
Testing in Resource-Constrained Environments

A Dissertation

Presented to

the faculty of the School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment

of the requirements for the Degree

Doctor of Philosophy

Computer Science

by

Kristen R. Walcott-Justice

May 2012

Abstract

In recent software development environments, resources including time, memory, and power

constrain the execution of software test cases. Often the cost of running all test cases is

prohibitively expensive, necessitating techniques to select test cases of the highest quality

for test execution. While many test case selection and prioritization techniques exist to

select test cases that are more likely to find faults, none take the resource constraints

under which the tests will operate directly into consideration. Another cost in test case

execution comes from structural testing. Structural testing is an important technique in

which during execution test cases are also evaluated for structural coverage. This is typically

performed through the use of code instrumentation. However, instrumentation incurs high

overhead in terms of time and code growth, making it di�cult to use in resource-constrained

environments such as mobile device testing.

This thesis develops and evaluates techniques for e�cient and e↵ective execution of test

cases in resource-constrained environments. The first set of techniques selects high quality

test cases from test suites while taking resource constraints into account. The resulting

test selection is guaranteed to execute within the specified resource constraints, and the

resulting test cases have the highest possible potential for overall fault detection during

their constrained execution. The selected tests are additionally ordered in a way that is

likely to find faults earlier in test execution rather than later. These techniques represent the

first to guarantee that test selections will execute within a given constraint, and they o↵er

a spectrum of options for selecting tests to execute in resource-constrained environments.

The second set of techniques evaluates the quality of test cases during execution with-

i

Abstract ii

out the need of expensive and intrusive instrumentation. Instead, our quality evaluation

techniques exploit recent hardware advances to monitor program execution. By leveraging

these hardware advances, up to 90% of branch coverage and 79% of statement coverage

can be determined with less time overhead compared to instrumentation. Because the

techniques require little or no code modification or dynamic code insertion and can run

on commodity machines, tablets, or mobile devices, the techniques also enable test case

execution and evaluation on resource-constrained devices. No specialized hardware or com-

ponents are required. The techniques are combined into a runtime and static testing system

called THeME: Testing by Hardware Monitoring Events. THeME is a portable, extensible

system, making it applicable for use in a wide range of resource-constrained environments.

Acknowledgements

I would like to take this opportunity to thank the people who have helped me through this

journey. First, the role played by my advisor, Mary Lou So↵a, cannot be expressed in just

a few words. She has been a wonderful mentor, teacher, and friend. I cannot thank her

enough for her support, advice, encouragement, and patience.

I would also like to thank Greg Kapfhammer for all of his help and advice over the

years. Greg has been a key role model for me in terms of both research and teaching, and

he is an incredible teacher and mentor. I greatly appreciate all of the e↵ort he has put into

supporting me. I truly look forward to continuing our collaboration in the future.

Sudhanva Gurumurthi also has provided me with a lot of help and encouragement. I

worked with Sudhanva for about a year and a half while completing my masters, and I

greatly enjoyed working with him. Thank you for your time and advice.

Thanks also are certainly due to Chris Lauderdale and Dan Upton. Chris and Dan both

have been wonderful supporters and friends for as long as I’ve known them, and I cannot

thank them enough. Also, to my fellow graduate students and colleagues, particularly

Jason Mars, Lingjia Tang, Tanima Dey, Wei Wang, Jing Yang, Sudeep Ghosh, and Karolina

Sarnowska-Upton, thanks for all of your help and for putting up with me.

Last, thanks go out to my wonderful husband, Beau Justice, my in-laws, Tom and Ginny

Justice, and my parents, Richard and Kathleen Walcott. They have stood by me every step

of the way, providing support and encouragement- as well as multiple important lessons

on comma usage. I could not have done this without them, and I very much appreciate

everything they’ve done.

iii

Contents

Abstract i

Acknowledgements iii

List of Figures viii

List of Tables xi

1 Introduction 1

1.1 Test Case Selection . 2

1.2 Executing Test Cases . 4

1.3 Constraints During Testing . 4

1.3.1 Constraints When Selecting Test Cases 5

1.3.2 Constraints When Executing Test Cases 7

1.4 Challenges and Goals of Testing in Resource-Constrained Environments . . 8

1.5 Research Overview . 11

1.5.1 Description of the Research Process 12

1.5.2 Contributions of the Dissertation . 15

2 Background and Related Work 17

2.1 Test Suite Design and Analysis . 17

2.1.1 Evaluating Test Suite Quality . 18

2.1.2 Measuring Test Suite E↵ectiveness 20

iv

Contents v

2.2 Related Work . 22

2.2.1 Test Selection and Prioritization . 22

2.2.2 Executing Test Cases E�ciently . 25

2.2.3 Hardware Performance Monitoring and Sampling 26

3 Knapsack Solvers for Time-Aware Selection 28

3.1 Time-Aware Selection . 30

3.2 Knapsack Solvers as Selectors . 30

3.3 Experiment Goals and Design . 34

3.3.1 Case Studies . 35

3.3.2 Evaluation Metrics . 36

3.4 Experiments and Results . 40

3.4.1 Selection E↵ectiveness. 40

3.4.2 Selection E�ciency. 42

3.5 Conclusions . 44

4 A Genetic Algorithm for Time-Aware Selection 45

4.1 Genetic Algorithms and the Test Selection Challenge 46

4.1.1 Designing a Genetic Algorithm . 46

4.1.2 Genetic Algorithm Challenges . 48

4.1.3 The Test Selection Challenge . 49

4.2 Time-Constrained Selection . 49

4.2.1 Overview . 50

4.2.2 A Genetic Algorithm for Time-Aware Test Selection 50

4.2.3 Test Selection in Action . 57

4.3 Empirical Evaluation . 59

4.3.1 Experimental Design . 60

4.3.2 Experiments and Results . 63

4.4 Conclusions . 75

Contents vi

5 Executing Test Cases for Branch Monitoring 77

5.1 Challenges of Exploiting Hardware Mechanisms 80

5.2 Hardware Monitoring for Branch Testing . 82

5.2.1 Last Branch Record (LBR) . 82

5.2.2 Branch Trace Store (BTS) . 84

5.3 Sampling Hardware Mechanisms for Branch Testing 84

5.3.1 Event-Based Sampling . 85

5.3.2 Addressing the Challenges of Sampling 85

5.3.3 Improving E↵ectiveness with MultiCores 88

5.4 Empirical Evaluation . 88

5.4.1 Experiment Design . 89

5.4.2 Experiments and Results . 92

5.5 Conclusion . 100

6 THeME: Testing by HardwareMonitoring Events 102

6.1 Improvement Challenges . 103

6.2 Accessing and Sampling Branch Vectors . 104

6.2.1 Implementation Details . 104

6.2.2 User-level Branch Vector Access . 106

6.2.3 Access via Polling . 106

6.2.4 Interrupt Driven Access . 107

6.3 Improving Branch Coverage at High Sample Rates 110

6.4 Testing over Multiple Cores . 111

6.5 Discussion . 113

6.5.1 LBR Monitoring Benefits . 113

6.5.2 Improving E�ciency by Advancing Hardware 114

6.5.3 Improving E↵ectiveness Through Instrumentation 117

6.6 Conclusion . 118

Contents vii

7 Executing Test Cases for Statement Monitoring 120

7.1 Challenges of Statement Monitoring . 122

7.2 Hardware Monitoring for Statement Testing 123

7.2.1 Choosing a Mechanism . 124

7.2.2 Statement Coverage Comparisons . 125

7.3 Discussion . 127

7.4 THeME for Tablets and Smartphones . 128

8 Merits and Future Work 131

8.1 Contributions and Merits . 132

8.2 Future Work . 133

8.2.1 Selecting Test Cases Based on Estimations 134

8.2.2 Combining Hardware Sampling and Limited Instrumentation 134

8.2.3 Execution for Evaluation of Other Test Metrics 134

8.2.4 Hardware Mechanisms and VM Environments 136

8.2.5 Fault Localization . 136

Bibliography 137

List of Figures

1.1 Example Test Suite Selections Using a Näıve Selection and a Constraint-

Aware Selection. 6

1.2 Research Process- The Five Components of the Thesis Research 12

3.1 Generalized Tabular Example. 32

3.2 Example Test Cases. 33

3.3 Scaling Heuristic Example. 33

3.4 Overview of the Selection Infrastructure. 34

3.5 Case Study Applications. 35

3.6 hT2, T1i covers more requirements early in execution than hT1, T2i. 37

3.7 Coverage Preservation of Test Suite Selection. 41

3.8 Overall Coverage and Order-Aware Coverage of Test Suite Selection. 41

3.9 Memory Overhead of Test Suite Selection. 43

3.10 Time Overhead of Test Suite Selection. 43

4.1 Genetic Algorithm Procedure. 47

4.2 The GA Selection Algorithm. 51

4.3 Crossover with Random Crossover Point. 55

4.4 Mutation of a Test Tuple. 56

4.5 Overview of Selection Infrastructure. 60

4.6 GA Coverage Preservation, Coverage/Fitness, and APFD Results. 65

4.7 Genetic Algorithm Time Results. 67

viii

LIST OF FIGURES ix

4.8 The Complete Selection Generator. 70

4.9 GA vs. Random Ordering APFD Values. 72

4.10 Coverage Preservation of Test Suite Selection. 74

4.11 Genetic Algorithm Comparison to Non-Overlap-Aware 0/1 Knapsack Solvers. 74

5.1 64-bit Layout of the LBR MSR [47]. 82

5.2 The Debug Store Area [47]. 83

5.3 The LBR is incapable of detecting the fall-through branch edge from 1 to 2. 86

5.4 Overview of infrastructure to adapt LBR monitoring to branch testing. . . 89

5.5 Time overhead for event-based sampling on a single core relative to full in-

strumentation. 95

5.6 Percent of actual coverage from event-based sampling on single and multiple

cores. 96

5.7 Time overhead relative to full instrumentation of a simulation of using a

filtering mechanism. 98

5.8 Percent of actual coverage obtained during a simulation of using a filtering

mechanism. 98

6.1 Infrastructure to adapt LBR monitoring to branch testing. 104

6.2 Time overhead for LBR sampling accessed using polling relative to full in-

strumentation. 107

6.3 Time overhead for LBR sampling accessed using an interrupt-driven approach

relative to full instrumentation on test inputs. 108

6.4 Time overhead for LBR sampling accessed using an interrupt-driven approach

relative to full instrumentation on ref inputs. 109

6.5 Coverage observed using LBR sampling via the interrupt-driven approach on

ref inputs compared to instrumentation. 110

6.6 Dominator analyses based on an observed branch. 111

LIST OF FIGURES x

6.7 Time overhead for LBR sampling over multiple cores compared to using

instrumentation on multiple cores. 113

6.8 Moving private performance monitoring units to a global space to enable

Satellite Monitoring. 115

6.9 Percent of coverage observed when selectively instrumenting branches com-

pared to instrumentation. 117

7.1 Infrastructure to adapt CPU CYCLE monitoring to statement testing. . . . 123

7.2 Time overhead for Instructions Retired compared to native on test inputs. 124

7.3 Time overhead for CPU Cycles compared to native on test inputs. 124

7.4 Statement Coverage using Instructions Retired on test inputs. 125

7.5 Statement Coverage using CPU Cycles on test inputs. 125

7.6 Time overhead relative to full instrumentation on ref inputs 126

7.7 Statement coverage using CPU Cycles compared to Instrumentation on ref 126

7.8 The Cross Trigger Interface [12] . 129

List of Tables

2.1 Faults detected by test suite T = hT1, . . . , T7i. 21

4.1 GA Problem Formulation and Configuration. 50

4.2 Faults Detected by T = hT1, . . . , T7i. 61

4.3 Parameters used in GA Configurations. 64

4.4 Gradebook and JDepend APFD Values. 65

4.5 Initial, Reverse, Fault-Aware, and Genetic Algorithm Selection APFD Values. 73

5.1 Number of branch edges and actual branch coverage of original program

calculated using a software based instrumentation tool. 92

5.2 Observed BTS overhead on a subset of the SPEC2006 benchmarks. 93

5.3 Time overheads & code size of native, fall-through enabled, and software-

instrumented benchmarks using test inputs. 94

6.1 SPEC 2006 benchmark time overhead information. 105

7.1 Code Growth of Instrumentation vs CPU Cycles 126

xi

Chapter 1

Introduction

Software testing is a critical and expensive component of the software development lifecycle,

accounting for 50-60% of the total cost of software development [81]. Due to the large

number of test cases that are created during the software life cycle, the cost of executing

and evaluating all tests is often prohibitive. Executing an entire test suite during the testing

or regression testing phases of development may require days, weeks, or even months of time,

often with expensive equipment and engineering costs associated. As shown in an example

in [28], an industrial collaborator reported that for one of its products of approximately

20,000 lines of code, the entire test suite required seven weeks to run. Due to the substantial

amount of overhead incurred, developers continually seek methods to reduce the cost of

testing.

Much of the cost of software testing comes from executing the entire existing test suite.

One way to reduce the cost of testing is to reduce the set of test cases that will be run.

Reduction techniques include test suite minimization and test case selection. When reducing

the number of test cases that will be run, care must be taken not to jeopardize the quality

of the test suite. Additionally, to ensure that defects can be determined as early as possible

in the testing process, prioritization techniques can be included.

Another source of cost results from evaluating the test suite during its execution. A

common indicator for evaluating the quality of test cases is structural code coverage. This

concept refers to the portion of a software source code that is actually executed during a

1

Chapter 1. Introduction 2

particular run. Traditionally, tests are evaluated and monitored through the insertion and

execution of instrumentation that is inserted within the source code or program binary. To

instrument code, the program is analyzed to determine code points of interest. Each point

is marked by a probe, which is usually a jump or call to payload code that analyzes the

monitored information. The time overhead and code growth from instrumentation can be

high, even when monitoring simple structures. For example, the time overhead of using

instrumentation for monitoring branches has been reported to be, on average, between 10%

to 30%, with code growth ranging from 60% to 90% [76,95,106].

Given the recent trends of developing applications for mobile devices, of creating larger,

more complex systems, and of testing software more frequently in short development cycles,

there are greater challenges when testing software due to the constraints that each of these

tasks entail. These tasks necessitate that constraints such as time, power, and memory

are taken into account. When testing software on mobile devices, power and memory

constraints must be met while maintaining a high level of fault finding capability. Testing

large, complex systems and testing in short development cycles bring time constraints to

the forefront, but the ability of the test suite to detect faults should also be optimized. In

this dissertation, we develop techniques for e�cient and e↵ective software testing within

resource-constrained environments.

1.1 Test Case Selection

Due to the high costs of executing all tests within a test suite, techniques have been devel-

oped to reduce the number of test cases that must be executed while maintaining a level of

quality exhibited by the original test suite. Test suite minimization techniques attempt to

reduce the overall size of the test suite by removing obsolete and redundant test cases with-

out reducing fault finding capability [41,88,119]. A change in a program causes a test case

to become obsolete if the reason for the test cases inclusion in the test suite is removed.

A test case is redundant if other test cases in the test suite test the same functionality

Chapter 1. Introduction 3

within the program. Reduction in the size of the test suite decreases both the overhead of

maintaining the test suite and the number of test cases that must be rerun as changes are

made to the software.

Test suite selection techniques further attempt to reduce the cost of testing by selecting

and running only a subset of the test cases in an existing test suite. Selection techniques

are generally based on information about the program, modified versions of the program,

and the existing test suite [16,24,63,87].

While minimization and selection approaches may lessen the cost of performing testing,

it is quite di�cult to find a balance between the time required to select and run test cases

and the fault detection capability of the remaining test cases. Although some empirical

evidence indicates that there is little or no loss in the capability of a reduced or selected

test suite to reveal faults in comparison to the original test suite [119,120], other empirical

evidence shows that that the fault detection capabilities of reduced test suites can be severely

compromised [88]. Safe test selection techniques do exist (e.g., the technique created by

Rothermel and Harrold [87]), but the work required to prove that the subset of test cases

exposes the same number of faults as the full test suite is di�cult. Also, the conditions

under which safety can be achieved do not always hold [86,87].

Test case prioritization techniques can additionally be used to execute test cases in an

order that increases their e↵ectiveness at achieving some goal. For example, test cases might

be ordered so that those with the highest levels of estimated fault-finding capability are run

first [90]. Usually tests are arranged to improve the rate of fault detection, a metric that

reveals how quickly faults are detected during a test case’s execution [28]. An improved

rate of fault detection during testing can provide faster feedback on a system under test

and let debuggers begin their work earlier than might otherwise be possible.

Prioritization techniques are often preferred to selection techniques because they do not

eliminate any tests from the initial test suite. If test case execution is halted early, priori-

tization techniques ensure that test cases that o↵er the greatest fault detection capability

will have been executed.

Chapter 1. Introduction 4

1.2 Executing Test Cases

After tests are generated and selected during execution, they must also be evaluated to

determine the quality of the executing tests. Evaluation of quality can identify sections of

source code or execution paths that are not executed by the current test suite, identifying

a need for additional test cases. The quality evaluation can additionally identify test cases

that are redundant and thus needlessly add to the cost of test suite execution. Multiple test

cases with the same estimated fault-finding capability are unlikely to benefit the testing

process. Traditionally, instrumentation is used to analyze structural test coverage and to

estimate the fault-finding capabilities of tests.

In most tools, instrumentation is statically placed in the source or binary code before

execution and remains in the code until execution terminates. This type of instrumentation

can be expensive in both time and space and requires recompilation of the program under

test. Even though coverage may only require one instantiation of a code element, the

instrumentation generally stays in the code, causing unnecessary time overhead. Static

instrumentation may also be placed along infeasible paths, which leads to imprecision as

well as avoidable code growth [17].

Dynamic instrumentation tools, such as Pin [69], add instrumentation each time a se-

lected program element is going to be executed. A just-in-time compiler is used to compile

new code for the straight line code sequence starting at the instruction to be instrumented.

For each insertion, the tool transfers control to the generated sequence [69]. While dynamic

techniques are advantageous in that they do not require static code modification, the time

and memory overheads are generally substantially higher than that of static instrumenta-

tion [107,111].

1.3 Constraints During Testing

In recent software development environments, the overheads of testing become more re-

strictive as time, memory, and power constrain the extent to which software can be tested.

Chapter 1. Introduction 5

In many settings, multiple constraints must be taken into account at once. Despite the

constraints at hand, a high level of quality should be maintained.

1.3.1 Constraints When Selecting Test Cases

Many development environments today have greater time, power, and monetary constraints

than those traditionally experienced. As one example, frequent testing of applications and

short development cycles are gaining in popularity in many development environments.

Popular software systems such as Firefox [4], XBMC [7], and VLC [8] use nightly builds.

A nightly build is a neutral build that takes place automatically, typically executing when

no one is likely to be working on the software so that there are no changes to the source

code during the build. During the process, the most recent source code that is checked

into the source code version control system is built and linked, and test cases are executed.

The results are inspected by the arriving programmers, who generally place a priority on

ensuring that recent changes to the source code have not broken the functionality of the

software [73].

Short building and testing phases are also common in extreme programming [84]. Ex-

treme programming is intended to improve software quality and responsiveness to changing

customer requirements. Extreme programming is a type of agile software development,

which advocates frequent releases in short development cycles.

Within these short building and testing cycles, it is generally infeasible to execute all

existing test cases due to time, power consumption, and monetary constraints. Current test

suite prioritization techniques allow tests to be ordered so that test cases with the highest

fault finding capability are executed first, and selection techniques reduce the number of

tests that must be run while maintaining a high level of quality. However, given a set of

tests where each test has an estimated fault finding capability and a measure of resource

usage, more e↵ective test cases can be selected for execution when resource constraints are

considered during the selection and prioritization processes.

As an example, suppose there exists a test suite with only five test cases, as described in

Chapter 1. Introduction 6

Number of Faults Time Cost Average Faults Found per Minute
T1 21 25 0.84
T2 5 6 0.833
T3 5 7 0.714
T4 4 5 0.8
T5 8 10 0.8

(a)

Time Limit: 29 minutes
Näıve Selection Time-Aware Selection

T1 T2

T4

T5

T3

Total Faults 21 faults 22 faults
Total Time 25 minutes 28 minutes

(b)

Figure 1.1: Example Test Suite Selections Using a Näıve Selection and a Constraint-Aware
Selection.

Figure 1.1. Test case T1 can find twenty-one faults in twenty-five minutes. T2 finds five faults

in six minutes, T3 isolates five faults in seven minutes, T4 finds four faults in five minutes, and

T5 finds eight faults in ten minutes. A non-time-constrained näıve prioritization technique

would run T1, followed by T2, then T4 and T5, and finally number T3. However, in a time-

constrained situation, suppose, twenty-nine minutes, T1 alone would be run, only finding

a total of twenty-one faults. Because that test had the greatest expected rate of fault

detection, a typical prioritization technique would likely run T1 first, leaving no time for

any other tests. However, the test cases could be better selected and prioritized, maximizing

the number of faults found in the desired time period. In this example, the test cases would

be reordered so that T2, T4, T5, and T3 will run. In that order, the test suite would discover

a total of twenty-two errors in the time frame.

When testing constraints are known, a constraint-aware selection technique is likely to

detect more faults than more traditional approaches. Generally, prioritization and selection

techniques only account for fault-finding capability. However, in many popular testing

Chapter 1. Introduction 7

environments, time or power also should be considered. Due to constraints, some tests may

need to be removed from the original test suite, but the selected test cases should maintain

as high a quality as possible while also detecting faults as early in the testing process as

possible.

1.3.2 Constraints When Executing Test Cases

Traditional techniques for executing test cases and evaluating test case quality generally

lead to high time and memory overheads. In many cases, the overheads of using instrumen-

tation to estimate test quality are restrictive using either static or dynamic code coverage

techniques. For example, if a test suite requires 24 hours to execute, it would likely neces-

sitate an extra 2.4 to 7.2 hours to evaluate the quality of the test suite based on branch

coverage. When monitoring large scale programs or more complex structures, such as data-

flow or paths, the overall cost of monitoring grows and can become prohibitive in time and

space.

The memory and time overheads for executing test cases are particularly restrictive

when testing applications on low memory devices including smartphones and tablet com-

puters. Despite the popularity of such systems, there exists little support for executing tests

and evaluating test quality on the devices themselves. Mobile applications are first tested

within an emulator, and then they are later subjected to field testing for additional bug

finding. Emulators provide an inexpensive way to test applications on mobile phones to

which developers may not have physical access. However, developers recognize that when

building mobile applications, it is important that the application is tested adequately on

a real device before releasing it to users [1]. Given that memory on current smartphones

and tablets generally ranges from 128MB to 1GB of RAM, traditional test execution and

evaluation approaches using static or dynamic instrumentation can prohibitively impact the

ability to test on the devices themselves due to their increased memory footprints.

A number of techniques have been developed in an attempt to reduce the time overhead

of program execution. For example, in work by Arnold and Ryder [13], instrumentation

Chapter 1. Introduction 8

sampling is used to reduce the overhead of using complete sampling for profile collection.

Their framework switches between instrumented and non-instrumented code by placing a

sample condition on all method entries and backedges. A sample condition is checked, po-

tentially causing the tool to execute fully instrumented code, based on a trigger mechanism.

Using this combination of instrumented and non-instrumented code resulted in above 90%

accurate profiles with 6% overhead. However, since their technique doubles all methods in

size, the maximum space overhead is the sum of the sizes of the final optimized code for all

methods.

When executing test cases in environments that are constrained by time or memory,

techniques that are e�cient in terms of both time and memory are necessary to estimate

test case quality. However, these techniques should also be e↵ective, providing an accurate

estimation of test case coverage.

1.4 Challenges and Goals of Testing in Resource-Constrained

Environments

The overall goal of this dissertation is to develop and evaluate testing techniques that take

time and memory constraints into consideration while maintaining a high level of test qual-

ity. The first set of techniques considers the challenge of selecting and prioritizing test cases

that will be executed in time-constrained settings. The second set of techniques examines

novel approaches for executing test suites in time and memory-constrained environments.

Our set of techniques for selecting test cases for execution in time-constrained environ-

ments must satisfy three goals. First, our resulting set of test cases must be guaranteed to

execute within set time constraints. Second, the resulting test cases should have the highest

possible potential for overall fault detection. Third, the selected tests should be ordered in

a way that is likely to find faults earlier in test execution rather than later.

Achieving all three of the goals within one technique is challenging. While many selection

and prioritization algorithms exist, these focus only on fault-finding capability. By adding

Chapter 1. Introduction 9

a constraint into the equation, the test case selection problem becomes undecidable. An

e�cient solution to the test case selection problem would provide an e�cient solution to

the knapsack problem [36, 89]. The traditional knapsack problem states that given a set

of items, each with a weight and a value, determine the count of each item to include in

a collection so that the total weight is less than or equal to a given limit and the total

value is as large as possible. In the test case selection problem, our goal is to maximize the

estimated fault finding capability of the test suite while remaining within the constraint

boundaries. Additionally, preference is given to selections that are likely to detect faults

earlier in their execution. As the zero/one knapsack problem is NP-complete, there are

a number of algorithms that approximate the optimal solution to this problem, which

vary in complexity and optimality. Therefore, the tradeo↵s between selection fault-finding

capability and the e�ciency to compute the selection must be analyzed.

An additional challenge is that, while test cases are independent of each other, they

often cover the same or similar paths through the program. In the traditional knapsack

problem, all items to be placed in the knapsack are assumed to have a static value. By

adding more items, the value of the original items is expected not to change. The test

suite selection problem, however, ideally can account for overlapping coverage between test

cases. For example, if test cases T1 and T2 each cover the same code and require the same

execution time, a selection including T1 and T2 should have no greater value than a selection

including one T1 or T2.

In the set of techniques for executing test suites, we develop a code coverage analysis

technique that has i) a reduced time overhead, ii) a reduced memory overhead, and iii)

requires little or no code modification or dynamic code insertion. The technique should be

able to run on commodity machines, tablets, or mobile devices, and thus should not require

uncharacteristic hardware or components.

The main challenge of executing test cases is the task of monitoring program execution

e�ciently. Many techniques have been developed to statically or dynamically monitor

program execution through the use of instrumentation. However, these techniques still

Chapter 1. Introduction 10

su↵er from high time and memory overheads and often require the application under test

to be recompiled. Static or dynamic insertion of instrumentation may also perturb normal

execution.

Similar to test suite evaluation, many software development tasks such as path profiling,

trace selection, race detection, and dynamic optimization are also riddled by the challenge

of how to e�ciently monitor application behavior. In these areas, there is an emerging

trend to leverage hardware performance monitoring mechanisms and multicore technology

to mitigate and eliminate these challenges [15, 20–22, 70, 85, 96]. For example, research by

Chen et al. [21] shows that profile information can be constructed e�ciently and e↵ectively

by sampling hardware events. In their work, event monitoring incurred runtime overhead of

only 2% and no code growth compared to compiler-based instrumentation, which su↵ered

10x time overhead over native execution.

Compared to instrumentation, the use of hardware mechanisms is attractive as they

can perform monitoring with very little overhead, and their use can remove the need for

instrumentation. When monitoring using hardware mechanisms, a counter and mechanism

need only be set up once per core during test execution, and reading the mechanism is

inexpensive. For example, Dey et al. [26] report that the initial setup for a counter takes

approximately 318µs, and reading a counter value takes only 3.5µs on average. In addition,

using hardware performance monitors in lieu of instrumentation incurs no code growth and

does not require recompilation.

The use of hardware mechanisms for monitoring is additionally appealing because nearly

all commodity desktop, laptop, tablet, and mobile devices now available contain processors

that support hardware monitoring on single and multiple cores. For example, the Intel

Nehalem processor provides the capability to track more than 2000 di↵erent performance

events, and recent Linux kernel patches provide user-level support for nearly 200 of these

mechanisms [31]. Many processors also include advanced hardware monitoring components

that can provide large amounts of event information.

Despite the success of exploiting hardware mechanisms in other software engineering

Chapter 1. Introduction 11

tasks, advances in hardware monitoring and multicore technology has not been fully ex-

ploited in software testing. Hardware counters can be configured on each processor core to

increment when certain hardware events occur, providing count information, or they can

be used for sampling. When a sample is taken, performance monitoring software records

the system state including the current instruction information, register contents, etc. Such

sampled information is extremely useful in areas such as profiling or dynamic optimizations

because the samples can be used to estimate profiles or partial program behavior [21].

Software testing, however, relies on more exact execution information. For example,

in branch testing, instrumentation is used to monitor all source code level branches with

which the tester is concerned and monitor only those branches. While hardware mechanisms

tracking a particular event will observe all events of that type during program execution,

sampled data may miss certain events such as infrequently executed branches. Also, the use

of hardware mechanisms implies that samples are likely to include branches that are not

associated with the test program such as those in setup, teardown, or library code. Although

recording hardware events is essentially free, there is a cost associated with reading the

values from the hardware. Therefore, a balance must be found between the amount of

information collected and the total overhead of sampling.

In our research, we address each of these challenges in order to meet our goals of develop-

ing e↵ective test case selection techniques and test case execution techniques for execution

in resource-constrained environments.

1.5 Research Overview

This section summarizes the thesis research. First, we introduce the five projects of the

dissertation research and describe a summary of the solutions found in the research that ad-

dress the targeted challenges specified in Section 1.4. Then we summarize our contributions

and outline the remainder of the dissertation.

Chapter 1. Introduction 12

Figure 1.2: Research Process- The Five Components of the Thesis Research

1.5.1 Description of the Research Process

This research is developed in three stages, shown in Figure 1.2. In the first stage, Test Suite

Selection, we identify and develop techniques that can be used to select test cases with regard

to a given time constraint while also considering test case quality. While the likelihood of

a particular test to find faults varies between di↵erent versions of the code, we assume in

this work that there is no prior knowledge of test behavior or of code changes between test

suite executions. Estimating fault-finding capability based on software revisions is outside

the scope of this work.

We first developed seven techniques based on 0/1 knapsack approximation algorithms

to select tests for execution in a time constrained environment while maintaining high test

quality. Other resources such as power consumption or monetary budget constraints can be

substituted for time constraints with no modification to the techniques. We found that when

provided with a testing time budget, 0/1 knapsack techniques can e�ciently create reduced,

reordered test suites that quickly cover test requirements and always complete execution

within the specified time limit. However, we also found that even the most sophisticated 0/1

knapsack solvers do not always identify the highest quality test case selections. This is due

to the fact that traditional 0/1 knapsack solvers do not account for coverage overlap among

Chapter 1. Introduction 13

test cases. We hypothesized that a test selection technique that additionally accounts for

coverage overlap will significantly improve the overall e↵ectiveness of the final test suite but

at the cost of e�ciency while generating the selection.

To verify this hypothesis and to generate higher quality test suite selections, we next

developed a technique that uses a genetic algorithm to select and prioritize a test suite

that will run in a time constrained execution environment. In our genetic algorithm de-

sign, we rephrased the traditional 0/1 knapsack problem to account for coverage overlap

between test cases. Our experimental analysis of the selections produced by the genetic

algorithm demonstrate that the resulting selections lose little of the original test suite’s

value with regard to (i) original coverage preservation, (ii) overall coverage, and (iii) fault

finding capability. We also compared the e↵ectiveness of our resulting test case selection to

those generated by current prioritization techniques that are not naturally constraint aware,

revealing that the selections produced by the genetic algorithm are superior to the other

test suite reorderings in the face of time constraints. We learned that while overlap-aware

selectors require a larger amount of time overhead to select and order test cases, they are

useful in testing contexts where correctness is the highest priority.

In the Test Suite Execution: Branch Coverage phase, we developed a new approach to

monitoring program execution that exploits recent hardware advances for use in branch

coverage analysis. We first explored how several available hardware mechanisms can be

used for branch coverage analysis and identified the overheads their use requires. For test

monitoring, hardware mechanisms were used to sample program execution. When a sample

is taken, performance monitoring software recorded the system state including the current

instruction information, register contents, etc. Some mechanisms are capable of gathering

more information in fewer samples and of reporting more precise information. Thus, in this

phase, we determined what hardware mechanisms are most applicable for use in test case

execution when monitoring branch coverage and evaluated the benefits and disadvantages

of using each mechanism within resource-constrained environments.

Regardless of the hardware mechanism selected, taking advantage of hardware mecha-

Chapter 1. Introduction 14

nisms leads to the challenge of determining how to gather the most complete information

possible while generating acceptable overhead in terms of time and code growth. While

inexpensive, there is a cost associated with accessing and reading values from hardware.

Therefore, in this phase, we demonstrated the tradeo↵s between the sampling rate, time

overhead, and code growth that can be obtained by sampling branch-based hardware mech-

anisms. We learned that the code growth needed for e↵ective monitoring is significantly

smaller than that of monitoring using instrumentation, making our techniques useful par-

ticularly in memory constrained environments. Our techniques also can be used to monitor

program coverage with significantly less time overhead than instrumentation.

We next made use of these mechanisms and developed a system for performing e�-

cient branch coverage analysis during program execution. We first developed our system

called THeME: Testing by Hardware Monitoring Events. THeME takes a pure hardware

approach to branch testing. Analysis of our system demonstrated the e�ciency achieved

when calculating coverage information by sampling hardware. Additionally, we evaluated

how performing branch testing using hardware sampling a↵ects the completeness of cover-

age monitoring. To improve the e↵ectiveness of our approach, we also analyzed the e↵ects

of integrating hardware monitoring information with the compiler infrastructure, which

improves the completeness of coverage monitoring through the use of static analysis tech-

niques. Finally, we explored how multiple cores can be used in conjunction with hardware

monitoring to improve the time overhead of structural testing. The results show that up to

90% of the actual coverage can be determined with less time overhead and negligible code

growth compared to instrumentation.

