
Issta 2012, July 17, Minneapolis, MN

THeME:
A System for Testing by

Hardware Monitoring Events

Kristen R. Walcott-Justice
kwalcott@uccs.edu

University of Colorado -
Colorado Springs

Jason Mars
jom5x@cs.virginia.edu

University of California -
San Diego

Mary Lou Soffa
soffa@cs.virginia.edu
University of Virginia

1Wednesday, July 18, 12

mailto:justice@cs.virginia.edu
mailto:justice@cs.virginia.edu
mailto:jom5x@cs.virginia.edu
mailto:jom5x@cs.virginia.edu
mailto:soffa@cs.virginia.edu
mailto:soffa@cs.virginia.edu

Developing Reliable Software

• Measuring test quality:
• Recompilation
• High run time overheads
• Large code growth

Software lifecycle

R
e
q
u
ir

e

m
e
n
t

D
e
s
ig

n

R
e
le

a
s
e

Maintenance

and

Patching
Bug fix

Implementation

Testing

2Wednesday, July 18, 12

Expense of Traditional
Test Coverage Analysis

• Instrumentation
• Probe
• Payload

• Branch analysis overheads:
• Time: 10% - 30%
• Code growth: 60% - 90%

Branch Executed?
B1
B2

Will B2
execute?

Will B1
execute?

√

3Wednesday, July 18, 12

Efficient Program Monitoring

Profiling

Optimization

Race Detection

Software-Level
Monitoring

4Wednesday, July 18, 12

Efficient Program Monitoring

Profiling

Optimization

Race Detection

Software-Level
Monitoring

Hardware
Monitoring

5Wednesday, July 18, 12

What is a Hardware
Mechanism?

Sample read()

System State Sample

6Wednesday, July 18, 12

Using Hardware Mechanisms

• Developed for operating system performance
analysis

• Widely available on nearly all processors
• Low overhead

• Short setup time (318µs)
• Quick read time (3.5µs)

• Use of samples
• Estimate profiles
• Reveal program execution behavior

• Removes need for instrumentation
7Wednesday, July 18, 12

Hardware Mechanisms in Testing:
Goals and Challenges

• Structural testing requires more exact data
• Can we capture ALL events with which

we are concerned?
• Can we capture ONLY the events with

which we are concerned?
• Tradeoff:

• Amount of information collected
• Overhead of sampling

8Wednesday, July 18, 12

THeME: Testing by Hardware
Monitoring Events

Program modification Hardware
Sampling/Monitoring

Coverage
Calculation

Branch Sampler

9Wednesday, July 18, 12

THeME: Testing by Hardware
Monitoring Events

Program modification Hardware
Sampling/Monitoring

Coverage
Calculation

Branch Sampler

9Wednesday, July 18, 12

THeME: Testing by Hardware
Monitoring Events

Program modification Hardware
Sampling/Monitoring

Coverage
Calculation

Branch Sampler

9Wednesday, July 18, 12

THeME: Testing by Hardware
Monitoring Events

Program modification Hardware
Sampling/Monitoring

Coverage
Calculation

Branch Sampler

9Wednesday, July 18, 12

Branch Vector Recording:
Last Branch Record (LBR)

• Mechanism for partial branch
profiling

• Intended for OS performance
and debugging

• Tracks set of executed branches
• Branch source
• Branch destination

• Sample == Set of branches
“Branch Vector”

SAMPLE

Hardware Mechanism

1 2

3 4

5 6

7 8

2 4 6

Branch Vector (≤16 branches)

Last Branch Record

10Wednesday, July 18, 12

THeME: Testing by Hardware
Monitoring Events

Program modification Hardware
Sampling/Monitoring

Coverage
Calculation

Branch Sampler

11Wednesday, July 18, 12

Enabling Fall-through
Visibility

Challenge:

Hardware branch-based
monitors can only see 1 of 2
branch edges

Jump FT

1

2 3

4 5

Jump FT

1

2 3

4

5

new

new jump

• Methods
• Supplement with more samples
• Use static analysis to infer branches
• Minor program modification

• Our Solution:
Insert innocuous unconditional
branches

Figure 2: The THeME System

Figure 3: The LBR is incapable of detecting the fall-through
branch edge from 1 to 2.

example, in Figure 3, monitoring should be able to detect

both the execution of the fall-through path from 1 to 2 and

the target path from 1 to 3. While this is obvious when look-

ing at a flow graph, in the binary code, a branch is made

up of some kind of jump to a target followed by another

instruction. The LBR will report the jump from 1 to 3 but

not the fall-through from 1 to 2. Therefore, the LBR by

itself is only capable of monitoring 50% of the source level

branches.

