
Static Taint Analysis Tools to Detect
Information Flows

Dan Boxler
University of Colorado, Corlorado Springs

Colorado Springs, CO 80918

Email: dboxler@uccs.edu

Kristen R. Walcott
University of Colorado, Corlorado Springs

Colorado Springs, CO 80918

Email: kwalcott@uccs.edu

Abstract—In today’s society, the smartphone has become a
pervasive source of private and confidential information and has
become a quintessential target for malicious intent. Smartphone
users are bombarded with a multitude of third party applications
that either have little to no regard to private information or aim
to gather that information maliciously. To combat this, there have
been numerous tools developed to analyze mobile applications to
detect information leaks that could lead to privacy concerns. One
popular category of these tools are static taint analysis tools that
track the flow of data throughout an application.

In this work we perform an objective comparison of several
Android taint analysis tools that detect information flows in
Android applications. We test the tools FlowDroid, IccTA, and
DroidSafe on both the android taint analysis benchmarking
suite DROIDBENCH as well as a random subset of applications
acquired from F-Droid and measure these tools in terms of
effectiveness and efficiency.

Keywords: Taint Analysis, Information Flows, Static Analysis,
Mobile Development

I. INTRODUCTION

As mobile devices become increasingly popular, there has

been a shift in development for these platforms. Devices such

as smart phones and tablets have taken over the forefront

of mobile development over laptops and netbooks. There

are several mobile operating systems out there but the most

prominent in terms of market share is by far the Android

operating system developed by Google [3]. With its increasing

popularity, Android has become a more attractive target for

malicious developers that wish to obtain private information

from users. This could be anything from location data, contact

information, passwords, or even user activity.

Software applications on Android can be acquired from

virtually anywhere and there are several marketplaces where

users can find and download applications. Unlike other mobile

operating systems such as iOS, there is no approval process

that an application needs to go through to be uploaded to a

marketplace such as Google Play. Thus, there is no barrier to

entry for a developer to create an application that has malicious

intent. Android attempts to address this issue by requiring

application developers to declare what restricted resources they

intend on using in their applications in a manifest that the user

sees and must agree to prior to downloading the application.

This helps in informing the user on what restricted resources

the application has access to, but it does little to inform them

how the resources are being used.

Furthermore, there is a theme of many applications to

request more permissions than is actually needed for proper

execution of the application [10]. A large number developers

ask for more permissions and violate the least permission prin-

ciple in favor of not needing to request additional privileges on

future updates. Most marketplaces such as Google Play rely

on user regulation to filter out unsavory applications based on

reviews and reports of malicious behavior.

A common trend in Android malware are privacy leaks. A

privacy leak occurs when a malicious application sends private

information from a device to an external destination without

the user’s consent or knowledge. This can be anything from

contact information, location details, passwords, or any data

that could compromise the user’s privacy. This information

can be used by malicious users ranging from anything from

targeted advertising to identity theft.

There are many static analysis tools that have been devel-

oped to detect for information flows that may lead to privacy

leaks in Android applications. Static analysis is a testing tech-

nique that involves inspecting code without execution. Tools

will analyze all potential paths in the program looking for

specific vulnerabilities or defects. Static taint analysis involves

tainting a piece of information from where it originates so that

it can be found during subsequent analysis. Android static

taint analysis tools analyze data flow from an information

source where private information is generated or stored to

an information sink where the data leaves the device to a

potentially malicious destination. These results can then be

manually analyzed to determine if the flow is indeed malicious

or not. Alternatively, there are also malware detection tools

that can assess the results for malicious intent.

