
Using Deep Packet Inspection to Detect Mobile
Application Privacy Threats

Gordon Brown
University of Colorado, Corlorado Springs

Colorado Springs, CO 80918

Email: gbrown@uccs.edu

Kristen R. Walcott
University of Colorado, Corlorado Springs

Colorado Springs, CO 80918

Email: kwalcott@uccs.edu

Abstract—Modern mobile and embedded devices hold increas-
ing amounts of sensitive data, with little visibility into where
that data is sent. Existing solutions tend to be platform-specific,
targetting only Android or iOS.

We present a technique and a develop a tool that can detect
exfiltration of private data in a platform-independent way by
utilizing deep packet inspection. We examine the techniques and
patterns common to sensitive personal data attacks and evaluate
our tool’s effectiveness in detecting the exfiltration of sensitive
data on known mobile malware. We learn that the majority
of the known-malicious applications in our study were unable
to exfiltrate contact information. Only one known-malicious
application under test was able to connect to a remote server
and send contact information. One known-malicious application
under test was able to connect to a remote server and send contact
information, which raises awareness in the software assurance
community.

Keywords: Mobile Privacy, Security, Information Assurance,
Malicious Applications

I. INTRODUCTION

As mobile and connected device usage continues to grow, the

type and amount of data collected, either by actively malicious

applications or by “free” advertising-supported applications is

a growing concern in the minds of users. Users are generally

more concerned about some types of data than others, but

most are especially uncomfortable with sharing data such as

text messages, contact lists, and calendar information. Having

this information stolen can lead to serious consequences. For

example, if a user’s text messages are stolen and that user

engages in mobile banking, the stolen text messages could be

used to obtain access to that user’s bank account. Stolen contact

information could lead to spear phishing attacks against friends

or coworkers. Fueled by this concern, there is a growing body

of research into ways to detect applications which transmit

user data to undesirable destinations, but there are still severe

limitations on the techniques available.

There is a wealth of research into analyzing mobile applica-

tions, both in the realms of static analysis such as ScanDal [11]

and dynamic on-device analysis such as TaintDroid [8]. How-

ever, these approaches are specific to each platform - a separate

framework is required for the analysis of applications on other

platforms. An example is PiOS [7] for Apple iOS applications.

This leads to a lack of analysis tools for less popular and more

recent platforms, such as Windows Phone or Blackberry, or

devices which are completely proprietary, such as Internet of

Things (hereafter “IoT”) devices.
The lack of tools applicable to IoT devices is particularly

concerning - an ever-increasing number of household object

are available in Internet-connected form, from thermostats [22]

to cookware [13]. Because the manufacturers of these devices

generally do not distribute copies of their software, even in

binary form, they are particularly difficult to analyze for security

or privacy problems
Analyzing the network traffic from mobile applications

or connected devices can reveal with certainty what data is

being transmitted and where it is being sent to in a platform-

independent way. A tool designed to automatically inspect

network traffic can warn the user when potentially private

data is sent to an unknown destination. Many of the data

categories users are most concerned about sharing (again, per

Ferreria, et al.), including “Messages & Calls”, “Contacts”,

and “Browser” are most likely to include somewhat structured

data such as telephone numbers, email addresses, and URLs in

close proximity to timestamps, durations, text blobs, or audio

files. This type of data is most likely to be easily recognized

by an automatic traffic inspection tool.
Research into using network analysis techniques to detect

privacy leaks has been very limited to date, particularly with

respect to end user privacy protection. Network-based analysis

allows platform independent data protection in a way that is

sorely needed in this age of proprietary platforms, both in the

mobile and embedded realms.
In this paper, our main contributions are:

• A technique for detecting exfiltration of private data over

a local wireless network using deep packet inspection.

• A tool which implements the above technique.

• An analysis of several mobile applications that demonstrate

the effectiveness of the deep packet inspection technique.

II. IDENTIFICATION OF PRIVATE DATA

There are two main components to identifying exfiltration

of private data: Acquiring the transmissions that may contain

private data and identifying private data in those transmissions.

A. Network Traffic Interception
Automatic analysis of data transmitted over a network, also

known as Deep Packet Inspection, is used in existing systems

Int'l Conf. Software Eng. Research and Practice | SERP'18 | 55

ISBN: 1-60132-489-8, CSREA Press ©

to detect exfiltration of sensitive data from high-security

networks [21], such as government networks. Fundamentally,

inspecting traffic to detect transmission of private user data is

not very different, however, the specific techniques involved

do vary.