Fall-through branch observation is possible in several ways.

One technique is to supplement the information from branch-

based monitoring with other event data. For example, the

INST_RETIRED event could be polled in addition to the LBR

to look for fall-through instruction execution. Another tech-

nique to detect fall-through branches includes a static post

mortem analysis of the program and observed information.

These techniques would require no code modification, re-

compilation, or code growth. However, because we want to

evaluate the capabilities of using the hardware mechanisms

for monitoring, we instead give the branch-based mechanism

the potential to observe the fall-through path by inserting

harmless unconditional branches along every fall-through

edge in the binary, as pictured in Figure 2 Box 1. This is

di�erent from instrumentation, which is heavy weight and

includes both probe and payload code. Our fall-through

enabling technique adds only a single instruction along fall-

through branch edges. Using this technique, negligible code

growth is incurred.

3.2 User-level Branch Vector Access
Once the program has been modified and analyzed, it is

executed, as shown in Figure 2 Box 2. LBR monitoring

begins when the test program enters its main method, and

branch recording continues until the last instruction before

the program ends. This prevents observation of the setup

and teardown instructions executed as the program is loaded

into and taken out of memory. Samples are taken based

on the number of CPU Cycles observed during execution.

When the sample rate of cycles is reached, the branches in

the LBR are read and compared against the items in the

branch table, and observed branches are marked as taken.

There are a number of ways to access branch vector data

contained in the LBR. Many techniques in profiling, debug-

ging, and other software tasks use some form of user-level

performance monitoring API. Alternatively, a lower lever

approach using interrupts can be used.

3.2.1 Access via Polling
The simplest technique to access and read the LBR is

through a performance monitoring API and Linux’s poll

event. The test program is first spawned and executed us-

ing ptrace. Once the program has started execution suc-

cessfully, LBR reading is enabled through a high level call

to the operating system, as is the hardware counter that is

to be used to trigger sampling. The monitoring program

then repeatedly calls poll, which waits for the file descrip-

tor associated with the performance counter to contain data

that can be read, as shown below.

for(;;) {

ret = poll(pollfds, 1, -1);

if (ret < 0 && errno == EINTR)

break;

process_smpl_buf(file_descriptor);

}

While poll is an e�ective technique to report sets of LBR

and performance counter data, repeatedly calling poll when

no data is available causes unnecessary overhead. Thus, we

created an alternative technique that takes advantage of in-

terrupts.

3.2.2 Interrupt Driven Access
In our second technique, we replace the repetitious call

to poll with a lower level, more e⇥cient hardware access

approach. The hardware counters and LBR are enabled in

the same way as described in Section 3.2.1. The poll calls

are replaced by an I/O signal handler associated with our

desired hardware mechanisms. The signal handler is imme-

diately triggered upon the associated performance counter’s

overflow. After performing several checks, the signal handler

reads the LBR branch vector, and each branch is processed.

The associated hardware counter then is reset and the pro-

gram is resumed. By handling the performance counter no-

tification and refreshing the counter directly from within the

12Wednesday, July 18, 12

Enabling Fall-through
Visibility

Challenge:

Hardware branch-based
monitors can only see 1 of 2
branch edges

Jump FT

1

2 3

4 5

Jump FT

1

2 3

4

5

new

new jump

• Methods
• Supplement with more samples
• Use static analysis to infer branches
• Minor program modification

• Our Solution:
Insert innocuous unconditional
branches

Figure 2: The THeME System

Figure 3: The LBR is incapable of detecting the fall-through
branch edge from 1 to 2.

example, in Figure 3, monitoring should be able to detect

both the execution of the fall-through path from 1 to 2 and

the target path from 1 to 3. While this is obvious when look-

ing at a flow graph, in the binary code, a branch is made

up of some kind of jump to a target followed by another

instruction. The LBR will report the jump from 1 to 3 but

not the fall-through from 1 to 2. Therefore, the LBR by

itself is only capable of monitoring 50% of the source level

branches.

Fall-through branch observation is possible in several ways.