While there are many tools out there that intend to detect

information flows in Android applications, there exists no

objective comparison for such tools. It is necessary for a

comparison to exist if there is to be a marketable application

for these tools in industry. For example, if there was a

screening process for applications to be added to a marketplace

in that they need to not leak any private info, a static analysis

tools could be used to determine if an application is safe for

users. A tool of that nature would need to both fulfill the

requirements of determining privacy leaks as well as do so in

a cost efficient manner. To address this issue, we present an

empirical analysis of three of the most state of the art tools for

46 Int'l Conf. Software Eng. Research and Practice | SERP'18 |

ISBN: 1-60132-489-8, CSREA Press ©

static analysis of information flow detection. In this analysis

we will focus on effectiveness and efficiency. Effectiveness

will be the tools ability to detect data flows in a Android

application and efficiency will be measured by the total run

time for a tool to run its analysis on an application and the

amount of resources it consumes in the process. This will

be useful in determining the cost of running each tool. Our

contributions are as follows:

• Design a methodology for testing static analysis tools for

mobile applications

• Develop a third-party test suite from various Android

marketplaces and compare results of the chosen static

analysis tools.

• Objectively compare various Android static analysis tools

using pre-established benchmarking suite DROIDBENCH

in terms of efficiency and effectiveness.

II. CHALLENGES IN MALICIOUS BEHAVIOR DETECTION

As users are becoming more dependent on mobile devices

throughout their everyday lives, they are being heavily relied

upon to store personal data. This data has many privacy

concerns when it is used in mobile applications with or without

the user’s knowledge. The user essentially has to trust that the

application is using his/her data in a secure and appropriate

way. The caveat is that many applications appropriately use

this information and their behavior is difficult to distinguish

compared to that of a malicious application.

For example, if there is an application that provides the user

a list of nearby businesses that correspond with a search query,

it would need to obtain the location of the device using the

GPS sensor and provide that to a server to provide results.

This would be a justified use of a restricted resource and

should not be flagged as malicious behavior. Alternatively,

if the application also provided the location data to another

source such as an advertisement database or another 3rd party

for targeted advertising, this should be flagged as malicious.

As an extension, an alarming percentage of users do not

exhibit the comprehension or attentiveness to make sound

decisions on whether a particular application needs the per-

missions it has requested [11]. If a user has downloaded an

application from an Android marketplace, there is a strong

likelihood thatthe user will not be able to determine whether

or not to cancel the installation based on the permissions and

possibility of malicious execution.

There are several tools that attempt to detect such poten-

tial malicious behaviors using static analysis. However, there

currently exists no comparison between them, which leaves

a user at a loss when it comes to choosing the correct tool

to use. Furthermore, there exists no precedent of how a new

tool in this realm should be evaluated. While there exists a

benchmark of hand-tailored applications that exhibit the most

common information flows, originally proposed by the creators

of FlowDroid [6], there is not formal comparison that puts

the benchmark to use. The aim of this paper is to analyze

Fig. 1: Taint Analysis Example

various tools and determine the effectiveness and effectiveness

of finding information flows in Android applications.

III. INFORMATION AND TAINT ANALYSIS

This section discusses the various aspects involved in the

detection of information flows and potential privacy leaks as

well as the tools that are used for our analysis and comparison.

A. Information Flow

An information flow tracks the data stored inside of an

object x and then transferred to another object y. As we

are detecting information flows in Android applications, we

define information flow as the transfer of information from

an information source such as accessing a GPS location API

to an information sink such as the application writing to a

socket. In general, this refers to information being obtained by

an application and then sent outside of the application, either

to another application or the Internet. Sensitive data acquired

by an application through an API can be potentially leaked

maliciously through an information flow to an information

sink. Without a valid information flow, sensitive information

cannot leave the application or a pose a risk for users.

B. Taint Analysis

Taint analysis is used to track information flows from an

information source to a sink. Data derived from an information

source is considered tainted while all other data is consid-

ered untainted. An analysis tool tracks this data and how it

propagates throughout the program because tainted data can

also influence other information through assignments or other

operations. For example, a left-hand operand of an assignment

statement will be tainted if and only if one or more of the right-

hand operands were previously tainted. Taint can be revoked

under circumstances such as a new expression or assignment.

Figure 1 shows an example of how taint analysis works.

A variable x is tainted based on the fact that it is assigned

Int'l Conf. Software Eng. Research and Practice | SERP'18 | 47

ISBN: 1-60132-489-8, CSREA Press ©

information from a location API call. This taint is then

propagated to variables y and z due to assignment operations

with x as a right-hand operand. Variable z is then untainted

by performing a new operation which effectively erases the

tainted information from the variable. Lastly, the data in

variables y and z are written to a socket to a location on the

Internet. Only the writing of the data within y represents an

information flow since it still contains tainted information. As

such, a taint analysis tool will report this flow to the user as

it potentially represents a privacy leak in the application.

