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ABSTRACT 
Test suite evaluation is important when developing quality software.  Mutation testing, in particular, can 
be helpful in determining the ability of a test suite to find defects in code. Because of challenges incurred 
developing on complex embedded systems, test suite evaluation on these systems is very difficult and 
costly. 

We developed and implemented a tool called DynaMut to insert conditional mutations into the software 
under test for embedded applications.  We then demonstrate how the tool can be used to automate the 
collection of data using an existing proprietary embedded test suite in a runtime testing environment.  
Conditional mutation is used to reduce the time and effort needed to perform test quality evaluation 
in 48% to 67% less time than it would take to perform the testing with a more traditional mutate-compile-
test methodology.  We also analyze if testing time can be further reduced while maintaining quality by 
sampling the mutations tested.  
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1. INTRODUCTION 
When engineering a software solution, testing is essential. To ensure a test suite is effective at 
finding defects, it is important to evaluate the test suite with regard to quality. While code 
coverage metrics, such as statement or branch coverage, are useful in determining how to 
improve a test suite, mutation testing has been shown to be a better indicator of the ability of a 
test suite to find faults in code [17, 21]. Many tools have been created to automate test suite 
evaluation for unit tests (e.g. [1, 2, 3, 4]). Unfortunately, on embedded systems in industry, 
functional testing of the whole system is much more common than unit testing [11]. Thus, 
combined with uncommon build and runtime environments, the time overhead inherent to the 
embedded platform, and a lack of applicable tools, makes automated test suite evaluation 
challenging on embedded systems. 

Mutation testing is a fault-based technique that measures the fault-finding effectiveness of test 
suites on the basis of induced faults [13, 15]. Mutation testing evaluates the quality of test suites 
by seeding faults into the program under test. Each altered version containing a seeded fault is 
called a mutant. Mutants of the original program are obtained by applying mutation operators. 
For example, a conditional statement such as if (a < b) results in multiple mutants by replacing 
the relational operator < with valid alternatives such as <= or !=. A test suite kills a mutant if a 
test within the test suite fails.  After running the test suite on each mutant, a mutation score can 
be calculated; the mutation score is the ratio of killed mutants to generated mutants. Prior 
studies have used mutation adequacy to gauge the effectiveness of testing strategies [7, 8, 14, 
20]. 



Many tools have been developed to help support mutation testing. Some of these tools (e.g. 
Jester [1], MuJava [26]) focus on source code mutation. Yet, modifying source code can lead to 
many incompilable mutants and introduces a large re-compilation cost toward the creation of all 
mutants. Other tools focus on bytecode mutation (e.g. Javalanche [31], Jumble [6], and PITest 
[4]). Bytecode mutation is favorable because changes can be made on-the-fly without 
recompilation. It is also simpler to mutate. However, mutating bytecode generates mutants that 
could have never been introduced into the source code due to the use of syntactic sugar, and 
generated mutants cannot be mapped back to the source code, which hampers manual inspection 
of mutants. More advanced tools such as MAJOR [22, 20] take a compiler-integrated approach 
using abstract syntax trees to introduce mutations for easy and fast fault seeding using a domain 
specific language to configure the mutation process for JUnit tests [20]. These tools help more 
at the static and runtime levels. 

While tools like MAJOR and PITest have been shown to be effective, they are not practical for 
all applications in industry, and they do not relate to the application during runtime. Particularly 
in embedded systems, these tools currently have no analogue. Engineering software for 
embedded systems presents challenges the current tools have not yet over- come. Because most 
embedded systems have limited memory and processing power in comparison to traditional 
computers, interpreted languages such as Java are generally not used. Although mutation testing 
tools exist for C, like MiLu [18], they do not account for the penalties incurred by compilation 
for an embedded system. Tools like MAJOR and PITest mutate, build and run code all on the 
same machine, something that is not always possible on embedded systems. Performing all 
these tasks on one machine allows these tools to run quickly, but when developing on embedded 
systems, it may take minutes to recompile and deploy code before the test suite can be run. This 
increased time overhead makes the methods used by current tools inefficient and excessively 
time-consuming. 

