
 DYNAMUT: A MUTATION TESTING TOOL FOR
INDUSTRY-LEVEL EMBEDDED SYSTEM

APPLICATIONS

 Darin Weffenstette and Kristen R. Walcott

Department of Computer Science, University of Colorado, Colorado Springs, USA
dweffens@uccs.edu and kwalcott@uccs.edu

ABSTRACT
Test suite evaluation is important when developing quality software. Mutation testing, in particular, can
be helpful in determining the ability of a test suite to find defects in code. Because of challenges incurred
developing on complex embedded systems, test suite evaluation on these systems is very difficult and
costly.

We developed and implemented a tool called DynaMut to insert conditional mutations into the software
under test for embedded applications. We then demonstrate how the tool can be used to automate the
collection of data using an existing proprietary embedded test suite in a runtime testing environment.
Conditional mutation is used to reduce the time and effort needed to perform test quality evaluation
in 48% to 67% less time than it would take to perform the testing with a more traditional mutate-compile-
test methodology. We also analyze if testing time can be further reduced while maintaining quality by
sampling the mutations tested.

KEYWORDS
Test Development, Embedded Test Suites, Test Case Sampling, Mutation Testing

1. INTRODUCTION
When engineering a software solution, testing is essential. To ensure a test suite is effective at
finding defects, it is important to evaluate the test suite with regard to quality. While code
coverage metrics, such as statement or branch coverage, are useful in determining how to
improve a test suite, mutation testing has been shown to be a better indicator of the ability of a
test suite to find faults in code [17, 21]. Many tools have been created to automate test suite
evaluation for unit tests (e.g. [1, 2, 3, 4]). Unfortunately, on embedded systems in industry,
functional testing of the whole system is much more common than unit testing [11]. Thus,
combined with uncommon build and runtime environments, the time overhead inherent to the
embedded platform, and a lack of applicable tools, makes automated test suite evaluation
challenging on embedded systems.

Mutation testing is a fault-based technique that measures the fault-finding effectiveness of test
suites on the basis of induced faults [13, 15]. Mutation testing evaluates the quality of test suites
by seeding faults into the program under test. Each altered version containing a seeded fault is
called a mutant. Mutants of the original program are obtained by applying mutation operators.
For example, a conditional statement such as if (a < b) results in multiple mutants by replacing
the relational operator < with valid alternatives such as <= or !=. A test suite kills a mutant if a
test within the test suite fails. After running the test suite on each mutant, a mutation score can
be calculated; the mutation score is the ratio of killed mutants to generated mutants. Prior
studies have used mutation adequacy to gauge the effectiveness of testing strategies [7, 8, 14,
20].

Many tools have been developed to help support mutation testing. Some of these tools (e.g.
Jester [1], MuJava [26]) focus on source code mutation. Yet, modifying source code can lead to
many incompilable mutants and introduces a large re-compilation cost toward the creation of all
mutants. Other tools focus on bytecode mutation (e.g. Javalanche [31], Jumble [6], and PITest
[4]). Bytecode mutation is favorable because changes can be made on-the-fly without
recompilation. It is also simpler to mutate. However, mutating bytecode generates mutants that
could have never been introduced into the source code due to the use of syntactic sugar, and
generated mutants cannot be mapped back to the source code, which hampers manual inspection
of mutants. More advanced tools such as MAJOR [22, 20] take a compiler-integrated approach
using abstract syntax trees to introduce mutations for easy and fast fault seeding using a domain
specific language to configure the mutation process for JUnit tests [20]. These tools help more
at the static and runtime levels.

While tools like MAJOR and PITest have been shown to be effective, they are not practical for
all applications in industry, and they do not relate to the application during runtime. Particularly
in embedded systems, these tools currently have no analogue. Engineering software for
embedded systems presents challenges the current tools have not yet over- come. Because most
embedded systems have limited memory and processing power in comparison to traditional
computers, interpreted languages such as Java are generally not used. Although mutation testing
tools exist for C, like MiLu [18], they do not account for the penalties incurred by compilation
for an embedded system. Tools like MAJOR and PITest mutate, build and run code all on the
same machine, something that is not always possible on embedded systems. Performing all
these tasks on one machine allows these tools to run quickly, but when developing on embedded
systems, it may take minutes to recompile and deploy code before the test suite can be run. This
increased time overhead makes the methods used by current tools inefficient and excessively
time-consuming.

We utilize conditional mutation testing to reduce the costs of evaluating an embedded system
and its test suite. Instead of injecting one mutation, compiling, deploying, testing, and repeating,
conditional mutation injects all the mutations into the code and selectively activates one at a
time as executed. With this strategy, multiple mutations can be tested without restarting the
software under test (SUT), saving a significant amount of time. We also show how an existing
proprietary test suite can be automated for mutation analysis. Finally, we demonstrate a method
of reducing the amount of mutations needed to get representative results.