There are two contrasting techniques that can be used for

taint analysis: static taint analysis and dynamic taint analysis.

Three tools are known to support these analyses: FlowDroid,

IccTA, and DroidSafe.

Static Taint Analysis is done outside the operating envi-

ronment and is run using a tool on a computer. Static analysis

tools are able to provide better code coverage compared to

dynamic analysis tools but suffer in that they are unable to

access the runtime information of the intended environment

since it is running on a different platform.

Dynamic Taint Analysis is run while a program is exe-

cuting. It is often run on the same hardware and while the

programming is actually being run in the intended environ-

ment. Since it is running during program execution, it has

access to all of the runtime information and can determine

flows that are inherently too complex for static analysis tools.

The downside of dynamic analysis tools is that they are only

able to find flows that are actually being executed. Therefore,

they often have less code coverage than static analysis tools.

FlowDroid: FlowDroid [6] is an extension of the SOOT

framework [22] that is able to precisely detect information

flows in Android applications. The Soot framework is a

compiler extension for Java applications. It takes as input

either Java source code or Java bytecode and outputs Java

bytecode. It was originally developed as an optimizer for Java

programs. The main features of SOOT are its intermediate

representations of the Java code that are produced, in particular

Jimple, which is a typed three-address code. In addition, Soot

also provides callgraph and pointer information, which are

essential to developing a static anal ysis architecture.

FlowDroid extracts the contents of an Android .apk file and

parses the Android manifest, XML, and .dex files that contain

the executable code. Using the tool SuSi [5], the sources

and sinks of the application are identified and the callback

and lifecycle methods are determined. From this, a dummy

main method is generated. This is used to generate a inter-

procedural control flow graph which starts at sources where

data is tainted and then followed to sinks to determine flows

in the application.

IccTA: Inter-Component Communication Taint Analysis

(IccTA) [18] focuses specifically on detecting privacy leaks

between components within Android. IccTA uses Dexpler [7]

to convert Dalvik executables into Jimple, which is the repre-

sentation used internally by the Soot [16] framework, which

is popular for analyzing Android applications. They then

utilize Epicc [18] and IC3 [20] to extract the inter-component

communication (ICC) links from an application and combine

that with the Android intents that are associated with them.

They then modify the Jimple representation to connect the

components that are involved in the ICC so that they can be

analyzed with data-flow analysis. With this enhanced model

of the application, the process employs an altered version of

FlowDroid to detect flows.

DroidSafe: DroidSafe [13] is another system for detecting

information leaks in Android applications. DroidSafe utilizes

the Android Open Source Project [1] which is a precise model

of the Android environment and use a stubbing technique

to add in additional parts of the Android runtime that are

imported for their analysis. This model is then used with

static analysis techniques that are highly scalable to detect

information leaks in the target Android application.

IV. EXPERIMENT SETUP

This section describes the experiment setup and and design

for our evaluation of the Android static analysis tools.

A. Experimental Design and Metrics

The experiments were executed on a GNU/Linux worksta-

tion with kernel version 4.2.0-16 with an Intel(R) Core(TM)

i5-4670K CPU @ 3.40GHz with 16 Gb of RAM.

1) Test Suites: There are two test suites used to bench-

mark the various Android static taint analysis tools, DROID-

BENCH, and F-Droid: DROIDBENCH is a suite Android

applications that were originally developed by the creators of

FlowDroid with the intent of creating a Java-based benchmark

suite with the same aim as SecuriBench [19] which was

designed for Java-based web applications. In our experiments,

we utilize DROIDBENCH version 2.0 which contains 119

Android applications that were specifically written with the

intent of testing Android taint analysis tools. while this suite

of applications can be used with both static and dynamic

taint analysis tools, many of the applications address the

shortcomings of static analysis tools such as field sensitivity

and object sensitivity. Also, there are also applications that

focus on Android specific issues such as asynchronous call-

backs and user interface interactions. DROIDBENCH has been

used in the development of many Android Taint analysis tools

including [6], [8], [13], [17], [21].