We utilize conditional mutation testing to reduce the costs of evaluating an embedded system 
and its test suite. Instead of injecting one mutation, compiling, deploying, testing, and repeating, 
conditional mutation injects all the mutations into the code and selectively activates one at a 
time as executed. With this strategy, multiple mutations can be tested without restarting the 
software under test (SUT), saving a significant amount of time. We also show how an existing 
proprietary test suite can be automated for mutation analysis. Finally, we demonstrate a method 
of reducing the amount of mutations needed to get representative results. 

In this research, we develop a tool called DynaMut, which statically injects conditional 
mutations into C++ code. This tool replaces defined mutation operators with macros, and the 
macros contain conditional code to select mutants during runtime. DynaMut employs runtime-
based conditional mutation so that the software under test only needs to be compiled once, 
saving overheads incurred during compilation and deployment to an embedded system. In order 
to allow for greater time saving in mutation testing, this work also analyzes mutation sampling 
techniques. Simple, evenly-spaced sampling, random sampling, and dithered sampling, a novel 
form of sampling inspired by electronic test and measurement equipment, are applied to the 
runtime mutation data gathered. 

DynaMut was used to inject mutations into the embedded application, and specific tests from 
the larger proprietary test suite were chosen for the mutation analysis. The selected tests were 
automated and data was collected for the generated mutants. Our results show that conditional 
mutation allowed for time savings between 48% and 67% when compared with a standard 
mutate-compile-test methodology. Using the gathered mutation data, three sampling methods 
were then used to reduce the number of mutations with the goal of keeping the mutation score 
representative across analyses. The dithered sampling technique is shown to be more effective 



and efficient than either a random sampling or a simple sampling when decimating the data at 
ratios between one third and one sixth of the original set. 

In summary, the main contributions of this paper are: 

• Development of DynaMut, a static tool to insert runtime-based conditional mutations into 
C++ code  

• A description of how to alter an embedded application and test suite to perform runtime 
mutation testing analysis  

• An evaluation of the time overheads incurred by using conditional mutation rather than 
mutate-compile-deploy-based mutations 

• A comparison of three mutation sampling techniques for use in a conditional mutation 
environment 

2. MUTATIONS AND SAMPLING 

In this section, we discuss work related to mutation analysis and sampling techniques as they 
relate to our work. 

2.1. Mutation Analysis 
Mutation analysis is a method of test suite evaluation first implemented in 1980 [10]. To 
perform mutation analysis, faults are seeded into the System Under Test (SUT). For each fault 
or mutant, the test suite is run. If the test suite fails, it is said to have killed the mutant. If the test 
suite succeeds, it did not detect the mutant. A test suite is given a mutation score that is the 
percentage of mutants killed out of the total mutants seeded. A mutant analyzer seeds faults 
systematically in order to ensure that the faults are introduced in an unbiased manner. 

Many different types of code mutations have been proposed and tested. Unfortunately, using all 
variations, especially in a large SUT, can be prohibitively expensive due to the time it would 
take to test each mutation. Offutt et al. researched different mutation types in [25] and 
determined a subset of operators which are effective in mutation testing and do not lose 
significant data in comparison with larger sets of mutations. Based on the work by Offutt et al. 
[25], DynaMut focuses on implementing these same mutation operators. 

Just et al. [23] perform further research to reduce the mutations needed for Operator 
Replacement Binary (ORB) operators. Their work notes the importance of keeping a mutant’s 
impact on the code minimal. Trivial mutations, mutations that cause wrong output for all 
possible input values, should be avoided to reduce runtime of the analysis. Redundant mutations 
should also be avoided to reduce analysis time and also to prevent skew in the overall mutation 
score. The work by Just et al. [23] considers Conditional Operator Replacement (COR) and 
Relational Operator Replacement (ROR). For each COR operator, it was found that four 
mutation types are sufficient to test for non-trivial and non-redundant mutations for any one 
operator. Given this, each ROR operator can be replaced by only three mutants, instead of the 
seven that were proposed. 

The case studies presented by Just et al. [23] showed that, compared to replacing all operators 
with all valid replacements, replacing COR and ROR operators with the sufficient set was able 
to reduce the total number of mutants generated by 16.9% to 32.3%, depending on the ratio of 
COR and ROR to all other mutant types. This resulted in improved mutation analysis runtime of 



between 10% and 34%. They also showed decreased overall mutations scores by 2% to 8%, 
leading to more accurate assessment [24, 23]. Because of these works, this paper will limit the 
mutations of ROR and COR operators to those in past work [24, 23]. Apart from the normal 
operators, the mutations include: true, false, rhs, and lhs. Rhs stands for right-hand side, 
meaning the right-hand side of the operator is always returned. Lhs stands for left-hand side, 
meaning the left-hand side of the operator is always returned. 

