10

Int'l Conf. Embedded Systems, Cyber-physical Systems, & Applications | ESCS'18 |

LwProf: Lightweight Profiling and Coverage Tool for Embedded Software

Evan Lojewski' and Kristen R. Walcott?
LEM Microelectronic-US Inc., Colorado Springs, Colorado, USA, Evan.Lojewski@emmicro-us.com
ZUniversity of Colorado - Colorado Springs, Colorado Springs, Colorado, USA, kwalcott@uccs.edu

Abstract— Determining test coverage can be prohibitively expensive
in resource constrained embedded systems. Traditional methods for
determining test coverage often cannot be considered due to the
resulting memory impact when enabling coverage. Even if the binary
did fit within the size limitations of the target system, the execution
slowdown can significantly change the behavior of a real-time system,
giving test results that may not reflect the final application.

In this work, we develop a tool, LwProf, that implements an opti-
mized version of traditional profiling techniques for embedded systems.
The tool is compared to existing coverage tools to determine the
difference in efficiency and effectiveness. When compared to traditional
methods, LwProf has a factor of two reduction in code size, a factor
of four reduction in data size, and an order of magnitude improvement
on the execution speed overhead, enabling coverage and profiling on
existing embedded systems.

Keywords: gcov, profiling, coverage

1. Introduction

Test coverage is a standard metric for determining the quality
of a test suite. This metric is determined by measuring which
parts of the code have executed, verses which parts have not.
Similarly, coverage can be extended into profiling by measuring
not only if the code has executed, but how often it executes.
Standard tools for determining test coverage such as gcov and
Ilvm-cov [9] result in binaries that are both larger and slower
than binaries with coverage disabled. While this overhead may be
palatable in standard software development projects, it becomes
prohibitively expensive to measure coverage in resource constrained
systems such as Application Specific Integrated Circuits (ASICs)
with embedded processors.

When ASICs are developed, they are often stripped down to the
minimum feature set required for the target application. This is
done in order to reduce per chip production costs, specifically by
minimizing the die area (chip size). Reducing the frequency of an
ASIC is one method that is used to reduce the die size. Another
technique is the removal of RAM, ROM, Flash, or other hardware
blocks that will go unused in the final application [3].

Traditional coverage tools such as gcov and llvm-cov result in
larger and slower binaries. As the ASIC has a reduced amount
of memory, often the coverage tool will result in a binary that
cannot be linked. Even if there is enough memory available, the
performance overhead can result in an inoperable system. As such,
traditional coverage tools cannot be used in many of these resource
constrained systems.

Other tools, such as THeME [1], utilize advanced hardware
features to achieve coverage results. By using the hardware features,
changes to the binary can be reduced or removed, resulting in
minimal size and speed impacts to the code. These tools however do
rely on additional hardware, increasing the die size and as such the

overall ASIC cost. Due to manufacturing-cost requirements on the
ASIC, these features are removed, resulting in hardware-assisted
coverage not being possible in many ASICs. Thus, standard test
coverage tools cannot be used due to the limited resources on the
ASIC.

Firmware for an ASIC may have a test suite. However, test suite
quality cannot easily be determined in many cases due to the lack
of profiling units or expensive coverage metrics. When software is
located in ROM, the quality of the software is extremely important
as complete mask sets for creating a chip can be on the order
of $100,000 to $1,000,000 depending on the process node [4]. As
such, an alternative method needs to be developed that works within
these constraints from a business standpoint.

To solve this problem, we developed a new tool. The tool,
LwProf, utilizes an optimized version of traditional coverage
techniques. The tool supports both an extremely light weight
coverage option as well as a profiling option that can be used on
embedded systems. As a result of the optimizations implemented,
LwProf results in a factor of two improvement in the code-size
overhead, while also reducing the execution overhead by an order
of magnitude. LwProf not only reduces the barrier for coverage
on ASICs, but it can also be directly used with standard software
due to the reduced overhead leading to reducing test time for the
developer.

In summary, the main contributions of the paper are:

o A Description of the architecture and purposes of LwProf,
given existing tools and their effectiveness (Sections 2 and 3)

o Details of the development and implementation of LwProf
(Sections 3 and 4).

e Evaluation and analysis of existing tools in terms of efficiency
and effectiveness (Section 5).

e Comparison of existing tools with LwProf (Sections 6 and 7).

2. Background

Traditional coverage techniques were developed to run on com-
puters with full operating systems, large amounts of memory, and
other resources. These coverage techniques work by modifying
software during compilation to inject probe points into the applica-
tion. The probe points, or instrumentation sites, cause a payload to
be recorded. This is often done with a special option in a compiler
that enables instrumentation code to be emitted into the final binary.