We consider thirteen classes of applications within the

DROIDBENCH suite: Aliasing, Android specific, Arrays and

lists, Callbacks, Emulator detection, Field and object sensitiv-

ity, General Java, Implicit flows, Inter-application communica-

tion, Inter-component communication, Life cycle, Reflection,

Threading.

In addition to being specifically developed to test taint

analysis tools, each application includes annotations that de-

note how many information flows exists in the application.

This information is used in the evaluation of the tools in our

experiments to determine a tool’s effectiveness.

F-Droid [2] is a repository of Free and Open Source

Software (FOSS) Android Applications. F-Droid was founded

in 2010 by Ciaran Gultnieks and now hosts over 1,800

48 Int'l Conf. Software Eng. Research and Practice | SERP'18 |

ISBN: 1-60132-489-8, CSREA Press ©

applications available for download on Android devices. All of

these applications have the source code freely available to the

public. Of these applications, 50 randomly chosen applications

were used in our experiments in comparing the static taint

analysis tools. These applications are used to compare the tools

on larger Android applications.

2) Evaluation Metrics: Each static taint analysis tool is

evaluated in terms of efficiency and effectiveness. Efficiency

is measured based on execution time for each tool. The other

measure is that of effectiveness which will differ based on

which application suite we are considering.

In the DROIDBENCH application suite, there are a pre-

determined number of information flows that a given appli-

cation will exhibit. Knowing this, we can perform several

computations to calculate the effectiveness of a tool. In order

to calculate these metrics, it is first necessary to obtain the

true positives Tp , true negatives Tn , false positives Fp, and

false negatives Fn as identified by each of the tools. The first

measure is precision, which is the ratio of correctly identified

information flows over the total number of identified flows and

can be modeled by the following:

precision =
Tp

Tp + Fp

The next measure is recall, which can be defined as out of

all of the actual information flows in the applications suite

versus how many of those flows were identified. Recall can

be modeled by the following:

recall =
Tn

Tp + Fp

The third measure is accuracy, which is defined as the ratio

of true results to the total number of cases analyzed and can

be modeled by the following:

accuracy =
Tp + Tn

Tp + Fp + Tn + Fn

The last measure is F-measure, which combines both precision

and recall together. It provides a weighted average between

precision and recall. In this work we employ the balanced F-

score metric (F1) which is the harmonic mean of precision

and recall which is modeled by:

F1 = 2 ∗ precision ∗ recall
precision+ recall

In terms of the F-Droid application suite, since we do not

know the number of information flows that actually exist in

the applications, we are limited to only comparing the static

analysis tools based on the raw number of flows reported.

B. Experiment Implementation

Three Android Static Taint analysis tools were chosen for

this work: FlowDroid, Inter-Component Communication Taint

Analysis (IccTA), and DroidSafe. The three tools are written in

Java and capable of running on an Android .apk file and focus

on solving the same problem of detecting information flows

in Android applications. They also all require the Android

Fig. 2: FlowDroid - DROIDBENCH

platform to be imported in order to analyze the applications.

For consistency, the Java Virtual Machine (JVM) used to run

each tool is allocated 16 gigabytes of RAM.

In order to perform the comparison, a tool was written

in Python 3. This tool sets up the necessary environments

for each tool and runs them on an input set of Android

applications. The tools runs the tool and times the execution

time for each run. The tool then parses the output for a run and

extracts the number of information flows that were reported by

the tool. In regards to the DROIDBENCH application suite,

these reported results are subsequently compared with the

actual number of information flows that exist in the application

as reported by the authors. This is used to determine whether

or not the tool successfully discovered all flows and whether

or not there were false positives false negatives reported. All

executions were terminated if they took longer that 2 hours as

some applications caused several of the tools in question to

reach a state in which they would never finish.

The timing results will be useful for comparison of the tools

in terms of cost to an organization that wishes to utilize these

tools. They may not be helpful to a developer that wishes

to analyze their personal application, but to a company such

as Google that wishes to utilize this tool on a large scale,

the time it takes to run a taint analysis tool for screening

uploaded Android applications correlates strongly with a cost

of operation. The longer an application takes to run can impose

a large cost when applied to a large scale.