In the final phase Test Suite Execution: Statement Coverage, we extended THeME

to execute tests while evaluating statement coverage. Statement coverage is widely used

in industry as a common criterion for measuring the thoroughness of software test-

ing [18, 25, 55, 92, 108]. However, statements are also more expensive to monitor than

branches, leading to higher memory and time overheads. In our statement coverage evalua-

tion technique, we modified THeME to make use of commonly accessible hardware mecha-

Chapter 1. Introduction 15

nisms that are representative of mechanisms available on commodity machines, tablets, and

mobile devices alike. We evaluated THeME for statement coverage monitoring using three

potential hardware mechanisms. After selecting the mechanism with the highest e�ciency

and e↵ectiveness, we then analyze THeME’s success at monitoring for statement coverage

compared to instrumentation approaches. The results show that up to 79% of the state-

ment coverage reported by instrumentation can be reported with lesser time overhead than

instrumentation with no code growth.

Finally, we discuss the challenges of porting and executing the THeME system on tablets,

smartphones, or other mobile devices on which resources are limited. Although current ker-

nel implementations do not support hardware mechanism sampling, the statement coverage

results are indicative of how the THeME system would perform on such devices. With

additional kernel support, THeME can be used as a highly extensible and portable testing

system that provides an e�cient and e↵ective approach to software testing.

1.5.2 Contributions of the Dissertation

The major contributions of this dissertation are the following:

1. An evaluation and discussion of the tradeo↵s between time-aware test case selection

quality and the e�ciency of selecting using 0/1 Knapsack approximation algorithms [9,

116].

2. The development and evaluation of a time-aware test case selection infrastructure

based on a genetic algorithm [115,116].

3. An exploration and development of techniques that will evaluate the potential of

exploiting hardware mechanisms in branch test coverage analysis to improve time

overhead and code growth [100].

4. The development and evaluation of a runtime system, THeME, to perform e�cient

branch coverage analysis using hardware monitoring mechanisms and multicore tech-

nology [117].

Chapter 1. Introduction 16

5. The extension of THeME to perform e�cient and e↵ective statement coverage anal-

ysis.

The remainder of this dissertation is organized as follows. In Chapter 2, we discuss

background information and related work. Then contribution 1 is presented in Chapter 3.

Contribution 2 is presented in Chapter 4. Chapters 5 and 6 then focus on exploiting recent

hardware advances for branch coverage analysis. In Chapter 5, we present contribution 3.

We then apply the lessons learned in Chapter 5 to develop and evaluate the THeME system,

contribution 4, which is described in Chapter 6. In Chapter 7, we present contribution 5.

Finally, Chapter 8 concludes the dissertation and includes a discussion of future work.

Chapter 2

Background and Related Work

This thesis focuses on two main challenges. The first is selecting test suites for e�cient and

e↵ective execution within resource-constrained environments. The second is executing the

selected test cases and evaluating their quality e�ciently and e↵ectively. In this chapter,

we first discuss background regarding test suites and their properties, the metrics that are

commonly used to estimate test suite quality, and a metric to quantify the fault-finding

capability of tests. We then present work that is related to our test case selection and test

suite execution techniques.

2.1 Test Suite Design and Analysis

To assess the quality and determine the level of adequacy of an application, a test suite

is executed where each test case of the test suite is designed to ensure that quality is

maintained. A test suite is defined as follows [49].

Definition 1 A test suite T is a triple h�0, hT1, . . . , Tn

i , h�1, . . . ,�n

ii, consisting of an

initial external test state, �0, a test case sequence hT1, . . . , Tn

i for some state �0, and

expected external test states h�1, . . . ,�n

i where �
i

= T
i

(�
i�1) for i = 1, . . . , n.

�
i

denotes the externally visible state of the application under test. Informally, �
i

can be

seen as a set of pairs made up of a variable name followed by the value for the variable

17

Chapter 2. Background and Related Work 18

name that is used to compare the actual values computed with the expected values. Test

suites are broken up into test cases that are sequences of test operations that cause the

application to enter states that are visible to the specific test only.

Definition 2 A test case T
i

2 hT1, . . . , Tn

i is a triple h�0, ho1, . . . , ox

i , h�1, . . . , �x

ii, con-

sisting of an initial test state, �0, a test operation sequence ho1, . . . , ox

i for state �0, and

expected internal test states h�1, . . . , �x

i where �
y

= o
y

(�
y�1) for y = 1, . . . , x [49].

Test suites may also be independent.

Definition 3 A test suite T is independent if and only if for all � 2 {1, . . . , n},�
�

= �0

[49].

Since each test case in an independent test suite returns the application under test back to

the initial state, �0, before it terminates, the tests can be run in any order. In this research,

because test cases are being evaluated singularly and reordered, all test cases are assumed

to be independent.

2.1.1 Evaluating Test Suite Quality

A fault within the program under test will manifest itself as a failure only if a test case

executes the fault, causes the fault to infect the data state of the program, and propagates

to the output. The fault infects the data state if it changes something within the program,

for instance, a variable’s value, and it propagates through to the output if the output is

incorrect [112].

By making sure the code containing faults is executed, there is a greater likelihood that

the faults will infect the data state and propagate to output. Thus, many program-based

adequacy criterion have been developed to determine whether or not a test suite adequately

tests the application [118]. A test with high adequacy covers more of the program structure

and therefore is more likely to reach parts of the program containing defects.

There are many test adequacy criteria that may be used to evaluate the quality of a test

suite. Program-based adequacy criterion involve analysis of the program’s structure. For

Chapter 2. Background and Related Work 19

example, structurally-based metrics may measure how many nodes, branch edges, or paths

are visited when the test is run.

Statement coverage criteria and branch coverage criteria are the two most popular ex-

amples of structural adequacy criteria that are used in existing coverage analysis tools and

by industry [118]. Statement coverage criteria are all-nodes based. Since the fault-failure

model indicates that it is impossible to reveal a fault without including that line in a test, all

statements in a program need to be executed [112]. A complete path is a path in a control

flow graph that starts at the program graph’s entry node and ends at its exit node [49].

Then the all-nodes (e.g., statement coverage) test adequacy criterion can be defined as the

following by Kapfhammer [49]:

Definition 4 A test suite T for control flow graph G = (N,E) satisfies the all-nodes test

adequacy (statement coverage) criterion if and only if the tests in T create a set of complete

paths ⇧
N

that include all n 2 N at least once.

While statement coverage criterion will execute all statements in an application’s code,

it still may not execute all of the transfers of control within the application’s control flow

graph. By covering all of the edges in a control flow graph, all nodes will also be covered. A

test adequacy criterion C
↵

is said to subsume a test adequacy criterion C
�

if every test suite

that satisfies C
↵

also satisfies C
�

[49]. The all-edges test adequacy criterion (e.g., branch

coverage) subsumes statement coverage tests, and thus every test suite that satisfies state-

ment coverage also satisfies branch coverage. The branch coverage test adequacy criterion

can be defined as the following [49]:

Definition 5 A test suite T for control flow graph G = (N,E) satisfies the all-edges test

adequacy (branch coverage) criterion if and only if the tests in T create a set of complete

paths ⇧
E

that include all e 2 E at least once.

In this research, statement and branch coverage are calculated using our THeME system.

When using an existing coverage calculating tool called Emma for evaluating Java programs,

Chapter 2. Background and Related Work 20

we instead look at the forms of coverage criteria that are provided by the tool [91]. These

coverage criterion include class coverage, method coverage, and block coverage.

An executable class is considered to have been covered if it has been loaded and initial-

ized, and a method is considered to be covered when it has been entered. A basic block

is a sequence of bytecode instructions without any jumps or jump targets. If the basic

block is entered, it executes as one atomic unit. Because several source lines can be in

the same basic block, including non-executable lines of code such as comments or import

statements, it makes sense to keep track of basic blocks rather than individual lines at the

time of execution. As branching logic is created in the code, basic blocks are created. Thus,

basic block coverage is a very desirable type of coverage metric and it can be obtained with

less overhead than other structural criteria such as path coverage. Note that 100% basic

block coverage always implies 100% executable line coverage. However, the converse is not

true [91].

2.1.2 Measuring Test Suite E↵ectiveness

A test suite’s quality is estimated using the coverage metrics described in Section 2.1.1,

but to measure its e↵ectiveness in the presence of errors, more is needed. One method of

measuring e↵ectiveness is by the rate of faults detected.

To quantify the goal of increasing a subset of the test suite’s rate of fault detection, a

metric called APFD developed by Rothermel et al. can be used. The APFD measures

the rate of fault detection per percentage of test suite execution [89,90], and it is calculated

by taking the weighted average of the number of faults detected during the run of the test

suite. APFD can be calculated as follows using a notation introduced by Kapfhammer [49]:

Let T be the test suite under evaluation, g the number of faults contained in the program

under test P , n the total number of test cases, and reveal(i, T) the position of the first test

in T that exposes fault i.

APFD(T, P) = 1�
P

g

i=1 reveal(i, T)
ng

+
1
2n

.

Chapter 2. Background and Related Work 21

Faults Test Cases
T1 T2 T3 T4 T5 T6 T7

f1 X X
f2 X
f3 X X
f4 X
f5 X X

Table 2.1: Faults detected by test suite T = hT1, . . . , T7i.

For example, suppose that we have the test suite T = hT1, . . . , T7i and we know that

the tests detect faults f1, . . . , f5 in P according to Table 2.1. Consider the two priori-

tized test suites T1 with test sequence hT3, T2, T1, T6, T5, T4, T7i and T2 with test sequence

hT1, T5, T2, T4, T6, T7, T3i. Incorporating the data from Table 2.1 into the APFD equation

yields

APFD(T1, P) = 1� 3 + 1 + 2 + 6 + 2
7 ⇤ 5

+
1

2 ⇤ 7
= 1� 0.4 + 0.07

= 0.67,

and

APFD(T2, P) = 1� 1 + 7 + 3 + 4 + 3
7 ⇤ 5

+
1

2 ⇤ 7
= 1� 0.51 + 0.07

= 0.56.

Thus, according to the APFD metric, T1 has a better rate of fault detection than T2,

and is therefore more desirable. Note that calculating APFD is only possible when prior

knowledge of faults is available. APFD calculations therefore are only used for evaluating

test suites after faults are known.

Chapter 2. Background and Related Work 22

2.2 Related Work

In this section, we discuss related work regarding test case selection and prioritization,

structural code coverage evaluation, and leveraging hardware performance monitoring.

2.2.1 Test Selection and Prioritization

The test selection techniques presented in this dissertation are related to existing approaches

in both test suite selection and prioritization.

Many test suite selection algorithms (e.g., [16,23,24,41,63,79,87,88,119,120]) have been

developed to reduce the number of test cases that must be executed to achieve su�cient

fault detection capability, although some of the original test suite’s quality may be lost.

Minimization-based test selection techniques (e.g., [33,43,61,62,105] attempt to select min-

imal sets of test cases from a test suite that yield coverage of modified or a↵ected portions of

the program. Dataflow-coverage-based regression test selection techniques (e.g., [42,80,104])

select test cases that exercise data interactions that have been a↵ected by modifications.

Several safe regression test selection techniques have also been proposed. Techniques that

are not safe can fail to select a test case that would have revealed a fault in the modified

program [24,58,87,113].

While these techniques are successful in reducing the number of tests that must be run,

their selection algorithms are based on estimated fault-finding capability and do not make

any guarantees that the selected tests will operate within a specified bound on resources.

There are also many existing approaches to test suite prioritization that focus on the cov-

erage of the structural entities within the program under test. Unlike our time-constrained

selection and prioritization technique, none of these prioritization schemes guarantee that

the execution of a reordered test suite will terminate within a specified testing time limit,

and most rely on knowledge of program modifications or past testing history. Like the

present work, Kim and Porter acknowledge that testing often occurs in a time constrained

environment [54]. Using methods from statistical quality control, their technique uses test

Chapter 2. Background and Related Work 23

histories (that include test cost information) to prioritize a test suite according to either

code coverage or fault detection. Srivastava and Thiagarajan report on a testing tool that

prioritizes a test suite according to the coverage of program changes at the basic block

level [102]. Even though their Echelon tool can consider the execution time of each test

case, the experimental analysis does not evaluate this configuration of their testing frame-

work. Elbaum et al. also present prioritization algorithms that incorporate both the cost

and the criticality of a test case [30]. Unlike our approach, their method does not heuris-

tically solve instances of the knapsack problem in order to prioritize test suites for time

constrained execution.

Similar to our research, Elbaum et al. and Rothermel et al. focus on general test pri-

oritization and the identification of a single test case reordering that will increase the ef-

fectiveness of regression testing over many subsequent changes to the program [29,89]. Do

et al. present an empirical study of the e↵ectiveness of test prioritization in a testing en-

vironment that uses JUnit [27]. This paper is also related to our work because Do et al.’s

prioritization technique uses coverage information at the method and block levels. Li et

al. describe and empirically evaluate a number of test suite prioritization algorithms, in-

cluding one approach that uses a genetic algorithm and four others that use hill climbing,

greedy, additional greedy, and k-optimal greedy methods [65]. Unlike our technique, none

of these algorithms take into account a time budget. Finally, Yoo and Harman describe

a multi-objective test case selection algorithm that can support time-aware prioritization

by identifying how di↵erent test orderings balance both cost and coverage [123]. In our

problem statement, however, there are no conflicting objectives. We assume that our test

cases selection will be allowed to run for its entire allotted time because it was specifically

generated to execute under those given constraints. Thus, unlike Yoo and Harman [123],

we emphasize the total coverage of a prioritization, letting the speed at which faults are

found be a secondary concern.

Recent research by Memon et al. and Karlsson et al. also assumes that the building and

testing of a software application is constrained by the amount of time available in an evening

Chapter 2. Background and Related Work 24

[51,73]. While Memon et al.’s testing infrastructure is highly automated, it does not directly

consider the time constraint and thus cannot ensure that testing will always complete in

the allotted time [73]. Instead of focusing on testing tools and techniques, Karlsson et al.

discuss software process guidelines that govern the routine of a daily build [51]. Finally,

Sa↵ et al. explain how to use test factoring to automatically generate fast unit tests from

slower system tests [93] and Sa↵ and Ernst explore the use of these factored test cases

within a continuous testing methodology [94]. Since this prior research proposes methods

for improving the e�ciency of testing, they are complementary to the testing algorithms

presented in this dissertation.

Finally, Kapfhammer et al. describe a test suite execution infrastructure that can execute

tests when memory is constrained and subsequently reduce the time overhead associated

with testing [50]. However, this technique does not provide guarantees that testing will

operate within a specified bound on time and space overhead.

Several other techniques have been developed that combine test selection and prioritiza-

tion. Jones and Harrold [48] created a test-suite reduction and prioritization technique that

can incorporate aspects of modified condition/decision coverage, which is a multiple entity

criteria. In this work, they generate reductions and prioritizations based on properties of

modified condition/decision coverage. Smith et al. [98] present an approach that constructs

tree-based models of a programs behavior during testing and employs these trees while re-

ordering and reducing a test suite. Their test reduction component identifies a subset of the

original tests that covers the same call tree paths. Their prioritization technique reorders

a test suite so that it covers the call tree paths more rapidly than the initial test ordering.

Smith and Kapfhammer [99] also evaluate four existing algorithms for test suite reduction

and prioritization techniques. They enable these techniques to use greedy choice metrics

that consider both test case cost and the ratio of coverage to cost.

Each of these techniques focus on reduction in the number of test cases, but they, like

the earlier techniques discussed, do not make any guarantees that final test selections can

execute within specified resource constraints.

Chapter 2. Background and Related Work 25

2.2.2 Executing Test Cases E�ciently

There exist a number of tools that can be used to evaluate the structural quality of test

cases during program execution. Some of these include CoverageMeter [106], Bullseye-

Coverage [25], Clover [14], gcov [], Emma [91], JCover [103], IBMs Rational Suite [46],

and Cobertura [2]. A comparison of these tools has been written by Yang et al. [121].

Each of these tools statically instrument a program with probes that remain for the entire

execution of the tested program. Instrumentation is also placed along infeasible paths un-

necessarily [17]. The time overhead of using instrumentation for monitoring branches with

these tools has been reported to be, on average, between 10% to 30%, with code growth

ranging from 60% to 90% [76, 95, 106]. When monitoring statement coverage, execution is

slowed down by a factor of 7 on average [107].

Several other tools exist for performing dynamic instrumentation for test coverage eval-

uation. These include PIN [69], Dyninst [44], Paradyn [74], and Jazz [75, 76]. Dyninst and

Jazz appear to incur the lowest time and memory overheads when dynamically inserting and

removing instrumentation to evaluate test quality. Tikir and Hollingsworth use a dynamic

technique for node coverage with Dyninst [44, 107]. The Dyninst tool dynamically inserts

instrumentation on method invocations for node coverage. A separate thread periodically

removes the instrumentation. This instrumentation remains until collected, even when it is

not needed. They report slowdowns of 1.001 to 2.37 (average 1.36) for C programs. Memory

needs were not evaluated.

In Jazz, a tool developed by Misurda et al. [75, 76], instrumentation is similarly added

only when needed for monitoring. In their tool, however, instrumentation is removed as

soon as possible. Misurda et al. reported that for their tool, JAZZ, the slowdown over

uninstrumented code for their dynamic approach varies from 0.98 to 1.56 with a 1.18 average

slowdown when calculating branch coverage. Memory needs for branch coverage execution

are on par with static instrumentation techniques [76].

Chapter 2. Background and Related Work 26

2.2.3 Hardware Performance Monitoring and Sampling

Instead of evaluating structural quality of test cases through the use of instrumentation,

in this dissertation, we exploit hardware performance mechanisms. Much work exists that

leverages hardware performance monitoring support for event tracking in optimization,

profiling, and debugging, but the potential of leveraging advances in hardware monitoring

and multicore technology has been little researched in software testing.

The work by Shye et al. [97] is most closely related to our research regarding using

hardware mechanisms for monitoring. Their technique calculates basic block coverage using

a combination of static analysis and Branch Trace Bu↵er (BTB) samples for the purposes

of debugging. The BTB, available on the Itanium-2, is much like the LBR in that it

is a circular bu↵er that stores the instruction and target addresses of branches executed.

However, the BTB holds only four branches. In their work, after gathering all branch vector

information, each vector is mapped to a partial path to calculate basic block coverage. Using

this technique, they observe on average 47% of actual number of covered basic blocks using

a sampling period of 100K with a performance overhead of approximately 25%. To improve

coverage precision, they demonstrate the coverage increase when sampling is supplemented

by a dominator analysis. Also, they perform aggregated runs, which is undesirable when

testing, to try to gather more complete data.

In this dissertation, we use a more commonly available hardware mechanism that tracks

the last sixteen executed branches. This allows for more consecutive branch information to

be observed and for more samples to be gathered per period than if using the BTB. Thus, our

techniques achieve higher quality coverage data at lower sampling rates. We also implement

more sophisticated sampling techniques and use multicore technology to improve the quality

of our branch coverage approach. When performing statement coverage, our techniques use

simpler hardware mechanisms that are available on nearly all devices, unlike the BTB.

Following the work of Shye et al. [97], Tran et al. [110] use specialized hardware to

improve monitoring of branches. Using this hardware, they are able to achieve nearly 100%

coverage with only 8% to 12% overhead. However, the hardware used is specialized, and

Chapter 2. Background and Related Work 27

the benchmarks are not standardized.

Hardware mechanisms have been successfully applied outside of testing and debugging

for low overhead profiling of microarchitectural events. While hardware counters have been

used in areas such as cache profiling [60], they have also proven useful for path profiling [10].

In work by Azimi et al. [15], a technique to use limited performance counters to simultane-

ously profile multiple events using sampling for performance analysis is introduced. Recent

work by Ramasamy et al. [85] uses retired instruction events to dynamically calculate edge

frequency estimates for profiling with a time overhead of less than 2% and no size increase.

Mars and Hundt [70] and Chen et al. [22] use hardware performance monitors to aggressively

tune dynamic optimizations. Yilmaz and Porter [122] also recently applied hardware mecha-

nisms to distinguish failed executions from successful executions at a fraction of the runtime

overhead cost of using software-based execution data. Finally, Sheng et al. [96] created a

novel race detection tool that samples memory traces by sampling hardware mechanisms

rather than using invasive instrumentation.

Sampling has also been used in software tasks, but without the use of hardware mecha-

nisms, to improve e�ciency. In work by Arnold and Ryder [13], instrumentation sampling

is used to reduce the overhead of using complete sampling for profile collection. Their

framework switches between instrumented and non-instrumented code by placing a sample

condition on all method entries and backedges. A sample condition is checked, potentially

causing the tool to execute fully instrumented code, based on a trigger mechanism. Us-

ing this combination of instrumented and non-instrumented code resulted in above 90%

accurate profiles with 6% overhead.

Lightweight instrumentation combined with sampling of program executions has also

been used for statistical bug isolation [66, 67]. Although these works do not focus on sam-

pling techniques or applications of hardware, they demonstrate how instrumentation and

sampling can be used together to produce highly accurate but low overhead results.

Chapter 3

Knapsack Solvers for Time-Aware Selection

In many development settings that are popular today, there is a set amount of resources

budgeted for software testing [3,4,6–8]. All test cases must be executed in a limited amount

of time, often just overnight, in order to maintain a high level of program quality and

to support rapid development. Current test selection techniques reduce the cost of the

original test suite by removing tests that are unlikely to find faults. However, selection

techniques only reduce test suites to the point of not degrading the quality of the original

test suite. They do not guarantee that the resulting tests will execute within an particular

set of constraints. Prioritization techniques may take constraints into account, but they

still make the assumption that all tests in the test suite can be executed. If testing is halted

early due to constraints, test prioritization techniques aim to ensure that the tests that are

most likely to find bugs will execute as early as possible.

In this chapter, we discuss how the selection and prioritization problems can be combined

to produce high quality test selections that are guaranteed to execute within given resource

constraints. The resource-constrained test case selection problem is similar to the NP-

complete zero/one knapsack problem [36,89]. The 0/1 knapsack problem can be described

in the following manner: given a knapsack with fixed capacity and a set of distinct items

each with its own value and weight, find the maximum cumulative value of items that can

fit in the knapsack such that the sum of the item weights in the knapsack does not exceed

28

Chapter 3. Knapsack Solvers for Time-Aware Selection 29

the knapsack’s capacity [52].

We first present a description of the resource-aware test suite challenge as a 0/1 knap-

sack problem. We then describe seven knapsack approximation algorithms that can be used

for test case selection within resource constrained environments. The goal is to produce a

test suite selection that is guaranteed to always execute within given resource constraints.

Additionally, the selection should have the a high potential for overall fault detection com-

pared to the original test suite. Finally, the ordering of the test cases within the selection

should be likely to find faults earlier in test execution rather than later. By having the

highest quality tests execute early, we can provide faster feedback on the system under test.

In our experimental analysis, we empirically evaluate the e�ciency and e↵ectiveness of

the seven techniques that construct resource-aware test suite selections. When selecting

test cases, we constrain the amount of time available for testing. Power consumption and

monetary budgets are analogous constraints and could be substituted for time in each

algorithm.

In lieu of directly measuring fault detection e↵ectiveness, we analyze three metrics. The

first is code coverage, described in Section 2.1.1. Code coverage is the percentage of the

structural elements within the program (e.g., basic blocks or methods) that are executed

during testing, with a high value indicating strong e↵ectiveness. The second metric, coverage

preservation, is the proportion of code covered by the selected tests compared to the code

coverege of the original test suite. We also define a third metric, which we call order-aware

coverage. Order-aware coverage gives preference to test selections that cover a greater

amount of code earlier in the execution phase of the selected tests. A higher order-aware

coverage implies that the test cases selected are also ordered in a way to be more likely to

find faults early in test execution rather than later.

We experimentally determine that if there is little overlap between the test cases, greedy

approaches to the test selection problem are particularly e↵ective and require the least time

and memory. More sophisticated selection techniques are likely to maintain a higher level

of quality than simple solvers, although neither group can make any guarantee regarding

Chapter 3. Knapsack Solvers for Time-Aware Selection 30

the final cumulative coverage of the result.

3.1 Time-Aware Selection

To address the problem of constructing a time-constrained test suite selection, we use tradi-

tional techniques to solve the 0/1 knapsack problem. We define a test suite T as described by

Definition 1. The selection of T is denoted T 0. The test cases within T are written as defined

in Definition 2. As is preferred in testing practice, we require that each test in T be indepen-

dent (Definition 3) so that we can guarantee that for all T
i

2 hT1, . . . , Tn

i,�
i�1 = �0 [49,82].

Thus there are no test execution ordering dependencies. This requirement enables the se-

lection technique to select and reorder tests into any sequence that maximizes the suite’s

ability to isolate defects.

In the context of the 0/1 knapsack problem, the maximum amount of time within which

a selected test suite must run is the maximum capacity of the knapsack, the test cases are

the knapsack items, each test case’s execution time is its weight, and its percentage of code

coverage is its value. When these values are passed into a 0/1 knapsack algorithm, the

output is a final solved knapsack, namely, a test case selection that fits within the desired

time limit.

As defined by Kellerer et al., the 0/1 knapsack problem can be defined formally in terms

of test suite selection in the following manner [52]:

Maximize:
P

n

i=1 c
i

x
i

Subject to:
P

n

i=1 t
i

x
i

 t
max

, x
i

= 0 or 1,

where c
i

is the code coverage, t
i

is the execution time of test case T
i

, and t
max

is the

maximum time allowed for the execution of the selection.

3.2 Knapsack Solvers as Selectors

The 0/1 knapsack problem is an NP-complete problem [36]. There are a number of algo-

rithms that approximate the optimal solution to this problem, which vary in complexity

Chapter 3. Knapsack Solvers for Time-Aware Selection 31

and optimality. Seven knapsack algorithms are used in this chapter and are described in

terms of the test suite selection problem as follows:

Random: While the total execution time of the selection is less than or equal to the

maximum allowed time limit, select a test case T
i

randomly from the set of unused test cases

and add it to the selection. If the addition of a test case causes the maximum time limit

t
max

to be exceeded, remove that test case and return the remaining test case ordering.

Greedy by Ratio: For each test case T
i

, calculate the code-coverage-to-execution-time

ratio, c

i

t

i

. Sort the test cases in descending order according to this ratio, then successively

place test cases from this ordering into the selection until the addition of the next test

would cause the maximum time limit to be exceeded. Greedy by Value and Greedy by

Weight are performed similarly, except code coverage and test execution time are used in

place of the code-coverage-to-execution-time ratio, respectively.

Dynamic Programming: Divide the problem into subproblems, and solve each piece

separately, storing the answers so as to avoid repeatedly solving the same problem [52]. The

total code coverage of the selection for i test cases and t
max

execution time is zero if there

are no test cases in the solution or if t
max

is zero. Otherwise, the solution for i test cases

and t
max

time either includes the ith test case or does not. In the first case, the total code

coverage of the selection for i test cases and t
max

time is equal to the total code coverage

of the selection for i� 1 test cases and t
max

� t
i

time plus the code coverage of the ith test

case, c
i

. In the second case, the total code coverage is equal to the code coverage of the

selection for i � 1 test cases and t
max

time. The best solution is chosen as the final test

suite selection.

Generalized Tabular: Like dynamic programming, solve subproblems of the main

problem using a large table [39]. The table has t
max

+ 1 rows and n + 1 columns, where n

is the number of test cases. Each row i represents a problem with maximum time limit ta
i

for values 0 to t
max

. The last item in each row is the optimal coverage solution, denoted

copt
ta

i

, for that problem. An example with test cases hT1, T2, T3i having coverages 2, 1, 3,

and times 3, 4, 5, respectively, and t
max

= 5 is shown in Figure 3.1. As seen in the example,

Chapter 3. Knapsack Solvers for Time-Aware Selection 32

ta T1 T2 T3 copt

0 0 0 0 0
1 0 0 0 0
2 0 0 0 0
3 2+copt0 0 0 2
4 2+copt1 1+copt0 0 2
5 2+copt2 1+copt1 3+copt0 3

Figure 3.1: Generalized Tabular Example.

the optimal coverage for each time limit is stored in the last column of the table, while the

rows are numbered by the time limits. The other columns each correspond to a test case

T
j

. Element a
ta

i

,T

j

, as shown in Figure 3.1, is equal to c
j

+ copt
ta

i

�t

j

if T
i

can be added

within the time limit ta
i

, and 0 otherwise. After the table is complete, the full solution is

recovered by working backward and retracing the steps taken to compute the elements of

the table.

Core: Create a “core” solution using a subset of test cases, then use this core to find a

solution to the overall selection problem [83]. First, find a good solution (the core solution)

using the greedy by weight algorithm. Then, using the dynamic programming algorithm,

try to find a better solution by replacing each test case in the core solution with another

unused test case.

In addition to these seven techniques, each algorithm can be used in conjunction with

scaling. When scaling, the problem is reduced by means of a theorem described by Gossett

[39]. The version specific to the selection problem addressed in this chapter follows.

Suppose that for a selection with maximum allowed execution time t
max

, there are n

test cases in the test suite. Denote the code coverage values of the test cases by c1, c2, . . . , cn

and the execution time of the test cases by t1, t2, ..., tn. Assume the test cases have already

been ordered such that c1
t1
� c2

c2
� . . . � c

n

t

n

. If c1⇥
j

t

max

t1

k
� c2⇥

⇣
t

max

t2

⌘
, then it is possible

to find an optimal knapsack solution that includes T1.

To perform scaling, order all test cases by their code-coverage-to-execution-time ratios,

as indicated by the theorem. Check if the inequality c1 ⇥
j

t

max

t1

k
� c2 ⇥

⇣
t

max

t2

⌘
holds. If it

Chapter 3. Knapsack Solvers for Time-Aware Selection 33

Test Case T1 T2 T3 T4 T5 T6

coverage 4 5 2 6 8 1
time 105 60 60 95 225 32
c/t ratio 0.0381 0.0833 0.0333 0.0632 0.0356 0.0313

Figure 3.2: Example Test Cases.

Comparison Inequality Action
Compare T2 and T4 5 ⇥

⌅
445
60

⇧
� 6 ⇥

�
445
95

�
Add T2 to T 0

35 � 28.1053 Time left = 385

Compare T4 and T1 6 ⇥
⌅

385
95

⇧
� 4 ⇥

�
385
105

�
Add T4 to T 0

24 � 14.6667 Time left = 290

Compare T1 and T5 4 ⇥
⌅

290
105

⇧
� 8 ⇥

�
290
225

�
Not conclusive

8 6� 10.3331 Time left = 290

Figure 3.3: Scaling Heuristic Example.

does, put T1 in the selection and subtract the execution time t1 of T1 from the maximum

execution time t
max

. Now consider the selection with maximum execution time t
max

� t1

for the remaining list of test cases, with T2 now occurring first in the list, and so on.

Continue down the list in this manner until the inequality ceases to hold—let us say that

this occurs at T
i

—and then stop. The i� 1 test cases placed in the knapsack through this

process are guaranteed to be part of an optimal solution for the selection with maximum

allowed execution time t
max

. Finish by using any of the aforementioned techniques on the

remaining unselected test cases. These test cases have maximum allowed execution time

t
max

�
P

i�1
j=1 t

j

. The test cases that will be in the final solution for the selection with

maximum allowed execution time t
max

will be those in the solution for the selection with

maximum allowed execution time t
max

�
P

i�1
j=1 t

j

plus those determined to be part of the

optimal solution by the scaling heuristic.

For example, suppose there are six test cases, with code coverages and execution

times as shown in Figure 3.2, and a maximum execution time of 445 units. First, the

test cases are ordered according to their code-coverage-to-execution-time ratio to yield

Chapter 3. Knapsack Solvers for Time-Aware Selection 34

Figure 3.4: Overview of the Selection Infrastructure.

hT2, T4, T1, T5, T3, T6i. Then comparisons are performed, as shown in Figure 3.3. After

the last comparison fails, the heuristic no longer yields any information, so the rest of the

problem is solved using one of the seven algorithms described in this section.

3.3 Experiment Goals and Design

The goals of our experiments are to:

1. Measure empirically, using two case studies, the e�ciency of seven knapsack algo-

rithms used in prioritization, each with and without the use of a scaling heuristic, in

terms of time and memory overhead.

2. Record, graph and analyze the e↵ectiveness of each of these algorithms with and

without scaling in terms of three coverage-based metrics: code coverage, coverage

preservation, and order-aware coverage.

All of the algorithms described in this chapter were implemented in Java and were used

to prioritize JUnit test cases from two case study applications, described below. The pri-

oritizations were performed on a dual-core AMD Opteron Processor, each core being 1.8

GHz, running the Fedora Core 3 GNU/Linux operating system with 2 GB of main memory

and 2048 MB maximum heap size. To perform a prioritization, first the execution time

Chapter 3. Knapsack Solvers for Time-Aware Selection 35

Gradebook JDepend
Classes 5 22
Functions 73 305
NCSS 591 1808
Test Cases 28 53
Test Exec. Time 7.008 s 5.468 s

Figure 3.5: Case Study Applications.

and code coverage information of each test case in the test suite is recorded. From this

information, a set of knapsack items is created. Next these items are used as input to the

knapsack algorithms. Each algorithm returns a list of test cases representing the final test

suite prioritization, as depicted in Figure 3.4. As the algorithms run, time overhead and

memory information is gathered. Afterwards, code coverage, coverage preservation, and

order-aware coverage information are calculated for each test suite selection. The time,

memory, and coverage information is used to compare the algorithms and examine the key

trade-o↵s.

