
TADS: Automating Device State to Android Test
Suite Testing

Jonathan Sanders
Computer Science Department

University of Colorado
Colorado Springs, United States of America

jrsanders5411@gmail.com

Kristen Walcott
Computer Science Department

University of Colorado
Colorado Springs, United States of America

kwalcott@uccs.edu

Abstract—Android testing still has many areas to cover in
order to make automated testing of Android applications as
thorough as possible. One area of research that has yet to be
investigated is automating testing of Android applications against
changing device states. Device states can and do change during
the usage of applications and do impact the usability of an app.

This paper presents a novel approach to easily test multiple
device states against an existing Android application’s test suites.
We built a tool that we called TADS (Test Application to Device
State) that enables a developer to very easily run their Espresso
test suites against multiple state changes in the device. In a small
study, 100% of introduced errors were detected. The tool can
easily be expanded for testing any number of states.

Index Terms—Automated testing, Automated mobile state
testing, Automated mobile testing, Context Aware testing

I. INTRODUCTION

Android applications have become a staple of many people’s
everyday mobile computing user experience. As of the first
quarter of 2017 Android possessed 85% of the mobile phone
market [3]. The need for complete and thorough testing
capabilities of Android applications has never been greater.
There is currently a deficit in an area of testing for mobile
devices regarding the ”state” of the mobile device while testing
is taking place. Very often, particular states will cause a failure
of a mobile application and currently there are not any good
tools available to test different states to detect these types of
failures.

The state of the device is the current settings of different
modules within the mobile device such as if bluetooth is on
or off or if airplane mode is on or off; other ”states” include
having different applications running that access common
instrumentation or having hardware devices connected to the
mobile device and running with an application such as a heart
rate monitoring application running with a conected physical
Electrocardiogram (EKG). Any configuration of these different
instruments, applications, operating system configurations, or
modules can be considered a device’s state; hereto referred as
DS for device state.

It is more expensive for a company to not test applica-
tions against DSs because the failures are often catastrophic.
Companies have encountered these bugs after releasing an
update for their application on the users’ devices and the
failure often causes a loss of credibility, loss of functionality

that must then be quickly corrected, updated, and ultimately
costs the company a loss of customers and money. Testing
the different states of just an application has been enhanced
with tools such as Espresso, Barista, and Robotium [1] but
there are no automatic means of testing those application
states against the device state. Since the state of an application
can be easily saved and the state of a device can be easily
changed programmatically, a solution that automatically tests
application states with different device states is of great value.

We have developed a novel approach to very easily run
existing Android test scripts against any set of device states.
The solution we built is called “TADS” (Testing Application to
Device State). The tool uses Espresso, an automated Android
application testing tool, to test the Mobile application against
multiple DSs. This especially allows us to test context aware
applications. These are applications that are able to detect
information about the device’s physical environment using
instrumentation and then process that information.

TADS has been able to run multiple tests against multiple
DSs utilizing two Device State Changes ((DSCs). We focused
on Wi-fi and Bluetooth device states in this work. The results
show that 100% of our tests developed in TADS were able
to detect the mutant error states that we introduced to our
programs.

The main contributions of our paper are:

• Highlights and addresses the lack of Data State testing in
mobile applications. (Section II)

• Description of TADS: a library for performing state
testing of devices (Section III)

• Creation of TADS to automate testing for context aware
devices (Section III)

• Discusion of the effectiveness and impacts of TADS
(Section IV and VII)

II. MOBILE TESTING AUTOMATION

Mobile testing is a challenge due to the the large complexity
in their inputs. These devices are context aware. We will first
discuss what context aware applications are and then describe
several tools that have been used to test code for mobile
devices.

10 Int'l Conf. Wireless Networks | ICWN'18 |

ISBN: 1-60132-483-9, CSREA Press ©

A. Context Aware Applications

A ”context aware” application is an application that is able
to detect information about the device’s physical environment
and use the information based on the context observed. This
is very common in mobile and embedded environments. For
instance, a context aware application can get GPS information
and see that a user is at work. Then it can get location
information from the network to see where in the building
the user is, then get information from the calendar application
about what is scheduled at that moment. Then the context
aware application will determine that the user is in a board
room in their office building during a scheduled meeting and
puts the phone on silent automatically or even stops all calls
and replies with a text message saying the user is unavailable.

DS testing is critical for these types of applications. If
another application acccessing certain information collides
with the context aware application’s access of that data, the
context aware application could fail. Currently, there is not a
way to determine if that will happen using common automated
testing tools, which is what TADS attempts to guard against
by focusing on state.

B. Mobile Testing

Several tools have been recently developed to aid in mobile
testing. These mainly focuson event tracking for later automa-
tion.