When the instrumentation sites are chosen appropriately, these
tools are able to record line, branch, function, and other types of
coverage metrics. Tools like gcov and llvm-cov add the instrumen-
tation code by injecting function calls into the code as needed for
the coverage metric desired. As an example, the instrumentation
site for function-level coverage is the prologue of each function,
while sites for branch coverage are the then and else clauses of

ISBN: 1-60132-475-8, CSREA Press ©

Int'l Conf. Embedded Systems, Cyber-physical Systems, & Applications | ESCS'18 |

I I
Source Source AST Instrumentation C . Object
Code e Parser - Injector Compiler H—a» Code

Fig. 1: The LwProf System Overview

each conditional. With traditional tools, the injected instrumenta-
tion calls into a coverage middleware library, recording that the
instrumentation was executed successfully. Once the program has
finished execution, the instrumentation payloads need to be saved
and analyzed. These tools often perform file I/O operations as the
program is exiting to record the coverage metrics to disk. All of
these additional operations can result in an execution overhead of
10% to 30% [8].

Instead of a middleware library to record instrumentation sites,
tools such as THEME [1] use hardware profiling units. Modern
CPUs used within standard PCs as well as ARM-based phones
include additional hardware that can enable hardware-assisted
coverage and profiling. Once a profiling unit is setup, the execution
path of a block of code can be recorded. Unlike traditional
techniques, hardware-based coverage tools are able able to grab
coverage information from unmodified software with some restric-
tions. Every time a branch is taken, the hardware unit can record the
event. If a branch is not taken, however, the hardware unit will not
record any information. This results in half of the branch decisions
being lost. If the software is modified to include a dummy branch
instruction in the fall-through case, then the hardware profiling can
catch all of the decisions. The THEME [1] research showed that
the additional dummy branch instruction had minimal impact on
both size and speed. While this does reduce the software overhead,
requiring hardware profiling units can impact the cost of ASICs
due to die size increases.

3. Tool Architecture

In order to solve the coverage problems inherent with ASICs,
we propose a new tool called LwProf. LwProf is designed to
mitigate the costs incurred when using both transitional coverage
based tools and hardware-assisted coverage tools. The overall
architecture of LwProf can bee seen in Fig. 1.

In order to simplify the architecture of the tool, LwProf has
three primary components: the Source Parser, the Instrumentation
Injector, and the Compiler.

The primary purpose of the Source Parser is to convert the input
C source code into an intermediate representation (the Abstract
Syntax Tree) that can be easily understood by later portions of the
tool. This intermediate representation includes useful information
including the source-location of each function as well as the body
of each then and else condition of an if statement.

Once the AST has been created, the Instrumentation Injector
locates any blocks of code that need to be instrumented. Once
located, a new, temporary version of the C source code is generated
with instrumentation added in.

This temporary source code is passed into the final component
- the compiler.

In order to be useful with ASICs, a couple of issues need
to be mitigated. Primarily, the profiling implementation needs to

S}

w

~

%)

N

7

~

my_func:
210al7c0 mov %$r9, $blink
c0fl push_s %blink
44cb 00000000r mov_s %$rl2,0 ; .mcount
08020000r bl _mcount
c0d1l pop_s $blink
7fel j_s.d [$blink]
d8ab mov_s %$r0, 165

Fig. 2: An example of a traditional instrumentation site as generated
using the commercial compiler.

my_func:
1e007043 00000000 stb 1,[0] ;
lwprof my func_c_37_39_1

7fe0 j_s.d [%blink]
d8ab mov_s %r0,165

Fig. 3: An example of the LwProf coverage instrumentation site

be constructed without imposing a significant cost on the final
product. That is, the code must fit in the same amount of ROM
to ensure the die size does not increase. It must not use additional
cycles, as this would require an increase in clock speed and power
consumption to offset it. Hardware-based techniques mitigate the
ROM and performance issues by adding an additional profiling
unit into the ASIC, however this has the downside of increased die
area. Additionally, these hardware methods are not portable across
different pre-existing architectures as they require design changes
and so cannot be readily used. Because of this, alternative methods
needed to be developed to mitigate these issues.

In order to ensure a high level of portability across different
systems, LwProf is designed as a software only solution. This also
has the benefit that additional hardware features are not needed,
reducing the likelihood of increased ASIC costs.

