. We restrict our input to sentences containing one
independent clause with the thought that this approach would
work on any input if compressed first.

II. PROBLEM DEFINITION

Our input will be any collection of English sentences
containing one independent clause. The sentences should be
well formed and in correct English grammar for best results.
The output will be a set of question-answer pairs that should
be asking about the contextual knowledge of the original text.
The output questions should also be grammatically correct.
Here are a couple examples.

Jacob Zerr is participating in a National Science Foundation REU at the
University of Colorado at Colorado Springs, Colorado Springs, CO 80918.

email: zerr2@tamu.edu

• John drove the car to work. → Who drove the car to
work? John

• The pump is now operational. → Is the pump operational?
Yes

• He waters the garden every day. → What does he do
every day? waters the garden

III. RELATED WORK

Question generation was brought to the attention of the nat-
ural language processing community by Wolfe [4] in 1976. He
outlined the purpose and applications of a question generator
and the potential challenges. Since then, many have produced
question generators of a limited focus. Papasalouros [1] creates
only multiple choice questions by producing a set of similar
sentences where a key word has been replaced in the wrong
selections. This reduces the complexity of the problem by
avoiding interrogative sentence structure. Brown [3] focuses
only on questions that test vocabulary and uses a WordNet
to increase their question complexity without losing semantic
accuracy. They also use part of speech (POS) tagging to
maintain the syntactic accuracy of the question. Kunichika [2]
provides the most general approach of all by dissecting both
the syntactic and semantic structure of the original sentence
before producing the question. After looking at both of these,
their algorithm has a broad spectrum of questions it can
generate about the original declarative sentence. However, this
approach relies heavily on the accuracy of the interpretation
of the sentence using tools like WordNets that may not be
accurate in all cases. These are three representations of the
current best solutions, none of which use machine learning.
Our approach will rely heavily on a POS tagger for which we
will be using the Stanford Parser outlined in Toutanove [9].
On a different note, Heilman [5] ranks generated questions
which may be considered as a useful addition to our question
generation process later on in our development.

IV. INVERSION TRANSDUCTION GRAMMARS

Inversion Transduction Grammars are grammars that map
two languages simultaneously and generally follow the format
of a context free grammar. The main difference is the angle
brackets in the grammar denote that the symbols should be
read in left-to-right order for the first language and right-to-
left for the second. This allows for the grammar to successfully
map two languages with different part of speech orderings like
SOV, SVO, or VSO languages. From there the lexicon has
word pairs, one from each of the two languages, that should
be direct translations of each other. This method uses basic

FINAL REPORT FOR REU PROGRAM AT UCCS, SUMMER 2014 2

word-to-word translations and the fact that most languages
use similar part of speech models, just in a different order,
to achieve an accurate machine translation. Wu [6] explains
these grammars in detail and shows how they can be used
as an accurate form of machine translation. Both Goto [7]
and Neubig [8] use these techniques to successfully perform
machine translations between complex languages.

V. OUR APPROACH

A. Producing POS Pattern Templates from the Corpus

The main approach that we will be pursuing to convert
our declarative sentences to questions is through a POS
pattern matching approach based off of ITGs. Though ITGs
have mainly been used to convert a parsed sentence into
another language, we will be using it to convert between
declarative English and interrogative English. The difficulty
in this process is that ITGs rely on the structure of the two
sentences to be similar in all but ordering. However, there
are structural parts of interrogative English that are not in
declarative English and vice verse. Our approach will avoid
this by ignoring the tree structure of the grammar and just
map the movement of different phrases from the sentence to
the question.

The first major step of processing our corpus instances is
to identify the phrases that stay consistent in the transition
from declarative sentence to question-answer pair. We do
this by searching the instance for phrases of the exact same
wording starting from the largest possible phrases and then
incrementally decreasing the size until all of the common
phrases have been identified. We call this process chunking.
Figure 1 shows such an instance and the phrases that have
been identified after chunking has been completed.

Figure 1. Sample of chunking the common phrases from an instance in our
corpus.

Notice that there may be phrases in the sentence, question,
or answer that are not in any of the other parts of the instance;
in this case in the forest and What. These are kept and used
by the algorithm in the process of finalizing the template; this
will be explained later.

Our algorithm also can identify phrases that appear in
all three parts of the instance as a part of the chunking
process. This helps create templates for questions that quiz
on adjectives of the sentence while still maintaining accuracy.
Figure 2 is an example of such an instance where plate is
repeated in all three parts of the instance to ensure that the
answer makes sense.