 

Figure 1(a): Example of a simple sampling and a random sampling technique 

 

Figure 1(b): Example of a dithered sampling technique 

2.2. Sampling Techniques 
Given the large number of mutants that can be created using the operators discussed, one can 
also consider only using subsets of the created mutations. The subsets can be generated using 
sampling techniques. 

Sampling techniques are used in many software engineering fields that gather large amounts of 
data including profiling (e.g. [12] and testing (e.g. [28]). 

There are many sampling techniques including simple even sampling, random sampling, and 
dithered sampling. When sampling, we attempt to represent the full set of data, keeping a high 



level of quality while gathering less information. We hypothesize that these sampling 
techniques can be applied to other kinds of data sets, in this case, mutation testing, to reduce the 
cost of such testing. This work applies sampling techniques to reduce the amount of data needed 
to achieve representative results. 

In Figure 1a, a set of data is represented by the blue diamonds, where each diamond is a data 
point. This data could be a typical sine wave as acquired by test and measurement equipment. If 
one wanted to decimate that data, one option would be to select every twenty-first point. 
Decimated data is represented by the red squares. As can be seen, this greatly misrepresents the 
actual data. If this data was presented, a user might think the signal was a sine wave at 1/21thof 
the frequency. A better technique would, for every 21 samples, pick one sample randomly. With 
this sampling technique, called dithered sampling, the signal would look like noise. However, 
noise can be a better representation of the data and would likely allow for some measurements 
to occur with greater accuracy than simple sampling. 

Figure 1b shows an example of the data using a dithered sample technique. The green triangles 
represent this new set of data. As can be seen, it looks like noise. However, unlike the evenly 
sampled data, one could measure the amplitude with decent accuracy. Measurements of 
frequency may be incorrect, but the results may still be more accurate than that of the evenly-
spaced samples. The amount of decimation in this example is extreme. Clearly, it is desirable to 
preserve as much of the data as possible to reconstruct the true data, but it is a good example of 
how sampling can affect a measurement. 

Other software engineering works [32, 33] have used random sampling to reduce the number of 
mutations needed. Figure 1a shows an example random sampling represented by the purple 
circles. In this case, seven data points are sampled, and five of them are clustered. This cluster 
represents one part of the signal well, but as random sampling makes no attempts to spread out 
samples, entire sections of the data are missed. In this case, the repeated pattern of the sine wave 
is not represented well; much of the signal presents as a constant value. 

The sequence of mutations seeded by DynaMut exhibits a repeating pattern. For each source 
file, different kinds of mutations are seeded from the top of the file to the bottom. This same 
pattern repeats across the many files. One might think of the gathered data as a kind of sine 
wave through the code, although it would not be as clean as the waves in Figures 1a and 1b. 
Unlike random sampling, dithered and simple sampling will ensure all areas of the code are 
represented in the mutation score. In addition, dithered sampling can ensure that the sampled 
data is not misrepresenting data based on recurring patterns. For these reasons, dithered 
sampling may provide better mutation testing data than either simple sampling or random 
sampling in mutation testing. 

3. IMPLEMENTATION 

In order to create a tool that can perform automated mutation testing on embedded de- vice 
applications, we created DynaMut, a conditional mutation testing tool with varying sampling 
rates. Firstly, DynaMut includes a static tool to insert calls to centralized functions or macros 
from all mutation sites in the code. DynaMut is configurable for different software projects, and 
it can be easily extended for other programming languages. In this section, we explain how 
projects can be revised and configured to work with DynaMut along with examples. 

To reduce the cost of performing mutation testing on embedded software and mutation data 
gathering, a dynamic/conditional mutation approach is taken to assist with mutation analysis. 
While other tools are available to help in mutation testing and mutation test analysis in general, 
they are unable to work with C++ programs. For example, tools such as Nester, Major and  



 

Figure 2: Example of ProjectConfig.xml file 

PiTest [3, 2, 4] cannot be easily adapted to work with C or C++ code due to their design. When 
working with C++ or C code, common in embedded systems, tools such as MAJOR and PITest, 
which both mutate Java bytecode, are unsuitable for most embedded applications. Nester does 
alter source code with function calls at the mutation sites, but it has not been actively developed, 
and it is not as configurable as this research requires. This led to our development of DynaMut- 
A Dynamic Mutation testing tool for embedded system applications. 