In this research, we develop a tool called DynaMut, which statically injects conditional
mutations into C++ code. This tool replaces defined mutation operators with macros, and the
macros contain conditional code to select mutants during runtime. DynaMut employs runtime-
based conditional mutation so that the software under test only needs to be compiled once,
saving overheads incurred during compilation and deployment to an embedded system. In order
to allow for greater time saving in mutation testing, this work also analyzes mutation sampling
techniques. Simple, evenly-spaced sampling, random sampling, and dithered sampling, a novel
form of sampling inspired by electronic test and measurement equipment, are applied to the
runtime mutation data gathered.

DynaMut was used to inject mutations into the embedded application, and specific tests from
the larger proprietary test suite were chosen for the mutation analysis. The selected tests were
automated and data was collected for the generated mutants. Our results show that conditional
mutation allowed for time savings between 48% and 67% when compared with a standard
mutate-compile-test methodology. Using the gathered mutation data, three sampling methods
were then used to reduce the number of mutations with the goal of keeping the mutation score
representative across analyses. The dithered sampling technique is shown to be more effective

and efficient than either a random sampling or a simple sampling when decimating the data at
ratios between one third and one sixth of the original set.

In summary, the main contributions of this paper are:

• Development of DynaMut, a static tool to insert runtime-based conditional mutations into
C++ code

• A description of how to alter an embedded application and test suite to perform runtime
mutation testing analysis

• An evaluation of the time overheads incurred by using conditional mutation rather than
mutate-compile-deploy-based mutations

• A comparison of three mutation sampling techniques for use in a conditional mutation
environment

2. MUTATIONS AND SAMPLING

In this section, we discuss work related to mutation analysis and sampling techniques as they
relate to our work.

2.1. Mutation Analysis
Mutation analysis is a method of test suite evaluation first implemented in 1980 [10]. To
perform mutation analysis, faults are seeded into the System Under Test (SUT). For each fault
or mutant, the test suite is run. If the test suite fails, it is said to have killed the mutant. If the test
suite succeeds, it did not detect the mutant. A test suite is given a mutation score that is the
percentage of mutants killed out of the total mutants seeded. A mutant analyzer seeds faults
systematically in order to ensure that the faults are introduced in an unbiased manner.

Many different types of code mutations have been proposed and tested. Unfortunately, using all
variations, especially in a large SUT, can be prohibitively expensive due to the time it would
take to test each mutation. Offutt et al. researched different mutation types in [25] and
determined a subset of operators which are effective in mutation testing and do not lose
significant data in comparison with larger sets of mutations. Based on the work by Offutt et al.
[25], DynaMut focuses on implementing these same mutation operators.

Just et al. [23] perform further research to reduce the mutations needed for Operator
Replacement Binary (ORB) operators. Their work notes the importance of keeping a mutant’s
impact on the code minimal. Trivial mutations, mutations that cause wrong output for all
possible input values, should be avoided to reduce runtime of the analysis. Redundant mutations
should also be avoided to reduce analysis time and also to prevent skew in the overall mutation
score. The work by Just et al. [23] considers Conditional Operator Replacement (COR) and
Relational Operator Replacement (ROR). For each COR operator, it was found that four
mutation types are sufficient to test for non-trivial and non-redundant mutations for any one
operator. Given this, each ROR operator can be replaced by only three mutants, instead of the
seven that were proposed.

The case studies presented by Just et al. [23] showed that, compared to replacing all operators
with all valid replacements, replacing COR and ROR operators with the sufficient set was able
to reduce the total number of mutants generated by 16.9% to 32.3%, depending on the ratio of
COR and ROR to all other mutant types. This resulted in improved mutation analysis runtime of

between 10% and 34%. They also showed decreased overall mutations scores by 2% to 8%,
leading to more accurate assessment [24, 23]. Because of these works, this paper will limit the
mutations of ROR and COR operators to those in past work [24, 23]. Apart from the normal
operators, the mutations include: true, false, rhs, and lhs. Rhs stands for right-hand side,
meaning the right-hand side of the operator is always returned. Lhs stands for left-hand side,
meaning the left-hand side of the operator is always returned.

Figure 1(a): Example of a simple sampling and a random sampling technique

Figure 1(b): Example of a dithered sampling technique

2.2. Sampling Techniques
Given the large number of mutants that can be created using the operators discussed, one can
also consider only using subsets of the created mutations. The subsets can be generated using
sampling techniques.

Sampling techniques are used in many software engineering fields that gather large amounts of
data including profiling (e.g. [12] and testing (e.g. [28]).

There are many sampling techniques including simple even sampling, random sampling, and
dithered sampling. When sampling, we attempt to represent the full set of data, keeping a high

level of quality while gathering less information. We hypothesize that these sampling
techniques can be applied to other kinds of data sets, in this case, mutation testing, to reduce the
cost of such testing. This work applies sampling techniques to reduce the amount of data needed
to achieve representative results.