3.3.1 Case Studies

In order to measure the e↵ectiveness of these algorithms in test suite selection, the test

suites of two case study programs were used, JDepend and GradeBook, both of which have

independent test suites and di↵erent characteristics. These test suites were manually imple-

mented by the developers of the tools. JDepend is a tool for creating design quality metrics

for Java packages in terms of extensibility, reusability, and maintainability. GradeBook is a

program that provides functions to perform tasks associated with creating and maintaining

a grade book system for a course. Figure 3.5 gives information regarding each application

and their test suites. The test cases of Gradebook di↵er from those in JDepend in that they

are I/O-bound by their frequent interactions with a database. On average, Gradebook’s

test cases take longer to run, while JDepend’s test cases have very short execution times.

Chapter 3. Knapsack Solvers for Time-Aware Selection 36

3.3.2 Evaluation Metrics

In order to measure the e↵ectiveness of these algorithms, three metrics were used: code

coverage, coverage preservation, and order-aware coverage. These were used despite the

fact that ideally, the e↵ectiveness of a test suite selection would be based on the average

percentage of faults it detected given a time constraint, described in Section 2.1.2. However,

since the nature and location of faults are unknown and unique to each program, it is not

possible to calculate the average percent of faults detected, unless faults are artificially

seeded into a program. While this can be a useful way of empirically judging the e↵ectiveness

of a selection, it runs the risk of not being representative of the type and number of faults

that occur in real-world applications. Therefore, coverage information, which has been

shown to be highly correlated with fault-detection potential, is used [45,112,115,118].

Code coverage, denoted cc(P, T 0), where P is the program being tested, is a measure

of the percentage of program source statements that are executed when the selected test

suite is run. There are several di↵erent levels of granularity at which code coverage can be

measured; in this chapter, we use block coverage, which is described in Section 2.1.1

Coverage preservation, denoted cp(P, T, T 0), is a proportional measure of the amount

of code covered by the time-aware selection versus the amount of code covered by the entire

test suite. In other words,

cp(P, T, T 0) =
cc(P, T 0)
cc(P, T)

(3.1)

Order-aware coverage, denoted C(P, T 0), takes into account not only the percentage

of code covered by test cases in a selection, but also the order in which the test cases

in the selection execute. This provides a way to measure the amount of code covered in

conjunction with the time during the execution phase at which that code was covered. A

high order-aware coverage score implies that i) the overall coverage of the test case selection

is high and ii) more of the source code is covered by test cases that are executed early in the

test selection. This second implication is important because it is desirable to execute test

cases with the highest fault-detecting potential earlier in the test suite execution phase.

Chapter 3. Knapsack Solvers for Time-Aware Selection 37

Coverage of < T1, T2 >

Time (s)

O
ve

ra
ll P

er
ce

nt
 C

ov
er

ag
e

0 2 4 6 8 10

0
20

40
60

80

T1 runs for 7 seconds, covering 40%

T2 runs for 3 seconds,
covering 30% more

Coverage of < T2, T1 >

Time (s)

O
ve

ra
ll P

er
ce

nt
 C

ov
er

ag
e

0 2 4 6 8 10

0
20

40
60

80

T2 runs 3 seconds,
covering 30%

T1 runs for 7 seconds, covering 40% more

Figure 3.6: hT2, T1i covers more requirements early in execution than hT1, T2i.

Order-aware coverage is calculated in two parts, primary and secondary. Let T 0 be a

selection of test cases of T for program P . Because we assume that the entire selection

will be executed, we give primary consideration to the amount of code covered by the test

cases selected when calculating the order-aware coverage. The earliness of coverage within

the prioritization is a secondary concern and should be considered separately. Thus, we

are not attempting to find a good trade-o↵ between the two objectives. Rather, our metric

determines the best selections based only on coverage and then breaks ties based on when

code is covered during test suite execution. It is then appropriate to divide order-aware

coverage, C into two parts such that C(P, T 0) = C
pri

(P, T 0)+C
sec

(P, T 0), where C
pri

2 [0, 100]

considers the first criteria and C
sec

2 [0, 1] deals with the second.

For example, consider a test suite with test cases T1, T2, and T3 where T1 cov-

ers 40% of requirements in 7 seconds, T2 covers 30% in 3 seconds, and T3 covers

10% in 2 seconds. For simplicity, assume that T1, T2, and T3 cover disjoint require-

ments. Let the time budget t
max

= 10 seconds. Then possible selections include

hT1, T2i , hT2, T1i , hT1, T3i , hT3, T1i , hT2, T3i , and hT3, T2i. So, hT1, T3i , hT3, T1i , hT2, T3i ,

and hT3, T2i all cover fewer requirements within the time budget than hT1, T2i and hT2, T1i,

Chapter 3. Knapsack Solvers for Time-Aware Selection 38

which cover 70%. Thus, these are less preferable than hT1, T2i and hT2, T1i. Note that

hT1, T2i and hT2, T1i cover the same amount of requirements. Yet, we prefer hT2, T1i be-

cause executing T2 first results in covering more requirements earlier in time than if T1 were

run first, as is evident in Figure 3.6. The calculation of the actual order-aware coverage

metric values for this example are given below.

The first component of order-aware coverage, C
pri

is calculated by measuring the code

coverage cc of the entire test selection T 0. The coverage cc is a percentage between 0 and

100.

The second component C
sec

considers the incremental code coverage of the selection,

giving preference to test selections whose earlier tests have greater coverage. Note again

that C
pri

2 [0, 100] is the more important value and represents the percentage of require-

ments covered by the selection within the time limit. C
sec

2 [0, 1] then breaks ties between

selections covering equal code amounts, changing only the mantissa of the order-aware score.

C
sec

is also calculated in two parts. First, C
s�actual

is computed by summing the products

of the execution time time(hT
i

i) and the code coverage cc of T 0
{1,i} = hT1 . . . T

i

i for each

test case T
i

2 T 0.

C
s�actual

(P, T 0) =
|T 0|X

i=1

time(hT
i

i)⇥ cc(P, T 0
{1,i}) (3.2)

C
s�max

represents the maximum value that C
s�actual

could take (i.e., the value of C
s�actual

if T1 covered 100% of the code covered by T 0.) For a T 0,

C
s�max

(P, T 0) = cc(P, T 0)⇥
|T 0|X

i=1

time(hT
i

i) (3.3)

Finally, C
s�actual

and C
s�max

are used to calculate the part of the order-aware coverage

metric, C
sec

. Specifically,

C
sec

(P, T 0) =
C

s�actual

(P, T 0)
C

s�max

(P, T 0)
(3.4)

As an example of the order-aware coverage calculation, let P be a program. Suppose

T 0 = hT1, T2i and T 00 = hT2, T1i. As in the example above, and as shown in Figure 3.6,

Chapter 3. Knapsack Solvers for Time-Aware Selection 39

assume that the test cases of T 0 have execution times of time(hT1i) = 7 and time(hT2i) = 3,

and code coverage cc(P, T 0) = cc(P, T 00) = 70 where the code covered by T1 and T2 is

disjoint. Then,

C
pri

(P, T 0) = C
pri

(P, T 00) = 70.

C
sec

next gives preference to test selections that have more code covered early in execution.

To calculate C
sec

for T 0, the code coverages of T 0
{1,1} = hT1i and T 0

{1,2} = hT1, T2i must

each be measured. For T 00, the code coverages of T 00
{1,1} = hT2i and T 00

{1,2} = hT2, T1i

are calculated. Then cc(P, T 0
{1,1}) = 0.4, cc(P, T 0

{1,2}) = 0.7, cc(P, T 00
{1,1}) = 0.3, and

cc(P, T 00
{1,2}) = 0.7. C

sec

is calculated as follows for T 0 and T 00,

C
s�actual

(P, T 0) = (7⇥ 0.4) + (3⇥ 0.7) = 4.9

C
s�max

(P, T 0) = 0.7(7 + 3) = 7

C
sec

(P, T 0) =
4.9
7

= 0.7

and

C
s�actual

(P, T 00) = (3⇥ 0.3) + (7⇥ 0.7) = 5.8

C
s�max

(P, T 00) = 0.7(7 + 3) = 7

C
sec

(P, T 00) =
5.8
7

= 0.829

Adding C
pri

and C
sec

gives the total order-aware coverage value. In this example,

C(P, T 0) = C
pri

(P, T 0) + C
sec

(P, T 0) = 70 + 0.7 = 70.7

and

C(P, T 00) = C
pri

(P, T 00) + C
sec

(P, T 00) = 70 + 0.829 = 70.829

Chapter 3. Knapsack Solvers for Time-Aware Selection 40

Therefore, although T 0 and T 00 cover the same amount of requirements within the time bud-

get, T 00 is preferred because it is more likely to find faults earlier in the selection execution.

All of the coverage information is obtained using Emma, an open source Java code

coverage tool that reports code coverage statistics at method, class, package, and all-classes

levels [91]. The results reported in this chapter are based on block level coverage, because

the use of block level coverage generally gives better results than levels of a coarser grain,

such as method level [91, 118]. As this work also examines the trade-o↵s between the

e↵ectiveness of a test suite selection and the time and space overhead incurred in performing

the selection, execution time and memory statistics were also obtained. To do so, a Linux

process tool, which calculates the peak memory use and total user and system time required

by a program, was used.

3.4 Experiments and Results

Experiments were run in order to analyze the e↵ectiveness and e�ciency of the seven test

suite selectors described in Section 3.2. The solvers selected the test suites of Gradebook

and JDepend so that resulting test tuples would execute within 25, 50, and 75% of the total

execution time of the initial test suites.

3.4.1 Selection E↵ectiveness.

Experiments were run in order to analyze the e↵ectiveness and e�ciency of the seven test

suite selectors described in Section 3.2. The solvers selected test cases from the test suites

of Gradebook and JDepend so that resulting test tuples would execute within 25, 50, and

75% of the total execution time of the initial test suites.

First, we examine the overall coverage, order-aware coverage, and coverage preservation

of each of the resulting selections. These can be seen in Figures 3.7(a) and (b) and 3.8(a)

and (b). In Figures 3.7(a) and 3.8(a), we see that greedy by value, solver 3, achieves the

highest overall coverage for each testing time constraint for Gradebook. Greedy by ratio

Chapter 3. Knapsack Solvers for Time-Aware Selection 41

25% 50% 75%

Coverage Preservation Ratio: Gradebook

Percent of Total Time

C
ov

er
ag

e
P

re
se

rv
at

io
n

R
at

io

0.
25

0.
35

0.
45

0.
55

0.
65

0.
75

0.
85

0.
95

(a)

25% 50% 75%

Coverage Preservation Ratio: JDepend

Percent of Total Time

C
ov

er
ag

e
P

re
se

rv
at

io
n

R
at

io

0.
92

0.
94

0.
96

0.
98

1.
00

(b)

Figure 3.7: Coverage Preservation of Test Suite Selection.

25% 50% 75%

Coverage and Order-Aware Coverage: Gradebook

Percent of Total Time

P
er

ce
nt

 o
f C

od
e

C
ov

er
ag

e/
O

rd
er

-A
w

ar
e

C
ov

er
ag

e

25% 50% 75%

Coverage and Order-Aware Coverage: Gradebook

Percent of Total Time

P
er

ce
nt

 o
f C

od
e

C
ov

er
ag

e/
O

rd
er

-A
w

ar
e

C
ov

er
ag

e

20
30

40
50

60
70

80

(a)

25% 50% 75%

Coverage and Order-Aware Coverage: JDepend

Percent of Total Time

P
er

ce
nt

 o
f C

od
e

C
ov

er
ag

e/
O

rd
er

-A
w

ar
e

C
ov

er
ag

e

25% 50% 75%

Coverage and Order-Aware Coverage: JDepend

Percent of Total Time

P
er

ce
nt

 o
f C

od
e

C
ov

er
ag

e/
O

rd
er

-A
w

ar
e

C
ov

er
ag

e

64
66

68
70

72
74

76
78

(b)

Figure 3.8: Overall Coverage and Order-Aware Coverage of Test Suite Selection.

Chapter 3. Knapsack Solvers for Time-Aware Selection 42

and greedy by weight, solvers 2 and 4, create the best prioritizations for JDepend, as shown

in Figures 3.7(b) and 3.8(b). However, all of the selections made for JDepend maintain

more than 93% of the original test suite’s coverage, even in the smallest time constraint.

The success of these solvers is understandable in light of the nature of the test suites.

In the Gradebook test suite, there is only a little coverage overlap between test cases,

so a greedy by value approach is likely to add worthwhile test cases to the prioritization

at each iteration, which is shown in Figure 3.8(a). JDepend’s test cases have very short

execution times, and many of them cover about the same amount of code. Thus, a solver

that orders the test cases so that the shortest tests run first does well. For such a test

suite, a greedy algorithm prioritizing based on the ratio of code coverage to execution time

performs equally well, as seen in Figures 3.7(b) and 3.8(b). Note that because the execution

time di↵erence between JDepend’s test cases is much smaller than that of Gradebook’s test

cases, we observe a less drastic coverage di↵erence over the JDepend test cases and as the

time limit increases. Similar trends are observed between coverage preservation, coverage,

and order-aware coverage, which are presented in Figures 3.7 and 3.8.

One might think that the core algorithm would produce best results amongst the solvers.

However, in Figures 3.7 and 3.8, we observe that this is not true for either JDepend or

Gradebook. While the core algorithm achieves a higher utility result than other solvers,

there is no guarantee that the total coverage will also be high once the overall coverage is

considered.

3.4.2 Selection E�ciency.

Next we evaluated the time and space overheads incurred by each test selection algorithm,

which are displayed in Figures 3.9 and 3.10. Among the knapsack solvers, the time and

memory costs were insignificant in all but the dynamic programming, generalized tabu-

lar, and core algorithms. In Figure 3.9(b), we see that the memory requirements of the

generalized tabular solver were especially prohibitive, reaching over 1039MB at peak usage.

For the seven algorithms described in this chapter, the scaling technique successfully

Chapter 3. Knapsack Solvers for Time-Aware Selection 43

25% 50% 75%

Memory Overhead: Gradebook

Percent of Total Time

K
na

ps
ac

k
S

ol
ve

r M
em

or
y

O
ve

rh
ea

d
(M

B
)

0
10
0

20
0

30
0

40
0

50
0

60
0

(a)

25% 50% 75%

Memory Overhead: JDepend

Percent of Total Time

K
na

ps
ac

k
S

ol
ve

r M
em

or
y

O
ve

rh
ea

d
(M

B
)

0
20
0

40
0

60
0

80
0

10
00

(b)

Figure 3.9: Memory Overhead of Test Suite Selection.

25% 50% 75%

Time Overhead: Gradebook

Percent of Total Time

K
na

ps
ac

k
S

ol
ve

r E
xe

cu
tio

n
Ti

m
e

(s
)

0
5

10
15

20
25

30
35

40

(a)

25% 50% 75%

Time Overhead: JDepend

Percent of Total Time

K
na

ps
ac

k
S

ol
ve

r E
xe

cu
tio

n
Ti

m
e

(s
)

0
5

10
15

20
25

30
35

40
45

(b)

Figure 3.10: Time Overhead of Test Suite Selection.

Chapter 3. Knapsack Solvers for Time-Aware Selection 44

reduced the prioritization execution time. In one case in Gradebook, the time was decreased

by 330%, as seen in Figure 3.10(a). However, as described in Figure 3.10(b), scaling does not

always improve the time overhead. It also occasionally had a negative impact on memory

overhead, particularly for JDepend in Figure 3.9(b).

3.5 Conclusions

Results indicate that a trade-o↵ must be made between e�ciency and final coverage. The

design of the test suite is also of great importance. As shown in Figure 3.7(a), if there is

little overlap between the test cases, a cheaper prioritizer can be used with favorable results.

While more sophisticated solvers such as dynamic programming, generalized tabular, and

core are likely to obtain higher utility than simple solvers, neither group can make any

guarantee regarding final cumulative coverage of the result. It is therefore likely that for

test suites containing a large amount of overlap between test cases, an overlap-aware solver

will be advantageous. In the next chapter, we develop an overlap-aware test suite selection

technique to create more e↵ective test case selections.

Chapter 4

A Genetic Algorithm for Time-Aware Selection

In this chapter, we present an innovative technique that selects test cases from a test suite

for execution within a time-constrained environment through the use of a genetic algorithm.

It is our goal that our final resulting test selections, like those in Chapter 3, will satisfy

three properties. The test selection i) will always execute within the resource constraints, ii)

will have the highest possible potential for overall fault detection, and iii) are likely to find

faults earlier in test execution rather than later. Our technique di↵ers from the techniques

presented in Chapter 3 in that our genetic algorithm also takes coverage overlap between

test cases into account. For example, if test cases T1 and T2 each cover the same code, a

selection including T1 and T2 would have no greater value than a prioritization including

either T1 or T2. This requires us to define an extended version of the 0/1 knapsack problem

in which test cases interact within the constraints.

We first describe the general design of a genetic algorithm and the challenges associated

with using a genetic algorithm for test selection in time-constrained environments. We then

describe our genetic algorithm technique for solving the test selection problem and provide

an example of the genetic algorithm in action.

This chapter provides empirical evidence that the produced prioritizations on average

have significantly higher fault detection rates than random or more simplistic prioritizations.

In our study, we prioritize the JUnit test suites of two applications that were seeded with a

45

Chapter 4. A Genetic Algorithm for Time-Aware Selection 46

wide variety of faults. For each application, we considered eighteen di↵erent configurations

of the genetic algorithm, varying the number of generations, population size, time budget,

and test adequacy criterion.

Our experimental analysis of the GA-produced selections with regard to (i) original

coverage preservation, (ii) overall coverage, and (iii) fault finding ability demonstrates that

the resulting selections lose little of the original test suite’s value. Our empirical evaluation

reveals the e↵ectiveness of the resulting selections in relation to (i) GA-produced selections

using di↵erent parameters, (ii) the initial test suite ordering, (iii) the reverse of the initial

test suite ordering, (iv) random test suite prioritizations, and (v) fault-aware prioritizations

We show that the GA-produced selections are superior to the other test suite reorderings.

Finally, our experimental study of performance reveals that our GA-selection technique is

most applicable when (i) there is a fixed set of time constraints, (ii) prioritization occurs

infrequently, or (iii) the time constraint is particularly small.

4.1 Genetic Algorithms and the Test Selection Challenge

A genetic algorithm (GA) is a search heuristic that mimics the process of natural evolution.

This heuristic is often used to find solutions to optimization and search problems, and it is

another approach to estimate a solution for the 0/1 knapsack problem.

4.1.1 Designing a Genetic Algorithm

In a genetic algorithm, a population P = {c1, . . . , cm

} of individuals is randomly created.

Individuals are encodings of candidate solutions to an optimization problem. Once a popu-

lation is created, every individual in the population is evaluated and assigned a fitness value.

The fitness function assigns a value to each individual representing its quality. Next, multi-

ple individuals are stochastically selected from the current population based on their fitness

and modified to form a new population. If an individual is strong, its genes are more likely

to be selected for inclusion in the new population. Selection of individuals for reproduction

Chapter 4. A Genetic Algorithm for Time-Aware Selection 47

Algorithm Procedure GA

(⇤ A simple genetic algorithm ⇤)
Input: Test suite T ;

Size of population m;
Maximum iterations d;
Crossover probability p

C

;
Mutation probability p

M

;
Output: Final Population P

t�1, 0 < t� 1 d
1. Create a randomly generated initial population, P0 of m candidate solutions from the

set of test cases {T1, . . . , Tn

} in T ;
2. Set t = 0; repeat
3. Calculate the fitness of each c

j

2 P
t

where P
t

2 {P0, . . . , P
d

};
4. repeat
5. Select two parent individuals c

k

, c
l

2 P
t

, the probability of selection being an
increasing function of fitness;

6. Apply crossover to c
k

and c
l

to form two o↵spring according to p
C

;
7. Apply mutation according to p

M

;
8. Place the resulting chromosomes in the new population, P

t+1;
9. until P

t+1 has size m;
10. t t + 1
11. until t > d (or reach other termination condition);
12. return P

t�1

Figure 4.1: Genetic Algorithm Procedure.

is implemented by eliminating the low-fitness individuals, and inheritance is implemented

by making copies of high-fitness individuals. After pairs are selected, for example c
k

, c
l

, the

chromosomes are either retained as is, combined using a crossover operation based on the

crossover probability p
C

, or are mutated by flipping elements of the individual in a prob-

abilistic manner based on the mutation probability p
m

. Reproduction continues until the

number of individuals in the original population, m, is reached for the new population [77].

The new population is then used in the next iteration of the algorithm. Commonly, the

algorithm terminates when either a maximum number of generations has been produced,

or a satisfactory fitness level has been reached for the population [34,37,125].

A typical structure for a genetic algorithm is shown in Figure 4.1 [77].

Chapter 4. A Genetic Algorithm for Time-Aware Selection 48

4.1.2 Genetic Algorithm Challenges

There are many challenges to developing a genetic algorithm to solve a particular problem.

The first challenge is in determining how to encode an individual, necessary on line 1 of

Figure 4.1. Traditionally, individuals are represented in binary as strings of 0s and 1s, but

other encodings are also possible.

Determining an appropriate fitness function is one of the most di�cult tasks in designing

a genetic algorithm. The fitness function calculation is shown on line 3 of Figure 4.1. The

fitness function determines how each individual will be interpreted, and it should quantify

the optimality of a solution in a genetic algorithm in order to allow that particular individual

to be ranked against all the other individuals. Optimal individuals, or at least individuals

which are more optimal, are allowed to breed and mix their datasets by any of several

techniques, producing a new generation that will be even better [34]. Another way of

looking at fitness functions is in terms of a fitness landscape, which is a representation of

the space of all possible individuals along with their fitnesses [77]. An ideal fitness function

correlates closely with the algorithm’s goal, and yet may be computed quickly. Speed of

execution is very important, as a typical genetic algorithm must be iterated many, many

times in order to produce a useable result for a non-trivial problem. The chief bottleneck

in a genetic algorithm is generally in the fitness function calculation [77].

The final challenge is in deciding how the individuals of the population will reproduce.

During each successive generation, a proportion of the existing population is selected to

breed a new generation. Individual solutions are selected through a fitness-based process,

where fitter solutions are typically more likely to be selected, as noted on line 5 of Figure

4.1. Certain selection methods rate the fitness of each solution and preferentially select

the best solutions. Other methods rate only a random sample of the population. Once

individuals are selected, they are acted upon by genetic operators such as mutation and

recombination, shown on lines 6 and 7 of Figure 4.1. The likelihood of mutation and ways

of combining are generally determined based on random numbers.

Chapter 4. A Genetic Algorithm for Time-Aware Selection 49

4.1.3 The Test Selection Challenge

Problem 1 defines the time-constrained test case selection problem in terms of a 0/1 Knap-

sack to be solved with a genetic algorithm. Intuitively, a test tuple, or individual, � earns

a better fitness score if it has a greater potential for fault detection and can execute within

the user specified time budget.

Problem 1 (Time Constrained Test Suite Selection)

Given: (i) A test suite, T , (ii) the collection of all permutations of elements of the power

set of permutations of T , perms(2T), (iii) the time budget, t
max

, and (iv) two functions

from perms(2T) to the real numbers, time and fit.

Goal: Find the test tuple �
max

2 perms(2T) such that time(�
max

) t
max

and 8�0 2

perms(2T) where �
max

6= �0 and time(�0) t
max

, fit(�
max

) > fit(�0).

In Problem 1, perms(2T) represents the set of all possible tuples of T . Each individual is

selected from the set perms(2T). When the function time is applied to any of these tuples,

it yields the execution time of that tuple. The function fit is applied to any such tuple

and returns a fitness value for that ordering. Without loss of generality, we assume that a

higher fitness is preferable to a lower fitness. In this work, the function fit quantifies a test

tuple’s incremental rate of fault detection and takes code coverage overlap into account.

Our technique considers the potential for fault detection and the time overhead of each test

case in order to evaluate whether the test suite achieves its potential at the fastest rate

possible.

4.2 Time-Constrained Selection

Our selection technique uses both testing time and potential fault detection information to

intelligently select and reorder a test suite that adheres to Definition 1. As is preferred in

testing practice, we require that each test in T be independent so that we can guarantee

that for all T
i

2 hT1, . . . , Tn

i,�
i�1 = �0 [49,82]. Thus there are no test execution ordering

Chapter 4. A Genetic Algorithm for Time-Aware Selection 50

Individual Representation Variable length tuple of test cases selected from a test suite
Fitness Measure Weighted sums bi-criteria model (Section 4.2.2)
Heuristic Operators Elitist Selection

Roulette Wheel Selection
Mutation
Single-point Crossover
Growth (Addition and Deletion of Chromosomes)

Control Operators Experiment values listed in Table II
Termination Criteria Completion of g

max

generations, g
max

2 {25, 50, 75}

Table 4.1: GA Problem Formulation and Configuration.

dependencies. This requirement enables the prioritizer to reorder tests into any sequence

that maximizes the suite’s ability to isolate defects.

4.2.1 Overview

A genetic algorithm is used to heuristically solve Problem 1. First, the execution time

of each test case is recorded. Because a time constraint could be very short, test case

execution times must be exact in order to properly perform a selection. Timing information

additionally includes any initialization and shutdown time required by a test.

A program P and each T
i

2 hT1, . . . , Tn

i are input into the genetic algorithm, along with

the following user specified parameters: (i) s, size of the population, (ii) g
max

, maximum

number of generations, (iii) p
t

, percent of the execution time of T allowed by the time budget,

(iv) p
c

, crossover probability, (v) p
m

, mutation probability, (vi) p
a

, addition probability,

(vii) p
d

, deletion probability, (viii) tc, test adequacy criterion, and (ix) w, program coverage

weight, where p
t

, p
c

, p
m

, p
a

, p
d

2 [0, 1]. The genetic algorithm uses heuristic search to solve

Problem 1 and to identify the test tuple �
max

2 perms(2T) that is likely to have the fastest

rate of fault detection in the provided time limit. In general, any �
j

2 perms(2T) has the

form �
j

= hT
i

, . . . , T
u

i where u n. Table 4.1 describes our genetic algorithm’s problem

formulation.

Chapter 4. A Genetic Algorithm for Time-Aware Selection 51

Algorithm GASelect(P, T, s, g
max

, p
t

, p
c

, p
m

, p
a

, p
d

, tc)

Input:

Program P , Test suite T , Population size s,
Maximum generations g

max

, Percent of test suite time p
t

, Crossover probability p
c

,
Mutation probability p

m

, Addition probability p
a

, Deletion probability p
d

,
Test adequacy criteria tc,

Output: Maximum fitness tuple F
max

2 F in set �
max

1. t
max

 p
t

⇥
P

n

i=0 time(hT
i

i)
2. R0 ;
3. repeat
4. R0 R0 [{CreateRandomIndividual(T, p

t

)}
5. until |R0| = s
6. g 0;
7. repeat
8. F ;
9. for �

j

2 R
g

10. F F [{CalcF itness(P,�
j

, t
max

, tc)}
11. R

g+1 ElitistSelect(R
g

, F)
12. repeat
13. �

k

,�
l

 RouletteWheelSelect(R
g

, F)
14. �

q

,�
r

 ApplyCrossover(p
c

,�
k

,�
l

)
15. �

q

 ApplyMutation(p
m

,�
q

)
16. �

r

 ApplyMutation(p
m

,�
r

)
17. �

q

 AddAdditionalTests(T, p
a

,�
q

)
18. �

r

 AddAdditionalTests(T, p
a

,�
r

)
19. �

q

 DeleteATest(p
d

,�
q

)
20. �

r

 DeleteATest(p
d

,�
r

)
21. R

g+1 R
g+1 [{�

q

} [{�
r

}
22. until |R

g+1| = s
23. g g + 1
24. until g > g

max

25. �
max

 FindMaxFitnessTuple(R
g�1, F)

26. return �
max

Figure 4.2: The GA Selection Algorithm.

Chapter 4. A Genetic Algorithm for Time-Aware Selection 52

4.2.2 A Genetic Algorithm for Time-Aware Test Selection

We design our GASelect algorithm as shown in Figure 4.2. GASelect prioritizes test

suite T based on a given time constraint p
t

, as described in Problem 1. On line 1, this

algorithm calculates p
t

, percent of the total time of T , and stores the value in t
max

, the

maximum execution time for a tuple. In the loop beginning on line 3, the algorithm creates

a generation R0 containing s random test tuples � from perms(2T) that can be executed

in t
max

time. Each set of s individuals make up a population.

R0 is the first generation of s potential solutions to Problem 1. Once a generation

of test tuples is created, coverage information is used by the CalcF itness(P,�
j

, t
max

, tc)

method on line 10. The CalcF itness(P,�
j

, t
max

, tc) method is used to determine the

“goodness” of �
j

. To simplify the notation, we denote F
j

the fitness value of �
j

, where

F
j

= CalcF itness(P,�
j

, t
max

, tc). We also use F = hF1, F2, . . . , Fs

i to denote the tuple of

fitnesses for each �
j

2 R
g

, 0 g g
max

.

The ElitistSelect(R
g

, F) method on line 11 chooses the two best test tuples in R
g

to be

elements in the next generation R
g+1 of test tuples. The two best tuples are chosen in order

to guarantee that R
g+1 has at least one “good” pair. It is important to carry these highly

fit tuples into R
g+1 as they are in R

g

because they are most likely very close to exceeding

t
max

. Any slight change to these test tuples could cause them to require too much execution

time, thus invalidating them. Since the GA is trying to identify one particular test tuple,

this elitist selection technique ensures that the best tuple in R
g

survives on to R
g+1 [37].

On line 13, RouletteWheelSelect(R
g

, F) identifies pairs of tuples {�
k

,�
l

} from R
g

through a roulette wheel selection technique based on a probability proportional to |F |.

This implies that candidate solutions with higher fitnesses are more likely to be selected

than those with low fitnesses. In this technique, the fitness values are first normalized in

relation to the rest of the test tuple set so that the sum of all fitness values equals one [37].

The test tuples are then sorted by descending fitness values, and accumulated normalized

fitness (ANF) values are calculated. A random number r 2 [0, 1] is next generated, and the

first individual whose accumulated normalized value is greater than or equal to r is selected.

Chapter 4. A Genetic Algorithm for Time-Aware Selection 53

This selection method is repeated until enough tuples are selected to fill the generation R
g+1.

Candidate individuals with higher fitnesses are therefore less likely to be eliminated, but a

few with lower fitness have a chance to be used to make the next population as well [37].

The ApplyCrossover(p
c

,�
k

,�
l

) method on line 14 may merge the pair {�
k

,�
l

} to

create two potentially new tuples {�
q

,�
r

} based on p
c

, a user given crossover proba-

bility. Each tuple in the pair {�
q

,�
r

} may then be mutated based on p
m

, a user pro-

vided mutation probability. Test cases are then added or deleted from �
q

or �
r

using the

AddAdditionalTests(T, p
a

,�
r

) and DeleteATest(p
d

,�
r

) methods. The crossover operator

exchanges subsequences of the test tuples, and the mutation operator only mutates single

elements. Test case addition and deletion are needed because no other operator allows for

a change in the number of test cases in a tuple.

After GASelect makes each of these modifications to the original pair, both tuples

�
q

and �
r

are entered into R
g+1, as seen on line 21. The algorithm applies the same

transformations to all pairs selected by the RouletteWheelSelection(R
g

, F) method until

R
g+1 contains s test tuples. In total, g

max

populations of s test tuples are iteratively created

in this fashion as specified in Figure 4.2 on lines 7–24. After GASelect creates the final

generation of R
g

max

, line 25 identifies �
max

, the test tuple with the greatest fitness. This

tuple is guaranteed to be the tuple with the highest fitness out of all g
max

populations due

to the elitist strategy.

Test Coverage. Since it is very rare for a tester to know the location of all faults

in P prior to testing, the selection technique must estimate how likely a test is to find

defects, which factors into the function fit of Problem 1. Recall that the function fit

yields the fitness of the tuple �
j

based on its potential for fault detection and its time

consumption. As it is impossible to reveal a fault without executing the faulty code, the

percent of code covered by a test suite is used to estimate the suite’s potential. In this

chapter, two forms of test adequacy criteria tc are considered: (i) method coverage and (ii)

block coverage [27,49,91].

Our genetic algorithm accepts coverage information based on the aggregate coverage of

Chapter 4. A Genetic Algorithm for Time-Aware Selection 54

a test suite rather than per-test data. As noted by Kessis et al., this is the form that many

tools such as Clover [53], Jazz [76], and Emma [91] produce. Thus, our selection approach

can reorder a test suite without requiring per-test coverage information. While the genetic

algorithm handles the common case, its calculation of test tuple fitness could be enhanced

to use coverage information on a per-test basis. This would dramatically improve the time

overhead of the fitness function, as explained in Section 4.3.2.

Fitness Function. The CalcF itness(P,�
j

, t
max

, tc) method on line 10 uses t
max

and

fit(P,�
j

, tc) to calculate fitness. The fitness function, represented by fit in Problem 1,

assigns each test tuple a fitness based on (i) the percentage of requirements covered in P

by that tuple and (ii) the time at which each test covers its associated code in P .