DynaMut is highly configurable. In this way, it is usable on different systems with var- ied 
programming languages. Two configuration files are used to control it. First, Dy- naMut 
imports all the code files that will be mutated. Figure 2 shows the contents of a sample 
configuration file. With just four rules including IncludeAbsoluteDirectory, 
IncludeFileExtension, ExcludeDirectory, and ExcludeFile, any complicated directory structure 
can be navigated. One or more IncludeAbsoluteDirectory rules must be set, and DynaMut will 
search all children folders. One or more IncludeFileExtension rules must be set to define what 
types of files may be included. The remaining two rules are optional, and can be used to exclude 
directories and files. 

Figure 3: Example of code before and after DynaMut mutation  

Next, DynMut configures how the code is mutated. Each mutation group can be one of three 
types: OperatorReplacementUnaryGroup, OperatorReplacementBinaryGroup, or 
LiteralValueReplacementGroup. For each mutation group, three things must be specified: 
RegularExpression, NumberOfMembers, and the GroupMember variations. The Regular- 
Expression should contain a regular expression to match the operator(s) and operand(s). The 
NumberOfMembers specifies how many operators the regular expression matches. Each 
GroupMember specifies three things: the Operator, NumberOfMutations, and the Replace- 
mentFunction text. The Operator should contain the operator so DynaMut can detect which 
operator in the group is matched. The NumberOfMutations should specify how many variations 
the conditional code will use to mutate a given operator. This is used by DynaMut to space out 
the constants placed in the function calls. The ReplacementFunction contains the function call 
being used. 

Because of the amount of text parsing performed by DynaMut, it can be extremely resource-
intensive dependent on the application. To assist in reducing the time overhead of analysis, 
DynaMut is implemented in a way that allows for multithreading. Each task can run in an 
independent thread. A task thread is created for each code file, and each is placed in a Thread 



Pool. The number of threads running at one time can be controlled by the WorkerThreadCount 
in the ProjectConfig.xml file, as can be seen in Figure 2. Because each file is altered 
individually, each file’s index mutation starts at zero, but these values are placed in a macro, as 
can be seen in Figure 3. After every file has finished being seeded, DynaMut defines the 
MUTATION_INDEX macro, which contains an offset to make sure that each mutation has a 
unique ID across the entire software project. 

When adding mutations, it is important that functionality of the original code is not changed. 
Operators are placed in groups with operators that possess the same level prior- ity in the target 
language’s order of operations. This ensures that order of operations does not change code 
functionality unintentionally. Another consideration is how the regular expression gets matched. 
For the groups which use left-to-right precedence, the ‘lhs’ capturing group ends with a question 
mark. This tells the regular expressions parser to match the fewest number of characters, 
ensuring the left-most operator gets captured first. 

Rules were also added to the DynaMut code to skip regular expressions matched in certain 
conditions.  For example, DynaMut has logic to detect if the match is in a comment or a string. 
If in a string declaration, nothing is changed. If the match occurred in a comment, the operator is 
removed to make matching faster the next iteration. DynaMut also includes rules to detect 
addition of strings (strings can be added but not subtracted) and subtraction of pointers (pointers 
can be subtracted but not added). This aids in helping the applications under test to build 
successfully following mutation. 

4. EVALUATION 

The primary goal of this paper’s research is to demonstrate that mutation testing can be 
performed on complicated embedded systems in industry. In the evaluation of DynaMut, we 
will: 

• Discuss the criteria used to select the tests used 

• Analyze the run-time data gathered and estimate how much time was saved with run- time 
conditional mutation testing versus mutate-compile-deploy testing 

• Explore ways of reducing cost of testing through sampling of mutations 

• Discuss these results and how they can be applied to reduce the cost of mutation testing in 
an embedded system environment 

 

Figure 4: Example of macros used in KeysightC to define conditional mutation behavior 

Within the evaluation, we examine the time overhead of conditional mutation testing in an 
embedded environment versus the traditional mutation-compile-deploy approach and evaluate 
how sampling techniques can be applied to reduce the number of test runs without reducing 
effectiveness. 