Espresso is a tool developed by Google that enables a user
to easily record a series of events and then create an oracle so
that the user can create an automated test case. An oracle is a
way of knowing if the series of events executed as expected.
The Espresso recorder autmatically generates a testing script
that can be executed at any time to recreate the series of events
and check the oracle to ensure the series of events executed
correctly. The script then generates a pass or fail message that
the user can see to know if any recent development work broke
the existing software application [1].

Fazzini et al. then created Barista, which advances the way
to record and execute Android testing from that of Espresso.
Barista is an application that records user interactions with any
Android application and automatically can generate oracles
and then it records those interactions and oracles into an
Espresso type script for later execution [5].

TADS can be easily integrated with Barista to enable
the user to run Espresso scripts generated by Barista with
different DSs. TADS is built out of the Microsoft Powershell
application. TADS also utilizes the Android Device Bridge
and Android Studio. Android Studio is Google’s integrated
development environment for developing Android applica-
tions. Android studio generates a project when an Android
application is started and within that project is a testing project.
When a developer makes an automated test those scripts are
included in that test project. Then, when the application is
installed on a mobile device with the testing project attached
(which is the default behavior of Android Studio), the test
scripts are included on the device and can be executed via the
Android Device Bridge.

Fig. 1. TADS work flow (contents of a DSC)

Fig. 2. Public Interface

III. TADS IMPLEMENTATION

The main purpose of TADS is to simplify testing of different
device states an Android application. There are preloaded
”device state changes” (DSCs) that can be used with a pre-
made Espresso Test Script that are chosen for testing. A DSC
is a test case that starts with a device state then runs the
test cases and then changes the Devices state, as shown in
Figure 1. The DSC then runs the tests again with the new
state set. Another example of a DSC is: airplane mode off,
run Espresso test script(s), switch airplane mode to on, then
re-run the Espresso test script(s).

TADS is developed in Microsoft Powershell. Powershell
is an enhanced version of the MSDos program. Powershell
includes the .NET runtime and libraries which enables a
developer to leverege the tools that .NET provides. There
is a Powershell Integrated Development Environment called
Windows Powershell ISE. With ISE all of the results of
executing an ADB command can be viewed and recorded if
desired. Powershell also has the ability to organize code into
modules and plain Powershell scripting files. The modules are
suffixed with a file type of .psm1. The normal script files are
suffixed with the file type .ps1. TADS is made up of many
functions in several modules and Powershell files that execute
ADB commands from a computer that the device is connected
to.

The implementation allows a user to call a function to test
the following as is shown in Figure 1 The user can run all of
their test suites and all of the DSC’s available, all tests and 1
DSC that is selected, 1 DSC and 1 test case in the suite, and
all DSCs and 1 test case. The name of the application should
be the whole app name starting with ”com”. The appropriate

Int'l Conf. Wireless Networks | ICWN'18 | 11

ISBN: 1-60132-483-9, CSREA Press ©

global variables should be filled in prior to calling the testing
function. The public interface in Figure 1 is what novice
programmers should use.

All of the files are available to be seen and modified. New
DSCs can be easily added using the idioms of the TADS
solution in order to make very thorough test cases.

The TADS solution is built on Microsoft Powershell and
written as Powershell scripts. Powershell was decided on to
enforce DRY and SOLID principles as much as possible and
to make running from the command line as easy as possible.
DRY and SOLID principles are ways of writing code that is
clean and easy to reuse.

The TADS solution is run by executing a powershell script.
There are global variables that must be populated by the
user to indicate several items. Figure 2. demonstrates those
global variables. They are modified in the file called ”Project
Main.ps1” The easiest way to execute TADS testing is via the
Powershell ISE.

Figure 2 is a break down of the functions to be called by
your command line or in a script that a developer would write
to test their application how they deem necessary. The function
applicable to what the developer is testing will be used.

There is a readme.txt file that should be followed to get the
testing environment set up for usage of the TADS solution and
there are thorough instructions included in the readme.txt file.
The TADS solution can be downloaded at: https://github.com/
UCCS-CS5371-Fall2017/jsander7/tree/master/ProjectFiles

Furthermore, all functions in the entire solution are:
• Available to be consumed by the user
• Globally scoped to avoid the challenge of Powershell

scoping issues
• Named according to an idiom of Powershell using the

TADS prefix.
For instance with the function ”invoke-
TADSExecuteAllDSCsWIthAllTestScripts()”, ”invoke-”
is the Powershell idiom (there is a list of these online)
and then the prefix TADS is added so as to avoid collision
with other global functions that are not a part of the
TADS solution, this is also a Powershell idiom, and then
a description of the function’s purpose. This is so that a
programmer can build their own Powershell script out of the
existing functions and extend what has been made up to this
point. As seen in Figure 3, within the TADS solution there
are four main files. They are: ProjectMain.ps1, DSCs.psm1,
TestSuiteCommands.psm1, and ADBCommands.psm1.