This function equates to the order-aware coverage metric described and used in Chap-

ter 3.3.2. The primary fitness F
pri

2 [0, 100] is calculated by measuring the code coverage cc

of the test selection �
j

. The second component F
sec

2 [0, 1] considers the incremental code

coverage of the tuple, giving preference to test selections whose earlier tests have greater

coverage. The secondary fitness is calculated as:

F
s�actual

(P,�
j

, tc) =
|�

j

|X

i=1

time(hT
i

i)⇥ cc(P,�
j{1,i}, tc)

F
s�max

(P,�
j

, tc) = cc(P,�
j

, tc)⇥
|�

j

|X

i=1

time(hT
i

i)

F
sec

(P,�
j

, tc) =
F

s�actual

(P,�
j

, tc)
F

s�max

(P,�
j

, tc)

for �
j

2 perms(2T).

Then

fit(P,�
j

, tc) = F
pri

(P,�
j

, tc) + F
sec

(P,�
j

, tc) (4.1)

If a test tuple execution time time(�
j

) is greater than the time budget t
max

, F
j

is

automatically set to -1 by the CalcF itness(P,�
j

, t
max

, tc, w) method. Because such a tuple

violates the execution time constraint, it cannot be a solution and thus receives the worst

Chapter 4. A Genetic Algorithm for Time-Aware Selection 55

Figure 4.3: Crossover with Random Crossover Point.

fitness possible. While a tuple �
j

with F
j

= �1 could simply not be added to the next

generation R
g+1, populations with individuals that have a fitness of -1 can actually be

favorable. Since the “optimal” test tuple selection likely teeters on the edge of exceeding

the designated time budget, any slight change to a �
j

with F
j

= �1 could create a new valid

test tuple. Therefore, �
j

’s with F
j

= �1 are maintained for possible selection just like any

other generated selection. If the test tuple execution time time(�
j

) t
max

, Equation 4.1,

fit(P,�
j

, tc) is used to calculate fitness.

Crossover. The GA uses crossover to vary test tuples from one test tuple generation

to the next through recombination. Pairs of test tuples {�
k

,�
l

} are selected out of R
g

.

The ApplyCrossover(p
c

,�
k

,�
l

) method performs crossover to create two potentially new

hybrid test tuples from {�
k

,�
l

}. First, a random number r1 2 [0, 1] is generated. If r1

is less than the user provided value for p
c

, the crossover operator is applied. Otherwise,

the parent individuals are unchanged and await the next step, mutation. If crossover is to

occur, the ApplyCrossover(p
c

,�
k

,�
l

) method on line 14 selects another random number

r2 2 [0,min(|�
k

|, |�
l

|)] as the crossover point, where |�
k

| and |�
l

| are the number of test

cases in �
k

and �
l

, respectively. The subsequences before and after the crossover point are

then exchanged to produce two new o↵spring, as seen in Figure 4.3. If crossover causes two

of the same test cases to be in the same test tuple, another random test not in the current

tuple is selected from T instead of including the duplicated test case.

Mutation. The use of the ApplyMutation(p
m

,�
j

) method on lines 15 and 16 of

Figure 4.2 also provides a way to add variation to a new population. The new test tuple

is identical to the prior parent tuple except that one or more changes may be made to the

new tuple’s test cases. All test tuples that are selected on line 13 are first considered for

Chapter 4. A Genetic Algorithm for Time-Aware Selection 56

Figure 4.4: Mutation of a Test Tuple.

crossover. Then they are subject to mutation at each test case position with a small user

specified mutation probability p
m

. If a random number r3 2 [0, 1] is generated such that r3

is less than p
m

for test case T
i

, a new test not included in the current test tuple is randomly

selected from T to replace T
i

, as demonstrated for T2 in Figure 4.4(a). Figure 4.4(b) also

shows that if there are no unused tests in T when T9 is chosen for mutation, the test tuple

is still mutated. Instead of replacing the test with a random test, the test is swapped with

the test case that succeeds it.

Addition and Deletion Test cases can also be added to or deleted from the

test tuples using the AddAdditionalTests(T, p
a

,�
j

) method on lines 17 and 18 or the

DeleteATest(p
d

,�
j

) method on lines 19 and 20. As in messy genetic algorithms [38], the

sets of tuples R
g

must be allowed to grow beyond the initial generation R0. Addition and

deletion features permit such growth. While the crossover operator exchanges subsequences,

it does not increase the number of test cases within an individual. Similarly, the mutation

operator only mutates single elements at each index within the test tuple. Although addi-

tion and deletion operations are necessary, they should be performed infrequently so as to

not violate the genetic algorithm’s selection, crossover, and mutation techniques. If a ran-

dom number r4 2 [0, 1] is generated such that r4 < p
a

, a random test case is removed from

the individual. If another random number r5 2 [0, 1] is generated and r5 < p
d

, a random

test case not yet executed in the individual is added to the end of the test sequence.

Chapter 4. A Genetic Algorithm for Time-Aware Selection 57

4.2.3 Test Selection in Action

To demonstrate the evolution of individuals in a population over generations by means of

selection, mutation, crossover, and growth functions, consider the following example execu-

tion. Two generations are described with five individuals in each population. The crossover

probability is p
c

= 0.7, the mutation probability is p
m

= 0.1, and the addition/deletion

probabilities are p
a

= p
d

= 0.02. The Gradebook application, which was described in Chap-

ter 3.3.1, contains 28 test cases. We call these T1 through T28 for simplicity. The time

constraint is set to 7008 ms or 50% of the execution time of these 28 tests.

As described in Section 4.2.2, the algorithm creates the first individual by randomly

adding test cases into the test tuple until the tuple exceeds the time constraint. This is

performed five times, once for each individual. The example begins with the following initial

population:

R0[0] = hT26, T22, T19, T28, T11, T2, T16, T15, T23, T20i Fitness: 49.20

R0[1] = hT5, T2, T22, T8, T27, T6, T9, T18, T28, T3, T17, T14, T20, T15, T21i Fitness: 60.19

R0[2] = hT6, T2, T4, T9, T25, T11, T15, T5, T8, T21, T1, T28, T27, T19, T23, T13i Fitness: 58.58

R0[3] = hT11, T3, T4, T1, T8, T21, T12, T18, T6, T20, T23, T5, T19, T14, T13, T27, T9i Fitness: 50.64

R0[4] = hT16, T23i Fitness: 19.91

To begin generating the next population, two individuals are selected using an elitist strat-

egy. The second generation then has two of the five necessary individuals.

R1[0] = hT5, T2, T22, T8, T27, T6, T9, T18, T28, T3, T17, T14, T20, T15, T21i Fitness: 60.19

R1[1] = hT6, T2, T4, T9, T25, T11, T15, T5, T8, T21, T1, T28, T27, T19, T23, T13i Fitness: 58.58

Two individuals are then chosen using roulette wheel selection [37]. For roulette wheel

selection, the fitness values are first normalized. In this example, the fitness values are

normalized by multiplying by 1/(49.20 + 60.19 + 58.58 + 50.64 + 19.91) = 0.00419. Then

the individuals are sorted by fitness, and the ANF values are calculated.

R0[4] = hT16, T23i ANF: 0.0834

R0[0] = hT26, T22, T19, T28, T11, T2, T16, T15, T23, T20i ANF: 0.2897

R0[3] = hT11, T3, T4, T1, T8, T21, T12, T18, T6, T20, T23, T5, T19, T14, T13, T27, T9i ANF: 0.5020

R0[2] = hT6, T2, T4, T9, T25, T11, T15, T5, T8, T21, T1, T28, T27, T19, T23, T13i ANF: 0.7476

R0[1] = hT5, T2, T22, T8, T27, T6, T9, T18, T28, T3, T17, T14, T20, T15, T21i ANF: 1.0

Chapter 4. A Genetic Algorithm for Time-Aware Selection 58

The random number 0.802 is generated, selecting R0[1] as �
k

. R0[3] is also chosen as �
l

from a second random number draw of 0.496. The genetic algorithm operators including

crossover, mutation, addition, and deletion may now be performed based on random num-

bers. First, a random number, r1 = 0.6, is chosen for crossover. Since 0.6 < p
c

= 0.7,

crossover is performed. Because there are 15 test cases in the smaller test tuple �
k

, a ran-

dom number r2 2 (0, 15) = 5 is selected as the crosspoint, which creates the following two

new individuals.

�
q

= hT11, T3, T4, T1, T8, T21, T9, T18, T28, T3, T17, T14, T20, T15, T21i

�
r

= hT5, T2, T22, T8, T27, T6, T12, T18, T6, T20, T23, T5, T19, T14, T13, T27, T9i

However, these individuals contain repeating test cases. For example, �
q

contains the test

T3 twice. As the test cases are assumed to be independent, there is no reason to run any

test case more than once. Thus, the repeating test cases are replaced with random unused

test cases from T , as seen below in bold.

�
q

= hT11, T3, T4, T1, T8, T21, T9, T18, T28,T5, T17, T14, T20, T15,T24i

�
r

= hT5, T2, T22, T8, T27, T6, T12, T18,T10, T20, T23,T7, T19, T14, T13,T21, T9i

These newly created individuals are next mutated. A random number r3
i

2 [0, 1] is gener-

ated for each test case T
i

in �
q

and �
r

. If r3
i

is less than p
m

= 0.1, a new test not included

in the current test tuple is randomly selected from T to replace T
i

. For example, in �
q

,

r30 = 0.82, r31 = 0.13, and r32 = 0.04. Thus, T0 = T11 and T1 = T3 remain unchanged,

while T2 = T4 is mutated to T6. After drawing random numbers for each test in �
q

and �
r

,

the mutation method calls on lines 15 and 16 give the following new mutated individuals:

�
q

= hT11, T3, T4, T1, T8, T21, T9, T18, T28, T5, T17, T14, T20, T15, T24i

! hT11, T3,T6, T1, T8, T21, T9, T18,T2, T5, T17, T14, T20, T15, T24i

�
r

= hT5, T2, T22, T8, T27, T6, T12, T18, T10, T20, T23, T7, T19, T14, T13, T21, T9i

! (no change)

Finally, a random test may be added or removed from the new individuals through the

selection of two more random numbers r4 and r5. When r4 < p
a

, a random unused test case

is picked from T and placed at the end of the individual, as observed in �
q

where r4 = 0.014.

For �
r

, r4 � p
a

, but r5 was less than p
d

, causing a random test, T5, to be removed from

tuple �
r

.

Chapter 4. A Genetic Algorithm for Time-Aware Selection 59

�
q

= hT11, T3, T4, T1, T8, T21, T9, T18, T28, T5, T17, T14, T20, T15, T24,T2i

�
r

= hT2, T22, T8, T27, T6, T12, T18, T10, T20, T23, T7, T19, T14, T13, T21, T9i

The two individuals �
q

and �
r

are now finally added to the second population as the

third and fourth test tuples, R1[2] and R1[3]. This process is repeated to obtain the fifth

individual, R1[4] = hT23, T16i, which is simply the reverse of the original fifth individual

R0[4]. However, the fitness of the new individual R1[4] is higher because it covers more

requirements earlier than R0[4]. In this way, the second generation is completed and contains

the following individuals:

R1[0] = hT5, T2, T22, T8, T27, T6, T9, T18, T28, T3, T17, T14, T20, T15, T21i Fitness: 60.19

R1[1] = hT6, T2, T4, T9, T25, T11, T15, T5, T8, T21, T1, T28, T27, T19, T23, T13i Fitness: 58.58

R1[2] = hT11, T3, T4, T1, T8, T21, T9, T18, T28, T5, T17, T14, T20, T15, T24, T2i Fitness: 68.13

R1[3] = hT2, T22, T8, T27, T6, T12, T18, T10, T20, T23, T7, T19, T14, T13, T21, T9i Fitness: 50.90

R1[4] = hT23, T16i Fitness: 20.02

In the first population, the average fitness was 47.704, while that of the second population

was 51.564. The genetic algorithm operators produced new individuals with fitnesses higher

than those of the original population in this example. Note that this may not always be the

case. However, it is guaranteed that the individuals with the highest fitnesses will survive

from generation to generation, continuing to contribute good genes to the population.

4.3 Empirical Evaluation

The primary goal of our experimental study is to identify and evaluate the challenges

associated with test suite selection given a time budget. We implemented the approach

described in Section 4.2 in order to measure its e↵ectiveness and e�ciency. The goals of

the experiment are as follows:

1. Analyze trends in the (i) coverage preservation, (ii) overall coverage, (iii) fitness, and

(iv) average percent of faults detected by selections generated using di↵erent values

for the parameters of the genetic algorithm.

Chapter 4. A Genetic Algorithm for Time-Aware Selection 60

Figure 4.5: Overview of Selection Infrastructure.

2. Determine if the GA-produced selections, on average, outperformed selections pro-

duced by other prioritization techniques according to the average percent of faults

detected.

3. Identify the trade-o↵s between the configuration of the genetic algorithm and the time

and space overheads associated with the creation of the selected test suite.

4.3.1 Experimental Design

All experiments were performed on GNU/Linux workstations with kernel 2.4.20-8, a 1.80

GHz Intel Pentium 4 processor and 1 GB of main memory. The genetic algorithm was

implemented in Java and selects JUnit test suites, which are commonly used in testing [27].

Figure 4.5 provides an overview of the test selection implementation with edges between

interacting components. The test suite is first transformed into a set of test cases with

test case execution times. JUnit’s test execution framework provides setUp and tearDown

methods that are used to set and clear application state, transforming �
i�1 into �0. The

tearDown operation is also used to store application state �
i

prior to deletion. Thus, Section

4.2’s assumption of test independence is acceptable. To begin GA execution, the test cases

and program information are input into the genetic algorithm along with the other nine

parameters for the GA, as depicted in Figure 4.5.

Chapter 4. A Genetic Algorithm for Time-Aware Selection 61

Faults Test Cases
T1 T2 T3 T4 T5 T6 T7

�1 X X
�2 X
�3 X X
�4 X
�5 X X

Table 4.2: Faults Detected by T = hT1, . . . , T7i.

The genetic algorithm gathers coverage information at most |�
j

| times whenever the

fitness of test tuple �
j

is calculated. Fitness is determined before any test tuple is added to

the next test tuple set R
g

. Emma, an open source toolkit for reporting Java code coverage,

is used to calculate test adequacy in terms of method and block coverage [91]. Coverage

statistics are aggregated at method, class, package, and all classes levels for the application

under test, and Emma, like most tools, only reports coverage for the entire test tuple. The

overall runtime overhead of instrumentation added by Emma is small and Emma’s bytecode

instrumentor itself is very fast, mostly limited by file input/output (I/O) speed [91].

Coverage calculation is expensive due to the number of times coverage information

must be gathered. In order to prevent redundant coverage calculations, the infrastructure

uses memoization [72]. This is especially useful in the calculation of the secondary fitness

function F
sec

, which requires the code coverage information for up to |�
j

| subtuples of test

cases for each �
j

2 R
g

. Coverage information is used in the fitness function to calculate a

fitness value fit(P,�
j

, tc) for every �
j

2 R
g

. Based on this value, the GA creates g
max

sets

of s test tuples. From the last generated test tuple set, the test tuple with the maximum

fitness �
max

is returned. As seen in Figure 4.5, �
max

is then used in the new test suite T 0.

Gradebook and JDepend, described in Chapter 3.3.1, are again used as case study ap-

plications.

Chapter 4. A Genetic Algorithm for Time-Aware Selection 62

Evaluation Metrics.

In order to evaluate the e↵ectiveness of a given tuple of test cases, the overall code coverage

and fitness of the GA’s resulting test tuples is used. Additionally, the amount of coverage

preserved by each of the GA’s resulting test tuples from the original test suite is determined.

The coverage information is analyzed at block granularity. For a more thorough analysis of

the e↵ectiveness of a given test case tuple, prior knowledge of the faults within the program

under test is assumed. A test suite selection can be empirically evaluated based on the

weighted average of the percentage of faults detected over the execution of the test suite,

or the APFD, described in Chapter 2.1.2. Preference is given to selection schemes that

produce test suite tuples with high APFD values.

Since �
j

is a subtuple of T , it may contain fewer test cases than T . Moreover, �
j

may

not be able to detect all defects. Therefore, we extend the definition of reveal so that

reveal(�
f

,�
j

) = |�
j

| + 1 if a fault �
f

was not found by any test case in �
j

. This would

cause a prioritized test suite tuple that finds few faults to possibly have a negative APFD.

Suites finding few faults are penalized in this way.

For example, suppose that we have the test suite T = hT1, . . . , T7i for program P , and

we know that the tests detect faults � = {�1, . . . ,�5} in P according to Table 4.2. We look

at two scenarios: In the first, P contains a subset of the � faults, namely �1 = {�2,�3}.

In the second, P is seeded with all of the � faults, so �2 = �. Consider the two prioritized

test tuples �1 = hT3, T2, T1, T6, T4i and �2 = hT1, T5, T2, T4i. Incorporating the data from

Table 4.2 into the APFD equation yields

APFD (�1, P, �1) = 1� 1+2
5⇥2 + 1

2⇥5 = 0.80

APFD (�2, P, �1) = 1� 5+3
4⇥2 + 1

2⇥4 = 0.125

APFD (�1, P, �2) = 1� 3+1+2+5+2
5⇥5 + 1

2⇥5 = 0.58

APFD (�2, P, �2) = 1� 1+5+3+4+3
4⇥5 + 1

2⇥4 = 0.325

Note that �2 is penalized because it fails to find �2. Also, APFD varies depending on the set

of faults that are seeded into P . According to the APFD metric, �1 has a better percentage

Chapter 4. A Genetic Algorithm for Time-Aware Selection 63

of fault detection than �2 in both scenarios and is therefore more desirable for both fault

sets.

To evaluate the e�ciency of our approach, time and space overheads are analyzed by us-

ing a GNU/Linux process tracking tool. This tool supports the calculation of peak memory

use and the total user and system time required to prioritize the test suite.

4.3.2 Experiments and Results

Experiments were run in order to analyze (i) the e↵ectiveness and the e�ciency of the

parameterized genetic algorithm and (ii) the e↵ectiveness of the genetic algorithm in relation

to random, initial ordering, reverse ordering, and fault-aware selections.

Fault Seeding. In order to calculate APFD , the resulting test selections were run

on programs that were seeded with sets of faults created by a tool, Jester [78]. Mutations

were determined by a mutation configuration file, which contains value substitutions such

as replacing ‘+’ by ‘-’ or ‘>’ by ‘<’. The default mutations provided by Jester were used [78].

For each mutation and each source file in program P , Jester modifies the file, recompiles P ,

and executes the test suite T . P is then returned to its original state for the next seeding.

For the purpose of the experiments, Jester was modified to show all of the mutations that

were successfully found by a test T
i

in T . In this way, Jester generated a list of faults that

are detectable by at least one test case in the test suites of JDepend and Gradebook.

For example, in the Gradebook application, the following mutations were suggested by

Jester and detectable by Gradebook’s test suite:

GradeBookCreator:25 databaseServerCreated = false; databaseServerCreated = true;

GradeBookCreator:407 "Firsthand Archer(255), " "Firsthand Archer(355), "

Gradebook:1001 if(studentId < 0) if(true || studentId < 0)

Similar mutations, like the ones below, were made in JDepend:

jdepend.framework.FileManager.java:74 if (acceptFile(file)) { if !(acceptFile(file)) {

jdepend.framework.JavaPackage:113 count++; count--;

Chapter 4. A Genetic Algorithm for Time-Aware Selection 64

GA parameters
P Gradebook, JDepend
(g

max

, s) (25, 60), (50, 30), (75, 15)
p

t

0.25, 0.50, 0.75
p

c

0.7
p

m

0.1
p

a

0.02
p

d

0.02
tc method, block

Table 4.3: Parameters used in GA Configurations.

For each application, 40 mutations that could be found by at least one T
i

2 hT1, . . . , Tn

i

were randomly selected. We could look at these 40 faults in a table like that in Table 2.1.

Then, to calculate APFD, 25, 50, or 75% of the 40 possible mutations were seeded into

the case study applications, where the larger mutation sets were supersets of the smaller

mutation sets.

The first experiment compares the GA execution results and overheads from di↵erent

GA parameter configurations, described in Table 4.3. These parameters were chosen based

on past work [77] and were shown to be good in a preliminary study [114]. In order to

run all possible configurations, 36 experiments were completed: 18 using Gradebook and

18 using JDepend. We used thirty-six computers, each running one trial with one unique

configuration. For example, one computer ran a genetic algorithm on the test suite T of

the Gradebook application calculating g
max

= 25 generations of tuple sets, each of which

contained s = 60 test tuples. In this configuration, the selection was created to be run

with p
t

= 0.25, requiring solution test tuples to execute within 25% of the total execution

time of T , and fitness was measured using method coverage. The first set of experiments

evaluated the e↵ectiveness of the selections produced by the GA. We also analyzed the

e�ciency of the technique, making this study one of the first to empirically evaluate the

e�ciency of a search-based testing technique and thus provide concrete evidence of the

intuitions developed by Harman in [40].

E↵ectiveness. As shown in Table 4.4, on average, the selections created with fitnesses

Chapter 4. A Genetic Algorithm for Time-Aware Selection 65

Block Method
Gradebook 0.638993 0.573982
JDepend 0.715984 0.630298

Table 4.4: Gradebook and JDepend APFD Values.

25% 50% 75%

Coverage Preservation Ratio: Block vs. Method

Percent of Total Time

C
ov

er
ag

e
Pr

es
er

va
tio

n
R

at
io

0.
80

0.
84

0.
88

0.
92

0.
96

1.
00

JDepend, Method
JDepend, Block
Gradebook, Method
Gradebook, Block

(a)

25% 50% 75%

Coverage and Fitness Comparison: Block vs. Method

Percent of Total Time

Pe
rc

en
t o

f C
od

e
C

ov
er

ag
e/

Fi
tn

es
s

25% 50% 75%

Coverage and Fitness Comparison: Block vs. Method

Percent of Total Time

Pe
rc

en
t o

f C
od

e
C

ov
er

ag
e/

Fi
tn

es
s

62
64

66
68

70
72

74
76

78

JDepend, Method
JDepend, Block
Gradebook, Method
Gradebook, Block

(b)

25% 50% 75%

APFD: Block vs. Method

Percent of Total Time

AP
FD

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

JDepend, Method
JDepend, Block
Gradebook, Method
Gradebook, Block

(c)

Figure 4.6: GA Coverage Preservation, Coverage/Fitness, and APFD Results.

based on block coverage outperformed those developed with fitnesses based on method

coverage. In Gradebook, use of block coverage produced APFD values 11.32% greater than

the use of method coverage, and in JDepend, block coverage APFD values increased by

13.59% over method coverage. We attribute this to block coverage’s finer level of granularity.

The same trend is observed when looking at the code coverage and fitness of each of

the test selections. As shown in Figure 4.6(a), selections generated with fitnesses based on

block coverage preserved a larger percent of the original test suite’s coverage. However, each

selection maintained code coverage well, with the worst test tuple still achieving 87.5% of

the original code coverage. Even when the allotted time is reduced by 75%, our technique

on average preserves 94% of the original test suite’s code coverage. Preservation of 100%

is not possible for Gradebook because no possible selection that covers all of T ’s covered

requirements can be run within any of the time budgets. Gradebook’s test cases in general

are longer running than those of JDepend.

Figure 4.6(b) shows the code coverage and fitness of each of the selections, where the

Chapter 4. A Genetic Algorithm for Time-Aware Selection 66

lower bar is the overall coverage of the test tuple and the higher bar is the fitness. Fig-

ure 4.6(c) provides the APFD of each tuple. As the time budget is increased, the coverage,

fitness, and APFD values increase for both Gradebook and JDepend, although the amount

of increase for a JDepend selection is less than that of the Gradebook selections. The

Gradebook test cases that cover the most code and that find the most faults take a signifi-

cantly longer time to execute than the test cases of JDepend. Thus, fewer Gradebook test

cases that cover larger portions of the code can be executed within a shorter time budget

of 25%, as observed in Figures 4.6(a) and 4.6(b). This causes the APFD of the Gradebook

selections with p
t

= 0.25 to be lower than the rest of the resulting test tuples. When p
t

is increased to 50%, the majority of the test cases that find the most faults are able to be

run within the time budget, which greatly increases test tuple APFD values. An increase

to p
t

= 0.75 allows for the inclusion of the shorter, less useful test cases.

JDepend’s test cases all have very short execution times, and many of them cover about

the same amount of code. As in Gradebook, the longer running JDepend test cases generally

cover more code and detect more faults than the shorter tests. However, because the

execution time di↵erence between JDepend test cases is much smaller than that of Gradebook

test cases, we observe a less drastic coverage and APFD increase in JDepend’s selections as

p
t

grows. This can be seen in Figures 4.6(b) and 4.6(c), especially between p
t

= .25 and

p
t

= .50.

Modification of the number of faults seeded and of (g
max

, s) led to APFD values that were

nearly constant in terms of block and method coverage in the test selections for Gradebook

and JDepend. This provides confidence in the results generated by the GA because about

the same percentage of defects can be found by any of the selections regardless of how many

faults there are or how the GA created the selections. Just as in Table 4.4 and Figure 4.6(c),

selections based on block coverage slightly outperformed those using method coverage.

E�ciency. Space costs were insignificant, with the peak memory use of any experiment

being less than 9344 KB. Most experiments ran with peak memory use of approximately

1344 KB. As is seen in Figure 4.7, the number of generations and the number of tuples per

Chapter 4. A Genetic Algorithm for Time-Aware Selection 67

User Time Overhead

Number of Generations, Population Size

Ti
m

e
(h

ou
rs

)

6
8

10
12

14
16

18
20

(25,60) (50,30) (75,15)

JDepend, Method
JDepend, Block
Gradebook, Method
Gradebook, Block

Figure 4.7: Genetic Algorithm Time Results.

generation greatly impact the time overhead. Modifying these parameters did not a↵ect

the quality of the solutions [114]. The high time overheads provide quantitative evidence of

the prevailing understanding of the high cost of search-based methods [40]. For example,

using block coverage, the genetic algorithm’s selection of Gradebook’s test suite executed

for 12.7 hours of user time on average when creating 25 generations of 60 test tuples. On the

other hand, if 75 generations with 15 test tuples were created, the GA only consumed 8.0

hours. Due to memoization, many of the fitness values of test subtuples created in later GA

iterations were already recorded from earlier iterations so that the fitness of the subtuples

did not need to be calculated again. In the experiments that created 25 generations of 60

test tuples, there is likely to be more genetic diversity. Thus, there are more subsequences

that will probably be found than when selection is performed with 75 generations of 15 test

tuples. In this case, Emma must be run many more times, which increases the selection

time overhead.

The same trend observed in Figure 4.7 occurs when the system time values for Gradebook

and JDepend are compared [114]. For example, a GA executing Gradebook’s test suite with

25 generations of 60 test tuples using block coverage required 12.7 hours of user time and 0.78

Chapter 4. A Genetic Algorithm for Time-Aware Selection 68

hours of system time. However, a GA running Gradebook’s test suite with 75 generations

of 15 individuals required only 8.0 hours of user time and 0.44 hours of system time, a

vast improvement over the (25, 60) configuration. Time-aware selection of the JDepend

test suite consumed 17.9 hours of user time and 2.1 hours of system time when using the

(25, 60) configuration but only 12.1 hours of user time and 1.38 hours of system time using

(75, 15). A GA prioritizing JDepend’s test suite requires a longer execution time than a

GA prioritizing the Gradebook test suite due to JDepend’s larger test suite. Since there are

more selections that can be generated, on average, the fitness function was calculated more

times.

As the percent of total test suite execution time was increased for both Gradebook and

JDepend, the number of fitness function calculations also grew due to the fact that more test

cases could be included in the selections. Since profiling reveals that the fitness function is

the main bottleneck of the technique, less time is required overall to reach a result when the

genetic algorithm needs to run the fitness function calculator less frequently. This confirms

the trend seen in Figure 4.7 as well. We also note that no significant di↵erence was observed

between the time overheads of test suite selection using block versus method coverage.

The time overhead of the genetic algorithm is dominated by the execution of Emma,

which executes subsets of T . This is done because we assume that only aggregate cov-

erage information is available, as discussed in Section 4.2.2. Even when performing

memoization, Emma could be executed O
⇣P

n�1
1 C(n, i) (n� i)!

⌘
= O (n!) times, where

n = | hT1, . . . , Tn

i | and C(n, i) is n choose i. Because each test case has an equal prob-

ability of being in any permutation, this means that T
i

2 hT1, . . . , Tn

i could be executed

O
⇣

1
n

P
n�1
1 C(n, i) (n� i)!

⌘
= O (n!) times during GA execution. The cost of the fitness

function could be greatly reduced by collecting coverage data on a per-test basis. Then the

algorithm only needs to execute a given test case twice; once to get time data, and once to

obtain coverage information. The fitness function then reduces to a calculation that merges

the coverage data of the test cases under consideration. This will substantially improve

performance without any impact on e↵ectiveness.

Chapter 4. A Genetic Algorithm for Time-Aware Selection 69

As an example of the performance improvement attained by using per-test instead of

aggregate coverage information, consider the worst case fitness calculation that could occur

in our case studies. Assume that a selection � of JDepend’s test suite includes all 53 test

cases. Although � itself only requires about 5.5 seconds to execute, it would take about 80

seconds to calculate the fitness of � using aggregate coverage information. However, if tool

support is available to compute coverage information in a per-test manner, then a single

merge of 53 coverage data files would require only about 0.13 seconds. Then, assuming no

memoization, a fitness calculation for � based on per-test data would require only about

3.5 seconds, which is an improvement of two orders of magnitude. With per-test data, no

test cases need to be rerun for the fitness calculations during GA execution, and thus the

time overhead depends only on the time required to perform |�|� 1 merges.

Discussion. According to results in [114], the APFD values for Gradebook were similar

regardless of the value that was used for (g
max

, s). However, Figure 4.7 reveals that a change

in (g
max

, s) had a significant impact on the time overhead of time constrained test suite

selection. It is also clear from Figures 4.6(c) and 4.7 that on average, block coverage

outperformed method coverage in relation to APFD while not increasing the time overhead

of test suite selection. Based on our empirical data, a configuration of GAPrioritize that

uses (g
max

, s) = (75, 15) and tc = block would yield the best results in the shortest time.

Even though the time required to perform test suite selection is greater than the ex-

ecution time of the test suite itself when aggregate data is used, a given selection can be

re-used each time a software application is changed. Selection reuse is typical in general

test case prioritization and selection [89]. In this way, the cost of the initial selection is

amortized over the period of time during which the selected test suite is used. Initial se-

lection cost can also be greatly decreased if per-test coverage data is available. Even in

light of the time required for selection, the empirical study suggests that it might be ad-

vantageous to use the presented technique when there is a fixed set of short testing time

constraints. This is especially evident when time-constrained selections are compared to

alternative non-constraint-aware prioritizations.

Chapter 4. A Genetic Algorithm for Time-Aware Selection 70

Algorithm FindAllSelections(T , limit, perm, tt)

Input: Test suite T Total time allowed limit
Current partial permutation perm Time taken by perm tt

1. scanned 0;
2. for T

i

2 hT1, . . . , Tn

i
3. do if perm contains T

i

4. then continue;
5. if tt + time(hT

i

i) < limit
6. then scanned++;
7. add T

i

to end of perm;
8. mark T

i

as used;
9. FindAllSelections(T, limit, perm, tt + time(hT

i

i));
10. remove T

i

from end of perm;
11. mark T

i

as not used;
12. if scanned = 0
13. then store(perm)

Figure 4.8: The Complete Selection Generator.

Alternative Comparisons

Random Selections. According to Do et al., randomly ordered test cases are useful

because they redistribute fault-revealing test cases more evenly than original test order-

ings [27]. Using 18 computers, 10,000 selections were randomly created on each machine

over several days. Three elements were varied to create the 18 configurations: (i) the per-

cent of total test suite execution time p
t

, (ii) number of faults |�|, and (iii) the application

P . A building approach was used to create the test tuples, as shown in Figure 4.8. For each

selection, a test case is chosen, where test cases are sequentially checked for previous use.

If the test case fits in the new permutation, then it is added, and the algorithm recursively

analyzes the new tuple, as on line 9. Selected test cases are added until the next tuple to

be added causes the test tuple to exceed t
max

. Each of the generated selections nearly fills

the time limit but does not go over that limit.

This algorithm generates all possible test tuples that will fit in the allotted time. The

store(perm) method on line 13 stores each tuple for later use. From these saved tuples,

10,000 selections were randomly selected. Alternatively, each random selection could be

Chapter 4. A Genetic Algorithm for Time-Aware Selection 71

built by incrementally adding random unused test cases to the tuple until the time limit is

reached.

Success of the genetic algorithm selections is measured by comparing the selected test

suites’ APFD values to the APFD values of the other reorderings. Figure 4.9 shows a

comparison between the APFD values, percent of total test suite execution time, and the

number of faults seeded for GA-produced selections in relation to randomly produced per-

mutations. Figure 4.9(a) describes the results for Gradebook, and Figure 4.9(b) does the

same for JDepend. Each bar in the graphs represents the average of the APFD values of

10,000 random selections, and the error bar shows the standard deviation from the mean

APFD.

In the case of Gradebook, the GA-produced selections performed extremely well in

comparison to the randomly produced selections. All APFD values from selections based

on the Gradebook application were more than one standard deviation above the mean of the

randomly produced selections. Because the tests that detect the most faults in Gradebook

are longer in execution time and fewer in number with regard to the other test cases, there

was a greater probability of creating weak test tuples using random selection. As depicted

in Figure 4.9(a), the test tuples executing with p
t

= 0.25 had negative APFD values on

average because they were only able to find a few of the seeded faults. Thus, there is a clear

benefit to using intelligently prioritized tests instead of random selections.

