
User Interaction Metrics for Hybrid Mobile Applications

Thomas G. Hastings
College of Engineering and Applied Science

University of Colorado at Colorado Springs

Colorado Springs, Colorado 80918

Email: thasting@uccs.edu

Kristen R. Walcott
College of Engineering and Applied Science

University of Colorado at Colorado Springs

Colorado Springs, Colorado 80918

Email: kwalcott@uccs.edu

Abstract—Understanding user behavior and interactions in
mobile applications is critical for developers to understand where
to spend limited resources when adding, updating, and testing
features but current tools do not do a good job of providing
actionable insights. User behavior insights can provide value to
the developer when it’s time to code and implement new features.
Google Analytics and New Relic provide user insights but they fall
short when it comes to identifying user interactions and behaviors
as it pertains to individual features of mobile applications We
have developed a framework with middleware that provides user
interaction insights, using time-series analysis, to hybrid mobile
applications along with an empirical study to showcase the value
of the framework.

Index Terms—Mobile Application Testing, Software Engineer-
ing, Time Series Analysis, Metrics

I. INTRODUCTION

Mobile software engineers have a finite amount of time and

resources while working through the software development

life cycle. How does an engineer decide where she should

budget more time and resources to get the most return for

her investment? Instrumentation within a hybrid mobile ap-

plication can provide metrics based on user interaction. These

metrics can be turned into actionable insights for the developer

to better understand how users use the application. Based on

these insights and understanding the developer can then focus

on the popular aspects of the application and increase her

return on investment.

Hybrid mobile applications are applications which are writ-

ten in web languages such as JavaScript, HTML 5, and CSS.

Unlike native applications which are written in a programming

language specific to the mobile platform. Hybrid mobile

applications are written once and distributed across multiple

platforms. We talk more about hybrid mobile applications in

the background section of the paper.

According to a survey by Java World, software engineers

spend more than half of their time on tasks unrelated to

software development [8]. The engineers are spending time

on necessary tasks related to administration, waiting for code

to build, and tests to execute. This is an interesting statistic

and one that highlights how necessary effective resource

management is. The survey also says that software engineers

spend about 10% of their time waiting for tests to complete.

A developer who has insight and understands her users will

be able to target key functionality. This targeted approach will

allow the developer to maximize her time on areas of the

application that are used the most. In addition, this approach

will also enable to developer to write meaningful tests in areas

of code that are most used.

There really is not a good way in hybrid mobile application

development to collect user interaction data at the function

level. There are plenty of tools that are decent at collecting

hardware statistics from mobile devices. We talk about a few

of these tools in the related works section of the paper. There

are also a couple of tools that offer some insight into user

interaction but none that offer the fidelity of information that

our framework provides. These tools are also discussed in the

related work section of the paper.

It is hard to tell why there are not good ways of collecting

hybrid mobile application metrics. First, we needed to see

if developers cared about user metrics and identifying user

behaviors. We also wanted to know if developers would like to

be able to collect information on function usage and frequency.

In order to solve this issue we conducted a developer survey.

Based on this survey and the amount of interest we gathered

from developer we decided it would be worthwhile to find a

novel way to collect hybrid mobile application metrics.

In order to evaluate our research we came up with 3 criteria

to evaluate against:

1) Do developers want metrics that can produce insights

into user behavior and feature usage?

2) Does the application we created identify user behaviors?

3) Does the application identify the frequency of functions

that are used?

Through this research we have contributed:

• An open source software project that allows researchers

to stand up a web service where developers can push

data, using a RESTful web service, to persistent storage

utilizing relational databases or time series databases.

• A novel Node framework that collects user interaction

metrics and pushes the data to a web service for insight

analysis.

• A developer study where we surveyed a number of

developers to gauge the usefulness of collecting metrics

using time-series analysis.

• Discussion of insights that could be gathered using our

tool and approach

II. BACKGROUND

Our research and framework are built around two emerging

platforms. Throughout this paper we discuss mobile hybrid

applications and time series analysis.