Figure 2. Sample of chunking an instance where a phrase is repeated in all
three parts of an instance. This helps produce templates of questions that quiz
on adjectives in the input sentence while still keeping accuracy.

Now that we have chunked our instances, we need to
determine the part of speech of each of the phrases included in
the sentence portion of the instance. For this we will be using
the Stanford POS tagger [9]. There are two main approaches to
attempting to tag these phrases with a POS: parsing it within
the original context of the sentence or parsing it out of context.
When parsing it out of context, we can conveniently get a
single POS for the phrase. However, you forfeit accuracy with
this method because the Stanford Parser solves ambiguities
internally and it may return the wrong POS in an ambiguous
case. For this reason, we chose to parse the phrase within the
context of the original sentence. However, this is slightly more
difficult, because we will now have to search the grammar
parse tree of the whole sentence produced by the Stanford
Parser. Our method for this was to search for the node of
the tree that was the deepest ancestor of all of the words in
the phrase. An example of this is shown in Figure 3. Here
we can see that we identify the POS for the enemy of as a
Noun Phrase in the context of the sentence The weasel was
the enemy of all birds in the forest.

S

NP VP

DT

The

VBD NP

was NP PP

IN NP

of

NN

weasel

DT

the

NN

enemy NP PP

IN NP

in

NNS

birds

DT

all DT NN

the forest

Figure 3. Our method for finding the POS of a phrase involves finding the
deepest common ancestor of the words of the phrase. Here we can see the
enemy of is being labeled as a Noun Phrase.

With this method of POS tagging, we then will label every
phrase in the original sentence. This includes any phrases that

FINAL REPORT FOR REU PROGRAM AT UCCS, SUMMER 2014 3

were not repeated in the question or the answer. The result of
this process from the example used in Figure 1 is shown in
Figure 4.

Figure 4. The example from Figure 1 with its sentence chunks labeled with
their POS.

After the sentence chunks have been labeled, we drop all of
the phrases that appeared in the sentence part of the instance.
The phrases that only appeared in the question or answer are
left as a part of the template. This is the final step of producing
our POS template from an instance in our corpus. This process
is completed for every instance in the corpus before we start
trying to use these templates on our input sentences. Figure 5
shows this last step on our example.

Figure 5. The final step of preparing the templates is drop all of the phrases
that appeared in the sentence. Phrases that were just in the question or answer
remain.

B. Generating Questions

Once we have converted the instances of our corpus into
POS pattern matching templates, we can begin to try to fit
input sentences into our templates. We do this by simply seeing
if the input sentence can be divided into phrases that, when
tagged with a POS, match the template. If we do find a match,
we reorder the phrases by using the template’s question-answer
ordering to produce our question-answer pair. An example of
a sentence fitting the template we produced above is in Figure
6.

An interesting question that arose from this pattern matching
method is which type of POS tagging we would use for this
part of the algorithm, in-context or out-of-context. Initially,
it seemed clear that we should follow the same method we
did in producing our corpus and use in-context. However,

Figure 6. A sentence being matched to our example template and the question-
answer pair it produced.

when experimenting with out-of-context we sometimes would
produce a wrongful tag to a phrase that would fit a template.
The expectation was that from an erroneous matching we
would produce an inaccurate question, but this was not always
the case. Figure 7 shows an input sentence matching to the
template we produced above with render erroneously being
labeled a Noun Phrase, however the produced question is ac-
curate. We explored this question and our answer is discussed
later in the results section.

Figure 7. A sentence being wrongfully tagged and matched to our example
template may still produce an accurate question-answer pair.

As a last note, if our algorithm can divide an input sentence
to match a template more than one way, then it will produce
a different question for each different legitimate divisions. An
example of this is shown below in Figure 8.

An interesting observation on our method is that because we
are simply reordering phrases, we keep the same vernacular of
the original sentence. We have been operating in the domain
of children’s stories for this project and often times children
stories will have odd wording that is not common vernacular
anymore. These odd phrases will always be reflected in our
output. The example in Figure 7 uses phrases like render
assistance whereas most people would simply say help. This
can be both a good and bad attribute of our approach. The
good part is that our questions may contain slang or improper
words of spoken English that takes our questions to a semantic
level not normally achievable by a computer. However, it also
can sometimes cause problems if these words are wrongfully

FINAL REPORT FOR REU PROGRAM AT UCCS, SUMMER 2014 4

Figure 8. If a sentence can be divided in more than one way to match a
template then the algorithm will produce a different question for each way.

tagged and will miss the factual tone of SAT-style questions
that a user may want because of odd diction in the original
sentence.