In Figure 1a, a set of data is represented by the blue diamonds, where each diamond is a data
point. This data could be a typical sine wave as acquired by test and measurement equipment. If
one wanted to decimate that data, one option would be to select every twenty-first point.
Decimated data is represented by the red squares. As can be seen, this greatly misrepresents the
actual data. If this data was presented, a user might think the signal was a sine wave at 1/21thof
the frequency. A better technique would, for every 21 samples, pick one sample randomly. With
this sampling technique, called dithered sampling, the signal would look like noise. However,
noise can be a better representation of the data and would likely allow for some measurements
to occur with greater accuracy than simple sampling.

Figure 1b shows an example of the data using a dithered sample technique. The green triangles
represent this new set of data. As can be seen, it looks like noise. However, unlike the evenly
sampled data, one could measure the amplitude with decent accuracy. Measurements of
frequency may be incorrect, but the results may still be more accurate than that of the evenly-
spaced samples. The amount of decimation in this example is extreme. Clearly, it is desirable to
preserve as much of the data as possible to reconstruct the true data, but it is a good example of
how sampling can affect a measurement.

Other software engineering works [32, 33] have used random sampling to reduce the number of
mutations needed. Figure 1a shows an example random sampling represented by the purple
circles. In this case, seven data points are sampled, and five of them are clustered. This cluster
represents one part of the signal well, but as random sampling makes no attempts to spread out
samples, entire sections of the data are missed. In this case, the repeated pattern of the sine wave
is not represented well; much of the signal presents as a constant value.

The sequence of mutations seeded by DynaMut exhibits a repeating pattern. For each source
file, different kinds of mutations are seeded from the top of the file to the bottom. This same
pattern repeats across the many files. One might think of the gathered data as a kind of sine
wave through the code, although it would not be as clean as the waves in Figures 1a and 1b.
Unlike random sampling, dithered and simple sampling will ensure all areas of the code are
represented in the mutation score. In addition, dithered sampling can ensure that the sampled
data is not misrepresenting data based on recurring patterns. For these reasons, dithered
sampling may provide better mutation testing data than either simple sampling or random
sampling in mutation testing.

3. IMPLEMENTATION

In order to create a tool that can perform automated mutation testing on embedded de- vice
applications, we created DynaMut, a conditional mutation testing tool with varying sampling
rates. Firstly, DynaMut includes a static tool to insert calls to centralized functions or macros
from all mutation sites in the code. DynaMut is configurable for different software projects, and
it can be easily extended for other programming languages. In this section, we explain how
projects can be revised and configured to work with DynaMut along with examples.

To reduce the cost of performing mutation testing on embedded software and mutation data
gathering, a dynamic/conditional mutation approach is taken to assist with mutation analysis.
While other tools are available to help in mutation testing and mutation test analysis in general,
they are unable to work with C++ programs. For example, tools such as Nester, Major and

Figure 2: Example of ProjectConfig.xml file

PiTest [3, 2, 4] cannot be easily adapted to work with C or C++ code due to their design. When
working with C++ or C code, common in embedded systems, tools such as MAJOR and PITest,
which both mutate Java bytecode, are unsuitable for most embedded applications. Nester does
alter source code with function calls at the mutation sites, but it has not been actively developed,
and it is not as configurable as this research requires. This led to our development of DynaMut-
A Dynamic Mutation testing tool for embedded system applications.

DynaMut is highly configurable. In this way, it is usable on different systems with var- ied
programming languages. Two configuration files are used to control it. First, Dy- naMut
imports all the code files that will be mutated. Figure 2 shows the contents of a sample
configuration file. With just four rules including IncludeAbsoluteDirectory,
IncludeFileExtension, ExcludeDirectory, and ExcludeFile, any complicated directory structure
can be navigated. One or more IncludeAbsoluteDirectory rules must be set, and DynaMut will
search all children folders. One or more IncludeFileExtension rules must be set to define what
types of files may be included. The remaining two rules are optional, and can be used to exclude
directories and files.

Figure 3: Example of code before and after DynaMut mutation

Next, DynMut configures how the code is mutated. Each mutation group can be one of three
types: OperatorReplacementUnaryGroup, OperatorReplacementBinaryGroup, or
LiteralValueReplacementGroup. For each mutation group, three things must be specified:
RegularExpression, NumberOfMembers, and the GroupMember variations. The Regular-
Expression should contain a regular expression to match the operator(s) and operand(s). The
NumberOfMembers specifies how many operators the regular expression matches. Each
GroupMember specifies three things: the Operator, NumberOfMutations, and the Replace-
mentFunction text. The Operator should contain the operator so DynaMut can detect which
operator in the group is matched. The NumberOfMutations should specify how many variations
the conditional code will use to mutate a given operator. This is used by DynaMut to space out
the constants placed in the function calls. The ReplacementFunction contains the function call
being used.