In order to analyze network traffic, the traffic must be

observed. For reasons of efficiency and privacy, networks

typically do not transmit, or route traffic to devices which

are not necessary to get the traffic to its intended destination.

There are several ways to force traffic to be directed through

a specific device so that it may be analyzed. Some of these

include Network Tapping, ARP Spoofing, or the use of proxy

servers.

Network tap
Network tapping involves inserting a device directly

into the networking flow, similar to a phone tap. This

approach requires specialized and expensive hardware,

and is most often used by systems which passively

monitor network traffic, such as NETSCOUT’s Tru-

View network performance analysis systems.

ARP Spoofing
ARP, or Address Resolution Protocol, is used by

computer networks to identify which devices on a

local network traffic should be sent to, given an IP

address. ARP is susceptible to an attack which allows

a single device to claim all IP addresses, forcing all

traffic to flow through the attacking device before

being forwarded on to other devices. This attack can

be detected by security systems [1] on high-security

networks, but has been used with success in traffic

inspection devices targeted at home networks, such

as Disney’s parental control system Circle [4].

Proxy server
Many devices include support for configuring a proxy

server or Virtual Private Network (VPN), which

automatically forwards all traffic through that server.

This is often done to allow access into or out of

a highly secured network. However, this requires

configuration on each device to be monitored, and

many IoT devices do not have the ability to use proxy

servers.

All of these techniques could be termed “man-in-the-middle

attacks,” as they seek to allow a party which is not the intended

recipient of network traffic to inspect or modify it en route.

However, each of these techniques are also used for non-

malicious purposes, such as network troubleshooting, parental

control [4], or advertisement blocking [5], because these things

require some level of analysis of network traffic without being

the intended recipient of that traffic.

B. Identifying Private Data

The categories users are least comfortable sharing with third

parties are “Messages & Calls” and “Contacts” [9]. Both of

these categories include the contact information of others: There

would be relatively little value in stealing messages or call

records without knowing who they were sent to or from, and

“Contacts” is composed entirely of this data.

The most common contact information stored on mobile de-

vices are telephone numbers and email addresses. Both of these

types of information are highly structured - telephone numbers

taking the form of 7 to 11 numbers, depending on the inclusion

of area and country code, with some optional delimiters (i.e.

the parentheses which typically surround the area code, or

the dash separating the first three and last four digits). Email

addresses take the form of “{individual}@{domain}.{tld}”,

where “{individual}”, “{domain}”, and “{tld}” take the form of

one or more typically alphanumeric characters, but may include

periods or Unicode characters. Such highly structured data is

recognizable efficiently through the use of relatively simple

regular expressions. Regular expressions can be converted to

deterministic automata [2], which can be run very quickly.

More complex data, such as calendar events or documents

(which users are also mostly uncomfortable with sharing, per

Ferreira, et. al.) are typically more complex and require more

complicated heuristic techniques.

III. IMPLEMENTATION

Given the challenges, we design and implement a tool

which intercepts and inspects network traffic for the purpose

of detecting the exfiltration of private data via a local Internet-

connected network. We investigate the effectiveness of this

technique using the tool described.

A. Traffic Capture

Data collection is accomplished through the use of the

ARP spoofing technique described above, taking inspiration

from the man-in-the-middle attack suite Ettercap [15]. To

accomplish this, forged ARP packets are broadcast by the

program, claiming to own the addresses of both the device under

test and the Internet gateway. Sending ARP packets without

requests is allowed by the ARP specification [17], and these

unrequested ARP packets are known as “ARP Announcements”

or informally as “Gratuitous ARPs”. These announcements

are sent every 1.5 seconds, in our implementation, as well as

whenever other ARP packets are detected on the network. This

ensures the program misses little or no traffic from the device

under test.

After being captured for analysis, the traffic is forwarded to

its intended destination using the built-in Linux IP Forwarding

feature, the same way Linux-based routers operate. This is

possible as the operating system running our program does not

receive the forged ARP packets, and thus uses the unaltered

IP address to Ethernet address pairings.

In addition to the ARP spoofing mode of capturing traffic

to analyze, the tool can also be run on saved packet captures

produced by other tools, such as Wireshark or Ettercap.