In Fig. 2, a traditional instrumentation site can be seen. The
traditional instrumentation site results in three instructions being
emitted with a total size of 14 bytes to store the instructions.
Additionally, for smaller functions such as the one shown, the
compiler needs to backup and restore the return address.

Similar to the dummy-branch optimization for hardware cover-
age, LwProf works around the execution overhead by replacing
the middleware library call with a memory store instruction as
seen in Fig. 3. This results in a single-instruction instrumentation
site taking up just 8 bytes. REmoving the middleware call causes
the execution overhead to become negligible. As a result, the
instrumentation site for LwProf is lightweight in both size and
execution overhead and has a high likelihood of being useful for

ISBN: 1-60132-475-8, CSREA Press ©

11

12

Int'l Conf. Embedded Systems, Cyber-physical Systems, & Applications | ESCS'18 |

uint8_t my_func (void) {
return 165;

Fig. 4: A standard C function.

unsigned char lwprof_my_func_c_37_39_1;

uint8_t my_func (void) {
lwprof_my_func_c_37_39_1 = 1;
return 165;

Fig. 5: A standard C function with the LwProf coverage instru-
mentation site.

ASIC development.

4. Implementation

The primary contribution of this paper is the implementation of
the LwProf tool. As shown in Fig. 1, LwProf has three main
components.

The most complex component, the Source Parse, is implemented
by leveraging the LibTooling library (version 5.0.0) from the LLVM
compiler infrastructure project [10]. By using LibTooling, LwProf
gains the ability to parse C and C++ code, such as that shown in
Fig. 4, at the same level as the LLVM-based clang compiler. Once
the source files have been parsed, LibTooling generates an Abstract
Syntax Tree (AST) that can be further processed by LwProf.

The second component, the Instrumentation Injector, uses the
AST to determine instrumentation sites within the source code.
Depending on the switches provided to LwProf, instrumentation
can be injected at the beginning of each function, or within each
then and else clause of an if statement. LwProf injects plain-old
C code as shown in Fig. 5, ensuring a high level of portability
across compilers. As can be seen, the emitted C code does not call
into any middleware libraries, instead opting to set a variable to a
constant value. Additionally, the data type of the variable can be
configured, enabling smaller data-types to be used.

In addition to coverage information, a second mode to LwProf
was implemented - the profiling mode. Example C code injected
into a function can be see in Fig. 6. Instead of setting a memory
location to 1, this mode increments the value stored in memory in
order to record the number of times a function is called.

Lastly, the reader may have noticed that this implementation has
the possibility of wrapping around once it reaches the maximum
value for the specified data type. In order to mitigate this, a larger

unsigned char lwprof_my_func_c_37_39_1;
uint8_t my_func (void) {
lwprof_my_func_c_37_39_1++;
return 165;

Fig. 6: A standard C function with the LwProf profiling instru-
mentation site.

(such as 32bit) data types can be used resulting in higher memory
overhead with no cycle overhead. If this is still undesirable, a
simple overflow check can be added to ensure no wrapping occurs,
at the expense of a single cycle and a single instruction in many
CPU architectures.

For the final component LwProf sends the instrumented source
code to the original compiler. All LwProf specific command line
arguments are stripped out, and the remaining arguments plus the
modified source file are passed along. LwProf is thus able to call
an arbitrary compiler, resulting in a transparent tool to the build
system. This transparency allow for the user to seamlessly integrate
LwProf into existing build systems, reducing the barrier for the
developer to enable instrumentation within their project flow.

5. Evaluation

In order to determine the efficiency and effectiveness of
LwProf, our tool is evaluated by comparing to a commercial tool
and itself under different configurations based on the metrics and
case study described here.

5.1 Metrics

Measuring the capabilities of each implementation was broken
apart into three steps.

For memory-constrained systems, the increase in code size to
enable coverage instrumentation can be prohibitively expensive. For
each technique evaluated, the total increase in size, in addition to
the per instrumentation size increase is evaluated. A number of
tools can be used to determine the size. In this case, the objdump
is used to dump the .zext section sizes of a binary. Determining the
overhead of an instrumentation tool is done by subtracted off the
baseline size from the instrumented size as shown in Eq. 1.

Sizeoverhead = SizCinstr — Sizebaseline (1)

Similar to the code size, the data size impact is important for
ASICs. The same Eq. 1 can be used to calculate the data size
using the .data and .bss sections instead of .text.

Once the data size impact is calculated, the number of instrumen-
tation sites can be determined. In the case of traditional coverage
tools, each instrumentation site takes 4 bytes. When evaluating the
LwProf results, the options passed to the tool must be considered
to determine the per instrumentation data RAM overhead.