One technique is to supplement the information from branch-

based monitoring with other event data. For example, the

INST_RETIRED event could be polled in addition to the LBR

to look for fall-through instruction execution. Another tech-

nique to detect fall-through branches includes a static post

mortem analysis of the program and observed information.

These techniques would require no code modification, re-

compilation, or code growth. However, because we want to

evaluate the capabilities of using the hardware mechanisms

for monitoring, we instead give the branch-based mechanism

the potential to observe the fall-through path by inserting

harmless unconditional branches along every fall-through

edge in the binary, as pictured in Figure 2 Box 1. This is

di�erent from instrumentation, which is heavy weight and

includes both probe and payload code. Our fall-through

enabling technique adds only a single instruction along fall-

through branch edges. Using this technique, negligible code

growth is incurred.

3.2 User-level Branch Vector Access
Once the program has been modified and analyzed, it is

executed, as shown in Figure 2 Box 2. LBR monitoring

begins when the test program enters its main method, and

branch recording continues until the last instruction before

the program ends. This prevents observation of the setup

and teardown instructions executed as the program is loaded

into and taken out of memory. Samples are taken based

on the number of CPU Cycles observed during execution.

When the sample rate of cycles is reached, the branches in

the LBR are read and compared against the items in the

branch table, and observed branches are marked as taken.

There are a number of ways to access branch vector data

contained in the LBR. Many techniques in profiling, debug-

ging, and other software tasks use some form of user-level

performance monitoring API. Alternatively, a lower lever

approach using interrupts can be used.

3.2.1 Access via Polling
The simplest technique to access and read the LBR is

through a performance monitoring API and Linux’s poll

event. The test program is first spawned and executed us-

ing ptrace. Once the program has started execution suc-

cessfully, LBR reading is enabled through a high level call

to the operating system, as is the hardware counter that is

to be used to trigger sampling. The monitoring program

then repeatedly calls poll, which waits for the file descrip-

tor associated with the performance counter to contain data

that can be read, as shown below.

for(;;) {

ret = poll(pollfds, 1, -1);

if (ret < 0 && errno == EINTR)

break;

process_smpl_buf(file_descriptor);

}

While poll is an e�ective technique to report sets of LBR

and performance counter data, repeatedly calling poll when

no data is available causes unnecessary overhead. Thus, we

created an alternative technique that takes advantage of in-

terrupts.

3.2.2 Interrupt Driven Access
In our second technique, we replace the repetitious call

to poll with a lower level, more e⇥cient hardware access

approach. The hardware counters and LBR are enabled in

the same way as described in Section 3.2.1. The poll calls

are replaced by an I/O signal handler associated with our

desired hardware mechanisms. The signal handler is imme-

diately triggered upon the associated performance counter’s

overflow. After performing several checks, the signal handler

reads the LBR branch vector, and each branch is processed.

The associated hardware counter then is reset and the pro-

gram is resumed. By handling the performance counter no-

tification and refreshing the counter directly from within the

12Wednesday, July 18, 12

THeME: Testing by Hardware
Monitoring Events

Program modification Hardware
Sampling/Monitoring

Coverage
Calculation

Branch Sampler

13Wednesday, July 18, 12

THeME: Testing by Hardware
Monitoring Events

Program modification Hardware
Sampling/Monitoring

Coverage
Calculation

Branch Sampler

14Wednesday, July 18, 12

THeME: Testing by Hardware
Monitoring Events

Program modification Hardware
Sampling/Monitoring

Coverage
Calculation

Branch Sampler

15Wednesday, July 18, 12

Improving Branch
Coverage

• Sampling → Some missed data

• Goal: Improve coverage using
static analysis

• Dominator analysis
• Associate seen branches with

control flow graph
• Branch b executed → branch
c also executed

5

7

2

1

8

11

16Wednesday, July 18, 12

Experiment and
System Design

• Intel Core i7 860 quad-core processor
• LBR size of 16 branches

• Linux 2.6.34
• Hardware access tools: libpfm4 (user-level), perf (kernel-level)

• SPEC2006 C Benchmarks
• Metrics:

• Efficiency- time
• Code growth size
• Effectiveness- branch coverage

• Instrumented vs Hardware Monitoring

17Wednesday, July 18, 12

Results: Enabling
Fall-Through Visibility
• Impact:

• Increases time overhead
• Increases code growth

• How compared to instrumentation?