30 Int'l Conf. Software Eng. Research and Practice | SERP'18 |

ISBN: 1-60132-489-8, CSREA Press ©

A. Mobile Hybrid Applications

Hybrid mobile applications have taken the market by storm.

A few of the benefits of using hybrid mobile applications is

the portability, cheaper origination costs, and faster speeds to

market. Companies such as Facebook, Adobe, and Apache

have released frameworks and platforms to foster the develop-

ment of hybrid mobile applications. Companies such as Tesla,

Facebook, Walmart, Instagram, Skype, and Airbnb to name a

few are using JavaScript based applications [4].

B. Time Series Analysis

Time series analysis is not a new idea in the world of

analytics. Analysts on Wall Street have been using time-series

analysis for decades to measure stock values. Time series

analysis has begun to become more prominent in the world

of software engineering because more and more tools are

taking advantage of it. There are now databases created just

to manage time series data. James Blackburn does a good job

of explaining time series analysis, time series analysis is the

collection of data at specific intervals over a period of time,

with the purpose of identifying trends, cycles, and variances to

aid in the forecasting of a future event. Data is any observed

outcome that is measurable. Unlike in statistical sampling,

in time series analysis, data must be measured over time at

consistent intervals to identify patterns that form trends, cycles,

and seasonal variances. Measurements at random intervals lose

the ability to predict future events”[2].

We use time series analysis in our research to identify user

behavior trends as we collect user interaction metrics. The

time series allow us to identify usage trends of functionality

within the mobile application.

III. NEEDS ASSESSMENT

We could see the usefulness of collecting metrics inside of

hybrid mobile applications. We could also see the benefits of

understanding user behavior inside of an application. What

we did not know was whether other developers could see the

value in such things. We realized that we needed to gather

more information and get input from other sources. We put

together 20 survey questions and asked developers at a local

company what they thought. Based on the survey responses,

which we talk about more in the developer survey section, we

realized that we were not alone. Other developers understood

the benefits of collecting such metrics. We set out then to

create an application which would help developers collect

metrics and identify user trends and behaviors, which we talk

about in the the application section.

IV. THE APPLICATION

Based on the amount of interest we received from our

developer survey, we set out to create an application which

would allow us to collect metrics whioch provide insights into

user behavior and function usage. Here is a high level overview

of how the system works.

There are three core components to the tool that we devel-

oped. The first component is the Node middleware module.

Fig. 1. Architecture Example

The second component is the web service which provides an

API for the middleware to send data to. The last component is

the metric analytics and visualization. This component offers

developers a graphical user interface to interact with the data

that the middleware sent to the web service. We used an opern-

source tool called Grafana to provide the time-series analysis

dashboard for the UI.

Figure 1 shows an example of the architecture. The mobile

device running the Node middleware module sends metrics to

the API. The API then takes the information, parses it, and

sends it to the database. The developer then connects to the

Grafana front-end and is able to pull the metrics from the

database.

Below are the steps that a typical developer would take to

begin tracking user interactions within his mobile application:

1) The developer must setup the Grafana frontend and the

MySQL backend. The developer will create a table in

the database called metrics.

2) The developer then must configure the web service

which provides the RESTful API. He will need to

provide database connection information to the web

service.

3) The developer will then include the Node framework

module in his mobile application. The module will need

to be configured to point to the appropriate endpoint for

the RESTful API. The developer will also need to set

the increment for which the module pushes metrics to

the web service.

4) Developer then places the collection function inside of

the application’s functions for which he wants to collect

user interaction data.

5) The Node module function sends an API call when a

user interacts with a function which is being tracked.

6) The Developer logs in to web service, selects his appli-

cation, and can query the database to see what functions

are used the most

7) Lastly, the developer takes data back to development to

target testing efforts on popular features and functions

Int'l Conf. Software Eng. Research and Practice | SERP'18 | 31

ISBN: 1-60132-489-8, CSREA Press ©

Fig. 2. Use case diagram of a user view his own timeline.