After the per instrumentation data size overhead is determined,
the code overhead for each instrumentation sites can be determined
by dividing the total code size by the number of sites as shown in
Eq. 2.

Sizeoverheud

SiteOverhead = .
NumlInstrumentations

(@)

In addition to the per site overhead, the total binary size overhead
was calculated as a percentage using Eq. 3.

PercentOverhead = >2Soverhead 3)

Sizebaseline

On resource constrained system, the execution time overhead is
also very important. If a system is already reaching its limits, then
depending on the overhead, enabling instrumentation may cause
the system to enter an overload condition. In this state events such
as interrupts may be lost or mishandled, resulting in a misbehaving
system. When this state is entered, the test cases being executed

ISBN: 1-60132-475-8, CSREA Press ©

may no longer reflect that of a non-instrumented binary. To mea-
sure the execution time overhead, the test system is placed into
steady-state with baseline firmware with instrumentation disabled.
Once the baseline load is measured, the firmware is re-built with
instrumentation enabled and the load is re-measured. Next, the
normalized load overhead was calculated using Eq. 4, allowing
for a worse-case overhead to be determined.

l dins umente
NormOuverhead = 1 — 23%instumented 4)
loadbaselinc

Finally, the overhead per instrumentation cycle is determined by
dissembling the modified binary and counting cycles by hand.

The final metric that is evaluated is the accuracy of the cover-
age tool. For the purpose of this research, the original compiler
implementation is used as the baseline.

abS(Sitesinstumented - Sitesbaseline)
Sitesbaseline

&)

Accuracy =1 —

Any deviation from the baseline (either more, or less) is considered
an error as shown in Eq. 5.

5.2 Case Study

This research uses a proprietary firmware code base with a
mature test suite as a case study. The code base was written for
a customized CPU executing in a resource constrained system. To
compile the firmware, commercial tool #1, a clang-based compiler
is used. Additionally, support hardware exists for this code base
that allows for non-intrusive measurements of the CPU load while
executing the firmware. The various implementations in the next
section are evaluated to ensure that the test results are not affected
by the instrumentation.

The firmware, when running without instrumentation, can often
show CPU loads of over 95% and ROM utilization of 99.6%.
Due to the high CPU loads, the system is evaluated in a reduced
performance mode where the average CPU load is close to 50%
with instrumentation disabled. In order to accurately measure the
code size impact, the available ROM for the case study was
artificially increased to allow all libraries to properly link without
having to shift code from ROM into RAM. The ROM increase
allows for a direct comparison with all implementations.

6. Experimental Design

Five different instrumentation methods were evaluated for this
experiment.

First, firmware with profiling disabled is evaluated. The baseline
resulted in a binary with 131,440 bytes of code, of which 81,848
bytes of the binary were pre-compiled as a static library. As a
result, the case study focused on the remaining re-compilable code
of 49,592 bytes total as a baseline.

The second case evaluated is the coverage option in the com-
mercial compiler that is enabled with the -pg compiler option.
Once compiled, the official middleware library is linked into the
firmware. The middleware library included with the compiler has
many design choices that result in a configurable, but slow library.
As an example, the library checks to determine if coverage is
enabled, and only if so does it record that an instrumentation site
was executed. While this seems reasonable, the number of cycles
used to determine if coverage is enabled is larger than the number
of cycles to actually record the result. In order to simplify the
experiment, the middleware size overhead is not taken into account.

Int'l Conf. Embedded Systems, Cyber-physical Systems, & Applications | ESCS'18 |

Table 1: Evaluation Results - Code Size

Implementation Per Instr Code | Total Code

Overhead Overhead
Baseline - 0%
ct #1 -pg 14.87 bytes 19.26%
ct #1 -pg (optimized) 14.87 bytes 19.26%
LwProf (coverage) 7.51 bytes 10.68%
LwProf (profiling) 11.14 bytes 15.84%

The next step during evaluation was to optimize the commercial
tool #1 middleware library to reduce the execution overhead.
Unlike the default library, the optimized version simply stores a
TRUE value to the passed in address and returns, recording the
instrumentation with limited overhead. With the middleware library
optimized, the firmware is re-evaluated to determine the overhead
associated with the library itself.

Two variants of the LwProf tool were analyzed. The first
variant, coverage-enable LwProf, was used as a best case scenario.
The second variant enabled function-level profiling support in
LwProf, allowing for the developer to determine how many times
a function was called, instead of just if it was called.