In the case of JDepend, the GA-produced selections on average did not perform as well

as the selections of the test suite for Gradebook. This was anticipated because of the nature

of JDepend’s test cases, which are much more interchangeable with respect to fault detection

potential than those of Gradebook. As can be seen in Figure 4.9(b), on average, all GA-

produced selections that ran within 25% of the total test suite execution time had APFD

values more than one standard deviation above the mean APFD value of the same set of

randomly produced selections. GA-produced selections that ran within 50% and 75% of the

total test suite execution time also had APFD values within one standard deviation above

the mean of the randomly produced selections.

Chapter 4. A Genetic Algorithm for Time-Aware Selection 72

Gradebook APFD vs. Total Time

(25%,10)
(50%,10)

(75%,10)
(25%,20)

(50%,20)
(75%,20)

(25%,30)
(50%,30)

(75%,30)

(Percent of Total Time, Number of Faults)

-0.5

0

0.5

A
PF

D GA Tuple
Random Tuple

(a)

JDepend APFD vs. Total Time

(25%,10)
(50%,10)

(75%,10)
(25%,20)

(50%,20)
(75%,20)

(25%,30)
(50%,30)

(75%,30)

(Percent of Total Time, Number of Faults)

0

0.5

A
PF

D GA Tuple
Random Tuple

(b)

Figure 4.9: GA vs. Random Ordering APFD Values.

Because the test cases of JDepend all have about the same adequacy and take around

the same amount of time to execute, many di↵erent test subtuples have the same APFD.

As observed in Figure 4.9(b), the average APFD for test tuples that are allowed to run in

75% of the total test suite execution time is likely to be closer to the best possible APFD

value than that of test subtuples that are allowed to run in only 25% of the total test suite

execution time. In other words, it is much easier for random selections to have high APFD

values when more of the original test suite can be run, particularly in the case of JDepend.

Overall, the GA-produced selections performed extremely well in comparison to ran-

domly generated selections. Nearly all results were more than one standard deviation above

the mean APFD values calculated for selections that were produced randomly. All results

had APFD values that were greater than the mean APFD values of random selections. Note

also from Figures 4.9(a) and 4.9(b) that APFD values for the percent of total test suite

execution time groups are all very similar. This again provides confidence in the results

generated by the genetic algorithm because about the same percentage of faults can be

found by any of the selections in spite of how many defects there are or how the GA created

the selections.

Additional Selection Techniques. Two simple forms of selection include those

Chapter 4. A Genetic Algorithm for Time-Aware Selection 73

Initial Reverse Fault Aware GA Initial Reverse Fault Aware GA
p

t

|�| Gradebook Gradebook Gradebook Gradebook JDepend JDepend JDepend JDepend

0.25 10 -0.600 -0.233 0.660 0.428 0.525 -0.300 -0.050 0.567
0.25 20 -0.863 -0.208 0.720 0.412 0.478 -0.275 0.050 0.649
0.25 30 -0.892 -0.006 0.453 0.457 0.473 -0.133 0.083 0.617
0.50 10 -0.042 0.160 0.869 0.741 0.873 0.000 0.200 0.678
0.50 20 -0.192 0.167 0.873 0.737 0.819 0.013 0.175 0.690
0.50 30 -0.308 0.284 0.782 0.722 0.842 0.100 0.208 0.719
0.75 10 0.314 0.478 0.906 0.730 0.878 0.492 0.590 0.775
0.75 20 0.124 0.433 0.926 0.707 0.826 0.608 0.283 0.773
0.75 30 0.049 0.516 0.880 0.703 0.848 0.534 0.250 0.788

Table 4.5: Initial, Reverse, Fault-Aware, and Genetic Algorithm Selection APFD Values.

that execute test cases in the order in which they are written or the reverse of that order.

Table 4.5 compares GA-produced selections to initial and reverse ordering selections. The

genetic algorithm produced selections that were up to a 120% improvement over initial

orderings. For example, Gradebook’s initial tuple created using p
t

= 0.25 and |�| = 30 had

APFD = �0.892 whereas the associated intelligently produced tuple had APFD = 0.457,

as shown in Table 4.5. The time constrained selections were also an improvement over all

reverse ordering selections in both JDepend and Gradebook.

Even though fault-aware selection cannot be performed in practice, these reorderings

are useful for comparison purposes. The fault-aware selections were constructed by first

calculating the time required and the faults detected by each test case. Then, in a non-

overlap-aware manner, the tests are added to the tuple based on the fault/time ratio until

the addition of the next test would exceed the time limit. The JDepend GA-produced test

tuples performed much better than the fault-aware selections described in Table 4.5. This

is likely because most of the test cases in JDepend cover the same code segments. While the

genetic algorithm identifies the overlap in test code coverage (and thus the fault detection

potential), the fault-aware selection does not. Thus, the GA produced markedly better

results for JDepend.

On the other hand, the selections produced by the GA for Gradebook were not quite as

good at finding defects quickly when compared to the fault-aware selections for Gradebook,

as noted in Table 4.5. This is because Gradebook’s test cases have little coverage overlap,

causing few test cases to detect the same faults. Because the fault-aware selection technique

Chapter 4. A Genetic Algorithm for Time-Aware Selection 74

25% 50% 75%

Coverage Preservation Ratio: Gradebook

Percent of Total Time

C
ov

er
ag

e
Pr

es
er

va
tio

n
R

at
io

0.
25

0.
35

0.
45

0.
55

0.
65

0.
75

0.
85

0.
95

(a)

25% 50% 75%

Coverage Preservation Ratio: JDepend

Percent of Total Time

C
ov

er
ag

e
Pr

es
er

va
tio

n
R

at
io

0.
92

0.
94

0.
96

0.
98

1.
00

(b)

Figure 4.10: Coverage Preservation of Test Suite Selection.

25% 50% 75%

Coverage and Order−Aware Coverage: Gradebook

Percent of Total Time

Pe
rc

en
t o

f C
od

e
C

ov
er

ag
e/

O
rd

er
−A

w
ar

e
C

ov
er

ag
e

25% 50% 75%

Coverage and Order−Aware Coverage: Gradebook

Percent of Total Time

Pe
rc

en
t o

f C
od

e
C

ov
er

ag
e/

O
rd

er
−A

w
ar

e
C

ov
er

ag
e

20
30

40
50

60
70

80

(a)

25% 50% 75%

Coverage and Order−Aware Coverage: JDepend

Percent of Total Time

Pe
rc

en
t o

f C
od

e
C

ov
er

ag
e/

O
rd

er
−A

w
ar

e
C

ov
er

ag
e

25% 50% 75%

Coverage and Order−Aware Coverage: JDepend

Percent of Total Time

Pe
rc

en
t o

f C
od

e
C

ov
er

ag
e/

O
rd

er
−A

w
ar

e
C

ov
er

ag
e

64
66

68
70

72
74

76
78

(b)

Figure 4.11: Genetic Algorithm Comparison to Non-Overlap-Aware 0/1 Knapsack Solvers.

has actual knowledge of all faults, it could specifically organize the test cases to best find the

known faults without concern for fault detection overlap. Although the genetic algorithm’s

results did not have as high of APFD values in this case, its selections are more general

because they are not based on specific faults. Thus, they have the potential to perform well

no matter where the defects in the code may exist.

Chapter 4. A Genetic Algorithm for Time-Aware Selection 75

0/1 Knapsack Selection Comparisons

Finally, we compare our genetic algorithm’s results to the selections produced using the

non-overlap aware 0/1 Knapsack solvers that were presented in Chapter 3. In these ex-

periments, block coverage was used. Here we examine the overall coverage, order-aware

coverage, and coverage preservation of each of the resulting selections. These can be seen in

Figures 4.10(a)- 4.11(b). As would be expected, the coverage overlap-aware solver achieves

the highest overall coverage for each testing time constraint. We learn from each of the

figures that the GA approach is particularly e↵ective when creating selections for execution

times that are much smaller than the execution time of the original test suite. The most

sophisticated non-overlap-aware 0/1 knapsack solvers do not always create the most e↵ec-

tive selection of the test suite, suggesting that overlap-aware selection techniques, such as

GASelect, that have a higher time overhead are appropriate in contexts where correctness

is the highest priority.

4.4 Conclusions

In this chapter, we have described a search-based technique that selects test cases for time

constrained execution. When provided with a testing time budget, the GASelect algo-

rithm evolves a reordered test suite that rapidly covers the test requirements and always

terminates within the specified time limit. Experimental analysis demonstrates that our ap-

proach can create time-aware selections that significantly outperform other non-time-aware

prioritization techniques and non-overlap-aware selection techniques. In one example, our

technique created selections that, on average, had up to a 120% improvement in APFD

over other prioritizations. Even when there is a 75% reduction in the time available for

test execution, our approach preserves 94% of the original test suite’s code coverage. The

empirical study also reveals methods for improving the performance of time-aware selection.

For instance, coupling a reduced population size with an increase in the number of genera-

tions decreases selection time by up to 43% without compromising the e↵ectiveness of the

Chapter 4. A Genetic Algorithm for Time-Aware Selection 76

resulting selection. We also evaluate the performance benefits of using per-test coverage

data instead of aggregate data. Taking advantage of per-test information allows for a sub-

stantial speedup of the fitness function calculation. In the worst case for our applications,

this can result in up to a performance improvement of about two orders of magnitude with

no impact on e↵ectiveness.

In confirmation of the predominate understanding of search-based methods in software

engineering [40], the experimental results suggest that GASelect incurs a high computa-

tional cost, and thus it is most valuable when the resulting prioritization is re-used multiple

times. The empirical study shows that calculation of F
s�actual

and consideration of coverage

overlap improves the e↵ectiveness of the prioritized test suite; however, it also increases the

time overhead of selection. Calculating fitness was expensive because fit accommodates the

use of a test coverage monitor (e.g., Clover [53], Jazz [76], and Emma [91]) that only reports

aggregate coverage data. However, our analysis shows that if a per-test coverage calculator

is available, the overall time overhead can be much reduced.

In the next chapter, we consider the challenge of developing a test execution system

that can be used to accurately and e�ciently evaluate the quality of our test suites.

Chapter 5

Executing Test Cases for Branch Monitoring

Contents

1.1 Test Case Selection . 2

1.2 Executing Test Cases . 4

1.3 Constraints During Testing . 4

1.3.1 Constraints When Selecting Test Cases 5

1.3.2 Constraints When Executing Test Cases 7

1.4 Challenges and Goals of Testing in Resource-Constrained Environments 8

1.5 Research Overview . 11

1.5.1 Description of the Research Process 12

1.5.2 Contributions of the Dissertation 15

After tests are generated and selected, test execution is monitored to determine the

quality of the tests being run. While there are many existing tools that evaluate test suites

during execution, nearly all su↵er from high time overheads and even larger memory over-

heads due to their reliance on software-level instrumentation. The high overheads incurred

make existing monitoring tools di�cult to use within resource-constrained environments.

As an alternative to instrumentation-based monitoring, in this chapter, we explore the

potential of exploiting hardware mechanisms for monitoring in software testing. Modern-

day processors include sets of hardware performance mechanisms that were designed to

77

Chapter 5. Executing Test Cases for Branch Monitoring 78

track and measure various aspects of program and kernel execution. For example, the Intel

Nehalem processor provides the capability to track more than 2000 di↵erent performance

events, and recent Linux kernel patches provide user-level support for nearly 200 of these

mechanisms [31]. Hardware performance counters (HPCs) are counters for such events,

stored in registers and accessible using privileged instructions. HPCs count events such

as the number of instructions retired, cache misses, and branches executed. Hardware

performance monitors (HPMs) are a related type of mechanism that stores information

about events, such as addresses from executing instructions. To extend the capabilities of

HPCs and HPMs, newer mechanisms have been developed to bu↵er or filter data, as well

as providing control over data caching and instruction reordering. For generality, we will

use the term hardware mechanism to include HPCs, HPMs, and mechanisms throughout

the rest of this dissertation.

In this chapter, we explore how hardware performance mechanisms can be used for

branch testing. As described in Chapter 1, hardware mechanisms can be used for sampling

program execution with very little overhead; their use can potentially remove the need for

instrumentation entirely.

Most hardware mechanisms are designed to monitor performance. The majority were

introduced for tasks such as system tuning or compiler optimization improvements. More

recently, additional mechanisms have been added as debug facilities for use in debugging

application software, system software, and multitasking operating systems [47]. Although all

modern processors have hardware mechanisms, the list of these di↵ers between processors.

For many years, these counters and mechanisms were only accessible through the direct

use of privileged instructions. In the past 5 years though, support for many of the more

popular mechanisms has been provided at the user level through interfaces and helper

libraries. However, newer mechanisms, such as those in the debug facilities, still are not

supported at the user level.

Hardware mechanisms that have been made visible at the user level have been leveraged

very successfully in software systems because of their low overhead monitoring capability.

Chapter 5. Executing Test Cases for Branch Monitoring 79

Some systems that exploit hardware monitoring are discussed in Chapter 2.2.3. However,

hardware counters and mechanisms have yet to be exploited in branch testing.

In this chapter, the potential of adapting hardware performance mechanisms for use in

test execution is analyzed. We focus on branch coverage evaluation because a number of

more advanced hardware mechanisms directly monitor branch execution. The first mecha-

nism, a performance-monitoring feature available in all recent Intel processors, is the last

branch record (LBR). The LBR stores the origin and destination addresses of all taken

branches in a circular bu↵er of special-purpose CPU registers. An interrupt enables the

information in the LBR to be read.

The Branch Trace Store (BTS) mechanism is another potential tool for use in branch

testing because it records all branch information automatically in a large in-memory bu↵er.

When the bu↵er is filled, an interrupt is generated to allow the kernel to retrieve the recorded

data and reset the bu↵er pointer so that no branch information is lost.

In this chapter, we analyze the tradeo↵s between gathering executed branch information

from the LBR versus the BTS in terms of overhead and e↵ectiveness for branch testing. Al-

though the LBR and BTS are both capable of monitoring and reporting all taken branches,

the LBR is intended to sample branches while the BTS is meant for branch tracing because

of the structures used to record branches.

This work represents the first attempt to explore how hardware performance mechanisms

can be used for branch testing. The goal is to develop an approach that exploits hardware

monitoring for branch testing with low overhead and high precision. We first demonstrate

the costs associated with accumulating a complete branch trace generated by sampling the

BTS. We then examine a traditional sampling technique’s e↵ects on branch monitoring in

terms of time and e↵ectiveness for branch testing using the LBR. Because the LBR and

BTS are unable to inherently observe fall-through branch edges, innocuous unconditional

branches are placed along fall-through edges and thus can be detected by the hardware

mechanisms. To evaluate how the precision of branch testing through hardware sampling

can be improved, we also explain and develop sampling techniques to mitigate the threat of

Chapter 5. Executing Test Cases for Branch Monitoring 80

sampling bias, reduce the frequency of monitoring repetitious and unimportant branches,

and increase overall sampling e↵ectiveness through the use of multiple cores.

This chapter provides empirical evidence that a high rate of precision can be maintained

with low memory overhead through the use of the LBR. Gathering a complete branch trace

using the BTS, however, is prohibitively expensive for branch testing due to its design as a

debugging tool. When monitoring using the LBR, we learn that a simple event-based sam-

pling technique is fairly e↵ective for branch monitoring at low cost. It is especially useful

when memory overhead is a concern. We demonstrate that on average, our memory over-

head is only increased by 0.57%, which is much improved over instrumentation techniques

whose memory overheads can be prohibitive. A high percentage of actual coverage can be

attained using event-based sampling techniques, but at a cost higher than instrumentation.

However, we also demonstrate that once LBR filtering mechanisms are made visible at the

user level, the time overhead of sampling the LBR can likely be reduced by more than 10%

compared to using full instrumentation and can attain approximately 65% of the actual

branch coverage. Thus, the LBR has the potential of being extremely useful for branch

testing purposes.

5.1 Challenges of Exploiting Hardware Mechanisms

There are a number of challenges in using hardware mechanisms for branch coverage evalua-

tion during test execution. These challenges are due to the di↵erences between software-level

instrumentation versus sampling execution at the hardware level.

Typically with branch testing, instrumentation can precisely monitor all branches in a

program’s source code. To obtain a complete set of taken branches, the BTS should be

used. However, the time overhead of acquiring a full trace is likely to be high because

of the cost of writing to memory on every taken branch. To reduce the cost, the LBR

instead can be sampled at intervals. While a low-cost acquisition of full branch information

using the LBR is unlikely due to the cost of interrupts, intelligent sampling techniques can

Chapter 5. Executing Test Cases for Branch Monitoring 81

be used to significantly reduce the overhead of branch monitoring while maintaining high

branch coverage. This work analyzes the precision that can be obtained using hardware

mechanisms and the tradeo↵s between the precision and cost of sampling the hardware.

In addition to the tradeo↵s between maintaining low overhead while acquiring a high

level of branch coverage, the application of hardware mechanisms to branch testing inher-

ently presents other challenges. One of the main challenges involves the amount of branch

information that is observed. In structural testing, we are concerned with gathering branch

information only for branches in the source code. The LBR and BTS, however, monitor

ALL taken branches executed on the system. On some processors such as the Intel Nehalem

family, it is possible to filter the branches that are collected based on the branch type or

privilege level, but user level support for filtering is not yet available for the LBR. Privilege

level filtering is supported for the BTS.

An additional challenge is related to the precision of reported branch information. When

performing sampling using the LBR, a performance counter is configured to count the

number of executed branches and to generate an interrupt when the specified number of

branches has been observed. At that point, the values in the LBR are read. The BTS

bu↵er is similarly sampled whenever the BTS threshold counter overflows signifying that

the bu↵er is nearly full. In both cases, because of latency in the microarchitecture between

the generation of events and the generation of interrupts on overflow, it is sometimes di�cult

to generate an interrupt close to an event that caused it. Thus, some information may always

be missed [47].

A third challenge arises from the fact that the hardware is monitoring the execution of

binary code. Instrumentation monitors on a source code level and thus tracks both taken

and fall-through sides of a branch. Hardware that monitors branches, however, only can

detect branches based on a jump from a source to some target. Thus, fall-through paths

are not recorded by branch monitors. A supplementary technique is needed to account for

both edges of a branch.

Chapter 5. Executing Test Cases for Branch Monitoring 82

!"#$% &'()*+

,-./001203*456718120*.592:;-<*92,*=1>-#<=9>4*:6/2=-5

!"#$#%#!&& '()&*+,-.&,/0&1/+23®&"$&456-277657&

LBR MSRs are 64-bits. If IA-32e mode is disabled, only the lower 32-bits of the
address is recorded. If IA-32e mode is enabled, the processor writes 64-bit values
into the MSR.

In 64-bit mode, last branch records store 64-bit addresses; in compatibility mode,
the upper 32-bits of last branch records are cleared.

Software should query an architectural MSR IA32_PERF_CAPABILITIES[5:0]
about the format of the address that is stored in the LBR stack. Four formats are
defined by the following encoding:

— 000000B (32-bit record format) — Stores 32-bit offset in current CS of
respective source/destination,

— 000001B (64-bit LIP record format) — Stores 64-bit linear address of
respective source/destination,

— 000010B (64-bit EIP record format) — Stores 64-bit offset (effective
address) of respective source/destination.

— 000011B (64-bit EIP record format) and Flags — Stores 64-bit offset
(effective address) of respective source/destination. LBR flags are supported
in the upper bits of ‘FROM’ register in the LBR stack. See LBR stack details
below for flag support and definition.

Processor’s support for the architectural MSR IA32_PERF_CAPABILITIES is
provided by CPUID.01H:ECX[PERF_CAPAB_MSR] (bit 15).

!"#$#%#8&& '()&*+,-.&,/0&19:;8&456-277657&

The LBR MSRs in IA-32 processors introduced prior to Intel 64 architecture store the
32-bit “To Linear Address” and “From Linear Address“ using the high and low half of
each 64-bit MSR.

<=>?52&!":$#&&"$:@=+&9005277&',A6?+&6B&'()&C*)&

63

Source Address

0

063

Destination Address

MSR_LASTBRANCH_0_FROM_IP through MSR_LASTBRANCH_(N-1)_FROM_IP

MSR_LASTBRANCH_0_TO_IP through MSR_LASTBRANCH_(N-1)_TO_IP

Figure 5.1: 64-bit Layout of the LBR MSR [47].

5.2 Hardware Monitoring for Branch Testing

Beginning with the Intel P6 family of processors, breakpoints can be set on taken branches,

interrupts, and exceptions, and single-stepping from one branch to the next is possible for

the purposes of debugging and profiling. The Intel P6 also has the ability to log branch

trace messages in memory. These features have since been extended to other Intel processors

such as the Pentium 4, Core Duo, and Core i7. Such enhancements enabled the creation of

the LBR and BTS mechanisms.

5.2.1 Last Branch Record (LBR)

The LBR was intended as a profiling tool for sampling partial branch paths in the operating

system. The LBR branch vector of registers is available in many processors, and the number

of branches that the LBR can hold is increasing with each new processor family [47]. When

the LBR is turned on, the processor records a running trace of the most recent branches,

interrupts, and exceptions taken by the processor. Each branch edge is represented as a

source and destination address and is stored into a pair of LBR registers, such as the one

pictured in Figure 5.1

The LBR is made up of a circular bu↵er of n LBR model-specific registers, where n � 4.

In current Intel processors such as the Nehalem i7, n = 16. This means that at any sample

point, the last 16 executed branches can be recorded from the LBR. This set of n correlated

branch events that represent a partial path of program execution define a branch vector.

The LBR can be sampled whenever an interrupt is generated. An interrupt occurs when

Chapter 5. Executing Test Cases for Branch Monitoring 83

!"#$%& '()*&

+,-.//01/2%34560701/%-4819:,;%81+%<0=,);<8=3%95.1<,4

! !"#$%&'()*+,-%.&/0.+.!1%"#$%&'!&(('%))!*+!,-%!$%.,!/0,%!1&),!,-%!%$(!*+!,-%!
2345!/6++%'7!8-#)!&(('%))!)-*69(!/%!&!:69,#19%!*+!,-%!2345!'%;*'(!)#<%!=>?!/0,%)@!
196)!A7

! !"#$%02,-33+4,%,53-(5)*6%1%"#$%&'!&(('%))!*+!,-%!2345!'%;*'(!*$!B-#;-!&$!
#$,%''61,!#)!,*!/%!C%$%'&,%(7!8-#)!&(('%))!:6),!1*#$,!,*!&$!*++)%,!+'*:!,-%!2345!
/6++%'!/&)%!,-&,!#)!&!:69,#19%!*+!,-%!2345!'%;*'(!)#<%7!D9)*E!#,!:6),!/%!)%F%'&9!
'%;*'()!)-*',!*+!,-%!2345!&/)*96,%!:&.#:6:!&(('%))!,*!&99*B!&!1%$(#$C!
#$,%''61,!,*!/%!-&$(9%(!1'#*'!,*!1'*;%))*'!B'#,#$C!,-%!2345!&/)*96,%!:&.#:6:!
'%;*'(7

!"#$%&'()*+,''-.'./0&'1%&/

!"#$!%&&'($!)*'

!"#$+,-'.

!"#$/0*12%3'$

!"#$+,3'((%43$

56!#$/0*12%3'

56!#$+,3'((%43

56!#$

7).89%9

7).89%9

":('*:12-

56!#$+,-'.

56!#$!%&&'($!)*'

":('*:12-

;1%,3'($<'*'3

<'*'(='-

>?

@?

A?

;?

B>?

B@?

BA?

B;?

C>?

C@?

D>?

!(),E:$<'E1(-$>

!(),E:$<'E1(-$B

!(),E:$<'E1(-$!

56!#$<'E1(-$>

56!#$<'E1(-$B

56!#$<'E1(-$,

!"#$!%&&'(

56!#$!%&&'(

F#$!%&&'($7),)G'9',3$/(')

+/DCHF#H/<6/$7#<

Figure 5.2: The Debug Store Area [47].

a performance counter detects an overflow from a hardware counter. Common hardware

counters include cpu-cycles, retired branches, retired instructions, etc. The user must spec-

ify the rate of sampling based on these simple counters. When the interrupt is generated,

the LBR branch vector can be polled for branch data, and the information can be processed.

Because the LBR is filled with ALL taken branches, interrupts, and exceptions that

occur on the processor, some newer processors such as those based on the Intel Nehalem

microarchitecture provide an additional LBR filtering mechanism. Filters weed out branches

prior to placing them in the bu↵er based on their privilege level or certain branch type

conditions. When LBR filtering is enabled, the LBR stack only captures a subset of all

branches. Unfortunately, LBR filtering is not currently supported at the user level.

Chapter 5. Executing Test Cases for Branch Monitoring 84

5.2.2 Branch Trace Store (BTS)

The BTS was developed as part of the processor’s debugging facility and makes up half of

the Debug Store mechanism, as can be seen in Figure 5.2. The BTS works in conjunction

with the LBR by requesting that the LBR send each branch record out on the system

bus in addition to recording it. The use of the BTS is appealing because it records and

reports all executed branches in the order in which the branches occur without the need of

frequent sampling. However, the BTS design is much di↵erent than that of other hardware

mechanisms. The BTS sends each executed branch to a bu↵er, but it also clears the

instruction pipeline on every branch in order to maintain correct branch ordering.

Because of this design, recording all executed branches using the BTS can greatly reduce

the performance of the processor. In e↵orts to reduce this cost, the BTS has its own set

of filters based on branch privilege level. User level or kernel level branches can be filtered

out, in which case the filtered branch records are not sent out on the system bus or logged.

These filtering mechanisms are visible in user space.

The BTS mechanism additionally provides the capability of saving the branch source

and destination addresses in a memory-resident BTS bu↵er, which is part of the Debug

Store save area. The BTS bu↵er can be configured to be circular so that the most recent

branch records are always available, or it can be configured to generate an interrupt when

the bu↵er is nearly full so that all the branch records can be saved.

5.3 Sampling Hardware Mechanisms for Branch Testing

To achieve the goal of exploiting hardware mechanisms for branch testing purposes, sam-

pling of the LBR and BTS must be performed in a way that produces low overhead while

maintaining a high degree of source code-level branch coverage. Because the BTS incurs

high overhead by simply turning it on, independent of sampling technique, we focus on using

it only to acquire a full branch trace. Thus sampling of the BTS only occurs when the BTS

bu↵er is nearly full. The LBR, on the other hand, can be sampled using any sample period,

Chapter 5. Executing Test Cases for Branch Monitoring 85

with cost rising as the number of interrupts increases. More frequent sampling, however,

also increases the precision of our sampling technique because more branches are observed.

We first take a traditional event-based sampling approach to sampling the LBR using

a set of sampling periods. In attempt to improve the precision of this sampling technique,

each of the challenges discussed in Section 5.1, which are inherent issues for sampling both

the LBR and BTS, are addressed. Finally, the potential of using multiple cores to enhance

sampling results is examined.

5.3.1 Event-Based Sampling

Event-based sampling is the standard technique used to monitor the LBR. In event-based

sampling, a performance counter that monitors executed branches is configured to generate

an interrupt when the counter overflows. To trigger an overflow, the counter is preset to a

modulus value that will cause the counter to overflow after a specific number of branches

have been executed. When the counter overflows, the processor generates an interrupt. The

interrupt service routine then records the return instruction pointer, resets the modulus,

and restarts the counter [47].

As an example, if the sampling period for the LBR is set to five thousand, an interrupt

will be generated every five thousand branches. At that point, the LBR is polled and the

branch vector is processed. The counter is then reset to zero, and LBR sampling continues.

The sampling period can be set to any value desired. However, as branch information is

more frequently sampled, the overall cost of monitoring branch records also rises.

5.3.2 Addressing the Challenges of Sampling

Event-based sampling is influenced by several factors that can reduce the e↵ectiveness of

monitoring coverage information for branch testing. These include the inability of the

LBR to see fall-through branch edges, the sampling bias caused by the synchronization of

the executing program with the sample period, and the large amount of extraneous and

Chapter 5. Executing Test Cases for Branch Monitoring 86

Figure 5.3: The LBR is incapable of detecting the fall-through branch edge from 1 to 2.

repetitious data that the LBR observes. Because the BTS acquires its branch records from

the LBR, sampling the BTS presents the same challenges.

Enabling Fallthrough Observation

Independent of sampling technique, a leading source of low coverage monitoring e↵ectiveness

is due to the fact that the LBR alone cannot observe when fall-through branches have

occurred. In branch testing, a tester wants to ensure that both edges are taken through a

branch. For example, in Figure 5.3, monitoring should be able to detect both the execution

of the fall-through path from 1 to 2 and the target path from 1 to 3. While this is obvious

when looking at a flow graph, in the binary code, a branch is made up of some kind of jump

to a target followed by another instruction. The LBR will report the jump from 1 to 3 but

not the fall-through from 1 to 2. Therefore, the LBR by itself is only capable of monitoring

50% of the source level branches.

Fallthrough observation is possible using hardware monitoring by supplementing LBR

monitoring with other event data. For example, the INST RETIRED event could be polled in

addition to the LBR to look for fall-through instruction execution. However, because this

research focuses on the capabilities of the LBR, we instead give the LBR the potential to

observe the fall-through path by inserting harmless unconditional branches along every fall-

through edge. Insertion of the branches is automated through the use of a simple program

modification tool that causes little additional execution time and nearly negligible code

size increase.

Chapter 5. Executing Test Cases for Branch Monitoring 87

Mitigating Sampling Bias

Also reducing branch sampling precision, sampling bias is a common occurrence in hardware

sampling. This is particularly a problem when sampling events that occur often, such as

branches. The sampling period can be in lockstep with the execution of the monitoring

program, causing some branches to never be captured even though they are executed very

frequently [56]. As an example of sampling bias, consider the execution of a benchmark

called mcf where the sampling period is set to n, which is the number of branches in the

LBR. The actual branch coverage obtained from running mcf is 72.37%. However, due

to branch records being lost near interrupt points, the LBR reports only 69.23% branch

coverage. Because the performance monitoring unit is designed for statistical sampling,

randomization can be used to improve the accuracy of samples.

Randomization is principally useful when there is branch repetition. This generally

happens when monitoring inside a loop. Randomization otherwise would have little e↵ect

on overall coverage observed. Randomization could also be helpful if branch information is

aggregated over multiple program executions using factors of a particular sampling period.

For instance, if one execution is monitored using a sample rate of 10000, other executions

using periods of 2000, 5000, or 10000, for example, should be randomized at the repeated

sampling points in order to improve precision.

Managing Extraneous Branch Samples

When performing traditional event-based sampling of the LBR, our preliminary work

demonstrated that there are a large number of polling periods that produce branch vectors

in which few or no branches are associated with the program’s source code. For example,

when sampling the application bzip2 every 50,000 branches, interrupts, and exceptions, al-

though nearly 50% of the actual branch coverage is observed, approximately 20% of the 13

million branches sampled contain no branch information related to the source code.

These sampled branches may be instructions that we do not monitor in branch testing

such as unconditional branches, calls, exceptions, or interrupts. Also, some may be branches

Chapter 5. Executing Test Cases for Branch Monitoring 88

executing at the kernel level. None of these need to be monitored in branch testing. Thus,

in light of these observations, a filtering mechanism based on privilege level and types of

branches seen is necessary to e�ciently collect branches from the LBR for branch testing.

Such a filter is available in some processors, but no interface is currently available for kernel

or user access. A privilege level filter mechanism and user interface are available for the

BTS.

5.3.3 Improving E↵ectiveness with MultiCores

To further improve branch sampling e↵ectiveness, multiple cores can be used to increase the

amount of sampled branches while maintaining a low overhead. Most commodity machines

bought today include processors with multiple cores, and each core can be used to perform

additional monitoring of the program under test. A core can sample its LBR at any rate

in parallel with the others. By combining and shifting sampling periods across cores, the

potential of observing unique branches grows with small additional cost.

5.4 Empirical Evaluation

The primary goal of this chapter’s empirical study is to evaluate the adaptability of the LBR

and the BTS for branch testing purposes. In addition to demonstrating the e↵ectiveness

and e�ciency of performing branch testing by sampling the LBR and BTS for monitoring

on single and multiple cores, we also implement possible solutions to each of the challenges

that using the LBR, and by association the BTS, presents. The goals of the experiments

are as follows:

1. Evaluate the time overhead and code size increase introduced to modified programs

that allow the LBR and BTS to observe fall-through branch paths.

2. Demonstrate the overhead incurred by sampling the BTS for branch tracing.

3. Analyze the trade-o↵s between e�ciency and precision of code coverage calculation

using traditional event-based sampling of the LBR over multiple periods.

Chapter 5. Executing Test Cases for Branch Monitoring 89

Figure 5.4: Overview of infrastructure to adapt LBR monitoring to branch testing.

4. Determine if a multicore approach to calculating coverage can significantly improve

precision.

5. Observe the e↵ects of sampling bias due to synchronization problems on branch test-

ing.

6. Demonstrate the potential improvements on coverage and e�ciency through the use

of branch filtering

5.4.1 Experiment Design

All experiments were performed on a Intel Core i7 860 / 2.8 GHz quad-core machine with

4GB of memory running Linux Kernel 2.6.32. The Intel Core i7 processor was selected be-

cause it is part of the Nehalem family, which has a LBR bu↵er that contains the most recent

16 taken branches executed. Filtering is supported at a hardware level on the Nehalem for

both the LBR and BTS.

