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DEVELOPING RELIABLE SOFTWARE

Software lifecycle

Testing ENEER

and
Patching

Implementation

Bug fix

* Measuring test quality:
 Recompilation
e High run time overheads

e Large code growth
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EXPENSE OF TRADITIONAL
TEST COVERAGE ANALYSIS

e |[nstrumentation
® Probe / \

* Payload

Branch Executed?

e Branch analysis overheads: i v
B2
 Time: 10% - 30%
e Code growth: 60% - 90%




EFFICIENT PROGRAM MONITORING

Profiling @Det@

Software-Level
Monitoring
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EFFICIENT PROGRAM MONITORING

Profiling @Det@

Hardware
Monitoring
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WHAT IS A HARDWARE
MECHANISM?

System State Sample
................................ ? SeessssesEsEsEssssEsEEEsEsEsEsEssEsEEEsEsEsEsassEsEREEssEsasasasREsEERERRRsRsRsRsRERRRRRasasananananansnsnnsssnsssssnes JSOT Sspace

Sample read()
A

Interrupt from
counter

................................ e e e eeeeeeeeere ettt ee ettt trrreettttrrttttttttttttttttettttttsettttttssettsttttsststtttsssssttsssstsstssssssssssEsssssREES Operating System

Core Core

L1 cache

L2 cache

Performance Monitoring Unit

(counters and mechanisms)

Shared L3 Cache
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USING HARDWARE MECHANISMS

 Developed for operating system performance
analysis

 Widely available on nearly all processors
e Low overhead

e Short setup time (318us)

® Quick read time (3.5us)
e Use of samples

 Estimate profiles

e Reveal program execution behavior

e Removes need for instrumentation
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HARDWARE MECHANISMS IN TESTING:
GOALS AND CHALLENGES

e Structural testing requires more exact data

e Can we capture ALL events with which
we are concerned?

e Can we capture ONLY the events with
which we are concerned?

e Tradeoft:
e Amount of information collected

e Overhead of sampling
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THEME: TESTING BY HARDWARE
MONITORING EVENTS

Branch Sampler

Original .| Assembly
Program| |Instrumentation
Modified
Y Program
Static
Analysis|  |Modified
L—»{ Branch
Table

Program modification

High Level AP - Sampled
Access . branches
Low Level
Access

Hardware

Sampling / Monitoring

Static Compiler
Analysis

Coverage
Analysis

..............................................

Coverage
Calculation
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BRANCH VECTOR RECORDING:
LAST BRANCH RECORD (LBR)

e Mechanism for partial branch
NG profiling
B * Intended for OS pertormance
and debugging
5 6
L e e Tracks set of executed branches
L, e Branch source

2 a ¢ Branch destination
Last Branch Record o Samp]e —= Set of branches
204(6] .|| |- |- ||| “Branch Vector”

Branch Vector (<16 branches)
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MONITORING EVENTS
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ENABLING FALL-THROUGH
VISIBILITY

‘ Challenge:

1
1
5| Ve Hardware branch-based
Fallthrough Target —> S:,%Z .
Edge Edge e monitors can only see 1 of 2
2 3 branch edges
Source level branch Binary level branch

e Methods

I3

e Supplement with more samples Jump il

e Use static analysis to infer branches IZ:>

Jump
e Minor program modification t g é
* Our Solution:

: 0 new jump
Insert innocuous unconditional

branches
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MONITORING EVENTS

Original .| Assembly
Program| |Instrumentation
Modified
Y Program
Static
Analysis|  |Modified
L Branch
Table

Program modification

Branch Sampler

High Level API
Access

Low Level

Hardware

Sampling / Monitoring

Sampled
| branches |

Static Compiler
Analysis

Coverage
Analysis

..............................................

Coverage
Calculation

Wednesday, July 18, 12

14



THEME: TESTING BY HARDWARE
MONITORING EVENTS

Original Assembly : :
Program* Instrumentation L Static C°".‘p"e"
L Analysis
Y | Branch Sampler
Modified , |
Program — P g g
v. J i High Level API | Sampled |
Static . ACCess | branches |
Analysis|  |Modified Low Level Coverage
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Program modification , e ;
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IMPROVING BRANCH

COVERAGE
e Sampling — Some missed data ;
. P
e (Goal: Improve coverage using 2] [3
static analysis 4/ \6
* Dominator analysis aker,
branch
e Associate seen branches with
control flow graph /8\
e Branch b executed — branch Q\rl l__/10
c also executed 2
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EXPERIMENT AND
SYSTEM DESIGN

e Intel Core 17 860 quad-core processor
e LBR size of 16 branches
e Linux2.6.34

e Hardware access tools: libpfm4 (user-level), perf (kernel-level)

e SPEC2006 C Benchmarks
e Metrics:
e Efficiency- time
e (Code growth size
e Effectiveness- branch coverage

 Instrumented vs Hardware Monitoring
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RESULTS: ENABLING
FALL-THROUGH VISIBILITY

e |mpact:
e Increases time overhead
e Increases code growth

e How compared to instrumentation?