4.1. Case Study 

DynaMut was evaluated on Keysightapp, a proprietary industry-level tool. Keysight (Keysightapp 
) is a tool that is an embedded application with about 1 million LOC. The development team of 
Keysightapp maintains a manually-developed test suite that uses re- mote commands to perform 
tests; this suite (Keysightsuite can take several hours to run, depending on the mode in which it is 
run. 

DynaMut was run on Keysightapp across 492 code files. This yielded approximately 121,000 
mutations. In order to use Keysightapp with DynaMut, a number of issues were identified that 
could cause DynaMut to make improper/uncompilable mutations. 

After adding these new rules into DynaMut, Keysightapp was compiled in release mode. 
However, the application would not start up fully, encountering errors. These likely are 
DynaMut mutations that, although not incorrect enough to cause compile errors, caused a 
change in behavior that proved fatal. Because of the scope of this project, it was decided to limit 
mutations to a single subsystem of Keysightapp, consisting of 49 code files, or 10% of the total 
number of files. With this limitation, the application runs normally when mutations are not in 
effect. While this section of code represents only a portion of Keysightapp, it is an important 
behavioral subsystem that is tested by the majority of the tests in Keysightsuite. 

4.2. Modifications to Keysightapp 

In addition to the code changes made by DynaMut, a small amount of code was added to the 
application to enable conditional mutation operation. Macros were created to control the 
mutations. Figure 4 shows two examples of the macros added to Keysightapp. As can be seen, 
the macros make calls to the static function cDynaMut::CheckMutation. CheckMutation returns 
true if mutation is enabled and the mutationId parameter matches the static variable containing 
the currently-active mutation. In this way, only one mutation is in effect at any point in time. In 
addition to controlling the active mutation, the cDynaMut class also was designed with the 
ability to track mutation coverage. 

4.3. Automating Keysightsuite for Data Collection 

The full test suite, Keysightsuite, takes several hours to run all tests on Keysightapp. For this 
reason, it was decided to only use small tests from the larger suite for evaluation. 
MutationTestRunner performs the following tasks to automate mutation testing data col- 
lection: 

• Imports the csv file containing the covered mutations gathering information on the tests 
being run only. 

• Communicates with the remote device running Keysightapp to control the mutation. 

• Communicates with a remotely-controlled power strip to reboot the remote device when 
necessary. 

• Runs Keysightsuite command line utility and captures output. 



 

Figure 5: Mutations covered by each test and # of mutations covered by multiple tests 

All changes were made to the subsystem of Keysightapp [5], which represents the key and 
behavioral subsystem and represents the main functions of the application. All testing is 
performed on the most recent accepted build of the code. For each test subsuite, a training run 
was performed with the coverage tracking feature enabled. This produced a coverage file 
enumerating the indices of all the mutations covered by a given test subsuite. The 
MutationTestRunner utility was then used to automate running tests in Keysightsuite on the 
mutations specified by the coverage file. 

4.4. Test Selection for Test Suite and Mutation Scores 
 
Because of the size of test suite, Keysightsuite, evaluation was performed on a limited number of 
tests from the entire suite. To select the three test subsuites used in this evaluation, tests were 
selected that 1) could be run one time in under 30 seconds, 2) that could cover at least 1,000 
mutations, and 3) tests where the mutations covered by the chosen tests overlap as little as 
possible in order to provide differing data. 

First, Keysightsuite was run to determine the time each test would take to execute. Then for the 
tests that completed reliably in under 30 seconds, training runs were performed to gather the 
mutation coverage information for each test. With the tests that covered roughly 1,000 or more 
mutations, the coverage data was analyzed for overlapping coverage– that is, mutations that are 
covered by two or more tests. Based on this data, three test sets were chosen. They will be 
referred to as Test 1, Test 2, and Test 3. 

With the complete sets of covered mutations, the test suites achieved the mutation scores of 
20.9%, 13.3%, and 22.8% for Tests 1, 2, and 3 respectively. While these mutation scores are 
low, we observe that DynaMut can be useful in identifying parts of code that have not yet been 
tested. With approximately 121,000 mutations being added to the application, 13-22% can be 
identified using the existing, provided test suites. 