Although there are a number of APIs available for taking advantage of performance

monitoring hardware including OProfile [64], PAPI [19], and Perfmon2 [31], none of these

yet support LBR or BTS monitoring. Perfmon is supported by a user-level tool, libpfm, and

a kernel-level interface, perfevents [31]. However, because Perfmon has not been updated

Chapter 5. Executing Test Cases for Branch Monitoring 90

to to take advantage of libpfm4, the most recent helper library to perfevents, we use and

modify libpfm4 and perfevents directly. The libpfm4 library helps encode performance

events to use with the operating system kernel’s performance monitoring interface, and it

contains all of the Performance Monitoring Unit (PMU) model-specific information such as

the events names and encodings, and the various constraints between events. It is one of the

most robust and flexible PMU interfaces and supports a wide range of microarchitectures.

While the current perfevents and libpfm4 do not provide an interface to the LBR, we

were able to modify perfevents at the kernel level to include LBR support using a proposed

patch [31]. The LBR is accessed through a new PERF SAMPLE BRANCH STACK sample type.

This allows for sampling of all taken branches without any filtering capabilities. An addition

kernel patch would be necessary in order to access the Nehalen’s filtering abilities. Because

filtering is not used, the LBR records all branches, interrupts, and exceptions at both user

and kernel level. No patch yet exists to enable filtering. We also patched libpfm4 to enable

the setup and polling of the LBR. All sampling techniques were implemented into the

libpfm4 package. Libpfm4 and perfevents already support BTS monitoring with filtering.

An overview of our testing infrastructure is shown in Figure 5.4. Before executing and

monitoring a program, a simple static analysis is first used to identify and store the branch

edges in the program’s source code. The branch edges are stored in a hash table along with

information pertaining to the associated source code lines, obtained from gcc’s debugging

information. This table is used as a checklist of branches with which we are concerned and

is later used to calculate overall branch coverage. Next, each of the benchmarks is instru-

mented to enable the LBR to monitor fall-through branch edges as well as taken branch

edges. The program modification process is explained in Section 5.4.2. All modifications

are annotated into the branch hash table.

In the next step, the program is executed while the LBR or BTS performs monitoring.

The BTS is configured to generate an interrupt when the bu↵er is nearly full, thus building

a complete branch trace as it is sampled. When the BTS bu↵er threshold overflows, all

branches in the BTS bu↵er are processed. Similarly, when the branches executed counter

Chapter 5. Executing Test Cases for Branch Monitoring 91

overflows because it has reached the desired sampling period, the 16-branch branch vector

in the LBR registers is read. Each branch is checked against the hash table of source code-

level branch edges. If a branch is found in the hash table, the branch is marked as having

been taken.

Once the program under test has finished executing, the sampled branch coverage is

calculated based on the number of source code-level branches observed divided by the total

number of source code-level branches in the program.

Benchmarks

Our experiments were carried out using the SPEC2006 C Integer Benchmarks. This set is

made up of nine programs, although we do not report results for perlbench or gcc because

both throw exceptions during normal execution on our system. Each program was compiled

with debugging information and with no optimization options specified. Execution of the

benchmarks was tied to a single core for all sampling techniques other than the experiment

that uses multiple cores. In the multicore technique, a copy of the benchmark is executed

and tied to each individual core. Each benchmark was run three times on the SPEC test

set of inputs. To reduce the risk of tainting from other processes, all experiments were

executed after all other possible user processes were killed.

Metrics

To achieve our experiment goals, three metrics are considered: the percentage of actual

coverage, time overhead, and code size.

In order to evaluate the e↵ectiveness of our sampling techniques, we first calculate the

total number of branches that exist in the benchmark’s source code, total. We then iter-

ate through the hash table and calculate how many of those branches were observed by

the LBR, LBR total. For comparison, we also calculate the actual number of branches

covered, actual total, using Pin, a commercial software-based dynamic binary instrumen-

Chapter 5. Executing Test Cases for Branch Monitoring 92

Benchmark Branch Edges Real Branch Cov.
bzip2 2154 56.36%
gobmk 27558 50.39%
h264ref 14674 24.37%
hmmer 8830 6.55%
libquantum 752 32.85%
mcf 362 72.38%
sjeng 5252 42.99%

Table 5.1: Number of branch edges and actual branch coverage of original program calcu-
lated using a software based instrumentation tool.

tation tool [69]. The LBR observed coverage, LBR total

total

is compared to the actual coverage,

actual total

total

to determine the percent of actual coverage that the LBR achieves.

The e�ciency of the sampling techniques and the time overhead incurred from modi-

fying the program to enable fall-through observation is calculated based on the base run

times of benchmark execution reported by the execution tool of the SPEC2006 benchmarks,

runspec. All timing comparisons are made to the overheads observed from execution of

full software-instrumented versions of the benchmarks.

Code size measurements are taken using linux’s du utility. The increase in the code size

of modified programs is calculated by comparing the size of the original binaries to the size

of the modified binaries and to the size of the software-instrumented binaries.

5.4.2 Experiments and Results

Experiments were run in order to analyze the time overhead and percent of actual coverage

that can be achieved by sampling the LBR and BTS. We first evaluate the potential of

applying the BTS to branch testing to evaluate its applicability. We then apply our pro-

gram modification tool to enable the LBR to observe fall-through branches and analyze the

time and memory overhead that it introduces. The modified programs are then monitored

using three LBR sampling techniques to demonstrate the trade-o↵s between e�ciency and

precision of code coverage calculation using traditional event-based sampling of the LBR.

Finally, we create a simulation of the LBR hardware filtering mechanism to evaluate its

Chapter 5. Executing Test Cases for Branch Monitoring 93

Benchmark Exec. Time (s) BTS Time(s) Overhead
astar 9.49 238 25X
dealII 14.9 865 58X
mcf 5.82 140 24X
milc 2.43 34.6 14.2X

Table 5.2: Observed BTS overhead on a subset of the SPEC2006 benchmarks.

potential success.

BTS Tracing

Because the BTS promises a certain time and space overhead just by turning it on, we start

our experiments by tracing taken branches only using the BTS to gauge its potential. A

bu↵er of size of 2 pages is used, and to minimize data loss, the threshold is set to overflow

after 1 page. Because BTS filtering is supported at the user level, we constrain logged

branch information to non-kernel level branches only. Branch type cannot be filtered, so

unconditional jumps, calls, exceptions, and other branches with which we are not concerned

will still be monitored.

A subset of our results can be seen in Table 5.2. We discovered that using the BTS

generated time overheads averaging 40X with the lowest being 2X and the highest being

90X compared to native execution. Increasing the bu↵er and threshold sizes had negligible

e↵ects on the time overhead of the branch tracing. The extremely high time overhead is

due to the way the BTS mechanism is implemented in hardware. Specifically, the cost

is an e↵ect of the trace store occurring on every taken branch. On each context switch,

the BTS is disabled and reenabled, and the configuration is saved and restored in order to

appropriately associate instruction pointers that are part of the branch records with the

corresponding process. Simply turning the BTS on without sampling any of the branch

data can account for 25 to 30X overhead [47], even when using filtering and not tracking

fall-through branches. While these high time overheads may be acceptable for debugging,

for the purposes of branch testing, the BTS overheads are inherently prohibitively high.

Chapter 5. Executing Test Cases for Branch Monitoring 94

Benchmark Native Mod. Instr. Native Mod. Instr.
Time (s) Time (s) Time (s) Size (kB) Size (kB) Size (kB)

bzip2 16.5 16.9 18.6 260 264 392
gobmk 30.8 33.1 39.8 8184 8204 9392
h264ref 43.8 43.8 45.9 2892 2912 3568
hmmer 11.2 11.4 11.8 1360 1372 1832
libquantum 0.155 0.162 0.166 208 208 260
mcf 3.66 3.86 4.03 128 128 156
sjeng 6.92 7.74 8.96 592 596 852

Table 5.3: Time overheads & code size of native, fall-through enabled, and software-
instrumented benchmarks using test inputs.

Program Modification Overhead

Before evaluating sampling techniques for the LBR, we first analyze the time overhead and

code size increase caused by our program modifying tool. Because not monitoring fall-

through branch edges decreases the actual coverage that the LBR can observe by 50%, our

fall-through enabling modification tool is applied to all benchmarks prior to sampling.

To enable fall-through branch coverage monitoring through the LBR, our tool first

compiled each benchmark down to assembly code. Each instruction in the program is

examined, and if the instruction is a conditional branch, a jmp 9f; 9: is added immediately

after it. This added instruction is an unconditional branch that can be seen by the LBR

and simply jumps to the original fall-through instruction. Once these innocuous branches

are added along each conditional branch fall-through path, the assembly code is compiled

using gcc to generate new executables.

The cost of our program modifications is much less than typical software-based branch

instrumentation techniques, which often range from 10 to 30% time overhead and 60 to 90%

space overhead for branch testing [76,106]. Usually instrumentation probes are placed either

within the conditional branch statement itself or at the destinations of the fall-through and

taken branch edges. If the instrumentation is associated with the branch as a whole, its

payload needs to mark that the branch was executed and whether it was true or false. If

it is placed along a branch edge, the payload need only mark that the branch was taken.

Chapter 5. Executing Test Cases for Branch Monitoring 95

Figure 5.5: Time overhead for event-based sampling on a single core relative to full instru-
mentation.

However, this technique requires double the number of probes to be added to the program

under test [106].

We compare the time overhead and code size of the original program to 1) the program

generated by applying our modification tool and 2) a fully software-instrumented program.

We use TestCocoon to generate the instrumented programs [106]. The time and code

size comparisons are listed in Table 5.3. On average, our modification tool generates a

program with less than 5% time overhead and only 0.57% larger code size compared to native

execution. Our modifications are much more lightweight than traditional instrumentation

probes and payloads because ours consist of only unconditional jumps.

As this branch modification is the only contributor to increased memory overhead when

sampling the LBR, we find that hardware monitoring techniques can be especially useful

for testing in memory constrained environments. This is not the case for instrumentation.

Full branch instrumentation of these 7 programs using TestCocoon results in time overhead

ranging from 4.5 to 30% and code size increase ranging from 15 to 51%. On average, these

values are low for full branch instrumentation, as is observed in related work [76] and in the

TestCocoon documentation [106], but even the reported code size overheads could cause

instrumentation to be inapplicable in certain settings.

Chapter 5. Executing Test Cases for Branch Monitoring 96

50
M

10
0K

50
0K 1M 5M 10
M

50
M

10
0K

50
0K 1M 5M 10
M

50
M

50
0K 1M 5M 10
M

50
M

10
0K

10
0K

50
0K 1M 5M 10
M

50
M

Pe
rc

en
t o

f a
ct

ua
l b

ra
nc

h
co

ve
ra

ge
 a

ch
ie

ve
d

Sample periods per benchmark

Percent of Actual Coverage for Event�Based Sampling Periods Using Single and Multicores

bzip2 gobmk h264ref hmmer libquantum mcf sjeng

Multicore
Single core

 0%

 20%

 40%

 60%

 80%

 100%

10
0K

50
0K 1M 5M 10
M

50
M

10
0K

50
0K 1M 5M 10
M

50
M

10
0K

50
0K 1M 5M 10
M

Figure 5.6: Percent of actual coverage from event-based sampling on single and multiple
cores.

Event-Based Sampling

After a benchmark is modified to have observable fall-through paths, it is executed with the

LBR turned on and configured to perform event-based sampling. Figures 5.5 and 5.6 show

the e↵ect of the sampling period on the runtime collection of branch vectors. The time

overhead and percent of actual code coverage are shown for six sampling periods ranging

from 1K to 5M relative to the time overhead incurred by performing full instrumentation

using TestCocoon [106]. The interrupt thrown at the end of each sampling period is the

main source of time overhead. As the sampling rate increases, the overhead also increases

because more interrupts are thrown. Polling the LBR and processing the branches in the

vector had negligible overhead.

As seen in Figure 5.6, the percent of actual coverage grows as the sampling rate increases,

although at a much slower rate than the change in the time overhead. Despite that more

samples are being processed, not all of these samples are associated with our source-code

level branches, and of those that are, many have been seen and recorded before. The figures

show that sampling with periods of 1 million results in an average of 24.2% time overhead,

relative to instrumented code, with 40% of actual coverage for our benchmarks. However,

some benchmarks perform much better. Mcf, for example, is able to achieve nearly 50% of

Chapter 5. Executing Test Cases for Branch Monitoring 97

the actual coverage for 2% overhead over testing using instrumentation.

At smaller sampling rates, the percent of actual coverage is much improved. For a

sampling rate of 1000, for example, 84.8% of the percent of actual coverage is observed.

However, the time overhead required at this rate is prohibitively high. Other sampling

techniques are therefore necessary to reduce the frequency of interrupts in order to improve

the potential of applying LBR sampling to branch testing.

Randomized Sampling

The next set of experiments attempts to mitigate the threat of sampling bias. A kernel patch

to enable LBR period randomization has been discussed, but it, like the LBR support, has

yet to be accepted into the main kernel distribution. We implement our own version based

on the discussion of the patch.

We perform randomized sampling by dynamically modifying the sampling period by

very small amounts during monitoring. After each LBR polling event, a random number

between 0 and 1 is selected. If the number is less than a user provided percentage, we use

5%, the period will be varied. The user provided percentage should be kept extremely low.

Otherwise, the overhead of repeatedly changing the period will a↵ect the time overhead of

the LBR monitoring negatively.

If the rate is to change, a random 32-bit number is masked to keep the period within

a maximum range of variation. The random number is then applied around the original

period. Thus, on average, the sampling period remains equal to the initial period. We keep

each period within 1% of the initial period.

Randomization is performed in order to mitigate sampling bias. However, because so

many of the samples are extraneous, as discussed in Section 5.3.2, few are missed due to

bias in our approach. Changing the period has a very small overhead, but, when performing

it unnecessarily, repeated period change increases overhead while doing little to the overall

branch coverage.

Chapter 5. Executing Test Cases for Branch Monitoring 98

 �10%

 0%

 10%

 20%

 30%

 40%

mcf sjeng

Pe
rc

en
t t

im
e

ov
er

he
ad

 o
ve

r i
ns

tru
m

en
ta

tio
n

Sample periods per benchmark

Percent Time Overhead for Event�Based Sampling Periods

10K sample period
50K sample period
100K sample period
500K sample period
1M sample period

Figure 5.7: Time overhead relative to full in-
strumentation of a simulation of using a fil-
tering mechanism.

Percent of Actual Coverage for LBR Sampling with Filtering

 20%

 40%

 60%

 80%

 100%

mcf sjeng

Pe
rc

en
t o

f a
ct

ua
l b

ra
nc

h
co

ve
ra

ge
 a

ch
ie

ve
d

Sample periods per benchmark

 0%

Figure 5.8: Percent of actual coverage ob-
tained during a simulation of using a filtering
mechanism.

Filtering Potential

Although filtering is not accessible at the user level yet, we next analyze the potential

e�ciency and e↵ectiveness improvements that can be obtained through its use. We develop

a simulation of a filter that mimics abilities of the LBR filtering mechanism, capturing only

application level branches associated with source-code level branches. We ensure that no

other user processes are being executed during LBR monitoring and assume for the sake of

the experiment that sampling bias does not occur.

To perform this simulation, we first generate a trace of all branch edges taken during

program execution. We then sample the trace, as the LBR does, by collecting the last

16 branches executed on each sample period. This allows us to calculate the potential

percentage of actual coverage that can be obtained over a set of 5 sampling periods.

To estimate the time overhead of using such a filter in hardware, we calculate the number

of samples m
p

that would be taken for each sampling period p. We then execute the LBR on

the benchmark using sampling period p, but stop the sampling mechanism once m
p

samples

have been taken. By using this technique, the actual times for LBR setup and teardown,

sample processing, and performing the interrupts are incorporated.

Note that the coverage results may be slightly high because in our technique, we assume

that all branches seen are associated with the source code. However, when filtering only

application level branches, we will still see branches that we are not concerned with such as

Chapter 5. Executing Test Cases for Branch Monitoring 99

branches from library and linking code.

The results of this experiment can be seen in Figures 5.7 and 5.7. By using the filter,

samples contain more information that is useful in branch testing, allowing coverage rates

to increase. Because fewer samples are necessary to achieve a high percentage of actual

coverage, fewer interrupts occur, drastically reducing the time overhead. As can been seen

for sjeng, the cost of gathering more than 63% of the branch data has an associated overhead

of about 5% less than instrumentation. In this way, a filtering mechanism can substantially

improve the applicability of the LBR for branch testing.

Multicore Sampling

Finally, we examine one way that multiple cores can be leveraged in conjunction with

Event-Based Sampling. In this scheme, the initial sampling rate is divided by the number

of available cores, 8 in our case. Each core then executes a copy of the program and monitors

the LBR based on a shifted window. For example, with an initial polling period of 10,000

and 4 cores, the first core would monitor at 10,000, 20,000, and so on as normal. The

second would take its first sample at 2,500 branches and proceed to sample every 10,000

branches after that. The third would be at 5,000 and the fourth at 7,5000. Using this

approach, coverage precision similar to that achieved by the initial period

of cores

sampling rate

can be achieved.

By sampling with a shifted rate across multiple cores, the percent of actual coverage is

increased, on average, by 11.52% over single core monitoring, as can be seen in Figure 5.6.

In the case of sjeng, the percent of actual branch coverage increases by nearly 21% in the

50 million branch sampling period. Unfortunately, the overhead of sampling also greatly

increases when monitoring all cores at once. For example, although multicore monitoring

every 50 million branches of sjeng obtains similar coverage to sampling every 6.25 million

branches, as expected, the time overhead is also similar or slightly larger.

Chapter 5. Executing Test Cases for Branch Monitoring 100

5.5 Conclusion

The work in this chapter represents the first look at exploiting hardware mechanisms for

executing test cases while evaluating branch coverage. Experiment analysis shows that

while the BTS is prohibitively expensive for use in branch testing, the LBR shows much

potential in enabling a low overhead but e↵ective branch testing technique Its use is espe-

cially promising because of its extremely low memory overhead averaging 0.57%. As most

monitoring tools using instrumentation have memory overheads averaging from 60 to 90%,

the use of the LBR can be advantageous in memory constrained environments where code

instrumentation is too costly. The time overhead can also be improved relative to using

instrumentation when only an estimate of complete coverage information is needed, such as

when estimating fault-finding ability for test selection.

Applying a filter to the LBR provides us with our most promising results regarding

the potential of using the LBR for e↵ective branch testing monitoring. Filtering greatly

decreases the amount of samples that need to be gathered during the monitoring process

and helps ensure the relevance of the samples taken for branch testing. Thus, both e�ciency

and e↵ectiveness are improved when applying a filter.

Hardware performance monitoring interfaces that expose monitors to user space are

relatively new. OProfile [64], PAPI [19], and Perfmon2 [31] were each released in the last

eight years and have been under steady development. As new mechanisms are added to

processors, support for them is added as appropriate use cases arise. The BTS has been

incorporated into libpfm4 since October 2009, and a patch for the LBR was proposed in

March 2010. The LBR patch has yet to be added to the main kernel tree. Since the initial

LBR patch was proposed, LBR sampling randomization and filtering have been discussed.

When user support is added for LBR filtering, the LBR will be able to be used as an

extremely low overhead branch testing tool.

In the next chapter, we further explore how the LBR in its current state of support

can be exploited for e�cient and e↵ective branch testing in a system that we call THeME:

Chapter 5. Executing Test Cases for Branch Monitoring 101

Testing by Hardware Monitoring Events.

Chapter 6

THeME: Testing by Hardware Monitoring Events

Contents

2.1 Test Suite Design and Analysis . 17

2.1.1 Evaluating Test Suite Quality . 18

2.1.2 Measuring Test Suite E↵ectiveness 20

2.2 Related Work . 22

2.2.1 Test Selection and Prioritization 22

2.2.2 Executing Test Cases E�ciently 25

2.2.3 Hardware Performance Monitoring and Sampling 26

The LBR has much potential to be used for e�cient and e↵ective branch coverage

monitoring, as seen in Chapter 5. However, there are several modifications that can be

made with regard to how LBR samples are accessed, recorded, and supplemented that will

improve our existing technique for determining the quality of tests being executed.

In this chapter, we explore the potential of using hardware mechanisms and multicore

technology in branch testing, and we thoroughly evaluate the tradeo↵s of leveraging these

technologies for branch monitoring. We first evaluate a pure hardware approach to branch

testing. In this exploration, we investigate two ways of accessing and reading hardware

mechanisms, namely using OS polling and OS interrupts. Analysis of our techniques demon-

strates the benefits of leveraging hardware advances in terms of time overhead and code

102

Chapter 6. THeME: Testing by Hardware Monitoring Events 103

growth. Additionally, we evaluate how performing branch testing using hardware sampling

a↵ects the completeness of coverage monitoring. Next, we analyze the e↵ects of integrat-

ing hardware monitoring information with the compiler infrastructure, which improves the

completeness of coverage monitoring through the use of standard analysis techniques. Fi-

nally, we explore how multiple cores can be used in conjunction with hardware monitoring

to improve the time overhead of testing.

This chapter provides empirical evidence that hardware monitoring can be adapted for

more e�cient branch coverage analysis compared to using instrumentation. Although hard-

ware mechanism sampling leads to lossy test coverage information, it provides a promising

low-overhead alternative to program instrumentation and can be used along with compiler

analyses to attain upwards of 90% of the actual code coverage information. Hardware moni-

toring also requires only minor or no alterations to the program under test, making hardware

approaches ideal in memory constrained environments where testing generally cannot be

performed without simulation. Our techniques also enable the testing of multithreaded and

time-sensitive code.

6.1 Improvement Challenges

There are several challenges in using the LBR to help solve the test execution problem.

The first challenge deals with when the LBR is accessed. The LBR monitors all branches

including those executing during program setup, teardown, library calls, and exceptions.

Thus, monitoring should be limited only to program sections with which we are concerned.

A second challenge relates to how the LBR is accessed. We should not attempt to access

the LBR prematurely. Rather, we should try to access the LBR only when new information

is available.

Finally, a balance must be found between the number of times that we access and record

from the LBR and the completeness of branch information attained. In our initial THeME

system, we take a pure hardware approach to sampling. However, the completeness of

Chapter 6. THeME: Testing by Hardware Monitoring Events 104

Figure 6.1: Infrastructure to adapt LBR monitoring to branch testing.

coverage monitoring can potentially be supplemented with standard analysis techniques

and information from multiple cores.

6.2 Accessing and Sampling Branch Vectors

In order to evaluate the potential of using a purely hardware approach for structural testing,

we first describe our branch testing infrastructure, which performs monitoring based on

branch vector samples from the LBR. We then examine two di↵erent ways of accessing and

reading branch vector data from the LBR. In other software tasks, such as path profiling

and dynamic optimizations, larger sampling rates can be used to generate an estimation of

program behavior as necessary. However, in software testing, smaller rates should be used

to more thoroughly procure taken branch information. Thus, access speed is critical.

6.2.1 Implementation Details

An overview of our branch testing framework can be seen in Figure 6.1. Our infrastructure

is executed on the system described in Chapter 5.4.1, and the same test applications are

used.

Prior to beginning program execution with test inputs, we again give the branch-based

mechanism the potential to observe the fall-through path by inserting harmless uncondi-

tional branches along every fall-through edge in the binary, as pictured in Figure 6.1(1).

Chapter 6. THeME: Testing by Hardware Monitoring Events 105

test
Benchmark Branch Cov. Time (s) Mod. Time (s) Instr. Time (s)
bzip2 63.49% 16.5 16.9 18.6
h264ref 27.53% 43.8 43.8 47.7
libquantum 37.79% 0.155 0.16 0.165
mcf 73.70% 3.66 3.86 4.08
sjeng 46.29% 6.92 7.74 8.96

ref
Benchmark Branch Cov. Time (s) Mod. Time (s) Instr. Time (s)
bzip2 64.20% 1499 1514 1599
h264ref 35.72% 1753 1786 1890
libquantum 39.07% 1056 1178 1236
mcf 74.01% 529 539 575
sjeng 48.87% 1028 1162 1312

Table 6.1: SPEC 2006 benchmark time overhead information.

Our fall-through enabling modification tool generates programs that are on average only

0.5% larger and have 5% time overhead compared to native execution, as described in Chap-

ter 5.4.2. The time overheads incurred by the modification tool for the test and ref SPEC

inputs are shown in Table 6.1.

Once the program has been modified to enable fall-through branch monitoring, a simple

static analysis is then used to identify the branch edges in the program’s source code, as

in traditional testing techniques. The branch edges are stored in a hash table along with

information pertaining to the associated source code lines. This branch table is used as

a checklist of branches with which we are concerned and is later used to calculate overall

branch coverage.

Next, the test program is executed, as shown in Figure 6.1(2). We set LBR monitoring

to begin when the test program enters its main method, and branch recording continues

until the last instruction before the program ends. This prevents observation of the setup

and teardown instructions executed as the program is loaded into and taken out of memory.

Samples are taken based on the number of CPU Cycles observed during execution. When

the sample rate of cycles is reached, the branches in the LBR are read and compared

against the items in the branch table, and observed branches are marked as taken. Once

the program under test has finished executing, the sampled branch coverage is calculated

based on the number of source code-level branches observed divided by the total number of

Chapter 6. THeME: Testing by Hardware Monitoring Events 106

source code-level branches in the program, as pictured in Figure 6.1(3).

The e�ciency of our infrastructure is calculated based on the base run times of bench-

mark execution reported by the execution tool of the SPEC2006 benchmarks, runspec.

All timing results are compared to the overheads observed from execution of full software-

instrumented versions of the benchmarks. TestCocoon [106] was used to generate the in-

strumented benchmarks.

The e↵ectiveness of our infrastructure is analyzed based on branch coverage.

6.2.2 User-level Branch Vector Access

There are a number of ways to access the branch vector data contained in the LBR, although

most techniques in profiling, debugging, and other software tasks use some form of user-

level performance monitoring API. Several available APIs include OProfile [64], PAPI [19],

and Perfmon2 [31]. However, none of these yet support LBR reading. We use libpfm4 and

its kernel-level interface, perfevents [31]. As in Chapter 5.4.1, we modified perfevents and

libpfm to include LBR support.

6.2.3 Access via Polling

The simplest technique to access and read the LBR is through libpfm4’s performance mon-

itoring API and Linux’s poll event. The test program is first spawned and executed using

ptrace. Once the program has started successfully, LBR is enabled through a high level call

to the operating system, as is the hardware counter that is to be used to trigger sampling.

The monitoring program then repeatedly calls poll, which waits for the file descriptor

associated with the performance counter to contain data that can be read, as shown below.

for(;;) {

ret = poll(pollfds, 1, -1);

if (ret < 0 && errno == EINTR)

break;

process_smpl_buf(file_descriptor);

}

Chapter 6. THeME: Testing by Hardware Monitoring Events 107

libquantum mcf sjeng

Pe
rc

en
t t

im
e

ov
er

he
ad

Sample periods per benchmark

Percent Time Overhead Using Polling Approach on Test Inputs

500K
1M
5M
10M
50M

 −10%
 0%

 10%
 20%
 30%
 40%
 50%
 60%

bzip2 h264ref

Figure 6.2: Time overhead for LBR sampling accessed using polling relative to full instru-
mentation.

Figure 6.2 shows the time overhead of branch testing when accessing the LBR using the

polling approach relative to full software-level instrumentation. The results for running on

the test inputs of the SPEC benchmarks are shown. While poll is an e↵ective technique to

report sets of LBR and performance counter data, repeatedly calling poll when no data is

available causes unnecessary overhead. At sampling rates of 10 and 50 million, the polling

approach improves time overhead slightly compared to the use of full instrumentation,

performing with 12% less overhead than instrumentation in the case of sjeng. However,

as sampling is performed more frequently, the cost due to repeatedly polling quickly rises.

For example, sampling the LBR every 500K CPU cycles for h264ref results in 51% time

overhead over instrumentation.

6.2.4 Interrupt Driven Access

In our second technique, we replace the repetitious call to poll with a lower level, more ef-

ficient hardware access approach. The hardware counters and LBR are enabled in the same

way as described in Section 6.2.3. The poll calls are replaced by an I/O signal handler asso-

ciated with our desired hardware mechanisms. The signal handler is immediately triggered

upon the associated performance counter’s overflow. After performing several checks, the

Chapter 6. THeME: Testing by Hardware Monitoring Events 108

libquantum mcf sjeng

Pe
rc

en
t t

im
e

ov
er

he
ad

Sample periods per benchmark

Percent Time Overhead Using Interrupt Driven Approach on Test Inputs

500K
1M
5M
10M
50M

 −10%
 0%

 10%
 20%
 30%
 40%
 50%
 60%

bzip2 h264ref

Figure 6.3: Time overhead for LBR sampling accessed using an interrupt-driven approach
relative to full instrumentation on test inputs.

signal handler reads the LBR branch vector, and each branch is processed. The associated

hardware counter then is reset and the program is resumed. By handling the performance

counter notification and refreshing the counter directly from within the monitoring tool, we

expect to significantly reduce the overheard associated with accessing and gathering data.

Figure 6.3 shows the time overhead of branch testing when accessing the LBR using the

interrupt-driven approach for five sampling rates. The benchmarks were executed on the

test inputs of the SPEC benchmarks, and the time overhead is compared to that of full

software-level instrumentation. Using the interrupt-driven approach for access substantially

improves the time overhead of gathering branch vectors compared to the polling approach.

At sample rates of five, ten, and fifty million, the time overhead of branch testing is improved

over instrumentation for all benchmarks other than libquantum. This is because libquantum

only executes for 0.155 seconds, as seen in Table 6.1, and its percent time overhead is greatly

impacted by any amount of noise. Sjeng ’s time overhead, however, can be reduced by 13%

compared to instrumentation.

To better understand the e↵ects of sampling the LBR on time overhead and coverage, we

next evaluate the time overhead and branch coverage measured when reading the LBR every

500 thousand, 1 million, 5 million, 10 million, and 50 million CPU cycles while executing

Chapter 6. THeME: Testing by Hardware Monitoring Events 109

libquantum mcf sjeng

Pe
rc

en
t t

im
e

ov
er

he
ad

Sample periods per benchmark

Percent Time Overhead Using Interrupt Driven Approach on Ref Inputs

500K
1M
5M
10M
50M

 −10%
 0%

 10%
 20%
 30%
 40%
 50%
 60%

bzip h264ref

Figure 6.4: Time overhead for LBR sampling accessed using an interrupt-driven approach
relative to full instrumentation on ref inputs.

the ref inputs of the SPEC 2006 benchmarks. Each benchmark executes an average of 19.55

minutes, as shown in Table 6.1. The time overhead of executing larger programs with LBR

sampling increases when sampling at smaller rates such as 500 thousand. This is potentially

due to the operating system becoming overloaded with interrupts at lower sampling rates.

At higher rates (e.g. 5 million, 10 million, 50 million), the time overhead incurred shown in

Figure 6.4 is consistent with the time overhead when executing on the test inputs.

On average, 76% of the actual coverage reported by instrumentation is observed when

sampling the LBR every 500 thousand CPU cycles, as seen in Figure 6.5. Sjeng achieves

82.61% of the actual coverage, although the time overhead at that rate is 21.57% worse than

instrumentation. However, at a sample rate of 50 million, sjeng still achieves 70.15% of the

actual coverage while executing 11.13% faster than when monitoring using instrumentation.

At a sample rate of 50 million, the average percent of actual coverage is reduced to 54%.

When higher sampling rates are used, the time overhead of LBR monitoring is improved over

instrumentation. However, higher sampling rates also correspond with lower e↵ectiveness.

Chapter 6. THeME: Testing by Hardware Monitoring Events 110

Figure 6.5: Coverage observed using LBR sampling via the interrupt-driven approach on
ref inputs compared to instrumentation.

6.3 Improving Branch Coverage at High Sample Rates

In order to improve the branch coverage observed using a pure hardware approach to branch

testing, monitored coverage details may be extended using o✏ine compiler-based analyses.

These analyses can be performed o✏ine or on a separate core during program execution.

We first associate the branches observed by the LBR with branches in the control flow graph

representation of the program. Dominator and post-dominator analyses are then executed

on the control flow graph to build a dominator tree.

Within a dominator tree, a basic block b dominates basic block c if every path from

the entry of the control flow graph to basic block c contains basic block b. A basic block

b post-dominates basic block c if every path from c to the exit of the CFG contains basic

block b. For example, Figure 6.6 shows a control flow graph of a function in which the

LBR has observed branch 5-7. Because basic blocks 5 and 7 were executed, blocks 1 and 2

must also have executed based on the dominator analysis. Blocks 8 and 11 also necessarily

executed based on the post-dominator analysis.

Based on these two analyses, it is inferred that the conditional branches 1-2 and 2-

5 must have executed, as well as the unconditional branch 7-8. Note that our branch

testing technique only monitors conditional branches. However, when full branch vectors

Chapter 6. THeME: Testing by Hardware Monitoring Events 111

Figure 6.6: Dominator analyses based on an observed branch.

are observed, more branch vectors may be implied.

Our dominator analyses were executed using the LLVM compiler infrastructure [59].

By incorporating these two analyses, the percent of actual coverage observed was improved

to an average of 83% across all benchmarks at a sample rate of 500 thousand, as shown

in Figure 6.5. At a rate of 50 million CPU cycles, the average percent of actual coverage

is improved to 62.32% from 54% without dominator analyses. Mcf achieves 90% of the

actual test coverage with a sampling rate of 500 thousand and 72% with a sampling rate of

50 million. Thus, we find that supplementing LBR samples with information from simple

static analyses that are already performed by the compiler can greatly improve coverage

results.

