THEME.:
A SYSTEM FOR TESTING BY
HARDWARE MONITORING EVENTS

KRISTEN R. WALCOTT-JUSTICE JASON MARS
KWALCOTT@UCCS.EDU JOMSX@ACS.VIRGINIA.EDU
UNIVERSITY OF COLORADO - UNIVERSITY OF CALIFORNIA -
COLORADO SPRINGS SAN DIEGO

MARY LOU SOFFA
SOFFA®CS.VIRGINIA.EDU
UNIVERSITY OF VIRGINIA

® APC ; , 9)

Wednesday, July 18, 12 1

mailto:justice@cs.virginia.edu
mailto:justice@cs.virginia.edu
mailto:jom5x@cs.virginia.edu
mailto:jom5x@cs.virginia.edu
mailto:soffa@cs.virginia.edu
mailto:soffa@cs.virginia.edu

DEVELOPING RELIABLE SOFTWARE

Software lifecycle

Testing ENEER

and
Patching

Implementation

Bug fix

* Measuring test quality:
 Recompilation
e High run time overheads

e Large code growth

Wednesday, July 18, 12 2

EXPENSE OF TRADITIONAL
TEST COVERAGE ANALYSIS

e |[nstrumentation
® Probe / \

* Payload

Branch Executed?

e Branch analysis overheads: i v
B2
 Time: 10% - 30%
e Code growth: 60% - 90%

EFFICIENT PROGRAM MONITORING

Profiling @Det@

Software-Level
Monitoring

Wednesday, July 18, 12

EFFICIENT PROGRAM MONITORING

Profiling @Det@

Hardware
Monitoring

Wednesday, July 18, 12

WHAT IS A HARDWARE
MECHANISM?

System State Sample
................................ ? SeessssesEsEsEssssEsEEEsEsEsEsEssEsEEEsEsEsEsassEsEREEssEsasasasREsEERERRRsRsRsRsRERRRRRasasananananansnsnnsssnsssssnes JSOT Sspace

Sample read()
A

Interrupt from
counter

................................ e e e eeeeeeeeere ettt ee ettt trrreettttrrttttttttttttttttettttttsettttttssettsttttsststtttsssssttsssstsstssssssssssEsssssREES Operating System

Core Core

L1 cache

L2 cache

Performance Monitoring Unit

(counters and mechanisms)

Shared L3 Cache

Wednesday, July 18, 12

USING HARDWARE MECHANISMS

 Developed for operating system performance
analysis

 Widely available on nearly all processors
e Low overhead

e Short setup time (318us)

® Quick read time (3.5us)
e Use of samples

 Estimate profiles

e Reveal program execution behavior

e Removes need for instrumentation

Wednesday, July 18, 12

HARDWARE MECHANISMS IN TESTING:
GOALS AND CHALLENGES

e Structural testing requires more exact data

e Can we capture ALL events with which
we are concerned?

e Can we capture ONLY the events with
which we are concerned?

e Tradeoft:
e Amount of information collected

e Overhead of sampling

Wednesday, July 18, 12

THEME: TESTING BY HARDWARE
MONITORING EVENTS

Branch Sampler

Original .| Assembly
Program| |Instrumentation
Modified
Y Program
Static
Analysis| |Modified
L—»{ Branch
Table

Program modification

High Level AP - Sampled
Access . branches
Low Level
Access

Hardware

Sampling / Monitoring

Static Compiler
Analysis

Coverage
Analysis

..

Coverage
Calculation

Wednesday, July 18, 12

THEME: TESTING BY HARDWARE
MONITORING EVENTS

Original Assembly
Program| |Instrumentation

Y

Modified

Branch Sampler

Y Program
Static

Analysis Modified
Branch

Program modification

High Level API - Sampled
Access . branches
Low Level
Access
Hardware

Sampling / Monitoring

Static Compiler
Analysis

Coverage
Analysis

..

Coverage
Calculation

Wednesday, July 18, 12

THEME: TESTING BY HARDWARE
MONITORING EVENTS

Original .| Assembly
Program| |Instrumentation
Modified
Y Program
Static
Analysis| |Modified
L Branch
Table

Program modification

Branch Sampler

Access

Low Level
Access

..

Hardware
Sampling / Monitoring

High Level AP - Sampled
. branches

Static Compiler
Analysis

Coverage
Analysis

..

Coverage
Calculation

Wednesday, July 18, 12

THEME: TESTING BY HARDWARE
MONITORING EVENTS

Branch Sampler

Original .| Assembly
Program| |Instrumentation
Modified
Y Program
Static
Analysis| |Modified
L—»{ Branch
Table

Program modification

High Level API
Access

Low Level
Access

Hardware
Sampling / Monitoring

Sampled
branches |

..

Static Compiler
Analysis

Coverage
Analysis

..