A. ProjectMain.ps1

ProjectMain.ps1 is where the developer will set into global
variables the following:
1. The name of their application project application’s Espresso
script name
2. Type of Junitrunner
3. A DSC name if the developer wants to run one DSC only

The application project name will automatically be use
to make the test suite name needed by the ADB shell to run

Fig. 3. Contents of Files

the Espresso test suite. This file is also a convenient space
for a developer to call DSC tests and to establish a test script
using the TADS tool.

B. DSC.psm1

DSC.psm1 is where the actual DSC tests are written. The
DSCs are individual functions. The DSC function will run on
all scripts or just one script depending on what the developer
decides to do. The readme has more precise information on
the details of using TADS. The idiom used for these functions
is PowershellPrefix-TADSDSCdescriptor.

12 Int'l Conf. Wireless Networks | ICWN'18 |

ISBN: 1-60132-483-9, CSREA Press ©

https://github.com/UCCS-CS5371-Fall2017/jsander7/tree/master/ProjectFiles
https://github.com/UCCS-CS5371-Fall2017/jsander7/tree/master/ProjectFiles

C. TestSuiteCommands.psm1

This file is where the global variables filled out on the
ProjectMain.ps1 file are used. These are also where the func-
tions from Figure 1 reside. These functions are what actually
execute the DSCs and there is a function in there for running a
specific DSC that the other public interface functions consume.

D. ADBCommands.psm1

The ADBCommands file is where the state change com-
mands are located that use ADB to change the states of
the device. We have created easier to use functions than
actually calling the ADB commands to change these items.
Additioanlly, logging takes place in these functions which is
critical to the usefulness of TADS. The idiom used with these
functions is ”TADSADBdescriptors”.

IV. EVALUATION OF TADS

TADS has been able to run multiple tests against multiple
DSs utilizing two DSCs. The DSCs made are for bluetooth
and airplane mode. The bluetooh DSC turns bluetooth on,
executes the test case generated, and then turns bluetooth off
and executes the test case. Airplane mode does the same for
airplane mode.

We utilized a recipe app for initial testing. We recorded
the selection of a recipe and the assertion verified that recipe
appeared. The second test involved selecting a recipe, ensuring
the recipe appears, and then going back to the home screen of
the app and ensuring the recipe list appears.

The recipe app was actually created for android wear as
well. TADS easily handled testing this application which
connects to an android wear device.

The results were passed tests. We did not attempt to create
any mutation tests by modifying code because the actual test
is generated by the android test recorder, Espresso.

We evaluated the affectiveness of the application by adding
code to the application that caused an exception to be thrown
if bluetooth was off. We did the same if wifi was turned off
to create an exception so that the airplane mode tests would
show that having one state passes and another state causes a
failure of the application.

These were simple tests but it proved the idea that TADS
demonstrates. 100% of the time these tests caught the gener-
ated errors. Additionally, TADS adds test cases to be run. Just
two DSCs adds 4 test cases that are viable and valuable tests
to be run.

V. RELATED WORK

There are several tools developed that can capture various
information of an application and store said information for
later tests. These tools can be leveraged to create interest-
ing app states instead of simple object states. For instance
Paulovsky et al. [8] built a tool that automatically captures UI
information as a user utilizes an application.

Many others, such as Fazzini et al [5] have made tools for
recording tests that can be later executed in ways that are
platform independent which is a nice utility that we will not

be concerned with in this work. Others have made unit level
state testing models such as MilaniFard el al. [7] in which
the state of the application is tested by automatically building
a model using a dynamic and static crawler and then running
that created model against a verification algorithm. Their work
levereges data modeling to find issues concerning device state
whereas TADS utilizes real world scenarios executed on real
world devices.

G. Bai et al [2] developed a way to use model testing to
find security vulnerabilities. Choi et al have used machine
learning to find the states of an application that are probably
of value to test that have not been tested and make a model
of those states for testing [4]. Their work could be applied
by developers utilizing TADS to develop DSCs appropriate
for their application type.

VI. THREATS TO VALIDITY

One serious threat to this work is that the automated test
scripts built in Espresso can be affected by state changes [5]
which can cause a failure in the test due to the script’s failure
but not the application’s. That failure will result in a false
negative test outcome. This error will be revealed by the
logging utility, and corrections can be made a test design time.
These false negatives could cost several hours in developer
time per failure.