Figure 5 shows the number of mutations covered by each test. It was observed that Test 1 
covers 995 mutations and executes in about 23 seconds. Test 2 covers 1,149 mutations and 
executes in 18 seconds. Test 3 covers 2,560 mutations and executes in 11 seconds. For each test, 
these mutations are categorized by how many tests were executed and by which tests mutations 
are covered. There are a significant number of duplicate mutations covered by the tests due to 
the fact that these tests exercise the same SUT. 

 

Figure 6 a: Comparison of testing time with conditional mutation and compiled mutation 

 

Figure 6 b: Correlation of sampled data to actual test values 

4.5. Time Overhead Reduction 
 
The time overhead was analyzed from the test runs. This analysis focuses on the data collected 
from Test 2 and Test 3 due to their larger mutation coverage. Because of the nature of testing on 
an embedded system, there is time overhead not normally associated with mutation analysis. 
When the SUT is running on a host, it can be killed and started quickly, depending on the 
startup time of the SUT. Because of this, mutation testing is often performed by running a new 
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instance of the application for each mutation. On the embedded system for Keysightapp, the 
system must be rebooted to restart the SUT. The boot process, including the time it takes to 
fully start Keysightapp, takes about 59 seconds, which is far longer than traditional applications 
being tested with mutation analysis. 

Due to this extra overhead, MutationTestRunner was designed to only restart the embedded 
system after a test failure. If the test passes with a given mutation, the conditional mutation ID is 
changed to that of the next mutation, and the test is run again without restarting the embedded 
system, thus providing significant savings in testing time. Even if the system does not need to 
be rebooted, about 5 seconds of overhead occurs before every test. This time is incurred when 
sending the remote commands to tell Keysightapp which mutation to enable. Even though these 
commands are small in size, the steps necessary to ensure reliable operation cause this step to 
consume 5 seconds. To estimate the time it would take to perform these mutation analyses with 
a traditional mutate-compile-test methodology, the additional overhead of compiling Keysightapp 
(with only minor changes) and deploying it to the embedded system is estimated to be 15 
seconds. This method would also require the system to be rebooted after every test. Because no 
tools exist that can easily be used with embedded products, estimations are used based on 
manual testing of Keysight. 

As seen in Figure 6a,  MutationTestRunner completed the full mutation analysis of Test 2 in 16 
hours, 5 minutes and 27 seconds (16:05:27). Of this time, 5:43:49 was spent performing the 
actual test, and 1:35:45 was spent in the unavoidable overhead described above. 54.47% of the 
time (8:45:53) was spent rebooting after failures. With a mutate- compile-test method, it is 
estimated that Test 2 would take 30:56:40, 92.31% more than the conditional mutation method, 
given the estimates described. Test 3 was performed in a total of 21:10:42. Of this time, 45.26% 
or 9:35:04 was spent rebooting. The compiled mutation method on Test 3 would take an 
estimated 64:20:49, or 203.83% more than the implemented conditional mutation method. The 
estimations of mutation-compile-test times are necessary as there are no tools that can easily 
perform these actions on embedded applications. 

These time estimations assume that the same coverage data would be available for the mutate-
compile-deploy method, which would require more static analysis to be performed. Even with 
this consideration, the conditional mutation method implemented in this work saves an 
estimated 48.00% of the time to evaluate Test 2 and 67.09% of the time needed to evaluate Test 
3. 

4.6. Mutation Sampling 
 
To further reduce testing cost, this work evaluates methods of reducing the number of mutations 
tested. To perform this evaluation, the full results from each Test are analyzed. Each covered 
mutation either passes or fails. This data was imported into a spreadsheet, where the simple 
sampling, random sampling, and dithered sampling methods were applied to the data of each 
test across a variety of decimation factors. For the simply sampled sets, all possible sets of 
evenly-spaced samples were determined for each decimation proportion and test (for example, 
at 1/2 decimation, there are only 2 possible sets for each of the 3 tests). For the dithered and 
random sample sets, data was gathered for 10 samples of each decimation proportion and test. 
The data was then used to correlate each decimation proportion and sampling type to the score 
obtained from the full set of data. Correlation was calculated using [29] to get the Kendall’s τ 
factor. The decimation proportions used are: 1/2, 1/3, 1/4, 1/6, 1/8, and 1/10 the total number of 
covered mutations. 