7. Discussion of Results

In this section, we report the results obtained throughout the
experimentation.

7.1 Code Size

The code size measurement results can be found in Table 1. For
the purpose of this experiment, the size impact of the middleware
library used for the commercial compiler was not included in
these numbers. This allows for an easier comparison for just the
instrumentation site overhead.

Both commercial tool #1 native and optimized implementations
result in a code size increase of 14.87 bytes per instrumentation site.
This number is the same for both version due the the middleware
library, and not the instrumentation site, being optimized. This
method enabled coverage and profiling metrics on a per function
bases. Branch coverage is not supported. When enabled, three
instructions (14 bytes total) are emitted to each compiled functions
calling an instrumentation routine. When inspecting the assembly
in Fig. 2, two additional instructions are seen due to the compiler
needlessly issuing push_s and pop_s blink instruction, resulting
higher overhead in when no function calls exist. As a result,
the average instrumentation cost can be anywhere from 14 to 18
bytes, matching the values determined by measuring the code size.
As most functions within the case study source code call other
functions, the average overhead is closer to the smaller number.

Switching to LwProf, the instrumentation overhead can be
reduced by a factor of two. When enabling function-level coverage,
LwProf results in one instruction (8 bytes as shown in Fig. 3)
being emitted with a total execution overhead of 3 cycles. When
calculated over the full binary, however, a value of only 7.51 bytes
was measured. This reduction is due to the commercial compiler
optimizing the store instruction into a smaller form, depending on
if additional memory accesses were done in the function being
instrumented.

These size improvements directly translate to the total code
overhead - the commercial tool #1 overhead of 19.26% was cut
in half, resulting in an overhead of 10.68%.

ISBN: 1-60132-475-8, CSREA Press ©

13

14

Int'l Conf. Embedded Systems, Cyber-physical Systems, & Applications| ESCS'18 |

¥ Annotations

P Analyzers

Fig. 7: Baseline CPU Load measurement using a logic analyzer

my_func:
42¢3 00000000r mov_s $r2, 0 ;
lwprof_my func_c 37_39_1

8a20 1db_s $rl, [%r2]
d8ab mov_s %$r0, 165
7124 add_s $rl, %rl, 1
7fel j_s.d [$blink]
aa20 stb_s $rl, [%r2]

Fig. 8: An example of the LwProf profiling instrumentation site.

Table 2: Evaluation Results - Data Size

Implementation Per Instr Data | Total Data

Overhead Overhead
Baseline N/A N/A
ct #1 -pg 4 bytes | 2568 bytes
ct #1 -pg (optimized) 4 bytes | 2568 bytes
LwProf (coverage) 1 byte 705 bytes
LwProf (profiling) 1 byte 705 bytes

Lastly, if we look at the profiling version of LwProf, shown in
Fig. 8, the code size increase goes up to 15.84%. This is due to
two additional instruction being emitted for a total size of 12 bytes.
As with the coverage version of LwProf, the actual measured
value of 11.14 bytes is slightly lower due to the optimizations that
the commercial compiler is able to make. This feature-enhanced
version results in lower overhead than the official supported tool.

7.2 Data Size

The second metric measured is the data size metric. Results
can be seen in Table 2. The commercial tool #1 instrumentation
method allocates a 4-byte data type for each instrumentation site.
As with the code size, the optimized middleware library is unable
to improve on the data size for the optimized second case.

With LwProf, the size of the instrumentation counters can
be configured, enabling an overhead of 1, 2, or 4 bytes per
instrumentation site (705, 1410, or 2820 bytes total) depending
on the developer needs. For the evaluation, a 1-byte data type
size was chosen to record the coverage information, improving on
the commercial implementation by a factor of four. When taking
into account all instrumentation sites, close to 2KB of memory
savings is realized. If the system under test is memory restricted, the
memory savings can mean the difference between linkable firmware
and a show stopper.

Table 3: Evaluation Results - Execution Time

Implementation Per Instr CPU | Normalized

Overhead Load Overhead
Baseline - | 50.87% 0%
ct #1 -pg 48 Cycles Error -
ct #1 -pg (optimized) | 10 Cycles Error -
LwProf (coverage) 3 Cycles | 52.68% 3.44%
LwProf (profiling) 7 Cycles | 55.14% 8.11%

7.3 Execution Time

The CPU load measurements for each of the test cases can be
found in Table 3. Using a logic analyzer, in Fig. 7, the sleep output
signal from the device was measured. When converted to CPU load,
this means that the baseline firmware without coverage was active
50.87% of the time. This baseline measurement was achieved by
enabling a subset of features in the firmware and placing the device
into steady-state.