The case study also used was limited. However, the appli-
cations used for testing are applicable for both mobile and
Android Wear applications and more. The tool can easily be
extended for monitoring and evaluating context-aware appli-
cations beyond these that are presented.

Mutation testing or user-based testing should also be ap-
plied. While the tool works well, our manually generated
errors provide potential bias.

VII. DISCUSSION AND FUTURE OF TADS
One challenge when working with Andoid applications is

that commands do not exist for ADB to change proprietary
device instrumentation states. Instantiating different hardware
devices from the command interface and easily implementing
new DSCs will prove extremely beneficial in making robust
state testing of Android applications using proprietary instru-
mentation such as a portable Electrocardiograms.

Barista [5] provides a better script generation tool than
Espresso. Integrating TADS to run Barista could prove to be a
valuable endeavor. Also, being able to inject DSCs into Barista
generated testing scripts will enhance the ability of Barista to
catch bugs introduced by device state changes.

We may also expand the instrumentation capabilities to
include wearable devices such as Android watch or even
google glass for state testing with apps running on those
devices. Currently TADS runs those applications on the device
without any issues, but we have not yet tested the capability
of TADS on an android wear device.

Another approach that could prove extremely beneficial is to
evaluate the affect of these states and state changes on the effi-
ciency of an application. One could create a way of capturing

Int'l Conf. Wireless Networks | ICWN'18 | 13

ISBN: 1-60132-483-9, CSREA Press ©

pertinent throughput data and run some form of an evaluative
algorithm against that data thereby giving developers pertinent
information on how to improve their application’s efficiency
by using some kind of brownout technique [6] or other viable
solution when that device state is detected and known to cause
lagging throughput.

Another interesting area of research would be to apply the
work by Choi et al [4] in order to determine which DSCs to
run in a TADS test suite. Their research uses an algorithm to
evaluate an application’s source code to determine what states
should be tested.

The last future research we are considering at this time is to
investigate how device state affects installs. Installations can be
affected by the state of different items running on a device and
building a test script that installs an application and running
that installation on devices with different states may prove
valuable; though, some research into whether or not industry
struggles with installations being affected by state would be
an interesting approach.

VIII. CONCLUSION

The testing of Andoid applications is a challenging task. It
is much more difficult due to the many numbers of states that
the device may be in. In this work, we have created a state
based tool to automatically check states on an Android device
for testing purposes. The tool works on the device itself and
in emulation.

Two settings were manipulated in our experiment- WiFi and
Bluetooth. The tests that were generated detected 100% of the
generated errors.

In future work, we intend to modify TADS to use Barista
and expand the analysis of the tool to wearable devices. We
would also like to perform mutation analysis or fault analysis
based on states for better defect detection and increase our test
base.

REFERENCES

[1] Top 10 mobile testing tools, Nov 2016.
[2] G. Bai, Q. Ye, Y. Wu, H. Merwe, J. Sun, Y. Liu, J. S. Dong, and W. Visser.

Towards model checking android applications. IEEE Transactions on
Software Engineering, PP(99):1–1, 2017.

[3] M. N. K. Boulos, A. C. Brewer, C. Karimkhani, D. B. Buller, and R. P.
Dellavalle. Mobile medical and health apps: state of the art, concerns,
regulatory control and certification. Online journal of public health
informatics, 5(3):229, 2014.

[4] W. Choi, G. Necula, and K. Sen. Guided gui testing of android apps with
minimal restart and approximate learning. SIGPLAN Not., 48(10):623–
640, Oct. 2013.

[5] M. Fazzini, E. N. D. A. Freitas, S. R. Choudhary, and A. Orso. Barista:
A technique for recording, encoding, and running platform independent
android tests. In 2017 IEEE International Conference on Software Testing,
Verification and Validation (ICST), pages 149–160, March 2017.

[6] C. Klein, M. Maggio, K.-E. Arzen, and F. Hernandez-Rodriguez.
Brownout: Building more robust cloud applications. In Proceedings of
the 36th International Conference on Software Engineering, ICSE 2014,
pages 700–711, New York, NY, USA, 2014. ACM.

[7] A. Milani Fard, M. Mirzaaghaei, and A. Mesbah. Leveraging existing
tests in automated test generation for web applications. In Proceedings
of the 29th ACM/IEEE International Conference on Automated Software
Engineering, ASE ’14, pages 67–78, New York, NY, USA, 2014. ACM.

[8] F. Paulovsky, E. Pavese, and D. Garbervetsky. High-coverage testing
of navigation models in android applications. In 2017 IEEE/ACM 12th
International Workshop on Automation of Software Testing (AST), pages
52–58, May 2017.

14 Int'l Conf. Wireless Networks | ICWN'18 |

ISBN: 1-60132-483-9, CSREA Press ©