Kendall’s τ factor is a measure of how one set of data correlates to another. It can be from 1 to 
1, where 0 means there is no correlation, 1 means there is absolute positive correlation, and -1 



means there is absolute inverse correlation. For this work, closer to 1 is more desirable. Figure 
6b shows the results of the correlation analysis. At 1/2 decimation simple sampling correlates 
better to the actual data; however, this might be misleading because the dithered and random 
data each have 10 data points per test compared to the simple sampling’s 2 points per test. At 
1/3, 1/4 and 1/6 decimation, the dithered sampling provides better correlation than both the 
simple sampling and the random sampling. At 1/8 and 1/10 decimation, simple sampling 
provides better correlation than dithered sampling, although neither provide very good 
correlation; random sampling manages to provide the best result at these decimation ratios. 

Sampling can also be used to reduce the number of mutations tested. Dithered sampling offers 
better correlation to the true values; however, as the data is decimated further, the risk of 
gathering non-representative samples increases. This risk must be balanced between the 
effectiveness and efficiency of testing that is needed. 

4.7. Discussion 
 
While the sampling methods are correlated to the actual values from the full set of covered 
mutations, we did not determine how much time the sampling techniques would save versus 
other techniques due to a lack of tools that can perform similar tasks.  Because of the overheads 
present, it cannot be assumed that testing 1/2 of the mutations would save 50% of the testing 
time. Assuming the decimated set of mutations exhibit a similar pass/failure rate as the whole 
set, the time overhead scale is predictable based on our preliminary tests. 

In addition, although the correlation of dithered samples remains relatively constant between 1/2 
and 1/6 decimation, that does not make them equally good options for testing. The chances of 
obtaining an outlier or biased result increases as the sample decreases, so 1/6 decimation would 
not be as accurate a method as 1/2 decimation. 

Overall, we learn that DynaMut can perform analysis of an embedded application and that it can 
be adapted to work on other applications and languages. While every embedded program has its 
own specifications, DynaMut provides options to configure programs to match the tool and 
modifications needed to work with the tool. Sampling techniques can also be used and 
modified, where the user can select between multiple sampling types and rates. DynaMut in 
itself can provide a method to test embedded programs on a mutation level and gives sampling 
options given testing efficiency needs. 

5. THREATS TO VALIDITY 

This work tested a small portion of the tests in Keysightsuite. With a limited number of the tests 
from the test suite, testing with mutations in only 10% of Keysightapp, testing still took between 
16 and 21 hours per test subset. There is room for improvement. However, the tests selected in 
this work covered the majority of the functions specified by users and main program functions. 

Also, the research is only based on an industry level application. The selected application is a 
large, proprietary embedded application, where testing was focused on the primary functions of 
the application. We believe that the results can be extended to other C and C++ based embedded 
applications given the additional modifications that were incorporated into DynaMut. However, 
these need to be tested and evaluated. More applications representing embedded software are 
needed. 

This work evaluates conditional mutation testing and sampling techniques on one embedded 
system and one software system. These results may not translate to other embedded systems or 
software packages. We tried to mitigate this possibility by using a variety of tests without regard 



to the system under test. While we only focus on patterns inherent in Keysightapp and 
Keysightsuite, these were not the focus when designing the tool. Keysightapp was used as a 
learning an evaluation tool, but general application designs were considered during DynaMut’s 
implementation. 

6. RELATED WORK 

This paper deals with efforts to reduce the costs of mutation analysis to make it practical for 
testing an embedded system in industry. Much of this saving is needed in the runtime of the 
mutation analysis due to the size of the SUT and test suite. Consideration has been put into 
reducing the overall number of mutations used. This work is based on the studies performed in 
[25, 23, 24] to reduce the number of mutations seeded in the code. In our tool, fewer mutations 
being seeded results in time savings during mutation testing. 