Also, it is important to note that we restricted our input to
sentences containing one independent clause. This is neces-
sary, because with additional clauses the accuracy of our POS
tagging for phrases goes drastically down. For instance, if we
divide our input in a way that a phrase is an entire clause
it may be be given a POS label of Sentence, which is too
general for our templates to produce good results. Typically,
the larger the phrases become, the higher up the parse tree
you will have to go for a deepest common ancestor, and the
less specificity of POS tags we will have. Thus, in order to
maintain reasonable levels of accuracy, we must limit our input
to one clause sentences.

VI. DATASETS

A large part of our work was producing and manipulating
the corpus that defined our POS matching templates. This
corpus is a collection of instances that map a sentence to a
question-answer pair. Initially our corpus had 254 instances.
From initial testing using this corpus we observed several
things; a small corpus could produce an ample number of
questions even with just one sentence inputted, often the same
questions were produced more than once, and some instances
in our corpus were better at producing accurate sentences than
others. From these observations we decided to stop expanding
the corpus and to actually start eliminating some instances.

Firstly, we had learned that some of the instances in our cor-
pus were producing the same templates. Thus we went through
and found the instances producing the duplicate templates and
deleted them. An example of this was the template below had
been produced 34 times. After 93 deleting instances that were
producing duplicate templates our corpus had been reduced
down to 161 instances.

NP VP → Who VP ? NP

Secondly, we observed that some templates produced by our
instances were much better at producing successful question-
answer pairs than others. To test this theory we ran our corpus
against some preliminary testing examples and confirmed this.
Some templates were producing many consistently accurate
questions, some produced very few questions, and others
produced many inaccurate questions. Based on these results we
eliminated any instance from our corpus that was producing
questions at a twenty percent accuracy level or worse. This
reduced our corpus down to just 129 instances.

Contrary to most forms of corpus-based machine learning,
we found this corpus to be more than enough to produce a high
number of different questions and a wide breadth of different
types of questions. This is one of the largest advantages of our
approach; it takes a comparatively tiny amount of data to get
good results especially when compared to most of the other
approaches that use large WordNets or other large semantic
tools.

VII. RESULTS

We analyzed and made improvements based off the syntactic
and semantic accuracy of the output of our approach. The
proportion of output instances that are grammatically correct,
accurately quizzes the reader on the original knowledge, and
has the corresponding answer will be our main metric of
success. We used unbiased volunteer evaluators that judged
each produced question-answer pair on whether they were
syntactic and semantic accurate or not. Our evaluators are
native English speakers that are in the process of attaining a
Bachelors Degree, thus they have a firm knowledge of the
English language. Our input were single independent clause
sentences from children’s stories such as The Princess and the
Pea, The Boy Who Cried Wolf, and other such children stories.

A. POS Tagging Methods

We would first like to address the question we presented
earlier on whether POS tagging on our input sentences should
be done in-context or out-of-context. We would first like to
note that we used only in-context tagging for creating our
templates so that we could create accurately tagged templates.
However, as we noted before, we produced accurate questions
using both methods when tagging the input sentences. Based
off of this we decided to experiment using four different
methods for determining the POS to tag the sentence phrases:
using the in-context tag (IC), using the out-of-context tag
(OC), using a POS tag only if the two methods agreed
(IC && OC), and using either method to try to fit a sentence
into a template (IC || OC). We tried these four methods on
a 20 sentence input children’s story.

Based off of the above results we chose to use the
IC || OC method for the rest of our work because of the
greatly increased total solution production despite a very
similar accuracy rate. Based off of the numbers above, this
method was producing, on average, 7.25 accurate questions
per inputted sentence.

FINAL REPORT FOR REU PROGRAM AT UCCS, SUMMER 2014 5

Table I
POS TAGGING METHODS

Method Accurate Total Percent
IC 94 160 58.75
OC 87 150 58.00

IC && OC 58 90 60.00
IC || OC 145 243 59.67

B. Overall Accuracy

For our final accuracy test, we used an input 48 sen-
tences long from children’s stories. We produced an output
of 435 question-answer pairs. This means that we averaged
9.06 question-answer pairs per inputted sentence. This puts
into perspective that our corpus, at 129 instances, really can
perform like a large semantic tool despite its small size. The
produced question-answer pairs were assessed by 4 evaluators
that ranged the accuracy from 57.01% to 59.67% with an
average of 58.36%. This result is also encouraging considering
the previous work in this area. Brown [3] produced an accuracy
rate from 52.86% to 64.52% and Papasalourous [1] produced
an accuracy of 75% from his best strategy, but averaged an
accuracy of 47.55% between all of their strategies. It is also
interesting to note that both of these approaches were slightly
more restricted in domain than our approach and they both
relied on advanced wordnets in order to maintain semantic
accuracy.