B. Traffic Analysis

We postulate HTTP traffic is the most likely to be used to

communicate private information to a hostile server, due to its

56 Int'l Conf. Software Eng. Research and Practice | SERP'18 |

ISBN: 1-60132-489-8, CSREA Press ©

Malware Name Contact Exfiltration (Manually Detected) Contact Exfiltration (Automatically Detected)
Beita No1 No1

DougaLeaker No1 No1

FakeDaum Yes Yes

Godwon No1 No1

Godwon2 No1 No1

Loozfon No1 No1

Scipiex No1 No1

Simhosy No1 No1

TABLE I
MALWARE TESTED

Application Name Contact Exfiltration (Manually Detected) Contact Exfiltration (Automatically Detected)
Popular Music Funny Ringtone No No

Sexy Girlfriend Fake Call No No
Uber No No

Facebook No No
TABLE II

APPLICATIONS TESTED

\+?\d?([\s-.\/]?)((\(\d{3}\)?)|(\d{3}))([\s-.
\/]?)(\d{3})([\s-.\/]?)(\d{4})
Fig. 1: A Regular Expression for Finding Telephone Numbers

ease of use in mobile applications and servers. Thus, we focus

on the analysis of HTTP traffic.

Collected traffic is divided into “flows” based on source and

destination IP address, as well as source and destination TCP

port numbers. This allows us to reassemble HTTP transactions,

which are then searched based on patterns likely to occur when

transmitting private data. For example, a regular expression

such as the one in Figure 1 can recognize telephone numbers.

If a telephone number is detected in outgoing traffic, then the

telephone number can be extracted, marked as suspicious data,

and presented to the user for inspection. Email addresses can

be similarly extracted and reported.

Additional pieces of data detected include timestamps in

several human-readable formats (such as those specified in

ISO8601 [10]), which are suspicious when in proximity to

telephone numbers or email addresses, as this may indicate

transmission of text messages or emails. GPS coordinates

are also recognized through similar means, and are likely to

represent location information.

The marked transmissions can then be presented to the

user for closer examination, along with the destination of the

transmission. This is done through printing the information

to the screen, as seen in Figure 2, as well as exporting the

packets in the flow to a standard packet capture (“pcap”) file,

for analysis in common packet analysis tools such as Wireshark.

This allows the user to determine if private information has

been leaked, and if so, which information it was, as well as

where it was going.

1As noted in the text, this malware was unable to send private data because
the server it attempts to send to has been taken offline.

Suspicious data sent to 103.30.7.178: +685-555-1234

Suspicious data sent to 103.30.7.178: +555-555-3348

Suspicious data sent to 103.30.7.178: +723-555-2424

Fig. 2: Sample Output

IV. EVALUATION

We show that inspection of network traffic is an effective

means of detecting personal data exfiltration by malicious

mobile applications and notifying the user of what information

was stolen and where it was sent.

Evaluation was performed by installing and running known-

malicious mobile applications collected from Contagio Mo-

bile [16], a repository of Android and iOS malware and running

these applications, while connected to a private, password-

protected wireless network, which the network analysis tool

was also running on. Several well-reviewed applications are

run as well, in order to seek false positives. Futher, multiple

lesser-known applications from the Google Play Store were

installed and run to attempt to find data exfiltration in live

applications. Finally, some traffic constructed to show signs of

data exfiltration (using HTTP POST to send a list of phone

numbers and email addresses) and traffic recorded from filling

out a web form were analyzed. All traffic analyzed was saved,

unmodified, for manual inspection in order to confirm results.

A. Evaluation Environment and Setup

Running on a private wireless network with no other devices

connected ensures that there is no accidental violation of privacy

by collecting the traffic of individuals not part of the experiment

- all traffic collected is explicitly either sent from or to ether

the device running the application under test, or the device

running the network analysis tool, both of which are owned

by the author who has, of course, given his full consent.

Additionally, using a private network with only the network

analysis tool and the device under test connected minimizes

the threat of network traffic not associated with the device

Int'l Conf. Software Eng. Research and Practice | SERP'18 | 57

ISBN: 1-60132-489-8, CSREA Press ©

under test producing false positives or otherwise interfering

with results.