6.4 Testing over Multiple Cores

Each core of a multicore processor contains its own hardware counters and mechanisms,

which enables us to simply and e�ciently monitor branch coverage in both sequential and

multithreaded programs. We next observe the e↵ect of monitoring test execution on multiple

cores.

Our multicore experiments focus on the two of the five SPEC2006 benchmarks tested

Chapter 6. THeME: Testing by Hardware Monitoring Events 112

in this research that include multiple inputs in the ref test set. Each input is executed on a

separate core, and the coverage results were aggregated across cores as each test execution

completed. The same sample rate was used on each core. The reference input set of bzip2

includes six inputs, and h264ref includes three. Because our experiments are run on a quad

core machine, we executed only the first four inputs to bzip2.

As shown in Figure 6.7, the time overhead of monitoring the execution of the first

four inputs of bzip2 using the LBR was 4% to 14% less than when using instrumentation.

By removing instrumentation, the time overhead of executing test inputs on each core is

improved, enabling greater time savings than when executing on a single core. As expected,

the percent of actual coverage observed was the same as when executing on a single core,

shown in Figure 6.5.

Unlike the overhead incurred by monitoring bzip2, the time overhead for h264ref using

the LBR was greater than that of using instrumentation at sample rates of 500 thousand and

one million. The timing results for h264ref are only slightly lower compared to sampling

and executing on a single core. This is due to the fact that one of h264ref ’s inputs executes

for approximately 82% of the total execution time of the three inputs. Thus, the savings

from executing the other two inputs on separate cores is not enough to substantially reduce

the overall time overhead of monitoring h264ref using multiple cores versus a single core.

These experiments demonstrate that the time overhead of monitoring across multiple

cores, relative to using instrumentation on multiple cores, incurs lower time overhead than

when monitoring the LBR on a single core, relative to using instrumentation on a single

core. Therefore, branch coverage analysis of multithreaded programs that execute on mul-

tiple cores will experience similar benefits to those of sequential or multithreaded programs

executing on a single core. When the workload is evenly divided between multiple cores,

we expect to observe time overhead results similar to those of bzip2 in Figure 6.7.

Chapter 6. THeME: Testing by Hardware Monitoring Events 113

 −20%

 −10%

 0%

 10%

 20%

 30%

 40%

bzip2 h264ef

Pe
rc

en
t t

im
e

ov
er

he
ad

Sample periods per benchmark

Percent Time Overhead Splitting Inputs Across Cores

500K
1M
5M
10M
50M

Figure 6.7: Time overhead for LBR sampling over multiple cores compared to using instru-
mentation on multiple cores.

6.5 Discussion

From the experimental results, we see that the LBR shows much potential in enabling a

low overhead but e↵ective branch testing technique for single and multithreaded programs.

Used in conjunction with dominator analyses, LBR monitoring achieved up to 90% of the

coverage observed using instrumentation with reduced time overhead and negligible memory

overhead. In this section, we discuss several unique advantages that leveraging the LBR

has over using instrumentation. We also describe software and hardware-level approaches

that have the potential to further improve the e�ciency and e↵ectiveness of our techniques.

6.5.1 LBR Monitoring Benefits

The use of hardware mechanisms mitigates and removes the costs incurred by instrumen-

tation, with additional benefits. The first advantage of leveraging hardware mechanisms

rather than using instrumentation is with regard to the time overhead. Instrumentation

must be inserted throughout a program at all points that are to be monitored, and it often

remains in the program throughout execution. The cost of insertion and the time overhead

incurred by repeatedly executing the instrumentation probes and payloads can be large.

When monitoring using hardware mechanisms, however, a counter and mechanism need

only be set up once during execution, and reading of the mechanism is inexpensive.

Chapter 6. THeME: Testing by Hardware Monitoring Events 114

A second advantage of applying hardware mechanisms compared to using instrumenta-

tion is the lack of code growth. The code growth incurred by instrumentation is impacted

by the size of the probe and payload and the frequency of insertion. Hardware mechanisms,

however, require little or no program modification to perform monitoring.

The use of instrumentation is also inflexible in that only that which is instrumented

can be monitored. To improve understanding of program execution, more instrumenta-

tion must be added, further increasing the time overhead and code growth of monitoring.

Instrumentation traditionally must be added into a program’s source code or binary. Hard-

ware mechanisms, however, can be used to monitor multiple events at both the user and

kernel levels. Thus, instead of analyzing only a section of program execution, hardware

mechanisms can also report events that occur outside the source such as in library calls and

external routines, painting a much fuller picture of program execution.

6.5.2 Improving E�ciency by Advancing Hardware

By modifying our methods of accessing the LBR branch information as discussed in Sec-

tion 6.2, we greatly improved the e�ciency of our branch monitoring techniques. How-

ever, there are a number of promising opportunities to advance the current usage model,

practices, and implementation of hardware performance monitoring technology that could

further improve our access schemes.

Elimination of OS Shepherding - In current systems, the kernel is required to

shepherd all functions related to configuring, accessing, and reading hardware mechanisms.

Requiring the operating system’s involvement in all of these functions comes at a cost that

is significantly higher than is necessary. At the lowest level, completion of these operations

requires either reading or writing registers on the processor core, which is highly e�cient

by nature. However, when each operation is performed via the operating system, there are

a number of added sources of overhead. These include an added system call to enter the

privileged kernel mode, the saving of context by spilling user-level state to memory, and

restoring this state when execution is returned to the user-level application.

Chapter 6. THeME: Testing by Hardware Monitoring Events 115

pmu

core 0

pmu

core 1

pmu

core 2

pmu

core 3

Uncore
(shared caches, coherence, interconnect)

core 0 core 1 core 2 core 3

Uncore
(shared caches, coherence, interconnect)

pmu pmu pmu pmu

Figure 6.8: Moving private performance monitoring units to a global space to enable Satel-
lite Monitoring.

For many of the traditional applications that use hardware monitoring, this kernel-

level usage model is su�cient. Generally, hardware counters and mechanisms are only

set up and torn down at the beginning and end of an application’s execution. Often,

the monitored counter is left to increment until the end of the application’s execution,

at which point, it is read. Thus, kernel involvement is required only twice. In other

monitoring techniques, hardware mechanisms can be accessed and read infrequently during

program execution [70,71]. However, because test coverage analysis requires more frequent

monitoring, requiring OS involvement on each sample severely e↵ects the time overhead

of analysis. Allowing counters to be accessed directly from user mode, would result in a

significant reduction in the cost of accessing the hardware mechanisms [100].

There are two ways to achieve user control of hardware mechanisms. One requires

hardware modification, while the other can be done using current hardware. The first

approach is to allow the operating system to control the access permissions of hardware

mechanisms directly by adding a simple register that can be used to specify execution

modes that have direct access. While the overhead in the chip’s die area to support this

added permissions mode would be negligible, hardware modification would be required.

Chapter 6. THeME: Testing by Hardware Monitoring Events 116

The second approach is to have the kernel not set the mode of the processor back to user

mode when execution returns to the application of interest. This technique would only

require modifying the OS implementation, but it would result in a security hole that can

be exploited by malicious programs.

Modern processors include a set of bits that records the usage mode of the processor.

If these bits are set to kernel mode, the registers associated with configuring and using

hardware monitors are allowed to be read. Otherwise these registers are not accessible. To

extend the permissions of the hardware monitors, a simple register can be used to specify

the modes that can have direct access. The overhead in the chip’s die area to support

this added permissions mode would be negligible. This approach, however, would require

hardware modifications. The second approach is to have the kernel not set the mode of the

processor back to user mode when execution returns to the application of interest. This

technique would only require modifying the operating system implementation. There is a

disadvantage to this approach in that it would result in a security hole that can be exploited

by malicious programs. However, if the user (tester/developer) is trusted, this kernel level

access can be applied to only those programs that are being tested.

Satellite Monitoring - Another opportunity to improve hardware monitoring e�-

ciency is to enable what we call satellite monitoring. Currently, hardware monitoring infor-

mation can only be collected from the core hosting the application being monitored. This

necessitates that the program be interrupted to collect the needed information. However,

allowing hardware monitoring information to be accessed from any core would require min-

imal hardware modification. It would require moving each core’s performance monitoring

unit (PMU), which controls hardware monitoring ability, into the “uncore.”

Figure 6.8 illustrates moving each private PMU to the global uncore area. Making

the aggregated PMU universally accessible would require an added core id assigned to

each global PMU and added bus lines from each core. This approach would allow the

monitoring and analysis of the application from a core separate from those hosting the

application’s threads, allowing the application to be unperturbed throughout execution.

Chapter 6. THeME: Testing by Hardware Monitoring Events 117

mcf sjeng

Br
an

ch
 c

ov
er

ag
e

Sample periods per benchmark

Coverage for Hybrid Approach Compared to Full Instrumentation

Inst
500K
1M
5M
10M
50M

 0%

 20%

 40%

 60%

 80%

 100%

bzip2 h264ref libquantum

Figure 6.9: Percent of coverage observed when selectively instrumenting branches compared
to instrumentation.

Using this approach would allow us to combine the advantages of multicore with those of

performance monitoring technology.

6.5.3 Improving E↵ectiveness Through Instrumentation

The e↵ectiveness of our techniques could also potentially be improved by inserting a small

amount of software-level instrumentation into the application. Samples from hardware

mechanisms are much more likely to observe instructions that occur along frequently exe-

cuted paths. Instructions that are only hit occasionally, however, are unlikely to be seen.

Ideally instrumentation would be added only to branches that are unlikely to be observed

in LBR samples, and it would be inserted dynamically or prior to executing the test suite.

However, identifying these locations is challenging. Without prior knowledge of program

execution or profile information of the application, it is unclear where instrumentation

should be inserted. If instrumentation is added unnecessarily, the overhead improvements

from leveraging the LBR will be reduced. On the other hand, a conservative approach may

have little impact on improving e�ciency.

Figure 6.9 shows the coverage results of selectively instrumenting the benchmark appli-

cations when prior knowledge of execution, as reported by the LBR, is available. For each

Chapter 6. THeME: Testing by Hardware Monitoring Events 118

benchmark, instrumentation is added along any branch edge that was not observed by the

LBR with a sampling rate of 500 thousand. Then the application is executed a second time

to calculate the coverage obtained from both hardware and instrumentation. As is shown

in Figure 6.9, at a sample rate of 500 thousand, nearly complete coverage information is

observed in all cases. At a sample rate of 50 million CPU cycles, the percent of actual

coverage reported by a pure instrumentation approach is reduced to an average of 80%.

These results are promising in terms of e↵ectiveness. However, for a hybrid approach

to be applicable for structural testing, we should assume that there is no prior analysis

information available for the application and that the test suite only needs to be executed

once to calculate coverage.

6.6 Conclusion

The work in this chapter demonstrates that hardware mechanisms and multicore technol-

ogy can be adapted for use in e�cient and e↵ective branch coverage analysis during test

execution. We developed a runtime system that performs branch coverage analysis by mon-

itoring hardware mechanisms on single and multiple cores. Monitoring program execution

using hardware mechanisms was up to 11.13% faster in our tests compared to using instru-

mentation, but it does not provide complete coverage information. To improve coverage,

we additionally perform a compiler analysis to extend the amount of coverage derived from

each sample. The results show up to 90% of the actual code coverage can be determined

with less time overhead and negligible code growth compared to using instrumentation.

Because these hardware approaches require only minor or no alterations to the program

under test and incur low time overhead, they are ideal in resource constrained environments

where testing generally cannot be performed without emulation. For this reason, they can

also be applied to enable the testing of time-sensitive or multithreaded code.

In the next chapter, we explain how the THeME system can be extended to additionally

monitor for statement coverage using simpler hardware mechanisms that are more represen-

Chapter 6. THeME: Testing by Hardware Monitoring Events 119

tative of hardware mechanisms available on common devices, including resource-constrained

devices used in mobile computing.

Chapter 7

Executing Test Cases for Statement Monitoring

Contents

3.1 Time-Aware Selection . 30

3.2 Knapsack Solvers as Selectors . 30

3.3 Experiment Goals and Design . 34

3.3.1 Case Studies . 35

3.3.2 Evaluation Metrics . 36

3.4 Experiments and Results . 40

3.4.1 Selection E↵ectiveness. 40

3.4.2 Selection E�ciency. 42

3.5 Conclusions . 44

Similar to branch coverage, statement coverage is also frequently used to measure the

quality of a test suite. Statement coverage measures the percentage of executed statements

to the total number of statements in the application under test [124]. A high level of

statement coverage is correlated with fault-finding capability, although it is recognized that

statement coverage alone may not be a strong indicator of software quality. This is because

statement coverage produces very di↵erent results depending on how the source code is

formatted [106]. For example, in the code shown below, statement coverage would be 33%.

1 int main()

2 {

3 HIT if (true) return 1;

120

Chapter 7. Executing Test Cases for Statement Monitoring 121

4 MIS foo();

5 MIS return 0;

6 }

However, if the code is reformatted, as shown below, statement coverage would be 66%.

1 int main()

2 {

3 HIT if (true)

4 HIT return 1;

5 MIS foo(); return 0;

6 }

Despite these disadvantages, statement coverage is widely used in industry as a criterion

for test quality [18, 25, 55, 92, 108]. Di↵erent standards require achieving high levels of

statement coverage. For example, avionics industry standard DO-254 demands that close to

100% statement coverage be achieved. Avionics industry standard DO-178B and automotive

industry standard IEC 61508 detail similar requirements.

In this chapter, we extend THeME to execute tests while monitoring statement coverage.

We make the additional requirement that the source code cannot be modified in any way

prior to execution. Therefore, we present a technique that uses only hardware mechanisms

to monitor execution while requiring no code growth, recompilation, or compiler analysis

tools.

The experimental results show that up to 79% of the statement coverage reported by

instrumentation can be reported with lesser time overhead than instrumentation. Addi-

tionally, because THeME does not require modifications to the program under test, there

is no code growth to the program, unlike in instrumentation.

Another significant advantage of our tool extension is that we require only common

hardware mechanisms to be available on the device. More advanced mechanisms such as

the LBR and BTS are available only on a small range of processor types, and the support for

these mechanisms is lacking at the kernel and user tool levels. Instead, we take advantage

of the CPU CYCLES hardware counter, which is available on every tablet, smartphone, and

Chapter 7. Executing Test Cases for Statement Monitoring 122

commodity computer that we have found. At the end of this chapter, we discuss the

challenges and advantages of using our THeME system on such devices.

7.1 Challenges of Statement Monitoring

The first challenge of this work is in selecting a hardware mechanism for use in sampling.

Again, there are a wide-range of hardware mechanisms to choose from, and many of these are

supported for sampling use at the user and kernel levels. We want to select a mechanism

that is widely available on many di↵erent types of devices. When using these simpler

mechanisms, the time overhead of use is only dependent on the number of samples taken;

each mechanism is accessed and information is recorded in the same way for all.

Therefore, as in branch testing, we again have the challenge of balancing the e�ciency

and e↵ectiveness of our hardware monitoring tool. When using software-level instrumenta-

tion for statement coverage, probes and payloads are added for counting each time individual

lines are executed during the program. Additionally, instrumentation code is inserted for

each branch of the program, where branch instrumentation records how frequently di↵erent

paths are taken through if statements and other conditionals. When sampling instructions

using hardware mechanisms, any statement that is executed may be observed, although

recording can be tied to particular processes if desired.

A third challenge comes from our requirement that the source code must not be modified.

This requirement is advantageous because execution information can be determined for any

executing program without the need of recompilation. By not modifying the code though,

THeME loses its capability of starting and stoping monitoring when code that does not

correspond to our program’s source code, such as setup and teardown code, is executing.

This will result in higher time overheads when executing the tests. However, current testing

tools [44,69,76] can only achieve monitoring of unmodified code through the use of dynamic

instrumentation, which is often significantly more expensive in terms of time and memory

than static instrumentation.

Chapter 7. Executing Test Cases for Statement Monitoring 123

Figure 7.1: Infrastructure to adapt CPU CYCLE monitoring to statement testing.

7.2 Hardware Monitoring for Statement Testing

To achieve the goal of exploiting hardware mechanisms for statement coverage, we first

examine two common hardware mechanisms that can be used for sampling. After select-

ing a mechanism, we then experimentally evaluate the time and code growth overheads

that sampling incurs and analyze the level of statement coverage that can be observed dur-

ing sampling. Finally, we demonstrate additional information that can be obtained while

monitoring test execution and discuss its potential usage within future work.

THeME is executed on the system described in Chapter 5.4.1, and the same test ap-

plications are used. The infrastructure of THeME is simplified for our statement coverage

technique, as shown in Figure 7.1. Because hardware mechanisms are being used to observe

statements rather than branches, no program modification is necessary. The program’s

binary is first analyzed to record all statements that may be executed. Debugging infor-

mation is used to generate a table of statements, relating back to the source code. Then

the table and program are passed to the hardware-level monitor for program execution.

Upon program completion, the updated table is analyzed to calculate the overall statement

coverage of our test inputs. For this chapter, we removed the static compiler analysis com-

ponent present in Chapter 6. This was done for two reasons. First, the component removal

allows us to more accurately observe what level of statement coverage hardware monitoring

alone can discover. Second, in most resource-constrained devices, no compiler or build tools

are available on the system. Thus, this revision to our system more precisely matches the

statement coverage levels that could be observed on such devices.

Chapter 7. Executing Test Cases for Statement Monitoring 124

libquantum mcf sjeng

Pe
rc

en
t t

im
e

ov
er

he
ad

Sample periods per benchmark

Percent Time Overhead Using Instructions Retired Compared to Native

5K
10K
50K
100K
500K
1M

 0%

 5%

 10%

 15%

 20%

 25%

 30%

bzip2 h264ref

Figure 7.2: Time overhead for Instructions
Retired compared to native on test inputs.

libquantum mcf sjeng

Pe
rc

en
t t

im
e

ov
er

he
ad

Sample periods per benchmark

Percent Time Overhead Using CPU Cycles Compared to Native

5K
10K
50K
100K
500K
1M

 0%

 5%

 10%

 15%

 20%

 25%

 30%

bzip2 h264ref

Figure 7.3: Time overhead for CPU Cycles
compared to native on test inputs.

The e�ciency of our infrastructure is calculated based on the base run times of bench-

mark execution reported by the execution tool of the SPEC2006 benchmarks, runspec.

All timing results are compared to the overheads observed from execution of full software-

instrumented versions of the benchmarks. In this chapter, gcov [5] was used to generate the

instrumented benchmarks.

The e↵ectiveness of our infrastructure is analyzed based on statement coverage.

7.2.1 Choosing a Mechanism

The time overhead and code coverage that is observed during sampling is heavily dependent

on the hardware mechanism that is selected for use. In branch testing, the LBR was initially

selected because it collects and reports partial paths of branches during execution. For

statement coverage, the Instructions Retired monitor is intuitively the most appealing as

the mechanism samples single instructions as they retire. However, CPU Cycles is another

option and will possibly produce higher coverage reports than Instructions Retired at the

same sampling rates.

To observe the impact of our selection on time and statement coverage, we first execute

the benchmarks with test inputs over six di↵erent sampling rates while monitoring with

the Instructions Retired and CPU Cycles. The time overhead of execution compared to

native execution time is shown in Figure 7.2 for Instructions Retired and Figure 7.2 for

CPU Cycles. Overall, the time overhead of using the Instructions Retired mechanism is less

than that when using CPU Cycles. The libquantum benchmark is an exception, but this

Chapter 7. Executing Test Cases for Statement Monitoring 125

mcf sjeng

St
at

em
en

t c
ov

er
ag

e
ac

hi
ev

ed

Sample periods per benchmark

Statement Coverage Using Instructions Retired on Test Inputs

5K
10K
50K
100K
500K
1M

 0%

 10%

 20%

 30%

 40%

 50%

bzip2 h264ref libquantum

Figure 7.4: Statement Coverage using In-
structions Retired on test inputs.

mcf sjeng

St
at

em
en

t c
ov

er
ag

e
ac

hi
ev

ed

Sample periods per benchmark

Statement Coverage Using CPU Cylces on Test Inputs

5K
10K
50K
100K
500K
1M

 0%

 10%

 20%

 30%

 40%

 50%

bzip2 h264ref libquantum

Figure 7.5: Statement Coverage using CPU
Cycles on test inputs.

is because the execution time of libquantum is only 0.15s. Thus, even a 0.01s increase in

reported time appears significant.

Although Instructions Retired produces less overhead than CPU Cycles on average, the

e↵ect can be seen in terms of statement coverage. Figures 7.3 and 7.3 show the coverages

achieved when using both hardware mechanisms. The use of CPU Cycles results in a higher

level of statement coverage than the use of Instructions Retired across all benchmarks and

sampling periods because there are more samples taken during the life of the program.

Although this results in a slightly higher time overhead, coverage improves by 14% on

average across all benchmarks and sampling periods.

Notice that when sampling using CPU Cycles or Instructions Retired, much smaller

sampling rates can be used than when sampling the LBR without greatly increasing the

time overhead. This is because CPU Cycles and Instructions Retired are more primitive

hardware mechanisms. When the LBR is used, there is extra cost associated with filling the

LBR and reading a full branch vector. With CPU Cycles or Instructions Retired, however,

overhead is only incurred by the interrupt and single sample reading.

7.2.2 Statement Coverage Comparisons

Because the use of CPU Cycles results in a higher level of coverage, the next set of experi-

ments shows the time overhead, coverage, and code growth compared to that of instrumen-

tation when executing the ref inputs of SPEC with CPU Cycles.

Figure 7.4 shows the time overhead incurred by THeME compared to the time overhead

Chapter 7. Executing Test Cases for Statement Monitoring 126

h264ref lbquantum mcf sjeng

Pe
rc

en
t t

im
e

ov
er

he
ad

Sample periods per benchmark

Percent Time Overhead Compared to Instrumentation on Ref Inputs

100K
500K
1M

 �8%

 �6%

 �4%

 �2%

 0%

 2%

bzip2

Figure 7.6: Time overhead relative to full in-
strumentation on ref inputs

h264ref lbquantum mcf sjeng

St
at

em
en

t c
ov

er
ag

e
ac

hi
ev

ed

Sample periods per benchmark

Statement Coverage Compared to Instrumentation

Instr
100K
500K
1M

 0%
 10%
 20%
 30%
 40%
 50%
 60%
 70%
 80%
 90%

bzip2

Figure 7.7: Statement coverage using CPU
Cycles compared to Instrumentation on ref

Benchmark Native Size (kB) Instrumentation (kB) CPU Cycles (kB)
bzip2 260 359.30 260
h264ref 2892 3549.88 2892
libquantum 208 255.59 208
mcf 128 138.93 128
sjeng 592 825.09 592

Table 7.1: Code Growth of Instrumentation vs CPU Cycles

of instrumentation. At a sampling rate of 100 thousand, there is a 0.6% improvement in

time overhead on average. At 500 thousand, the overhead improves by 4.3%, and at 1

million cpu cycles, the time overhead improves by 4.5% on average.

In Figure 7.4, the statement coverage achieved by THeME is shown and compared to

instrumentation. On average, 66% of the coverage reported by instrumentation is observed

using CPU Cycles across the three sampling periods. At a sampling rate of 100 thousand,

71% of instrumentation’s coverage is observed. At 500 thousand, 64% is observed, and at

1 million, 62% is observed. The execution of libquantum and h264ref report the highest

coverage compared to instrumentation when sampling at 100 thousand cpu cycles with 77%

and 99% respectively. This is a significant improvement over the coverage observed when

sampling using the LBR for branch testing because in branch testing, we were observing

single jumps in the program’s binary. In statement coverage, many instructions in the binary

may be associated with a single line of source code, which provides a greater opportunity

for observing the execution of the source line.

An advantage of performing statement coverage using simple hardware mechanisms

Chapter 7. Executing Test Cases for Statement Monitoring 127

comes from the fact that no code modification is necessary to enable our technique. Thus,

THeME incurs no code growth. The code growth produced by instrumentation, however, is

significant, as shown in Table 7.1. On average, statement level instrumentation using gcov

produced binaries that were 40% larger than the original program. These size increases

are smaller than those reported in the literature for coverage testing tools [76, 95, 106],

meaning that on average, our system would be even more advantageous for use on memory

constrained devices.

7.3 Discussion

The results show that up to 79% of the statement coverage reported using instrumentation

can be observed using THeME with a reduced time overhead and no code growth. 79% is

achieved when executing the libquantum benchmark with a sampling rate of 500 thousand.

These results are promising, although the coverage and time overhead could be further

improved.

The statement coverage produced by this tool extension would additionally benefit from

a dominator analysis, as was described in Chapter 6.3. However, for the purposes of ob-

serving the capabilities of a pure hardware approach to statement coverage testing without

the need for compiler based tools or special libraries, this portion of THeME was omitted.

In environments in which we expect THeME to be particularly useful, such tools would not

be available.

The time overhead could be improved by limiting sampling only to portions of program

execution with which we are concerned. In addition to setup and teardown instructions,

the samples observed by THeME include calls to libraries such as libc-2.11.1.so and

a number of kernel functions that execute during program execution. For example, when

monitoring the execution of mcf every ten thousand cpu cycles, approximately 29 million

samples are taken. Of these samples, 0.04% samples are associated with kernel calls and

0.31% samples are from libc-2.11.1.so. By modifying our sampling techniques to not

Chapter 7. Executing Test Cases for Statement Monitoring 128

include this extra data, the time overhead would be reduced.

7.4 THeME for Tablets and Smartphones

The execution and evaluation of test cases is ideally performed within the environment

in which the final application will execute. When developing applications for memory

constrained devices such as modern tablets and smartphones, however, tests are generally

only executed using an emulator. Emulators tend to be much slower than the device itself,

and they cannot accurately copy all conditions under which applications may run.

The process of executing test cases on the device itself is di�cult. In the past year,

attempts have been made at automating the testing process [32]. However, no research

has yet been done regarding test case evaluation during execution on the device. Static in-

strumentation tools could potentially be ported to execute on the devices, but the memory

overhead and code growth that they incur will likely stress the system and reduce the ability

to fully and accurately execute tests. For example, tests such as those described in [101],

would be severely limited if test execution itself increases memory overhead. Dynamic

instrumentation tools would likely su↵er the same issues. Additionally, because dynamic

instrumentation techniques generate instrumented code during execution, they cannot sim-

ply be ported over for new systems.

The THeME system, however, provides an e�cient and e↵ective solution to the test

execution process and can easily be ported to other devices provided that i) the devices have

accessible hardware mechanisms, ii) there exists kernel support for accessing and reading the

mechanisms, and iii) there exists a kernel interface that will properly interact between the

access tool and the hardware. Most modern smartphone and tablet devices meet the first two

requirements. For example, the iPhone 3GS, Nokia n900, Samsung Galaxy Nexus, iPad2,

Motorola XOOM, and the Amazon Kindle Fire all use ARM Cortex-A8 or A9 processors.

The Cortex-A8 an A9 have more than fifty hardware counters that can be utilized, and

they are accessible at the kernel and user levels through the perf and Oprofile tools.

Chapter 7. Executing Test Cases for Statement Monitoring 129

Figure 7.8: The Cross Trigger Interface [12]

The hardware mechanisms on the Cortex-A9 processor, which is used in most multi-

core mobile devices, are unique in that they also support the tracking of code in Java

applications. In addition to the typical mechanisms that track cpu cycles, branches retired,

data read/writes, etc..., the A9’s mechanisms also can monitor decoded Java bytecode

execution and Jazelle backward branch execution [31,64]. Jazelle Direct Bytecode eXecution

allows processors to execute Java bytecode in hardware as a third execution state. The most

prominent use of Jazelle is by manufacturers of mobile phones to increase the execution

speed of Java Micro Edition games and applications. A Jazelle-aware Java Virtual Machine

(JVM) will attempt to run Java bytecodes in hardware, while returning to the software for

more complicated, or lesser-used bytecode operations. ARM claims that approximately 95%

of bytecode in typical program usage ends up being directly processed in the hardware [11].

Therefore, these two additional mechanisms potentially are very useful for monitoring the

behavior of Java applications.

Although hardware mechanisms exist on processors for mobile devices and although

recent kernels provide tool support for accessing and recording information from these

counters, the kernel interface between the two is lacking. In order to take advantage of

Chapter 7. Executing Test Cases for Statement Monitoring 130

hardware mechanisms, the access tool, kernel, and hardware must be able interact appro-

priately. As an example, many mobile devices are designed with the TI OMAP4 system

on a chip (SoC), which is a high-performance applications processor. Devices that use an

OMAP4 SoC include the Amazon Kindle Fire, Barnes and Noble Nook Tablet, Blackberry

Playbook, and Motorola Droid RAZR. On the SoC, a cross trigger interface (CTI) enables

the access of hardware mechanisms, which are controlled by the Performance Monitoring

Interface (PMU), as shown in Figure 7.5. When a hardware mechanism is ready to be read,

the CTI generates an interrupt. The CTI then sends the interrupt to a platform specific

interrupt controller, which then routes the interrupt to a generic interrupt controller.

Many devices that operate with the TI OMAP4 SoC use some version of the Android

operating system. However, all current versions of the Android operating system are built on

Linux 2.6.35, which did not include support for the cross trigger interface or platform specific

interrupt controller. While the CTI can be integrated into the kernel as a component, the

platform specific interrupt controller is tied into fundamental linux kernel timing tasks

and cannot be added in easily. Therefore, until the underlying kernel within the Android

operating system is updated, hardware mechanism usage remains unsupported.

However, it is unlikely that the divergence between the Android operating system and

the Linux kernel will continue, particularly as Android continues to grow in popularity. In

the past, attempts at merging key Android changes with Linux have failed or ended up in

staging only to be abandoned unmaintained. Yet, towards the end of last year, the Linux

Foundation, Linaro, and others initiated a new e↵ort to mainline Android changes into the

Linux kernel [57]. These changes are becoming evident in Linux 3.4, the first version of

which was released on March 31, 2012 [109].

With operating system support, THeME can easily be extended to support test execu-

tion using any of the available hardware mechanisms, and the system can be recompiled

simply to be ported to modern mobile devices. Thus, THeME has the potential to pro-

vide an e�cient and e↵ective solution for test execution and monitoring on such resource-

constrained devices.

Chapter 8

Merits and Future Work

Contents

4.1 Genetic Algorithms and the Test Selection Challenge 46

4.1.1 Designing a Genetic Algorithm . 46

4.1.2 Genetic Algorithm Challenges . 48

4.1.3 The Test Selection Challenge . 49

4.2 Time-Constrained Selection . 49

4.2.1 Overview . 50

4.2.2 A Genetic Algorithm for Time-Aware Test Selection 50

4.2.3 Test Selection in Action . 57

4.3 Empirical Evaluation . 59

4.3.1 Experimental Design . 60

4.3.2 Experiments and Results . 63

4.4 Conclusions . 75

This thesis develops and evaluates techniques for e�cient and e↵ective execution of test

cases in resource-constrained environments. The first set of approaches selects test cases

from large test suites through the use of knapsack approximation algorithms to optimize

likely fault-finding capability within given resource constraints. The second set of techniques

provides methods for evaluating test case quality during test execution while maintaining

131

Chapter 8. Merits and Future Work 132

a high level e�ciency. Our experimental evaluation reveals that these approaches are ideal

for executing test cases in environments where time, power, or memory are limited.

8.1 Contributions and Merits

There are two significant contributions of this dissertation. The first contribution is the

demonstration that higher levels of coverage and fault detection are obtained when con-

straints are explicitly considered during the test selection process (see Chapters 3 and 4).

We developed and evaluated eight techniques that can be used to select test cases specifi-

cally for execution within resource constrained environments. The first seven techniques use

0/1 Knapsack solvers to best select and prioritize test suites without taking code coverage

overlap into account [9]. In the eighth technique, which uses a genetic algorithm to perform

selection, code coverage overlap is additionally considered when evaluating the quality of

potential test selections [115,116].

Our results indicated that a trade-o↵ must be made between the e�ciency of the se-

lection algorithm and final code coverage of the test selection. We additionally learned

that the design of the test suite is of great importance. If test cases have been carefully

designed and there is little overlap between the tests, a more e�cient, non-coverage-aware

test selector can be used with favorable results, comparable to those of an overlap-aware

solver. However, if there is a large amount of overlap between test cases, the added expense

of an overlap-aware solver would be worthwhile. While more sophisticated solvers such

as dynamic programming, generalized tabular, and core are likely to obtain higher utility

than simple solvers such as greedy by value and greedy by ratio, neither group can make

any guarantee regarding final cumulative coverage of the result. Thus, if correctness of the

program is of highest importance, the selection process time would be better spent using a

solver that takes test case overlapping coverage into account in addition to the constraints

that will be present during test execution.

The second major contribution is our exploration of the potential of exploiting hard-

Chapter 8. Merits and Future Work 133

ware mechanisms for use in e�cient test quality analysis. Over the course of our work, we

thoroughly evaluated the success of using three di↵erent hardware mechanisms for branch

coverage and statement coverage monitoring (see Chapters 5–7). Our techniques allow for

branch and statement-level monitoring using hardware mechanisms that incur lower over-

head than traditional instrumentation approaches [100]. The techniques are additionally

significant because they incur either no code growth or negligible code growth, depending

on the structure being monitored. This makes our system ideal for execution in resource

constrained environments.

Our empirical evaluations demonstrated that hardware mechanisms can be adapted for

use in e�cient and e↵ective branch coverage analysis. We also conducted analyses revealing

the benefits of testing using hardware mechanisms on multiple cores and a demonstration

of how the compiler infrastructure can be used along with hardware mechanism monitoring

for improved test coverage.