The effectiveness measure, which is how many applications

in which a tool successfully detects an information flow is also

very important in terms of comparison. The more effective a

tool is demonstrates its worth in both research and industry.

These results are then stored JavaScript Object Notation

(JSON) format for use in analysis and graph generation for

a clear comparison between taint analysis tools. Graphs are

generated using the Python modules NumPy and Matplotlib

.

V. EVALUATION

Figures 2, 3, and 4 display the results of the tools being

executed against the DROIDBENCH application suite. Each

bar of the graphs represent the execution time of a tool against

a particular application of the test suite. It should be noted

that due to large difference in execution times between the

various tools, the scaling is not the same between each of

Int'l Conf. Software Eng. Research and Practice | SERP'18 | 49

ISBN: 1-60132-489-8, CSREA Press ©

Fig. 3: IccTA - DROIDBENCH

Fig. 4: DroidSafe - DROIDBENCH

the graphs. The color of the bars also indicate a measure of

success in the execution. A green bar indicates that the tool

was able to successfully identify all information flows from

the application. A yellow bar indicates that the tools identified

more flows in the application than were intended, leading to

one or more false positives in the results. A red bar indicates

that the tool was unable to identify one or more information

flows that existed in the test application.

Figure 2 illustrates the results of FlowDroid on the DROID-

BENCH test suite. It reveals that the execution time of running

FlowDroid over the application suite ranged from 0.12 seconds

to 4.27 seconds. It also highlights that many of the applications

that applications such as those in the intercomponent commu-

nication category were over estimated in the number of flows

leading to false positives. Also, it is evident that FlowDroid

was unable to successfully discover flows in the implicit flow

and reflection categories of applications.

Figure 3 highlights the results of IccTA on the DROID-

BENCH test suite. The execution time of running IccTA on

the DROIDBENCH suite ranged from 15.26 seconds to 288.80

seconds. This is substantially higher than that of FlowDroid

and also exhibits the largest range of execution times out

of any of the other static taint analysis tools. By observing

the chart, we can see that there are many similarities in the

results between IccTA and FlowDroid. This can be somewhat

expected since IccTA uses a modified version of FlowDroid in

their implementation. However, it is surprising that IccTA had

many false positives in the intercomponent communication ap-

plications such as Activity- Communication2.apk since IccTA

aims at addressing flows that cross multiple components.

Figure 4 shows the results running DroidSafe on the

DROIDBENCH test suite. The execution time for DroidSafe

on the application suite ranged from 63.54 seconds to 196.94

seconds. The execution times for DroidSafe were much more

Fig. 5: Statistics for DROIDBENCH

predictable that that of FlowDroid and IccTA. DroidSafe

also had much better results in terms of the inter-component

communication applications and was able to correctly identify

most of the intended flows in those applications. Droid-

Safe, along with the other tools was unable to identify the

information flows in the implicit flow category. This may need

to be a focus for future research in the area.

Figure 5 breaks down the results for the three Android

static taint analysis tools when run against the DROIDBENCH

application suite. True positives represent information flows

that are explicitly declared in the various applications that were

successfully reported by the tools. True negatives represent the

number of applications that contained no information flows

and were reported as such. False positives represent flows

that were reported by a tool that did not actually exist in the

application. False negatives represent when a static analysis

tool reports that there were no flows present in the application

when there were flows declared. Using these statistics, we

were able to derive the precision, recall, accuracy, and F-score

for each tool based on the DROIDBENCH benchmark suite.

Precision, which is the fraction of reported flows that are

indeed existing flows with respect to the number of incorrect

flows reported, for the three analysis tools is 71.2%, 68.5%,

and 68.1% for FlowDroid, IccTA, and DroidSafe respectively.

Despite reporting the least amount of actual information flows,

FlowDroid was in fact the most precise tool, albeit by a

small margin. IccTA and DroidSave also had very similar

precision results. In terms of recall, which is the ratio of

true reported flows against the number of reported flows, 60%

for FlowDroid, 63.5% for IccTA, and 87.1% for DroidSafe.