The device used to test the various applications is a Samsung

Galaxy Nexus running Android 4.3. An Android device was

selected for the test because Android devices are commonly

used, contain a significant amount of sensitive data, and

often run third-party applications. However, as noted in the

introduction, the results should hold across all platforms.

The Android device was prepared for testing by entering a

number of false contact list entries, text messages, and emails

that are easily recognizable so as to be . The device was run

without a connection to a mobile network in order to avoid text

messages or calls being send to “premium” numbers which

charge money, a common tactic in mobile malware. This also

forces all network traffic over the local WiFi network, which

allows the capture of all network traffic.

B. Traffic Capture and Analysis

Each application, malicious and not, were installed, tested,

and uninstalled before installing the next application in order

to prevent previously installed applications from tainting the

result of each application. Each malicious application is opened

and used for a short period for its normal use (which varies

by application) while traffic is captured.

Traffic capture for each application is done twice, once using

the tool we present and once using an application available

from the Google Play Store, “Packet Capture” [20], which uses

the “Proxy Server” approach described above, with the proxy

server running locally on the Android device in question. This

application uses Android’s built-in VPN facility, and ensures

that all traffic will be compared.

Finally, we constructed some network traffic to simulate

entering an application sending private data over the network

with a simple HTTP POST, as well as submitting private data

into a web form.

C. Results

The traffic captured from each application is inspected by

hand, using the open-source tool Wireshark [3] to determine

if there is any data being exfiltrated. This is compared to the

results produced by our tool, which prints any suspicious data

to the screen.

Several malicious applications known to exfiltrate contact list

information acquired from Contagio were installed sequentially

on the device under test, being sure to thoroughly remove each

application before installing the next.

However, the majority of the known-malicious applications

were unable to actually exfiltrate contact information, as the

remote server they attempt to connect to has been taken offline.

Only one known-malicious application, FakeDaum, was able

to connect to a remote server and send contact information.

This data exfiltration was detected and reported as intended,

and the exact output of the program can be seen in Figure2.

The phone numbers shown in that figure are from contact list

entries on the Android device running the malware. The results

of running this malware can be seen in Table I.

Additionally, several applications from the Google Play Store

were tested. Both well-reviewed applications and applications

with few reviews and permissions that would allow the

exfiltration of contact information were tested. However, none

of the applications tested attempted to exfiltrate any contact

information that was visible through either manual inspection

or through automatic detection. The results of the analysis of

the traffic from these applications can be seen in Table II.

Our network analysis tool correctly identified all of the

“artificial” cases described above. The first case of constructed

traffic shows that detection is not unique to the “FakeDaum”

application, and the latter case of a web form demonstrates a

known false positive.

D. Discussion of Results

Our tool correctly identified all traffic which was either

constructed to contain the transmission of sensitive private data

or contained the transmission of sensitive data which could be

identified manually. This shows the effectiveness of detecting

exfiltration of private data through interception and analysis of

network traffic, with a minimum of false positives.

Despite the issues with the known-malicious applications

being unable to connect to their associated remote servers, we

can still ascertain some useful information. From the connection

requests, all of the above applications were attempting to

connect to TCP port 80, which indicates that they are using

unencrypted HTTP connections, rather than encrypted HTTPS

connections which would likely use TCP port 443. This implies

that analysis of traffic to that server, if it had been present,

would have revealed any sensitive data being transmitted, given

the success with constructed data transmission, as well as with

the traffic from FakeDaum.

V. RELATED WORK

Existing systems for data exfiltration detection tends to focus

on detecting transmission of a subset of a known corpus of

documents [14]. This most useful in corporate or governmental

environments, where there exist many sensitive documents,

such as confidential business plans or classified information.

A typical end user may have some such documents, such as

past tax returns, but is also concerned about data which is

typically much more easily accessible by a malicious mobile

application, such as contact information. Such information does

not fit the mold required for existing data exfiltration detection

techniques, but is likely to fit more general signatures. For

example, most telephone numbers will be seven, ten, or eleven

digits depending on the inclusion of area and country code. Our

approach, using these general signatures, allows for increased

flexibility over traditional data exfiltration detection techniques.