The commercial implementation results in 3 instructions emitted
with an execution time of 5 cycles, not including the middleware
library. When the middleware library is taken into account, the
total execution time for each instrumentation is 48 cycles. When
the commercial-instrumented code was loaded into the device and
executed, the part resulted in a CPU exception. After analyzing
the issue, it was determined that the -pg option adds incorrect
instrumentation for interrupt routines, and as a result causes certain
registers to be mangled that should not be. Because of this issue,
no load information could be measured.

Similar to the native commercial implementation, the optimized
version also has a 5 cycle execution hit due to the instructions
being emitted. When the middleware library is replaced with an
optimized version, however, the total execution time can be reduced
down to 10 cycles. This is done by having the middleware library
store the instrumentation result into memory and return. Similarly
to the commercial native implementation, a CPU exception was
encountered when this method was tested on hardware.

When running the LwProf version of the code the execution
overhead is reduced to 3 cycles per instrumentation site. Once in
steady-state, a 52.68% CPU load - a total overhead of 3.44% -
was measured. As a result of the low overhead, coverage can be
enabled even when the firmware is running close to its limits.

Similarly, when LwProf was switched to profiling mode, the
execution overhead increases to 7 cycles per site resulting in a
55.14% CPU load (8.11% overhead) being measured.

When comparing the profiling mode to the coverage mode in
LwProf, the higher 8.11% value matches the expected value of
8.03% based purely on the cycle amount for each instrumentation

ISBN: 1-60132-475-8, CSREA Press ©

Table 4: Evaluation Results - Accuracy

Implementation Instrumentation Sites | Accuracy
ct #1 -pg 642 100%
ct #1 -pg (optimized) 642 100%
LwProf (coverage) 705 90.2%
LwProf (profiling) 705 90.2%

type.

7.4 Accuracy

The final item measured is the accuracy of the results. The ex-
isting test suite was modified to enable dumping of the instrumen-
tation data after each test ran to completion. Each instrumentation
site was then compared to determine if any sites were skipped.
Unfortunately, the instrumentation injected by the commercial tool
#1 -pg option mangled a register when instrumenting interrupt
handlers. Since this implementation would not execute properly,
no baseline data could be taken. As a result, the accuracy of
each implementation could only be estimated. In Table 4, the
commercial implementations are assumed to be 100% accurate.
Since 642 sites were emitted within the commercial tool #1 version,
and 705 sites were emitted with LwProf, the maximum accuracy
that can be achieved is 90.2%.

In order to determine why there was a deviation in instrumenta-
tion sites between the commercial tool and LwProf, an analysis
was done on the resulting assembly. During the analysis, a pattern
was noticed with certain types of functions. If a function was
marked as static, then there was a high likelihood for commercial
tool #1 to skip adding instrumentation. In the event that the
compiler completely inlines a function, then no instrumentation
would be emitted for that function. As a result, the function
no longer exists in the binary, and so no profiling or coverage
information can be determined when using commercial tool #1. On
the other hand, when LwP ro £ injects instrumentation, the compiler
to decide that a function should not be inline due to compiler
thresholds. As a result, The LwP rof instrumentation is emitted and
information can be obtained about a function. Even if the LwProf
code was inline, instrumentation would still be included in the final
binary.

Similar to static functions, another class of functions was found
to be ignored by the commercial tool. If a function is wrapped such
that no prologue is emitted, then instrumentation can also be lost
with commercial tool #1. In this case, the compiler with simply
jump to the final function without adding instrumentation. Like
the previous static case, this results in instrumentation being lost.
When the same function is instrumented with LwProf, however,
the compiler properly keeps the instrumentation and only issues a
jump after the instrumentation site is executed.

Based on the two above cases, we can conclude the following:
(1) LwProf ensures instrumentation is always added by doing so
before the compiler can execute. (2) The commercial compiler
implements instrumentation as a later stage in the optimization
process. That is, commercial tool #1 performs optimizations with
the pre-instrumented code. Because these optimizations are done
pre-instrumentation, the compiler is able to remove small function
calls.

While we initially assumed that the commercial compiler was
100% accurate, in reality it causes instrumentation information to

Int'l Conf. Embedded Systems, Cyber-physical Systems, & Applications | ESCS'18 |

be lost.

Finally, a third class of functions were found to cause an issue
on LwProf. In some rare cases, a function can be completely
implemented in a source file that is included like a standard header.
When compiled, a functions without instrumentation is created in
the resulting binary. In the analyzed function with this issue, it was
also found that commercial tool #1 did not instrument it properly,
however the reason for this was due to the previous inlining issues
described above.