A. Middleware

The middleware is written in Node.js. A developer is able

to include it in their project using the Node Package Manager.

Once the middleware is installed the developer can include it

anywhere in his project. The middleware needs minimal setup

other than the API endpoint for where it needs to push metrics.

1 import React from ’react’;
2 import Display from ’./Display’;
3 import collect from ’hybrid-metrics’;
4 import ’./App.css’;
5
6 class App extends React.Component {
7 view_timeline() {
8 collect(’view_timeline’)
9 timeline = Display.Timeline(user_id)

10 return {
11 timeline
12 }
13 }
14 }
15 export default App;

Listing 1. Hybrid-Metrics.js Example

Figure 2 shows a use case diagram of a user using an ap-

plication and changing the background image. The new image

information and the save new background image information

is sent to the web service.

Listing 1 shows an example of what the middleware looks

like when implemented in an application. In this example

the middleware is used to collect user interaction information

when the user views his own timeline. The framework allows

the developer to identify a class, method, or function. The

framework then collects the information and stores it in an

object. The middleware runs on a timed cycle and at the end

of the cycle period the metrics are transmitted to the API

endpoint. In addition to the name of the function that was hit

the number of times the function was used is also collected.

B. Web Service

The web service is a Nodejs application built using ex-

press.js. The web service provides an API that the middleware

Nodejs module communicates with. We chose to use Node.js

because it provides a lightweight web server which provides

the required functionality. In In addition to providing the

lightweight web server it is also written in JavaScript so it

made life easier when transitioning between development for

the web service and the Node module.

1) Application Programming Interface: The API which the

web service provides utilizes RESTful endpoints. When the

middleware makes a POST call to the web service the web

services parses the request. There are a couple of required

fields for the request to be valid. The first required field is

the name of the function that was called. The second is the

number of times the function was called since the last time

metrics were pushed to the API.

2) Database Backend: To handle the developer and appli-

cation management aspects of the project we chose to use a

the MySQL relational database. The MySQL database stores

all of the information about developers and applications. It was

an easy choice to pick a relational database for this purpose

because the data is relational. We picked MySQL because it

is well tested and we were familiar with it.

Additionally, we also use MySQL as the database backend

for metric collection. MySQL provides timestamps for each

database entry. This timestamp allows us to compare values

over a set period of time. Other databases provide this func-

tionality as well but because we were already using it for the

application management we decided to use it for this purpose

as well.

C. Metric Analytics and Visualization

The developer is able to view all collected metrics through

a graphical user interface. The developer is able to query

the database for different analytics. We showcase the metric

analytics and visualization during the case study. Grafana

provides graphs and time-series analysis UI elements such as

bar charts, line charts, dots, and heat maps. Grafana helps to

make the information that comes from the middleware more

understandable and actionable for the developer. Grafana is

also open source and integrates with a number of different

data providers and databases which makes it perfect for future

work.

V. DEVELOPER SURVEY

We surveyed 34 developers at local software engineering

companies. The majority of software engineers surveyed work

on Department of Defense contracts. We asked 20 questions

which focused on how the developers felt about collecting user

metrics, how important they felt understanding user behavior

was, and if they had concerns about privacy while collecting

metrics. Overall, the findings are conclusive. Developers care

about collecting metrics, they would prioritize maintenance

32 Int'l Conf. Software Eng. Research and Practice | SERP'18 |

ISBN: 1-60132-489-8, CSREA Press ©

Fig. 3. Metrics Shows New Feature Adaptation

projects based on function usage, and they arent overly con-

cerned with privacy issues while collecting the metrics. The

questions are included in the first appendix.

A. Survey Bias

The survey pool may have bias views towards the survey and

the questions. The developers surveyed all have backgrounds

as Department of Defense contractors. Most of the developers

who responded all work at one company.