DroidSafe had by far the highest recall out of any of the tools

which is directly correlated with the fact that it reported a

significantly larger number of information flows.

In terms of accuracy, both FlowDroid and IccTa had similar

results with 53.4% and 53.3% respectively. DroidSafe, on the

other hand, had a much higher accuracy of 64.5%. This theme

also holds true in terms of the F-score, which is a weighted

average between precision and recall where Droid- Safe had a

much higher value of 0.76 compared to FlowDroid and IccTA

(0.65 and 0.66).

Figure 6 displays the execution statistics for each of the

taint analysis tools when run against the DROIDBENCH

applications. FlowDroid was by far fastest tool with an average

50 Int'l Conf. Software Eng. Research and Practice | SERP'18 |

ISBN: 1-60132-489-8, CSREA Press ©

Fig. 6: Execution time for DROIDBENCH

Fig. 7: Results for FDROID

execution time of only 1.55 seconds and a maximum of

4.27 seconds. IccTA and DroidSafe had very similar average

execution times with 151.03 seconds and 151.80 seconds

respectively but the amount of time that it took to complete

for DroidSafe was much more consistent. IccTA was very

inconsistent in terms of execution times with some applications

only taking 15-16 seconds while others taking close to 5

minutes while DroidSafe never took longer than 3.5 minutes.

Figure 7 presents the results from running all three tools

on the F-Droid application suite. The average execution time

only takes into consideration the runs of each tool that did not

result in a timeout or a failure. This experiment shows that

FlowDroid once again executed significantly faster than the

other two tools. IccTA and DroidSafe took a similar amount

of time to complete although IccTA had a considerably lower

number of failed executions. Furthermore, all of the failures

that IccTA encountered were due to exceeding the alloted

amount of time while most of the failures in DroidSafe were

attributed to running out of memory. It should also be noted

that although DroidSafe only successfully analyzed 10 of the

50 Android applications, it reported 384 information flows,

which is a exceedingly high number compared to the other two

tools that had a much greater number of successful executions.

Many of these flows were reported from one application, Email

Pop-up, which Droid- Safe reported 237 flows.

VI. DISCUSSION

While comparing the various static analysis tools in terms

of execution time, we look only at the time that it takes for

the tools to finish their analysis, regardless of whether or not

there was a flow detected. This is useful in regards to cost

for an organization to implement a static taint analysis tool

into their screening process for application submissions. The

longer a tool takes, the more resources it consumes and the

more cost it induces on an organization. From the results,

we see that FlowDroid performs significantly quicker than the

other two tools. IccTA and DroidSafe were very similar in

regards to execution time, although the time taken for IccTA

is much more variable than that of DroidSafe. As such, it will

be much cheaper for an organization to use FlowDroid than the

other two tools. As for an individual developer or a customer

that wants to use one of these tools to test an application,

the amount of time that it takes to execute may not be of

concern. However, when looking at tools such as DroidSafe,

we were unable to successfully execute the tool on 80% of the

applications in the F-Droid application suite which represent

realworld Android applications. If the average developer or

customer does not have access to powerful enough hardware

to even run the tool, it diminishes its value for potential users.

In terms of flow detection, we look not only at the raw

number of flows detected but the effectiveness of the tools

to accurately and precisely detect the information flows of

an application. On the DROIDBENCH application suite,

FlowDroid and IccTA performed very similar in successfully

reported the information flows. DroidSafe on the other hand

performed much better on the benchmarking suite. DroidSafe

was able to detect the highest number of true flows and had the

best accuracy and f-score measures. However, DroidSafe also

produced the highest number of false positives. This leads us

to question the high number of flows detected in the F-Droid

suite by DroidSafe. There is a high likelihood that a large

portion of the 384 flows detected could be false positives.