8. Threats to Validity

The primary threat to validity with this research is how each
technique compares. In other words, how accurately do they mea-
sure coverage. This research initially assumed that the commercial
compiler’s -pg option is ideal and results in all functions being
properly covered. The number of instrumentation sites injected by
commercial tool #1 was 642, while the LwProf tool added 705,
for an addition of 63 instrumentation sites. This discrepancy does
lead to the possibility that the commercial tool’s -pg option may
not be as ideal as originally thought. Each instrumentation site
emitted with commercial tool #1 and LwProf was analyzed, and
multiple issues were found with the baseline commercial tool, while
only one issue was found with the LwProf tool. As such, we can
determine that while the two tools do note have the same results,
that the LwProf results in better instrumentation.

Unfortunately, due to a bug in the commercial tool #1 imple-
mentation, we were unable to compare the CPU overhead between
LwProf and commercial tool #1. As a result, only the hand-
counted cycle numbers were used for comparison.

A second threat to validity is with regards to the case study. A
proprietary code base was used for the case study, however the
results may not translate to other code bases. While different code
bases will result in different behaviors, the selected code base was
originally developed for resource constrained ASICs. As such, it
was designed to reduce the memory footprint and execution time,
suggesting that it is a good analog to other code bases for ASIC
firmware.

This research primary compares the LwProf tool to the instru-
mentation method implemented in the commercial tool #1. The
results seen in this paper may not translate to other compilers such
as GCC. That is, GCC may be much more optimal when enabling
profiling. According to the gprof documentation for profiling with
GCC, this implementation actually works the same way as the one
in commercial tool #1. When the instrumentation option is enabled,
both commercial tool #1 and GCC call into the _mcount routine
with the calling address as an argument. As a result, it is safe to
assume that the results in this paper will also significantly speed up
profiling and coverage for GCC as is done with commercial tool
#1.

9. Related Work

Various research has been done related to minimizing the over-
head of measuring code coverage [1], [2], [5], [6], [7].

In THeME [1], a technique was developed for using the hardware
profiling unit on modern processors to reduce branch coverage
overhead. The technique showed that by adding a a single dummy
branch instruction on each branch to account for fall-through

ISBN: 1-60132-475-8, CSREA Press ©

15

16

Int'l Conf. Embedded Systems, Cyber-physical Systems, & Applications | ESCS'18 |

behavior yielded less than 2% code growth with minimal perfor-
mance impact. LwProf builds on this research by replacing most
compiler-based instrumentation with a lightweight version.

Techniques were developed by S. P. Kedia et al. [2] to split the
instrumentation and analysis when measuring coverage into two
separate phases. Thus, the file I/O phase only needs to be executed
once after the test has completed, showing that both the memory
impact and the execution time can be reduced. In LwProf, no
analysis code is included in the final binary. Instead, hints are added
to the symbol table for the binary, resulting in the ability to post-
process data without impacting execution time of the software.

In Wu et al. [5], further research resulted in coverage testing
with minimal memory impact. Their tool eXVantage limited the
amount of information recorded so that only coverage information
is stored. This information information is recorded in memory and
later read out after the test completes instead of writing all coverage
information to files. eXVantage also compacts the form in which
coverage information is stored by ensuring that needless strings are
not saved in memory. The technique shows that the performance
overhead can be as low as 1%. LwProf uses a similar technique to
reduce instrumentation overhead. By using the smallest supported
data-type (8-bit char), LwProf can compress each coverage site
to 1 byte with no execution time overhead. Similarly, no strings
or file locations are directly recorded. Instead, this information is
determined after the coverage information is dumped.

A method using self-modifying code was developed by J. Jenny
Li et al. [6]. In their research, instrumentation code is removed from
the execution path after it has been executed once. This results
in compiled code with duplicate functions, one with coverage
enabled and one without. The runtime environment modifies the
executable in memory and replaces the slower coverage-enabled
function with the faster coverage-disabled function after execution,
resulting in the performance hit only happening once. This leads
to a larger program binary with minimal execution time overhead.
Due to the increased binary size, this technique is not usable for
many resource-constrained embedded systems. Additionally, when
placing code into and ASIC’s ROM, self-modifying code becomes
trickier since the ROM cannot be modified. Since the ROM is read-
only, the instrumentation can only be removed if a trampoline is
used within RAM to allow for the address to be modified at runtime.
This trampoline technique has a similar overhead to LwProf, and
as such the technique used in LwProf is more suited for ASICs.