VIII. POSSIBLE FUTURE WORK

A possible extension of this work would be automatically
analyzing the questions produced and ranking them in some
way. Depending on the accuracy of the rankings we may be
able to achieve a higher accuracy of the questions that are
ranked in some top fraction of the produced questions.

IX. CONCLUSION

By using a relatively simple machine learning method with
a small dataset, we were able to out-perform previous rule-
based methods that used large semantic tools. If used with
an accurate sentence compressor, we believe this method
for generating questions would be extremely accurate and
convenient. Our approach is also not domain-specific and thus
can be used in anything from automated education tools to
better AI conversation generation.

REFERENCES

[1] A. Papasalouros, K. Kanaris, and K. Kotis. ”Automatic Generation Of
Multiple Choice Questions From Domain Ontologies.” In e-Learning, pp.
427-434. 2008.

[2] H. Kunichika, T. Katayama, T. Hirashima, and A. Takeuchi. ”Automated
question generation methods for intelligent English learning systems and
its evaluation.” In Proceedings of International Conference of Computers
in Education 2004, pp. 2-5, Hong Kong, China, 2003.

[3] J. Brown, G. Frishkoff, and M. Eskenazi. ”Automatic question generation
for vocabulary assessment.” In Proceedings of the conference on Human
Language Technology and Empirical Methods in Natural Language Pro-
cessing, pp. 819-826, Vancouver, Canada, Association for Computational
Linguistics, 2005.

[4] J. Wolfe ”Automatic question generation from text-an aid to independent
study.” In ACM SIGCUE Outlook, vol. 10, no. SI, pp. 104-112, ACM,
1976.

[5] M. Heilman, and N. Smith. ”Good question! statistical ranking for
question generation.” In Human Language Technologies: The 2010 An-
nual Conference of the North American Chapter of the Association for
Computational Linguistics, pp. 609-617, Los Angeles, USA, Association
for Computational Linguistics, 2010.

[6] D. Wu. ”Stochastic inversion transduction grammars and bilingual parsing
of parallel corpora.” In Computational Linguistics 23, pp 377-403, 1997.

[7] I. Goto, M. Utiyama, and E. Sumita. ”Post-Ordering by Parsing with
ITG for Japanese-English Statistical Machine Translation.” In ACM
Transactions on Asian Language Information Processing (TALIP) 12, no.
4, 2013.

[8] G. Neubig, T. Watanabe, S. Mori, and T. Kawahara. ”Substring-based
machine translation.” In Machine Translation 27, no. 2, pp 139-166, 2013.

[9] K. Toutanova, D. Klein, C. D. Manning, and Y. Singer. ”Feature-rich part-
of-speech tagging with a cyclic dependency network.” In Proceedings of
the 2003 Conference of the North American Chapter of the Association
for Computational Linguistics on Human Language Technology, Volume
1, pp 173-180, Edmonton, Canada 2003.

	01Cover
	Aleman
	All
	Aleman
	Barker
	Gohde
	Guvernator
	Introduction
	Background
	Choosing Android
	Extracting Design Elements
	Dataset Acquisition with fdscrape
	Tag Lexing & Extraction with Aguille
	Machine Learning with Weka

	Empirical Evaluation
	Experiment Design
	Experiment Results

	Discussion & Challenges

	Related Work
	Future Work
	Conclusion
	References

	Kinneer
	Krejci
	McGrory
	Moore
	OBrien
	Zerr

	Barker
	Gohde
	Guvernator
	Introduction
	Background
	Choosing Android
	Extracting Design Elements
	Dataset Acquisition with fdscrape
	Tag Lexing & Extraction with Aguille
	Machine Learning with Weka

	Empirical Evaluation
	Experiment Design
	Experiment Results

	Discussion & Challenges

	Related Work
	Future Work
	Conclusion
	References

	Kinneer
	Krejci
	McGrory
	Moore
	OBrien
	Zerr