Additionally, existing systems for detecting data exfiltration

assume a highly competent adversary [21], which effectively

utilizes encryption and/or data obfuscation techniques to hide

data theft and avoid detection. This is appropriate for systems

used to protect high-value information such as government

secrets, but given that malicious mobile applications are stealing

relatively low-value data and thus are likely to aim to acquire

58 Int'l Conf. Software Eng. Research and Practice | SERP'18 |

ISBN: 1-60132-489-8, CSREA Press ©

as much as possible with the least effort, in conjunction

with the low rate of cryptography use (and especially secure

cryptography use) in mobile applications overall [6], these

assumptions are unlikely to be valid for this threat model. By

designing for assumptions appropriate to home users, we can

vastly reduce the amount of processing power required as well

as increase the accuracy of exfiltration detection.

There has been some very limited research that is very

similar to the proposed solution - AntMonitor [12] in particular

is very similar. AntMonitor uses a VPN-based method of traffic

collection, which has the advantage of working whether on

wireless Internet or on cellular networks. However, the prevents

it from working with Internet of Things devices. Additionally,

it relies on information gathered from an application running

on the device under test to determine what strings to look for

- our system monitors traffic based on patterns, and thus is

independent from the device under test.

Similar to AntMonitor, Meddle [18] also uses a proxy/VPN

approach to traffic capture, and searches for some of the same

information that our analysis tool does, that is, PII. However,

our analyzer notifies the user in real time of transmission of

sensitive information, and as discussed, our tool’s use of ARP

poisoning rather than a proxy-based approach allows usage

with a wider range of devices.

The open-source tool “ngrep” [19] (network grep) allows

the usage of regular expressions on network traffic, and has

existed for some time. This is similar to the technique our tool

uses to detect suspicious transmissions, but we also include

a component to intercept network traffic through the use of

ARP poisoning.

VI. THREATS TO VALIDITY

The primary threat to this approach is the use of encryption

by malicious devices to obfuscate the data they are exfiltrating.

The most obvious one is the use of Transport Layer Security

(TLS) or Socket Security Layer (SSL), collectively known

informally as “HTTPS”. However, the use of these technologies

is not ideal for the developer of a malicious application - HTTP

clients typically check the public keys of SSL/TLS against

centralized repositories known as Certificate Authorities to

ensure the public key transmitted by a server is one known

to be associated with the owner of the server. If it is not,

this signals a likely man-in-the-middle attack, and most HTTP

clients will refuse to connect. Public keys can be “revoked”

by Certificate Authorities if the key is known to no longer be

trustworthy - for example, if the associated private key was

stolen. A certificate authority could revoke the public key of a

malicious server owner, who could then no longer receive data

from their malicious applications, as the HTTP client would

refuse to connect.

The other case is the use of encryption other than HTTPS,

such as AES, before the data is transmitted. This case is

more plausible, but still unlikely at this time. Even among

non-malicious applications, the rate of encryption use among

Android applications is very low, and even those applications

which do use it rarely use it correctly [6].

We have collected network traffic through multiple applica-

tions and capture methods to ensure that our method of traffic

collection did not negatively influence the results. Additionally,

by manually inspecting all captured traffic, we have attempted

to verify that our tool correctly identified all cases of data

exfiltration.

This method also has inevitable false positives: Some

innocuous data will undoubtedly look like a telephone numbers

or email addresses or locations. Additionally, the user filling

out a web form is indistinguishable, from a network traffic

perspective, from a malicious application sending sensitive data

to a remote server. In order to alleviate these false positives,

more work is needed to add “whitelists” of known-good servers,

as discussed in the Future Work section.

VII. FUTURE WORK

In the future, we will extend our tool to recognize more

types of personal data, including location data, calendar event

information, and unique identifiers, such as IMEI number.

Further, we will add a way for the user to import lists of

information likely to stolen, such as contact lists, in order to

reduce false positives.

Additionally, the traffic could be stopped to a remote server

if it is being sent suspicious data until the user has had a

chance to review the data and server in question. Approved

servers could be saved in order to reduce future inconvenience

to the user.

VIII. CONCLUSION

We have presented a method for using deep packet inspection

to detect private data exfiltration in a platform-independent,

general way which does not require the user to input personal

data into the tool, extending beyond traditional data exfiltration

detection approaches. We have demonstrated the effectiveness

of this tool in detecting data exfiltration by malicious mobile

applications, which can be put to use by end users to aid in

detecting data exfiltration early, across multiple platforms.