B. Findings

Out of the 34 developers surveyed we found the following:

• 61.8 percent of developers think user metric collection is

important

• 76.5 percent believe it is important to know how often

features of an application are used

• 88 percent of developers want to maximize time when

maintaining existing applications

• 83.2 percent want to know how users use an application

• 79.4 percent would prioritize work based on user behav-

ior.

• 85.3 percent of developers are not concerned about user

privacy while collecting usage metrics

This survey answers our first question. 83.2 percent of de-

velopers surveyed would find user behavior metrics useful.

79.4 percent would prioritize work based on the user behavior

metrics.

VI. CASE STUDY

In order to showcase the benefits of the framework and

middleware we conducted a simulated case study using a

custom python script which sent simulated metrics at set

intervals to the API service.

A. Study Operations

1 user_feature_weights = {
2 "add-image": 1,
3 "add-post": 1,
4 "view-timeline": 24,
5 "view-friends-timeline": 24,
6 }
7 for feature, weight in user_feature_weights.items():
8 for x in xrange(randint(0, weight)):
9 user_features.append(feature)

Listing 2. sim.py Example

The study took a simple mobile application which was mod-

eled after a social media application with four core functions.

The functions are view-timeline, view-friends-timeline, add-

post, and add-image. After collecting metrics for a period of

time we introduce a new creator function called add-video.

Based on the data gathered from the empirical study we are

able to conclude that the framework and middleware provide

insights that help developers maximize their resources and

monitor user adaptation for new features.

The features were broken out into two categories, creator

and consumer. Creators make up a small percentage, around

3 percent, of users compared to the consumers. Based on this

information our simulation weighted the consumer functions

over the creator functions with a ratio of 1 to 25.

We made 200 simulated users and loop over the users every

second. These users are then randomly assigned a function

out of the user-features array which we populated based

on the weights of each function. After they are assigned a

random feature they are then assigned a random number of

usages ranging from 0 to 50. We provide a usage number

because the middleware collects metrics and usage numbers

for five minutes before pushing the metrics to the API. As the

simulation loops the time to post to the API is randomized

as well. We randomize the time to post to better model user

behavior. We did not want all of the API requests to come in

at precisely one second intervals.

B. Results and Analysis

We were able to collect metrics from the case study and

identify user trends. We were able to see user behavior metrics

in the form of function usage. The consumer functions, view

timeline and view friends timeline were the most popular

features of our simulated application. The creator functions

were used but not as heavily.

Figure 3 shows an example of the metrics UI where we

highlight the point which we add a new feature to the appli-

cation. The new feature, add-video, had high user adoption

and we can see that from the metrics collected. This answers

the second evaluation question, we are able to identify user

behavior from the application.

Figure 4 shows an example of the Grafana UI where we are

able to tell how often a function is used over a period of time.

Each dot on the figure represents a user’s actions over a period

Int'l Conf. Software Eng. Research and Practice | SERP'18 | 33

ISBN: 1-60132-489-8, CSREA Press ©

Fig. 4. Frequency of Usage

of time. For Looking at this example we can see the view-

friends-timeline and view-timeline are used more frequently

than add-image. This makes sense because consumer functions

are used more often than creator functions. This figure answers

the fourth evaluation question, we are able to identify function

frequency use.

The case study helped us answer two of the evaluation

questions. It showed us that the application is able to identify

user behaviors. It also showed that we are able to identify

frequency of function usage.

VII. DISCUSSION

The application provided some interesting insights. The first

insight was that we were able to identify user adaptation of a

new feature. Figure 3 shows a very clear delineation of when

a new feature came online. We can also see that it was a

popular feature based on the amount of usage it received.

This information could be very valuable to a developer to

understand the scope of feature adaptation. We were also able

to identify the frequency of function usage across a period

of time. This information could potentially help a developer

know where to focus testing, development, forecast resources,

and identify possible bugs.