Applying our approaches, we developed a runtime system with static components that

we call THeME: Testing by Hardware Monitoring Events [117]. THeME incorporates each

of the techniques discussed in Chapters 5–7. The result is an e�cient and e↵ective tool for

test execution and evaluation. The system is extensible in that other hardware mechanisms

can easily be substituted in for those used. The system is also portable in that it does not

rely on special libraries or tools. The hardware mechanisms used are available on commodity

machines, tablets, and mobile devices, making THeME applicable for use on such devices,

given kernel support.

8.2 Future Work

There are several future directions of research regarding selecting and executing test suites

that we would like to pursue. These ideas for future work fall under the challenge of software

testing and debugging within resource-constrained environments.

Chapter 8. Merits and Future Work 134

8.2.1 Selecting Test Cases Based on Estimations

The selection techniques that are presented in this dissertation rely on 1) accurate measure-

ments regarding resource usage and 2) e�cient techniques for evaluating test cases. The use

of hardware mechanisms in test case execution reduces the resource-usage required of each

test case and provides an estimate of coverage that can be used to estimate the fault-finding

ability. By taking advantage of hardware mechanisms when executing test cases, we can

potentially reduce the overhead of selection as well. The challenge is to be able to select

based on the coverage estimations that samples from hardware mechanisms provide.

8.2.2 Combining Hardware Sampling and Limited Instrumentation

Sampling hardware mechanisms alone will produce incomplete coverage information, even

when very small sample rates are used. Small sampling rates will also generate a much

higher time overhead, possibly negating the advantages of harnessing hardware. Although

software-level instrumentation is an expensive form of monitoring, its cost can be reduced by

placing instrumentation only along infrequently executed paths. Frequently executed events

are also more likely to be observed in samples from hardware mechanisms. The sampling of

hardware performance monitors can be supplemented with software-level instrumentation

to improve the e�ciency and e↵ectiveness of software testing.

The main challenge of supplementing hardware monitoring with software-based instru-

mentation is that it is unclear at what program points instrumentation should be added. To

achieve complete coverage information, instrumentation can be added at events unobserved

by hardware monitoring. In a two step execution process, this is simple, and execution of

a partially instrumented program incurs little overhead. However, performing two separate

runs is not suitable in a testing environment.

8.2.3 Execution for Evaluation of Other Test Metrics

Branch and statement coverage are simple and inexpensive to calculate from taken branch

information, but other test metrics may be more e↵ective for both sequential and multi-

Chapter 8. Merits and Future Work 135

threaded programs.

Data-Flow Analysis

One such metric is definition-use association (DUAs) coverage. Data-flow coverage metrics

generally are more expensive to compute than branch or statement metrics, but they are

often more e↵ective in terms of fault finding ability [35].

One challenge in performing data-flow monitoring is due to the fact that data-flow testing

examines the lifetime of data variables. Thus, partial path information must be tracked in

addition to structural coverage. When performing branch testing, exact observed branch

ordering is unnecessary. However, for data-flow analysis, the instructions must be reported

precisely. For example, when calculating def-use association coverage, there may be more

than one coverage order for the nodes that constitute a du pair, including kill nodes. This

occurs when two or more du nodes are mutually reachable or enclosed in a common cycle.

No hardware mechanisms exist that will report a vector of memory instructions, like the

LBR for branches, so our monitoring and analysis techniques must sample more thoroughly

and extrapolate executed instructions based on those observed. Also, when monitoring

taken data, execution ordering information must also be recorded.

Metrics for Multithreaded Programs

Many coverage metrics have been proposed for multithreaded programs, but there is little

known about their e↵ectiveness in determining fault-finding ability [68]. The use of hardware

mechanisms for multithreaded program execution is interesting because each core on a

multicore processor has its own set of hardware mechanisms. However, future techniques

must account for inter-thread behavior when analyzing multithreaded programs. In the case

of branch coverage, our results indicate that tests for multithreaded applications can easily

be evaluated. For more complicated coverage metrics such as those related to data-flow,

information from multiple cores can lead to a substantially more challenging problem.

Chapter 8. Merits and Future Work 136

8.2.4 Hardware Mechanisms and VM Environments

While hardware mechanisms work well for monitoring execution as it executes on the pro-

cessor, it is unclear how the information obtained can be applied to programs executing

within a Virtual Machine (VM). Programs written in languages such as Java that execute

in virtual machines are common, and they are particularly growing in popularity due to the

rise of mobile computing. The challenge is to be able to determine correlations between the

instructions that are observed by the hardware and the instructions that are executing on

the VM.

8.2.5 Fault Localization

Finally, hardware mechanisms such as the LBR are likely to be very useful in debugging

and fault localization. After taking an LBR sample during program execution, we have

a concrete path of branch execution leading up to that point. Additional samples earlier

in program execution can provide additional branch path information. At the point of a

fault, a trigger can be inserted to determine the most recently executed branches taken

that lead up to the fault, and more triggers can be added to sample earlier in program

execution. Determining locations for additional triggers is challenging, but we believe that

with a proper trigger-insertion scheme, paths of execution leading to faults can be observed.

Bibliography

[1] Android developers: Using hardware devices. http://developer.android.com/

guide/developing/device.html.

[2] Cobertura. http://cobertura.sourceforge.net/.

[3] Cyanogenmod nightly builds. http://www.cyanogenmod.com/blog/

cm7-nightly-builds.

[4] Firefox nightly builds. http://nightly.mozilla.org/.

[5] gcov. http://gcc.gnu.org/onlinedocs/gcc-3.0/gcc 8.html.

[6] mozilla - developer central. http://www.mozilla.org/developer/.

[7] Nightly Build - XBMC. http://wiki.xbmc.org/index.php?title=Nightly build.

[8] VideoLAN, VLC media player continuous nightly builds. http://nightlies.

videolan.org/.

[9] S. Alspaugh, K. R. Walcott, M. Belanich, G. M. Kapfhammer, and M. L. So↵a.

E�cient time-aware prioritization with knapsack solvers. In WEASELTech07: Pro-

ceedings of the ASE Workshop on Empirical Assessment of Software Engineering

Languages and Technologies, Atlanta, Georgia, November 2007.

[10] G. Ammons, T. Ball, and J. R. Larus. Exploiting hardware performance counters

with flow and context sensitive profiling. SIGPLAN Not., 32(5):85–96, 1997.

137

http://developer.android.com/guide/developing/device.html
http://developer.android.com/guide/developing/device.html
http://cobertura.sourceforge.net/
http://www.cyanogenmod.com/blog/cm7-nightly-builds
http://www.cyanogenmod.com/blog/cm7-nightly-builds
http://nightly.mozilla.org/
http://gcc.gnu.org/onlinedocs/gcc-3.0/gcc_8.html
http://www.mozilla.org/developer/
http://wiki.xbmc.org/index.php?title=Nightly_build
http://nightlies.videolan.org/
http://nightlies.videolan.org/

Bibliography 138

[11] ARM. ARM Jazelle technology. http://www.arm.com/products/processors/

technologies/jazelle.php.

[12] ARM. Technical Reference Manual- Revision: r1p1. ARM Limited, 2006.

[13] M. Arnold and B. G. Ryder. A framework for reducing the cost of instrumented code.

SIGPLAN Not., 36(5):168–179, 2001.

[14] Atlassian. Clover: Java and groovy code coverage. http://www.cenqua.com/

clover/.

[15] R. Azimi, M. Stumm, and R. W. Wisniewski. Online performance analysis by statis-

tical sampling of microprocessor performance counters. In ICS ’05: Proceedings of the

19th annual international conference on Supercomputing, pages 101–110, New York,

NY, USA, 2005. ACM.

[16] D. Binkley. Semantics guided regression test cost reduction. IEEE Trans. Softw. Eng.,

23(8):498–516, Aug. 1997.

[17] R. Bod́ık, R. Gupta, and M. L. So↵a. Refining data flow information using infeasible

paths. SIGSOFT Softw. Eng. Notes, 22(6):361–377, Nov. 1997.

[18] A. Bron, E. Farchi, Y. Magid, Y. Nir, and S. Ur. Applications of synchronization

coverage. In Proceedings of the tenth ACM SIGPLAN symposium on Principles and

practice of parallel programming, PPoPP ’05, pages 206–212, New York, NY, USA,

2005. ACM.

[19] S. Browne, J. Dongarra, N. Garner, K. London, and P. Mucci. A scalable cross-

platform infrastructure for application performance tuning using hardware counters.

In Supercomputing ’00: Proceedings of the 2000 ACM/IEEE conference on Supercom-

puting (CDROM), page 42, Washington, DC, USA, 2000. IEEE Computer Society.

[20] J. Cavazos, G. Fursin, F. Agakov, E. Bonilla, M. F. P. O’Boyle, and O. Temam.

Rapidly selecting good compiler optimizations using performance counters. In CGO

http://www.arm.com/products/processors/technologies/jazelle.php
http://www.arm.com/products/processors/technologies/jazelle.php
http://www.cenqua.com/clover/
http://www.cenqua.com/clover/

Bibliography 139

’07: Proceedings of the International Symposium on Code Generation and Optimiza-

tion, pages 185–197, Washington, DC, USA, 2007. IEEE Computer Society.

[21] D. Chen, N. Vachharajani, R. Hundt, S.-w. Liao, V. Ramasamy, P. Yuan, W. Chen,

and W. Zheng. Taming hardware event samples for fdo compilation. In CGO ’10: Pro-

ceedings of the 8th annual IEEE/ACM international symposium on Code generation

and optimization, pages 42–52, New York, NY, USA, 2010. ACM.

[22] H. Chen, W.-C. Hsu, J. Lu, P.-C. Yew, and D.-Y. Chen. Dynamic trace selection using

performance monitoring hardware sampling. In CGO ’03: Proceedings of the inter-

national symposium on Code generation and optimization, pages 79–90, Washington,

DC, USA, 2003. IEEE Computer Society.

[23] T. Y. Chen and M. F. Lau. Dividing strategies for the optimization of a test suite.

Inf. Process. Lett., 60(3):135–141, Nov. 1996.

[24] Y.-F. Chen, D. S. Rosenblum, and K.-P. Vo. Testtube: a system for selective regression

testing. In Proceedings of the 16th international conference on Software engineering,

ICSE ’94, pages 211–220, Los Alamitos, CA, USA, 1994. IEEE Computer Society

Press.

[25] S. Cornett. Bullseye testing technology: Minimum acceptable code coverage. http:

//www.bullseye.com/minimum.html.

[26] T. Dey, W. Wang, J. Davidson, and M. L. So↵a. Characterizing multi-threaded

applications based on shared-resource contention. In IEEE International Symposium

on Performance Analysis of Systems and Software. IEEE, 2011.

[27] H. Do, G. Rothermel, and A. Kinneer. Empirical studies of test case prioritization in

a JUnit testing environment. In Proc. of 15th ISSRE, pages 113–124, 2004.

http://www.bullseye.com/minimum.html
http://www.bullseye.com/minimum.html

Bibliography 140

[28] S. Elbaum, A. G. Malishevsky, and G. Rothermel. Prioritizing test cases for regres-

sion testing. In Proceedings of the International Symposium on Software Testing and

Analysis, pages 102–112. ACM Press, 2000.

[29] S. Elbaum, A. G. Malishevsky, and G. Rothermel. Test case prioritization: A family

of empirical studies. IEEE Trans. Softw. Eng., 28(2):159–182, 2002.

[30] S. G. Elbaum, A. G. Malishevsky, and G. Rothermel. Incorporating varying test costs

and fault severities into test case prioritization. In Proc. of 23rd ICSE, pages 329–338,

2001.

[31] S. Eranian. Perfmon2. http://perfmon2.sourceforge.net.

[32] ewing. Automated Testing on Mobile Devices for iOS and Android. http://blog.

anscamobile.com/2011/08/automated-testing-on-mobile-devices-part1/.

[33] R. F. Fischer, K. and A. Chrusckicki. A methodology for retesting modified software.

In Proceedings of the National Tele. Conference B-6-3, pages 1–6, Nov. 1981.

[34] S. Forrest. Genetic algorithms. In A. B. Tucker, editor, The Computer Science

Handbook. CRC Press, Boca Raton, FL, second edition, June 2004.

[35] P. Frankl and E. Weyuker. An applicable family of data flow testing criteria. Software

Engineering, IEEE Transactions on, 14(10):1483–1498, Oct 1988.

[36] M. Garey and D. Johnson. Computers and Intractability: A Guide to NP-

Completeness. W.H. Freeman and Company, San Fransisco, 1979.

[37] D. E. Goldberg. The Design of Innovation: Lessons from and for Competent Genetic

Algorithms. Addison-Wesley, Reading, MA, 2002.

[38] D. E. Goldberg, B. Korb, and K. Deb. Messy genetic algorithms: Motivation, analysis,

and first results. Complex Systems, 3(5):493–530, 1989.

http://perfmon2.sourceforge.net
http://blog.anscamobile.com/2011/08/automated-testing-on-mobile-devices-part1/
http://blog.anscamobile.com/2011/08/automated-testing-on-mobile-devices-part1/

Bibliography 141

[39] E. Gossett. Discrete Mathematics with Proof. Pearson Education, Inc., Upper Saddle

River, New Jersey, 2003.

[40] M. Harman. The current state and future of search based software engineering. In

Future of Soft. Eng., pages 342–357, 2007.

[41] M. J. Harrold, R. Gupta, and M. L. So↵a. A methodology for controlling the size of

a test suite. ACM Trans. Softw. Eng. Methodol., 2(3):270–285, July 1993.

[42] M. J. Harrold and M. L. So↵a. An incremental approach to unit testing during

maintenance. In Proceedings of the Conference on Software Maintenance, pages 362–

367, Oct. 1988.

[43] J. Hartmann and D. Robson. Techniques for selective revalidation. Software, IEEE,

7(1):31 –36, jan. 1990.

[44] J. Hollingsworth, O. Niam, B. Miller, Z. Xu, M. Goncalves, and L. Zheng. Mdl: a

language and compiler for dynamic program instrumentation. In Parallel Architectures

and Compilation Techniques., 1997. Proceedings., 1997 International Conference on,

pages 201 –212, nov 1997.

[45] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experiments of the e↵ectiveness

of dataflow- and controlflow-based test adequacy criteria. In ICSE ’94: Proceedings of

the 16th international conference on Software engineering, pages 191–200, Los Alami-

tos, CA, USA, 1994. IEEE Computer Society Press.

[46] IBM. Rational pure coverage. http://www-01.ibm.com/software/rational/.

[47] Intel Corporation. Intel 64 and IA-32 Architectures Software and Developer’s Manual,

Volumes 3A and 3B. Intel Corporation, Santa Clara, CA, USA, March 2010.

[48] J. A. Jones and M. J. Harrold. Test-suite reduction and prioritization for modified

condition/decision coverage. In Proceedings of the IEEE International Conference on

http://www-01.ibm.com/software/rational/

Bibliography 142

Software Maintenance (ICSM’01), ICSM ’01, pages 92–, Washington, DC, USA, 2001.

IEEE Computer Society.

[49] G. M. Kapfhammer. Software testing. In A. B. Tucker, editor, The Computer Science

Handbook. CRC Press, Boca Raton, FL, second edition, June 2004.

[50] G. M. Kapfhammer, M. L. So↵a, and D. Mosse. Testing in resource constrained exe-

cution environments. In Proceedings of the 20th IEEE/ACM International Conference

on Automated Software Engineering, pages 418–422, 2005.

[51] E.-A. Karlsson, L.-G. Andersson, and P. Leion. Daily build and feature development

in large distributed projects. Proc. of 22nd ICSE, pages 649–658, 2000.

[52] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer-Verlag, Berlin,

Germany, 2004.

[53] M. Kessis, Y. Ledru, and G. Vandome. Experiences in coverage testing of a Java

middleware. In Proc. of 5th SEM, pages 39–45, 2005.

[54] J.-M. Kim and A. Porter. A history-based test prioritization technique for regression

testing in resource constrained environments. In Proc of 24th ICSE, pages 119–129,

2002.

[55] K. Koster and D. Kao. State coverage: a structural test adequacy criterion for behav-

ior checking. In The 6th Joint Meeting on European software engineering conference

and the ACM SIGSOFT symposium on the foundations of software engineering: com-

panion papers, ESEC-FSE companion ’07, pages 541–544, New York, NY, USA, 2007.

ACM.

[56] H. Labs. Overview of perfmon kernel interface. http://www.hpl.hp.com/research/

linux/perfmon/perfmon.php.

[57] M. Larabel. Linux 3.4 kernel will gain more android patches. http://www.phoronix.

com/scan.php?page=news item&px=MTA2ODA.

http://www.hpl.hp.com/research/linux/perfmon/perfmon.php
http://www.hpl.hp.com/research/linux/perfmon/perfmon.php
http://www.phoronix.com/scan.php?page=news_item&px=MTA2ODA
http://www.phoronix.com/scan.php?page=news_item&px=MTA2ODA

Bibliography 143

[58] J. Laski and W. Szermer. Identification of program modifications and its applications

in software maintenance. In Software Maintenance, 1992. Proceerdings., Conference

on, pages 282 –290, nov 1992.

[59] C. Lattner. LLVM: An Infrastructure for Multi-Stage Optimization. Master’s thesis,

Computer Science Dept., University of Illinois at Urbana-Champaign, Urbana, IL,

Dec 2002. See http://llvm.cs.uiuc.edu.

[60] A. R. Lebeck and D. A. Wood. Cache Profiling and the SPEC Benchmarks: A Case

Study. Computer, 27:15–26, 1994.

[61] Y. Lei and J. Andrews. Minimization of randomized unit test cases. In Software

Reliability Engineering, 2005. ISSRE 2005. 16th IEEE International Symposium on,

pages 10 pp. –276, nov. 2005.

[62] A. Leitner, M. Oriol, A. Zeller, I. Ciupa, and B. Meyer. E�cient unit test case min-

imization. In Proceedings of the twenty-second IEEE/ACM international conference

on Automated software engineering, ASE ’07, pages 417–420, New York, NY, USA,

2007. ACM.

[63] H. K. N. Leung and L. J. White. A study of integration testing and software regression

at the integration level. In Proceedings of Conference on Software Maintenance, pages

290–300, Nov. 1990.

[64] J. Levon. OProfile - A System Profiler for Linux. http://oprofile.sourceforge.

net.

[65] Z. Li, M. Harman, and R. M. Hierons. Search algorithms for regression test case

prioritization. IEEE Trans. on Soft. Eng., 33(4):225–237, 2007.

[66] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug isolation via remote program

sampling. SIGPLAN Not., 38:141–154, May 2003.

http://oprofile.sourceforge.net
http://oprofile.sourceforge.net

Bibliography 144

[67] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan. Scalable statistical bug

isolation. SIGPLAN Not., 40:15–26, June 2005.

[68] S. Lu, J. Tucek, F. Qin, and Y. Zhou. Avio: detecting atomicity violations via access

interleaving invariants. SIGARCH Comput. Archit. News, 34(5):37–48, 2006.

[69] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.

Reddi, and K. Hazelwood. Pin: building customized program analysis tools with

dynamic instrumentation. In PLDI ’05: Proceedings of the 2005 ACM SIGPLAN

conference on Programming language design and implementation, pages 190–200, New

York, NY, USA, 2005. ACM.

[70] J. Mars and R. Hundt. Scenario based optimization: A framework for statically

enabling online optimizations. In CGO ’09: Proceedings of the 2009 International

Symposium on Code Generation and Optimization, pages 169–179, Washington, DC,

USA, 2009. IEEE Computer Society.

[71] J. Mars, N. Vachharajani, R. Hundt, and M. L. So↵a. Contention aware execution:

online contention detection and response. In Proceedings of the 8th annual IEEE/ACM

international symposium on Code generation and optimization, CGO ’10, pages 257–

265, New York, NY, USA, 2010. ACM.

[72] P. McNamee and M. Hall. Developing a tool for memoizing functions in C++. ACM

SIGPLAN Not., 33(8):17–22, 1998.

[73] A. Memon, I. Banerjee, N. Hashmi, and A. Nagarajan. DART: A framework for

regression testing “nightly/daily builds” of GUI applications. In Proc. of ICSM, 2003.

[74] B. Miller, M. Callaghan, J. Cargille, J. Hollingsworth, R. Irvin, K. Karavanic, K. Kun-

chithapadam, and T. Newhall. The paradyn parallel performance measurement tool.

Computer, 28(11):37 –46, nov 1995.

Bibliography 145

[75] J. Misurda, B. R. Childers, and M. L. So↵a. Jazz2: a flexible and extensible framework

for structural testing in a java vm. In Proceedings of the 9th International Conference

on Principles and Practice of Programming in Java, PPPJ ’11, pages 81–90, New

York, NY, USA, 2011. ACM.

[76] J. Misurda, J. A. Clause, J. L. Reed, B. R. Childers, and M. L. So↵a. Demand-

driven structural testing with dynamic instrumentation. In ICSE ’05: Proceedings of

the 27th international conference on Software engineering, pages 156–165, New York,

NY, USA, 2005. ACM.

[77] M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, Cambridge, MA,

1998.

[78] I. Moore. Jester- a JUnit test tester. In Proceedings of the 2nd International Confer-

ence on Extreme Programming and Flexible Processes in Software Engineering, pages

84–87, May 2001.

[79] A. J. O↵utt, J. Pan, and J. M. Voas. Procedures for reducing the size of coverage-based

test sets. In In Proc. Twelfth Int’l. Conf. Testing Computer Softw, pages 111–123,

1995.

[80] T. Ostrand and E. Weyuker. Using dataflow analysis for regression testing. In Pro-

ceedings of the Sixth Annual Pacific Northwest Conference on Software Quality, pages

233–247, sept 1988.

[81] W. Perry. E↵ective Methods for Software Testing. John Wiley & Sons, Inc., New

York, New York, 1995.

[82] B. Pettichord. Seven steps to test automation success. In Proc. of STAR, 1999.

[83] D. Pisinger. Core problems in knapsack algorithms. Operations Research, 47(4):570–

575, 1999.

Bibliography 146

[84] C. Poole and J. W. Huisman. Using extreme programming in a maintenance environ-

ment. IEEE Softw., 18(6):42–50, 2001.

[85] V. Ramasamy, R. Hundt, W. Chen, and D. Chen. Feedback-directed optimizations

with estimated edge profiles from hardware event sampling. In Open64 Workshop at

CGO 2008, Boston, MA, USA, 2008. ACM.

[86] G. Rothermel and M. J. Harrold. Analyzing regression test selection techniques. IEEE

Transactions on Software Engineering, 22(8):529–551, 1996.

[87] G. Rothermel and M. J. Harrold. A safe, e�cient regression test selection technique.

ACM Transactions on Software Engineering Methodology, 6(2):173–210, 1997.

[88] G. Rothermel, M. J. Harrold, J. Ostrin, and C. Hong. An empirical study of the e↵ects

of minimization on the fault detection capabilities of test suites. In In Proceedings of

the International Conference on Software Maintenance, pages 34–43, 1998.

[89] G. Rothermel, R. Untch, C. Chu, and M. Harrold. Prioritizing test cases for regression

testing. Software Engineering, IEEE Transactions on, 27(10):929 –948, oct 2001.

[90] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold. Test case prioritization: An

empirical study. In Proceedings of the International Conference on Software Mainte-

nance, Oxford, September 1999.

[91] V. Roubtsov.

[92] P. Runeson. A survey of unit testing practices. IEEE Softw., 23(4):22–29, July 2006.

[93] D. Sa↵, S. Artzi, J. H. Perkins, and M. D. Ernst. Automatic test factoring for Java.

In Proc. of 20th ASE, pages 114–123, 2005.

[94] D. Sa↵ and M. D. Ernst. An experimental evaluation of continuous testing during

development. In Proc of ISSTA, pages 76–85, 2004.

Bibliography 147

[95] R. Santelices and M. J. Harrold. E�ciently monitoring data-flow test coverage. In

ASE ’07: Proceedings of the twenty-second IEEE/ACM international conference on

Automated software engineering, pages 343–352, New York, NY, USA, 2007. ACM.

[96] T. Sheng, N. Vachharajani, S. Eranian, R. Hundt, W. Chen, and W. Zheng. Racez:

a lightweight and non-invasive race detection tool for production applications. In

Software Engineering (ICSE), 2011 33rd International Conference on, pages 401 –

410, may 2011.

[97] A. Shye, M. Iyer, V. J. Reddi, and D. A. Connors. Code coverage testing using

hardware performance monitoring support. In AADEBUG’05: Proceedings of the

sixth international symposium on Automated analysis-driven debugging, pages 159–

163, New York, NY, USA, 2005. ACM.

[98] A. M. Smith, J. Geiger, G. M. Kapfhammer, and M. L. So↵a. Test suite reduction

and prioritization with call trees. In Proceedings of the twenty-second IEEE/ACM

international conference on Automated software engineering, ASE ’07, pages 539–540,

New York, NY, USA, 2007. ACM.

[99] A. M. Smith and G. M. Kapfhammer. An empirical study of incorporating cost into

test suite reduction and prioritization. In Proceedings of the 2009 ACM symposium

on Applied Computing, SAC ’09, pages 461–467, New York, NY, USA, 2009. ACM.

[100] M. L. So↵a, K. Walcott, and J. Mars.

[101] M. Spinelli. Testing memory usage on mobile safari. http://cubiq.org/

testing-memory-usage-on-mobile-safari.

[102] A. Srivastava and J. Thiagarajan. E↵ectively prioritizing tests in development envi-

ronment. In Proc. of ISSTA, pages 97–106, 2002.

[103] M. M. Systems. Java code coverage analyzer - jCover. http://www.mmsindia.com/

JCover.html.

http://cubiq.org/testing-memory-usage-on-mobile-safari
http://cubiq.org/testing-memory-usage-on-mobile-safari
http://www.mmsindia.com/JCover.html
http://www.mmsindia.com/JCover.html

Bibliography 148

[104] A.-B. Taha, S. Thebaut, and S.-S. Liu. An approach to software fault localization

and revalidation based on incremental data flow analysis. In Computer Software

and Applications Conference, 1989. COMPSAC 89., Proceedings of the 13th Annual

International, pages 527 –534, sept 1989.

[105] S. Tallam and N. Gupta. A concept analysis inspired greedy algorithm for test suite

minimization. In Proceedings of the 6th ACM SIGPLAN-SIGSOFT workshop on

Program analysis for software tools and engineering, PASTE ’05, pages 35–42, New

York, NY, USA, 2005. ACM.

[106] TestCocoon Software. TestCocoon - Code Coverage Tool for C/C++ and C#. http:

//doc.froglogic.com/squish-coco/2.0/codecoverage.html.

[107] M. M. Tikir and J. K. Hollingsworth. E�cient instrumentation for code coverage

testing. SIGSOFT Softw. Eng. Notes, 27(4):86–96, July 2002.

[108] R. Torkar and S. Mankefors. A survey on testing and reuse. In Proceedings of the IEEE

International Conference on Software-Science, Technology & Engineering, SWSTE

’03, pages 164–, Washington, DC, USA, 2003. IEEE Computer Society.

[109] L. Torvalds. Linux 3.4-rc1. https://lkml.org/lkml/2012/3/31/214.

[110] A. Tran, M. Smith, and J. Miller. A hardware-assisted tool for fast, full code coverage

analysis. In Software Reliability Engineering, 2008. ISSRE 2008. 19th International

Symposium on, pages 321 –322, nov. 2008.

[111] G.-R. Uh, R. Cohn, B. Yadavalli, R. Peri, and R. Ayyagari. Analyzing dynamic binary

instrumentation overhead. In Workshop on Binary Instrumentation and Application,

2007.

[112] J. M. Voas. PIE: a dynamic failure-based technique. IEEE Transactions on Software

Engineering, 18(8):717–735, 1992.

http://doc.froglogic.com/squish-coco/2.0/codecoverage.html
http://doc.froglogic.com/squish-coco/2.0/codecoverage.html
https://lkml.org/lkml/2012/3/31/214

Bibliography 149

[113] F. I. Vokolos and P. G. Frankl. Pythia: a regression test selection tool based on textual

di↵erencing. In IFIP TC5 WG5.4 3rd internatinal conference on on Reliability, quality

and safety of software-intensive systems, ENCRESS ’97, pages 3–21, London, UK,

UK, 1997. Chapman & Hall, Ltd.

[114] K. R. Walcott. Prioritizing regression test suites for time-constrained execution using

a genetic algorithm. Technical Report CS05-11, Department of Computer Science,

Allegheny College, Meadville, PA, 2005.

[115] K. R. Walcott, G. M. Kapfhammer, R. S. Roos, and M. L. So↵a. Time-aware test suite

prioritization. In ISSTA06: Proceedings of the International Symposium on Software

Testing and Analysis, Portland, Maine, USA, July 2006.

[116] K. R. Walcott-Justice, G. M. Kapfhammer, and M. L. So↵a. Prioritizing test suites

for time constrained execution. In Journal Paper: To be submitted.

[117] K. R. Walcott-Justice, J. Mars, and M. L. So↵a. THeME: A System for Testing

by Hardware Monitoring Events. In ISSTA 2012: Proceedings of the International

Symposium on Software Testing and Analysis, July 2012.

[118] E. J. Weyuker. The evaluation of program-based software test data adequacy criteria.

Commun. ACM, 31(6):668–675, June 1988.

[119] W. E. Wong, J. R. Horgan, S. London, and A. P. Mathur. E↵ect of test set min-

imization on fault detection e↵ectiveness. In Proceedings of the 17th international

conference on Software engineering, ICSE ’95, pages 41–50, New York, NY, USA,

1995. ACM.

[120] W. E. Wong, J. R. Horgan, A. P. Mathur, and A. Pasquini. Test set size minimization

and fault detection e↵ectiveness: a case study in a space application. J. Syst. Softw.,

48(2):79–89, Oct. 1999.

Bibliography 150

[121] Q. Yang, J. J. Li, and D. Weiss. A survey of coverage based testing tools. In Pro-

ceedings of the 2006 international workshop on Automation of software test, AST ’06,

pages 99–103, New York, NY, USA, 2006. ACM.

[122] C. Yilmaz and A. Porter. Combining hardware and software instrumentation to

classify program executions. In Proceedings of the 2010 Foundations of Software

Engineering Conference. ACM, 2010.

[123] S. Yoo and M. Harman. Pareto e�cient multi-objective test case selection. In Proc.

of ISSTA, pages 140–150, 2007.

[124] H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit test coverage and adequacy.

ACM Computing Surveys, 29(4):366–427, 1997.

[125] B. Zorman, G. M. Kapfhammer, and R. S. Roos. Creation and analysis of a Javaspace-

based genetic algorithm. In Proceedings of the 8th International Conference on Par-

allel and Distributed Processing Techniques and Applications, Las Vegas, NV, June

2002.

	 Abstract
	 Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Test Case Selection
	Executing Test Cases
	Constraints During Testing
	Constraints When Selecting Test Cases
	Constraints When Executing Test Cases

	Challenges and Goals of Testing in Resource-Constrained Environments
	Research Overview
	Description of the Research Process
	Contributions of the Dissertation

	Background and Related Work
	Test Suite Design and Analysis
	Evaluating Test Suite Quality
	Measuring Test Suite Effectiveness

	Related Work
	Test Selection and Prioritization
	Executing Test Cases Efficiently
	Hardware Performance Monitoring and Sampling

	Knapsack Solvers for Time-Aware Selection
	Time-Aware Selection
	Knapsack Solvers as Selectors
	Experiment Goals and Design
	Case Studies
	Evaluation Metrics

	Experiments and Results
	Selection Effectiveness.
	Selection Efficiency.

	Conclusions

	A Genetic Algorithm for Time-Aware Selection
	Genetic Algorithms and the Test Selection Challenge
	Designing a Genetic Algorithm
	Genetic Algorithm Challenges
	The Test Selection Challenge

	Time-Constrained Selection
	Overview
	A Genetic Algorithm for Time-Aware Test Selection
	Test Selection in Action

	Empirical Evaluation
	Experimental Design
	Experiments and Results

	Conclusions

	Executing Test Cases for Branch Monitoring
	Challenges of Exploiting Hardware Mechanisms
	Hardware Monitoring for Branch Testing
	Last Branch Record (LBR)
	Branch Trace Store (BTS)

	Sampling Hardware Mechanisms for Branch Testing
	Event-Based Sampling
	Addressing the Challenges of Sampling
	Improving Effectiveness with MultiCores

	Empirical Evaluation
	Experiment Design
	Experiments and Results

	Conclusion

	THeME: Testing by Hardware Monitoring Events
	Improvement Challenges
	Accessing and Sampling Branch Vectors
	Implementation Details
	User-level Branch Vector Access
	Access via Polling
	Interrupt Driven Access

	Improving Branch Coverage at High Sample Rates
	Testing over Multiple Cores
	Discussion
	LBR Monitoring Benefits
	Improving Efficiency by Advancing Hardware
	Improving Effectiveness Through Instrumentation

	Conclusion

	Executing Test Cases for Statement Monitoring
	Challenges of Statement Monitoring
	Hardware Monitoring for Statement Testing
	Choosing a Mechanism
	Statement Coverage Comparisons

	Discussion
	THeME for Tablets and Smartphones

	Merits and Future Work
	Contributions and Merits
	Future Work
	Selecting Test Cases Based on Estimations
	Combining Hardware Sampling and Limited Instrumentation
	Execution for Evaluation of Other Test Metrics
	Hardware Mechanisms and VM Environments
	Fault Localization

	Bibliography