Coverage
Calculation

Wednesday, July 18, 12

BRANCH VECTOR RECORDING:
LAST BRANCH RECORD (LBR)

e Mechanism for partial branch
NG profiling
B * Intended for OS pertormance
and debugging
5 6
L e e Tracks set of executed branches
L, e Branch source

2 a ¢ Branch destination
Last Branch Record o Samp]e —= Set of branches
204(6] .|| |- |- ||| “Branch Vector”

Branch Vector (<16 branches)

Wednesday, July 18, 12

10

THEME: TESTING BY HARDWARE
MONITORING EVENTS

Original Assembly
Program| |Instrumentation

Y

Modified

Branch Sampler

Y Program
Static

Analysis Modified
Branch

Program modification

High Level API - Sampled
Access . branches
Low Level
Access
Hardware

Sampling / Monitoring

Static Compiler
Analysis

Coverage
Analysis

..

Coverage
Calculation

Wednesday, July 18, 12

11

ENABLING FALL-THROUGH
VISIBILITY

‘ Challenge:

1
1
5| Ve Hardware branch-based
Fallthrough Target —> S:,%Z .
Edge Edge e monitors can only see 1 of 2
2 3 branch edges
Source level branch Binary level branch

e Methods

I3

e Supplement with more samples Jump il

e Use static analysis to infer branches IZ:>

Jump
e Minor program modification t g é
* Our Solution:

: 0 new jump
Insert innocuous unconditional

branches

Wednesday, July 18, 12 12

ENABLING FALL-THROUGH
VISIBILITY

‘ Challenge:

1
1
5| Ve Hardware branch-based
Fallthrough Target —> S:,%Z .
Edge Edge e monitors can only see 1 of 2
2 3 branch edges
Source level branch Binary level branch

e Methods

I3

e Supplement with more samples Jump il

e Use static analysis to infer branches IZ:>

Jump
e [Minor program modification t g é
* Our Solution:

new jump

Insert innocuous unconditional
branches

Wednesday, July 18, 12 12

THEME: TESTING BY HARDWARE
MONITORING EVENTS

Original Assembly
Program| |Instrumentation

Y

Modified

Branch Sampler

Y Program
Static

Analysis Modified
Branch

Program modification

High Level API - Sampled
Access . branches
Low Level
Access
Hardware

Sampling / Monitoring

Static Compiler
Analysis

Coverage
Analysis

..

Coverage
Calculation

Wednesday, July 18, 12

13

THEME: TESTING BY HARDWARE
MONITORING EVENTS

Original .| Assembly
Program| |Instrumentation
Modified
Y Program
Static
Analysis| |Modified
L Branch
Table

Program modification

Branch Sampler

High Level API
Access

Low Level

Hardware

Sampling / Monitoring

Sampled
| branches |

Static Compiler
Analysis

Coverage
Analysis

..

Coverage
Calculation

Wednesday, July 18, 12

14

THEME: TESTING BY HARDWARE
MONITORING EVENTS

Original Assembly : :
Program* Instrumentation L Static C°".‘p"e"
L Analysis
Y | Branch Sampler
Modified , |
Program — P g g
v. J i High Level API | Sampled |
Static . ACCess | branches |
Analysis| |Modified Low Level Coverage
L Branch o Access ’ | Analysis
Table
el Hardware Coverage
Program modification , e ;
Sampling / Monitoring Calculation

Wednesday, July 18, 12 15

IMPROVING BRANCH

COVERAGE
e Sampling — Some missed data ;
. P
e (Goal: Improve coverage using 2] [3
static analysis 4/ \6
* Dominator analysis aker,
branch
e Associate seen branches with
control flow graph /8\
e Branch b executed — branch Q\rl l__/10
c also executed 2

Wednesday, July 18, 12

EXPERIMENT AND
SYSTEM DESIGN

e Intel Core 17 860 quad-core processor
e LBR size of 16 branches
e Linux2.6.34

e Hardware access tools: libpfm4 (user-level), perf (kernel-level)

e SPEC2006 C Benchmarks
e Metrics:
e Efficiency- time
e (Code growth size
e Effectiveness- branch coverage

 Instrumented vs Hardware Monitoring

Wednesday, July 18, 12

17

RESULTS: ENABLING
FALL-THROUGH VISIBILITY

e |mpact:
e Increases time overhead
e Increases code growth

e How compared to instrumentation?

Time overhead

Benchmark || Branch | Time (s) | Mod. Time | Instr. Time
Cov. (s) (s)
bzip2 64.20% 1499 1514 1599
h264ref 35.72% 1753 1786 1890
libquantum || 39.07% 1056 1178 1236
mct 74.01% 529 039 D75
sjeng 48.87% 1028 1162 1312

Avg: 5% Avg: 14%
Increase Increase

Wednesday, July 18, 12

RESULTS: ENABLING
FALL-THROUGH VISIBILITY

e Impact:
e Increases time overhead
e Increases code growth

* How compared to instrumentation?