Because of the amount of text parsing performed by DynaMut, it can be extremely resource-
intensive dependent on the application. To assist in reducing the time overhead of analysis,
DynaMut is implemented in a way that allows for multithreading. Each task can run in an
independent thread. A task thread is created for each code file, and each is placed in a Thread

Pool. The number of threads running at one time can be controlled by the WorkerThreadCount
in the ProjectConfig.xml file, as can be seen in Figure 2. Because each file is altered
individually, each file’s index mutation starts at zero, but these values are placed in a macro, as
can be seen in Figure 3. After every file has finished being seeded, DynaMut defines the
MUTATION_INDEX macro, which contains an offset to make sure that each mutation has a
unique ID across the entire software project.

When adding mutations, it is important that functionality of the original code is not changed.
Operators are placed in groups with operators that possess the same level prior- ity in the target
language’s order of operations. This ensures that order of operations does not change code
functionality unintentionally. Another consideration is how the regular expression gets matched.
For the groups which use left-to-right precedence, the ‘lhs’ capturing group ends with a question
mark. This tells the regular expressions parser to match the fewest number of characters,
ensuring the left-most operator gets captured first.

Rules were also added to the DynaMut code to skip regular expressions matched in certain
conditions. For example, DynaMut has logic to detect if the match is in a comment or a string.
If in a string declaration, nothing is changed. If the match occurred in a comment, the operator is
removed to make matching faster the next iteration. DynaMut also includes rules to detect
addition of strings (strings can be added but not subtracted) and subtraction of pointers (pointers
can be subtracted but not added). This aids in helping the applications under test to build
successfully following mutation.

4. EVALUATION

The primary goal of this paper’s research is to demonstrate that mutation testing can be
performed on complicated embedded systems in industry. In the evaluation of DynaMut, we
will:

• Discuss the criteria used to select the tests used

• Analyze the run-time data gathered and estimate how much time was saved with run- time
conditional mutation testing versus mutate-compile-deploy testing

• Explore ways of reducing cost of testing through sampling of mutations

• Discuss these results and how they can be applied to reduce the cost of mutation testing in
an embedded system environment

Figure 4: Example of macros used in KeysightC to define conditional mutation behavior

Within the evaluation, we examine the time overhead of conditional mutation testing in an
embedded environment versus the traditional mutation-compile-deploy approach and evaluate
how sampling techniques can be applied to reduce the number of test runs without reducing
effectiveness.

4.1. Case Study

DynaMut was evaluated on Keysightapp, a proprietary industry-level tool. Keysight (Keysightapp
) is a tool that is an embedded application with about 1 million LOC. The development team of
Keysightapp maintains a manually-developed test suite that uses re- mote commands to perform
tests; this suite (Keysightsuite can take several hours to run, depending on the mode in which it is
run.

DynaMut was run on Keysightapp across 492 code files. This yielded approximately 121,000
mutations. In order to use Keysightapp with DynaMut, a number of issues were identified that
could cause DynaMut to make improper/uncompilable mutations.

After adding these new rules into DynaMut, Keysightapp was compiled in release mode.
However, the application would not start up fully, encountering errors. These likely are
DynaMut mutations that, although not incorrect enough to cause compile errors, caused a
change in behavior that proved fatal. Because of the scope of this project, it was decided to limit
mutations to a single subsystem of Keysightapp, consisting of 49 code files, or 10% of the total
number of files. With this limitation, the application runs normally when mutations are not in
effect. While this section of code represents only a portion of Keysightapp, it is an important
behavioral subsystem that is tested by the majority of the tests in Keysightsuite.

4.2. Modifications to Keysightapp

In addition to the code changes made by DynaMut, a small amount of code was added to the
application to enable conditional mutation operation. Macros were created to control the
mutations. Figure 4 shows two examples of the macros added to Keysightapp. As can be seen,
the macros make calls to the static function cDynaMut::CheckMutation. CheckMutation returns
true if mutation is enabled and the mutationId parameter matches the static variable containing
the currently-active mutation. In this way, only one mutation is in effect at any point in time. In
addition to controlling the active mutation, the cDynaMut class also was designed with the
ability to track mutation coverage.

4.3. Automating Keysightsuite for Data Collection

The full test suite, Keysightsuite, takes several hours to run all tests on Keysightapp. For this
reason, it was decided to only use small tests from the larger suite for evaluation.
MutationTestRunner performs the following tasks to automate mutation testing data col-
lection:

• Imports the csv file containing the covered mutations gathering information on the tests
being run only.

• Communicates with the remote device running Keysightapp to control the mutation.

• Communicates with a remotely-controlled power strip to reboot the remote device when
necessary.

• Runs Keysightsuite command line utility and captures output.

Figure 5: Mutations covered by each test and # of mutations covered by multiple tests

All changes were made to the subsystem of Keysightapp [5], which represents the key and
behavioral subsystem and represents the main functions of the application. All testing is
performed on the most recent accepted build of the code. For each test subsuite, a training run
was performed with the coverage tracking feature enabled. This produced a coverage file
enumerating the indices of all the mutations covered by a given test subsuite. The
MutationTestRunner utility was then used to automate running tests in Keysightsuite on the
mutations specified by the coverage file.