VII. RELATED WORK

AppIntent [23] is an automated tool that aims to detect

privacy leakage by creating a sequence of user interface

manipulations that will initiate a sequence of events that

will cause a transmission of sensitive data in an Android

device. These events are then analyzed to derive the intent

of the operations leading up to the sensitive data transmission

and determine whether the user intended for the data to be

transmitted or not. This is done by using static taint analysis

to extract all possible inputs that lead to paths that could

result in data transmission of a restricted resource. Using these

inputs, they then automate the application execution on a step

by step basis to generate user interface manipulations that

will lead to a transmission of sensitive data. These results are

then highlighted and displayed to a human analyst who then

determines whether the transmission was indeed intended by

the events that preceded it.

AndroidLeaks [12] is another static analysis tool that is

designed to identify potential privacy leaks in Android ap-

plications. This tools uses data flow analysis to determine if

sensitive information has reached a sink as in a program exit

point that leads to the Internet. AndroidLeaks leverages WALA

(Watson Libraries for Analysis) [4].

ScanDal [15] is another automated tool that attempts to

detect privacy leaks in Android applications. ScanDal uses a

strict static analysis approach that uses Dalvik bytecode as

it’s input. The benefit of this is that ScanDal can be run on

any application as it doesn’t need to the source code. Many

other approaches must use tools such as DED [9] to decompile

the Dalvik bytecode into Java source code. This present many

problems as the decompiled code may not be complete and

fails in many instances. ScanDal translates the Dalvik bytecode

into a subset of Dalvik instructions that they called Dalvik

Core, an intermediate language. The translated Dalvik Core

code is then analyzed and if there is a value that is created at

Int'l Conf. Software Eng. Research and Practice | SERP'18 | 51

ISBN: 1-60132-489-8, CSREA Press ©

an information source, it is analyzed to see if it flows out of

a information sink and if so, is considered a privacy leak.

ApkCombiner [17] is an additional tool that allows for the

detection of information leak that can occur between two

running applications on an Android device. ApkCombiner

essentially takes multiple Android applications and combines

them together into a single .apk file that cant be used with

other static taint analysis tools that focus on intercomponent

communication to detect privacy leaks. This abstracts the

inter-application communication away from existing tools and

extends their functionality without alteration.

Other tools such as AsDroid [14] detect stealthy behaviors

in Android applications using the using the text in the user

interface comparing them to the program behavior to deter-

mine if there are contradictions with the proposed action of

the application and what really happens behind the scenes.

AsDroid was able to detect stealthy behaviors such as SMS

messages, HTTP connections, and phone calls. While AsDroid

was successful in detecting stealthy behaviors, it could not

indicate the intent behind the behaviors, just that they were

not consistent with the user interface.

While there is a lot of work in the realm of privacy leak

and information flow detection for Android devices, there has

been no prior work in comparing these tools for their efficiency

and effectiveness. Our work lays ground for investigating the

worth of various analysis tools and will hopefully spur more

defined measures of comparison for these important tools.

VIII. CONCLUSION AND FUTURE WORK

Privacy leak detection has steadily become a important

issue in terms of mobile applications. As mobile platforms

continue to be a target for malicious users seeking the private

information of others, research will be necessary to detect and

remove these threats. Tools such as static taint analysis tools

can offer us an automated way to detect potential threats in

Android applications. This paper deals with comparing some

of the state of the arts tools in the area to determine their

effectiveness as well as efficiency, which can play an important

role when looking to implement such a tool on a large scale.

The results show that the effectiveness of a tool comes at a

cost of efficiency. While DroidSafe performed the best in terms

of accuracy in the detection of information flows, it suffered in

terms of execution time and resource consumption. FlowDroid

and IccTA, on the other hand, ran more efficiently but at the

cost of missing more potential leaks in applications.

In future work, we will increase the number of applications

and investigate more taint analysis tools. We will also investi-

gate other sources for new applications suite such as Contagion

Mini Dump3 and Malware DB4 that contain known Android

Malware. We will also pursue Android dynamic analysis tools

to compare both approaches of taint analysis on the Android

platform.

REFERENCES

[1] Android open source project. https://source.android.com.
[2] F-droid. https://f-droid.org/.

[3] Smartphone os market share, 2015 q2. http://www.idc.com/prodserv/
smartphone-os-market-share.jsp.

[4] Watson libraries for analysis, wala. http://wala.sourceforge.net/wiki/
index.php/Main_Page.