Time overhead test ref
Benchmark Branch Time(s) Mod. Time Instr. Time Branch Time (s) Mod. Time Instr. Time

Cov. (s) (s) Cov. (s) (s)
bzip2 63.49% 16.5 16.9 18.6 64.20% 1499 1514 1599
h264ref 27.53% 43.8 43.8 47.7 35.72% 1753 1786 1890
libquantum 37.79% 0.155 0.16 0.165 39.07% 1056 1178 1236
mcf 73.70% 3.66 3.86 4.08 74.01% 529 539 575
sjeng 46.29% 6.92 7.74 8.96 48.87% 1028 1162 1312

1: SPEC 2006 benchmark time overhead information.

ecution, giving priority to the application being monitored.
We first associate the branches observed by the LBR with
branches in the control flow graph representation of the pro-
gram. Dominator and post-dominator analyses are then ex-
ecuted on the control flow graph to build a dominator tree.

Within a dominator tree, a basic block b dominates ba-
sic block c if every path from the entry of the control flow
graph to basic block c contains basic block b. A basic block b
post-dominates basic block c if every path from c to the exit
of the CFG contains basic block b. For example, Figure 3
shows a control flow graph of a function in which the LBR
has observed branch 5-7. Because basic blocks 5 and 7 were
executed, blocks 1 and 2 must also have executed based on
the dominator analysis. Blocks 8 and 11 also necessarily exe-
cuted based on the post-dominator analysis. Based on these
two analyses, it is inferred that the conditional branches 1-2
and 2-5 must have executed, as well as the unconditional
branch 7-8. Note that our branch testing technique only
monitors conditional branches. However, when full branch
vectors are observed, more branch vectors may be implied.

4. EMPIRICAL EVALUATION
The primary goal of this paper’s empirical study is to eval-

uate the use of a hardware approach for structural testing
for branch coverage calculation. We implemented THeME
as described in Section 3 to measure its e⌅ciency and e�ec-
tiveness in comparison to using instrumentation. The goals
of the experiments are as follows:

• Analyze the time overhead and code growth incurred
by the program modification tool.

• Identify the di�erences between two methods of taking
hardware samples in terms of e⌅ciency.

• Analyze the trade-o�s between e⌅ciency and e�ective-
ness of calculating coverage information using a hard-
ware approach.

• Reveal benefits of testing using hardware mechanisms
on multiple cores

• Demonstrate how static analysis can be used along
with hardware mechanism monitoring for improved test
coverage

4.1 Experiment Design and Metrics
We execute THeME on an Intel Core i7 860 / 2.8 GHz

quad-core machine with 4GB of memory running Linux Ker-
nel 2.6.34. The Intel Core i7 processor was selected because
it has a LBR bu�er that reports a branch vector of size 16,
the largest currently available.

Benchmark Native Mod. Instr.
Size (kB) % Increase % Increase

bzip2 260 kB 1.52 32.65
h264ref 2892 kB 0.69 18.39
libquantum 208 kB 0 20.00
mcf 128 kB 0 17.95
sjeng 592 kB 0.67 30.05

2: SPEC 2006 benchmark code growth information.

We used the SPEC2006 C Integer Benchmarks as test pro-
grams for our system. Each program was compiled with de-
bugging information and with no optimization options spec-
ified.

We analyze our system based on the e⌅ciency and e�ec-
tiveness of its branch coverage calculations. The e⌅ciency
of our infrastructure is calculated based on the base run
times of benchmark execution reported by the execution tool
of the SPEC2006 benchmarks, runspec. All timing results
are compared to the overheads observed from execution of
full software-instrumented versions of the benchmarks. Test-
Cocoon [11] was used to generate the instrumented bench-
marks. The e�ectiveness of our infrastructure is analyzed
by comparing the branch coverage observed using THeME
to the coverage observed using full branch instrumentation.
Coverage is calculated by dividing the number of branch
edges observed using each technique by the total number of
branch edges in the program.

4.2 Experiments and Results
We run four sets of experiments in order to analyze 1)

the e�ects of our fall-through enabling program modification
tool, 2) the e⌅ciency and e�ectiveness of monitoring using
hardware mechanisms on a single core, 3) the e⌅ciency and
e�ectiveness of monitoring using hardware mechanisms on a
single core, and 4) the benefit of incorporating static analy-
ses in terms of e�ectiveness.