Code Growth
Benchmark Native Mod. Instr.
Size (kB) | % Increase | % Increase
bzip2 260 kB 1.52 32.65
h264ref 2892 kB 0.69 18.39
libquantum 208 kB 0 20.00
mct 128 kB 0 17.95
sjeng 592 kB 0.67 30.05

Avg: 0.5% Avg: 24%

Wednesday, July 18, 12

19

RESULTS: TESTING ON A
SINGLE CORE - EFFECTIVENESS

Coverage Comparison: Full Instrumentation vs Sampling on Ref Inputs

100% F o s (o R P e e I AT |] T |:| Wlth DOIII AnalySIS
B LBR Alone
L e e R SR SRR R R S AR SRR AR e R =
on
i
2 60% - B e .
O
Q
S 40% - DI s BN 00 hh =
=
=
A 20% - R
0%
jZ14 214 Iz 71~ BN
Ef=zzz Eyszzz EdmpEz fgsgEz Eezaas
oo e Ml e e e s T
bzip2 h264ret libquantum mct sjeng
Sample periods per benchmark

Wednesday, July 18, 12 20

40%

Branch coverage

20%

0%

RESULTS: TESTING ON A
SINGLE CORE - EFFECTIVENESS

Coverage Comparison: Full Instrumentation vs Sampling on Ref Inputs

Fr e il Tl | SRR "' " 'l With Dom Analysis
B LBR Alone

Soges BYEG2E E¥ESZZ 2¥=ce
bzip2 h264ret libquantum mct

Sample periods per benchmark

S50M

Wednesday, July 18, 12

20

SINGLE CORE - EFFICIENCY

60%
50%
40%
30%
20%

Percent time overhead

s
=
S

RESULTS: TESTING ON A

Percent Time Overhead Using Interrupt Driven Approach on Ref Inputs

h264ref libquantum
Sample periods per benchmark

Wednesday, July 18, 12

21

RESULTS: BETTER COVERAGE
AT HIGH SAMPLE RATES

40%

Branch coverage

20%

0%

Coverage Comparison: Full Instrumentation vs Sampling on Ref Inputs

P) P

Sample periods per benchmark

| R | | I I | | [| I | | | | |:| Wlth DOIII AnalySIS
B LBR Alone
fS=c2= 2X=222 EoScse & e
e S e e e e e s
h264reft libquantum mct sjeng

Wednesday, July 18, 12

22

RESULTS: BETTER COVERAGE
AT HIGH SAMPLE RATES

40%

Branch coverage

20%

0%

Coverage Comparison: Full Instrumentation vs Sampling on Ref Inputs

P) P

[e P ey I | e] B R A5 1 I | S | saes |

O With Dom Analysis
B LBR Alone

@ N 17N DN BN
E2222F 2ZAZg EZEA3 EEPacs
Ve v Ve)
h264reft libquantum mct sjeng

Sample periods per benchmark

Wednesday, July 18, 12

22

RESULTS: BETTER COVERAGE
AT HIGH SAMPLE RATES

40%

Branch coverage

20%

0%

Coverage Comparison: Full Instrumentation vs Sampling on Ref Inputs /
F o s (o R P e e I AT |] T |:| Wlth DOIII AnalySIS
B LBR Alone

BN AN
E%OO 5g§§§o 582
T e — U e
264ret libquantum

Sample periods per benchmark

SM
10M

50

mcf

Wednesday, July 18, 12

22

RESULTS: BETTER COVERAGE
AT HIGH SAMPLE RATES

0% 729,

Coverage Comparison: Full Instrumentation vs Sampling on l%f Inputs

40%

Branch coverage

P) P

Sample periods per benchmark

| | | | | | | | | | | | | | | |:| Wlt DOIII AnalySIS
B LBR Alone
171 DN 1714 17214
,58,%%00 ,Egél%%o Eggl%%o ,58;;3%@
e ol e Tl e e e i
h264reft libquantum mct sjeng

Wednesday, July 18, 12

22

RESULTS: TESTING ON A
MULTIPLE CORES - EFFICIENCY

40 Percent Time Overhead Splitting Inputs Across Cores
(4 1 |

30%

20%

10%

0%

Percent time overhead

—10%

—20%

bzip2 h264cf
Sample periods per benchmark

Wednesday, July 18, 12

23

HARDWARE MONITORING
BENEFITS

e Low overhead, effective branch testing technique
e Up to90% of branch coverage
e 2% time improvement
e (0.5% code growth (compared to 60% to 90%)
e Test coverage approximation
e Testing on resource constrained devices
e “Imprecise” tasks (e.g. regression test prioritization)
e Partial program monitoring
e Significant benefits
 Enable testing on resource constrained devices

* Generates full picture of program execution

Wednesday, July 18, 12

24

CONCLUSIONS AND FUTURE WORK

e Extensible, portable system for single or multiple cores
e Up to 11.13% improvement in time overhead

e Up to 90% of the coverage reported by
instrumentation

e Reduced time overhead (~2%)
e Negligible code growth
e Future work:

e Combine hardware monitoring with limited
instrumentation

e Implement on resource constrained device

e Extend system to other coverage metrics

Wednesday, July 18, 12

25

THANK YOU!

Website:
http:/ /www.cs.virginia.edu / walcott

Questions?

Wednesday, July 18, 12

26

http://www.cs.virginia.edu/walcott
http://www.cs.virginia.edu/walcott