4.4. Test Selection for Test Suite and Mutation Scores

Because of the size of test suite, Keysightsuite, evaluation was performed on a limited number of
tests from the entire suite. To select the three test subsuites used in this evaluation, tests were
selected that 1) could be run one time in under 30 seconds, 2) that could cover at least 1,000
mutations, and 3) tests where the mutations covered by the chosen tests overlap as little as
possible in order to provide differing data.

First, Keysightsuite was run to determine the time each test would take to execute. Then for the
tests that completed reliably in under 30 seconds, training runs were performed to gather the
mutation coverage information for each test. With the tests that covered roughly 1,000 or more
mutations, the coverage data was analyzed for overlapping coverage– that is, mutations that are
covered by two or more tests. Based on this data, three test sets were chosen. They will be
referred to as Test 1, Test 2, and Test 3.

With the complete sets of covered mutations, the test suites achieved the mutation scores of
20.9%, 13.3%, and 22.8% for Tests 1, 2, and 3 respectively. While these mutation scores are
low, we observe that DynaMut can be useful in identifying parts of code that have not yet been
tested. With approximately 121,000 mutations being added to the application, 13-22% can be
identified using the existing, provided test suites.

Figure 5 shows the number of mutations covered by each test. It was observed that Test 1
covers 995 mutations and executes in about 23 seconds. Test 2 covers 1,149 mutations and
executes in 18 seconds. Test 3 covers 2,560 mutations and executes in 11 seconds. For each test,
these mutations are categorized by how many tests were executed and by which tests mutations
are covered. There are a significant number of duplicate mutations covered by the tests due to
the fact that these tests exercise the same SUT.

Figure 6 a: Comparison of testing time with conditional mutation and compiled mutation

Figure 6 b: Correlation of sampled data to actual test values

4.5. Time Overhead Reduction

The time overhead was analyzed from the test runs. This analysis focuses on the data collected
from Test 2 and Test 3 due to their larger mutation coverage. Because of the nature of testing on
an embedded system, there is time overhead not normally associated with mutation analysis.
When the SUT is running on a host, it can be killed and started quickly, depending on the
startup time of the SUT. Because of this, mutation testing is often performed by running a new

−

instance of the application for each mutation. On the embedded system for Keysightapp, the
system must be rebooted to restart the SUT. The boot process, including the time it takes to
fully start Keysightapp, takes about 59 seconds, which is far longer than traditional applications
being tested with mutation analysis.

Due to this extra overhead, MutationTestRunner was designed to only restart the embedded
system after a test failure. If the test passes with a given mutation, the conditional mutation ID is
changed to that of the next mutation, and the test is run again without restarting the embedded
system, thus providing significant savings in testing time. Even if the system does not need to
be rebooted, about 5 seconds of overhead occurs before every test. This time is incurred when
sending the remote commands to tell Keysightapp which mutation to enable. Even though these
commands are small in size, the steps necessary to ensure reliable operation cause this step to
consume 5 seconds. To estimate the time it would take to perform these mutation analyses with
a traditional mutate-compile-test methodology, the additional overhead of compiling Keysightapp
(with only minor changes) and deploying it to the embedded system is estimated to be 15
seconds. This method would also require the system to be rebooted after every test. Because no
tools exist that can easily be used with embedded products, estimations are used based on
manual testing of Keysight.

As seen in Figure 6a, MutationTestRunner completed the full mutation analysis of Test 2 in 16
hours, 5 minutes and 27 seconds (16:05:27). Of this time, 5:43:49 was spent performing the
actual test, and 1:35:45 was spent in the unavoidable overhead described above. 54.47% of the
time (8:45:53) was spent rebooting after failures. With a mutate- compile-test method, it is
estimated that Test 2 would take 30:56:40, 92.31% more than the conditional mutation method,
given the estimates described. Test 3 was performed in a total of 21:10:42. Of this time, 45.26%
or 9:35:04 was spent rebooting. The compiled mutation method on Test 3 would take an
estimated 64:20:49, or 203.83% more than the implemented conditional mutation method. The
estimations of mutation-compile-test times are necessary as there are no tools that can easily
perform these actions on embedded applications.

These time estimations assume that the same coverage data would be available for the mutate-
compile-deploy method, which would require more static analysis to be performed. Even with
this consideration, the conditional mutation method implemented in this work saves an
estimated 48.00% of the time to evaluate Test 2 and 67.09% of the time needed to evaluate Test
3.