REFERENCES

[1] C. L. Abad and R. I. Bonilla. An analysis on the schemes for detecting
and preventing arp cache poisoning attacks. In Distributed Computing
Systems Workshops, 2007. ICDCSW’07. 27th International Conference
on, pages 60–60. IEEE, 2007.

[2] G. Berry and R. Sethi. From regular expressions to deterministic automata.
Theoretical computer science, 48:117–126, 1986.

[3] G. Combs. Wireshark. https://www.wireshark.org/, 1998-2016.
[4] T. W. D. Company. Circle with disney - internet. reimagined. parental

controls and filtering. https://meetcircle.com/, 2015-2016.
[5] P. Developers. Privoxy. http://www.privoxy.org/, 2001-2016.
[6] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel. An empirical

study of cryptographic misuse in android applications. In Proceedings
of the 2013 ACM SIGSAC conference on Computer & communications
security, pages 73–84. ACM, 2013.

[7] M. Egele, C. Kruegel, E. Kirda, and G. Vigna. Pios: Detecting privacy
leaks in ios applications. In NDSS, 2011.

[8] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox,
J. Jung, P. McDaniel, and A. N. Sheth. Taintdroid: an information-flow
tracking system for realtime privacy monitoring on smartphones. ACM
Transactions on Computer Systems (TOCS), 32(2):5, 2014.

Int'l Conf. Software Eng. Research and Practice | SERP'18 | 59

ISBN: 1-60132-489-8, CSREA Press ©

[9] D. Ferreira, V. Kostakos, A. R. Beresford, J. Lindqvist, and A. K. Dey.
Securacy: an empirical investigation of android applications’ network
usage, privacy and security. In Proceedings of the 8th ACM Conference
on Security & Privacy in Wireless and Mobile Networks, page 11. ACM,
2015.

[10] ISO. 8601: Data elements and interchange formats – information
interchange – representation of dates and times. Technical report.

[11] J. Kim, Y. Yoon, K. Yi, J. Shin, and S. Center. Scandal: Static analyzer
for detecting privacy leaks in android applications. MoST, 12, 2012.

[12] A. Le, J. Varmarken, S. Langhoff, A. Shuba, M. Gjoka, and
A. Markopoulou. Antmonitor: A system for monitoring from mobile
devices. In Proceedings of the 2015 ACM SIGCOMM Workshop on
Crowdsourcing and Crowdsharing of Big (Internet) Data, pages 15–20.
ACM, 2015.

[13] B. LIU, J. Li, Y. LIANG, Z. Huang, X. Yang, et al. Smart pan provided
with single temperature-sensing probe, and method for frying food, Oct. 8
2015. WO Patent App. PCT/CN2014/080,738.

[14] Y. Liu, C. Corbett, K. Chiang, R. Archibald, B. Mukherjee, and D. Ghosal.
Sidd: A framework for detecting sensitive data exfiltration by an insider
attack. In System Sciences, 2009. HICSS’09. 42nd Hawaii International
Conference on, pages 1–10. IEEE, 2009.

[15] A. Ornaghi, M. Valleri, E. Escobar, and E. Milam. Ettercap: A man-in-
the-middle attack suite. https://ettercap.github.io/ettercap/, 2004-2016.

[16] M. Parkour. Contagio mobile mini malware dump, 2011-2016.
[17] D. C. Plummer. Ethernet address resolution protocol: Or converting

network protocol addresses to 48.bit ethernet address for transmission
on ethernet hardware. STD 37, RFC Editor, November 1982. http:
//www.rfc-editor.org/rfc/rfc826.txt.

[18] A. Rao, A. M. Kakhki, A. Razaghpanah, A. Li, D. Choffnes, A. Legout,
A. Mislove, and P. Gill. Meddle: Enabling transparency and control for
mobile internet traffic.

[19] J. Ritter. ngrep: network grep, 2006.
[20] G. Shirts. Packet capture, 2015-2016.
[21] G. J. Silowash, T. Lewellen, D. L. Costa, and T. B. Lewellen. Detecting

and preventing data exfiltration through encrypted web sessions via traffic
inspection. 2013.

[22] S. Skafdrup, T. H. Sorensen, and H. Guld. Wireless thermostat with dial
and display, May 4 2010. US Patent D614,976.

60 Int'l Conf. Software Eng. Research and Practice | SERP'18 |

ISBN: 1-60132-489-8, CSREA Press ©