4.2.1 Enabling Fall-through Visibility
The first experiment analyzes the e�ects of the program

modification tool within THeME. We first examine the time
overhead e�ects on the modified program compared to full
instrumentation. Then we examine the code growth in-
curred.

Table 1 lists the SPEC2006 benchmarks analyzed and the
associated time overheads considered in this paper. The
left side of the table shows the branch coverage as reported
through instrumentation, the native program’s execution
time, the fall-through enabled (i.e. modified) program’s exe-
cution time, and the fully instrumented program’s execution
time when executing on the SPEC2006 test input set. The

test ref
Benchmark Branch Time(s) Mod. Time Instr. Time Branch Time (s) Mod. Time Instr. Time

Cov. (s) (s) Cov. (s) (s)
bzip2 63.49% 16.5 16.9 18.6 64.20% 1499 1514 1599
h264ref 27.53% 43.8 43.8 47.7 35.72% 1753 1786 1890
libquantum 37.79% 0.155 0.16 0.165 39.07% 1056 1178 1236
mcf 73.70% 3.66 3.86 4.08 74.01% 529 539 575
sjeng 46.29% 6.92 7.74 8.96 48.87% 1028 1162 1312

1: SPEC 2006 benchmark time overhead information.

ecution, giving priority to the application being monitored.
We first associate the branches observed by the LBR with
branches in the control flow graph representation of the pro-
gram. Dominator and post-dominator analyses are then ex-
ecuted on the control flow graph to build a dominator tree.

Within a dominator tree, a basic block b dominates ba-
sic block c if every path from the entry of the control flow
graph to basic block c contains basic block b. A basic block b
post-dominates basic block c if every path from c to the exit
of the CFG contains basic block b. For example, Figure 3
shows a control flow graph of a function in which the LBR
has observed branch 5-7. Because basic blocks 5 and 7 were
executed, blocks 1 and 2 must also have executed based on
the dominator analysis. Blocks 8 and 11 also necessarily exe-
cuted based on the post-dominator analysis. Based on these
two analyses, it is inferred that the conditional branches 1-2
and 2-5 must have executed, as well as the unconditional
branch 7-8. Note that our branch testing technique only
monitors conditional branches. However, when full branch
vectors are observed, more branch vectors may be implied.

4. EMPIRICAL EVALUATION
The primary goal of this paper’s empirical study is to eval-

uate the use of a hardware approach for structural testing
for branch coverage calculation. We implemented THeME
as described in Section 3 to measure its e⌅ciency and e�ec-
tiveness in comparison to using instrumentation. The goals
of the experiments are as follows:

• Analyze the time overhead and code growth incurred
by the program modification tool.

• Identify the di�erences between two methods of taking
hardware samples in terms of e⌅ciency.

• Analyze the trade-o�s between e⌅ciency and e�ective-
ness of calculating coverage information using a hard-
ware approach.

• Reveal benefits of testing using hardware mechanisms
on multiple cores

• Demonstrate how static analysis can be used along
with hardware mechanism monitoring for improved test
coverage

4.1 Experiment Design and Metrics
We execute THeME on an Intel Core i7 860 / 2.8 GHz

quad-core machine with 4GB of memory running Linux Ker-
nel 2.6.34. The Intel Core i7 processor was selected because
it has a LBR bu�er that reports a branch vector of size 16,
the largest currently available.

Benchmark Native Mod. Instr.
Size (kB) % Increase % Increase

bzip2 260 kB 1.52 32.65
h264ref 2892 kB 0.69 18.39
libquantum 208 kB 0 20.00
mcf 128 kB 0 17.95
sjeng 592 kB 0.67 30.05

2: SPEC 2006 benchmark code growth information.

We used the SPEC2006 C Integer Benchmarks as test pro-
grams for our system. Each program was compiled with de-
bugging information and with no optimization options spec-
ified.

We analyze our system based on the e⌅ciency and e�ec-
tiveness of its branch coverage calculations. The e⌅ciency
of our infrastructure is calculated based on the base run
times of benchmark execution reported by the execution tool
of the SPEC2006 benchmarks, runspec. All timing results
are compared to the overheads observed from execution of
full software-instrumented versions of the benchmarks. Test-
Cocoon [11] was used to generate the instrumented bench-
marks. The e�ectiveness of our infrastructure is analyzed
by comparing the branch coverage observed using THeME
to the coverage observed using full branch instrumentation.
Coverage is calculated by dividing the number of branch
edges observed using each technique by the total number of
branch edges in the program.