[5] S. Arzt, S. Rasthofer, and E. Bodden. Susi: A tool for the fully automated
classification and categorization of android sources and sinks. University
of Darmstadt, Tech. Rep. TUDCS-2013-0114, 2013.

[6] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel. Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps. Acm Sigplan Notices, 49(6):259–269, 2014.

[7] A. Bartel, J. Klein, Y. Le Traon, and M. Monperrus. Dexpler: converting
android dalvik bytecode to jimple for static analysis with soot. In
Proceedings of the ACM SIGPLAN International Workshop on State
of the Art in Java Program analysis, pages 27–38. ACM, 2012.

[8] Y. Cao, Y. Fratantonio, A. Bianchi, M. Egele, C. Kruegel, G. Vigna,
and Y. Chen. Edgeminer: Automatically detecting implicit control flow
transitions through the android framework. In NDSS, 2015.

[9] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. A study of android
application security. In USENIX security symposium, volume 2, page 2,
2011.

[10] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android
permissions demystified. In Proceedings of the 18th ACM conference on
Computer and communications security, pages 627–638. ACM, 2011.

[11] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner.
Android permissions: User attention, comprehension, and behavior. In
Proceedings of the eighth symposium on usable privacy and security,
page 3. ACM, 2012.

[12] C. Gibler, J. Crussell, J. Erickson, and H. Chen. Androidleaks:
automatically detecting potential privacy leaks in android applications
on a large scale. In International Conference on Trust and Trustworthy
Computing, pages 291–307. Springer, 2012.

[13] M. I. Gordon, D. Kim, J. H. Perkins, L. Gilham, N. Nguyen, and M. C.
Rinard. Information flow analysis of android applications in droidsafe.
In NDSS. Citeseer, 2015.

[14] J. Huang, X. Zhang, L. Tan, P. Wang, and B. Liang. Asdroid:
Detecting stealthy behaviors in android applications by user interface and
program behavior contradiction. In Proceedings of the 36th International
Conference on Software Engineering, pages 1036–1046. ACM, 2014.

[15] J. Kim, Y. Yoon, K. Yi, J. Shin, and S. Center. Scandal: Static analyzer
for detecting privacy leaks in android applications. MoST, 12, 2012.

[16] P. Lam, E. Bodden, O. Lhoták, and L. Hendren. The soot framework
for java program analysis: a retrospective. In Cetus Users and Compiler
Infastructure Workshop (CETUS 2011), volume 15, page 35, 2011.

[17] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, and Y. Le Traon. Apkcom-
biner: combining multiple android apps to support inter-app analysis.
In IFIP International Information Security Conference, pages 513–527.
Springer, 2015.

[18] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt,
S. Rasthofer, E. Bodden, D. Octeau, and P. McDaniel. Iccta: Detecting
inter-component privacy leaks in android apps. In Proceedings of the
37th International Conference on Software Engineering-Volume 1, pages
280–291. IEEE Press, 2015.

[19] B. Livshits. Stanford securibench. http://suif.stanford.edu/livshits/
securibench, 2005.

[20] D. Octeau, D. Luchaup, M. Dering, S. Jha, and P. McDaniel. Composite
constant propagation: Application to android inter-component commu-
nication analysis. In Proceedings of the 37th International Conference
on Software Engineering-Volume 1, pages 77–88. IEEE Press, 2015.

[21] F. Shen, N. Vishnubhotla, C. Todarka, M. Arora, B. Dhandapani, E. J.
Lehner, S. Y. Ko, and L. Ziarek. Information flows as a permission
mechanism. In Proceedings of the 29th ACM/IEEE international
conference on Automated software engineering, pages 515–526. ACM,
2014.

[22] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan.
Soot-a java bytecode optimization framework. In Proceedings of the
1999 conference of the Centre for Advanced Studies on Collaborative
research, page 13. IBM Press, 1999.

[23] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S. Wang. Appintent:
Analyzing sensitive data transmission in android for privacy leakage
detection. In Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security, pages 1043–1054. ACM, 2013.

52 Int'l Conf. Software Eng. Research and Practice | SERP'18 |

ISBN: 1-60132-489-8, CSREA Press ©