Time overhead

Benchmark || Branch | Time (s) | Mod. Time | Instr. Time
Cov. (s) (s)
bzip2 64.20% 1499 1514 1599
h264ref 35.72% 1753 1786 1890
libquantum || 39.07% 1056 1178 1236
mct 74.01% 529 039 D75
sjeng 48.87% 1028 1162 1312

Avg: 5%  Avg: 14%
Increase Increase
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RESULTS: ENABLING
FALL-THROUGH VISIBILITY

e Impact:
e Increases time overhead
e Increases code growth

* How compared to instrumentation?

Code Growth
Benchmark Native Mod. Instr.
Size (kB) | % Increase | % Increase
bzip2 260 kB 1.52 32.65
h264ref 2892 kB 0.69 18.39
libquantum 208 kB 0 20.00
mct 128 kB 0 17.95
sjeng 592 kB 0.67 30.05

Avg: 0.5%  Avg: 24%
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RESULTS: TESTING ON A
SINGLE CORE - EFFECTIVENESS

Coverage Comparison: Full Instrumentation vs Sampling on Ref Inputs

100% F o s (o R P e e I AT | ] T |:| Wlth DOIII AnalySIS
B LBR Alone
L e e R SR SRR R R S AR SRR AR e R =
on
i
2 60% - B e .
O
Q
S 40% - DI s BN 00 hh =
=
=
A 20% - R
0%
jZ14 214 Iz 71~ BN
Ef=zzz Eyszzz EdmpEz fgsgEz Eezaas
oo e Ml e e e s T
bzip2 h264ret libquantum mct sjeng
Sample periods per benchmark
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40%

Branch coverage

20%

0%

RESULTS: TESTING ON A
SINGLE CORE - EFFECTIVENESS

Coverage Comparison: Full Instrumentation vs Sampling on Ref Inputs

Fr e il Tl | SRR "' " 'l With Dom Analysis
B LBR Alone

Soges BYEG2E E¥ESZZ  2¥=ce
bzip2 h264ret libquantum mct

Sample periods per benchmark

S50M
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SINGLE CORE - EFFICIENCY

60%
50%
40%
30%
20%

Percent time overhead

s
=
S

RESULTS: TESTING ON A

Percent Time Overhead Using Interrupt Driven Approach on Ref Inputs

h264ref  libquantum
Sample periods per benchmark
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RESULTS: BETTER COVERAGE
AT HIGH SAMPLE RATES

40%

Branch coverage

20%

0%

Coverage Comparison: Full Instrumentation vs Sampling on Ref Inputs
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Sample periods per benchmark
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RESULTS: BETTER COVERAGE
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RESULTS: BETTER COVERAGE
AT HIGH SAMPLE RATES
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RESULTS: BETTER COVERAGE
AT HIGH SAMPLE RATES
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RESULTS: TESTING ON A
MULTIPLE CORES - EFFICIENCY

40 Percent Time Overhead Splitting Inputs Across Cores
(4 1 |

30%
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Percent time overhead
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—20%

bzip2 h264cf
Sample periods per benchmark
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HARDWARE MONITORING
BENEFITS

e Low overhead, effective branch testing technique
e Up to90% of branch coverage
e 2% time improvement
e (0.5% code growth (compared to 60% to 90%)
e Test coverage approximation
e Testing on resource constrained devices
e “Imprecise” tasks (e.g. regression test prioritization)
e Partial program monitoring
e Significant benefits
 Enable testing on resource constrained devices

* Generates full picture of program execution
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CONCLUSIONS AND FUTURE WORK

e Extensible, portable system for single or multiple cores
e Up to 11.13% improvement in time overhead

e Up to 90% of the coverage reported by
instrumentation

e Reduced time overhead (~2%)
e Negligible code growth
e Future work:

e Combine hardware monitoring with limited
instrumentation

e Implement on resource constrained device

e Extend system to other coverage metrics
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THANK YOU!

Website:
http:/ /www.cs.virginia.edu / walcott

Questions?
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