4.2 Experiments and Results
We run four sets of experiments in order to analyze 1)

the e�ects of our fall-through enabling program modification
tool, 2) the e⌅ciency and e�ectiveness of monitoring using
hardware mechanisms on a single core, 3) the e⌅ciency and
e�ectiveness of monitoring using hardware mechanisms on a
single core, and 4) the benefit of incorporating static analy-
ses in terms of e�ectiveness.

4.2.1 Enabling Fall-through Visibility
The first experiment analyzes the e�ects of the program

modification tool within THeME. We first examine the time
overhead e�ects on the modified program compared to full
instrumentation. Then we examine the code growth in-
curred.

Table 1 lists the SPEC2006 benchmarks analyzed and the
associated time overheads considered in this paper. The
left side of the table shows the branch coverage as reported
through instrumentation, the native program’s execution
time, the fall-through enabled (i.e. modified) program’s exe-
cution time, and the fully instrumented program’s execution
time when executing on the SPEC2006 test input set. The

Avg: 5%
increase

Avg: 14%
increase

18Wednesday, July 18, 12

Results: Enabling
Fall-Through Visibility
• Impact:

• Increases time overhead
• Increases code growth

• How compared to instrumentation?

test ref
Benchmark Branch Time(s) Mod. Time Instr. Time Branch Time (s) Mod. Time Instr. Time

Cov. (s) (s) Cov. (s) (s)
bzip2 63.49% 16.5 16.9 18.6 64.20% 1499 1514 1599
h264ref 27.53% 43.8 43.8 47.7 35.72% 1753 1786 1890
libquantum 37.79% 0.155 0.16 0.165 39.07% 1056 1178 1236
mcf 73.70% 3.66 3.86 4.08 74.01% 529 539 575
sjeng 46.29% 6.92 7.74 8.96 48.87% 1028 1162 1312

1: SPEC 2006 benchmark time overhead information.

ecution, giving priority to the application being monitored.
We first associate the branches observed by the LBR with
branches in the control flow graph representation of the pro-
gram. Dominator and post-dominator analyses are then ex-
ecuted on the control flow graph to build a dominator tree.

Within a dominator tree, a basic block b dominates ba-
sic block c if every path from the entry of the control flow
graph to basic block c contains basic block b. A basic block b
post-dominates basic block c if every path from c to the exit
of the CFG contains basic block b. For example, Figure 3
shows a control flow graph of a function in which the LBR
has observed branch 5-7. Because basic blocks 5 and 7 were
executed, blocks 1 and 2 must also have executed based on
the dominator analysis. Blocks 8 and 11 also necessarily exe-
cuted based on the post-dominator analysis. Based on these
two analyses, it is inferred that the conditional branches 1-2
and 2-5 must have executed, as well as the unconditional
branch 7-8. Note that our branch testing technique only
monitors conditional branches. However, when full branch
vectors are observed, more branch vectors may be implied.

4. EMPIRICAL EVALUATION
The primary goal of this paper’s empirical study is to eval-

uate the use of a hardware approach for structural testing
for branch coverage calculation. We implemented THeME
as described in Section 3 to measure its e⌅ciency and e�ec-
tiveness in comparison to using instrumentation. The goals
of the experiments are as follows:

• Analyze the time overhead and code growth incurred
by the program modification tool.

• Identify the di�erences between two methods of taking
hardware samples in terms of e⌅ciency.

• Analyze the trade-o�s between e⌅ciency and e�ective-
ness of calculating coverage information using a hard-
ware approach.

• Reveal benefits of testing using hardware mechanisms
on multiple cores

• Demonstrate how static analysis can be used along
with hardware mechanism monitoring for improved test
coverage

4.1 Experiment Design and Metrics
We execute THeME on an Intel Core i7 860 / 2.8 GHz

quad-core machine with 4GB of memory running Linux Ker-
nel 2.6.34. The Intel Core i7 processor was selected because
it has a LBR bu�er that reports a branch vector of size 16,
the largest currently available.

Benchmark Native Mod. Instr.
Size (kB) % Increase % Increase

bzip2 260 kB 1.52 32.65
h264ref 2892 kB 0.69 18.39
libquantum 208 kB 0 20.00
mcf 128 kB 0 17.95
sjeng 592 kB 0.67 30.05

2: SPEC 2006 benchmark code growth information.