The responses from the survey were interesting. We have

attached the survey results for all of the questions to this paper.

The most surprising response for us was that developers are

not concerned about user privacy while collecting metrics. In

todays age of information sensitivity and privacy concerns we

would have thought more developers would be concerned. We

were happy that the survey data reinforced what we believed.

Developer want to know how their applications are being used

and that they would prioritize work based on such metrics.

VIII. THREATS TO VALIDITY

The first threat to the validity of the case study is that it was

a simulation. We made a number of assumptions throughout

the simulation as well. The first assumption we made was

that creator functions would make up about 3 percent of the

functions called. This assumption was made based on research

that was taken from social media web site statistics. We

could not find good statistical information regarding mobile

application usage and the difference between creators and

consumers.

The second assumption we made was that mobile devices

would always have internet connectivity and that content

would be uploaded every minute. We made this assumption to

keep our simulation simple. This assumption did not impact

any of the functionality of the middleware but may have

skewed the way the metrics present in the time-series analysis

graphs.

The third assumption we made was that the add-video

function would be popular. We made this assumption for the

sake of the simulation to show what a popular feature would

look like had one been added to an existing application that

was already monitored using our middleware.

IX. RELATED WORK

Wu et. all [5], wrote about a testing service for android

using crowd sourcing. They used a web client to get mobile

applications in front of users. The primary focus of the crowd-

source testing was user interaction with the UI using metrics

from clicks, long clicks, typing, scrolling, and pinching. Wu

et all even have a replay feature to see how the user interacted

with the UI.

Ferreira et all [3], have developed a framework title

AWARE. Their research focuses on mobile context for cap-

turing, inferring, and generating context on mobile devices.

They accomplish this by collecting details of sensor data and

uploading the data to a cloud. Their research is similar in

that they have a client server framework and are collecting

user metrics and pushing the data to a server. Their research

is focused on understanding what a user is doing based on

sensor data and then use that information to execute some

intent in the application.

There are also tools that exist that are excellent at collecting

hardware metrics from mobile applications. One such tool

is app metrics from IBM which provides insights into the

operating environment, CPU utilization, memory usage, and

database queries [6].

New Relic is an application performance monitoring and

management tool. New Relic provides a suite of tools to help

developers monitor and improve their applications. The suite

offers tools that measure response times, throughput, and error

rates. In addition New Relic can be used to monitor thread

profiles, transaction metrics, and key business transactions.

New Relic is primary used to monitor web applications but

it can be used to monitor applications built using PhoneGap

which utilize HTML 5 web views for user graphical interfaces.

The research presented in this paper and the user interaction

metrics collected from the framework are different from New

Relic because the metrics collected from the mobile applica-

tions are at the code level. We can track and understand user

interactions at the function level. New Relic sits on top of an

existing application but it does not tie in to the code the way

our framework does. Since our framework integrates at such

34 Int'l Conf. Software Eng. Research and Practice | SERP'18 |

ISBN: 1-60132-489-8, CSREA Press ©

a low level we are able to collect metrics that are specific to

user interactions [1].

Google Analytics is another application that provides in-

sights to performance and application management. Google

Analytics is a powerful analytics platform that developers

use to gather metrics such as the number of users using an

application, what actions the users are taking, measure in-

app payments, and visualize user navigation path [7]. Google

Analytics, like New Relic, was first developed for use in web

sites and web applications. Google now offers Analytics for

use with mobile applications. Google Analytics is similar to

our framework in that you can glean information about user

activity from the platform. Our framework is different from

Google Analytics because we are able to gather the data that

is passed from one function to another. This allows us to

look directly at the userś interaction with the application to

understand better how the application is utilized.

X. CONCLUSION

It is important for developers to understand how their

applications are being used so that they can prioritize devel-

opment, testing, and maintenance of new features. We have

presented an approach to collect user interaction metrics from

hybrid mobile applications which give insights that will help

developer understand user interactions. Through this research

have contributed an opensource middleware, a RESTful web

API service, a developer survey, and discussion on our ap-

proach. Overall, we were able to answer all of our evaluation

questions. We were also able to, through the survey, show that

such a tool which provides these metrics would be useful to

developers.