Another way to save time during mutation analysis is to reduce the compilation time. Just et al. 
propose a method of increasing the efficiency of mutation analysis in [22]. In their work, they 
manage to save compilation time by introducing conditional mutation. In this method, the 
compiler inserts conditional code at each mutation site for all possible mutations, and a global 
state variable controls which mutation is in effect. The introduction of conditional code at each 
mutation site introduced a large amount of code overhead. On the applications tested, the 
instrumented code compiled to a size between 18% and 66% larger than the original program. 
Nester [3], a mutation testing tool for C# ported from Jester [1], takes a slightly different 
approach. It replaces various operators with calls to a set of central functions, instead of placing 
the conditional code at each location. These functions contain the conditional code to allow one 
mutation to occur at a time, but should incur far less code overhead. This is more important in 
an embedded system where memory is constrained. Our work uses conditional mutation similar 
to that used in [22]; however, this work uses macros to introduce the conditional code. Because 
the mutations were limited to a subsystem of Keysightapp, and a significant portion of the 
compiled binary is devoted to GUI-related non-code data, the memory overhead and time 
overhead introduced were not evaluated. 

For embedded systems, reducing the frequency of compilation has an added bonus, which 
differs from systems such as Just et al. [22]. The SUT is compiled on a workstation, and then it 
is deployed to the embedded system. Combined with software startup time, and the time 
necessary to reboot the embedded system between code runs (although, in theory the embedded 
system could be rebooted during compilation), every deployment can add approximately one 
minute to the time overhead of mutation analysis. Being able to compile the SUT and deploy it 
only once therefore can yield much more benefit in this case than on systems where the SUT is 
run on the same computer on which it is compiled. 

This paper also proposes a method of sampling mutations to reduce the cost of mutation testing. 
Dithered sampling has been used for a long time in analog and digital test and measurement 
equipment [30, 16]. This equipment can generate large data sets, and decimating that data can 
be useful for improving performance of measurements, analysis or visualization. Dithered 
sampling ensures that this decimation does not inadvertently misrepresent the original data. This 
paper shows that application of this dithered sampling can provide more representative samples 
than either a random sampling or an evenly-spaced simple sampling. Other works have studied 
sampling techniques applied to mutation testing. In [33], Zhang et al. compare random mutation 
sampling to techniques of reducing mutation by reducing the set of operators used. They found 
that random mutation sampling can be just as effective. In later work, (a different) Zhang et al. 
combine random sampling of mutations with reduction of operators used, and show that the 
combination of techniques yields precise results with far fewer mutations [32]. This second 
work evaluates eight different random sampling techniques. Their baseline stratagem is 



equivalent to the random sampling of this paper. The other strategies select a certain percentage 
of mutants from each set of mutants: generated from a single operator, generated inside a given 
program element (e.g. class or function), or a combination of the previous. In practice, the 
dithered sampling in this paper may behave similarly to the technique of selecting a percentage 
of mutations within a given program element; however, dithered sampling requires no extra 
code analysis to perform, making it easier to implement with a simple tool like DynaMut. 

Embedded systems are often tested using model-based approaches. Tan et al. demonstrate an 
integrated framework for development of self-testing model-based code [27]. Bringmann and 
Krämer introduce a tool to perform model-based testing on automotive embedded systems in 
[9]. While these embedded systems are amenable to model-based testing, not all embedded 
systems are. Like the in-industry case study of [19], the embedded application Keysightapp is a 
large piece of software that is highly configurable. The size of these applications makes model-
based testing or development impractical. These applications often have evolved over a series of 
product iterations, during which tests have been added to a proprietary test suite. This work 
evolves test suite evaluation methods to work with one such test suite. 

7. CONCLUSION AND FUTURE WORK 

This paper demonstrates that mutation testing can be performed on embedded systems in 
industry. DynaMut inserts runtime conditional mutations into a SUT, then demonstrated how to 
automate collection of data using an existing proprietary test suite. Conditional mutation was 
used to reduce the time and effort needed to perform this testing. The mutation testing was 
performed on three tests chosen from a larger suite of tests. It is estimated that the conditional 
mutation technique saves between 48% and 67% of the time it would take to perform the testing 
with a more traditional mutate-compile-test methodology. 

The data is further analyzed to determine if testing time could be further reduced by sampling 
the mutations tested, rather than testing all the covered mutations. Dithered sampling proves to 
perform better than simple evenly-spaced sampling or random sampling in both efficiency and 
effectiveness. 

The techniques used in this paper could be enhanced to further reduce testing costs. In future 
work, we would use multiple test fixtures to allow for testing of mutations in parallel. This 
would likely be an effective way to reduce testing time. It would also be interesting to apply the 
dithered sampling algorithm to larger data sets and more applications to ascertain its relative 
effectiveness. 
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