4.6. Mutation Sampling

To further reduce testing cost, this work evaluates methods of reducing the number of mutations
tested. To perform this evaluation, the full results from each Test are analyzed. Each covered
mutation either passes or fails. This data was imported into a spreadsheet, where the simple
sampling, random sampling, and dithered sampling methods were applied to the data of each
test across a variety of decimation factors. For the simply sampled sets, all possible sets of
evenly-spaced samples were determined for each decimation proportion and test (for example,
at 1/2 decimation, there are only 2 possible sets for each of the 3 tests). For the dithered and
random sample sets, data was gathered for 10 samples of each decimation proportion and test.
The data was then used to correlate each decimation proportion and sampling type to the score
obtained from the full set of data. Correlation was calculated using [29] to get the Kendall’s τ
factor. The decimation proportions used are: 1/2, 1/3, 1/4, 1/6, 1/8, and 1/10 the total number of
covered mutations.

Kendall’s τ factor is a measure of how one set of data correlates to another. It can be from 1 to
1, where 0 means there is no correlation, 1 means there is absolute positive correlation, and -1

means there is absolute inverse correlation. For this work, closer to 1 is more desirable. Figure
6b shows the results of the correlation analysis. At 1/2 decimation simple sampling correlates
better to the actual data; however, this might be misleading because the dithered and random
data each have 10 data points per test compared to the simple sampling’s 2 points per test. At
1/3, 1/4 and 1/6 decimation, the dithered sampling provides better correlation than both the
simple sampling and the random sampling. At 1/8 and 1/10 decimation, simple sampling
provides better correlation than dithered sampling, although neither provide very good
correlation; random sampling manages to provide the best result at these decimation ratios.

Sampling can also be used to reduce the number of mutations tested. Dithered sampling offers
better correlation to the true values; however, as the data is decimated further, the risk of
gathering non-representative samples increases. This risk must be balanced between the
effectiveness and efficiency of testing that is needed.

4.7. Discussion

While the sampling methods are correlated to the actual values from the full set of covered
mutations, we did not determine how much time the sampling techniques would save versus
other techniques due to a lack of tools that can perform similar tasks. Because of the overheads
present, it cannot be assumed that testing 1/2 of the mutations would save 50% of the testing
time. Assuming the decimated set of mutations exhibit a similar pass/failure rate as the whole
set, the time overhead scale is predictable based on our preliminary tests.

In addition, although the correlation of dithered samples remains relatively constant between 1/2
and 1/6 decimation, that does not make them equally good options for testing. The chances of
obtaining an outlier or biased result increases as the sample decreases, so 1/6 decimation would
not be as accurate a method as 1/2 decimation.

Overall, we learn that DynaMut can perform analysis of an embedded application and that it can
be adapted to work on other applications and languages. While every embedded program has its
own specifications, DynaMut provides options to configure programs to match the tool and
modifications needed to work with the tool. Sampling techniques can also be used and
modified, where the user can select between multiple sampling types and rates. DynaMut in
itself can provide a method to test embedded programs on a mutation level and gives sampling
options given testing efficiency needs.

5. THREATS TO VALIDITY

This work tested a small portion of the tests in Keysightsuite. With a limited number of the tests
from the test suite, testing with mutations in only 10% of Keysightapp, testing still took between
16 and 21 hours per test subset. There is room for improvement. However, the tests selected in
this work covered the majority of the functions specified by users and main program functions.

Also, the research is only based on an industry level application. The selected application is a
large, proprietary embedded application, where testing was focused on the primary functions of
the application. We believe that the results can be extended to other C and C++ based embedded
applications given the additional modifications that were incorporated into DynaMut. However,
these need to be tested and evaluated. More applications representing embedded software are
needed.

This work evaluates conditional mutation testing and sampling techniques on one embedded
system and one software system. These results may not translate to other embedded systems or
software packages. We tried to mitigate this possibility by using a variety of tests without regard

to the system under test. While we only focus on patterns inherent in Keysightapp and
Keysightsuite, these were not the focus when designing the tool. Keysightapp was used as a
learning an evaluation tool, but general application designs were considered during DynaMut’s
implementation.

6. RELATED WORK

This paper deals with efforts to reduce the costs of mutation analysis to make it practical for
testing an embedded system in industry. Much of this saving is needed in the runtime of the
mutation analysis due to the size of the SUT and test suite. Consideration has been put into
reducing the overall number of mutations used. This work is based on the studies performed in
[25, 23, 24] to reduce the number of mutations seeded in the code. In our tool, fewer mutations
being seeded results in time savings during mutation testing.

Another way to save time during mutation analysis is to reduce the compilation time. Just et al.
propose a method of increasing the efficiency of mutation analysis in [22]. In their work, they
manage to save compilation time by introducing conditional mutation. In this method, the
compiler inserts conditional code at each mutation site for all possible mutations, and a global
state variable controls which mutation is in effect. The introduction of conditional code at each
mutation site introduced a large amount of code overhead. On the applications tested, the
instrumented code compiled to a size between 18% and 66% larger than the original program.
Nester [3], a mutation testing tool for C# ported from Jester [1], takes a slightly different
approach. It replaces various operators with calls to a set of central functions, instead of placing
the conditional code at each location. These functions contain the conditional code to allow one
mutation to occur at a time, but should incur far less code overhead. This is more important in
an embedded system where memory is constrained. Our work uses conditional mutation similar
to that used in [22]; however, this work uses macros to introduce the conditional code. Because
the mutations were limited to a subsystem of Keysightapp, and a significant portion of the
compiled binary is devoted to GUI-related non-code data, the memory overhead and time
overhead introduced were not evaluated.