XI. FUTURE WORK

The framework along with the time series analysis can be

used to measure and identify usage trends in any web-based

application. Some future work examples that we would like to

explore would be identifying bugs based on user interactions.

We could do this several ways and possibly build off of

existing research which leverages time series analysis such as

Coker et all [9] research where they developed a method using

time series analysis to prioritize bugs. Although our research

does not touch on prioritization or on identifying bugs our

framework could be used to identify usage trends that may

highlight bugs within the application.

Another area would be to take measurements of the impact

of the middleware on real world software examples. It would

be interesting to measure the code growth and the resource

utilization of an exiting application with before and after

metrics.

An additional area of opportunity would be to use the API

service with standard mobile applications. The middleware

would be reasonably easy to develop for native Android or

iOS applications.

The web service needs to be hardened against malicious

users. It also needs to support multiple developers in separate

Grafana UIs. One avenue we could go to improve both issues is

to implement a token-based approach for the web UI endpoint.

If the UI endpoint receives metrics, then it will first look for

a developer token. If the token is valid then it will tag the

metrics with the developers ID and post the information to the

database. This would improve the system against malicious

users who may just want to provide false information by

keeping out the false information. This would also allow the

system to support multiple users. We could query first by

developer ID and then by features or function names.

The case study used a constant simulation which is incon-

sistent with normal user behaviors. In future work we would

like to find a better way to model user behavior. There are

a couple of different ways to do this. First, we would like

deploy a simple application that users are able to interact with.

This approach will give us the most realistic data set. Second,

we could use Poisson Distribution to model user behavior if

we aren’t able to get a wide enough usage from our mobile

application.

REFERENCES

[1] New Relic APM. n.d.. New Relic Application Performance Mon-
itoring Features and Tools. (n.d.). https://newrelic.com/application-
monitoring/features

[2] James Blackburn. n.d.. Time Series Analysis and Its Applica-
tions. (n.d.). http: //study.com/academy/lesson/time-series-analysis-its-
applications.html

[3] Vassilis Kostakos1 Denzil Ferreira1 and Anind K. Dey. 2015. AWARE:
mobile context instrumentation framework. Technology Report ARTI-
CLE (April 2015). https://doi.org/DOI10.3389/fict.2015.00006

[4] Facebook. n.d.. Showcase - React Native. (n.d.).
https://facebook.github.io/ react-native/showcase.html

[5] Wei Chen Jun We Hua Zhong Tao Huang Guoquan Wu,
Yuzhong Cao. 2017. AppCheck: A Crowdsourced Testing Service
for Android Applications. IEEE (November 2017), 253260.
https://doi.org/DOI10.1109/ICWS.2017.40

[6] Inc IBM. n.d.. Application Metrics for Node.js. (n.d.).
https://developer.ibm.com/ node/monitoring-post-mortem/application-
metrics-node-js/

[7] Google Inc. n.d.. Google Analytics for Mobile Apps. (n.d.).
https://developers. google.com/analytics/solutions/mobile

[8] Paul Krill. 2013. Software engineers spend lots of time not building
software. (2013). https://www.javaworld.com/article/2078758/core-java/
software-engineers-spend-lots-of-time-not-building-software.html

[9] Zack Coker ; Kostadin Damevski ; Claire Le Goues ; Nicholas A. Kraft
; David Shepherd ; Lori Pollock. 2017. Behavior Metrics for Priori-
tizing Investigations of Exceptions. IEEE (September 2017), 554563.
https://doi.org/10.1109/ICSME.2017. 62

Int'l Conf. Software Eng. Research and Practice | SERP'18 | 35

ISBN: 1-60132-489-8, CSREA Press ©