10. Conclusion and Future Work

As shown, LwProf resulted in much lower execution and data
size overhead than the officially supported instrumentation options.
Likewise, the tool also supports both an extremely light weight
coverage option, as well as a slightly slower profiling option. Both
cases result in lower overhead than commercial tool #1.

Due to the simplicity, the LwProf instrumentation method also
resulted in code that did not need to touch the CPUs register file
ensuring that no internal state information was modified (excluding
instrumentation ram). As a result, LwProf was able to run to
completion without causing any exceptions. All other instrumen-
tation methods modified register contents, which when analyzed,
appeared to cause an issue with certain inline assembly blocks of
code. LwProf is not only smaller and faster than commercial tool
#1, but it has less possibilities for errors to be triggered within
firmware under test.

The commercial compiler was assumed to be 100% accurate
with regards to instrumentation. Once the two tools were compared,
however, it can be seen that the accuracy of commercial tool #1
is reduced due to design decisions by the compiler vendor. On
the other hand, we can see that the LwProf was unable to inject
instrumentation into a certain class of functions. As such, we can
conclude that in most cases, LwProf is actually more accurate than
the baseline commercial tool. As a future work, LwProf could be
enhanced to properly handle the class of functions that cannot be
instrumented.

As an alternative to LwProf, the commercial tool #1 output
could have been improved by writing a binary modification tool.
This would involve locating all existing instrumentation sites in
the code, and rewriting the assembly to perform a memory write
instruction instead of a branch instruction. Due to the complexity
and architecture-specific nature of the task, this is left for future
exploration.

References

[1] K. Walcott-Justice, J. Mars, and M. L. Soffa, “Theme: A system
for testing by hardware monitoring events,” in Proceedings of the
2012 International Symposium on Software Testing and Analysis,
ser. ISSTA 2012. New York, NY, USA: ACM, 2012, pp. 12-22.
[Online]. Available: http://doi.acm.org/10.1145/2338965.2336755

[2] S. P. Kedia, A. Bhattacharjee, R. Kailash, and S. Dongre, “Coverage

and profiling for real-time tiny kernels,” in 2010 10th IEEE Inter-

national Conference on Computer and Information Technology, June

2010, pp. 1926-1931.

J. Banker, A. Shanbhag, and N. Sherwani, “Physical design tradeoffs

for asic technologies,” in Sixth Annual IEEE International ASIC

Conference and Exhibit, Sep 1993, pp. 70-78.

[4] B. J. Grenon and S. Hector, “Mask costs, a new look,” in 22nd
European Mask and Lithography Conference, Jan 2006, pp. 1-5.

[5] X. Wu, J. J. Li, D. Weiss, and Y. Lee, “Coverage-based testing
on embedded systems,” in Proceedings of the Second International
Workshop on Automation of Software Test, ser. AST *07. Washington,
DC, USA: IEEE Computer Society, 2007, pp. 7-. [Online]. Available:
http://dx.doi.org/10.1109/AST.2007.8

[6] J. J. Li, D. M. Weiss, and H. Yee, “An automatically-generated
run-time instrumenter to reduce coverage testing overhead,” in
Proceedings of the 3rd International Workshop on Automation of
Software Test, ser. AST ’08. New York, NY, USA: ACM, 2008,
pp. 49-56. [Online]. Available: http://doi.acm.org/10.1145/1370042.
1370054

[7] R. Wu, X. Xiao, S.-C. Cheung, H. Zhang, and C. Zhang, “Casper:

An efficient approach to call trace collection,” in Proceedings

of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, ser. POPL ’16. New

York, NY, USA: ACM, 2016, pp. 678-690. [Online]. Available:

http://doi.acm.org/10.1145/2837614.2837619

R. Santelices and M. J. Harrold, “Efficiently monitoring data-flow

test coverage,” in Proceedings of the Twenty-second IEEE/ACM

International Conference on Automated Software Engineering,

ser. ASE °07. New York, NY, USA: ACM, 2007, pp.

343-352. [Online]. Available: http://doi.acm.org.libproxy.uccs.edu/

10.1145/1321631.1321682

llvm-admin team. (2017, September)

coverage information. [Online]. Available:

CommandGuide/llvm-cov.html

[10] L. Project. (2017, September) The llvm compiler infrastructure.

[Online]. Available: http:/llvm.org/

3

—

[8

—

[9 Ilvm-cov - emit

https://llvm.org/docs/

—

ISBN: 1-60132-475-8, CSREA Press ©