For embedded systems, reducing the frequency of compilation has an added bonus, which
differs from systems such as Just et al. [22]. The SUT is compiled on a workstation, and then it
is deployed to the embedded system. Combined with software startup time, and the time
necessary to reboot the embedded system between code runs (although, in theory the embedded
system could be rebooted during compilation), every deployment can add approximately one
minute to the time overhead of mutation analysis. Being able to compile the SUT and deploy it
only once therefore can yield much more benefit in this case than on systems where the SUT is
run on the same computer on which it is compiled.

This paper also proposes a method of sampling mutations to reduce the cost of mutation testing.
Dithered sampling has been used for a long time in analog and digital test and measurement
equipment [30, 16]. This equipment can generate large data sets, and decimating that data can
be useful for improving performance of measurements, analysis or visualization. Dithered
sampling ensures that this decimation does not inadvertently misrepresent the original data. This
paper shows that application of this dithered sampling can provide more representative samples
than either a random sampling or an evenly-spaced simple sampling. Other works have studied
sampling techniques applied to mutation testing. In [33], Zhang et al. compare random mutation
sampling to techniques of reducing mutation by reducing the set of operators used. They found
that random mutation sampling can be just as effective. In later work, (a different) Zhang et al.
combine random sampling of mutations with reduction of operators used, and show that the
combination of techniques yields precise results with far fewer mutations [32]. This second
work evaluates eight different random sampling techniques. Their baseline stratagem is

equivalent to the random sampling of this paper. The other strategies select a certain percentage
of mutants from each set of mutants: generated from a single operator, generated inside a given
program element (e.g. class or function), or a combination of the previous. In practice, the
dithered sampling in this paper may behave similarly to the technique of selecting a percentage
of mutations within a given program element; however, dithered sampling requires no extra
code analysis to perform, making it easier to implement with a simple tool like DynaMut.

Embedded systems are often tested using model-based approaches. Tan et al. demonstrate an
integrated framework for development of self-testing model-based code [27]. Bringmann and
Krämer introduce a tool to perform model-based testing on automotive embedded systems in
[9]. While these embedded systems are amenable to model-based testing, not all embedded
systems are. Like the in-industry case study of [19], the embedded application Keysightapp is a
large piece of software that is highly configurable. The size of these applications makes model-
based testing or development impractical. These applications often have evolved over a series of
product iterations, during which tests have been added to a proprietary test suite. This work
evolves test suite evaluation methods to work with one such test suite.

7. CONCLUSION AND FUTURE WORK

This paper demonstrates that mutation testing can be performed on embedded systems in
industry. DynaMut inserts runtime conditional mutations into a SUT, then demonstrated how to
automate collection of data using an existing proprietary test suite. Conditional mutation was
used to reduce the time and effort needed to perform this testing. The mutation testing was
performed on three tests chosen from a larger suite of tests. It is estimated that the conditional
mutation technique saves between 48% and 67% of the time it would take to perform the testing
with a more traditional mutate-compile-test methodology.

The data is further analyzed to determine if testing time could be further reduced by sampling
the mutations tested, rather than testing all the covered mutations. Dithered sampling proves to
perform better than simple evenly-spaced sampling or random sampling in both efficiency and
effectiveness.

The techniques used in this paper could be enhanced to further reduce testing costs. In future
work, we would use multiple test fixtures to allow for testing of mutations in parallel. This
would likely be an effective way to reduce testing time. It would also be interesting to apply the
dithered sampling algorithm to larger data sets and more applications to ascertain its relative
effectiveness.

8. REFERENCES

[1] http://jester.sourceforge.net, September 2014.

[2] http://mutation-testing.org/, September 2014.

[3] http://nester.sourceforge.net, September 2014.

[4] http://pitest.org/, September 2014.

[5] http://www.keysight.com, September 2014.

[6] http://jumble.sourceforge.net/, January 2015.

[7] J. H. Andrews, L. C. Briand, and Y. Labiche. Is mutation an appropriate tool for testing
experiments? [software testing]. In Software Engineering, 2005. ICSE 2005. Proceedings. 27th
International Conference on, pages 402–411. IEEE, 2005.

[8] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin. Using mutation analysis for assessing
and comparing testing coverage criteria. Software Engineering, IEEE Transactions on,
32(8):608–624, 2006.

[9] E. Bringmann and A. Kramer. Model-based testing of automotive systems. In Software Testing,
Verification, and Validation, 2008 1st International Conference on, pages 485–493. IEEE, 2008.