We used the SPEC2006 C Integer Benchmarks as test pro-
grams for our system. Each program was compiled with de-
bugging information and with no optimization options spec-
ified.

We analyze our system based on the e⌅ciency and e�ec-
tiveness of its branch coverage calculations. The e⌅ciency
of our infrastructure is calculated based on the base run
times of benchmark execution reported by the execution tool
of the SPEC2006 benchmarks, runspec. All timing results
are compared to the overheads observed from execution of
full software-instrumented versions of the benchmarks. Test-
Cocoon [11] was used to generate the instrumented bench-
marks. The e�ectiveness of our infrastructure is analyzed
by comparing the branch coverage observed using THeME
to the coverage observed using full branch instrumentation.
Coverage is calculated by dividing the number of branch
edges observed using each technique by the total number of
branch edges in the program.

4.2 Experiments and Results
We run four sets of experiments in order to analyze 1)

the e�ects of our fall-through enabling program modification
tool, 2) the e⌅ciency and e�ectiveness of monitoring using
hardware mechanisms on a single core, 3) the e⌅ciency and
e�ectiveness of monitoring using hardware mechanisms on a
single core, and 4) the benefit of incorporating static analy-
ses in terms of e�ectiveness.

4.2.1 Enabling Fall-through Visibility
The first experiment analyzes the e�ects of the program

modification tool within THeME. We first examine the time
overhead e�ects on the modified program compared to full
instrumentation. Then we examine the code growth in-
curred.

Table 1 lists the SPEC2006 benchmarks analyzed and the
associated time overheads considered in this paper. The
left side of the table shows the branch coverage as reported
through instrumentation, the native program’s execution
time, the fall-through enabled (i.e. modified) program’s exe-
cution time, and the fully instrumented program’s execution
time when executing on the SPEC2006 test input set. The

Avg: 0.5% Avg: 24%

Code Growth

19Wednesday, July 18, 12

Results: Testing on a
Single Core - Effectiveness

20Wednesday, July 18, 12

Results: Testing on a
Single Core - Effectiveness

20Wednesday, July 18, 12

Results: Testing on a
Single Core - Efficiency

libquantum mcf sjeng

Pe
rc

en
t t

im
e

ov
er

he
ad

Sample periods per benchmark

Percent Time Overhead Using Interrupt Driven Approach on Ref Inputs

500K
1M
5M
10M
50M

 −10%
 0%

 10%
 20%
 30%
 40%
 50%
 60%

bzip h264ref

21Wednesday, July 18, 12

Results: Better Coverage
at High Sample Rates

22Wednesday, July 18, 12

Results: Better Coverage
at High Sample Rates

22Wednesday, July 18, 12

Results: Better Coverage
at High Sample Rates

71%

22Wednesday, July 18, 12

Results: Better Coverage
at High Sample Rates

90% 72%

22Wednesday, July 18, 12

Results: Testing on a
Multiple Cores - Efficiency

 −20%

 −10%

 0%

 10%

 20%

 30%

 40%

bzip2 h264ef

Pe
rc

en
t t

im
e

ov
er

he
ad

Sample periods per benchmark

Percent Time Overhead Splitting Inputs Across Cores

500K
1M
5M
10M
50M

23Wednesday, July 18, 12

Hardware Monitoring
Benefits

• Low overhead, effective branch testing technique
• Up to 90% of branch coverage
• 2% time improvement
• 0.5% code growth (compared to 60% to 90%)

• Test coverage approximation
• Testing on resource constrained devices
• “Imprecise” tasks (e.g. regression test prioritization)
• Partial program monitoring

• Significant benefits
• Enable testing on resource constrained devices
• Generates full picture of program execution

24Wednesday, July 18, 12

Conclusions and Future Work
• Extensible, portable system for single or multiple cores

• Up to 11.13% improvement in time overhead
• Up to 90% of the coverage reported by

instrumentation
• Reduced time overhead (~2%)

• Negligible code growth
• Future work:

• Combine hardware monitoring with limited
instrumentation

• Implement on resource constrained device

• Extend system to other coverage metrics

25Wednesday, July 18, 12

Thank You!

Website:
http://www.cs.virginia.edu/walcott

Questions?

26Wednesday, July 18, 12

http://www.cs.virginia.edu/walcott
http://www.cs.virginia.edu/walcott