[10] T. A. Budd. Mutation analysis of program test data. 1980.

[11] A. Causevic, D. Sundmark, and S. Punnekkat. An industrial survey on contemporary aspects of
software testing. In Software Testing, Verification and Validation (ICST), 2010 Third International
Conference on, pages 393–401. IEEE, 2010.

[12] D. Chen, N. Vachharajani, R. Hundt, S.-w. Liao, V. Ramasamy, P. Yuan, W. Chen, and W.
Zheng. Taming hardware event samples for fdo compilation. In CGO ’10: Proceedings of the
8th annual IEEE/ACM international symposium on Code generation and optimization, pages 42–
52, New York, NY, USA, 2010. ACM.

[13] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data selection: Help for the
practicing programmer. Computer, 11(4):34–41, 1978.

[14] H. Do and G. Rothermel. On the use of mutation faults in empirical assessments of test case
prioritization techniques. Software Engineering, IEEE Transactions on, 32(9):733–752, 2006.

[15] R. G. Hamlet. Testing programs with the aid of a compiler. Software Engineering, IEEE
Transactions on, (4):279–290, 1977.

[16] M. Holcomb. Anti-aliasing dithering method and apparatus for low frequency signal sampling,
May 19 1992. US Patent 5,115,189.

[17] L. Inozemtseva and R. Holmes. Coverage is not strongly correlated with test suite effectiveness.
In Proceedings of the 36th International Conference on Software Engineering, ICSE 2014, pages
435–445, New York, NY, USA, 2014. ACM.

[18] Y. Jia and M. Harman. Milu: A customizable, runtime-optimized higher order mutation testing
tool for the full c language. In Practice and Research Techniques, 2008. TAIC PART’08.
Testing: Academic & Industrial Conference, pages 94–98. IEEE, 2008.

[19] D. Jin, X. Qu, M. B. Cohen, and B. Robinson. Configurations everywhere: implications for testing
and debugging in practice. In Companion Proceedings of the 36th International Conference on
Software Engineering, pages 215–224. ACM, 2014.

[20] R. Just. The major mutation framework: Efficient and scalable mutation analysis for java. In
Proceedings of the 2014 International Symposium on Software Testing and Analysis, pages 433–
436. ACM, 2014.

[21] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser. Are mutants a valid
substitute for real faults in software testing? In Proceedings of the Symposium on the Foundations
of Software Engineering (FSE), Hong Kong, November 18–20 2014.

[22] R. Just, G. M. Kapfhammer, and F. Schweiggert. Using conditional mutation to increase the
efficiency of mutation analysis. In Proceedings of the International Work- shop on Automation of
Software Test (AST), pages 50–56, May 23–24 2011.

[23] R. Just, G. M. Kapfhammer, and F. Schweiggert. Using non-redundant mutation operators and test
suite prioritization to achieve efficient and scalable mutation analysis. In Proceedings of the
International Symposium on Software Reliability Engineering(ISSRE), pages 11–20, November
28–30 2012.

[24] G. Kaminski, P. Ammann, and J. Offutt. Better predicate testing. In Proceedings of the 6th
International Workshop on Automation of Software Test, pages 57–63. ACM, 2011.

[25] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf. An experimental determination of
sufficient mutant operators. ACM Transactions on Software Engineering and Methodology
(TOSEM), 5(2):99–118, 1996.

[26] J. Offutt and N. Li. http://cs.gmu.edu/~offutt/mujava/, January 2015.

[27] L. Tan, J. Kim, O. Sokolsky, and I. Lee. Model-based testing and monitoring for hybrid embedded
systems. In Information Reuse and Integration, 2004. IRI 2004. Proceedings of the 2004 IEEE
International Conference on, pages 487–492. IEEE, 2004.

[28] K. Walcott-Justice, J. Mars, and M. L. Soffa. Theme: A system for testing by hardware monitoring
events. In Proceedings of the 2012 International Symposium on Software Testing and Analysis,
pages 12–22. ACM, 2012.

[29] Wessa. Kendall tau rank correlation (v1.0.11) in free statistics software (v1.1.23-r7).
http://www.wessa.net/rwasp_kendall.wasp/, 2012.

[30] B. Widrow. Statistical analysis of amplitude-quantized sampled-data systems. American Institute
of Electrical Engineers, Part II: Applications and Industry, Transactions of the, 79(6):555–
568, 1961.

[31] A. Zeller. https://www.st.cs.uni-saarland.de/mutation/, January 2015.

[32] L. Zhang, M. Gligoric, D. Marinov, and S. Khurshid. Operator-based and random mutant
selection: Better together. In Automated Software Engineering (ASE), 2013 IEEE/ACM 28th
International Conference on, pages 92–102. IEEE, 2013.

[33] L. Zhang, S.-S. Hou, J.-J. Hu, T. Xie, and H. Mei. Is operator-based mutant selection superior to
random mutant selection? In Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering-Volume 1, pages 435–444. ACM, 2010.

